
Red Hat AMQ Streams 2.0

Using AMQ Streams on OpenShift

Configure and manage a deployment of AMQ Streams 2.0 on OpenShift Container
Platform

Last Updated: 2022-06-24

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

Configure and manage a deployment of AMQ Streams 2.0 on OpenShift Container Platform

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure the operators and Kafka components deployed with AMQ Streams to build a large-scale
messaging network.

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW OF AMQ STREAMS
1.1. KAFKA CAPABILITIES
1.2. KAFKA USE CASES
1.3. HOW AMQ STREAMS SUPPORTS KAFKA
1.4. AMQ STREAMS OPERATORS

Operators
1.4.1. Cluster Operator
1.4.2. Topic Operator
1.4.3. User Operator
1.4.4. Feature gates in AMQ Streams Operators

1.5. AMQ STREAMS CUSTOM RESOURCES
1.5.1. AMQ Streams custom resource example

1.6. LISTENER CONFIGURATION
1.7. DOCUMENT CONVENTIONS

CHAPTER 2. DEPLOYMENT CONFIGURATION
2.1. KAFKA CLUSTER CONFIGURATION

2.1.1. Configuring Kafka
2.1.2. Configuring the Entity Operator

2.1.2.1. Entity Operator configuration properties
2.1.2.2. Topic Operator configuration properties
2.1.2.3. User Operator configuration properties

2.1.3. Kafka and ZooKeeper storage types
2.1.3.1. Data storage considerations

2.1.3.1.1. File systems
2.1.3.1.2. Apache Kafka and ZooKeeper storage

2.1.3.2. Ephemeral storage
2.1.3.2.1. Log directories

2.1.3.3. Persistent storage
2.1.3.3.1. Storage class overrides
2.1.3.3.2. Persistent Volume Claim naming
2.1.3.3.3. Log directories

2.1.3.4. Resizing persistent volumes
2.1.3.5. JBOD storage overview

2.1.3.5.1. JBOD configuration
2.1.3.5.2. JBOD and Persistent Volume Claims
2.1.3.5.3. Log directories

2.1.3.6. Adding volumes to JBOD storage
2.1.3.7. Removing volumes from JBOD storage

2.1.4. Scaling clusters
2.1.4.1. Broker scaling configuration

Broker addition
Broker removal

2.1.4.2. Partition reassignment tool
Partition reassignment JSON file
Partition reassignment between JBOD volumes
Partition reassignment throttles

2.1.4.3. Generating reassignment JSON files
2.1.4.4. Scaling up a Kafka cluster

14

15
15
15
16
16
16
17
18
19
19

20
20
23
23

24
24
25
30
31
31
32
33
34
34
34
35
35
35
37
38
38
38
39
40
40
40
40
42
42
43
43
43
43
44
45
45
45
50

Table of Contents

1

2.1.4.5. Scaling down a Kafka cluster
2.1.5. Maintenance time windows for rolling updates

2.1.5.1. Maintenance time windows overview
2.1.5.2. Maintenance time window definition
2.1.5.3. Configuring a maintenance time window

2.1.6. Connecting to ZooKeeper from a terminal
2.1.7. Deleting Kafka nodes manually
2.1.8. Deleting ZooKeeper nodes manually
2.1.9. List of Kafka cluster resources

2.2. KAFKA CONNECT CLUSTER CONFIGURATION
2.2.1. Configuring Kafka Connect
2.2.2. Kafka Connect configuration for multiple instances
2.2.3. Configuring Kafka Connect user authorization
2.2.4. Performing a restart of a Kafka connector
2.2.5. Performing a restart of a Kafka connector task
2.2.6. Exposing the Kafka Connect API
2.2.7. List of Kafka Connect cluster resources
2.2.8. Integrating with Debezium for change data capture

2.3. KAFKA MIRRORMAKER CLUSTER CONFIGURATION
2.3.1. Configuring Kafka MirrorMaker
2.3.2. List of Kafka MirrorMaker cluster resources

2.4. KAFKA MIRRORMAKER 2.0 CLUSTER CONFIGURATION
2.4.1. MirrorMaker 2.0 data replication
2.4.2. Cluster configuration

2.4.2.1. Bidirectional replication (active/active)
2.4.2.2. Unidirectional replication (active/passive)
2.4.2.3. Topic configuration synchronization
2.4.2.4. Data integrity
2.4.2.5. Offset tracking
2.4.2.6. Synchronizing consumer group offsets
2.4.2.7. Connectivity checks

2.4.3. ACL rules synchronization
2.4.4. Synchronizing data between Kafka clusters using MirrorMaker 2.0
2.4.5. Performing a restart of a Kafka MirrorMaker 2.0 connector
2.4.6. Performing a restart of a Kafka MirrorMaker 2.0 connector task

2.5. KAFKA BRIDGE CLUSTER CONFIGURATION
2.5.1. Configuring the Kafka Bridge
2.5.2. List of Kafka Bridge cluster resources

2.6. CUSTOMIZING OPENSHIFT RESOURCES
2.6.1. Customizing the image pull policy

2.7. CONFIGURING POD SCHEDULING
2.7.1. Specifying affinity, tolerations, and topology spread constraints

2.7.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
2.7.1.2. Use node affinity to schedule workloads onto specific nodes
2.7.1.3. Use node affinity and tolerations for dedicated nodes

2.7.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
2.7.3. Configuring pod anti-affinity in Kafka components
2.7.4. Configuring node affinity in Kafka components
2.7.5. Setting up dedicated nodes and scheduling pods on them

2.8. LOGGING CONFIGURATION
2.8.1. Logging options for Kafka components and operators
2.8.2. Creating a ConfigMap for logging
2.8.3. Adding logging filters to Operators

52
54
54
54
55
55
56
57
57
61
61

65
66
69
70
70
72
72
73
73
77
77
78
78
79
79
80
80
80
80
81
81
81

87
88
88
89
91

92
93
93
94
94
94
95
95
97
98
98

100
100
101
102

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

2

. .

. .

. .

CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
3.1. LOADING CONFIGURATION VALUES FROM A CONFIG MAP
3.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT VARIABLES

CHAPTER 4. ACCESSING KAFKA OUTSIDE OF THE OPENSHIFT CLUSTER
4.1. ACCESSING KAFKA USING NODE PORTS
4.2. ACCESSING KAFKA USING LOADBALANCERS
4.3. ACCESSING KAFKA USING INGRESS
4.4. ACCESSING KAFKA USING OPENSHIFT ROUTES

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA
5.1. SECURITY OPTIONS FOR KAFKA

5.1.1. Listener authentication
5.1.1.1. Mutual TLS authentication
5.1.1.2. SCRAM-SHA-512 authentication
5.1.1.3. Network policies
5.1.1.4. Additional listener configuration options

5.1.2. Kafka authorization
5.1.2.1. Super users

5.2. SECURITY OPTIONS FOR KAFKA CLIENTS
5.2.1. Identifying a Kafka cluster for user handling
5.2.2. User authentication

5.2.2.1. TLS client authentication
5.2.2.2. TLS client authentication using a certificate issued outside the User Operator
5.2.2.3. SCRAM-SHA-512 authentication

5.2.2.3.1. Custom password configuration
5.2.3. User authorization

5.2.3.1. ACL rules
5.2.3.2. Super user access to Kafka brokers
5.2.3.3. User quotas

5.3. SECURING ACCESS TO KAFKA BROKERS
5.3.1. Securing Kafka brokers
5.3.2. Securing user access to Kafka
5.3.3. Restricting access to Kafka listeners using network policies

5.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
5.4.1. OAuth 2.0 authentication mechanisms
5.4.2. OAuth 2.0 Kafka broker configuration

5.4.2.1. OAuth 2.0 client configuration on an authorization server
5.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
5.4.2.3. Fast local JWT token validation configuration
5.4.2.4. OAuth 2.0 introspection endpoint configuration

5.4.3. Session re-authentication for Kafka brokers
5.4.4. OAuth 2.0 Kafka client configuration
5.4.5. OAuth 2.0 client authentication flow

5.4.5.1. Example client authentication flows
5.4.6. Configuring OAuth 2.0 authentication

5.4.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
5.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
5.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
5.4.6.4. Configuring OAuth 2.0 for Kafka components

5.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
5.5.1. OAuth 2.0 authorization mechanism

5.5.1.1. Kafka broker custom authorizer

106
106
109

111
111

112
113
115

117
117
117
119
119

120
120
120
121
121
122
122
123
123
124
125
125
126
126
126
127
128
129
130
131
132
134
134
134
135
136
137
138
139
139
141

142
143
147
149
151
151
152

Table of Contents

3

. .

. .

5.5.2. Configuring OAuth 2.0 authorization support
5.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization Services

5.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview
Kafka authorization model
Red Hat Single Sign-On Authorization Services model

5.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model
5.5.3.3. Example permissions required for Kafka operations

5.5.4. Trying Red Hat Single Sign-On Authorization Services
5.5.4.1. Accessing the Red Hat Single Sign-On Admin Console
5.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization
5.5.4.3. Preparing TLS connectivity for a CLI Kafka client session
5.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

CHAPTER 6. USING AMQ STREAMS OPERATORS
6.1. USING THE CLUSTER OPERATOR

6.1.1. Cluster Operator configuration
6.1.1.1. Feature gates

Configuring feature gates
6.1.1.1.1. Control plane listener feature gate
6.1.1.1.2. Service Account patching feature gate

6.1.1.2. Logging configuration by ConfigMap
6.1.1.3. Restricting Cluster Operator access with network policy
6.1.1.4. Periodic reconciliation

6.1.2. Provisioning Role-Based Access Control (RBAC)
6.1.2.1. Delegated privileges
6.1.2.2. ServiceAccount
6.1.2.3. ClusterRoles
6.1.2.4. ClusterRoleBindings

6.1.3. Configuring the Cluster Operator with default proxy settings
6.2. USING THE TOPIC OPERATOR

6.2.1. Kafka topic resource
6.2.1.1. Identifying a Kafka cluster for topic handling
6.2.1.2. Kafka topic usage recommendations
6.2.1.3. Kafka topic naming conventions

6.2.2. Topic Operator topic store
6.2.2.1. Internal topic store topics
6.2.2.2. Migrating topic metadata from ZooKeeper
6.2.2.3. Downgrading to a AMQ Streams version that uses ZooKeeper to store topic metadata
6.2.2.4. Topic Operator topic replication and scaling
6.2.2.5. Handling changes to topics

6.2.3. Configuring a Kafka topic
6.2.4. Configuring the Topic Operator with resource requests and limits

6.3. USING THE USER OPERATOR
6.3.1. Configuring the User Operator with resource requests and limits

6.4. MONITORING OPERATORS USING PROMETHEUS METRICS

CHAPTER 7. KAFKA BRIDGE
7.1. KAFKA BRIDGE API DOCUMENTATION
7.2. KAFKA BRIDGE OVERVIEW

7.2.1. Kafka Bridge interface
7.2.1.1. HTTP requests

7.2.2. Supported clients for the Kafka Bridge
7.2.3. Securing the Kafka Bridge

152
154
154
154
155
156
158
161

162
164
165
166

173
173
173
176
177
177
178
178
179
179
180
180
181
181

188
190
191

192
192
192
192
194
194
194
194
195
195
196
197
198
198
199

200
200
200
200
200
201
201

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

4

. .

. .

7.2.4. Accessing the Kafka Bridge outside of OpenShift
7.2.5. Requests to the Kafka Bridge

7.2.5.1. Content Type headers
7.2.5.2. Embedded data format
7.2.5.3. Message format
7.2.5.4. Accept headers

7.2.6. CORS
7.2.6.1. Simple request
7.2.6.2. Preflighted request

7.2.7. Kafka Bridge deployment
7.3. KAFKA BRIDGE QUICKSTART

7.3.1. Deploying the Kafka Bridge to your OpenShift cluster
7.3.2. Exposing the Kafka Bridge service to your local machine
7.3.3. Producing messages to topics and partitions
7.3.4. Creating a Kafka Bridge consumer
7.3.5. Subscribing a Kafka Bridge consumer to topics
7.3.6. Retrieving the latest messages from a Kafka Bridge consumer
7.3.7. Commiting offsets to the log
7.3.8. Seeking to offsets for a partition
7.3.9. Deleting a Kafka Bridge consumer

CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE
8.1. USING THE KAFKA BRIDGE WITH 3SCALE

8.1.1. Kafka Bridge service discovery
8.1.2. 3scale APIcast gateway policies
8.1.3. TLS validation
8.1.4. 3scale documentation

8.2. DEPLOYING 3SCALE FOR THE KAFKA BRIDGE

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING
9.1. WHY USE CRUISE CONTROL?
9.2. OPTIMIZATION GOALS OVERVIEW

Goals configuration in AMQ Streams custom resources
Hard goals and soft goals
Main optimization goals
Default optimization goals
User-provided optimization goals

9.3. OPTIMIZATION PROPOSALS OVERVIEW
Cached optimization proposal
Contents of optimization proposals

Summary
Broker load

9.4. REBALANCE PERFORMANCE TUNING OVERVIEW
Partition reassignment commands
Replica movement strategies
Rebalance tuning options

9.5. CRUISE CONTROL CONFIGURATION
Cross-Origin Resource Sharing configuration
Capacity configuration
Logging configuration
Cruise Control REST API security

9.6. DEPLOYING CRUISE CONTROL
Auto-created topics

202
203
203
203
204
204
205
205
206
206
207
207
209
209
215
216
217
218
218

220

221
221
221
221

223
223
223

228
228
228
229
229
230
231

232
232
233
233
233
235
236
236
236
236
238
238
239
240
241
241

243

Table of Contents

5

. .

. .

. .

. .

9.7. GENERATING OPTIMIZATION PROPOSALS
9.8. APPROVING AN OPTIMIZATION PROPOSAL
9.9. STOPPING A CLUSTER REBALANCE
9.10. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

CHAPTER 10. VALIDATING SCHEMAS WITH SERVICE REGISTRY

CHAPTER 11. DISTRIBUTED TRACING
How AMQ Streams supports tracing
Outline of procedures
11.1. OVERVIEW OF OPENTRACING AND JAEGER
11.2. SETTING UP TRACING FOR KAFKA CLIENTS

11.2.1. Initializing a Jaeger tracer for Kafka clients
11.2.2. Environment variables for tracing

11.3. INSTRUMENTING KAFKA CLIENTS WITH TRACERS
11.3.1. Instrumenting producers and consumers for tracing

11.3.1.1. Custom span names in a Decorator pattern
11.3.1.2. Built-in span names

11.3.2. Instrumenting Kafka Streams applications for tracing
11.4. SETTING UP TRACING FOR MIRRORMAKER, KAFKA CONNECT, AND THE KAFKA BRIDGE

11.4.1. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources

CHAPTER 12. MANAGING TLS CERTIFICATES
12.1. CERTIFICATE AUTHORITIES

12.1.1. CA certificates
12.1.2. Installing your own CA certificates

12.2. SECRETS
12.2.1. PKCS #12 storage
12.2.2. Cluster CA Secrets
12.2.3. Client CA Secrets
12.2.4. Adding labels and annotations to Secrets
12.2.5. Disabling ownerReference in the CA Secrets
12.2.6. User Secrets

12.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS
12.3.1. Renewal process with automatically generated CA certificates
12.3.2. Client certificate renewal
12.3.3. Manually renewing the CA certificates generated by the Cluster Operator
12.3.4. Replacing private keys used by the CA certificates generated by the Cluster Operator
12.3.5. Renewing your own CA certificates

12.4. TLS CONNECTIONS
12.4.1. ZooKeeper communication
12.4.2. Kafka inter-broker communication
12.4.3. Topic and User Operators
12.4.4. Cruise Control
12.4.5. Kafka Client connections

12.5. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
12.6. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
12.7. KAFKA LISTENER CERTIFICATES

12.7.1. Providing your own Kafka listener certificates
12.7.2. Alternative subjects in server certificates for Kafka listeners

12.7.2.1. TLS listener SAN examples
12.7.2.2. External listener SAN examples

CHAPTER 13. MANAGING AMQ STREAMS

244
246
247
248

250

251
251
251

252
252
252
253
255
255
257
258
258
259
259

263
263
263
264
267
267
267
269
269
270
270
271

272
272
273
275
276
277
277
278
278
278
278
278
280
281
281
283
283
284

285

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

6

13.1. WORKING WITH CUSTOM RESOURCES
13.1.1. Performing oc operations on custom resources

13.1.1.1. Resource categories
13.1.1.2. Querying the status of sub-resources

13.1.2. AMQ Streams custom resource status information
13.1.3. Finding the status of a custom resource

13.2. PAUSING RECONCILIATION OF CUSTOM RESOURCES
13.3. EVICTING PODS WITH AMQ STREAMS DRAIN CLEANER

13.3.1. Prerequisites
13.3.2. Deploying the AMQ Streams Drain Cleaner
13.3.3. Using the AMQ Streams Drain Cleaner

13.4. MANUALLY STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS
13.4.1. Prerequisites
13.4.2. Performing a rolling update using a StatefulSet annotation
13.4.3. Performing a rolling update using a Pod annotation

13.5. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
Example internal Kafka bootstrap service
Example HTTP Bridge service
13.5.1. Returning connection details on services

13.6. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES
13.6.1. Recovery from namespace deletion
13.6.2. Recovery from loss of an OpenShift cluster
13.6.3. Recovering a deleted cluster from persistent volumes

13.7. SETTING LIMITS ON BROKERS USING THE KAFKA STATIC QUOTA PLUGIN
13.8. TUNING KAFKA CONFIGURATION

13.8.1. Kafka broker configuration tuning
13.8.1.1. Basic broker configuration
13.8.1.2. Replicating topics for high availability
13.8.1.3. Internal topic settings for transactions and commits
13.8.1.4. Improving request handling throughput by increasing I/O threads
13.8.1.5. Increasing bandwidth for high latency connections
13.8.1.6. Managing logs with data retention policies
13.8.1.7. Removing log data with cleanup policies
13.8.1.8. Managing disk utilization
13.8.1.9. Handling large message sizes
13.8.1.10. Controlling the log flush of message data
13.8.1.11. Partition rebalancing for availability
13.8.1.12. Unclean leader election
13.8.1.13. Avoiding unnecessary consumer group rebalances

13.8.2. Kafka producer configuration tuning
13.8.2.1. Basic producer configuration
13.8.2.2. Data durability
13.8.2.3. Ordered delivery
13.8.2.4. Reliability guarantees
13.8.2.5. Optimizing throughput and latency

13.8.3. Kafka consumer configuration tuning
13.8.3.1. Basic consumer configuration
13.8.3.2. Scaling data consumption using consumer groups
13.8.3.3. Message ordering guarantees
13.8.3.4. Optimizing throughput and latency
13.8.3.5. Avoiding data loss or duplication when committing offsets

13.8.3.5.1. Controlling transactional messages
13.8.3.6. Recovering from failure to avoid data loss

285
285
286
286
287
290
290
291
292
293
294
295
295
296
296
297
297
298
298
298
298
299
300
304
305
305
305
306
307
307
308
309
310
312
313
315
315
316
317
317
317
318
319
319

320
322
322
323
323
323
324
325
326

Table of Contents

7

. .

13.8.3.7. Managing offset policy
13.8.3.8. Minimizing the impact of rebalances

13.9. UNINSTALLING AMQ STREAMS
13.10. FREQUENTLY ASKED QUESTIONS

13.10.1. Questions related to the Cluster Operator
13.10.1.1. Why do I need cluster administrator privileges to install AMQ Streams?
13.10.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?
13.10.1.3. Can standard OpenShift users create Kafka custom resources?
13.10.1.4. What do the failed to acquire lock warnings in the log mean?
13.10.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

CHAPTER 14. CUSTOM RESOURCE API REFERENCE
14.1. COMMON CONFIGURATION PROPERTIES

14.1.1. replicas
14.1.2. bootstrapServers
14.1.3. ssl
14.1.4. trustedCertificates
14.1.5. resources
14.1.6. image
14.1.7. livenessProbe and readinessProbe healthchecks
14.1.8. metricsConfig
14.1.9. jvmOptions
14.1.10. Garbage collector logging

14.2. SCHEMA PROPERTIES
14.2.1. Kafka schema reference
14.2.2. KafkaSpec schema reference
14.2.3. KafkaClusterSpec schema reference

14.2.3.1. listeners
14.2.3.2. config
14.2.3.3. brokerRackInitImage
14.2.3.4. logging
14.2.3.5. KafkaClusterSpec schema properties

14.2.4. GenericKafkaListener schema reference
14.2.4.1. listeners
14.2.4.2. type
14.2.4.3. port
14.2.4.4. tls
14.2.4.5. authentication
14.2.4.6. networkPolicyPeers
14.2.4.7. GenericKafkaListener schema properties

14.2.5. KafkaListenerAuthenticationTls schema reference
14.2.6. KafkaListenerAuthenticationScramSha512 schema reference
14.2.7. KafkaListenerAuthenticationOAuth schema reference
14.2.8. GenericSecretSource schema reference
14.2.9. CertSecretSource schema reference
14.2.10. GenericKafkaListenerConfiguration schema reference

14.2.10.1. brokerCertChainAndKey
14.2.10.2. externalTrafficPolicy
14.2.10.3. loadBalancerSourceRanges
14.2.10.4. class
14.2.10.5. preferredNodePortAddressType
14.2.10.6. useServiceDnsDomain
14.2.10.7. GenericKafkaListenerConfiguration schema properties

326
327
328
328
328
328
329
329
329
330

331
331
331
331
331
332
332
334
337
338
339
341

342
342
342
343
343
343
345
346
347
349
350
351
353
354
354
354
355
356
357
357
361
361
361
361

362
362
362
363
363
364

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

8

14.2.11. CertAndKeySecretSource schema reference
14.2.12. GenericKafkaListenerConfigurationBootstrap schema reference

14.2.12.1. alternativeNames
14.2.12.2. host
14.2.12.3. nodePort
14.2.12.4. loadBalancerIP
14.2.12.5. annotations
14.2.12.6. GenericKafkaListenerConfigurationBootstrap schema properties

14.2.13. GenericKafkaListenerConfigurationBroker schema reference
14.2.13.1. GenericKafkaListenerConfigurationBroker schema properties

14.2.14. EphemeralStorage schema reference
14.2.15. PersistentClaimStorage schema reference
14.2.16. PersistentClaimStorageOverride schema reference
14.2.17. JbodStorage schema reference
14.2.18. KafkaAuthorizationSimple schema reference

14.2.18.1. superUsers
14.2.18.2. KafkaAuthorizationSimple schema properties

14.2.19. KafkaAuthorizationOpa schema reference
14.2.19.1. url
14.2.19.2. allowOnError
14.2.19.3. initialCacheCapacity
14.2.19.4. maximumCacheSize
14.2.19.5. expireAfterMs
14.2.19.6. superUsers
14.2.19.7. KafkaAuthorizationOpa schema properties

14.2.20. KafkaAuthorizationKeycloak schema reference
14.2.21. KafkaAuthorizationCustom schema reference

14.2.21.1. authorizerClass
14.2.21.2. superUsers
14.2.21.3. KafkaAuthorizationCustom schema properties

14.2.22. Rack schema reference
14.2.22.1. Spreading partition replicas across racks
14.2.22.2. Consuming messages from the closest replicas
14.2.22.3. Rack schema properties

14.2.23. Probe schema reference
14.2.24. JvmOptions schema reference
14.2.25. SystemProperty schema reference
14.2.26. KafkaJmxOptions schema reference

14.2.26.1. KafkaJmxOptions schema properties
14.2.27. KafkaJmxAuthenticationPassword schema reference
14.2.28. JmxPrometheusExporterMetrics schema reference
14.2.29. ExternalConfigurationReference schema reference
14.2.30. InlineLogging schema reference
14.2.31. ExternalLogging schema reference
14.2.32. KafkaClusterTemplate schema reference
14.2.33. StatefulSetTemplate schema reference
14.2.34. MetadataTemplate schema reference

14.2.34.1. MetadataTemplate schema properties
14.2.35. PodTemplate schema reference

14.2.35.1. hostAliases
14.2.35.2. PodTemplate schema properties

14.2.36. InternalServiceTemplate schema reference
14.2.37. ResourceTemplate schema reference

366
366
367
367
368
369
369
370
371
372
373
373
374
374
374
375
375
376
376
376
376
376
376
376
377
378
379
379
379
380
381
381
382
383
384
384
385
385
386
387
387
387
388
388
388
390
390
391
391

392
392
394
394

Table of Contents

9

14.2.38. PodDisruptionBudgetTemplate schema reference
14.2.38.1. PodDisruptionBudgetTemplate schema properties

14.2.39. ContainerTemplate schema reference
14.2.39.1. ContainerTemplate schema properties

14.2.40. ContainerEnvVar schema reference
14.2.41. ZookeeperClusterSpec schema reference

14.2.41.1. config
14.2.41.2. logging
14.2.41.3. ZookeeperClusterSpec schema properties

14.2.42. ZookeeperClusterTemplate schema reference
14.2.43. EntityOperatorSpec schema reference
14.2.44. EntityTopicOperatorSpec schema reference

14.2.44.1. logging
14.2.44.2. EntityTopicOperatorSpec schema properties

14.2.45. EntityUserOperatorSpec schema reference
14.2.45.1. logging
14.2.45.2. EntityUserOperatorSpec schema properties

14.2.46. TlsSidecar schema reference
14.2.46.1. TlsSidecar schema properties

14.2.47. EntityOperatorTemplate schema reference
14.2.48. CertificateAuthority schema reference
14.2.49. CruiseControlSpec schema reference
14.2.50. CruiseControlTemplate schema reference
14.2.51. BrokerCapacity schema reference
14.2.52. KafkaExporterSpec schema reference
14.2.53. KafkaExporterTemplate schema reference
14.2.54. KafkaStatus schema reference
14.2.55. Condition schema reference
14.2.56. ListenerStatus schema reference
14.2.57. ListenerAddress schema reference
14.2.58. KafkaConnect schema reference
14.2.59. KafkaConnectSpec schema reference

14.2.59.1. config
14.2.59.2. logging
14.2.59.3. KafkaConnectSpec schema properties

14.2.60. ClientTls schema reference
14.2.60.1. trustedCertificates
14.2.60.2. ClientTls schema properties

14.2.61. KafkaClientAuthenticationTls schema reference
14.2.61.1. certificateAndKey
14.2.61.2. KafkaClientAuthenticationTls schema properties

14.2.62. KafkaClientAuthenticationScramSha512 schema reference
14.2.62.1. username
14.2.62.2. passwordSecret
14.2.62.3. KafkaClientAuthenticationScramSha512 schema properties

14.2.63. PasswordSecretSource schema reference
14.2.64. KafkaClientAuthenticationPlain schema reference

14.2.64.1. username
14.2.64.2. passwordSecret
14.2.64.3. KafkaClientAuthenticationPlain schema properties

14.2.65. KafkaClientAuthenticationOAuth schema reference
14.2.65.1. KafkaClientAuthenticationOAuth schema properties

14.2.66. JaegerTracing schema reference

395
395
395
396
396
397
397
398
399
401
401
402
402
403
404
405
406
407
409
409
410
411

412
413
414
415
415
416
416
417
417
417
418
419
421

423
423
423
423
423
424
424
425
425
425
426
426
427
427
427
428
430
431

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

10

14.2.67. KafkaConnectTemplate schema reference
14.2.68. DeploymentTemplate schema reference
14.2.69. BuildConfigTemplate schema reference
14.2.70. ExternalConfiguration schema reference

14.2.70.1. env
14.2.70.2. volumes
14.2.70.3. ExternalConfiguration schema properties

14.2.71. ExternalConfigurationEnv schema reference
14.2.72. ExternalConfigurationEnvVarSource schema reference
14.2.73. ExternalConfigurationVolumeSource schema reference
14.2.74. Build schema reference

14.2.74.1. output
14.2.74.2. plugins
14.2.74.3. Build schema properties

14.2.75. DockerOutput schema reference
14.2.76. ImageStreamOutput schema reference
14.2.77. Plugin schema reference
14.2.78. JarArtifact schema reference
14.2.79. TgzArtifact schema reference
14.2.80. ZipArtifact schema reference
14.2.81. MavenArtifact schema reference
14.2.82. OtherArtifact schema reference
14.2.83. KafkaConnectStatus schema reference
14.2.84. ConnectorPlugin schema reference
14.2.85. KafkaTopic schema reference
14.2.86. KafkaTopicSpec schema reference
14.2.87. KafkaTopicStatus schema reference
14.2.88. KafkaUser schema reference
14.2.89. KafkaUserSpec schema reference
14.2.90. KafkaUserTlsClientAuthentication schema reference
14.2.91. KafkaUserTlsExternalClientAuthentication schema reference
14.2.92. KafkaUserScramSha512ClientAuthentication schema reference
14.2.93. Password schema reference
14.2.94. PasswordSource schema reference
14.2.95. KafkaUserAuthorizationSimple schema reference
14.2.96. AclRule schema reference

14.2.96.1. resource
14.2.96.2. type
14.2.96.3. operation
14.2.96.4. host
14.2.96.5. AclRule schema properties

14.2.97. AclRuleTopicResource schema reference
14.2.98. AclRuleGroupResource schema reference
14.2.99. AclRuleClusterResource schema reference
14.2.100. AclRuleTransactionalIdResource schema reference
14.2.101. KafkaUserQuotas schema reference

14.2.101.1. quotas
14.2.101.2. KafkaUserQuotas schema properties

14.2.102. KafkaUserTemplate schema reference
14.2.102.1. KafkaUserTemplate schema properties

14.2.103. KafkaUserStatus schema reference
14.2.104. KafkaMirrorMaker schema reference
14.2.105. KafkaMirrorMakerSpec schema reference

431
433
433
433
434
435
438
438
439
439
440
440
441

445
446
446
447
447
448
448
449
450
450
451
452
452
452
453
453
454
455
455
455
456
456
456
457
458
458
458
458
459
460
460
460
461
461

462
462
463
463
463
464

Table of Contents

11

. .

