
Red Hat AMQ Streams 2.6

Developing Kafka client applications

Develop client applications to interact with Kafka using AMQ Streams

Last Updated: 2024-04-12

Red Hat AMQ Streams 2.6 Developing Kafka client applications

Develop client applications to interact with Kafka using AMQ Streams

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Develop client applications that can send and receive messages through Kafka brokers. Set up
secure access between the clients and the brokers.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DEVELOPING CLIENTS OVERVIEW
1.1. SUPPORTING A HTTP CLIENT
1.2. TUNING YOUR PRODUCERS AND CONSUMERS
1.3. MONITORING CLIENT INTERACTION

CHAPTER 2. CLIENT DEVELOPMENT PREREQUISITES

CHAPTER 3. ADDING CLIENT DEPENDENCIES TO YOUR MAVEN PROJECT
3.1. ADDING A KAFKA CLIENTS DEPENDENCY TO YOUR MAVEN PROJECT
3.2. ADDING A KAFKA STREAMS DEPENDENCY TO YOUR MAVEN PROJECT
3.3. ADDING AN OAUTH 2.0 DEPENDENCY TO YOUR MAVEN PROJECT

CHAPTER 4. CONFIGURING CLIENT APPLICATIONS FOR CONNECTING TO A KAFKA CLUSTER
4.1. BASIC PRODUCER CLIENT CONFIGURATION
4.2. BASIC CONSUMER CLIENT CONFIGURATION

CHAPTER 5. CONFIGURING SECURE CONNECTIONS
5.1. SETTING UP BROKERS FOR SECURE ACCESS

5.1.1. Establishing a secure connection to a Kafka cluster running on RHEL
5.1.2. Configuring secure listeners for a Kafka cluster on RHEL
5.1.3. Establishing a secure connection to a Kafka cluster running on OpenShift
5.1.4. Configuring secure listeners for a Kafka cluster on OpenShift

5.2. SETTING UP CLIENTS FOR SECURE ACCESS
5.2.1. Configuring security protocols
5.2.2. Configuring permitted TLS versions and cipher suites
5.2.3. Using Access Control Lists (ACLs)
5.2.4. Using OAuth 2.0 for token-based access
5.2.5. Using Open Policy Agent (OPA) access policies
5.2.6. Using transactions when streaming messages

CHAPTER 6. DEVELOPING A KAFKA CLIENT
6.1. EXAMPLE KAFKA PRODUCER APPLICATION
6.2. EXAMPLE KAFKA CONSUMER APPLICATION
6.3. USING COOPERATIVE REBALANCING WITH CONSUMERS

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

3

4
4
4
4

6

7
7
8
8

10
10
11

13
13
14
14
15
16
19
19

20
21
21
22
23

26
27
31

36

38
38
38
38
38

Table of Contents

1

Red Hat AMQ Streams 2.6 Developing Kafka client applications

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DEVELOPING CLIENTS OVERVIEW
Develop Kafka client applications for your AMQ Streams installation that can produce messages,
consume messages, or do both. You can develop client applications for use with AMQ Streams on
OpenShift or AMQ Streams on RHEL.

Messages comprise an optional key and a value that contains the message data, plus headers and
related metadata. The key identifies the subject of the message, or a property of the message. You
must use the same key if you need to process a group of messages in the same order as they are sent.

Messages are delivered in batches. Messages contain headers and metadata that provide details that
are useful for filtering and routing by clients, such as the timestamp and offset position for the message.

Kafka provides client APIs for developing client applications. Kafka producer and consumer APIs are the
primary means of interacting with a Kafka cluster in a client application. The APIs control the flow of
messages. The producer API sends messages to Kafka topics, while the consumer API reads messages
from topics.

AMQ Streams supports clients written in Java. How you develop your clients depends on your specific
use case. Data durability might be a priority or high throughput. These demands can be met through
configuration of your clients and brokers. All clients, however, must be able to connect to all brokers in a
given Kafka cluster.

1.1. SUPPORTING A HTTP CLIENT

As an alternative to using the Kafka producer and consumer APIs in your client, you can set up and use
the AMQ Streams Kafka Bridge. The Kafka Bridge provides a RESTful interface that allows HTTP-based
clients to interact with a Kafka cluster. It offers the advantages of a web API connection to Strimzi,
without the need for client applications that need to interpret the Kafka protocol. Kafka uses a binary
protocol over TCP.

For more information, see Using the AMQ Streams Kafka Bridge .

1.2. TUNING YOUR PRODUCERS AND CONSUMERS

You can add more configuration properties to optimize the performance of your Kafka clients. You
probably want to do this when you’ve had some time to analyze how your client and broker configuration
performs.

For more information, see Kafka configuration tuning .

1.3. MONITORING CLIENT INTERACTION

Distributed tracing facilitates the end-to-end tracking of messages. You can enable tracing in Kafka
consumer and producer client applications.

For more information, see the documentation for distributed tracing in the following guides:

Deploying and Upgrading AMQ Streams on OpenShift

Using AMQ Streams on RHEL

NOTE

Red Hat AMQ Streams 2.6 Developing Kafka client applications

4

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_the_amq_streams_kafka_bridge/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/kafka_configuration_tuning/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_amq_streams_on_rhel/index

NOTE

When we use the term client application, we’re specifically referring to applications that
use Kafka producers and consumers to send and receive messages to and from a Kafka
cluster. We are not referring to other Kafka components, such as Kafka Connect or Kafka
Streams, which have their own distinct use cases and functionality.

CHAPTER 1. DEVELOPING CLIENTS OVERVIEW

5

CHAPTER 2. CLIENT DEVELOPMENT PREREQUISITES
The following prerequisites are required for developing clients to use with AMQ Streams.

You have a Red Hat account.

You have a Kafka cluster running in AMQ Streams.

Kafka brokers are configured with listeners for secure client connections.

Topics have been created for your cluster.

You have an IDE to develop and test your client.

JDK 11 or later is installed.

Red Hat AMQ Streams 2.6 Developing Kafka client applications

6

CHAPTER 3. ADDING CLIENT DEPENDENCIES TO YOUR
MAVEN PROJECT

If you are developing Java-based Kafka clients, you can add the Red Hat dependencies for Kafka clients,
including Kafka Streams, to the pom.xml file of your Maven project. Only client libraries built by Red Hat
are supported for AMQ Streams.

You can add the following artifacts as dependencies:

kafka-clients

Contains the Kafka Producer, Consumer, and AdminClient APIs.

The Producer API enables applications to send data to a Kafka broker.

The Consumer API enables applications to consume data from a Kafka broker.

The AdminClient API provides functionality for managing Kafka clusters, including topics,
brokers, and other components.

kafka-streams

Contains the KafkaStreams API.
Kafka Streams enables applications to receive data from one or more input streams. You can use this
API to run a sequence of real-time operations on streams of data, like mapping, filtering, and joining.
You can use Kafka Streams to write results into one or more output streams. It is part of the kafka-
streams JAR package that is available in the Red Hat Maven repository.

3.1. ADDING A KAFKA CLIENTS DEPENDENCY TO YOUR MAVEN
PROJECT

Add a Red Hat dependency for Kafka clients to your Maven project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of the pom.xml file of your
Maven project.

<repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>

2. Add kafka-clients as a <dependency> to the pom.xml file of your Maven project.

<dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>

CHAPTER 3. ADDING CLIENT DEPENDENCIES TO YOUR MAVEN PROJECT

7

 <artifactId>kafka-clients</artifactId>
 <version>3.6.0.redhat-00005</version>
 </dependency>
</dependencies>

3. Build the Maven project to add the Kafka client dependency to the project.

3.2. ADDING A KAFKA STREAMS DEPENDENCY TO YOUR MAVEN
PROJECT

Add a Red Hat dependency for Kafka Streams to your Maven project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of the pom.xml file of your
Maven project.

<repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>

2. Add kafka-streams as a <dependency> to the pom.xml file of your Maven project.

<dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-streams</artifactId>
 <version>3.6.0.redhat-00005</version>
 </dependency>
</dependencies>

3. Build the Maven project to add the Kafka Streams dependency to the project.

3.3. ADDING AN OAUTH 2.0 DEPENDENCY TO YOUR MAVEN
PROJECT

Add a Red Hat dependency for OAuth 2.0 to your Maven project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of the pom.xml file of your

Red Hat AMQ Streams 2.6 Developing Kafka client applications

8

1. Add the Red Hat Maven repository to the <repositories> section of the pom.xml file of your
Maven project.

<repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>

2. Add kafka-oauth-client as a <dependency> to the pom.xml file of your Maven project.

<dependency>
 <groupId>io.strimzi</groupId>
 <artifactId>kafka-oauth-client</artifactId>
 <version>0.14.0.redhat-00006</version>
</dependency>

3. Build the Maven project to add the OAuth 2.0 dependency to the project.

CHAPTER 3. ADDING CLIENT DEPENDENCIES TO YOUR MAVEN PROJECT

9

1

2

3

CHAPTER 4. CONFIGURING CLIENT APPLICATIONS FOR
CONNECTING TO A KAFKA CLUSTER

To connect to a Kafka cluster, a client application must be configured with a minimum set of properties
that identify the brokers and enable a connection. Additionally, you need to add a serializer/deserializer
mechanism to convert messages into or out of the byte array format used by Kafka. When developing a
consumer client, you begin by adding an initial connection to your Kafka cluster, which is used to discover
all available brokers. When you have established a connection, you can begin consuming messages from
Kafka topics or producing messages to them.

Although not required, a unique client ID is recommended so that you can identity your clients in logs
and metrics collection.

You can configure the properties in a properties file. Using a properties file means you can modify the
configuration without recompiling the code.

For example, you can load the properties in a Java client using the following code:

Loading configuration properties into a client

You can also use add the properties directly to the code in a configuration object. For example, you can
use the setProperty() method for a Java client application. Adding properties directly is a useful option
when you only have a small number of properties to configure.

4.1. BASIC PRODUCER CLIENT CONFIGURATION

When you develop a producer client, configure the following:

A connection to your Kafka cluster

A serializer to transform message keys into bytes for the Kafka broker

A serializer to transform message values into bytes for the Kafka broker

You might also add a compression type in case you want to send and store compressed messages.

Basic producer client configuration properties

The logical name for the client.

Bootstrap address for the client to be able to make an initial connection to the Kafka cluster.

Serializer to transform message keys into bytes before being sent to the Kafka broker.

Properties props = new Properties();
try (InputStream propStream = Files.newInputStream(Paths.get(filename))) {
 props.load(propStream);
}

client.id = my-producer-id 1
bootstrap.servers = my-cluster-kafka-bootstrap:9092 2
key.serializer = org.apache.kafka.common.serialization.StringSerializer 3
value.serializer = org.apache.kafka.common.serialization.StringSerializer 4

Red Hat AMQ Streams 2.6 Developing Kafka client applications

10

4

1

2

3

4

Serializer to transform message values into bytes before being sent to the Kafka broker.

Adding producer client configuration directly to the code

The KafkaProducer specifies string key and value types for the messages it sends. The serializers used
must be able to convert the key and values from the specified type into bytes before sending them to
Kafka.

4.2. BASIC CONSUMER CLIENT CONFIGURATION

When you develop a consumer client, configure the following:

A connection to your Kafka cluster

A deserializer to transform the bytes fetched from the Kafka broker into message keys that can
be understood by the client application

A deserializer to transform the bytes fetched from the Kafka broker into message values that
can be understood by the client application

Typically, you also add a consumer group ID to associate the consumer with a consumer group. A
consumer group is a logical entity for distributing the processing of a large data stream from one or
more topics to parallel consumers. Consumers are grouped using a group.id, allowing messages to be
spread across the members. In a given consumer group, each topic partition is read by a single
consumer. A single consumer can handle many partitions. For maximum parallelism, create one
consumer for each partition. If there are more consumers than partitions, some consumers remain idle,
ready to take over in case of failure.

Basic consumer client configuration properties

The logical name for the client.

A group ID for the consumer to be able to join a specific consumer group.

Bootstrap address for the client to be able to make an initial connection to the Kafka cluster.

Deserializer to transform the bytes fetched from the Kafka broker into message keys.

Properties props = new Properties();
props.setProperty(ProducerConfig.CLIENT_ID_CONFIG, "my-producer-id");
props.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "my-cluster-kafka-
bootstrap:9092");
props.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
props.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
KafkaProducer<String, String> producer = new KafkaProducer<>(properties);

client.id = my-consumer-id 1
group.id = my-group-id 2
bootstrap.servers = my-cluster-kafka-bootstrap:9092 3
key.deserializer = org.apache.kafka.common.serialization.StringDeserializer 4
value.deserializer = org.apache.kafka.common.serialization.StringDeserializer 5

CHAPTER 4. CONFIGURING CLIENT APPLICATIONS FOR CONNECTING TO A KAFKA CLUSTER

11

5 Deserializer to transform the bytes fetched from the Kafka broker into message values.

Adding consumer client configuration directly to the code

The KafkaConsumer specifies string key and value types for the messages it receives. The serializers
used must be able to convert the bytes received from Kafka into the specified types.

NOTE

Each consumer group must have a unique group.id. If you restart a consumer with the
same group.id, it resumes consuming messages from where it left off before it was
stopped.

Properties props = new Properties();
props.setProperty(ConsumerConfig.CLIENT_ID_CONFIG, "my-consumer-id");
props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "my-group-id");
props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "my-cluster-kafka-
bootstrap:9092");
props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class.getName());
props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class.getName());
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

Red Hat AMQ Streams 2.6 Developing Kafka client applications

12

CHAPTER 5. CONFIGURING SECURE CONNECTIONS
Securing the connection between a Kafka cluster and a client application helps to ensure the
confidentiality, integrity, and authenticity of the communication between the cluster and the client.

To achieve a secure connection, you can introduce configuration related to authentication, encryption,
and authorization:

Authentication

Use an authentication mechanism to verify the identity of a client application.

Encryption

Enable encryption of data in transit between the client and broker using SSL/TLS encryption.

Authorization

Control client access and operations allowed on Kafka brokers based on the authenticated identity of
a client application.

Authorization cannot be used without authentication. If authentication is not enabled, it’s not possible to
determine the identity of clients, and therefore, it’s not possible to enforce authorization rules. This
means that even if authorization rules are defined, they will not be enforced without authentication.

In AMQ Streams, listeners are used to configure the network connections between the Kafka brokers
and the clients. Listener configuration options determine how the brokers listen for incoming client
connections and how secure access is managed. The exact configuration required depends on the
authentication, encryption, and authorization mechanisms you have chosen.

You configure your Kafka brokers and client applications to enable security features. The general outline
to secure a client connection to a Kafka cluster is as follows:

1. Install the AMQ Streams components, including the Kafka cluster.

2. For TLS, generate TLS certificates for each broker and client application.

3. Configure listeners in the broker configuration for secure connection.

4. Configure the client application for secure connection.

Configure your client application according to the mechanisms you are using to establish a secure and
authenticated connection with the Kafka brokers. The authentication, encryption, and authorization
used by a Kafka broker must match those used by a connecting client application. The client application
and broker need to agree on the security protocols and configurations for secure communication to take
place. For example, a Kafka client and the Kafka broker must use the same TLS versions and cipher
suites.

NOTE

Mismatched security configurations between the client and broker can result in
connection failures or potential security vulnerabilities. It’s important to carefully
configure and test both the broker and client application to ensure they are properly
secured and able to communicate securely.

5.1. SETTING UP BROKERS FOR SECURE ACCESS

Before you can configure client applications for secure access, you must first set up the brokers in your

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

13

Before you can configure client applications for secure access, you must first set up the brokers in your
Kafka cluster to support the security mechanisms you want to use. To enable secure connections, you
create listeners with the appropriate configuration for the security mechanisms.

5.1.1. Establishing a secure connection to a Kafka cluster running on RHEL

When using AMQ Streams on RHEL, the general outline to secure a client connection to a Kafka cluster
is as follows:

1. Install the AMQ Streams components, including the Kafka cluster, on the RHEL server.

2. For TLS, generate TLS certificates for all brokers in the Kafka cluster.

3. Configure listeners in the broker configuration properties file.

Configure authentication for your Kafka cluster listeners, such as TLS or SASL SCRAM-
SHA-512.