14.2.105.1. include
14.2.105.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec
14.2.105.3. logging
14.2.105.4. KafkaMirrorMakerSpec schema properties

14.2.106. KafkaMirrorMakerConsumerSpec schema reference
14.2.106.1. numStreams
14.2.106.2. offsetCommitInterval
14.2.106.3. config
14.2.106.4. groupId
14.2.106.5. KafkaMirrorMakerConsumerSpec schema properties

14.2.107. KafkaMirrorMakerProducerSpec schema reference
14.2.107.1. abortOnSendFailure
14.2.107.2. config
14.2.107.3. KafkaMirrorMakerProducerSpec schema properties

14.2.108. KafkaMirrorMakerTemplate schema reference
14.2.109. KafkaMirrorMakerStatus schema reference
14.2.110. KafkaBridge schema reference
14.2.111. KafkaBridgeSpec schema reference

14.2.111.1. logging
14.2.111.2. KafkaBridgeSpec schema properties

14.2.112. KafkaBridgeHttpConfig schema reference
14.2.112.1. cors
14.2.112.2. KafkaBridgeHttpConfig schema properties

14.2.113. KafkaBridgeHttpCors schema reference
14.2.114. KafkaBridgeAdminClientSpec schema reference
14.2.115. KafkaBridgeConsumerSpec schema reference

14.2.115.1. KafkaBridgeConsumerSpec schema properties
14.2.116. KafkaBridgeProducerSpec schema reference

14.2.116.1. KafkaBridgeProducerSpec schema properties
14.2.117. KafkaBridgeTemplate schema reference
14.2.118. KafkaBridgeStatus schema reference
14.2.119. KafkaConnector schema reference
14.2.120. KafkaConnectorSpec schema reference
14.2.121. KafkaConnectorStatus schema reference
14.2.122. KafkaMirrorMaker2 schema reference
14.2.123. KafkaMirrorMaker2Spec schema reference
14.2.124. KafkaMirrorMaker2ClusterSpec schema reference

14.2.124.1. config
14.2.124.2. KafkaMirrorMaker2ClusterSpec schema properties

14.2.125. KafkaMirrorMaker2MirrorSpec schema reference
14.2.126. KafkaMirrorMaker2ConnectorSpec schema reference
14.2.127. KafkaMirrorMaker2Status schema reference
14.2.128. KafkaRebalance schema reference
14.2.129. KafkaRebalanceSpec schema reference
14.2.130. KafkaRebalanceStatus schema reference

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files

464
464
464
465
467
467
467
467
468
468
469
469
470
471
471
472
472
473
473
475
477
477
477
478
478
478
479
480
481
481

482
482
483
483
484
484
486
486
486
487
488
489
489
490
491

492
492
492
492

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

12

Table of Contents

13

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

14

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW OF AMQ STREAMS
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide provides instructions for configuring Kafka components and using AMQ Streams Operators.
Procedures relate to how you might want to modify your deployment and introduce additional features,
such as Cruise Control or distributed tracing.

You can configure your deployment using AMQ Streams custom resources . The Custom resource API
reference describes the properties you can use in your configuration.

NOTE

Looking to get started with AMQ Streams? For step-by-step deployment instructions,
see the Deploying and Upgrading AMQ Streams on OpenShift guide.

1.1. KAFKA CAPABILITIES

The underlying data stream-processing capabilities and component architecture of Kafka can deliver:

Microservices and other applications to share data with extremely high throughput and low
latency

Message ordering guarantees

Message rewind/replay from data storage to reconstruct an application state

Message compaction to remove old records when using a key-value log

Horizontal scalability in a cluster configuration

Replication of data to control fault tolerance

Retention of high volumes of data for immediate access

1.2. KAFKA USE CASES

Kafka’s capabilities make it suitable for:

Event-driven architectures

Event sourcing to capture changes to the state of an application as a log of events

Message brokering

Website activity tracking

Operational monitoring through metrics

Log collection and aggregation

Commit logs for distributed systems

Stream processing so that applications can respond to data in real time

CHAPTER 1. OVERVIEW OF AMQ STREAMS

15

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index

1.3. HOW AMQ STREAMS SUPPORTS KAFKA

AMQ Streams provides container images and Operators for running Kafka on OpenShift. AMQ Streams
Operators are fundamental to the running of AMQ Streams. The Operators provided with AMQ Streams
are purpose-built with specialist operational knowledge to effectively manage Kafka.

Operators simplify the process of:

Deploying and running Kafka clusters

Deploying and running Kafka components

Configuring access to Kafka

Securing access to Kafka

Upgrading Kafka

Managing brokers

Creating and managing topics

Creating and managing users

1.4. AMQ STREAMS OPERATORS

AMQ Streams supports Kafka using Operators to deploy and manage the components and
dependencies of Kafka to OpenShift.

Operators are a method of packaging, deploying, and managing an OpenShift application. AMQ Streams
Operators extend OpenShift functionality, automating common and complex tasks related to a Kafka
deployment. By implementing knowledge of Kafka operations in code, Kafka administration tasks are
simplified and require less manual intervention.

Operators
AMQ Streams provides Operators for managing a Kafka cluster running within an OpenShift cluster.

Cluster Operator

Deploys and manages Apache Kafka clusters, Kafka Connect, Kafka MirrorMaker, Kafka Bridge, Kafka
Exporter, and the Entity Operator

Entity Operator

Comprises the Topic Operator and User Operator

Topic Operator

Manages Kafka topics

User Operator

Manages Kafka users

The Cluster Operator can deploy the Topic Operator and User Operator as part of an Entity Operator
configuration at the same time as a Kafka cluster.

Operators within the AMQ Streams architecture

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

16

1.4.1. Cluster Operator

AMQ Streams uses the Cluster Operator to deploy and manage clusters for:

Kafka (including ZooKeeper, Entity Operator, Kafka Exporter, and Cruise Control)

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Custom resources are used to deploy the clusters.

For example, to deploy a Kafka cluster:

A Kafka resource with the cluster configuration is created within the OpenShift cluster.

The Cluster Operator deploys a corresponding Kafka cluster, based on what is declared in the
Kafka resource.

The Cluster Operator can also deploy (through configuration of the Kafka resource):

A Topic Operator to provide operator-style topic management through KafkaTopic custom
resources

A User Operator to provide operator-style user management through KafkaUser custom

CHAPTER 1. OVERVIEW OF AMQ STREAMS

17

A User Operator to provide operator-style user management through KafkaUser custom
resources

The Topic Operator and User Operator function within the Entity Operator on deployment.

You can use the Cluster Operator with a deployment of AMQ Streams Drain Cleaner to help with pod
evictions. By deploying the AMQ Streams Drain Cleaner, you can use the Cluster Operator to move
Kafka pods instead of OpenShift. AMQ Streams Drain Cleaner annotates pods being evicted with a
rolling update annotation. The annotation informs the Cluster Operator to perform the rolling update.

Example architecture for the Cluster Operator

1.4.2. Topic Operator

The Topic Operator provides a way of managing topics in a Kafka cluster through OpenShift resources.

Example architecture for the Topic Operator

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

18

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-drain-cleaner-str

Specifically, if a KafkaTopic is:

Created, the Topic Operator creates the topic

Deleted, the Topic Operator deletes the topic

Changed, the Topic Operator updates the topic

Working in the other direction, if a topic is:

Created within the Kafka cluster, the Operator creates a KafkaTopic

Deleted from the Kafka cluster, the Operator deletes the KafkaTopic

Changed in the Kafka cluster, the Operator updates the KafkaTopic

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

The Topic Operator maintains information about each topic in a topic store, which is continually
synchronized with updates from Kafka topics or OpenShift KafkaTopic custom resources. Updates from
operations applied to a local in-memory topic store are persisted to a backup topic store on disk. If a
topic is reconfigured or reassigned to other brokers, the KafkaTopic will always be up to date.

1.4.3. User Operator

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser resources that
describe Kafka users, and ensuring that they are configured properly in the Kafka cluster.

For example, if a KafkaUser is:

Created, the User Operator creates the user it describes

Deleted, the User Operator deletes the user it describes

Changed, the User Operator updates the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Kafka topics can be created by applications directly in Kafka, but it is not expected
that the users will be managed directly in the Kafka cluster in parallel with the User Operator.

The User Operator allows you to declare a KafkaUser resource as part of your application’s deployment.
You can specify the authentication and authorization mechanism for the user. You can also configure
user quotas that control usage of Kafka resources to ensure, for example, that a user does not
monopolize access to a broker.

When the user is created, the user credentials are created in a Secret. Your application needs to use the
user and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s access rights in the KafkaUser declaration.

1.4.4. Feature gates in AMQ Streams Operators

You can enable and disable some features of operators using feature gates.

CHAPTER 1. OVERVIEW OF AMQ STREAMS

19

Feature gates are set in the operator configuration and have three stages of maturity: alpha, beta, or
General Availability (GA).

For more information, see Feature gates.

1.5. AMQ STREAMS CUSTOM RESOURCES

A deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. Custom resources are created as instances of APIs added
by Custom resource definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with
the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

1.5.1. AMQ Streams custom resource example

CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage
AMQ Streams-specific resources.

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

Depending on the cluster setup, installation typically requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators. For more
information, see Designating AMQ Streams administrators .

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

The Kubernetes API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

WARNING

When CRDs are deleted, custom resources of that type are also deleted.
Additionally, the resources created by the custom resource, such as pods and
statefulsets are also deleted.

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind. The custom resources for AMQ Streams components have common configuration
properties, which are defined under spec.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

20

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#ref-operator-cluster-feature-gates-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#adding-users-the-strimzi-admin-role-str

1

2

3

4

5

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.

The current status of the CRD as described in the schema reference for the resource.

apiVersion: kafka.strimzi.io/v1beta2
kind: CustomResourceDefinition
metadata: 1
 name: kafkatopics.kafka.strimzi.io
 labels:
 app: strimzi
spec: 2
 group: kafka.strimzi.io
 versions:
 v1beta2
 scope: Namespaced
 names:
 # ...
 singular: kafkatopic
 plural: kafkatopics
 shortNames:
 - kt 3
 additionalPrinterColumns: 4
 # ...
 subresources:
 status: {} 5
 validation: 6
 openAPIV3Schema:
 properties:
 spec:
 type: object
 properties:
 partitions:
 type: integer
 minimum: 1
 replicas:
 type: integer
 minimum: 1
 maximum: 32767
 # ...

CHAPTER 1. OVERVIEW OF AMQ STREAMS

21

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Kafka-reference

6

1

2

3

4

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

Here is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

The kind and apiVersion identify the CRD of which the custom resource is an instance.

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the
Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.

The spec shows the number of partitions and replicas for the topic as well as the configuration
parameters for the topic itself. In this example, the retention period for a message to remain in the
topic and the segment file size for the log are specified.

Status conditions for the KafkaTopic resource. The type condition changed to Ready at the
lastTransitionTime.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic 1
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster 2
spec: 3
 partitions: 1
 replicas: 1
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824
status:
 conditions: 4
 lastTransitionTime: "2019-08-20T11:37:00.706Z"
 status: "True"
 type: Ready
 observedGeneration: 1
 / ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

22

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

Example configuration files provided with AMQ Streams

1.6. LISTENER CONFIGURATION

Listeners are used to connect to Kafka brokers.

AMQ Streams provides a generic GenericKafkaListener schema with properties to configure listeners
through the Kafka resource.

The GenericKafkaListener provides a flexible approach to listener configuration. You can specify
properties to configure internal listeners for connecting within the OpenShift cluster, or external
listeners for connecting outside the OpenShift cluster.

Each listener is defined as an array in the Kafka resource. You can configure as many listeners as
required, as long as their names and ports are unique.

You might want to configure multiple external listeners, for example, to handle access from networks
that require different authentication mechanisms. Or you might need to join your OpenShift network to
an outside network. In which case, you can configure internal listeners (using the
useServiceDnsDomain property) so that the OpenShift service DNS domain (typically .cluster.local)
is not used.

For more information on the configuration options available for listeners, see the GenericKafkaListener
schema reference.

Configuring listeners to secure access to Kafka brokers

You can configure listeners for secure connection using authentication. For more information, see
Securing access to Kafka brokers .

Configuring external listeners for client access outside OpenShift

You can configure external listeners for client access outside an OpenShift environment using a
specified connection mechanism, such as a loadbalancer. For more information on the configuration
options for connecting an external client, see Accessing Kafka from external clients outside of the
OpenShift cluster.

Listener certificates

You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or
external listeners which have TLS encryption enabled. For more information, see Kafka listener
certificates.

1.7. DOCUMENT CONVENTIONS

Replaceables

In this document, replaceable text is styled in monospace, with italics, uppercase, and hyphens.

For example, in the following code, you will want to replace MY-NAMESPACE with the name of your
namespace:

sed -i 's/namespace: .*/namespace: MY-NAMESPACE/' install/cluster-operator/*RoleBinding*.yaml

CHAPTER 1. OVERVIEW OF AMQ STREAMS

23

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploy-examples-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-GenericKafkaListener-reference

CHAPTER 2. DEPLOYMENT CONFIGURATION
This chapter describes how to configure different aspects of the supported deployments using custom
resources:

Kafka clusters

Kafka Connect clusters

Kafka MirrorMaker

Kafka Bridge

Cruise Control

NOTE

Labels applied to a custom resource are also applied to the OpenShift resources
comprising Kafka MirrorMaker. This provides a convenient mechanism for resources to be
labeled as required.

AMQ Streams provides example configuration files , which can serve as a starting point when building
your own Kafka component configuration for deployment.

Monitoring a Strimzi deployment

You can use Prometheus and Grafana to monitor your Strimzi deployment. For more information, see
Introducing metrics to Kafka .

2.1. KAFKA CLUSTER CONFIGURATION

This section describes how to configure a Kafka deployment in your AMQ Streams cluster. A Kafka
cluster is deployed with a ZooKeeper cluster. The deployment can also include the Topic Operator and
User Operator, which manage Kafka topics and users.

You configure Kafka using the Kafka resource. Configuration options are also available for ZooKeeper
and the Entity Operator within the Kafka resource. The Entity Operator comprises the Topic Operator
and User Operator.

The full schema of the Kafka resource is described in the Section 14.2.1, “Kafka schema reference”. For
more information about Apache Kafka, see the Apache Kafka documentation.

Listener configuration

You configure listeners for connecting clients to Kafka brokers. For more information on configuring
listeners for connecting brokers, see Listener configuration.

Authorizing access to Kafka

You can configure your Kafka cluster to allow or decline actions executed by users. For more
information, see Securing access to Kafka brokers .

Managing TLS certificates

When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to
enable encryption and authentication within your cluster. If required, you can manually renew the cluster
and client CA certificates before their renewal period ends. You can also replace the keys used by the

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

24

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploy-examples-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-str
https://kafka.apache.org/documentation/

cluster and client CA certificates. For more information, see Renewing CA certificates manually and
Replacing private keys.

2.1.1. Configuring Kafka

Use the properties of the Kafka resource to configure your Kafka deployment.

As well as configuring Kafka, you can add configuration for ZooKeeper and the AMQ Streams Operators.
Common configuration properties, such as logging and healthchecks, are configured independently for
each component.

This procedure shows only some of the possible configuration options, but those that are particularly
important include:

Resource requests (CPU / Memory)

JVM options for maximum and minimum memory allocation

Listeners (and authentication of clients)

Authentication

Storage

Rack awareness

Metrics

Cruise Control for cluster rebalancing

Kafka versions

The inter.broker.protocol.version property for the Kafka config must be the version supported by the
specified Kafka version (spec.kafka.version). The property represents the version of Kafka protocol
used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

An update to the inter.broker.protocol.version is required when upgrading your Kafka version. For
more information, see Upgrading Kafka .

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on deploying a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the Kafka resource.

CHAPTER 2. DEPLOYMENT CONFIGURATION

25

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrading-kafka-versions-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 replicas: 3 1
 version: 3.0.0 2
 logging: 3
 type: inline
 loggers:
 kafka.root.logger.level: "INFO"
 resources: 4
 requests:
 memory: 64Gi
 cpu: "8"
 limits:
 memory: 64Gi
 cpu: "12"
 readinessProbe: 5
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions: 6
 -Xms: 8192m
 -Xmx: 8192m
 image: my-org/my-image:latest 7
 listeners: 8
 - name: plain 9
 port: 9092 10
 type: internal 11
 tls: false 12
 configuration:
 useServiceDnsDomain: true 13
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication: 14
 type: tls
 - name: external 15
 port: 9094
 type: route
 tls: true
 configuration:
 brokerCertChainAndKey: 16
 secretName: my-secret
 certificate: my-certificate.crt
 key: my-key.key

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

26

 authorization: 17
 type: simple
 config: 18
 auto.create.topics.enable: "false"
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 inter.broker.protocol.version: "3.0"
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 19
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 storage: 20
 type: persistent-claim 21
 size: 10000Gi 22
 rack: 23
 topologyKey: topology.kubernetes.io/zone
 metricsConfig: 24
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef: 25
 name: my-config-map
 key: my-key
 # ...
 zookeeper: 26
 replicas: 3 27
 logging: 28
 type: inline
 loggers:
 zookeeper.root.logger: "INFO"
 resources:
 requests:
 memory: 8Gi
 cpu: "2"
 limits:
 memory: 8Gi
 cpu: "2"
 jvmOptions:
 -Xms: 4096m
 -Xmx: 4096m
 storage:
 type: persistent-claim
 size: 1000Gi
 metricsConfig:
 # ...
 entityOperator: 29
 tlsSidecar: 30
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 topicOperator:

CHAPTER 2. DEPLOYMENT CONFIGURATION

27

1

2

3

4

5

6

7

The number of replica nodes . If your cluster already has topics defined, you can scale
clusters.

Kafka version, which can be changed to a supported version by following the upgrade
procedure.

Specified Kafka loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
key. For the Kafka kafka.root.logger.level logger, you can set the log level to INFO,
ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Listeners configure how clients connect to the Kafka cluster via bootstrap addresses.

 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging: 31
 type: inline
 loggers:
 rootLogger.level: "INFO"
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"
 userOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging: 32
 type: inline
 loggers:
 rootLogger.level: INFO
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"
 kafkaExporter: 33
 # ...
 cruiseControl: 34
 # ...
 tlsSidecar: 35
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

28

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrade-str

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Listeners configure how clients connect to the Kafka cluster via bootstrap addresses.
Listeners are configured as internal or external listeners for connection from inside or

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within a
given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports
9404 and 9999, which are already used for Prometheus and JMX. Depending on the
listener type, the port number might not be the same as the port number that connects
Kafka clients.

Listener type specified as internal, or for external listeners, as route, loadbalancer,
nodeport or ingress.

Enables TLS encryption for each listener. Default is false. TLS encryption is not required
for route listeners.

Defines whether the fully-qualified DNS names including the cluster service suffix (usually
.cluster.local) are assigned.

Listener authentication mechanism specified as mutual TLS, SCRAM-SHA-512 or token-
based OAuth 2.0.

External listener configuration specifies how the Kafka cluster is exposed outside
OpenShift, such as through a route, loadbalancer or nodeport.

Optional configuration for a Kafka listener certificate managed by an external Certificate
Authority. The brokerCertChainAndKey specifies a Secret that contains a server
certificate and a private key. You can configure Kafka listener certificates on any listener
with enabled TLS encryption.

Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker.
Simple authorization uses the AclAuthorizer Kafka plugin.

The config specifies the broker configuration. Standard Apache Kafka configuration may
be provided, restricted to those properties not managed directly by AMQ Streams.

SSL properties for listeners with TLS encryption enabled to enable a specific cipher suite
or TLS version.

Storage is configured as ephemeral, persistent-claim or jbod.

Storage size for persistent volumes may be increased and additional volumes may be
added to JBOD storage.

Persistent storage has additional configuration options, such as a storage id and class for
dynamic volume provisioning.

Rack awareness is configured to spread replicas across different racks. A topologykey
must match the label of a cluster node.

Prometheus metrics enabled. In this example, metrics are configured for the Prometheus
JMX Exporter (the default metrics exporter).

Prometheus rules for exporting metrics to a Grafana dashboard through the Prometheus
JMX Exporter, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter. You can enable metrics without further configuration using

CHAPTER 2. DEPLOYMENT CONFIGURATION

29

26

27

28

29

30

31

32

33

34

35

a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key.

ZooKeeper-specific configuration, which contains properties similar to the Kafka
configuration.

The number of ZooKeeper nodes . ZooKeeper clusters or ensembles usually run with an odd
number of nodes, typically three, five, or seven. The majority of nodes must be available in
order to maintain an effective quorum. If the ZooKeeper cluster loses its quorum, it will
stop responding to clients and the Kafka brokers will stop working. Having a stable and
highly available ZooKeeper cluster is crucial for AMQ Streams.

Specified ZooKeeper loggers and log levels .

Entity Operator configuration, which specifies the configuration for the Topic Operator
and User Operator.

Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for
secure communication with ZooKeeper.

Specified Topic Operator loggers and log levels . This example uses inline logging.

Specified User Operator loggers and log levels .

Kafka Exporter configuration. Kafka Exporter is an optional component for extracting
metrics data from Kafka brokers, in particular consumer lag data.

Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.

Cruise Control TLS sidecar configuration. Cruise Control uses the TLS sidecar for secure
communication with ZooKeeper.

2. Create or update the resource:

2.1.2. Configuring the Entity Operator

The Entity Operator is responsible for managing Kafka-related entities in a running Kafka cluster.

The Entity Operator comprises the:

Topic Operator to manage Kafka topics

User Operator to manage Kafka users

Through Kafka resource configuration, the Cluster Operator can deploy the Entity Operator, including
one or both operators, when deploying a Kafka cluster.

NOTE

When deployed, the Entity Operator contains the operators according to the deployment
configuration.

The operators are automatically configured to manage the topics and users of the Kafka cluster.

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

30

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-kafka-exporter-str

2.1.2.1. Entity Operator configuration properties

Use the entityOperator property in Kafka.spec to configure the Entity Operator.

The entityOperator property supports several sub-properties:

tlsSidecar

topicOperator

userOperator

template

The tlsSidecar property contains the configuration of the TLS sidecar container, which is used to
communicate with ZooKeeper.

The template property contains the configuration of the Entity Operator pod, such as labels,
annotations, affinity, and tolerations. For more information on configuring templates, see Section 2.6,
“Customizing OpenShift resources”.

The topicOperator property contains the configuration of the Topic Operator. When this option is
missing, the Entity Operator is deployed without the Topic Operator.

The userOperator property contains the configuration of the User Operator. When this option is
missing, the Entity Operator is deployed without the User Operator.

For more information on the properties used to configure the Entity Operator, see the
EntityUserOperatorSpec schema reference.

Example of basic configuration enabling both operators

If an empty object ({}) is used for the topicOperator and userOperator, all properties use their default
values.

When both topicOperator and userOperator properties are missing, the Entity Operator is not
deployed.

2.1.2.2. Topic Operator configuration properties

Topic Operator deployment can be configured using additional options inside the topicOperator object.
The following properties are supported:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}

CHAPTER 2. DEPLOYMENT CONFIGURATION

31

watchedNamespace

The OpenShift namespace in which the topic operator watches for KafkaTopics. Default is the
namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

zookeeperSessionTimeoutSeconds

The ZooKeeper session timeout in seconds. Default 18.

topicMetadataMaxAttempts

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation might take
more time due to the number of partitions or replicas. Default 6.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 14.1.6, “image”.

resources

The resources property configures the amount of resources allocated to the Topic Operator. For
more details about resource request and limit configuration, see Section 14.1.5, “resources”.

logging

The logging property configures the logging of the Topic Operator. For more details, see
Section 14.2.44.1, “logging”.

Example Topic Operator configuration

2.1.2.3. User Operator configuration properties

User Operator deployment can be configured using additional options inside the userOperator object.
The following properties are supported:

watchedNamespace

The OpenShift namespace in which the user operator watches for KafkaUsers. Default is the
namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

32

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 14.1.6, “image”.

resources

The resources property configures the amount of resources allocated to the User Operator. For
more details about resource request and limit configuration, see Section 14.1.5, “resources”.

logging

The logging property configures the logging of the User Operator. For more details, see
Section 14.2.44.1, “logging”.

secretPrefix

The secretPrefix property adds a prefix to the name of all Secrets created from the KafkaUser
resource. For example, STRIMZI_SECRET_PREFIX=kafka- would prefix all Secret names with
kafka-. So a KafkaUser named my-user would create a Secret named kafka-my-user.

Example User Operator configuration

2.1.3. Kafka and ZooKeeper storage types

As stateful applications, Kafka and ZooKeeper need to store data on disk. AMQ Streams supports three
storage types for this data:

Ephemeral

Persistent

JBOD storage

NOTE

JBOD storage is supported only for Kafka, not for ZooKeeper.