Configure authorization for all enabled listeners on the Kafka cluster, such as simple
authorization.

4. For TLS, generate TLS certificates for each client application.

5. Create a config.properties file to specify the connection details and authentication credentials
used by the client application.

6. Start the Kafka client application and connect to the Kafka cluster.

Use the properties defined in the config.properties file to connect to the Kafka broker.

7. Verify that the client can successfully connect to the Kafka cluster and consume and produce
messages securely.

For more information on setting up your brokers, see Using AMQ Streams on RHEL .

5.1.2. Configuring secure listeners for a Kafka cluster on RHEL

Use a configuration properties file to configure listeners in Kafka. To configure a secure connection for
Kafka brokers, you set the relevant properties for TLS, SASL, and other security-related configurations
in this file.

Here is an example configuration of a TLS listener specified in a server.properties configuration file for
a Kafka broker, with a keystore and truststore in PKCS#12 format:

Example listener configuration in server.properties

listeners = listener_1://0.0.0.0:9093, listener_2://0.0.0.0:9094
listener.security.protocol.map = listener_1:SSL, listener_2:PLAINTEXT
ssl.keystore.type = PKCS12
ssl.keystore.location = /path/to/keystore.p12
ssl.keystore.password = <password>
ssl.truststore.type = PKCS12
ssl.truststore.location = /path/to/truststore.p12
ssl.truststore.password = <password>

Red Hat AMQ Streams 2.6 Developing Kafka client applications

14

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_amq_streams_on_rhel/index

The listeners property specifies each listener name, and the IP address and port that the broker listens
on. The protocol map tells the listener_1 listener to use the SSL protocol for clients that use TLS
encryption. listener_2 provides PLAINTEXT connections for clients that do not use TLS encryption. The
keystore contains the broker’s private key and certificate. The truststore contains the trusted
certificates used to verify the identity of the client application. The ssl.client.auth property enforces
client authentication.

The Kafka cluster uses simple authorization. The authorizer is set to SimpleAclAuthorizer. A single
super user is defined for unconstrained access on all listeners. AMQ Streams supports the Kafka
SimpleAclAuthorizer and custom authorizer plugins.

If we prefix the configuration properties with listener.name.<name_of_listener>, the configuration is
specific to that listener.

This is just a sample configuration. Some configuration options are specific to the type of listener. If you
are using OAuth 2.0 or Open Policy Agent (OPA), you must also configure access to the authorization
server or OPA server in a specific listener. You can create listeners based on your specific requirements
and environment.

For more information on listener configuration, see the Apache Kafka documentation.

Using ACLs to fine-tune access

You can use Access Control Lists (ACLs) to fine-tune access to the Kafka cluster. To create and
manage Access Control Lists (ACLs), use the kafka-acls.sh command line tool. The ACLs apply access
rules to client applications.

In the following example, the first ACL grants read and describe permissions for a specific topic named
my-topic. The resource.patternType is set to literal, which means that the resource name must match
exactly.

The second ACL grants read permissions for a specific consumer group named my-group. The
resource.patternType is set to prefix, which means that the resource name must match the prefix.

Example ACL configuration

5.1.3. Establishing a secure connection to a Kafka cluster running on OpenShift

When using AMQ Streams on OpenShift, the general outline to secure a client connection to a Kafka
cluster is as follows:

1. Use the Cluster Operator to deploy a Kafka cluster in your OpenShift environment. Use the
Kafka custom resource to configure and install the cluster and create listeners.

Configure authentication for the listeners, such as TLS or SASL SCRAM-SHA-512. The
Cluster Operator creates a secret that contains a cluster CA certificate to verify the identity
of the Kafka brokers.

ssl.client.auth = required
authorizer.class.name = kafka.security.auth.SimpleAclAuthorizer.
super.users = User:superuser

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=localhost:2181 --add \
--allow-principal User:my-user --operation Read --operation Describe --topic my-topic --resource-
pattern-type literal \
--allow-principal User:my-user --operation Read --group my-group --resource-pattern-type prefixed

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

15

https://kafka.apache.org/documentation/

Configure authorization for all enabled listeners, such as simple authorization.

2. Use the User Operator to create a Kafka user representing your client. Use the KafkaUser
custom resource to configure and create the user.

Configure authentication for your Kafka user (client) that matches the authentication
mechanism of a listener. The User Operator creates a secret that contains a client
certificate and private key for the client to use for authentication with the Kafka cluster.

Configure authorization for your Kafka user (client) that matches the authorization
mechanism of the listener. Authorization rules allow specific operations on the Kafka cluster.

3. Create a config.properties file to specify the connection details and authentication credentials
required by the client application to connect to the cluster.

4. Start the Kafka client application and connect to the Kafka cluster.

Use the properties defined in the config.properties file to connect to the Kafka broker.

5. Verify that the client can successfully connect to the Kafka cluster and consume and produce
messages securely.

For more information on setting up your brokers, see Configuring AMQ Streams on OpenShift .

5.1.4. Configuring secure listeners for a Kafka cluster on OpenShift

When you deploy a Kafka custom resource with AMQ Streams, you add listener configuration to the
Kafka spec. Use the listener configuration to secure connections in Kafka. To configure a secure
connection for Kafka brokers, set the relevant properties for TLS, SASL, and other security-related
configurations at the listener level.

External listeners provide client access to a Kafka cluster from outside the OpenShift cluster. AMQ
Streams creates listener services and bootstrap addresses to enable access to the Kafka cluster based
on the configuration. For example, you can create external listeners that use the following connection
mechanisms:

Node ports

loadbalancers

Openshift routes

Here is an example configuration of a nodeport listener for a Kafka resource:

Example listener configuration in the Kafka resource

apiVersion: {KafkaApiVersion}
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 listeners:
 - name: plaintext
 port: 9092
 type: internal

Red Hat AMQ Streams 2.6 Developing Kafka client applications

16

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index

The listeners property is configured with three listeners: plaintext, tls, and external. The external
listener is of type nodeport, and it uses TLS for both encryption and authentication. When you create
the Kafka cluster with the Cluster Operator, CA certificates are automatically generated. You add cluster
CA to the truststore of your client application to verify the identity of the Kafka brokers. Alternatively,
you can configure AMQ Streams to use your own certificates at the broker or listener level. Using
certificates at the listener level might be required when client applications require different security
configurations. Using certificates at the listener level also adds an additional layer of control and
security.

TIP

Use configuration provider plugins to load configuration data to producer and consumer clients. The
configuration Provider plugin loads configuration data from secrets or ConfigMaps. For example, you
can tell the provider to automatically get certificates from Strimzi secrets. For more information, see the
AMQ Streams documentation for running onOpenShift.

The Kafka cluster uses simple authorization. The authorization property type is set to simple. A single
super user is defined for unconstrained access on all listeners. AMQ Streams supports the Kafka
SimpleAclAuthorizer and custom authorizer plugins.

This is just a sample configuration. Some configuration options are specific to the type of listener. If you
are using OAuth 2.0 or Open Policy Agent (OPA), you must also configure access to the authorization
server or OPA server in a specific listener. You can create listeners based on your specific requirements
and environment.

For more information on listener configuration, see the GenericKafkaListener schema reference.

NOTE

 tls: false
 configuration:
 useServiceDnsDomain: true
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 authorization:
 type: simple
 superUsers:
 - CN=superuser
 # ...

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

17

https://access.redhat.com/documentation/en-us/red_hat_amq_streams
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

NOTE

When using a route type listener for client access to a Kafka cluster on OpenShift, the
TLS passthrough feature is enabled. An OpenShift route is designed to work with the
HTTP protocol, but it can also be used to proxy network traffic for other protocols,
including the Kafka protocol used by Apache Kafka. The client establishes a connection to
the route, and the route forwards the traffic to the broker running in the OpenShift
cluster using the TLS Server Name Indication (SNI) extension to get the target
hostname. The SNI extension allows the route to correctly identify the target broker for
each connection.

Using ACLs to fine-tune access

You can use Access Control Lists (ACLs) to fine-tune access to the Kafka cluster. To add Access
Control Lists (ACLs), you configure the KafkaUser custom resource. When you create a KafkaUser,
AMQ Streams automatically manages the creation and updates the ACLs. The ACLs apply access rules
to client applications.

In the following example, the first ACL grants read and describe permissions for a specific topic named
my-topic. The resource.patternType is set to literal, which means that the resource name must match
exactly.

The second ACL grants read permissions for a specific consumer group named my-group. The
resource.patternType is set to prefix, which means that the resource name must match the prefix.

Example ACL configuration in the KafkaUser resource

NOTE

apiVersion: {KafkaUserApiVersion}
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - Read
 - Describe
 - resource:
 type: group
 name: my-group
 patternType: prefix
 operations:
 - Read

Red Hat AMQ Streams 2.6 Developing Kafka client applications

18

NOTE

If you specify tls-external as an authentication option when configuring the Kafka user,
you can use your own client certificates rather than those generated by the User
Operator.

5.2. SETTING UP CLIENTS FOR SECURE ACCESS

After you have set up listeners on your Kafka brokers to support secure connections, the next step is to
configure your client applications to use these listeners to communicate with the Kafka cluster. This
involves providing the appropriate security settings for each client to authenticate with the cluster based
on the security mechanisms configured on the listener.

5.2.1. Configuring security protocols

Configure the security protocol used by your client application to match the protocol configured on a
Kafka broker listener. For example, use SSL (Secure Sockets Layer) for TLS authentication or
SASL_SSL for SASL (Simple Authentication and Security Layer over SSL) authentication with TLS
encryption. Add a truststore and keystore to your client configuration that supports the authentication
mechanism required to access the Kafka cluster.

Truststore

The truststore contains the public certificates of the trusted certificate authority (CA) that are used
to verify the authenticity of a Kafka broker. When the client connects to a secure Kafka broker, it
might need to verify the identity of the broker.

Keystore

The keystore contains the client’s private key and its public certificate. When the client wants to
authenticate itself to the broker, it presents its own certificate.

If you are using TLS authentication, your Kafka client configuration requires a truststore and keystore to
connect to a Kafka cluster. If you are using SASL SCRAM-SHA-512, authentication is performed through
the exchange of username and password credentials, rather than digital certificates, so a keystore is not
required. SCRAM-SHA-512 is a more lightweight mechanism, but it is not as secure as using certificate-
based authentication.

NOTE

If you have your own certificate infrastructure in place and use certificates from a third-
party CA, then the client’s default truststore will likely already contain the public CA
certificates and you do not need to add them to the client’s truststore. The client
automatically trusts the server’s certificate if it is signed by one of the public CA
certificates that is already included in the default truststore.

You can create a config.properties file to specify the authentication credentials used by the client
application.

In the following example, the security.protocol is set to SSL to enable TLS authentication and
encryption between the client and broker.

The ssl.truststore.location and ssl.truststore.password properties specify the location and password
of the truststore. The ssl.keystore.location and ssl.keystore.password properties specify the
location and password of the keystore.

The PKCS #12 (Public-Key Cryptography Standards #12) file format is used. You can also use the

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

19

The PKCS #12 (Public-Key Cryptography Standards #12) file format is used. You can also use the
base64-encoded PEM (Privacy Enhanced Mail) format.

Example client configuration properties for TLS authentication

In the following example, the security.protocol is set to SASL_SSL to enable SASL authentication with
TLS encryption between the client and broker. If you only need authentication and not encryption, you
can use the SASL protocol. The specified SASL mechanism for authentication is SCRAM-SHA-512.
Different authentication mechanisms can be used. sasl.jaas.config properties specify the
authentication credentials.

Example client configuration properties for SCRAM-SHA-512 authentication

NOTE

For applications that do not support PEM format, you can use a tool like OpenSSL to
convert PEM files to PKCS #12 format.

5.2.2. Configuring permitted TLS versions and cipher suites

You can incorporate SSL configuration and cipher suites to further secure TLS-based communication
between your client application and a Kafka cluster. Specify the supported TLS versions and cipher
suites in the configuration for the Kafka broker. You can also add the configuration to your clients if you
wish to limit the TLS versions and cipher suites they use. The configuration on the client should only use
protocols and cipher suites that are enabled on the brokers.

In the following example, SSL is enabled using security.protocol for communication between Kafka
brokers and client applications. You specify cipher suites as a comma-separated list. The
ssl.cipher.suites property is a comma-separated list of cipher suites that the client is allowed to use.

Example SSL configuration properties for Kafka brokers

bootstrap.servers = my-cluster-kafka-bootstrap:9093
security.protocol = SSL
ssl.truststore.location = /path/to/ca.p12
ssl.truststore.password = truststore-password
ssl.keystore.location = /path/to/user.p12
ssl.keystore.password = keystore-password
client.id = my-client

bootstrap.servers = my-cluster-kafka-bootstrap:9093
security.protocol = SASL_SSL
sasl.mechanism = SCRAM-SHA-512
sasl.jaas.config = org.apache.kafka.common.security.scram.ScramLoginModule required \
 username = "user" \
 password = "secret";
ssl.truststore.location = path/to/truststore.p12
ssl.truststore.password = truststore_password
ssl.truststore.type = PKCS12
client.id = my-client

security.protocol: "SSL"
ssl.enabled.protocols: "TLSv1.3", "TLSv1.2"
ssl.protocol: "TLSv1.3"

Red Hat AMQ Streams 2.6 Developing Kafka client applications

20

The ssl.enabled.protocols property specifies the available TLS versions that can be used for secure
communication between the cluster and its clients. In this case, both TLSv1.3 and TLSv1.2 are enabled.
The ssl.protocol property sets the default TLS version for all connections, and it must be chosen from
the enabled protocols. By default, clients communicate using TLSv1.3. If a client only supports TLSv1.2,
it can still connect to the broker and communicate using that supported version. Similarly, if the
configuration is on the client and the broker only supports TLSv1.2, the client uses the supported
version.

The cipher suites supported by Apache Kafka depend on the version of Kafka you are using and the
underlying environment. Check for the latest supported cipher suites that provide the highest level of
security.

5.2.3. Using Access Control Lists (ACLs)

You do not have to configure anything explicitly for ACLS in your client application. The ACLs are
enforced on the server side by the Kafka broker. When the client sends a request to the server to
produce or consume data, the server checks the ACLs to determine if the client (user) is authorized to
perform the requested operation. If the client is authorized, the request is processed; otherwise, the
request is denied and an error is returned. However, the client must still be authenticated and using the
appropriate security protocol to enable a secure connection with the Kafka cluster.

If you are using Access Control Lists (ACLs) on your Kafka brokers, make sure that ACLs are properly
set up to restrict client access to the topics and operations that you want to control. If you are using
Open Policy Agent (OPA) policies to manage access, authorization rules are configured in the policies,
so you won’t need specify ACLs against the Kafka brokers. OAuth 2.0 gives some flexibility: you can use
the OAuth 2.0 provider to manage ACLs; or use OAuth 2.0 and Kafka’s simple authorization to manage
the ACLs.

NOTE

ACLs apply to most types of requests and are not limited to produce and consume
operations. For example, ACLS can be applied to read operations like describing topics or
write operations like creating new topics.

5.2.4. Using OAuth 2.0 for token-based access

Use the OAuth 2.0 open standard for authorization with AMQ Streams to enforce authorization controls
through an OAuth 2.0 provider. OAuth 2.0 provides a secure way for applications to access user data
stored in other systems. An authorization server can issue access tokens to client applications that grant
access to a Kafka cluster.

The following steps describe the general approach to set up and use OAuth 2.0 for token validation:

1. Configure the authorization server with broker and client credentials, such as a client ID and
secret.

2. Obtain the OAuth 2.0 credentials from the authorization server.

3. Configure listeners on the Kafka brokers with OAuth 2.0 credentials and to interact with the
authorization server.

4. Add the Oauth 2.0 dependency to the client library.

ssl.cipher.suites: "TLS_AES_256_GCM_SHA384"

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

21

5. Configure your Kafka client with OAuth 2.0 credentials and to interact with the authorization
server..

6. Obtain an access token at runtime, which authenticates the client with the OAuth 2.0 provider.

If you have a listener configured for OAuth 2.0 on your Kafka broker, you can set up your client
application to use OAuth 2.0. In addition to the standard Kafka client configurations to access the Kafka
cluster, you must include specific configurations for OAuth 2.0 authentication. You must also make sure
that the authorization server you are using is accessible by the Kafka cluster and client application.