When configuring a Kafka resource, you can specify the type of storage used by the Kafka broker and its
corresponding ZooKeeper node. You configure the storage type using the storage property in the
following resources:

Kafka.spec.kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-user-namespace
 reconciliationIntervalSeconds: 60
 # ...

CHAPTER 2. DEPLOYMENT CONFIGURATION

33

Kafka.spec.zookeeper

The storage type is configured in the type field.

Refer to the schema reference for more information on storage configuration properties:

EphemeralStorage schema reference

PersistentClaimStorage schema reference

JbodStorage schema reference

WARNING

The storage type cannot be changed after a Kafka cluster is deployed.

2.1.3.1. Data storage considerations

An efficient data storage infrastructure is essential to the optimal performance of AMQ Streams.

Block storage is required. File storage, such as NFS, does not work with Kafka.

Choose from one of the following options for your block storage:

Cloud-based block storage solutions, such as Amazon Elastic Block Store (EBS)

Local persistent volumes

Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI

NOTE

AMQ Streams does not require OpenShift raw block volumes.

2.1.3.1.1. File systems

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is
also compatible with the ext4 file system, but this might require additional configuration for best results.

2.1.3.1.2. Apache Kafka and ZooKeeper storage

Use separate disks for Apache Kafka and ZooKeeper.

Three types of data storage are supported:

Ephemeral (Recommended for development only)

Persistent

JBOD (Just a Bunch of Disks, suitable for Kafka only)

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

34

https://aws.amazon.com/ebs/
https://kubernetes.io/docs/concepts/storage/volumes/#local

For more information, see Kafka and ZooKeeper storage .

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with ZooKeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and ZooKeeper both have
built-in data replication.

2.1.3.2. Ephemeral storage

Ephemeral storage uses emptyDir volumes to store data. To use ephemeral storage, set the type field
to ephemeral.

IMPORTANT

emptyDir volumes are not persistent and the data stored in them is lost when the pod is
restarted. After the new pod is started, it must recover all data from the other nodes of
the cluster. Ephemeral storage is not suitable for use with single-node ZooKeeper
clusters or for Kafka topics with a replication factor of 1. This configuration will cause data
loss.

An example of Ephemeral storage

2.1.3.2.1. Log directories

The ephemeral volume is used by the Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

2.1.3.3. Persistent storage

Persistent storage uses Persistent Volume Claims to provision persistent volumes for storing data.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: ephemeral
 # ...
 zookeeper:
 # ...
 storage:
 type: ephemeral
 # ...

/var/lib/kafka/data/kafka-logIDX

CHAPTER 2. DEPLOYMENT CONFIGURATION

35

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

Persistent Volume Claims can be used to provision volumes of many different types, depending on the
Storage Class which will provision the volume. The data types which can be used with persistent volume
claims include many types of SAN storage as well as Local persistent volumes.

To use persistent storage, the type has to be set to persistent-claim. Persistent storage supports
additional configuration options:

id (optional)

Storage identification number. This option is mandatory for storage volumes defined in a JBOD
storage declaration. Default is 0.

size (required)

Defines the size of the persistent volume claim, for example, "1000Gi".

class (optional)

The OpenShift Storage Class to use for dynamic volume provisioning.

selector (optional)

Allows selecting a specific persistent volume to use. It contains key:value pairs representing labels for
selecting such a volume.

deleteClaim (optional)

Boolean value which specifies if the Persistent Volume Claim has to be deleted when the cluster is
undeployed. Default is false.

WARNING

Increasing the size of persistent volumes in an existing AMQ Streams cluster is only
supported in OpenShift versions that support persistent volume resizing. The
persistent volume to be resized must use a storage class that supports volume
expansion. For other versions of OpenShift and storage classes which do not
support volume expansion, you must decide the necessary storage size before
deploying the cluster. Decreasing the size of existing persistent volumes is not
possible.

Example fragment of persistent storage configuration with 1000Gi size

The following example demonstrates the use of a storage class.

Example fragment of persistent storage configuration with specific Storage Class

...
storage:
 type: persistent-claim
 size: 1000Gi
...

...
storage:
 type: persistent-claim

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

36

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/storage-classes/

Finally, a selector can be used to select a specific labeled persistent volume to provide needed features
such as an SSD.

Example fragment of persistent storage configuration with selector

2.1.3.3.1. Storage class overrides

You can specify a different storage class for one or more Kafka brokers or ZooKeeper nodes, instead of
using the default storage class. This is useful if, for example, storage classes are restricted to different
availability zones or data centers. You can use the overrides field for this purpose.

In this example, the default storage class is named my-storage-class:

Example AMQ Streams cluster using storage class overrides

 size: 1Gi
 class: my-storage-class
...

...
storage:
 type: persistent-claim
 size: 1Gi
 selector:
 hdd-type: ssd
 deleteClaim: true
...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 # ...
 kafka:
 replicas: 3
 storage:
 deleteClaim: true
 size: 100Gi
 type: persistent-claim
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...
 zookeeper:
 replicas: 3
 storage:

CHAPTER 2. DEPLOYMENT CONFIGURATION

37

As a result of the configured overrides property, the volumes use the following storage classes:

The persistent volumes of ZooKeeper node 0 will use my-storage-class-zone-1a.

The persistent volumes of ZooKeeper node 1 will use my-storage-class-zone-1b.

The persistent volumes of ZooKeeepr node 2 will use my-storage-class-zone-1c.

The persistent volumes of Kafka broker 0 will use my-storage-class-zone-1a.

The persistent volumes of Kafka broker 1 will use my-storage-class-zone-1b.

The persistent volumes of Kafka broker 2 will use my-storage-class-zone-1c.

The overrides property is currently used only to override storage class configurations. Overriding other
storage configuration fields is not currently supported. Other fields from the storage configuration are
currently not supported.

2.1.3.3.2. Persistent Volume Claim naming

When persistent storage is used, it creates Persistent Volume Claims with the following names:

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx.

2.1.3.3.3. Log directories

The persistent volume is used by the Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

2.1.3.4. Resizing persistent volumes

You can provision increased storage capacity by increasing the size of the persistent volumes used by an
existing AMQ Streams cluster. Resizing persistent volumes is supported in clusters that use either a
single persistent volume or multiple persistent volumes in a JBOD storage configuration.

NOTE

 deleteClaim: true
 size: 100Gi
 type: persistent-claim
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...

/var/lib/kafka/data/kafka-logIDX

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

38

NOTE

You can increase but not decrease the size of persistent volumes. Decreasing the size of
persistent volumes is not currently supported in OpenShift.

Prerequisites

An OpenShift cluster with support for volume resizing.

The Cluster Operator is running.

A Kafka cluster using persistent volumes created using a storage class that supports volume
expansion.

Procedure

1. In a Kafka resource, increase the size of the persistent volume allocated to the Kafka cluster,
the ZooKeeper cluster, or both.

To increase the volume size allocated to the Kafka cluster, edit the spec.kafka.storage
property.

To increase the volume size allocated to the ZooKeeper cluster, edit the
spec.zookeeper.storage property.
For example, to increase the volume size from 1000Gi to 2000Gi:

2. Create or update the resource:

OpenShift increases the capacity of the selected persistent volumes in response to a request
from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods
that use the resized persistent volumes. This happens automatically.

Additional resources

For more information about resizing persistent volumes in OpenShift, see Resizing Persistent
Volumes using Kubernetes.

2.1.3.5. JBOD storage overview

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: persistent-claim
 size: 2000Gi
 class: my-storage-class
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

39

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/

You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or
volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also
improve performance.

A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or
persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral
and persistent storage. For example, you cannot decrease the size of a persistent storage volume after
it has been provisioned, or you cannot change the value of sizeLimit when type=ephemeral.

2.1.3.5.1. JBOD configuration

To use JBOD with AMQ Streams, the storage type must be set to jbod. The volumes property allows
you to describe the disks that make up your JBOD storage array or configuration. The following
fragment shows an example JBOD configuration:

The ids cannot be changed once the JBOD volumes are created.

Users can add or remove volumes from the JBOD configuration.

2.1.3.5.2. JBOD and Persistent Volume Claims

When persistent storage is used to declare JBOD volumes, the naming scheme of the resulting
Persistent Volume Claims is as follows:

data-id-cluster-name-kafka-idx

Where id is the ID of the volume used for storing data for Kafka broker pod idx.

2.1.3.5.3. Log directories

The JBOD volumes will be used by the Kafka brokers as log directories mounted into the following path:

/var/lib/kafka/data-id/kafka-log_idx_

Where id is the ID of the volume used for storing data for Kafka broker pod idx. For example
/var/lib/kafka/data-0/kafka-log0.

2.1.3.6. Adding volumes to JBOD storage

This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type.

NOTE

...
storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

40

NOTE

When adding a new volume under an id which was already used in the past and removed,
you have to make sure that the previously used PersistentVolumeClaims have been
deleted.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage

Procedure

1. Edit the spec.kafka.storage.volumes property in the Kafka resource. Add the new volumes to
the volumes array. For example, add the new volume with id 2:

2. Create or update the resource:

3. Create new topics or reassign existing partitions to the new disks.

Additional resources

For more information about reassigning topics, see Section 2.1.4.2, “Partition reassignment tool” .

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 2
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

41

2.1.3.7. Removing volumes from JBOD storage

This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always
has to contain at least one volume.

IMPORTANT

To avoid data loss, you have to move all partitions before removing the volumes.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage with two or more volumes

Procedure

1. Reassign all partitions from the disks which are you going to remove. Any data in partitions still
assigned to the disks which are going to be removed might be lost.

2. Edit the spec.kafka.storage.volumes property in the Kafka resource. Remove one or more
volumes from the volumes array. For example, remove the volumes with ids 1 and 2:

3. Create or update the resource:

Additional resources

For more information about reassigning topics, see Section 2.1.4.2, “Partition reassignment tool” .

2.1.4. Scaling clusters

Scale Kafka clusters by adding or removing brokers. If a cluster already has topics defined, you also have

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

42

Scale Kafka clusters by adding or removing brokers. If a cluster already has topics defined, you also have
to reassign partitions.

You use the kafka-reassign-partitions.sh tool to reassign partitions. The tool uses a reassignment
JSON file that specifies the topics to reassign.

You can generate a reassignment JSON file or create a file manually if you want to move specific
partitions.

2.1.4.1. Broker scaling configuration

You configure the Kafka.spec.kafka.replicas configuration to add or reduce the number of brokers.

Broker addition
The primary way of increasing throughput for a topic is to increase the number of partitions for that
topic. That works because the extra partitions allow the load of the topic to be shared between the
different brokers in the cluster. However, in situations where every broker is constrained by a particular
resource (typically I/O) using more partitions will not result in increased throughput. Instead, you need to
add brokers to the cluster.

When you add an extra broker to the cluster, Kafka does not assign any partitions to it automatically. You
must decide which partitions to reassign from the existing brokers to the new broker.

Once the partitions have been redistributed between all the brokers, the resource utilization of each
broker is reduced.

Broker removal
Because AMQ Streams uses StatefulSets to manage broker pods, you cannot remove any pod from the
cluster. You can only remove one or more of the highest numbered pods from the cluster. For example,
in a cluster of 12 brokers the pods are named cluster-name-kafka-0 up to cluster-name-kafka-11. If
you decide to scale down by one broker, the cluster-name-kafka-11 will be removed.

Before you remove a broker from a cluster, ensure that it is not assigned to any partitions. You should
also decide which of the remaining brokers will be responsible for each of the partitions on the broker
being decommissioned. Once the broker has no assigned partitions, you can scale the cluster down
safely.

2.1.4.2. Partition reassignment tool

The Topic Operator does not currently support reassigning replicas to different brokers, so it is
necessary to connect directly to broker pods to reassign replicas to brokers.

Within a broker pod, the kafka-reassign-partitions.sh tool allows you to reassign partitions to different
brokers.

It has three different modes:

--generate

Takes a set of topics and brokers and generates a reassignment JSON file which will result in the
partitions of those topics being assigned to those brokers. Because this operates on whole topics, it
cannot be used when you only want to reassign some partitions of some topics.

--execute

Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers
that gain partitions as a result become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR (in-sync replicas) the old broker will stop being a

CHAPTER 2. DEPLOYMENT CONFIGURATION

43

follower and will delete its replica.

--verify

Using the same reassignment JSON file as the --execute step, --verify checks whether all the
partitions in the file have been moved to their intended brokers. If the reassignment is complete, --
verify also removes any traffic throttles (--throttle) that are in effect. Unless removed, throttles will
continue to affect the cluster even after the reassignment has finished.

It is only possible to have one reassignment running in a cluster at any given time, and it is not possible
to cancel a running reassignment. If you need to cancel a reassignment, wait for it to complete and then
perform another reassignment to revert the effects of the first reassignment. The kafka-reassign-
partitions.sh will print the reassignment JSON for this reversion as part of its output. Very large
reassignments should be broken down into a number of smaller reassignments in case there is a need to
stop in-progress reassignment.

Partition reassignment JSON file
The reassignment JSON file has a specific structure:

{
 "version": 1,
 "partitions": [
 <PartitionObjects>
]
}

Where <PartitionObjects> is a comma-separated list of objects like:

{
 "topic": <TopicName>,
 "partition": <Partition>,
 "replicas": [<AssignedBrokerIds>]
}

NOTE

Although Kafka also supports a "log_dirs" property this should not be used in AMQ
Streams.

The following is an example reassignment JSON file that assigns partition 4 of topic topic-a to brokers
2, 4 and 7, and partition 2 of topic topic-b to brokers 1, 5 and 7:

Example partition reassignment file

{
 "version": 1,
 "partitions": [
 {
 "topic": "topic-a",
 "partition": 4,
 "replicas": [2,4,7]
 },
 {
 "topic": "topic-b",
 "partition": 2,

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

44

Partitions not included in the JSON are not changed.

Partition reassignment between JBOD volumes
When using JBOD storage in your Kafka cluster, you can choose to reassign the partitions between
specific volumes and their log directories (each volume has a single log directory). To reassign a
partition to a specific volume, add the log_dirs option to <PartitionObjects> in the reassignment JSON
file.

{
 "topic": <TopicName>,
 "partition": <Partition>,
 "replicas": [<AssignedBrokerIds>],
 "log_dirs": [<AssignedLogDirs>]
}

The log_dirs object should contain the same number of log directories as the number of replicas
specified in the replicas object. The value should be either an absolute path to the log directory, or the
any keyword.

Example partition reassignment file specifying log directories

{
 "topic": "topic-a",
 "partition": 4,
 "replicas": [2,4,7].
 "log_dirs": ["/var/lib/kafka/data-0/kafka-log2", "/var/lib/kafka/data-0/kafka-log4",
"/var/lib/kafka/data-0/kafka-log7"]
}

Partition reassignment throttles
Partition reassignment can be a slow process because it involves transferring large amounts of data
between brokers. To avoid a detrimental impact on clients, you can throttle the reassignment process.
Use the --throttle parameter with the kafka-reassign-partitions.sh tool to throttle a reassignment. You
specify a maximum threshold in bytes per second for the movement of partitions between brokers. For
example, --throttle 5000000 sets a maximum threshold for moving partitions of 50 MBps.

Throttling might cause the reassignment to take longer to complete.

If the throttle is too low, the newly assigned brokers will not be able to keep up with records
being published and the reassignment will never complete.

If the throttle is too high, clients will be impacted.

For example, for producers, this could manifest as higher than normal latency waiting for
acknowledgment. For consumers, this could manifest as a drop in throughput caused by higher latency
between polls.

2.1.4.3. Generating reassignment JSON files

This procedure describes how to generate a reassignment JSON file. Use the reassignment file with the

 "replicas": [1,5,7]
 }
]
}

CHAPTER 2. DEPLOYMENT CONFIGURATION

45

1

2

This procedure describes how to generate a reassignment JSON file. Use the reassignment file with the
kafka-reassign-partitions.sh tool to reassign partitions after scaling a Kafka cluster.

The steps describe a secure reassignment process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and authentication.

Prerequisites

You have a running Cluster Operator.

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
authentication and encryption.

Kafka configuration with TLS

Enables TLS encryption for the internal listener.

Listener authentication mechanism specified as mutual TLS .

The running Kafka cluster contains a set of topics and partitions to reassign.

Example topic configuration for my-topic

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 listeners:
 # ...
 - name: tls
 port: 9093
 type: internal
 tls: true 1
 authentication:
 type: tls 2
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 3
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

46

1

2

You have a KafkaUser configured with ACL rules that specify permission to produce and
consume topics from the Kafka brokers.

Example Kafka user configuration with ACL rules to allow operations on my-topic
and my-cluster

User authentication mechanism defined as mutual tls.

Simple authorization and accompanying list of ACL rules.

NOTE

Permission for a Describe operation is required as a minimum for TLS access to a
topic.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication: 1
 type: tls
 authorization:
 type: simple 2
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Write
 host: "*"
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Create
 host: "*"
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 host: "*"
 - resource:
 type: cluster
 name: my-cluster
 patternType: literal
 operation: Alter
 host: "*"
 # ...
 # ...

CHAPTER 2. DEPLOYMENT CONFIGURATION

47

Procedure

1. Extract the cluster CA certificate and password from the <cluster_name>-cluster-ca-cert
Secret of the Kafka cluster.

Replace <cluster_name> with the name of the Kafka cluster. When you deploy Kafka using the
Kafka resource, a Secret with the cluster CA certificate is created with the Kafka cluster name
(<cluster_name>-cluster-ca-cert). For example, my-cluster-cluster-ca-cert.

2. Run a new interactive pod container using the AMQ Streams Kafka image to connect to a
running Kafka broker.

Replace <interactive_pod_name> with the name of the pod.

3. Copy the cluster CA certificate to the interactive pod container.

4. Extract the user CA certificate and password from the Secret of the Kafka user that has
permission to access the Kafka brokers.

Replace <kafka_user> with the name of the Kafka user. When you create a Kafka user using the
KafkaUser resource, a Secret with the user CA certificate is created with the Kafka user name.
For example, my-user.

5. Copy the user CA certificate to the interactive pod container.

The CA certificates allow the interactive pod container to connect to the Kafka broker using
TLS.

6. Create a config.properties file to specify the truststore and keystore used to authenticate
connection to the Kafka cluster.
Use the certificates and passwords you extracted in the previous steps.

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d >
ca.p12

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d >
ca.password

oc run --restart=Never --image=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1
<interactive_pod_name> -- /bin/sh -c "sleep 3600"

oc cp ca.p12 <interactive_pod_name>:/tmp

oc get secret <kafka_user> -o jsonpath='{.data.user\.p12}' | base64 -d > user.p12

oc get secret <kafka_user> -o jsonpath='{.data.user\.password}' | base64 -d > user.password

oc cp user.p12 <interactive_pod_name>:/tmp

bootstrap.servers=<kafka_cluster_name>-kafka-bootstrap:9093 1
security.protocol=SSL 2
ssl.truststore.location=/tmp/ca.p12 3

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

48

1

2

3

4

5

6

The bootstrap server address to connect to the Kafka cluster. Use your own Kafka cluster
name to replace <kafka_cluster_name>.

The security protocol option when using TLS for encryption.

The truststore location contains the public key certificate (ca.p12) for the Kafka cluster.

The password (ca.password) for accessing the truststore.

The keystore location contains the public key certificate (user.p12) for the Kafka user.

The password (user.password) for accessing the keystore.

7. Copy the config.properties file to the interactive pod container.

8. Prepare a JSON file named topics.json that specifies the topics to move.
Specify topic names as a comma-separated list.

Example JSON file to reassign all the partitions of topic-a and topic-b

9. Copy the topics.json file to the interactive pod container.

10. Start a shell process in the interactive pod container.

Replace <namespace> with the OpenShift namespace where the pod is running.

11. Use the kafka-reassign-partitions.sh command to generate the reassignment JSON.

Example command to move all the partitions of topic-a and topic-b to brokers 0, 1
and 2

ssl.truststore.password=<truststore_password> 4
ssl.keystore.location=/tmp/user.p12 5
ssl.keystore.password=<keystore_password> 6

oc cp config.properties <interactive_pod_name>:/tmp/config.properties

{
 "version": 1,
 "topics": [
 { "topic": "topic-a"},
 { "topic": "topic-b"}
]
}

oc cp topics.json <interactive_pod_name>:/tmp/topics.json

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

bin/kafka-reassign-partitions.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --topics-to-move-json-file /tmp/topics.json \

CHAPTER 2. DEPLOYMENT CONFIGURATION

49

Additional resources

Configuring Kafka

Configuring a Kafka topic

Securing user access to Kafka

2.1.4.4. Scaling up a Kafka cluster

Use a reassignment file to increase the number of brokers in a Kafka cluster.

The reassignment file should describe how partitions are reassigned to brokers in the enlarged Kafka
cluster.

This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and authentication.

Prerequisites

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
authentication and encryption.

You have generated a reassignment JSON file named reassignment.json.

You are running an interactive pod container that is connected to the running Kafka broker.

You are connected as a KafkaUser configured with ACL rules that specify permission to
manage the Kafka cluster and its topics.

See Generating reassignment JSON files.

Procedure

1. Add as many new brokers as you need by increasing the Kafka.spec.kafka.replicas
configuration option.

2. Verify that the new broker pods have started.

3. If you haven’t done so, run an interactive pod container to generate a reassignment JSON file
named reassignment.json.

4. Copy the reassignment.json file to the interactive pod container.

Replace <interactive_pod_name> with the name of the pod.

5. Start a shell process in the interactive pod container.

 --broker-list 0,1,2 \
 --generate

oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

50

Replace <namespace> with the OpenShift namespace where the pod is running.

6. Run the partition reassignment using the kafka-reassign-partitions.sh script from the
interactive pod container.

Replace <cluster_name> with the name of your Kafka cluster. For example, my-cluster-kafka-
bootstrap:9093

If you are going to throttle replication, you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

If you need to change the throttle during reassignment, you can use the same command with a
different throttled rate. For example:

7. Verify that the reassignment has completed using the kafka-reassign-partitions.sh command
line tool from any of the broker pods. This is the same command as the previous step, but with
the --verify option instead of the --execute option.

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

8. You can now delete the revert file if you saved the JSON for reverting the assignment to their
original brokers.

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 5000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 10000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

CHAPTER 2. DEPLOYMENT CONFIGURATION

51

2.1.4.5. Scaling down a Kafka cluster

Use a reassignment file to decrease the number of brokers in a Kafka cluster.

The reassignment file must describe how partitions are reassigned to the remaining brokers in the Kafka
cluster. Brokers in the highest numbered pods are removed first.

This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and authentication.

Prerequisites

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
authentication and encryption.

You have generated a reassignment JSON file named reassignment.json.

You are running an interactive pod container that is connected to the running Kafka broker.

You are connected as a KafkaUser configured with ACL rules that specify permission to
manage the Kafka cluster and its topics.

See Generating reassignment JSON files.

Procedure

1. If you haven’t done so, run an interactive pod container to generate a reassignment JSON file
named reassignment.json.

2. Copy the reassignment.json file to the interactive pod container.

Replace <interactive_pod_name> with the name of the pod.

3. Start a shell process in the interactive pod container.

Replace <namespace> with the OpenShift namespace where the pod is running.

4. Run the partition reassignment using the kafka-reassign-partitions.sh script from the
interactive pod container.

Replace <cluster_name> with the name of your Kafka cluster. For example, my-cluster-kafka-
bootstrap:9093

If you are going to throttle replication, you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --execute

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

52

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

If you need to change the throttle during reassignment, you can use the same command with a
different throttled rate. For example:

5. Verify that the reassignment has completed using the kafka-reassign-partitions.sh command
line tool from any of the broker pods. This is the same command as the previous step, but with
the --verify option instead of the --execute option.

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

6. You can now delete the revert file if you saved the JSON for reverting the assignment to their
original brokers.

7. When all the partition reassignments have finished, the brokers being removed should not have
responsibility for any of the partitions in the cluster. You can verify this by checking that the
broker’s data log directory does not contain any live partition logs. If the log directory on the
broker contains a directory that does not match the extended regular expression \.[a-z0-9]-
delete$, the broker still has live partitions and should not be stopped.
You can check this by executing the command:

where n is the number of the pods being deleted.

If the above command prints any output then the broker still has live partitions. In this case,
either the reassignment has not finished or the reassignment JSON file was incorrect.

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 5000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 10000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

oc exec my-cluster-kafka-0 -c kafka -it -- \
 /bin/bash -c \
 "ls -l /var/lib/kafka/kafka-log_<n>_ | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-
delete$'"

CHAPTER 2. DEPLOYMENT CONFIGURATION

53

8. When you have confirmed that the broker has no live partitions, you can edit the
Kafka.spec.kafka.replicas property of your Kafka resource to reduce the number of brokers.

2.1.5. Maintenance time windows for rolling updates

Maintenance time windows allow you to schedule certain rolling updates of your Kafka and ZooKeeper
clusters to start at a convenient time.

2.1.5.1. Maintenance time windows overview

In most cases, the Cluster Operator only updates your Kafka or ZooKeeper clusters in response to
changes to the corresponding Kafka resource. This enables you to plan when to apply changes to a
Kafka resource to minimize the impact on Kafka client applications.

However, some updates to your Kafka and ZooKeeper clusters can happen without any corresponding
change to the Kafka resource. For example, the Cluster Operator will need to perform a rolling restart if
a CA (Certificate Authority) certificate that it manages is close to expiry.

While a rolling restart of the pods should not affect availability of the service (assuming correct broker
and topic configurations), it could affect performance of the Kafka client applications. Maintenance time
windows allow you to schedule such spontaneous rolling updates of your Kafka and ZooKeeper clusters
to start at a convenient time. If maintenance time windows are not configured for a cluster then it is
possible that such spontaneous rolling updates will happen at an inconvenient time, such as during a
predictable period of high load.

2.1.5.2. Maintenance time window definition

You configure maintenance time windows by entering an array of strings in the
Kafka.spec.maintenanceTimeWindows property. Each string is a cron expression interpreted as being
in UTC (Coordinated Universal Time, which for practical purposes is the same as Greenwich Mean
Time).

The following example configures a single maintenance time window that starts at midnight and ends at
01:59am (UTC), on Sundays, Mondays, Tuesdays, Wednesdays, and Thursdays:

In practice, maintenance windows should be set in conjunction with the
Kafka.spec.clusterCa.renewalDays and Kafka.spec.clientsCa.renewalDays properties of the Kafka
resource, to ensure that the necessary CA certificate renewal can be completed in the configured
maintenance time windows.

NOTE

AMQ Streams does not schedule maintenance operations exactly according to the given
windows. Instead, for each reconciliation, it checks whether a maintenance window is
currently "open". This means that the start of maintenance operations within a given time
window can be delayed by up to the Cluster Operator reconciliation interval. Maintenance
time windows must therefore be at least this long.

Additional resources

...
maintenanceTimeWindows:
 - "* * 0-1 ? * SUN,MON,TUE,WED,THU *"
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

54

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

For more information about the Cluster Operator configuration, see Section 6.1.1, “Cluster
Operator configuration”.

2.1.5.3. Configuring a maintenance time window

You can configure a maintenance time window for rolling updates triggered by supported processes.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

1. Add or edit the maintenanceTimeWindows property in the Kafka resource. For example to
allow maintenance between 0800 and 1059 and between 1400 and 1559 you would set the
maintenanceTimeWindows as shown below:

2. Create or update the resource:

Additional resources

Performing rolling updates:

Section 13.4.2, “Performing a rolling update using a StatefulSet annotation”

Section 13.4.3, “Performing a rolling update using a Pod annotation”

2.1.6. Connecting to ZooKeeper from a terminal

Most Kafka CLI tools can connect directly to Kafka, so under normal circumstances you should not need
to connect to ZooKeeper. ZooKeeper services are secured with encryption and authentication and are
not intended to be used by external applications that are not part of AMQ Streams.