Specify a SASL (Simple Authentication and Security Layer) security protocol and mechanism. In a
production environment, the following settings are recommended:

The SASL_SSL protocol for TLS encrypted connections.

The OAUTHBEARER mechanism for credentials exchange using a bearer token

A JAAS (Java Authentication and Authorization Service) module implements the SASL mechanism. The
configuration for the mechanism depends on the authentication method you are using. For example,
using credentials exchange you add an OAuth 2.0 access token endpoint, access token, client ID, and
client secret. A client connects to the token endpoint (URL) of the authorization server to check if a
token is still valid. You also need a truststore that contains the public key certificate of the authorization
server for authenticated access.

Example client configuration properties for OAauth 2.0

For more information on setting up your brokers to use OAuth 2.0, see the following guides:

Deploying and Upgrading AMQ Streams on OpenShift

Using AMQ Streams on RHEL

5.2.5. Using Open Policy Agent (OPA) access policies

Use the Open Policy Agent (OPA) policy agent with AMQ Streams to evaluate requests to connect to
your Kafka cluster against access policies. Open Policy Agent (OPA) is a policy engine that manages
authorization policies. Policies centralize access control, and can be updated dynamically, without
requiring changes to the client application. For example, you can create a policy that allows only certain
users (clients) to produce and consume messages to a specific topic.

AMQ Streams uses the Open Policy Agent plugin for Kafka authorization as the authorizer.

bootstrap.servers = my-cluster-kafka-bootstrap:9093
security.protocol = SASL_SSL
sasl.mechanism = OAUTHBEARER
...
sasl.jaas.config = org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required
\
 oauth.token.endpoint.uri = "https://localhost:9443/oauth2/token" \
 oauth.access.token = <access_token> \
 oauth.client.id = "<client_id>" \
 oauth.client.secret = "<client_secret>" \
 oauth.ssl.truststore.location = "/<truststore_location>/oauth-truststore.p12" \
 oauth.ssl.truststore.password = "<truststore_password>" \
 oauth.ssl.truststore.type = "PKCS12" \

Red Hat AMQ Streams 2.6 Developing Kafka client applications

22

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_amq_streams_on_rhel/index

The following steps describe the general approach to set up and use OPA:

1. Set up an instance of the OPA server.

2. Define policies that provide the authorization rules that govern access to the Kafka cluster.

3. Create configuration for the Kafka brokers to accept OPA authorization and interact with the
OPA server.

4. Configure your Kafka client to provide the credentials for authorized access to the Kafka cluster.

If you have a listener configured for OPA on your Kafka broker, you can set up your client application to
use OPA. In the listener configuration, you specify a URL to connect to the OPA server and authorize
your client application. In addition to the standard Kafka client configurations to access the Kafka
cluster, you must add the credentials to authenticate with the Kafka broker. The broker checks if the
client has the necessary authorization to perform a requested operation, by sending a request to the
OPA server to evaluate the authorization policy. You don’t need a truststore or keystore to secure
communication as the policy engine enforces authorization policies.

Example client configuration properties for OPA authorization

NOTE

Red Hat does not support the OPA server.

For more information on setting up your brokers to use OPA, see the following guides:

Deploying and Upgrading AMQ Streams on OpenShift

Using AMQ Streams on RHEL

5.2.6. Using transactions when streaming messages

By configuring transaction properties in your brokers and producer client application, you can ensure
that messages are processed in a single transaction. Transactions add reliability and consistency to the
streaming of messages.

Transactions are always enabled on brokers. You can change the default configuration using the
following properties:

Example Kafka broker configuration properties for transactions

This is a typical configuration for a production environment, which creates 3 replicas for the internal

bootstrap.servers = my-cluster-kafka-bootstrap:9093
security.protocol = SASL_SSL
sasl.mechanism = SCRAM-SHA-512
sasl.jaas.config = org.apache.kafka.common.security.scram.ScramLoginModule required \
 username = "user" \
 password = "secret";
...

transaction.state.log.replication.factor = 3
transaction.state.log.min.isr = 2
transaction.abort.timed.out.transaction.cleanup.interval.ms = 3600000

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

23

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_amq_streams_on_rhel/index

This is a typical configuration for a production environment, which creates 3 replicas for the internal
__transaction_state topic. The __transaction_state topic stores information about the transactions in
progress. A minimum of 2 in-sync replicas are required for the transaction logs. The cleanup interval is
the time between checks for timed-out transactions and a clean up the corresponding transaction logs.

To add transaction properties to a client configuration, you set the following properties for producers
and consumers.

Example producer client configuration properties for transactions

The transactional ID allows the Kafka broker to keep track of the transactions. It is a unique identifier for
the producer and should be used with a specific set of partitions. If you need to perform transactions for
multiple sets of partitions, you need to use a different transactional ID for each set. Idempotence is
enabled to avoid the producer instance creating duplicate messages. With idempotence, messages are
tracked using a producer ID and sequence number. When the broker receives the message, it checks the
producer ID and sequence number. If a message with the same producer ID and sequence number has
already been received, the broker discards the duplicate message.

The maximum number of in-flight requests is set to 5 so that transactions are processed in the order
they are sent. A partition can have up to 5 in-flight requests without compromising the ordering of
messages.

By setting acks to all, the producer waits for acknowledgments from all in-sync replicas of the topic
partitions to which it is writing before considering the transaction as complete. This ensures that the
messages are durably written (committed) to the Kafka cluster, and that they will not be lost even in the
event of a broker failure.

The transaction timeout specifies the maximum amount of time the client has to complete a transaction
before it times out. The delivery timeout specifies the maximum amount of time the producer waits for
a broker acknowledgement of message delivery before it times out. To ensure that messages are
delivered within the transaction period, set the delivery timeout to be less than the transaction timeout.
Consider network latency and message throughput, and allow for temporary failures, when specifying
retries for the number of attempts to resend a failed message request.

Example consumer client configuration properties for transactions

The read_committed isolation level specifies that the consumer only reads messages for a transaction
that has completed successfully. The consumer does not process any messages that are part of an
ongoing or failed transaction. This ensures that the consumer only reads messages that are part of a
fully complete transaction.

When using transactions to stream messages, it is important to set enable.auto.commit to false. If set
to true, the consumer periodically commits offsets without consideration to transactions. This means

transactional.id = unique-transactional-id
enable.idempotence = true
max.in.flight.requests.per.connection = 5
acks = all
retries=2147483647
transaction.timeout.ms = 30000
delivery.timeout = 25000

group.id = my-group-id
isolation.level = read_committed
enable.auto.commit = false

Red Hat AMQ Streams 2.6 Developing Kafka client applications

24

that the consumer may commit messages before a transaction has fully completed. By setting
enable.auto.commit to false, the consumer only reads and commits messages that have been fully
written and committed to the topic as part of a transaction.

CHAPTER 5. CONFIGURING SECURE CONNECTIONS

25

CHAPTER 6. DEVELOPING A KAFKA CLIENT
Create a Kafka client in your preferred programming language and connect it to AMQ Streams.

To interact with a Kafka cluster, client applications need to be able to produce and consume messages.
To develop and configure a basic Kafka client application, as a minimum, you must do the following:

Set up configuration to connect to a Kafka cluster

Use producers and consumers to send and receive messages

Setting up the basic configuration for connecting to a Kafka cluster and using producers and consumers
is the first step in developing a Kafka client. After that, you can expand into improving the inputs,
security, performance, error handling, and functionality of the client application.

Prerequisites

You can create a client properties file that contains property values for the following:

Basic configuration to connect to the Kafka cluster

Configuration for securing the connection

Procedure

1. Choose a Kafka client library for your programming language, e.g. Java, Python, .NET, etc. Only
client libraries built by Red Hat are supported for AMQ Streams. Currently, AMQ Streams only
provides a Java client library.

2. Install the library, either through a package manager or manually by downloading the library
from its source.

3. Import the necessary classes and dependencies for your Kafka client in your code.

4. Create a Kafka consumer or producer object, depending on the type of client you want to
create.
A client can be a Kafka consumer, producer, Streams processor, and admin.

5. Provide the configuration properties to connect to the Kafka cluster, including the broker
address, port, and credentials if necessary.
For a local Kafka deployment, you might start with an address like localhost:9092. However,
when working with a Kafka cluster managed by AMQ Streams, you can obtain the bootstrap
address from the Kafka custom resource status using an oc command:

This command retrieves the bootstrap addresses exposed by listeners for client connections on
a Kafka cluster.

6. Use the Kafka consumer or producer object to subscribe to topics, produce messages, or
retrieve messages from the Kafka cluster.

7. Pay attention to error handling; it’s vitally important when connecting and communicating with
Kafka, especially in production systems where high availability and ease of operations are
valued. Effective error handling is a key differentiator between a prototype and a production-
grade application, and it applies not only to Kafka but also to any robust software system.

oc get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[*].bootstrapServers}{"\n"}'

Red Hat AMQ Streams 2.6 Developing Kafka client applications

26

6.1. EXAMPLE KAFKA PRODUCER APPLICATION

This Java-based Kafka producer application is an example of a self-contained application that produces
messages to a Kafka topic. The client uses the Kafka Producer API to send messages asynchronously,
with some error handling.

The client implements the Callback interface for message handling.

To run the Kafka producer application, you execute the main method in the Producer class. The client
generates a random byte array as the message payload using the randomBytes method. The client
produces messages to a specified Kafka topic until NUM_MESSAGES messages (50 in the example
configuration) have been sent. The producer is thread-safe, allowing multiple threads to use a single
producer instance.

Kafka producer instances are designed to be thread-safe, allowing multiple threads to share a single
producer instance.

This example client provides a basic foundation for building more complex Kafka producers for specific
use cases. You can incorporate additional functionality, such as implementing secure connections.

Prerequisites

Kafka brokers running on the specified BOOTSTRAP_SERVERS

A Kafka topic named TOPIC_NAME to which messages are produced.

Client dependencies

Before implementing the Kafka producer application, your project must include the necessary
dependencies. For a Java-based Kafka client, include the Kafka client JAR. This JAR file contains the
Kafka libraries required for building and running the client.

For information on how to add the dependencies to a pom.xml file in a Maven project, see Section 3.1,
“Adding a Kafka clients dependency to your Maven project”.

Configuration

You can configure the producer application through the following constants specified in the Producer
class:

BOOTSTRAP_SERVERS

The address and port to connect to the Kafka brokers.

TOPIC_NAME

The name of the Kafka topic to produce messages to.

NUM_MESSAGES

The number of messages to produce before stopping.

MESSAGE_SIZE_BYTES

The size of each message in bytes.

PROCESSING_DELAY_MS

The delay in milliseconds between sending messages. This can simulate message processing time,
which is useful for testing.

Example producer application

CHAPTER 6. DEVELOPING A KAFKA CLIENT

27

import java.util.Properties;
import java.util.Random;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.errors.RetriableException;
import org.apache.kafka.common.serialization.ByteArraySerializer;
import org.apache.kafka.common.serialization.LongSerializer;

public class Producer implements Callback {
 private static final Random RND = new Random(0);
 private static final String BOOTSTRAP_SERVERS = "localhost:9092";
 private static final String TOPIC_NAME = "my-topic";
 private static final long NUM_MESSAGES = 50;
 private static final int MESSAGE_SIZE_BYTES = 100;
 private static final long PROCESSING_DELAY_MS = 1000L;

 protected AtomicLong messageCount = new AtomicLong(0);

 public static void main(String[] args) {
 new Producer().run();
 }

 public void run() {
 System.out.println("Running producer");
 try (var producer = createKafkaProducer()) { 1
 byte[] value = randomBytes(MESSAGE_SIZE_BYTES); 2
 while (messageCount.get() < NUM_MESSAGES) { 3
 sleep(PROCESSING_DELAY_MS); 4
 producer.send(new ProducerRecord<>(TOPIC_NAME, messageCount.get(), value), this);
5

 messageCount.incrementAndGet();
 }
 }
 }

 private KafkaProducer<Long, byte[]> createKafkaProducer() {
 Properties props = new Properties(); 6
 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS); 7
 props.put(ProducerConfig.CLIENT_ID_CONFIG, "client-" + UUID.randomUUID()); 8
 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, LongSerializer.class); 9
 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class);
 return new KafkaProducer<>(props);
 }

 private void sleep(long ms) { 10
 try {
 TimeUnit.MILLISECONDS.sleep(ms);
 } catch (InterruptedException e) {

Red Hat AMQ Streams 2.6 Developing Kafka client applications

28

1

2

3

4

5

6

7

The client creates a Kafka producer using the createKafkaProducer method. The producer sends
messages to the Kafka topic asynchronously.

A byte array is used as the payload for each message sent to the Kafka topic.

The maximum number of messages sent is determined by the NUM_MESSAGES constant value.

The message rate is controlled with a delay between each message sent.

The producer passes the topic name, the message count value, and the message value.

The client creates the KafkaProducer instance using the provided configuration. You can use a
properties file or add the configuration directly. For more information on the basic configuration,
see Chapter 4, Configuring client applications for connecting to a Kafka cluster .

The connection to the Kafka brokers.

 throw new RuntimeException(e);
 }
 }

 private byte[] randomBytes(int size) { 11
 if (size <= 0) {
 throw new IllegalArgumentException("Record size must be greater than zero");
 }
 byte[] payload = new byte[size];
 for (int i = 0; i < payload.length; ++i) {
 payload[i] = (byte) (RND.nextInt(26) + 65);
 }
 return payload;
 }

 private boolean retriable(Exception e) { 12
 if (e instanceof IllegalArgumentException
 || e instanceof UnsupportedOperationException
 || !(e instanceof RetriableException)) {
 return false;
 } else {
 return true;
 }
 }

 @Override
 public void onCompletion(RecordMetadata metadata, Exception e) { 13
 if (e != null) {
 System.err.println(e.getMessage());
 if (!retriable(e)) {
 e.printStackTrace();
 System.exit(1);
 }
 } else {
 System.out.printf("Record sent to %s-%d with offset %d%n",
 metadata.topic(), metadata.partition(), metadata.offset());
 }
 }
}

CHAPTER 6. DEVELOPING A KAFKA CLIENT

29

8

9

10

11

12

13

A unique client ID for the producer using a randomly generated UUID. A client ID is not required, but
it is useful to track the source of requests.

The appropriate serializer classes for handling keys and values as byte arrays.

Method to introduce a delay to the message sending process for a specified number of
milliseconds. If the thread responsible for sending messages is interrupted while paused, it throws
an InterruptedException error.

Method to create a random byte array of a specific size, which serves as the payload for each
message sent to the Kafka topic. The method generates a random integer and adds 65 to
represent an uppercase letter in ascii code (65 is A, 66 is B, and so on). The ascii code is stored as a
single byte in the payload array. If the payload size is not greater than zero, it throws an
IllegalArgumentException.

Method to check whether to retry sending a message following an exception. The Kafka producer
automatically handles retries for certain errors, such as connection errors. You can customize this
method to include other errors. Returns false for null and specified exceptions, or those that do
not implement the RetriableException interface.

Method called when a message has been acknowledged by the Kafka broker. On success, a
message is printed with the details of the topic, partition, and offset position for the message. If an
error ocurred when sending the message, an error message is printed. The method checks the
exception and takes appropriate action based on whether it’s a fatal or non-fatal error. If the error
is non-fatal, the message sending process continues. If the error is fatal, a stack trace is printed and
the producer is terminated.

Error handling

Fatal exceptions caught by the producer application:

InterruptedException

Error thrown when the current thread is interrupted while paused. Interruption typically occurs when
stopping or shutting down the producer. The exception is rethrown as a RuntimeException, which
terminates the producer.