However, if you want to use Kafka CLI tools that require a connection to ZooKeeper, you can use a
terminal inside a ZooKeeper container and connect to localhost:12181 as the ZooKeeper address.

Prerequisites

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 maintenanceTimeWindows:
 - "* * 8-10 * * ?"
 - "* * 14-15 * * ?"

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

55

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Open the terminal using the OpenShift console or run the exec command from your CLI.
For example:

Be sure to use localhost:12181.

You can now run Kafka commands to ZooKeeper.

2.1.7. Deleting Kafka nodes manually

This procedure describes how to delete an existing Kafka node by using an OpenShift annotation.
Deleting a Kafka node consists of deleting both the Pod on which the Kafka broker is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Find the name of the Pod that you want to delete.
Kafka broker pods are named <cluster-name>-kafka-<index>, where <index> starts at zero and
ends at the total number of replicas minus one. For example, my-cluster-kafka-0.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

oc exec -ti my-cluster-zookeeper-0 -- bin/kafka-topics.sh --list --zookeeper localhost:12181

oc annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

56

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

2.1.8. Deleting ZooKeeper nodes manually

This procedure describes how to delete an existing ZooKeeper node by using an OpenShift annotation.
Deleting a ZooKeeper node consists of deleting both the Pod on which ZooKeeper is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Find the name of the Pod that you want to delete.
ZooKeeper pods are named <cluster-name>-zookeeper-<index>, where <index> starts at zero
and ends at the total number of replicas minus one. For example, my-cluster-zookeeper-0.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

2.1.9. List of Kafka cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

Shared resources

cluster-name-cluster-ca

Secret with the Cluster CA private key used to encrypt the cluster communication.

cluster-name-cluster-ca-cert

Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-clients-ca

Secret with the Clients CA private key used to sign user certificates

cluster-name-clients-ca-cert

oc annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true

CHAPTER 2. DEPLOYMENT CONFIGURATION

57

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.

cluster-name-cluster-operator-certs

Secret with Cluster operators keys for communication with Kafka and ZooKeeper.

Zookeeper nodes

cluster-name-zookeeper

StatefulSet which is in charge of managing the ZooKeeper node pods.

cluster-name-zookeeper-idx

Pods created by the Zookeeper StatefulSet.

cluster-name-zookeeper-nodes

Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.

cluster-name-zookeeper-client

Service used by Kafka brokers to connect to ZooKeeper nodes as clients.

cluster-name-zookeeper-config

ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the
ZooKeeper node pods.

cluster-name-zookeeper-nodes

Secret with ZooKeeper node keys.

cluster-name-zookeeper

Service account used by the Zookeeper nodes.

cluster-name-zookeeper

Pod Disruption Budget configured for the ZooKeeper nodes.

cluster-name-network-policy-zookeeper

Network policy managing access to the ZooKeeper services.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

Kafka brokers

cluster-name-kafka

StatefulSet which is in charge of managing the Kafka broker pods.

cluster-name-kafka-idx

Pods created by the Kafka StatefulSet.

cluster-name-kafka-brokers

Service needed to have DNS resolve the Kafka broker pods IP addresses directly.

cluster-name-kafka-bootstrap

Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift
cluster.

cluster-name-kafka-external-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

58

cluster-name-kafka-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-external-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-listener-name-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The new service name will be used for all other external
listeners.

cluster-name-kafka-listener-name-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The new service name will be used for all other
external listeners.

cluster-name-kafka-listener-name-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The new route name will be used for
all other external listeners.

cluster-name-kafka-listener-name-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The new route name will be used for all
other external listeners.

cluster-name-kafka-config

ConfigMap which contains the Kafka ancillary configuration and is mounted as a volume by the Kafka
broker pods.

cluster-name-kafka-brokers

Secret with Kafka broker keys.

cluster-name-kafka

Service account used by the Kafka brokers.

cluster-name-kafka

Pod Disruption Budget configured for the Kafka brokers.

cluster-name-network-policy-kafka

Network policy managing access to the Kafka services.

strimzi-namespace-name-cluster-name-kafka-init

Cluster role binding used by the Kafka brokers.

cluster-name-jmx

Secret with JMX username and password used to secure the Kafka broker port. This resource is
created only when JMX is enabled in Kafka.

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This

CHAPTER 2. DEPLOYMENT CONFIGURATION

59

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for provisioning persistent volumes to store
data.

data-id-cluster-name-kafka-idx

Persistent Volume Claim for the volume id used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for JBOD volumes when provisioning
persistent volumes to store data.

Entity Operator

These resources are only created if the Entity Operator is deployed using the Cluster Operator.

cluster-name-entity-operator

Deployment with Topic and User Operators.

cluster-name-entity-operator-random-string

Pod created by the Entity Operator deployment.

cluster-name-entity-topic-operator-config

ConfigMap with ancillary configuration for Topic Operators.

cluster-name-entity-user-operator-config

ConfigMap with ancillary configuration for User Operators.

cluster-name-entity-operator-certs

Secret with Entity Operator keys for communication with Kafka and ZooKeeper.

cluster-name-entity-operator

Service account used by the Entity Operator.

strimzi-cluster-name-entity-topic-operator

Role binding used by the Entity Topic Operator.

strimzi-cluster-name-entity-user-operator

Role binding used by the Entity User Operator.

Kafka Exporter

These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.

cluster-name-kafka-exporter

Deployment with Kafka Exporter.

cluster-name-kafka-exporter-random-string

Pod created by the Kafka Exporter deployment.

cluster-name-kafka-exporter

Service used to collect consumer lag metrics.

cluster-name-kafka-exporter

Service account used by the Kafka Exporter.

Cruise Control

These resources are only created if Cruise Control was deployed using the Cluster Operator.

cluster-name-cruise-control

Deployment with Cruise Control.

cluster-name-cruise-control-random-string

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

60

Pod created by the Cruise Control deployment.

cluster-name-cruise-control-config

ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by
the Cruise Control pods.

cluster-name-cruise-control-certs

Secret with Cruise Control keys for communication with Kafka and ZooKeeper.

cluster-name-cruise-control

Service used to communicate with Cruise Control.

cluster-name-cruise-control

Service account used by Cruise Control.

cluster-name-network-policy-cruise-control

Network policy managing access to the Cruise Control service.

2.2. KAFKA CONNECT CLUSTER CONFIGURATION

This section describes how to configure a Kafka Connect deployment in your AMQ Streams cluster.

Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems
using connector plugins. Kafka Connect provides a framework for integrating Kafka with an external data
source or target, such as a database, for import or export of data using connectors. Connectors are
plugins that provide the connection configuration needed. The full schema of the KafkaConnect
resource is described in Section 14.2.58, “KafkaConnect schema reference”.

For more information on deploying connector plugins, see Extending Kafka Connect with connector
plug-ins.

2.2.1. Configuring Kafka Connect

Use Kafka Connect to set up external data connections to your Kafka cluster. Use the properties of the
KafkaConnect resource to configure your Kafka Connect deployment.

Kafka connector configuration

KafkaConnector resources allow you to create and manage connector instances for Kafka Connect in an
OpenShift-native way.

In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding
the strimzi.io/use-connector-resources annotation. You can also add a build configuration so that
AMQ Streams automatically builds a container image with the connector plugins you require for your
data connections. External configuration for Kafka Connect connectors is specified through the
externalConfiguration property.

To manage connectors, you can use the Kafka Connect REST API, or use KafkaConnector custom
resources. KafkaConnector resources must be deployed to the same namespace as the Kafka Connect
cluster they link to. For more information on using these methods to create, reconfigure, or delete
connectors, see Creating and managing connectors in the Deploying and Upgrading AMQ Streams on
OpenShift guide.

Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka
itself. ConfigMaps and Secrets are standard OpenShift resources used for storing configurations and
confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector.

CHAPTER 2. DEPLOYMENT CONFIGURATION

61

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-creating-managing-connectors-str

You can then reference the configuration values in HTTP REST commands, which keeps the
configuration separate and more secure, if needed. This method applies especially to confidential data,
such as usernames, passwords, or certificates.

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties of the KafkaConnect resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect 1
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 2
spec:
 replicas: 3 3
 authentication: 4
 type: tls
 certificateAndKey:
 certificate: source.crt
 key: source.key
 secretName: my-user-source
 bootstrapServers: my-cluster-kafka-bootstrap:9092 5
 tls: 6
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt
 config: 7
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 build: 8

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

62

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 output: 9
 type: docker
 image: my-registry.io/my-org/my-connect-cluster:latest
 pushSecret: my-registry-credentials
 plugins: 10
 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/1.3.1.Final/debezium-connector-postgres-1.3.1.Final-plugin.tar.gz
 sha512sum:
962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb54804
5e115e33a9e69b1b2a352bee24df035a0447cb820077af00c03
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.7.0/camel-telegram-kafka-connector-0.7.0-package.tar.gz
 sha512sum:
a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e
8020bf4187870699819f54ef5859c7846ee4081507f48873479
 externalConfiguration: 11
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey
 resources: 12
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 13
 type: inline
 loggers:
 log4j.rootLogger: "INFO"
 readinessProbe: 14
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 metricsConfig: 15
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map

CHAPTER 2. DEPLOYMENT CONFIGURATION

63

1

2

3

4

5

6

7

8

9

10

Use KafkaConnect.

Enables KafkaConnectors for the Kafka Connect cluster.

The number of replica nodes .

Authentication for the Kafka Connect cluster, using the TLS mechanism, as shown here,
using OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism. By
default, Kafka Connect connects to Kafka brokers using a plain text connection.

Bootstrap server for connection to the Kafka Connect cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the cluster. If certificates are stored in the same secret, it can be listed multiple times.

Kafka Connect configuration of workers (not connectors). Standard Apache Kafka
configuration may be provided, restricted to those properties not managed directly by
AMQ Streams.

Build configuration properties for building a container image with connector plugins
automatically.

(Required) Configuration of the container registry where new images are pushed.

(Required) List of connector plugins and their artifacts to add to the new container image.
Each plugin must be configured with at least one artifact.

 key: my-key
 jvmOptions: 16
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 17
 rack:
 topologyKey: topology.kubernetes.io/zone 18
 template: 19
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 20
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

64

11

12

13

14

15

16

17

18

19

20

External configuration for Kafka connectors using environment variables, as shown here, or
volumes. You can also use configuration provider plugins to load configuration values from

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the
log4j.properties or log4j2.properties key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing
configuration for the Prometheus JMX exporter in this example. You can enable metrics
without further configuration using a reference to a ConfigMap containing an empty file
under metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka Connect.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Rack awareness is configured to spread replicas across different racks. A topologykey
must match the label of a cluster node.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are also set for distributed tracing using Jaeger .

2. Create or update the resource:

3. If authorization is enabled for Kafka Connect, configure Kafka Connect users to enable access
to the Kafka Connect consumer group and topics.

2.2.2. Kafka Connect configuration for multiple instances

If you are running multiple instances of Kafka Connect, you have to change the default configuration of
the following config properties:

oc apply -f KAFKA-CONNECT-CONFIG-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: connect-cluster 1
 offset.storage.topic: connect-cluster-offsets 2

CHAPTER 2. DEPLOYMENT CONFIGURATION

65

1

2

3

4

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

NOTE

Values for the three topics must be the same for all Kafka Connect instances with the
same group.id.

Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka
cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a
cluster and use the same topics.

If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected
and generate errors.

If you wish to run multiple Kafka Connect instances, change the values of these properties for each
instance.

2.2.3. Configuring Kafka Connect user authorization

This procedure describes how to authorize user access to Kafka Connect.

When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access
rights to the consumer group and the internal topics of Kafka Connect.

The properties for the consumer group and internal topics are automatically configured by AMQ
Streams, or they can be specified explicitly in the spec of the KafkaConnect resource.

Example configuration properties in the KafkaConnect resource

 config.storage.topic: connect-cluster-configs 3
 status.storage.topic: connect-cluster-status 4
 # ...
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster 1
 offset.storage.topic: my-connect-cluster-offsets 2
 config.storage.topic: my-connect-cluster-configs 3
 status.storage.topic: my-connect-cluster-status 4
 # ...
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

66

1

2

3

4

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

This procedure shows how access is provided when simple authorization is being used.

Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer plugin, to provide the right
level of access. For more information on configuring a KafkaUser resource to use simple authorization,
see the AclRule schema reference.

NOTE

The default values for the consumer group and topics will differ when running multiple
instances.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the authorization property in the KafkaUser resource to provide access rights to the user.
In the following example, access rights are configured for the Kafka Connect topics and
consumer group using literal name values:

Property Name

offset.storage.topic connect-cluster-offsets

status.storage.topic connect-cluster-status

config.storage.topic connect-cluster-configs

group connect-cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:

CHAPTER 2. DEPLOYMENT CONFIGURATION

67

 # access to offset.storage.topic
 - resource:
 type: topic
 name: connect-cluster-offsets
 patternType: literal
 operation: Write
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-offsets
 patternType: literal
 operation: Create
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-offsets
 patternType: literal
 operation: Describe
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-offsets
 patternType: literal
 operation: Read
 host: "*"
 # access to status.storage.topic
 - resource:
 type: topic
 name: connect-cluster-status
 patternType: literal
 operation: Write
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-status
 patternType: literal
 operation: Create
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-status
 patternType: literal
 operation: Describe
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-status
 patternType: literal
 operation: Read
 host: "*"
 # access to config.storage.topic
 - resource:
 type: topic
 name: connect-cluster-configs
 patternType: literal
 operation: Write

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

68

2. Create or update the resource.

2.2.4. Performing a restart of a Kafka connector

This procedure describes how to manually trigger a restart of a Kafka connector by using an OpenShift
annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector you
want to restart:

2. To restart the connector, annotate the KafkaConnector resource in OpenShift. For example,
using oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default).

The Kafka connector is restarted, as long as the annotation was detected by the reconciliation

 host: "*"
 - resource:
 type: topic
 name: connect-cluster-configs
 patternType: literal
 operation: Create
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-configs
 patternType: literal
 operation: Describe
 host: "*"
 - resource:
 type: topic
 name: connect-cluster-configs
 patternType: literal
 operation: Read
 host: "*"
 # consumer group
 - resource:
 type: group
 name: connect-cluster
 patternType: literal
 operation: Read
 host: "*"

oc apply -f KAFKA-USER-CONFIG-FILE

oc get KafkaConnector

oc annotate KafkaConnector KAFKACONNECTOR-NAME strimzi.io/restart=true

CHAPTER 2. DEPLOYMENT CONFIGURATION

69

The Kafka connector is restarted, as long as the annotation was detected by the reconciliation
process. When Kafka Connect accepts the restart request, the annotation is removed from the
KafkaConnector custom resource.

2.2.5. Performing a restart of a Kafka connector task

This procedure describes how to manually trigger a restart of a Kafka connector task by using an
OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector task
you want to restart:

2. Find the ID of the task to be restarted from the KafkaConnector custom resource. Task IDs are
non-negative integers, starting from 0.

3. To restart the connector task, annotate the KafkaConnector resource in OpenShift. For
example, using oc annotate to restart task 0:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector task is restarted, as long as the annotation was detected by the
reconciliation process. When Kafka Connect accepts the restart request, the annotation is
removed from the KafkaConnector custom resource.

2.2.6. Exposing the Kafka Connect API

Use the Kafka Connect REST API as an alternative to using KafkaConnector resources to manage
connectors. The Kafka Connect REST API is available as a service running on
<connect_cluster_name>-connect-api:8083, where <connect_cluster_name> is the name of your Kafka
Connect cluster. The service is created when you create a Kafka Connect instance.

NOTE

The strimzi.io/use-connector-resources annotation enables KafkaConnectors. If you
applied the annotation to your KafkaConnect resource configuration, you need to
remove it to use the Kafka Connect API. Otherwise, manual changes made directly using
the Kafka Connect REST API are reverted by the Cluster Operator.

You can add the connector configuration as a JSON object.

Example curl request to add connector configuration

oc get KafkaConnector

oc describe KafkaConnector KAFKACONNECTOR-NAME

oc annotate KafkaConnector KAFKACONNECTOR-NAME strimzi.io/restart-task=0

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

70

1

2

The API is only accessible within the OpenShift cluster. If you want to make the Kafka Connect API
accessible to applications running outside of the OpenShift cluster, you can expose it manually by
creating one of the following features:

LoadBalancer or NodePort type services

Ingress resources

OpenShift routes

NOTE

The connection is insecure, so allow external access advisedly.

If you decide to create services, use the labels from the selector of the <connect_cluster_name>-
connect-api service to configure the pods to which the service will route the traffic:

Selector configuration for the service

Name of the Kafka Connect custom resource in your OpenShift cluster.

Name of the Kafka Connect deployment created by the Cluster Operator.

You must also create a NetworkPolicy that allows HTTP requests from external clients.

Example NetworkPolicy to allow requests to the Kafka Connect API

curl -X POST \
 http://my-connect-cluster-connect-api:8083/connectors \
 -H 'Content-Type: application/json' \
 -d '{ "name": "my-source-connector",
 "config":
 {
 "connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector",
 "file": "/opt/kafka/LICENSE",
 "topic":"my-topic",
 "tasksMax": "4",
 "type": "source"}
}'

...
selector:
 strimzi.io/cluster: my-connect-cluster 1
 strimzi.io/kind: KafkaConnect
 strimzi.io/name: my-connect-cluster-connect 2
#...

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: my-custom-connect-network-policy
spec:
 ingress:

CHAPTER 2. DEPLOYMENT CONFIGURATION

71

1 The label of the pod that is allowed to connect to the API.

To add the connector configuration outside the cluster, use the URL of the resource that exposes the
API in the curl command.

Additional resources

The operations supported by the REST API are described in the Apache Kafka documentation.

2.2.7. List of Kafka Connect cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

connect-cluster-name-connect

Deployment which is in charge to create the Kafka Connect worker node pods.

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

connect-cluster-name-connect

Pod Disruption Budget configured for the Kafka Connect worker nodes.

2.2.8. Integrating with Debezium for change data capture

Red Hat Debezium is a distributed change data capture platform. It captures row-level changes in
databases, creates change event records, and streams the records to Kafka topics. Debezium is built on
Apache Kafka. You can deploy and integrate Debezium with AMQ Streams. Following a deployment of
AMQ Streams, you deploy Debezium as a connector configuration through Kafka Connect. Debezium
passes change event records to AMQ Streams on OpenShift. Applications can read these change event
streams and access the change events in the order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

 - from:
 - podSelector: 1
 matchLabels:
 app: my-connector-manager
 ports:
 - port: 8083
 protocol: TCP
 podSelector:
 matchLabels:
 strimzi.io/cluster: my-connect-cluster
 strimzi.io/kind: KafkaConnect
 strimzi.io/name: my-connect-cluster-connect
 policyTypes:
 - Ingress

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

72

http://kafka.apache.org

Simplifying monolithic applications

Data integration

Enabling streaming queries

To capture database changes, deploy Kafka Connect with a Debezium database connector . You
configure a KafkaConnector resource to define the connector instance.

For more information on deploying Debezium with AMQ Streams, refer to the product documentation.
The Debezium documentation includes a Getting Started with Debezium guide that guides you through
the process of setting up the services and connector required to view change event records for
database updates.

2.3. KAFKA MIRRORMAKER CLUSTER CONFIGURATION

This chapter describes how to configure a Kafka MirrorMaker deployment in your AMQ Streams cluster
to replicate data between Kafka clusters.

You can use AMQ Streams with MirrorMaker or MirrorMaker 2.0. MirrorMaker 2.0 is the latest version,
and offers a more efficient way to mirror data between Kafka clusters.

If you are using MirrorMaker, you configure the KafkaMirrorMaker resource.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

The following procedure shows how the resource is configured:

Configuring Kafka MirrorMaker

The full schema of the KafkaMirrorMaker resource is described in the KafkaMirrorMaker schema
reference.

2.3.1. Configuring Kafka MirrorMaker

Use the properties of the KafkaMirrorMaker resource to configure your Kafka MirrorMaker deployment.

You can configure access control for producers and consumers using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and authentication on the consumer and
producer side.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running
a:

Cluster Operator

CHAPTER 2. DEPLOYMENT CONFIGURATION

73

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str

Kafka cluster

Source and target Kafka clusters must be available

Procedure

1. Edit the spec properties for the KafkaMirrorMaker resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 replicas: 3 1
 consumer:
 bootstrapServers: my-source-cluster-kafka-bootstrap:9092 2
 groupId: "my-group" 3
 numStreams: 2 4
 offsetCommitInterval: 120000 5
 tls: 6
 trustedCertificates:
 - secretName: my-source-cluster-ca-cert
 certificate: ca.crt
 authentication: 7
 type: tls
 certificateAndKey:
 secretName: my-source-secret
 certificate: public.crt
 key: private.key
 config: 8
 max.poll.records: 100
 receive.buffer.bytes: 32768
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 9
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 ssl.endpoint.identification.algorithm: HTTPS 10
 producer:
 bootstrapServers: my-target-cluster-kafka-bootstrap:9092
 abortOnSendFailure: false 11
 tls:
 trustedCertificates:
 - secretName: my-target-cluster-ca-cert
 certificate: ca.crt
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-target-secret
 certificate: public.crt
 key: private.key
 config:
 compression.type: gzip
 batch.size: 8192
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 12

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

74

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 ssl.endpoint.identification.algorithm: HTTPS 13
 include: "my-topic|other-topic" 14
 resources: 15
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 16
 type: inline
 loggers:
 mirrormaker.root.logger: "INFO"
 readinessProbe: 17
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 metricsConfig: 18
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key
 jvmOptions: 19
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 20
 template: 21
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 22
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing: 23
 type: jaeger

CHAPTER 2. DEPLOYMENT CONFIGURATION

75

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

The number of replica nodes .

Bootstrap servers for consumer and producer.

Group ID for the consumer .

The number of consumer streams.

The offset auto-commit interval in milliseconds .

TLS encryption with key names under which TLS certificates are stored in X.509 format for
consumer or producer. If certificates are stored in the same secret, it can be listed multiple
times.

Authentication for consumer or producer, using the TLS mechanism, as shown here, using
OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism.

Kafka configuration options for consumer and producer.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

If the abortOnSendFailure property is set to true, Kafka MirrorMaker will exit and the
container will restart following a send failure for a message.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

A included topics mirrored from source to target Kafka cluster.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom ConfigMap must be placed under the log4j.properties or
log4j2.properties key. MirrorMaker has a single logger called mirrormaker.root.logger.
You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing
configuration for the Prometheus JMX exporter in this example. You can enable metrics
without further configuration using a reference to a ConfigMap containing an empty file
under metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka MirrorMaker.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

76

22

23

Environment variables are also set for distributed tracing using Jaeger .

Distributed tracing is enabled for Jaeger.

WARNING

With the abortOnSendFailure property set to false, the producer
attempts to send the next message in a topic. The original message might
be lost, as there is no attempt to resend a failed message.

2. Create or update the resource:

2.3.2. List of Kafka MirrorMaker cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

<mirror-maker-name>-mirror-maker

Deployment which is responsible for creating the Kafka MirrorMaker pods.

<mirror-maker-name>-config

ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a
volume by the Kafka broker pods.

<mirror-maker-name>-mirror-maker

Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.

2.4. KAFKA MIRRORMAKER 2.0 CLUSTER CONFIGURATION

This section describes how to configure a Kafka MirrorMaker 2.0 deployment in your AMQ Streams
cluster.

MirrorMaker 2.0 is used to replicate data between two or more active Kafka clusters, within or across
data centers.

Data replication across clusters supports scenarios that require:

Recovery of data in the event of a system failure

Aggregation of data for analysis

Restriction of data access to a specific cluster

Provision of data at a specific location to improve latency

If you are using MirrorMaker 2.0, you configure the KafkaMirrorMaker2 resource.

MirrorMaker 2.0 introduces an entirely new way of replicating data between clusters.

oc apply -f <your-file>

CHAPTER 2. DEPLOYMENT CONFIGURATION

77

As a result, the resource configuration differs from the previous version of MirrorMaker. If you choose to
use MirrorMaker 2.0, there is currently no legacy support, so any resources must be manually converted
into the new format.

How MirrorMaker 2.0 replicates data is described here:

MirrorMaker 2.0 data replication

The following procedure shows how the resource is configured for MirrorMaker 2.0:

Synchronizing data between Kafka clusters

The full schema of the KafkaMirrorMaker2 resource is described in the KafkaMirrorMaker2 schema
reference.

2.4.1. MirrorMaker 2.0 data replication

MirrorMaker 2.0 consumes messages from a source Kafka cluster and writes them to a target Kafka
cluster.

MirrorMaker 2.0 uses:

Source cluster configuration to consume data from the source cluster

Target cluster configuration to output data to the target cluster

MirrorMaker 2.0 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters. A MirrorMaker 2.0 MirrorSourceConnector replicates topics from a source cluster to
a target cluster.

The process of mirroring data from one cluster to another cluster is asynchronous. The recommended
pattern is for messages to be produced locally alongside the source Kafka cluster, then consumed
remotely close to the target Kafka cluster.

MirrorMaker 2.0 can be used with more than one source cluster.

Figure 2.1. Replication across two clusters

By default, a check for new topics in the source cluster is made every 10 minutes. You can change the
frequency by adding refresh.topics.interval.seconds to the source connector configuration. However,
increasing the frequency of the operation might affect overall performance.

2.4.2. Cluster configuration

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

78

You can use MirrorMaker 2.0 in active/passive or active/active cluster configurations.

In an active/active configuration, both clusters are active and provide the same data
simultaneously, which is useful if you want to make the same data available locally in different
geographical locations.

In an active/passive configuration, the data from an active cluster is replicated in a passive
cluster, which remains on standby, for example, for data recovery in the event of system failure.

The expectation is that producers and consumers connect to active clusters only.

A MirrorMaker 2.0 cluster is required at each target destination.

2.4.2.1. Bidirectional replication (active/active)

The MirrorMaker 2.0 architecture supports bidirectional replication in an active/active cluster
configuration.

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2.0
to represent the source cluster. The name of the originating cluster is prepended to the name of the
topic.

Figure 2.2. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.

The concept of replication through remote topics is useful when configuring an architecture that
requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

2.4.2.2. Unidirectional replication (active/passive)

CHAPTER 2. DEPLOYMENT CONFIGURATION

79

The MirrorMaker 2.0 architecture supports unidirectional replication in an active/passive cluster
configuration.

You can use an active/passive cluster configuration to make backups or migrate data to another cluster.
In this situation, you might not want automatic renaming of remote topics.

You can override automatic renaming by adding IdentityReplicationPolicy to the source connector
configuration. With this configuration applied, topics retain their original names.

2.4.2.3. Topic configuration synchronization

Topic configuration is automatically synchronized between source and target clusters. By synchronizing
configuration properties, the need for rebalancing is reduced.

2.4.2.4. Data integrity

MirrorMaker 2.0 monitors source topics and propagates any configuration changes to remote topics,
checking for and creating missing partitions. Only MirrorMaker 2.0 can write to remote topics.

2.4.2.5. Offset tracking

MirrorMaker 2.0 tracks offsets for consumer groups using internal topics.

The offset sync topic maps the source and target offsets for replicated topic partitions from
record metadata

The checkpoint topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group

Offsets for the checkpoint topic are tracked at predetermined intervals through configuration. Both
topics enable replication to be fully restored from the correct offset position on failover.

MirrorMaker 2.0 uses its MirrorCheckpointConnector to emit checkpoints for offset tracking.

2.4.2.6. Synchronizing consumer group offsets

The __consumer_offsets topic stores information on committed offsets, for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source
cluster into the consumer offsets topic of a target cluster.

Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes
down, consumer applications can switch to the passive (standby) cluster and pick up from the last
transferred offset position.

To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true. Synchronization is disabled
by default.

When using the IdentityReplicationPolicy in the source connector, it also has to be configured in the
checkpoint connector configuration. This ensures that the mirrored consumer offsets will be applied for
the correct topics.

The consumer offsets are only synchronized for consumer groups that are not active in the target
cluster.

If enabled, the synchronization of offsets from the source cluster is made periodically. You can change

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

80

the frequency by adding sync.group.offsets.interval.seconds and
emit.checkpoints.interval.seconds to the checkpoint connector configuration. The properties specify
the frequency in seconds that the consumer group offsets are synchronized, and the frequency of
checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also
change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.

Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely
result in some duplication of messages.

2.4.2.7. Connectivity checks

A heartbeat internal topic checks connectivity between clusters.

The heartbeat topic is replicated from the source cluster.

Target clusters use the topic to check:

The connector managing connectivity between clusters is running

The source cluster is available

MirrorMaker 2.0 uses its MirrorHeartbeatConnector to emit heartbeats that perform these checks.

2.4.3. ACL rules synchronization

ACL access to remote topics is possible if you are not using the User Operator.

If AclAuthorizer is being used, without the User Operator, ACL rules that manage access to brokers
also apply to remote topics. Users that can read a source topic can read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

2.4.4. Synchronizing data between Kafka clusters using MirrorMaker 2.0

Use MirrorMaker 2.0 to synchronize data between Kafka clusters through configuration.

The configuration must specify:

Each Kafka cluster

Connection information for each cluster, including TLS authentication

The replication flow and direction

Cluster to cluster

Topic to topic

Use the properties of the KafkaMirrorMaker2 resource to configure your Kafka MirrorMaker 2.0
deployment.

NOTE

CHAPTER 2. DEPLOYMENT CONFIGURATION

81

NOTE

The previous version of MirrorMaker continues to be supported. If you wish to use the
resources configured for the previous version, they must be updated to the format
supported by MirrorMaker 2.0.

MirrorMaker 2.0 provides default configuration values for properties such as replication factors. A
minimal configuration, with defaults left unchanged, would be something like this example:

You can configure access control for source and target clusters using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and authentication for the source and target
cluster.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running
a:

Cluster Operator

Kafka cluster

Source and target Kafka clusters must be available

Procedure

1. Edit the spec properties for the KafkaMirrorMaker2 resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.0.0
 connectCluster: "my-cluster-target"
 clusters:
 - alias: "my-cluster-source"
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092
 - alias: "my-cluster-target"
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector: {}

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.0.0 1
 replicas: 3 2
 connectCluster: "my-cluster-target" 3

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

82

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 clusters: 4
 - alias: "my-cluster-source" 5
 authentication: 6
 certificateAndKey:
 certificate: source.crt
 key: source.key
 secretName: my-user-source
 type: tls
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092 7
 tls: 8
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-source-cluster-ca-cert
 - alias: "my-cluster-target" 9
 authentication: 10
 certificateAndKey:
 certificate: target.crt
 key: target.key
 secretName: my-user-target
 type: tls
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092 11
 config: 12
 config.storage.replication.factor: 1
 offset.storage.replication.factor: 1
 status.storage.replication.factor: 1
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 13
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 ssl.endpoint.identification.algorithm: HTTPS 14
 tls: 15
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-target-cluster-ca-cert
 mirrors: 16
 - sourceCluster: "my-cluster-source" 17
 targetCluster: "my-cluster-target" 18
 sourceConnector: 19
 tasksMax: 10 20
 config:
 replication.factor: 1 21
 offset-syncs.topic.replication.factor: 1 22
 sync.topic.acls.enabled: "false" 23
 refresh.topics.interval.seconds: 60 24
 replication.policy.separator: "" 25
 replication.policy.class: "io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy" 26
 heartbeatConnector: 27
 config:
 heartbeats.topic.replication.factor: 1 28
 checkpointConnector: 29
 config:
 checkpoints.topic.replication.factor: 1 30
 refresh.groups.interval.seconds: 600 31

CHAPTER 2. DEPLOYMENT CONFIGURATION

83

 sync.group.offsets.enabled: true 32
 sync.group.offsets.interval.seconds: 60 33
 emit.checkpoints.interval.seconds: 60 34
 replication.policy.class: "io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy"
 topicsPattern: ".*" 35
 groupsPattern: "group1|group2|group3" 36
 resources: 37
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 38
 type: inline
 loggers:
 connect.root.logger.level: "INFO"
 readinessProbe: 39
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions: 40
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 41
 template: 42
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 43
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger 44
 externalConfiguration: 45
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

84

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.

The number of replica nodes .

Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The
Kafka cluster is used by Kafka Connect for its internal topics.

Specification for the Kafka clusters being synchronized.

Cluster alias for the source Kafka cluster.

Authentication for the source cluster, using the TLS mechanism, as shown here, using
OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism.

Bootstrap server for connection to the source Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the source Kafka cluster. If certificates are stored in the same secret, it can be listed
multiple times.

Cluster alias for the target Kafka cluster.

Authentication for the target Kafka cluster is configured in the same way as for the source
Kafka cluster.

Bootstrap server for connection to the target Kafka cluster.

Kafka Connect configuration. Standard Apache Kafka configuration may be provided,
restricted to those properties not managed directly by AMQ Streams.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

TLS encryption for the target Kafka cluster is configured in the same way as for the source
Kafka cluster.

MirrorMaker 2.0 connectors.

Cluster alias for the source cluster used by the MirrorMaker 2.0 connectors.

Cluster alias for the target cluster used by the MirrorMaker 2.0 connectors.

Configuration for the MirrorSourceConnector that creates remote topics. The config
overrides the default configuration options.

The maximum number of tasks that the connector may create. Tasks handle the data
replication and run in parallel. If the infrastructure supports the processing overhead,

 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

CHAPTER 2. DEPLOYMENT CONFIGURATION

85

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

replication and run in parallel. If the infrastructure supports the processing overhead,
increasing this value can improve throughput. Kafka Connect distributes the tasks between
members of the cluster. If there are more tasks than workers, workers are assigned multiple
tasks. For sink connectors, aim to have one task for each topic partition consumed. For
source connectors, the number of tasks that can run in parallel may also depend on the
external system. The connector creates fewer than the maximum number of tasks if it
cannot achieve the parallelism.

Replication factor for mirrored topics created at the target cluster.

Replication factor for the MirrorSourceConnector offset-syncs internal topic that maps
the offsets of the source and target clusters.

When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The
default is true.

Optional setting to change the frequency of checks for new topics. The default is for a
check every 10 minutes.

Defines the separator used for the renaming of remote topics.

Adds a policy that overrides the automatic renaming of remote topics. Instead of
prepending the name with the name of the source cluster, the topic retains its original
name. This optional setting is useful for active/passive backups and data migration. To
configure topic offset synchronization, this property must also be set for the
checkpointConnector.config.

Configuration for the MirrorHeartbeatConnector that performs connectivity checks. The
config overrides the default configuration options.

Replication factor for the heartbeat topic created at the target cluster.

Configuration for the MirrorCheckpointConnector that tracks offsets. The config
overrides the default configuration options.

Replication factor for the checkpoints topic created at the target cluster.

Optional setting to change the frequency of checks for new consumer groups. The default
is for a check every 10 minutes.

Optional setting to synchronize consumer group offsets, which is useful for recovery in an
active/passive configuration. Synchronization is not enabled by default.

If the synchronization of consumer group offsets is enabled, you can adjust the frequency
of the synchronization.

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset
synchronization, you might also need to adjust the frequency of these checks.

Topic replication from the source cluster defined as regular expression patterns . Here we
request all topics.

Consumer group replication from the source cluster defined as regular expression
patterns. Here we request three consumer groups by name. You can use comma-
separated lists.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

86

38

39

40

41

42

43

44

45

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka MirrorMaker.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are also set for distributed tracing using Jaeger .

Distributed tracing is enabled for Jaeger.

External configuration for an OpenShift Secret mounted to Kafka MirrorMaker as an
environment variable. You can also use configuration provider plugins to load configuration
values from external sources.

2. Create or update the resource:

2.4.5. Performing a restart of a Kafka MirrorMaker 2.0 connector

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2.0 connector by
using an OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2.0 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2.0 connector to be restarted from the
KafkaMirrorMaker2 custom resource.

3. To restart the connector, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts a connector named my-source->my-
target.MirrorSourceConnector:

oc apply -f MIRRORMAKER-CONFIGURATION-FILE

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

CHAPTER 2. DEPLOYMENT CONFIGURATION

87

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2.0 connector is restarted, as long as the annotation was detected by
the reconciliation process. When the restart request is accepted, the annotation is removed
from the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2.0 cluster configuration .

2.4.6. Performing a restart of a Kafka MirrorMaker 2.0 connector task

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2.0 connector task by
using an OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2.0 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2.0 connector and the ID of the task to be restarted
from the KafkaMirrorMaker2 custom resource. Task IDs are non-negative integers, starting
from 0.

3. To restart the connector task, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts task 0 of a connector named my-source->my-
target.MirrorSourceConnector:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2.0 connector task is restarted, as long as the annotation was detected
by the reconciliation process. When the restart task request is accepted, the annotation is
removed from the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2.0 cluster configuration .

2.5. KAFKA BRIDGE CLUSTER CONFIGURATION

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector=my-source->my-target.MirrorSourceConnector"

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector-task=my-source->my-target.MirrorSourceConnector:0"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

88

This section describes how to configure a Kafka Bridge deployment in your AMQ Streams cluster.

Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.

If you are using the Kafka Bridge, you configure the KafkaBridge resource.

The full schema of the KafkaBridge resource is described in Section 14.2.110, “KafkaBridge schema
reference”.

2.5.1. Configuring the Kafka Bridge

Use the Kafka Bridge to make HTTP-based requests to the Kafka cluster.

Use the properties of the KafkaBridge resource to configure your Kafka Bridge deployment.

In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge
instances, address-based routing must be employed to ensure that requests are routed to the right
Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A
Kafka Bridge instance has its own state which is not shared with another instances.

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the KafkaBridge resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 replicas: 3 1
 bootstrapServers: my-cluster-kafka-bootstrap:9092 2
 tls: 3
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt
 authentication: 4
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: public.crt

CHAPTER 2. DEPLOYMENT CONFIGURATION

89

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 key: private.key
 http: 5
 port: 8080
 cors: 6
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 consumer: 7
 config:
 auto.offset.reset: earliest
 producer: 8
 config:
 delivery.timeout.ms: 300000
 resources: 9
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 10
 type: inline
 loggers:
 logger.bridge.level: "INFO"
 # enabling DEBUG just for send operation
 logger.send.name: "http.openapi.operation.send"
 logger.send.level: "DEBUG"
 jvmOptions: 11
 "-Xmx": "1g"
 "-Xms": "1g"
 readinessProbe: 12
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 image: my-org/my-image:latest 13
 template: 14
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 bridgeContainer: 15
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

90

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The number of replica nodes .

Bootstrap server for connection to the target Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the source Kafka cluster. If certificates are stored in the same secret, it can be listed
multiple times.

Authentication for the Kafka Bridge cluster, using the TLS mechanism, as shown here, using
OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism. By
default, the Kafka Bridge connects to Kafka brokers without authentication.

HTTP access to Kafka brokers.

CORS access specifying selected resources and access methods. Additional HTTP
headers in requests describe the origins that are permitted access to the Kafka cluster .

Consumer configuration options.

Producer configuration options.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Bridge loggers and log levels added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the
log4j.properties or log4j2.properties key. For the Kafka Bridge loggers, you can set the
log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
the Kafka Bridge.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Optional: Container image configuration , which is recommended only in special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are also set for distributed tracing using Jaeger .

2. Create or update the resource:

2.5.2. List of Kafka Bridge cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

bridge-cluster-name-bridge

 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"

oc apply -f KAFKA-BRIDGE-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

91

Deployment which is in charge to create the Kafka Bridge worker node pods.

bridge-cluster-name-bridge-service

Service which exposes the REST interface of the Kafka Bridge cluster.

bridge-cluster-name-bridge-config

ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the
Kafka broker pods.

bridge-cluster-name-bridge

Pod Disruption Budget configured for the Kafka Bridge worker nodes.

2.6. CUSTOMIZING OPENSHIFT RESOURCES

AMQ Streams creates several OpenShift resources, such as Deployments, StatefulSets, Pods, and
Services, which are managed by AMQ Streams operators. Only the operator that is responsible for
managing a particular OpenShift resource can change that resource. If you try to manually change an
operator-managed OpenShift resource, the operator will revert your changes back.

However, changing an operator-managed OpenShift resource can be useful if you want to perform
certain tasks, such as:

Adding custom labels or annotations that control how Pods are treated by Istio or other
services

Managing how Loadbalancer-type Services are created by the cluster

You can make such changes using the template property in the AMQ Streams custom resources. The
template property is supported in the following resources. The API reference provides more details
about the customizable fields.

Kafka.spec.kafka

See Section 14.2.32, “KafkaClusterTemplate schema reference”

Kafka.spec.zookeeper

See Section 14.2.42, “ZookeeperClusterTemplate schema reference”

Kafka.spec.entityOperator

See Section 14.2.47, “EntityOperatorTemplate schema reference”

Kafka.spec.kafkaExporter

See Section 14.2.53, “KafkaExporterTemplate schema reference”

Kafka.spec.cruiseControl

See Section 14.2.50, “CruiseControlTemplate schema reference”

KafkaConnect.spec

See Section 14.2.67, “KafkaConnectTemplate schema reference”

KafkaMirrorMaker.spec

See Section 14.2.108, “KafkaMirrorMakerTemplate schema reference”

KafkaMirrorMaker2.spec

See Section 14.2.67, “KafkaConnectTemplate schema reference”

KafkaBridge.spec

See Section 14.2.117, “KafkaBridgeTemplate schema reference”

KafkaUser.spec

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

92

See Section 14.2.102, “KafkaUserTemplate schema reference”

In the following example, the template property is used to modify the labels in a Kafka broker’s
StatefulSet:

Example template customization

2.6.1. Customizing the image pull policy

AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the
Cluster Operator. The image pull policy is configured using the environment variable
STRIMZI_IMAGE_PULL_POLICY in the Cluster Operator deployment. The
STRIMZI_IMAGE_PULL_POLICY environment variable can be set to three different values:

Always

Container images are pulled from the registry every time the pod is started or restarted.

IfNotPresent

Container images are pulled from the registry only when they were not pulled before.

Never

Container images are never pulled from the registry.

The image pull policy can be currently customized only for all Kafka, Kafka Connect, and Kafka
MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka
Connect, and Kafka MirrorMaker clusters.

Additional resources

For more information about Cluster Operator configuration, see Section 6.1, “Using the Cluster
Operator”.

For more information about Image Pull Policies, see Disruptions.

2.7. CONFIGURING POD SCHEDULING

When two applications are scheduled to the same OpenShift node, both applications might use the
same resources like disk I/O and impact performance. That can lead to performance degradation.
Scheduling Kafka pods in a way that avoids sharing nodes with other critical workloads, using the right

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 labels:
 app: my-cluster
spec:
 kafka:
 # ...
 template:
 statefulset:
 metadata:
 labels:
 mylabel: myvalue
 # ...

CHAPTER 2. DEPLOYMENT CONFIGURATION

93

https://kubernetes.io/docs/concepts/containers/images/#updating-images

nodes or dedicated a set of nodes only for Kafka are the best ways how to avoid such problems.

2.7.1. Specifying affinity, tolerations, and topology spread constraints

Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto
nodes. Affinity, tolerations and topology spread constraints are configured using the affinity,
tolerations, and topologySpreadConstraint properties in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaBridge.spec.template.pod

KafkaMirrorMaker.spec.template.pod

KafkaMirrorMaker2.spec.template.pod

The format of the affinity, tolerations, and topologySpreadConstraint properties follows the
OpenShift specification. The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

NOTE

On OpenShift 1.16 and 1.17, the support for topologySpreadConstraint is disabled by
default. In order to use topologySpreadConstraint, you have to enable the
EvenPodsSpread feature gate in Kubernetes API server and scheduler.

Additional resources

Kubernetes node and pod affinity documentation

Kubernetes taints and tolerations

Controlling pod placement by using pod topology spread constraints

2.7.1.1. Use pod anti-affinity to avoid critical applications sharing nodes

Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When
running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do
not share nodes with other workloads, such as databases.

2.7.1.2. Use node affinity to schedule workloads onto specific nodes

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

94

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://docs.openshift.com/container-platform/latest/nodes/scheduling/nodes-scheduler-pod-topology-spread-constraints.html

possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

2.7.1.3. Use node affinity and tolerations for dedicated nodes

Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring
node affinity and tolerations.

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Running Kafka and its components on dedicated nodes can have many advantages. There will be no
other applications running on the same nodes which could cause disturbance or consume the resources
needed for Kafka. That can lead to improved performance and stability.

2.7.2. Configuring pod anti-affinity to schedule each Kafka broker on a different
worker node

Many Kafka brokers or ZooKeeper nodes can run on the same OpenShift worker node. If the worker
node fails, they will all become unavailable at the same time. To improve reliability, you can use
podAntiAffinity configuration to schedule each Kafka broker or ZooKeeper node on a different
OpenShift worker node.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. To make sure that
no worker nodes are shared by Kafka brokers or ZooKeeper nodes, use the strimzi.io/name
label. Set the topologyKey to kubernetes.io/hostname to specify that the selected pods are
not scheduled on nodes with the same hostname. This will still allow the same worker node to
be shared by a single Kafka broker and a single ZooKeeper node. For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:

CHAPTER 2. DEPLOYMENT CONFIGURATION

95

Where CLUSTER-NAME is the name of your Kafka custom resource.

2. If you even want to make sure that a Kafka broker and ZooKeeper node do not share the same
worker node, use the strimzi.io/cluster label. For example:

 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - CLUSTER-NAME-kafka
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - CLUSTER-NAME-zookeeper
 topologyKey: "kubernetes.io/hostname"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - CLUSTER-NAME
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

96

Where CLUSTER-NAME is the name of your Kafka custom resource.

3. Create or update the resource.

2.7.3. Configuring pod anti-affinity in Kafka components

Pod anti-affinity configuration helps with the stability and performance of Kafka brokers. By using
podAntiAffinity, OpenShift will not schedule Kafka brokers on the same nodes as other workloads.
Typically, you want to avoid Kafka running on the same worker node as other network or storage
intensive applications such as databases, storage or other messaging platforms.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

 operator: In
 values:
 - CLUSTER-NAME
 topologyKey: "kubernetes.io/hostname"
 # ...

oc apply -f KAFKA-CONFIG-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

CHAPTER 2. DEPLOYMENT CONFIGURATION

97

2. Create or update the resource.
This can be done using oc apply:

2.7.4. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
This can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

3. Create or update the resource.
This can be done using oc apply:

2.7.5. Setting up dedicated nodes and scheduling pods on them

Prerequisites

oc apply -f KAFKA-CONFIG-FILE

oc label node NAME-OF-NODE node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

98

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
This can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
This can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

6. Create or update the resource.
This can be done using oc apply:

oc adm taint node NAME-OF-NODE dedicated=Kafka:NoSchedule

oc label node NAME-OF-NODE dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

99

2.8. LOGGING CONFIGURATION

Configure logging levels in the custom resources of Kafka components and AMQ Streams Operators.
You can specify the logging levels directly in the spec.logging property of the custom resource. Or you
can define the logging properties in a ConfigMap that’s referenced in the custom resource using the
configMapKeyRef property.

The advantages of using a ConfigMap are that the logging properties are maintained in one place and
are accessible to more than one resource. You can also reuse the ConfigMap for more than one
resource. If you are using a ConfigMap to specify loggers for AMQ Streams Operators, you can also
append the logging specification to add filters.

You specify a logging type in your logging specification:

inline when specifying logging levels directly

external when referencing a ConfigMap

Example inline logging configuration

Example external logging configuration

Values for the name and key of the ConfigMap are mandatory. Default logging is used if the name or
key is not set.

2.8.1. Logging options for Kafka components and operators

For more information on configuring logging for specific Kafka components or operators, see the
following sections.

Kafka component logging

Kafka logging

Zookeeper logging

Kafka Connect and Mirror Maker 2.0 logging

MirrorMaker logging

spec:
 # ...
 logging:
 type: inline
 loggers:
 kafka.root.logger.level: "INFO"

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-config-map-key

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

100

Kafka Bridge logging

Cruise Control logging

Operator logging

Cluster Operator logging

Topic Operator logging

User Operator logging

2.8.2. Creating a ConfigMap for logging

To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as
part of the logging definition in the spec of a resource.

The ConfigMap must contain the appropriate logging configuration.

log4j.properties for Kafka components, ZooKeeper, and the Kafka Bridge

log4j2.properties for the Topic Operator and User Operator

The configuration must be placed under these properties.

In this procedure a ConfigMap defines a root logger for a Kafka resource.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

ConfigMap example with a root logger definition for Kafka:

If you are using a properties file, specify the file at the command line:

The properties file defines the logging configuration:

2. Define external logging in the spec of the resource, setting the

kind: ConfigMap
apiVersion: v1
metadata:
 name: logging-configmap
data:
 log4j.properties:
 kafka.root.logger.level="INFO"

oc create configmap logging-configmap --from-file=log4j.properties

Define the logger
kafka.root.logger.level="INFO"
...

CHAPTER 2. DEPLOYMENT CONFIGURATION

101

1

2

3

4

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

3. Create or update the resource.

2.8.3. Adding logging filters to Operators

If you are using a ConfigMap to configure the (log4j2) logging levels for AMQ Streams Operators, you
can also define logging filters to limit what’s returned in the log.

Logging filters are useful when you have a large number of logging messages. Suppose you set the log
level for the logger as DEBUG (rootLogger.level="DEBUG"). Logging filters reduce the number of
logs returned for the logger at that level, so you can focus on a specific resource. When the filter is set,
only log messages matching the filter are logged.

Filters use markers to specify what to include in the log. You specify a kind, namespace and name for the
marker. For example, if a Kafka cluster is failing, you can isolate the logs by specifying the kind as Kafka,
and use the namespace and name of the failing cluster.

This example shows a marker filter for a Kafka cluster named my-kafka-cluster.

Basic logging filter configuration

The MarkerFilter type compares a specified marker for filtering.

The onMatch property accepts the log if the marker matches.

The onMismatch property rejects the log if the marker does not match.

The marker used for filtering is in the format KIND(NAMESPACE/NAME-OF-RESOURCE).

You can create one or more filters. Here, the log is filtered for two Kafka clusters.

Multiple logging filter configuration

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: logging-configmap
 key: log4j.properties

oc apply -f KAFKA-CONFIG-FILE

rootLogger.level="INFO"
appender.console.filter.filter1.type=MarkerFilter 1
appender.console.filter.filter1.onMatch=ACCEPT 2
appender.console.filter.filter1.onMismatch=DENY 3
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster) 4

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

102

Adding filters to the Cluster Operator

To add filters to the Cluster Operator, update its logging ConfigMap YAML file (install/cluster-
operator/050-ConfigMap-strimzi-cluster-operator.yaml).

Procedure

1. Update the 050-ConfigMap-strimzi-cluster-operator.yaml file to add the filter properties to
the ConfigMap.
In this example, the filter properties return logs only for the my-kafka-cluster Kafka cluster:

Alternatively, edit the ConfigMap directly:

2. If you updated the YAML file instead of editing the ConfigMap directly, apply the changes by
deploying the ConfigMap:

Adding filters to the Topic Operator or User Operator

To add filters to the Topic Operator or User Operator, create or edit a logging ConfigMap.

In this procedure a logging ConfigMap is created with filters for the Topic Operator. The same approach
is used for the User Operator.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

In this example, the filter properties return logs only for the my-topic topic:

appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster-1)
appender.console.filter.filter2.type=MarkerFilter
appender.console.filter.filter2.onMatch=ACCEPT
appender.console.filter.filter2.onMismatch=DENY
appender.console.filter.filter2.marker=Kafka(my-namespace/my-kafka-cluster-2)

kind: ConfigMap
apiVersion: v1
metadata:
 name: strimzi-cluster-operator
data:
 log4j2.properties:
 #...
 appender.console.filter.filter1.type=MarkerFilter
 appender.console.filter.filter1.onMatch=ACCEPT
 appender.console.filter.filter1.onMismatch=DENY
 appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster)

oc edit configmap strimzi-cluster-operator

oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

CHAPTER 2. DEPLOYMENT CONFIGURATION

103

If you are using a properties file, specify the file at the command line:

The properties file defines the logging configuration:

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.
For the Topic Operator, logging is specified in the topicOperator configuration of the Kafka
resource.

3. Apply the changes by deploying the Cluster Operator:

Additional resources

Configuring Kafka

Cluster Operator logging

kind: ConfigMap
apiVersion: v1
metadata:
 name: logging-configmap
data:
 log4j2.properties:
 rootLogger.level="INFO"
 appender.console.filter.filter1.type=MarkerFilter
 appender.console.filter.filter1.onMatch=ACCEPT
 appender.console.filter.filter1.onMismatch=DENY
 appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)

oc create configmap logging-configmap --from-file=log4j2.properties

Define the logger
rootLogger.level="INFO"
Set the filters
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
...

spec:
 # ...
 entityOperator:
 topicOperator:
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: logging-configmap
 key: log4j2.properties

create -f install/cluster-operator -n my-cluster-operator-namespace

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

104

Topic Operator logging

User Operator logging

CHAPTER 2. DEPLOYMENT CONFIGURATION

105

CHAPTER 3. LOADING CONFIGURATION VALUES FROM
EXTERNAL SOURCES

Use configuration provider plugins to load configuration data from external sources. The providers
operate independently of AMQ Streams. You can use them to load configuration data for all Kafka
components, including producers and consumers. Use them, for example, to provide the credentials for
Kafka Connect connector configuration.

OpenShift Configuration Provider

The OpenShift Configuration Provider plugin loads configuration data from OpenShift secrets or
config maps.
Suppose you have a Secret object that’s managed outside the Kafka namespace, or outside the
Kafka cluster. The OpenShift Configuration Provider allows you to reference the values of the secret
in your configuration without extracting the files. You just need to tell the provider what secret to use
and provide access rights. The provider loads the data without needing to restart the Kafka
component, even when using a new Secret or ConfigMap object. This capability avoids disruption
when a Kafka Connect instance hosts multiple connectors.

Environment Variables Configuration Provider

The Environment Variables Configuration Provider plugin loads configuration data from environment
variables.
The values for the environment variables can be mapped from secrets or config maps. You can use
the Environment Variables Configuration Provider, for example, to load certificates or JAAS
configuration from environment variables mapped from OpenShift secrets.

NOTE

OpenShift Configuration Provider can’t use mounted files. For example, it can’t load
values that need the location of a truststore or keystore. Instead, you can mount config
maps or secrets into a Kafka Connect pod as environment variables or volumes. You can
use the Environment Variables Configuration Provider to load values for environment
variables. You add configuration using the externalConfiguration property in
KafkaConnect.spec. You don’t need to set up access rights with this approach. However,
Kafka Connect will need a restart when using a new Secret or ConfigMap for a connector.
This will cause disruption to all the Kafka Connect instance’s connectors.