IllegalArgumentException

Error thrown when the producer receives invalid or inappropriate arguments. For example, the
exception is thrown if the topic is missing.

UnsupportedOperationException

Error thrown when an operation is not supported or a method is not implemented. For example, the
exception is thrown if an attempt is made to use an unsupported producer configuration or call a
method that is not supported by the KafkaProducer class.

Non-fatal exceptions caught by the producer application:

RetriableException

Error thrown for any exception that implements the RetriableException interface provided by the
Kafka client library.

With non-fatal errors, the producer continues to send messages.

NOTE

Red Hat AMQ Streams 2.6 Developing Kafka client applications

30

NOTE

By default, Kafka operates with at-least-once message delivery semantics, which means
that messages can be delivered more than once in certain scenarios, potentially leading
to duplicates. To avoid this risk, consider enabling transactions in your Kafka producer .
Transactions provide stronger guarantees of exactly-once delivery. Additionally, you can
use the retries configuration property to control how many times the producer will retry
sending a message before giving up. This setting affects how many times the retriable
method may return true during a message send error.

6.2. EXAMPLE KAFKA CONSUMER APPLICATION

This Java-based Kafka consumer application is an example of a self-contained application that
consumes messages from a Kafka topic. The client uses the Kafka Consumer API to fetch and process
messages from a specified topic asynchronously, with some error handling. It follows at-least-once
semantics by committing offsets after successfully processing messages.

The client implements the ConsumerRebalanceListener interface for partition handling and the
OffsetCommitCallback interface for committing offsets.

To run the Kafka consumer application, you execute the main method in the Consumer class. The client
consumes messages from the Kafka topic until NUM_MESSAGES messages (50 in the example
configuration) have been consumed. The consumer is not designed to be safely accessed concurrently
by multiple threads.

This example client provides a basic foundation for building more complex Kafka consumers for specific
use cases. You can incorporate additional functionality, such as implementing secure connections.

Prerequisites

Kafka brokers running on the specified BOOTSTRAP_SERVERS

A Kafka topic named TOPIC_NAME from which messages are consumed.

Client dependencies

Before implementing the Kafka consumer application, your project must include the necessary
dependencies. For a Java-based Kafka client, include the Kafka client JAR. This JAR file contains the
Kafka libraries required for building and running the client.

For information on how to add the dependencies to a pom.xml file in a Maven project, see Section 3.1,
“Adding a Kafka clients dependency to your Maven project”.

Configuration

You can configure the consumer application through the following constants specified in the Consumer
class:

BOOTSTRAP_SERVERS

The address and port to connect to the Kafka brokers.

GROUP_ID

The consumer group identifier.

POLL_TIMEOUT_MS

The maximum time to wait for new messages during each poll.

CHAPTER 6. DEVELOPING A KAFKA CLIENT

31

TOPIC_NAME

The name of the Kafka topic to consume messages from.

NUM_MESSAGES

The number of messages to consume before stopping.

PROCESSING_DELAY_MS

The delay in milliseconds between sending messages. This can simulate message processing time,
which is useful for testing.

Example consumer application

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.NoOffsetForPartitionException;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.clients.consumer.OffsetCommitCallback;
import org.apache.kafka.clients.consumer.OffsetOutOfRangeException;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.RebalanceInProgressException;
import org.apache.kafka.common.errors.RetriableException;
import org.apache.kafka.common.serialization.ByteArrayDeserializer;
import org.apache.kafka.common.serialization.LongDeserializer;

import static java.time.Duration.ofMillis;
import static java.util.Collections.singleton;

public class Consumer implements ConsumerRebalanceListener, OffsetCommitCallback {
 private static final String BOOTSTRAP_SERVERS = "localhost:9092";
 private static final String GROUP_ID = "my-group";
 private static final long POLL_TIMEOUT_MS = 1_000L;
 private static final String TOPIC_NAME = "my-topic";
 private static final long NUM_MESSAGES = 50;
 private static final long PROCESSING_DELAY_MS = 1_000L;

 private KafkaConsumer<Long, byte[]> kafkaConsumer;
 protected AtomicLong messageCount = new AtomicLong(0);
 private Map<TopicPartition, OffsetAndMetadata> pendingOffsets = new HashMap<>();

 public static void main(String[] args) {
 new Consumer().run();
 }

 public void run() {
 System.out.println("Running consumer");

Red Hat AMQ Streams 2.6 Developing Kafka client applications

32

 try (var consumer = createKafkaConsumer()) { 1
 kafkaConsumer = consumer;
 consumer.subscribe(singleton(TOPIC_NAME), this); 2
 System.out.printf("Subscribed to %s%n", TOPIC_NAME);
 while (messageCount.get() < NUM_MESSAGES) { 3
 try {
 ConsumerRecords<Long, byte[]> records =
consumer.poll(ofMillis(POLL_TIMEOUT_MS)); 4
 if (!records.isEmpty()) { 5
 for (ConsumerRecord<Long, byte[]> record : records) {
 System.out.printf("Record fetched from %s-%d with offset %d%n",
 record.topic(), record.partition(), record.offset());
 sleep(PROCESSING_DELAY_MS); 6

 pendingOffsets.put(new TopicPartition(record.topic(), record.partition()), 7
 new OffsetAndMetadata(record.offset() + 1, null));
 if (messageCount.incrementAndGet() == NUM_MESSAGES) {
 break;
 }
 }
 consumer.commitAsync(pendingOffsets, this); 8
 pendingOffsets.clear();
 }
 } catch (OffsetOutOfRangeException | NoOffsetForPartitionException e) { 9
 System.out.println("Invalid or no offset found, and auto.reset.policy unset, using latest");
 consumer.seekToEnd(e.partitions());
 consumer.commitSync();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 if (!retriable(e)) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }
 }
 }

 private KafkaConsumer<Long, byte[]> createKafkaConsumer() {
 Properties props = new Properties(); 10
 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS); 11
 props.put(ConsumerConfig.CLIENT_ID_CONFIG, "client-" + UUID.randomUUID()); 12
 props.put(ConsumerConfig.GROUP_ID_CONFIG, GROUP_ID); 13
 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, LongDeserializer.class);
14
 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ByteArrayDeserializer.class);
 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false); 15
 props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); 16
 return new KafkaConsumer<>(props);
 }

 private void sleep(long ms) { 17
 try {

CHAPTER 6. DEVELOPING A KAFKA CLIENT

33

1

2

3

The client creates a Kafka consumer using the createKafkaConsumer method.

The consumer subscribes to a specific topic. After subscribing to the topic, a confirmation message
is printed.

The maximum number of messages consumed is determined by the NUM_MESSAGES constant
value.

 TimeUnit.MILLISECONDS.sleep(ms);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }

 private boolean retriable(Exception e) { 18
 if (e == null) {
 return false;
 } else if (e instanceof IllegalArgumentException
 || e instanceof UnsupportedOperationException
 || !(e instanceof RebalanceInProgressException)
 || !(e instanceof RetriableException)) {
 return false;
 } else {
 return true;
 }
 }

 @Override
 public void onPartitionsAssigned(Collection<TopicPartition> partitions) { 19
 System.out.printf("Assigned partitions: %s%n", partitions);
 }

 @Override
 public void onPartitionsRevoked(Collection<TopicPartition> partitions) { 20
 System.out.printf("Revoked partitions: %s%n", partitions);
 kafkaConsumer.commitSync(pendingOffsets);
 pendingOffsets.clear();
 }

 @Override
 public void onPartitionsLost(Collection<TopicPartition> partitions) { 21
 System.out.printf("Lost partitions: {}", partitions);
 }

 @Override
 public void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) { 22
 if (e != null) {
 System.err.println("Failed to commit offsets");
 if (!retriable(e)) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }
}

Red Hat AMQ Streams 2.6 Developing Kafka client applications

34

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

The next poll to fetch messages must be called within session.timeout.ms to avoid a rebalance.

A condition to check that the records object containing the batch messages fetched from Kafka is
not empty. If the records object is empty, there are no new messages to process and the process is
skipped.

Method to introduce a delay to the message fetching process for a specified number of
milliseconds.

The consumer uses a pendingOffsets map to store the offsets of the consumed messages that
need to be committed.