3.1. LOADING CONFIGURATION VALUES FROM A CONFIG MAP

This procedure shows how to use the OpenShift Configuration Provider plugin.

In the procedure, an external ConfigMap object provides configuration properties for a connector.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

106

1

2

3

1. Create a ConfigMap or Secret that contains the configuration properties.
In this example, a ConfigMap object named my-connector-configuration contains connector
properties:

Example ConfigMap with connector properties

2. Specify the OpenShift Configuration Provider in the Kafka Connect configuration.
The specification shown here can support loading values from secrets and config maps.

Example Kafka Connect configuration to enable the OpenShift Configuration
Provider

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

KubernetesSecretConfigProvider provides values from secrets.

KubernetesConfigMapConfigProvider provides values from config maps.

3. Create or update the resource to enable the provider.

4. Create a role that permits access to the values in the external config map.

Example role to access values from a config map

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-connector-configuration
data:
 option1: value1
 option2: value2

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: secrets,configmaps 1
 config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfigProvider 2
 config.providers.configmaps.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider
3

 # ...

kubectl apply -f <kafka_connect_configuration_file>

apiVersion: rbac.authorization.k8s.io/v1

CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES

107

The rule gives the role permission to access the my-connector-configuration config map.

5. Create a role binding to permit access to the namespace that contains the config map.

Example role binding to access the namespace that contains the config map

The role binding gives the role permission to access the my-project namespace.

The service account must be the same one used by the Kafka Connect deployment. The service
account name format is <cluster_name>-connect, where <cluster_name> is the name of the
KafkaConnect custom resource.

6. Reference the config map in the connector configuration.

Example connector configuration referencing the config map

Placeholders for the property values in the config map are referenced in the connector
configuration. The placeholder structure is configmaps:<path_and_file_name>:<property>.

kind: Role
metadata:
 name: connector-configuration-role
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 resourceNames: ["my-connector-configuration"]
 verbs: ["get"]
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: connector-configuration-role-binding
subjects:
- kind: ServiceAccount
 name: my-connect-connect
 namespace: my-project
roleRef:
 kind: Role
 name: connector-configuration-role
 apiGroup: rbac.authorization.k8s.io
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 # ...
 config:
 option: ${configmaps:my-project/my-connector-configuration:option1}
 # ...
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

108

1

KubernetesConfigMapConfigProvider reads and extracts the option1 property value from the
external config map.

3.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT
VARIABLES

This procedure shows how to use the Environment Variables Configuration Provider plugin.

In the procedure, environment variables provide configuration properties for a connector. A database
password is specified as an environment variable.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Specify the Environment Variables Configuration Provider in the Kafka Connect configuration.
Define environment variables using the externalConfiguration property.

Example Kafka Connect configuration to enable the Environment Variables
Configuration Provider

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: env 1
 config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider 2
 # ...
 externalConfiguration:
 env:
 - name: DB_PASSWORD 3
 valueFrom:
 secretKeyRef:
 name: db-creds 4
 key: dbPassword 5
 # ...

CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES

109

2

3

4

5

EnvVarConfigProvider provides values from environment variables.

The DB_PASSWORD environment variable takes a password value from a secret.

The name of the secret containing the predefined password.

The key for the password stored inside the secret.

2. Create or update the resource to enable the provider.

3. Reference the environment variable in the connector configuration.

Example connector configuration referencing the environment variable

kubectl apply -f <kafka_connect_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 # ...
 config:
 option: ${env:DB_PASSWORD}
 # ...
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

110

CHAPTER 4. ACCESSING KAFKA OUTSIDE OF THE
OPENSHIFT CLUSTER

Use an external listener to expose your AMQ Streams Kafka cluster to a client outside an OpenShift
environment.

Specify the connection type to expose Kafka in the external listener configuration.

nodeport uses NodePort type Services

loadbalancer uses Loadbalancer type Services

ingress uses Kubernetes Ingress and the NGINX Ingress Controller for Kubernetes

route uses OpenShift Routes and the HAProxy router

For more information on listener configuration, see GenericKafkaListener schema reference.

If you want to know more about the pros and cons of each connection type, refer to Accessing Apache
Kafka in Strimzi.

NOTE

route is only supported on OpenShift

4.1. ACCESSING KAFKA USING NODE PORTS

This procedure describes how to access a AMQ Streams Kafka cluster from an external client using node
ports.

To connect to a broker, you need a hostname and port number for the Kafka bootstrap address , as well
as the certificate used for authentication.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the nodeport type.
For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: external
 port: 9094
 type: nodeport
 tls: true

CHAPTER 4. ACCESSING KAFKA OUTSIDE OF THE OPENSHIFT CLUSTER

111

https://github.com/kubernetes/ingress-nginx
https://developers.redhat.com/blog/2019/06/06/accessing-apache-kafka-in-strimzi-part-1-introduction/

2. Create or update the resource.

NodePort type services are created for each Kafka broker, as well as an external bootstrap
service. The bootstrap service routes external traffic to the Kafka brokers. Node addresses used
for connection are propagated to the status of the Kafka custom resource.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

4. If TLS encryption is enabled, extract the public certificate of the broker certification authority.

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

4.2. ACCESSING KAFKA USING LOADBALANCERS

This procedure describes how to access a AMQ Streams Kafka cluster from an external client using
loadbalancers.

To connect to a broker, you need the address of the bootstrap loadbalancer , as well as the certificate
used for TLS encryption.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the loadbalancer type.
For example:

 authentication:
 type: tls
 # ...
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

112

2. Create or update the resource.

loadbalancer type services and loadbalancers are created for each Kafka broker, as well as an
external bootstrap service . The bootstrap service routes external traffic to all Kafka brokers.
DNS names and IP addresses used for connection are propagated to the status of each service.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Retrieve the address of the bootstrap service you can use to access the Kafka cluster from the
status of the Kafka resource.

4. If TLS encryption is enabled, extract the public certificate of the broker certification authority.

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

4.3. ACCESSING KAFKA USING INGRESS

This procedure shows how to access a AMQ Streams Kafka cluster from an external client outside of
OpenShift using Nginx Ingress.

To connect to a broker, you need a hostname (advertised address) for the Ingress bootstrap address , as
well as the certificate used for authentication.

For access using Ingress, the port is always 443.

TLS passthrough

Kafka uses a binary protocol over TCP, but the NGINX Ingress Controller for Kubernetes is designed to
work with the HTTP protocol. To be able to pass the Kafka connections through the Ingress, AMQ
Streams uses the TLS passthrough feature of the NGINX Ingress Controller for Kubernetes . Ensure TLS
passthrough is enabled in your NGINX Ingress Controller for Kubernetes deployment.

Because it is using the TLS passthrough functionality, TLS encryption cannot be disabled when

 kafka:
 # ...
 listeners:
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 # ...
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

CHAPTER 4. ACCESSING KAFKA OUTSIDE OF THE OPENSHIFT CLUSTER

113

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx

1

Because it is using the TLS passthrough functionality, TLS encryption cannot be disabled when
exposing Kafka using Ingress.

For more information about enabling TLS passthrough, see TLS passthrough documentation.

Prerequisites

OpenShift cluster

Deployed NGINX Ingress Controller for Kubernetes with TLS passthrough enabled

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the ingress type.
Specify the Ingress hosts for the bootstrap service and Kafka brokers.

For example:

Ingress hosts for the bootstrap service and Kafka brokers.

2. Create or update the resource.

ClusterIP type services are created for each Kafka broker, as well as an additional bootstrap
service. These services are used by the Ingress controller to route traffic to the Kafka brokers.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: external
 port: 9094
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration: 1
 bootstrap:
 host: bootstrap.myingress.com
 brokers:
 - broker: 0
 host: broker-0.myingress.com
 - broker: 1
 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

114

https://kubernetes.github.io/ingress-nginx/user-guide/tls/#ssl-passthrough
https://github.com/kubernetes/ingress-nginx

An Ingress resource is also created for each service to expose them using the Ingress
controller. The Ingress hosts are propagated to the status of each service.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

Use the address for the bootstrap host you specified in the configuration and port 443
(BOOTSTRAP-HOST:443) in your Kafka client as the bootstrap address to connect to the Kafka
cluster.

3. Extract the public certificate of the broker certificate authority.

Use the extracted certificate in your Kafka client to configure the TLS connection. If you
enabled any authentication, you will also need to configure SASL or TLS authentication.

4.4. ACCESSING KAFKA USING OPENSHIFT ROUTES

This procedure describes how to access a AMQ Streams Kafka cluster from an external client outside of
OpenShift using routes.

To connect to a broker, you need a hostname for the route bootstrap address , as well as the certificate
used for TLS encryption.

For access using routes, the port is always 443.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the route type.
For example:

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners:
 - name: listener1
 port: 9094
 type: route
 tls: true
 # ...

CHAPTER 4. ACCESSING KAFKA OUTSIDE OF THE OPENSHIFT CLUSTER

115

WARNING

An OpenShift Route address comprises the name of the Kafka cluster, the
name of the listener, and the name of the namespace it is created in. For
example, my-cluster-kafka-listener1-bootstrap-myproject (CLUSTER-
NAME-kafka-LISTENER-NAME-bootstrap-NAMESPACE). Be careful that
the whole length of the address does not exceed a maximum limit of 63
characters.

2. Create or update the resource.

ClusterIP type services are created for each Kafka broker, as well as an external bootstrap
service. The services route the traffic from the OpenShift Routes to the Kafka brokers. An
OpenShift Route resource is also created for each service to expose them using the HAProxy
load balancer. DNS addresses used for connection are propagated to the status of each
service.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Retrieve the address of the bootstrap service you can use to access the Kafka cluster from the
status of the Kafka resource.

4. Extract the public certificate of the broker certification authority.

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

 # ...
 zookeeper:
 # ...

oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

116

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA
You can secure your Kafka cluster by managing the access each client has to the Kafka brokers.

A secure connection between Kafka brokers and clients can encompass:

Encryption for data exchange

Authentication to prove identity

Authorization to allow or decline actions executed by users

This chapter explains how to set up secure connections between Kafka brokers and clients, with sections
describing:

Security options for Kafka clusters and clients

How to secure Kafka brokers

How to use an authorization server for OAuth 2.0 token-based authentication and authorization

5.1. SECURITY OPTIONS FOR KAFKA

Use the Kafka resource to configure the mechanisms used for Kafka authentication and authorization.

5.1.1. Listener authentication

For clients inside the OpenShift cluster, you can create plain (without encryption) or tls internal
listeners.

For clients outside the OpenShift cluster, you create external listeners and specify a connection
mechanism, which can be nodeport, loadbalancer, ingress or route (on OpenShift).

For more information on the configuration options for connecting an external client, see Accessing Kafka
outside of the OpenShift cluster.

Supported authentication options:

1. Mutual TLS authentication (only on the listeners with TLS enabled encryption)

2. SCRAM-SHA-512 authentication

3. OAuth 2.0 token based authentication

The authentication option you choose depends on how you wish to authenticate client access to Kafka
brokers.

Figure 5.1. Kafka listener authentication options

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

117

Figure 5.1. Kafka listener authentication options

The listener authentication property is used to specify an authentication mechanism specific to that
listener.

If no authentication property is specified then the listener does not authenticate clients which connect
through that listener. The listener will accept all connections without authentication.

Authentication must be configured when using the User Operator to manage KafkaUsers.

The following example shows:

A plain listener configured for SCRAM-SHA-512 authentication

A tls listener with mutual TLS authentication

An external listener with mutual TLS authentication

Each listener is configured with a unique name and port within a Kafka cluster.

NOTE

Listeners cannot be configured to use the ports reserved for inter-broker communication
(9091 or 9090) and metrics (9404).

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

118

An example showing listener authentication configuration

5.1.1.1. Mutual TLS authentication

Mutual TLS authentication is always used for the communication between Kafka brokers and ZooKeeper
pods.

AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide encrypted
communication between Kafka brokers and clients either with or without mutual authentication. For
mutual, or two-way, authentication, both the server and the client present certificates. When you
configure mutual authentication, the broker authenticates the client (client authentication) and the
client authenticates the broker (server authentication).

NOTE

TLS authentication is more commonly one-way, with one party authenticating the identity
of another. For example, when HTTPS is used between a web browser and a web server,
the browser obtains proof of the identity of the web server.

5.1.1.2. SCRAM-SHA-512 authentication

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can
establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL
(Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both
unencrypted and encrypted client connections.

When SCRAM-SHA-512 authentication is used with a TLS client connection, the TLS protocol provides
the encryption, but is not used for authentication.

The following properties of SCRAM make it safe to use SCRAM-SHA-512 even on unencrypted
connections:

The passwords are not sent in the clear over the communication channel. Instead the client and

...
listeners:
 - name: plain
 port: 9092
 type: internal
 tls: true
 authentication:
 type: scram-sha-512
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
...

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

119

The passwords are not sent in the clear over the communication channel. Instead the client and
the server are each challenged by the other to offer proof that they know the password of the
authenticating user.

The server and client each generate a new challenge for each authentication exchange. This
means that the exchange is resilient against replay attacks.

When a KafkaUser.spec.authentication.type is configured with scram-sha-512 the User Operator will
generate a random 12-character password consisting of upper and lowercase ASCII letters and numbers.

5.1.1.3. Network policies

By default, AMQ Streams automatically creates a NetworkPolicy resource for every listener that is
enabled on a Kafka broker. This NetworkPolicy allows applications to connect to listeners in all
namespaces. Use network policies as part of the listener configuration.

If you want to restrict access to a listener at the network level to only selected applications or
namespaces, use the networkPolicyPeers property. Each listener can have a different
networkPolicyPeers configuration. For more information on network policy peers, refer to the
NetworkPolicyPeer API reference .

If you want to use custom network policies, you can set the
STRIMZI_NETWORK_POLICY_GENERATION environment variable to false in the Cluster Operator
configuration. For more information, see Cluster Operator configuration.

NOTE

Your configuration of OpenShift must support ingress NetworkPolicies in order to use
network policies in AMQ Streams.

5.1.1.4. Additional listener configuration options

You can use the properties of the GenericKafkaListenerConfiguration schema to add further
configuration to listeners.

5.1.2. Kafka authorization

You can configure authorization for Kafka brokers using the authorization property in the
Kafka.spec.kafka resource. If the authorization property is missing, no authorization is enabled and
clients have no restrictions. When enabled, authorization is applied to all enabled listeners. The
authorization method is defined in the type field.

Supported authorization options:

Simple authorization

OAuth 2.0 authorization (if you are using OAuth 2.0 token based authentication)

Open Policy Agent (OPA) authorization

Custom authorization

Figure 5.2. Kafka cluster authorization options

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

120

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io

Figure 5.2. Kafka cluster authorization options

5.1.2.1. Super users

Super users can access all resources in your Kafka cluster regardless of any access restrictions, and are
supported by all authorization mechanisms.

To designate super users for a Kafka cluster, add a list of user principals to the superUsers property. If a
user uses TLS client authentication, their username is the common name from their certificate subject
prefixed with CN=.

An example configuration with super users

5.2. SECURITY OPTIONS FOR KAFKA CLIENTS

Use the KafkaUser resource to configure the authentication mechanism, authorization mechanism, and
access rights for Kafka clients. In terms of configuring security, clients are represented as users.

You can authenticate and authorize user access to Kafka brokers. Authentication permits access, and
authorization constrains the access to permissible actions.

You can also create super users that have unconstrained access to Kafka brokers.

The authentication and authorization mechanisms must match the specification for the listener used to
access the Kafka brokers.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: simple
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 # ...

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

121

Configuring users for secure access to Kafka brokers

For more information on configuring a KafkaUser resource to access Kafka brokers securely, see the
following sections:

Securing user access to Kafka

Setting up access for clients outside of OpenShift

5.2.1. Identifying a Kafka cluster for user handling

A KafkaUser resource includes a label that defines the appropriate name of the Kafka cluster (derived
from the name of the Kafka resource) to which it belongs.

The label is used by the User Operator to identify the KafkaUser resource and create a new user, and
also in subsequent handling of the user.

If the label does not match the Kafka cluster, the User Operator cannot identify the KafkaUser and the
user is not created.

If the status of the KafkaUser resource remains empty, check your label.

5.2.2. User authentication

User authentication is configured using the authentication property in KafkaUser.spec. The
authentication mechanism enabled for the user is specified using the type field.

Supported authentication types:

tls for TLS client authentication

tls-external for TLS client authentication using external certificates

scram-sha-512 for SCRAM-SHA-512 authentication

If tls or scram-sha-512 is specified, the User Operator creates authentication credentials when it
creates the user. If tls-external is specified, the user still uses TLS client authentication, but no
authentication credentials are created. Use this option when you’re providing your own certificates.
When no authentication type is specified, the User Operator does not create the user or its credentials.

You can use tls-external to authenticate with TLS client authentication using a certificate issued
outside the User Operator. The User Operator does not generate a TLS certificate or a secret. You can
still manage ACL rules and quotas through the User Operator in the same way as when you’re using the
tls mechanism. This means that you use the CN=USER-NAME format when specifying ACL rules and
quotas. USER-NAME is the common name given in a TLS certificate.

Additional resources

When to use mutual TLS authentication or SCRAM-SHA Authentication authentication for

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

122

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#setup-external-clients-str

When to use mutual TLS authentication or SCRAM-SHA Authentication authentication for
clients

KafkaUserSpec schema reference

5.2.2.1. TLS client authentication

To use TLS client authentication, you set the type field in the KafkaUser resource to tls.

Example user with TLS client authentication enabled

When the user is created by the User Operator, it creates a new secret with the same name as the
KafkaUser resource. The secret contains a private and public key for TLS client authentication. The
public key is contained in a user certificate, which is signed by the client Certificate Authority (CA).

All keys are in X.509 format.

Secrets provide private keys and certificates in PEM and PKCS #12 formats.

For more information on securing Kafka communication with secrets, see Chapter 12, Managing TLS
certificates.

Example secret with user credentials

5.2.2.2. TLS client authentication using a certificate issued outside the User Operator

To use TLS client authentication using a certificate issued outside the User Operator, you set the type
field in the KafkaUser resource to tls-external. A secret and credentials are not created for the user.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 # ...

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: # Public key of the client CA
 user.crt: # User certificate that contains the public key of the user
 user.key: # Private key of the user
 user.p12: # PKCS #12 archive file for storing certificates and keys
 user.password: # Password for protecting the PKCS #12 archive file

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

123

1

Example user with TLS client authentication that uses a certificate issued outside the User
Operator

5.2.2.3. SCRAM-SHA-512 authentication

To use the SCRAM-SHA-512 authentication mechanism, you set the type field in the KafkaUser
resource to scram-sha-512.

Example user with SCRAM-SHA-512 authentication enabled

When the user is created by the User Operator, it creates a new secret with the same name as the
KafkaUser resource. The secret contains the generated password in the password key, which is
encoded with base64. In order to use the password, it must be decoded.

Example secret with user credentials

The generated password, base64 encoded.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls-external
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512
 # ...

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 password: Z2VuZXJhdGVkcGFzc3dvcmQ= 1
 sasl.jaas.config:
b3JnLmFwYWNoZS5rYWZrYS5jb21tb24uc2VjdXJpdHkuc2NyYW0uU2NyYW1Mb2dpbk1vZHVsZSByZ
XF1aXJlZCB1c2VybmFtZT0ibXktdXNlciIgcGFzc3dvcmQ9ImdlbmVyYXRlZHBhc3N3b3JkIjsK 2

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

124

2

1

2

The JAAS configuration string for SASL SCRAM-SHA-512 authentication, base64 encoded.

Decoding the generated password:

echo "Z2VuZXJhdGVkcGFzc3dvcmQ=" | base64 --decode

5.2.2.3.1. Custom password configuration

When a user is created, AMQ Streams generates a random password. You can use your own password
instead of the one generated by AMQ Streams. To do so, create a secret with the password and
reference it in the KafkaUser resource.

Example user with a password set for SCRAM-SHA-512 authentication

The name of the secret containing the predefined password.

The key for the password stored inside the secret.

5.2.3. User authorization

User authorization is configured using the authorization property in KafkaUser.spec. The authorization
type enabled for a user is specified using the type field.

To use simple authorization, you set the type property to simple in KafkaUser.spec.authorization. The
simple authorization will use the Kafka Admin API to manage the ACL rules inside your Kafka cluster.
Whether ACL management in the User Operator is enabled or not depends on your authorization
configuration in the Kafka cluster.

For simple authorization, ACL management is always enabled.

For OPA authorization, ACL management is always disabled. Authorization rules are configured
in the OPA server.

For Red Hat Single Sign-On authorization, you can manage the ACL rules directly in Red Hat
Single Sign-On. You can also delegate authorization to the simple authorizer as a fallback option
in the configuration. When delegation to the simple authorizer is enabled, the User Operator will
enable management of ACL rules as well.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512
 password:
 valueFrom:
 secretKeyRef:
 name: my-secret 1
 key: my-password 2
 # ...

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

125

1

2

For custom authorization using a custom authorization plugin, use the supportsAdminApi
property in the .spec.kafka.authorization configuration of the Kafka custom resource to
enable or disable the support.

If ACL managment is not enabled, AMQ Streams rejects a resource if it contains any ACL rules.

If you’re using a standalone deployment of the User Operator, ACL management is enabled by default.
You can disable it using the STRIMZI_ACLS_ADMIN_API_SUPPORTED environment variable.

If no authorization is specified, the User Operator does not provision any access rights for the user.
Whether such a KafkaUser can still access resources depends on the authorizer being used. For
example, for the AclAuthorizer this is determined by its allow.everyone.if.no.acl.found configuration.

5.2.3.1. ACL rules

AclAuthorizer uses ACL rules to manage access to Kafka brokers.

ACL rules grant access rights to the user, which you specify in the acls property.

For more information about the AclRule object, see the AclRule schema reference.

5.2.3.2. Super user access to Kafka brokers

If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited
access to the cluster regardless of any authorization constraints defined in ACLs in KafkaUser.

For more information on configuring super user access to brokers, see Kafka authorization.

5.2.3.3. User quotas

You can configure the spec for the KafkaUser resource to enforce quotas so that a user does not
exceed a configured level of access to Kafka brokers. You can set size-based network usage and time-
based CPU utilization thresholds. You can also add a partition mutation quota to control the rate at
which requests to change partitions are accepted for user requests.

An example KafkaUser with user quotas

Byte-per-second quota on the amount of data the user can push to a Kafka broker

Byte-per-second quota on the amount of data the user can fetch from a Kafka broker

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 quotas:
 producerByteRate: 1048576 1
 consumerByteRate: 2097152 2
 requestPercentage: 55 3
 controllerMutationRate: 10 4

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

126

3

4

CPU utilization limit as a percentage of time for a client group

Number of concurrent partition creation and deletion operations (mutations) allowed per second

For more information on these properties, see the KafkaUserQuotas schema reference.

5.3. SECURING ACCESS TO KAFKA BROKERS

To establish secure access to Kafka brokers, you configure and apply:

A Kafka resource to:

Create listeners with a specified authentication type

Configure authorization for the whole Kafka cluster

A KafkaUser resource to access the Kafka brokers securely through the listeners

Configure the Kafka resource to set up:

Listener authentication

Network policies that restrict access to Kafka listeners

Kafka authorization

Super users for unconstrained access to brokers

Authentication is configured independently for each listener. Authorization is always configured for the
whole Kafka cluster.

The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA)
certificates to enable authentication within the Kafka cluster.

You can replace the certificates generated by the Cluster Operator by installing your own certificates.
You can also configure your listener to use a Kafka listener certificate managed by an external
Certificate Authority. Certificates are available in PKCS #12 format (.p12) and PEM (.crt) formats.

Use KafkaUser to enable the authentication and authorization mechanisms that a specific client uses to
access Kafka.

Configure the KafkaUser resource to set up:

Authentication to match the enabled listener authentication

Authorization to match the enabled Kafka authorization

Quotas to control the use of resources by clients

The User Operator creates the user representing the client and the security credentials used for client
authentication, based on the chosen authentication type.

Refer to the schema reference for more information on access configuration properties:

Kafka schema reference

KafkaUser schema reference

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

127

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#installing-your-own-ca-certificates-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#kafka-listener-certificates-str

1

2

GenericKafkaListener schema reference

5.3.1. Securing Kafka brokers

This procedure shows the steps involved in securing Kafka brokers when running AMQ Streams.

The security implemented for Kafka brokers must be compatible with the security implemented for the
clients requiring access.

Kafka.spec.kafka.listeners[*].authentication matches KafkaUser.spec.authentication

Kafka.spec.kafka.authorization matches KafkaUser.spec.authorization

The steps show the configuration for simple authorization and a listener using TLS authentication. For
more information on listener configuration, see GenericKafkaListener schema reference.

Alternatively, you can use SCRAM-SHA or OAuth 2.0 for listener authentication, and OAuth 2.0 or OPA
for Kafka authorization.

Procedure

1. Configure the Kafka resource.

a. Configure the authorization property for authorization.

b. Configure the listeners property to create a listener with authentication.
For example:

Authorization enables simple authorization on the Kafka broker using the
AclAuthorizer Kafka plugin .

List of user principals with unlimited access to Kafka. CN is the common name from
the client certificate when TLS authentication is used.

Listener authentication mechanisms may be configured for each listener, and specified

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 authorization: 1
 type: simple
 superUsers: 2
 - CN=client_1
 - user_2
 - CN=client_3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls 3
 # ...
 zookeeper:
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

128

3 Listener authentication mechanisms may be configured for each listener, and specified
as mutual TLS, SCRAM-SHA-512 or token-based OAuth 2.0.

If you are configuring an external listener, the configuration is dependent on the chosen
connection mechanism.

2. Create or update the Kafka resource.

The Kafka cluster is configured with a Kafka broker listener using TLS authentication.

A service is created for each Kafka broker pod.

A service is created to serve as the bootstrap address for connection to the Kafka cluster.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

5.3.2. Securing user access to Kafka

Use the properties of the KafkaUser resource to configure a Kafka user.

You can use oc apply to create or modify users, and oc delete to delete existing users.

For example:

oc apply -f USER-CONFIG-FILE

oc delete KafkaUser USER-NAME

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

This procedure shows how a user is created with TLS authentication. You can also create a user with
SCRAM-SHA authentication.

The authentication required depends on the type of authentication configured for the Kafka broker
listener.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with TLS if it is not
also enabled in the Kafka configuration.

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using TLS authentication and
encryption.

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

129

1

2

A running User Operator (typically deployed with the Entity Operator).

The authentication type in KafkaUser should match the authentication configured in Kafka brokers.

Procedure

1. Configure the KafkaUser resource.
For example:

User authentication mechanism, defined as mutual tls or scram-sha-512.

Simple authorization, which requires an accompanying list of ACL rules.

2. Create or update the KafkaUser resource.

The user is created, as well as a Secret with the same name as the KafkaUser resource. The
Secret contains a private and public key for TLS client authentication.

For information on configuring a Kafka client with properties for secure connection to Kafka brokers, see
Setting up access for clients outside of OpenShift in the Deploying and Upgrading AMQ Streams on
OpenShift guide.

5.3.3. Restricting access to Kafka listeners using network policies

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication: 1
 type: tls
 authorization:
 type: simple 2
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group
 name: my-group
 patternType: literal
 operation: Read

oc apply -f USER-CONFIG-FILE

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

130

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#setup-external-clients-str

You can restrict access to a listener to only selected applications by using the networkPolicyPeers
property.

Prerequisites

An OpenShift cluster with support for Ingress NetworkPolicies.

The Cluster Operator is running.

Procedure

1. Open the Kafka resource.

2. In the networkPolicyPeers property, define the application pods or namespaces that will be
allowed to access the Kafka cluster.
For example, to configure a tls listener to allow connections only from application pods with the
label app set to kafka-client:

3. Create or update the resource.
Use oc apply:

Additional resources

networkPolicyPeers configuration

NetworkPolicyPeer API reference

5.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

AMQ Streams supports the use of OAuth 2.0 authentication using the OAUTHBEARER and PLAIN
mechanisms.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 networkPolicyPeers:
 - podSelector:
 matchLabels:
 app: kafka-client
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

131

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://oauth.net/2/

OAuth 2.0 enables standardized token-based authentication and authorization between applications,
using a central authorization server to issue tokens that grant limited access to resources.

You can configure OAuth 2.0 authentication, then OAuth 2.0 authorization .

Kafka brokers and clients both need to be configured to use OAuth 2.0. OAuth 2.0 authentication can
also be used in conjunction with simple or OPA-based Kafka authorization.

Using OAuth 2.0 token-based authentication, application clients can access resources on application
servers (called resource servers) without exposing account credentials.

The application client passes an access token as a means of authenticating, which application servers
can also use to determine the level of access to grant. The authorization server handles the granting of
access and inquiries about access.

In the context of AMQ Streams:

Kafka brokers act as OAuth 2.0 resource servers

Kafka clients act as OAuth 2.0 application clients

Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0
authorization server, as necessary, to obtain or validate access tokens.

For a deployment of AMQ Streams, OAuth 2.0 integration provides:

Server-side OAuth 2.0 support for Kafka brokers

Client-side OAuth 2.0 support for Kafka MirrorMaker, Kafka Connect and the Kafka Bridge

5.4.1. OAuth 2.0 authentication mechanisms

AMQ Streams supports the OAUTHBEARER and PLAIN mechanisms for OAuth 2.0 authentication.
Both mechanisms allow Kafka clients to establish authenticated sessions with Kafka brokers. The
authentication flow between clients, the authorization server, and Kafka brokers is different for each
mechanism.

We recommend that you configure clients to use OAUTHBEARER whenever possible. OAUTHBEARER
provides a higher level of security than PLAIN because client credentials are never shared with Kafka
brokers. Consider using PLAIN only with Kafka clients that do not support OAUTHBEARER.

If necessary, OAUTHBEARER and PLAIN can be enabled together, on the same oauth listener.

OAUTHBEARER overview

Kafka supports the OAUTHBEARER authentication mechanism, however it must be explicitly
configured. Also, many Kafka client tools use libraries that provide basic support for OAUTHBEARER at
the protocol level.

To ease application development, AMQ Streams provides an OAuth callback handler for the upstream
Kafka Client Java libraries (but not for other libraries). Therefore, you do not need to write your own
callback handlers for such clients. An application client can use the callback handler to provide the
access token. Clients written in other languages, such as Go, must use custom code to connect to the
authorization server and obtain the access token.

With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

132

With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where
credentials take the form of a bearer token provided by the callback handler. Using the callbacks, you
can configure token provision in one of three ways:

Client ID and Secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

A long-lived refresh token, obtained manually at configuration time

OAUTHBEARER is automatically enabled in the oauth listener configuration for the Kafka broker. You
can set the enableOauthBearer property to true, though this is not required.

NOTE

OAUTHBEARER authentication can only be used by Kafka clients that support the
OAUTHBEARER mechanism at the protocol level.

PLAIN overview

PLAIN is a simple authentication mechanism used by all Kafka client tools. To enable PLAIN to be used
together with OAuth 2.0 authentication, AMQ Streams includes server-side callbacks and calls this
OAuth 2.0 over PLAIN.

With the AMQ Streams implementation of PLAIN, the client credentials are not stored in ZooKeeper.
Instead, client credentials are handled centrally behind a compliant authorization server, similar to when
OAUTHBEARER authentication is used.

When used with the OAuth 2.0 over PLAIN callbacks, Kafka clients authenticate with Kafka brokers using
either of the following methods:

Client ID and secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

The client must be enabled to use PLAIN authentication, and provide a username and password. If the
password is prefixed with $accessToken: followed by the value of the access token, the Kafka broker
will interpret the password as the access token. Otherwise, the Kafka broker will interpret the username
as the client ID and the password as the client secret.

If the password is set as the access token, the username must be set to the same principal name that
the Kafka broker obtains from the access token. The process depends on how you configure username
extraction using userNameClaim, fallbackUserNameClaim, fallbackUsernamePrefix, or
userInfoEndpointUri. It also depends on your authorization server; in particular, how it maps client IDs to
account names.

To use PLAIN, you must enable it in the oauth listener configuration for the Kafka broker.

In the following example, PLAIN is enabled in addition to OAUTHBEARER, which is enabled by default. If
you want to use PLAIN only, you can disable OAUTHBEARER by setting enableOauthBearer to false.

 # ...
 authentication:
 type: oauth
 # ...
 enableOauthBearer: true

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

133

Additional resources

Section 5.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”

5.4.2. OAuth 2.0 Kafka broker configuration

Kafka broker configuration for OAuth 2.0 involves:

Creating the OAuth 2.0 client in the authorization server

Configuring OAuth 2.0 authentication in the Kafka custom resource

NOTE

In relation to the authorization server, Kafka brokers and Kafka clients are both regarded
as OAuth 2.0 clients.

5.4.2.1. OAuth 2.0 client configuration on an authorization server

To configure a Kafka broker to validate the token received during session initiation, the recommended
approach is to create an OAuth 2.0 client definition in an authorization server, configured as confidential,
with the following client credentials enabled:

Client ID of kafka (for example)

Client ID and Secret as the authentication mechanism

NOTE

You only need to use a client ID and secret when using a non-public introspection
endpoint of the authorization server. The credentials are not typically required when using
public authorization server endpoints, as with fast local JWT token validation.

5.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster

To use OAuth 2.0 authentication in the Kafka cluster, you specify, for example, a TLS listener
configuration for your Kafka cluster custom resource with the authentication method oauth:

Assigining the authentication method type for OAuth 2.0

 # ...
 authentication:
 type: oauth
 # ...
 enablePlain: true
 tokenEndpointUri: https://OAUTH-SERVER-ADDRESS/auth/realms/external/protocol/openid-
connect/token

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

134

You can configure plain, tls and external listeners, but it is recommended not to use plain listeners or
external listeners with disabled TLS encryption with OAuth 2.0 as this creates a vulnerability to network
eavesdropping and unauthorized access through token theft.

You configure an external listener with type: oauth for a secure transport layer to communicate with
the client.

Using OAuth 2.0 with an external listener

The tls property is false by default, so it must be enabled.

When you have defined the type of authentication as OAuth 2.0, you add configuration based on the
type of validation, either as fast local JWT validation or token validation using an introspection endpoint .

The procedure to configure OAuth 2.0 for listeners, with descriptions and examples, is described in
Configuring OAuth 2.0 support for Kafka brokers .

5.4.2.3. Fast local JWT token validation configuration

Fast local JWT token validation checks a JWT token signature locally.

The local check ensures that a token:

Conforms to type by containing a (typ) claim value of Bearer for an access token

Is valid (not expired)

Has an issuer that matches a validIssuerURI

You specify a validIssuerURI attribute when you configure the listener, so that any tokens not issued by
the authorization server are rejected.

The authorization server does not need to be contacted during fast local JWT token validation. You
activate fast local JWT token validation by specifying a jwksEndpointUri attribute, the endpoint
exposed by the OAuth 2.0 authorization server. The endpoint contains the public keys used to validate
signed JWT tokens, which are sent as credentials by Kafka clients.

NOTE

 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: oauth
 #...

...
listeners:
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth
 #...

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

135

NOTE

All communication with the authorization server should be performed using TLS
encryption.

You can configure a certificate truststore as an OpenShift Secret in your AMQ Streams project
namespace, and use a tlsTrustedCertificates attribute to point to the OpenShift Secret containing the
truststore file.

You might want to configure a userNameClaim to properly extract a username from the JWT token. If
you want to use Kafka ACL authorization, you need to identify the user by their username during
authentication. (The sub claim in JWT tokens is typically a unique ID, not a username.)

Example configuration for fast local JWT token validation

5.4.2.4. OAuth 2.0 introspection endpoint configuration

Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque.
The Kafka broker sends an access token to the introspection endpoint, which responds with the token
information necessary for validation. Importantly, it returns up-to-date information if the specific access
token is valid, and also information about when the token expires.

To configure OAuth 2.0 introspection-based validation, you specify an introspectionEndpointUri
attribute rather than the jwksEndpointUri attribute specified for fast local JWT token validation.
Depending on the authorization server, you typically have to specify a clientId and clientSecret,
because the introspection endpoint is usually protected.

Example configuration for an introspection endpoint

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 #...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: oauth
 validIssuerUri: <https://<auth-server-address>/auth/realms/tls>
 jwksEndpointUri: <https://<auth-server-address>/auth/realms/tls/protocol/openid-connect/certs>
 userNameClaim: preferred_username
 maxSecondsWithoutReauthentication: 3600
 tlsTrustedCertificates:
 - secretName: oauth-server-cert
 certificate: ca.crt
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 listeners:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

136

5.4.3. Session re-authentication for Kafka brokers

You can configure oauth listeners to use Kafka session re-authentication for OAuth 2.0 sessions
between Kafka clients and Kafka brokers. This mechanism enforces the expiry of an authenticated
session between the client and the broker after a defined period of time. When a session expires, the
client immediately starts a new session by reusing the existing connection rather than dropping it.

Session re-authentication is disabled by default. To enable it, you set a time value for
maxSecondsWithoutReauthentication in the oauth listener configuration. The same property is used
to configure session re-authentication for OAUTHBEARER and PLAIN authentication. For an example
configuration, see Section 5.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers” .

Session re-authentication must be supported by the Kafka client libraries used by the client.

Session re-authentication can be used with fast local JWT or introspection endpoint token validation.

Client re-authentication

When the broker’s authenticated session expires, the client must re-authenticate to the existing session
by sending a new, valid access token to the broker, without dropping the connection.

If token validation is successful, a new client session is started using the existing connection. If the client
fails to re-authenticate, the broker will close the connection if further attempts are made to send or
receive messages. Java clients that use Kafka client library 2.2 or later automatically re-authenticate if
the re-authentication mechanism is enabled on the broker.

Session re-authentication also applies to refresh tokens, if used. When the session expires, the client
refreshes the access token by using its refresh token. The client then uses the new access token to re-
authenticate to the existing session.

Session expiry for OAUTHBEARER and PLAIN

When session re-authentication is configured, session expiry works differently for OAUTHBEARER and
PLAIN authentication.

For OAUTHBEARER and PLAIN, using the client ID and secret method:

The broker’s authenticated session will expire at the configured

 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: oauth
 clientId: kafka-broker
 clientSecret:
 secretName: my-cluster-oauth
 key: clientSecret
 validIssuerUri: <https://<auth-server-address>/auth/realms/tls>
 introspectionEndpointUri: <https://<auth-server-address>/auth/realms/tls/protocol/openid-
connect/token/introspect>
 userNameClaim: preferred_username
 maxSecondsWithoutReauthentication: 3600
 tlsTrustedCertificates:
 - secretName: oauth-server-cert
 certificate: ca.crt

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

137

The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication.

The session will expire earlier if the access token expires before the configured time.

For PLAIN using the long-lived access token method:

The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication.

Re-authentication will fail if the access token expires before the configured time. Although
session re-authentication is attempted, PLAIN has no mechanism for refreshing tokens.

If maxSecondsWithoutReauthentication is not configured, OAUTHBEARER and PLAIN clients can
remain connected to brokers indefinitely, without needing to re-authenticate. Authenticated sessions
do not end with access token expiry. However, this can be considered when configuring authorization,
for example, by using keycloak authorization or installing a custom authorizer.

Additional resources

Section 5.4.2, “OAuth 2.0 Kafka broker configuration”

Section 5.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”

KafkaListenerAuthenticationOAuth schema reference

KIP-368

5.4.4. OAuth 2.0 Kafka client configuration

A Kafka client is configured with either:

The credentials required to obtain a valid access token from an authorization server (client ID
and Secret)

A valid long-lived access token or refresh token, obtained using tools provided by an
authorization server

The only information ever sent to the Kafka broker is an access token. The credentials used to
authenticate with the authorization server to obtain the access token are never sent to the broker.

When a client obtains an access token, no further communication with the authorization server is
needed.

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or
a long-lived refresh token, adds more complexity because there is an additional dependency on
authorization server tools.

NOTE

If you are using long-lived access tokens, you may need to configure the client in the
authorization server to increase the maximum lifetime of the token.

If the Kafka client is not configured with an access token directly, the client exchanges credentials for an
access token during Kafka session initiation by contacting the authorization server. The Kafka client
exchanges either:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

138

https://cwiki.apache.org/confluence/display/KAFKA/KIP-368%3A+Allow+SASL+Connections+to+Periodically+Re-Authenticate

Client ID and Secret

Client ID, refresh token, and (optionally) a Secret

5.4.5. OAuth 2.0 client authentication flow

In this section, we explain and visualize the communication flow between Kafka client, Kafka broker, and
authorization server during Kafka session initiation. The flow depends on the client and server
configuration.

When a Kafka client sends an access token as credentials to a Kafka broker, the token needs to be
validated.

Depending on the authorization server used, and the configuration options available, you may prefer to
use:

Fast local token validation based on JWT signature checking and local token introspection,
without contacting the authorization server

An OAuth 2.0 introspection endpoint provided by the authorization server

Using fast local token validation requires the authorization server to provide a JWKS endpoint with
public certificates that are used to validate signatures on the tokens.

Another option is to use an OAuth 2.0 introspection endpoint on the authorization server. Each time a
new Kafka broker connection is established, the broker passes the access token received from the client
to the authorization server, and checks the response to confirm whether or not the token is valid.

Kafka client credentials can also be configured for:

Direct local access using a previously generated long-lived access token

Contact with the authorization server for a new access token to be issued

NOTE

An authorization server might only allow the use of opaque access tokens, which means
that local token validation is not possible.

5.4.5.1. Example client authentication flows

Here you can see the communication flows, for different configurations of Kafka clients and brokers,
during Kafka session authentication.

Client using client ID and secret, with broker delegating validation to authorization server

Client using client ID and secret, with broker performing fast local token validation

Client using long-lived access token, with broker delegating validation to authorization server

Client using long-lived access token, with broker performing fast local validation

Client using client ID and secret, with broker delegating validation to authorization server

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

139

1. Kafka client requests access token from authorization server, using client ID and secret, and
optionally a refresh token.

2. Authorization server generates a new access token.

3. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the access token.

4. Kafka broker validates the access token by calling a token introspection endpoint on
authorization server, using its own client ID and secret.

5. Kafka client session is established if the token is valid.

Client using client ID and secret, with broker performing fast local token validation

1. Kafka client authenticates with authorization server from the token endpoint, using a client ID
and secret, and optionally a refresh token.

2. Authorization server generates a new access token.

3. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the access token.

4. Kafka broker validates the access token locally using a JWT token signature check, and local
token introspection.

Client using long-lived access token, with broker delegating validation to authorization
server

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

140

1. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the long-lived access token.

2. Kafka broker validates the access token by calling a token introspection endpoint on
authorization server, using its own client ID and secret.

3. Kafka client session is established if the token is valid.

Client using long-lived access token, with broker performing fast local validation

1. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the long-lived access token.

2. Kafka broker validates the access token locally using JWT token signature check, and local
token introspection.

WARNING

Fast local JWT token signature validation is suitable only for short-lived tokens as
there is no check with the authorization server if a token has been revoked. Token
expiration is written into the token, but revocation can happen at any time, so
cannot be accounted for without contacting the authorization server. Any issued
token would be considered valid until it expires.

5.4.6. Configuring OAuth 2.0 authentication

OAuth 2.0 is used for interaction between Kafka clients and AMQ Streams components.

In order to use OAuth 2.0 for AMQ Streams, you must:

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

141

1. Deploy an authorization server and configure the deployment to integrate with AMQ Streams

2. Deploy or update the Kafka cluster with Kafka broker listeners configured to use OAuth 2.0

3. Update your Java-based Kafka clients to use OAuth 2.0

4. Update Kafka component clients to use OAuth 2.0

5.4.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server

This procedure describes how to deploy Red Hat Single Sign-On as an authorization server and
configure it for integration with AMQ Streams.

The authorization server provides a central point for authentication and authorization, and management
of users, clients, and permissions. Red Hat Single Sign-On has a concept of realms where a realm
represents a separate set of users, clients, permissions, and other configuration. You can use a default
master realm, or create a new one. Each realm exposes its own OAuth 2.0 endpoints, which means that
application clients and application servers all need to use the same realm.

To use OAuth 2.0 with AMQ Streams, you use a deployment of Red Hat Single Sign-On to create and
manage authentication realms.

NOTE

If you already have Red Hat Single Sign-On deployed, you can skip the deployment step
and use your current deployment.

Before you begin

You will need to be familiar with using Red Hat Single Sign-On.

For deployment and administration instructions, see:

Red Hat Single Sign-On for OpenShift

Server Administration Guide

Prerequisites

AMQ Streams and Kafka is running

For the Red Hat Single Sign-On deployment:

Check the Red Hat Single Sign-On Supported Configurations

Installation requires a user with a cluster-admin role, such as system:admin

Procedure

1. Deploy Red Hat Single Sign-On to your OpenShift cluster.
Check the progress of the deployment in your OpenShift web console.

2. Log in to the Red Hat Single Sign-On Admin Console to create the OAuth 2.0 policies for AMQ
Streams.
Login details are provided when you deploy Red Hat Single Sign-On.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

142

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on
https://access.redhat.com/articles/2342861

3. Create and enable a realm.
You can use an existing master realm.

4. Adjust the session and token timeouts for the realm, if required.

5. Create a client called kafka-broker.

6. From the Settings tab, set:

Access Type to Confidential

Standard Flow Enabled to OFF to disable web login for this client

Service Accounts Enabled to ON to allow this client to authenticate in its own name

7. Click Save before continuing.

8. From the Credentials tab, take a note of the secret for using in your AMQ Streams Kafka cluster
configuration.

9. Repeat the client creation steps for any application client that will connect to your Kafka
brokers.
Create a definition for each new client.

You will use the names as client IDs in your configuration.

What to do next

After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0 .

5.4.6.2. Configuring OAuth 2.0 support for Kafka brokers

This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use
OAuth 2.0 authentication using an authorization server.

We advise use of OAuth 2.0 over an encrypted interface through configuration of TLS listeners. Plain
listeners are not recommended.

If the authorization server is using certificates signed by the trusted CA and matching the OAuth 2.0
server hostname, TLS connection works using the default settings. Otherwise, you may need to
configure the truststore with prober certificates or disable the certificate hostname validation.

When configuring the Kafka broker you have two options for the mechanism used to validate the access
token during OAuth 2.0 authentication of the newly connected Kafka client:

Configuring fast local JWT token validation

Configuring token validation using an introspection endpoint

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka broker listeners, see:

KafkaListenerAuthenticationOAuth schema reference

Managing access to Kafka

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

143

1

2

3

4

5

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed

Procedure

1. Update the Kafka broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

2. Configure the Kafka broker listeners configuration.
The configuration for each type of listener does not have to be the same, as they are
independent.

The examples here show the configuration options as configured for external listeners.

Example 1: Configuring fast local JWT token validation

Listener type set to oauth.

URI of the token issuer used for authentication.

URI of the JWKS certificate endpoint used for local JWT validation.

The token claim (or key) that contains the actual user name in the token. The user name is
the principal used to identify the user. The userNameClaim value will depend on the
authentication flow and the authorization server used.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,

oc edit kafka my-cluster

#...
- name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth 1
 validIssuerUri: <https://<auth-server-address>/auth/realms/external> 2
 jwksEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-
connect/certs> 3
 userNameClaim: preferred_username 4
 maxSecondsWithoutReauthentication: 3600 5
 tlsTrustedCertificates: 6
 - secretName: oauth-server-cert
 certificate: ca.crt
 disableTlsHostnameVerification: true 7
 jwksExpirySeconds: 360 8
 jwksRefreshSeconds: 300 9
 jwksMinRefreshPauseSeconds: 1 10

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

144

6

7

8

9

10

1

2

3

4

5

and the client does not attempt re-authentication.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) Disable TLS hostname verification. Default is false.

The duration the JWKS certificates are considered valid before they expire. Default is 360
seconds. If you specify a longer time, consider the risk of allowing access to revoked
certificates.

The period between refreshes of JWKS certificates. The interval must be at least 60
seconds shorter than the expiry interval. Default is 300 seconds.

The minimum pause in seconds between consecutive attempts to refresh JWKS public
keys. When an unknown signing key is encountered, the JWKS keys refresh is scheduled
outside the regular periodic schedule with at least the specified pause since the last
refresh attempt. The refreshing of keys follows the rule of exponential backoff, retrying on
unsuccessful refreshes with ever increasing pause, until it reaches jwksRefreshSeconds.
The default value is 1.

Example 2: Configuring token validation using an introspection endpoint

URI of the token introspection endpoint.

Client ID to identify the client.

Client Secret and client ID is used for authentication.

The token claim (or key) that contains the actual user name in the token. The user name is
the principal used to identify the user. The userNameClaim value will depend on the
authorization server used.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

- name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth
 validIssuerUri: <https://<auth-server-address>/auth/realms/external>
 introspectionEndpointUri: <https://<auth-server-
address>/auth/realms/external/protocol/openid-connect/token/introspect> 1
 clientId: kafka-broker 2
 clientSecret: 3
 secretName: my-cluster-oauth
 key: clientSecret
 userNameClaim: preferred_username 4
 maxSecondsWithoutReauthentication: 3600 5

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

145

1

2

3

4

5

6

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional (optional) configuration settings you can use:

If your authorization server does not provide an iss claim, it is not possible to perform an
issuer check. In this situation, set checkIssuer to false and do not specify a
validIssuerUri. Default is true.

If your authorization server provides an aud (audience) claim, and you want to enforce an
audience check, set checkAudience to true. Audience checks identify the intended
recipients of tokens. As a result, the Kafka broker will reject tokens that do not have its
clientId in their aud claim. Default is false.

An authorization server may not provide a single attribute to identify both regular users
and clients. When a client authenticates in its own name, the server might provide a client
ID. When a user authenticates using a username and password, to obtain a refresh token or
an access token, the server might provide a username attribute in addition to a client ID.
Use this fallback option to specify the username claim (attribute) to use if a primary user ID
attribute is not available.

In situations where fallbackUserNameClaim is applicable, it may also be necessary to
prevent name collisions between the values of the username claim, and those of the
fallback username claim. Consider a situation where a client called producer exists, but
also a regular user called producer exists. In order to differentiate between the two, you
can use this property to add a prefix to the user ID of the client.

(Only applicable when using introspectionEndpointUri) Depending on the authorization
server you are using, the introspection endpoint may or may not return the token type
attribute, or it may contain different values. You can specify a valid token type value that
the response from the introspection endpoint has to contain.

(Only applicable when using introspectionEndpointUri) The authorization server may be
configured or implemented in such a way to not provide any identifiable information in an
Introspection Endpoint response. In order to obtain the user ID, you can configure the URI
of the userinfo endpoint as a fallback. The userNameClaim, fallbackUserNameClaim,
and fallbackUserNamePrefix settings are applied to the response of userinfo endpoint.

 # ...
 authentication:
 type: oauth
 # ...
 checkIssuer: false 1
 checkAudience: true 2
 fallbackUserNameClaim: client_id 3
 fallbackUserNamePrefix: client-account- 4
 validTokenType: bearer 5
 userInfoEndpointUri: https://OAUTH-SERVER-
ADDRESS/auth/realms/external/protocol/openid-connect/userinfo 6
 enableOauthBearer: false 7
 enablePlain: true 8
 tokenEndpointUri: https://OAUTH-SERVER-
ADDRESS/auth/realms/external/protocol/openid-connect/token 9
 customClaimCheck: "@.custom == 'custom-value'" 10
 clientAudience: AUDIENCE 11
 clientScope: SCOPE 12

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

146

7

8

9

10

11

12

Set this to false`to disable the OAUTHBEARER mechanism on the listener. At least
one of PLAIN or OAUTHBEARER has to be enabled. Default is `true.

Set to true to enable PLAIN authentication on the listener, which is supported by all clients
on all platforms. The Kafka client must enable the PLAIN mechanism and set the
username and password. PLAIN can be used to authenticate either by using the OAuth
access token, or the OAuth clientId and secret (the client credentials). The behavior is
additionally controlled by whether tokenEndpointUri is specified or not. Default is false. If
tokenEndpointUri is specified and the client sets password to start with the string
$accessToken:, the server interprets the password as the access token and the
username as the account username. Otherwise, the username is interpreted as the
clientId and the password as the client secret, which the broker uses to obtain the access
token in the client’s name. If tokenEndpointUri is not specified, the password is always
interpreted as an access token and the username is always interpreted as the account
username, which must match the principal id extracted from the token. This is known as
'no-client-credentials' mode because the client must always obtain the access token by
itself, and can’t use clientId and secret.

Additional configuration for PLAIN mechanism to allow clients to authenticate by passing
clientId and secret as username and password as described in the previous point. If not
specified the clients can authenticate over PLAIN only by passing an access token as
password parameter.

Additional custom rules can be imposed on the JWT access token during validation by
setting this to a JsonPath filter query. If the access token does not contain the necessary
data, it is rejected. When using the introspectionEndpointUri, the custom check is applied
to the introspection endpoint response JSON.

(Optional) An audience parameter passed to the token endpoint. An audience is used
when obtaining an access token for inter-broker authentication. It is also used in the name
of a client for OAuth 2.0 over PLAIN client authentication using a clientId and secret. This
only affects the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

(Optional) A scope parameter passed to the token endpoint. A scope is used when
obtaining an access token for inter-broker authentication. It is also used in the name of a
client for OAuth 2.0 over PLAIN client authentication using a clientId and secret. This only
affects the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

3. Save and exit the editor, then wait for rolling updates to complete.

4. Check the update in the logs or by watching the pod state transitions:

The rolling update configures the brokers to use OAuth 2.0 authentication.

What to do next

Configure your Kafka clients to use OAuth 2.0

5.4.6.3. Configuring Kafka Java clients to use OAuth 2.0

oc logs -f ${POD_NAME} -c ${CONTAINER_NAME}
oc get pod -w

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

147

1

2

3

1

This procedure describes how to configure Kafka producer and consumer APIs to use OAuth 2.0 for
interaction with Kafka brokers.

Add a client callback plugin to your pom.xml file, and configure the system properties.

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Add the client library with OAuth 2.0 support to the pom.xml file for the Kafka client:

2. Configure the system properties for the callback:
For example:

URI of the authorization server token endpoint.

Client ID, which is the name used when creating the client in the authorization server.

Client secret created when creating the client in the authorization server.

3. Enable the SASL OAUTHBEARER mechanism on a TLS encrypted connection in the Kafka client
configuration:
For example:

Here we use SASL_SSL for use over TLS connections. Use SASL_PLAINTEXT over
unencrypted connections.