After processing a batch of messages, the consumer asynchronously commits the offsets using the
commitAsync method, implementing at-least-once semantics.

A catch to handle non-fatal and fatal errors when consuming messages and auto-reset policy is not
set. For non-fatal errors, the consumer seeks to the end of the partition and starts consuming from
the latest available offset. If an exception cannot be retried, a stack trace is printed, and the
consumer is terminated.

The client creates the KafkaConsumer instance using the provided configuration. You can use a
properties file or add the configuration directly. For more information on the basic configuration,
see Chapter 4, Configuring client applications for connecting to a Kafka cluster .

The connection to the Kafka brokers.

A unique client ID for the producer using a randomly generated UUID. A client ID is not required, but
it is useful to track the source of requests.

The group ID for consumer coordination of assignments to partitions.

The appropriate deserializer classes for handling keys and values as byte arrays.

Configuration to disable automatic offset commits.

Configuration for the consumer to start consuming messages from the earliest available offset
when no committed offset is found for a partition.

Method to introduce a delay to the message consuming process for a specified number of
milliseconds. If the thread responsible for sending messages is interrupted while paused, it throws
an InterruptedException error.

Method to check whether to retry committing a message following an exception. Null and specified
exceptions are not retried, nor are exceptions that do not implement the
RebalanceInProgressException or RetriableException interfaces. You can customize this
method to include other errors.

Method to print a message to the console indicating the list of partitions that have been assigned
to the consumer.

Method called when the consumer is about to lose ownership of partitions during a consumer group
rebalance. The method prints the list of partitions that are being revoked from the consumer. Any
pending offsets are committed.

Method called when the consumer loses ownership of partitions during a consumer group
rebalance, but failed to commit any pending offsets. The method prints the list of partitions lost by
the consumer.

CHAPTER 6. DEVELOPING A KAFKA CLIENT

35

22 Method called when the consumer is committing offsets to Kafka. If an error ocurred when
committing an offset, an error message is printed. The method checks the exception and takes

Error handling

Fatal exceptions caught by the consumer application:

InterruptedException

Error thrown when the current thread is interrupted while paused. Interruption typically occurs when
stopping or shutting down the consumer. The exception is rethrown as a RuntimeException, which
terminates the consumer.

IllegalArgumentException

Error thrown when the consumer receives invalid or inappropriate arguments. For example, the
exception is thrown if the topic is missing.

UnsupportedOperationException

Error thrown when an operation is not supported or a method is not implemented. For example, the
exception is thrown if an attempt is made to use an unsupported consumer configuration or call a
method that is not supported by the KafkaConsumer class.

Non-fatal exceptions caught by the consumer application:

OffsetOutOfRangeException

Error thrown when the consumer attempts to seek to an invalid offset for a partition, typically when
the offset is outside the valid range of offsets for that partition, and auto-reset policy is not enabled.
To recover, the consumer seeks to the end of the partition to commit the offset synchronously
(commitSync). If auto-reset policy is enabled, the consumer seeks to the start or end of the partition
depending on the setting.

NoOffsetForPartitionException

Error thrown when there is no committed offset for a partition or the requested offset is invalid, and
auto-reset policy is not enabled. To recover, the consumer seeks to the end of the partition to
commit the offset synchronously (commitSync). If auto-reset policy is enabled, the consumer seeks
to the start or end of the partition depending on the setting.

RebalanceInProgressException

Error thrown during a consumer group rebalance when partitions are being assigned. Offset commits
cannot be completed when the consumer is undergoing a rebalance.

RetriableException

Error thrown for any exception that implements the RetriableException interface provided by the
Kafka client library.

With non-fatal errors, the consumer continues to process messages.

6.3. USING COOPERATIVE REBALANCING WITH CONSUMERS

Kafka consumers use a partition assignment strategy determined by the rebalancing protocol in place.
By default, Kafka employs the RangeAssignor protocol, which involves consumers relinquishing their
partition assignments during a rebalance, leading to potential service disruptions.

To improve efficiency and reduce downtime, you can switch to the CooperativeStickyAssignor
protocol, a cooperative rebalancing approach. Unlike the default protocol, cooperative rebalancing
enables consumers to work together, retaining their partition assignments during a rebalance, and
releasing partitions only when necessary to achieve a balance within the consumer group.

Red Hat AMQ Streams 2.6 Developing Kafka client applications

36

Procedure

1. In the consumer configuration, use the partition.assignment.strategy property to switch to
using CooperativeStickyAssignor as the protocol. For example, if the current configuration is
partition.assignment.strategy=RangeAssignor, CooperativeStickyAssignor, update it to
partition.assignment.strategy=CooperativeStickyAssignor.
Instead of modifying the consumer configuration file directly, you can also set the partition
assignment strategy using props.put in the consumer application code:

2. Restart each consumer in the group one at a time, allowing them to rejoin the group after each
restart.

WARNING

After switching to the CooperativeStickyAssignor protocol, a
RebalanceInProgressException may occur during consumer rebalancing, leading
to unexpected stoppages of multiple Kafka clients in the same consumer group.
Additionally, this issue may result in the duplication of uncommitted messages, even
if Kafka consumers have not changed their partition assignments during
rebalancing. If you are using automatic offset commits (enable.auto.commit=true),
you don’t need to make any changes. If you are manually committing offsets
(enable.auto.commit=false), and a RebalanceInProgressException occurs
during the manual commit, change the consumer implementation to call poll() in
the next loop to complete the consumer rebalancing process. For more information,
see the CooperativeStickyAssignor article on the customer portal.

...
props.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,
"org.apache.kafka.clients.consumer.CooperativeStickyAssignor");
...

CHAPTER 6. DEVELOPING A KAFKA CLIENT

37

https://access.redhat.com/solutions/7025439

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the AMQ Streams for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2024-04-12 15:50:49 UTC

dnf install <package_name>

dnf install <path_to_download_package>

Red Hat AMQ Streams 2.6 Developing Kafka client applications

38

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DEVELOPING CLIENTS OVERVIEW
	1.1. SUPPORTING A HTTP CLIENT
	1.2. TUNING YOUR PRODUCERS AND CONSUMERS
	1.3. MONITORING CLIENT INTERACTION

	CHAPTER 2. CLIENT DEVELOPMENT PREREQUISITES
	CHAPTER 3. ADDING CLIENT DEPENDENCIES TO YOUR MAVEN PROJECT
	3.1. ADDING A KAFKA CLIENTS DEPENDENCY TO YOUR MAVEN PROJECT
	3.2. ADDING A KAFKA STREAMS DEPENDENCY TO YOUR MAVEN PROJECT
	3.3. ADDING AN OAUTH 2.0 DEPENDENCY TO YOUR MAVEN PROJECT

	CHAPTER 4. CONFIGURING CLIENT APPLICATIONS FOR CONNECTING TO A KAFKA CLUSTER
	4.1. BASIC PRODUCER CLIENT CONFIGURATION
	4.2. BASIC CONSUMER CLIENT CONFIGURATION

	CHAPTER 5. CONFIGURING SECURE CONNECTIONS
	5.1. SETTING UP BROKERS FOR SECURE ACCESS
	5.1.1. Establishing a secure connection to a Kafka cluster running on RHEL
	5.1.2. Configuring secure listeners for a Kafka cluster on RHEL
	5.1.3. Establishing a secure connection to a Kafka cluster running on OpenShift
	5.1.4. Configuring secure listeners for a Kafka cluster on OpenShift

	5.2. SETTING UP CLIENTS FOR SECURE ACCESS
	5.2.1. Configuring security protocols
	5.2.2. Configuring permitted TLS versions and cipher suites
	5.2.3. Using Access Control Lists (ACLs)
	5.2.4. Using OAuth 2.0 for token-based access
	5.2.5. Using Open Policy Agent (OPA) access policies
	5.2.6. Using transactions when streaming messages

	CHAPTER 6. DEVELOPING A KAFKA CLIENT
	6.1. EXAMPLE KAFKA PRODUCER APPLICATION
	6.2. EXAMPLE KAFKA CONSUMER APPLICATION
	6.3. USING COOPERATIVE REBALANCING WITH CONSUMERS

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