<dependency>
 <groupId>io.strimzi</groupId>
 <artifactId>kafka-oauth-client</artifactId>
 <version>{oauth-version}</version>
</dependency>

System.setProperty(ClientConfig.OAUTH_TOKEN_ENDPOINT_URI, “https://<auth-server-
address>/auth/realms/master/protocol/openid-connect/token”); 1
System.setProperty(ClientConfig.OAUTH_CLIENT_ID, "<client-name>"); 2
System.setProperty(ClientConfig.OAUTH_CLIENT_SECRET, "<client-secret>"); 3

props.put("sasl.jaas.config",
"org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required;");
props.put("security.protocol", "SASL_SSL"); 1
props.put("sasl.mechanism", "OAUTHBEARER");
props.put("sasl.login.callback.handler.class",
"io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler");

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

148

1

4. Verify that the Kafka client can access the Kafka brokers.

What to do next

Configure Kafka components to use OAuth 2.0

5.4.6.4. Configuring OAuth 2.0 for Kafka components

This procedure describes how to configure Kafka components to use OAuth 2.0 authentication using an
authorization server.

You can configure authentication for:

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

In this scenario, the Kafka component and the authorization server are running in the same cluster.

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka components, see:

KafkaClientAuthenticationOAuth schema reference

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Create a client secret and mount it to the component as an environment variable.
For example, here we are creating a client Secret for the Kafka Bridge:

The clientSecret key must be in base64 format.

2. Create or edit the resource for the Kafka component so that OAuth 2.0 authentication is
configured for the authentication property.
For OAuth 2.0 authentication, you can use:

apiVersion: kafka.strimzi.io/v1beta2
kind: Secret
metadata:
 name: my-bridge-oauth
type: Opaque
data:
 clientSecret: MGQ1OTRmMzYtZTllZS00MDY2LWI5OGEtMTM5MzM2NjdlZjQw 1

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

149

1

2

3

1

2

Client ID and secret

Client ID and refresh token

Access token

TLS

KafkaClientAuthenticationOAuth schema reference provides examples of each .

For example, here OAuth 2.0 is assigned to the Kafka Bridge client using a client ID and secret,
and TLS:

Authentication type set to oauth.

URI of the token endpoint for authentication.

Trusted certificates for TLS connection to the authorization server.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional configuration options you can use:

(Optional) Disable TLS hostname verification. Default is false.

If the authorization server does not return a typ (type) claim inside the JWT token, you can
apply checkAccessTokenType: false to skip the token type check. Default is true.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 authentication:
 type: oauth 1
 tokenEndpointUri: https://<auth-server-address>/auth/realms/master/protocol/openid-
connect/token 2
 clientId: kafka-bridge
 clientSecret:
 secretName: my-bridge-oauth
 key: clientSecret
 tlsTrustedCertificates: 3
 - secretName: oauth-server-cert
 certificate: tls.crt

...
spec:
 # ...
 authentication:
 # ...
 disableTlsHostnameVerification: true 1
 checkAccessTokenType: false 2
 accessTokenIsJwt: false 3
 scope: any 4
 audience: kafka 5

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

150

3

4

5

apply checkAccessTokenType: false to skip the token type check. Default is true.

If you are using opaque tokens, you can apply accessTokenIsJwt: false so that access
tokens are not treated as JWT tokens.

(Optional) The scope for requesting the token from the token endpoint. An authorization
server may require a client to specify the scope. In this case it is any.

(Optional) The audience for requesting the token from the token endpoint. An
authorization server may require a client to specify the audience. In this case it is kafka.

3. Apply the changes to the deployment of your Kafka resource.

4. Check the update in the logs or by watching the pod state transitions:

The rolling updates configure the component for interaction with Kafka brokers using OAuth 2.0
authentication.

5.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION

If you are using OAuth 2.0 with Red Hat Single Sign-On for token-based authentication, you can also
use Red Hat Single Sign-On to configure authorization rules to constrain client access to Kafka brokers.
Authentication establishes the identity of a user. Authorization decides the level of access for that user.

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to
resources on Kafka brokers. Users and clients are matched against policies that permit access to
perform specific actions on Kafka brokers.

Kafka allows all users full access to brokers by default, and also provides the AclAuthorizer plugin to
configure authorization based on Access Control Lists (ACLs).

ZooKeeper stores ACL rules that grant or deny access to resources based on username. However,
OAuth 2.0 token-based authorization with Red Hat Single Sign-On offers far greater flexibility on how
you wish to implement access control to Kafka brokers. In addition, you can configure your Kafka brokers
to use OAuth 2.0 authorization and ACLs.

Additional resources

Using OAuth 2.0 token-based authentication

Kafka Authorization

Red Hat Single Sign-On documentation

5.5.1. OAuth 2.0 authorization mechanism

OAuth 2.0 authorization in AMQ Streams uses Red Hat Single Sign-On server Authorization Services

oc apply -f your-file

oc logs -f ${POD_NAME} -c ${CONTAINER_NAME}
oc get pod -w

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

151

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

REST endpoints to extend token-based authentication with Red Hat Single Sign-On by applying
defined security policies on a particular user, and providing a list of permissions granted on different
resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0
authorization enforces permissions locally based on the received list of grants for the user from Red Hat
Single Sign-On Authorization Services.

5.5.1.1. Kafka broker custom authorizer

A Red Hat Single Sign-On authorizer (KeycloakRBACAuthorizer) is provided with AMQ Streams. To be
able to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat
Single Sign-On, you configure a custom authorizer on the Kafka broker.

The authorizer fetches a list of granted permissions from the authorization server as needed, and
enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client
request.

5.5.2. Configuring OAuth 2.0 authorization support

This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat
Single Sign-On Authorization Services.

Before you begin

Consider the access you require or want to limit for certain users. You can use a combination of Red Hat
Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.

Typically, groups are used to match users based on organizational departments or geographical
locations. And roles are used to match users based on their function.

With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot
be stored this way. Storage and access to user data may be a factor in how you choose to configure
authorization policies.

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

AMQ Streams must be configured to use OAuth 2.0 with Red Hat Single Sign-On for token-
based authentication. You use the same Red Hat Single Sign-On server endpoint when you set
up authorization.

OAuth 2.0 authentication must be configured with the maxSecondsWithoutReauthentication
option to enable re-authentication.

Procedure

1. Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin
CLI to enable Authorization Services for the Kafka broker client you created when setting up
OAuth 2.0 authentication.

2. Use Authorization Services to define resources, authorization scopes, policies, and permissions
for the client.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

152

1

2

3

4

5

6

7

3. Bind the permissions to users and clients by assigning them roles and groups.

4. Configure the Kafka brokers to use Red Hat Single Sign-On authorization by updating the Kafka
broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

5. Configure the Kafka broker kafka configuration to use keycloak authorization, and to be able to
access the authorization server and Authorization Services.
For example:

Type keycloak enables Red Hat Single Sign-On authorization.

URI of the Red Hat Single Sign-On token endpoint. For production, always use HTTPs.
When you configure token-based oauth authentication, you specify a jwksEndpointUri as
the URI for local JWT validation. The hostname for the tokenEndpointUri URI must be the
same.

The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has
Authorization Services enabled. Typically, kafka is used as the ID.

(Optional) Delegate authorization to Kafka AclAuthorizer if access is denied by Red Hat
Single Sign-On Authorization Services policies. Default is false.

(Optional) Disable TLS hostname verification. Default is false.

(Optional) Designated super users.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) The time between two consecutive grants refresh runs. That is the maximum

oc edit kafka my-cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 authorization:
 type: keycloak 1
 tokenEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-
connect/token> 2
 clientId: kafka 3
 delegateToKafkaAcls: false 4
 disableTlsHostnameVerification: false 5
 superUsers: 6
 - CN=fred
 - sam
 - CN=edward
 tlsTrustedCertificates: 7
 - secretName: oauth-server-cert
 certificate: ca.crt
 grantsRefreshPeriodSeconds: 60 8
 grantsRefreshPoolSize: 5 9
 #...

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

153

8

9

(Optional) The time between two consecutive grants refresh runs. That is the maximum
time for active sessions to detect any permissions changes for the user on Red Hat Single

(Optional) The number of threads to use to refresh (in parallel) the grants for the active
sessions. The default value is 5.

6. Save and exit the editor, then wait for rolling updates to complete.

7. Check the update in the logs or by watching the pod state transitions:

The rolling update configures the brokers to use OAuth 2.0 authorization.

8. Verify the configured permissions by accessing Kafka brokers as clients or users with specific
roles, making sure they have the necessary access, or do not have the access they are not
supposed to have.

5.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization
Services

This section describes the authorization models used by Red Hat Single Sign-On Authorization Services
and Kafka, and defines the important concepts in each model.

To grant permissions to access Kafka, you can map Red Hat Single Sign-On Authorization Services
objects to Kafka resources by creating an OAuth client specification in Red Hat Single Sign-On. Kafka
permissions are granted to user accounts or service accounts using Red Hat Single Sign-On
Authorization Services rules.

Examples are shown of the different user permissions required for common Kafka operations, such as
creating and listing topics.

5.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview

Kafka and Red Hat Single Sign-On Authorization Services use different authorization models.

Kafka authorization model
Kafka’s authorization model uses resource types . When a Kafka client performs an action on a broker, the
broker uses the configured KeycloakRBACAuthorizer to check the client’s permissions, based on the
action and resource type.

Kafka uses five resource types to control access: Topic, Group, Cluster, TransactionalId, and
DelegationToken. Each resource type has a set of available permissions.

Topic

Create

Write

Read

Delete

oc logs -f ${POD_NAME} -c kafka
oc get pod -w

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

154

Describe

DescribeConfigs

Alter

AlterConfigs

Group

Read

Describe

Delete

Cluster

Create

Describe

Alter

DescribeConfigs

AlterConfigs

IdempotentWrite

ClusterAction

TransactionalId

Describe

Write

DelegationToken

Describe

Red Hat Single Sign-On Authorization Services model
The Red Hat Single Sign-On Authorization Services model has four concepts for defining and granting
permissions: resources, authorization scopes, policies, and permissions.

Resources

A resource is a set of resource definitions that are used to match resources with permitted actions. A
resource might be an individual topic, for example, or all topics with names starting with the same
prefix. A resource definition is associated with a set of available authorization scopes, which
represent a set of all actions available on the resource. Often, only a subset of these actions is
actually permitted.

Authorization scopes

An authorization scope is a set of all the available actions on a specific resource definition. When you
define a new resource, you add scopes from the set of all scopes.

Policies

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

155

A policy is an authorization rule that uses criteria to match against a list of accounts. Policies can
match:

Service accounts based on client ID or roles

User accounts based on username, groups, or roles.

Permissions

A permission grants a subset of authorization scopes on a specific resource definition to a set of
users.

Additional resources

Kafka authorization model

5.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization
model

The Kafka authorization model is used as a basis for defining the Red Hat Single Sign-On roles and
resources that will control access to Kafka.

To grant Kafka permissions to user accounts or service accounts, you first create an OAuth client
specification in Red Hat Single Sign-On for the Kafka broker. You then specify Red Hat Single Sign-On
Authorization Services rules on the client. Typically, the client id of the OAuth client that represents the
broker is kafka. The example configuration files provided with AMQ Streams use kafka as the OAuth
client id.

NOTE

If you have multiple Kafka clusters, you can use a single OAuth client (kafka) for all of
them. This gives you a single, unified space in which to define and manage authorization
rules. However, you can also use different OAuth client ids (for example, my-cluster-
kafka or cluster-dev-kafka) and define authorization rules for each cluster within each
client configuration.

The kafka client definition must have the Authorization Enabled option enabled in the Red Hat Single
Sign-On Admin Console.

All permissions exist within the scope of the kafka client. If you have different Kafka clusters configured
with different OAuth client IDs, they each need a separate set of permissions even though they’re part
of the same Red Hat Single Sign-On realm.

When the Kafka client uses OAUTHBEARER authentication, the Red Hat Single Sign-On authorizer
(KeycloakRBACAuthorizer) uses the access token of the current session to retrieve a list of grants
from the Red Hat Single Sign-On server. To retrieve the grants, the authorizer evaluates the Red Hat
Single Sign-On Authorization Services policies and permissions.

Authorization scopes for Kafka permissions

An initial Red Hat Single Sign-On configuration usually involves uploading authorization scopes to create
a list of all possible actions that can be performed on each Kafka resource type. This step is performed
once only, before defining any permissions. You can add authorization scopes manually instead of
uploading them.

Authorization scopes must contain all the possible Kafka permissions regardless of the resource type:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

156

https://kafka.apache.org/documentation/#security_authz_primitives

Create

Write

Read

Delete

Describe

Alter

DescribeConfig

AlterConfig

ClusterAction

IdempotentWrite

NOTE

If you’re certain you won’t need a permission (for example, IdempotentWrite), you can
omit it from the list of authorization scopes. However, that permission won’t be available
to target on Kafka resources.

Resource patterns for permissions checks

Resource patterns are used for pattern matching against the targeted resources when performing
permission checks. The general pattern format is RESOURCE-TYPE:PATTERN-NAME.

The resource types mirror the Kafka authorization model. The pattern allows for two matching options:

Exact matching (when the pattern does not end with *)

Prefix matching (when the pattern ends with *)

Example patterns for resources

Topic:my-topic
Topic:orders-*
Group:orders-*
Cluster:*

Additionally, the general pattern format can be prefixed by kafka-cluster:CLUSTER-NAME followed by
a comma, where CLUSTER-NAME refers to the metadata.name in the Kafka custom resource.

Example patterns for resources with cluster prefix

kafka-cluster:my-cluster,Topic:*
kafka-cluster:*,Group:b_*

When the kafka-cluster prefix is missing, it is assumed to be kafka-cluster:*.

When defining a resource, you can associate it with a list of possible authorization scopes which are

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

157

When defining a resource, you can associate it with a list of possible authorization scopes which are
relevant to the resource. Set whatever actions make sense for the targeted resource type.

Though you may add any authorization scope to any resource, only the scopes supported by the
resource type are considered for access control.

Policies for applying access permission

Policies are used to target permissions to one or more user accounts or service accounts. Targeting can
refer to:

Specific user or service accounts

Realm roles or client roles

User groups

JavaScript rules to match a client IP address

A policy is given a unique name and can be reused to target multiple permissions to multiple resources.

Permissions to grant access

Use fine-grained permissions to pull together the policies, resources, and authorization scopes that
grant access to users.

The name of each permission should clearly define which permissions it grants to which users. For
example, Dev Team B can read from topics starting with x.

Additional resources

For more information about how to configure permissions through Red Hat Single Sign-On
Authorization Services, see Section 5.5.4, “Trying Red Hat Single Sign-On Authorization
Services”.

5.5.3.3. Example permissions required for Kafka operations

The following examples demonstrate the user permissions required for performing common operations
on Kafka.

Create a topic

To create a topic, the Create permission is required for the specific topic, or for Cluster:kafka-cluster.

List topics

If a user has the Describe permission on a specified topic, the topic is listed.

Display topic details

To display a topic’s details, Describe and DescribeConfigs permissions are required on the topic.

bin/kafka-topics.sh --create --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-topics.sh --list \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

158

Produce messages to a topic

To produce messages to a topic, Describe and Write permissions are required on the topic.

If the topic hasn’t been created yet, and topic auto-creation is enabled, the permissions to create a
topic are required.

Consume messages from a topic

To consume messages from a topic, Describe and Read permissions are required on the topic.
Consuming from the topic normally relies on storing the consumer offsets in a consumer group, which
requires additional Describe and Read permissions on the consumer group.

Two resources are needed for matching. For example:

Topic:my-topic
Group:my-group-*

Produce messages to a topic using an idempotent producer

As well as the permissions for producing to a topic, an additional IdempotentWrite permission is
required on the Cluster resource.

Two resources are needed for matching. For example:

Topic:my-topic
Cluster:kafka-cluster

List consumer groups

When listing consumer groups, only the groups on which the user has the Describe permissions are
returned. Alternatively, if the user has the Describe permission on the Cluster:kafka-cluster, all the
consumer groups are returned.

Display consumer group details

To display a consumer group’s details, the Describe permission is required on the group and the topics
associated with the group.

bin/kafka-topics.sh --describe --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-console-producer.sh --topic my-topic \
 --broker-list my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties

bin/kafka-console-consumer.sh --topic my-topic --group my-group-1 --from-beginning \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --consumer.config /tmp/config.properties

bin/kafka-console-producer.sh --topic my-topic \
 --broker-list my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties --producer-
property enable.idempotence=true --request-required-acks -1

bin/kafka-consumer-groups.sh --list \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

159

Change topic configuration

To change a topic’s configuration, the Describe and Alter permissions are required on the topic.

Display Kafka broker configuration

In order to use kafka-configs.sh to get a broker’s configuration, the DescribeConfigs permission is
required on the Cluster:kafka-cluster.

Change Kafka broker configuration

To change a Kafka broker’s configuration, DescribeConfigs and AlterConfigs permissions are required
on Cluster:kafka-cluster.

Delete a topic

To delete a topic, the Describe and Delete permissions are required on the topic.

Select a lead partition

To run leader selection for topic partitions, the Alter permission is required on the Cluster:kafka-
cluster.

Reassign partitions

To generate a partition reassignment file, Describe permissions are required on the topics involved.

To execute the partition reassignment, Describe and Alter permissions are required on Cluster:kafka-
cluster. Also, Describe permissions are required on the topics involved.

bin/kafka-consumer-groups.sh --describe --group my-group-1 \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-topics.sh --alter --topic my-topic --partitions 2 \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-configs.sh --entity-type brokers --entity-name 0 --describe --all \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-configs --entity-type brokers --entity-name 0 --alter --add-config log.cleaner.threads=2 \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-topics.sh --delete --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-leader-election.sh --topic my-topic --partition 0 --election-type PREFERRED /
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --admin.config /tmp/config.properties

bin/kafka-reassign-partitions.sh --topics-to-move-json-file /tmp/topics-to-move.json --broker-list "0,1" -
-generate \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties >
/tmp/partition-reassignment.json

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

160

To verify partition reassignment, Describe, and AlterConfigs permissions are required on
Cluster:kafka-cluster, and on each of the topics involved.

5.5.4. Trying Red Hat Single Sign-On Authorization Services

This example explains how to use Red Hat Single Sign-On Authorization Services with keycloak
authorization. Use Red Hat Single Sign-On Authorization Services to enforce access restrictions on
Kafka clients. Red Hat Single Sign-On Authorization Services use authorization scopes, policies and
permissions to define and apply access control to resources.

Red Hat Single Sign-On Authorization Services REST endpoints provide a list of granted permissions on
resources for authenticated users. The list of grants (permissions) is fetched from the Red Hat Single
Sign-On server as the first action after an authenticated session is established by the Kafka client. The
list is refreshed in the background so that changes to the grants are detected. Grants are cached and
enforced locally on the Kafka broker for each user session to provide fast authorization decisions.

AMQ Streams provides example configuration files . These include the following example files for
setting up Red Hat Single Sign-On:

kafka-ephemeral-oauth-single-keycloak-authz.yaml

An example Kafka custom resource configured for OAuth 2.0 token-based authorization using Red
Hat Single Sign-On. You can use the custom resource to deploy a Kafka cluster that uses keycloak
authorization and token-based oauth authentication.

kafka-authz-realm.json

An example Red Hat Single Sign-On realm configured with sample groups, users, roles and clients.
You can import the realm into a Red Hat Single Sign-On instance to set up fine-grained permissions
to access Kafka.

If you want to try the example with Red Hat Single Sign-On, use these files to perform the tasks outlined
in this section in the order shown.

1. Accessing the Red Hat Single Sign-On Admin Console

2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization

3. Preparing TLS connectivity for a CLI Kafka client session

4. Checking authorized access to Kafka using a CLI Kafka client session

Authentication

When you configure token-based oauth authentication, you specify a jwksEndpointUri as the URI for
local JWT validation. When you configure keycloak authorization, you specify a tokenEndpointUri as
the URI of the Red Hat Single Sign-On token endpoint. The hostname for both URIs must be the same.

Targeted permissions with group or role policies

In Red Hat Single Sign-On, confidential clients with service accounts enabled can authenticate to the
server in their own name using a client ID and a secret. This is convenient for microservices that typically

bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --execute \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties

bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --verify \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

161

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploy-examples-str

act in their own name, and not as agents of a particular user (like a web site). Service accounts can have
roles assigned like regular users. They cannot, however, have groups assigned. As a consequence, if you
want to target permissions to microservices using service accounts, you cannot use group policies, and
should instead use role policies. Conversely, if you want to limit certain permissions only to regular user
accounts where authentication with a username and password is required, you can achieve that as a side
effect of using the group policies rather than the role policies. This is what is used in this example for
permissions that start with ClusterManager. Performing cluster management is usually done
interactively using CLI tools. It makes sense to require the user to log in before using the resulting
access token to authenticate to the Kafka broker. In this case, the access token represents the specific
user, rather than the client application.

5.5.4.1. Accessing the Red Hat Single Sign-On Admin Console

Set up Red Hat Single Sign-On, then connect to its Admin Console and add the preconfigured realm.
Use the example kafka-authz-realm.json file to import the realm. You can check the authorization rules
defined for the realm in the Admin Console. The rules grant access to the resources on the Kafka cluster
configured to use the example Red Hat Single Sign-On realm.

Prerequisites

A running OpenShift cluster.

The AMQ Streams examples/security/keycloak-authorization/kafka-authz-realm.json file
that contains the preconfigured realm.

Procedure

1. Install the Red Hat Single Sign-On server using the Red Hat Single Sign-On Operator as
described in Server Installation and Configuration in the Red Hat Single Sign-On
documentation.

2. Wait until the Red Hat Single Sign-On instance is running.

3. Get the external hostname to be able to access the Admin Console.

In this example, we assume the Red Hat Single Sign-On server is running in the sso namespace.

4. Get the password for the admin user.

The password is stored as a secret, so get the configuration YAML file for the Red Hat Single
Sign-On instance to identify the name of the secret (secretKeyRef.name).

5. Use the name of the secret to obtain the clear text password.

In this example, we assume the name of the secret is credential-keycloak.

NS=sso
oc get ingress keycloak -n $NS

oc get -n $NS pod keycloak-0 -o yaml | less

SECRET_NAME=credential-keycloak
oc get -n $NS secret $SECRET_NAME -o yaml | grep PASSWORD | awk '{print $2}' |
base64 -D

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

162

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

6. Log in to the Admin Console with the username admin and the password you obtained.
Use https://HOSTNAME to access the OpenShift ingress.

You can now upload the example realm to Red Hat Single Sign-On using the Admin Console.

7. Click Add Realm to import the example realm.

8. Add the examples/security/keycloak-authorization/kafka-authz-realm.json file, and then
click Create.
You now have kafka-authz as your current realm in the Admin Console.

The default view displays the Master realm.

9. In the Red Hat Single Sign-On Admin Console, go to Clients > kafka > Authorization > Settings
and check that Decision Strategy is set to Affirmative.
An affirmative policy means that at least one policy must be satisfied for a client to access the
Kafka cluster.

10. In the Red Hat Single Sign-On Admin Console, go to Groups, Users, Roles and Clients to view
the realm configuration.

Groups

Groups are used to create user groups and set user permissions. Groups are sets of users
with a name assigned. They are used to compartmentalize users into geographical,
organizational or departmental units. Groups can be linked to an LDAP identity provider. You
can make a user a member of a group through a custom LDAP server admin user interface,
for example, to grant permissions on Kafka resources.

Users

Users are used to create users. For this example, alice and bob are defined. alice is a
member of the ClusterManager group and bob is a member of ClusterManager-my-
cluster group. Users can be stored in an LDAP identity provider.

Roles

Roles mark users or clients as having certain permissions. Roles are a concept analogous to
groups. They are usually used to tag users with organizational roles and have the requisite
permissions. Roles cannot be stored in an LDAP identity provider. If LDAP is a requirement,
you can use groups instead, and add Red Hat Single Sign-On roles to the groups so that
when users are assigned a group they also get a corresponding role.

Clients

Clients can have specific configurations. For this example, kafka, kafka-cli, team-a-client,
and team-b-client clients are configured.

The kafka client is used by Kafka brokers to perform the necessary OAuth 2.0
communication for access token validation. This client also contains the authorization
services resource definitions, policies, and authorization scopes used to perform
authorization on the Kafka brokers. The authorization configuration is defined in the
kafka client from the Authorization tab, which becomes visible when Authorization
Enabled is switched on from the Settings tab.

The kafka-cli client is a public client that is used by the Kafka command line tools when
authenticating with username and password to obtain an access token or a refresh
token.

The team-a-client and team-b-client clients are confidential clients representing
services with partial access to certain Kafka topics.

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

163

11. In the Red Hat Single Sign-On Admin Console, go to Authorization > Permissions to see the
granted permissions that use the resources and policies defined for the realm.
For example, the kafka client has the following permissions:

Dev Team A can write to topics that start with x_ on any cluster
Dev Team B can read from topics that start with x_ on any cluster
Dev Team B can update consumer group offsets that start with x_ on any cluster
ClusterManager of my-cluster Group has full access to cluster config on my-cluster
ClusterManager of my-cluster Group has full access to consumer groups on my-cluster
ClusterManager of my-cluster Group has full access to topics on my-cluster

Dev Team A

The Dev Team A realm role can write to topics that start with x_ on any cluster. This
combines a resource called Topic:x_*, Describe and Write scopes, and the Dev Team A
policy. The Dev Team A policy matches all users that have a realm role called Dev Team A.

Dev Team B

The Dev Team B realm role can read from topics that start with x_ on any cluster. This
combines Topic:x_*, Group:x_* resources, Describe and Read scopes, and the Dev Team
B policy. The Dev Team B policy matches all users that have a realm role called Dev Team
B. Matching users and clients have the ability to read from topics, and update the consumed
offsets for topics and consumer groups that have names starting with x_.

5.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization

Deploy a Kafka cluster configured to connect to the Red Hat Single Sign-On server. Use the example
kafka-ephemeral-oauth-single-keycloak-authz.yaml file to deploy the Kafka cluster as a Kafka
custom resource. The example deploys a single-node Kafka cluster with keycloak authorization and
oauth authentication.

Prerequisites

The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and
loaded with the example realm.

The Cluster Operator is deployed to your OpenShift cluster.

The AMQ Streams examples/security/keycloak-authorization/kafka-ephemeral-oauth-
single-keycloak-authz.yaml custom resource.

Procedure

1. Use the hostname of the Red Hat Single Sign-On instance you deployed to prepare a truststore
certificate for Kafka brokers to communicate with the Red Hat Single Sign-On server.

The certificate is required as OpenShift ingress is used to make a secure (HTTPS) connection.

2. Deploy the certificate to OpenShift as a secret.

SSO_HOST=SSO-HOSTNAME
SSO_HOST_PORT=$SSO_HOST:443
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.crt

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

164

3. Set the hostname as an environment variable

4. Create and deploy the example Kafka cluster.

5.5.4.3. Preparing TLS connectivity for a CLI Kafka client session

Create a new pod for an interactive CLI session. Set up a truststore with a Red Hat Single Sign-On
certificate for TLS connectivity. The truststore is to connect to Red Hat Single Sign-On and the Kafka
broker.

Prerequisites

The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and
loaded with the example realm.
In the Red Hat Single Sign-On Admin Console, check the roles assigned to the clients are
displayed in Clients > Service Account Roles.

The Kafka cluster configured to connect with Red Hat Single Sign-On is deployed to your
OpenShift cluster.

Procedure

1. Run a new interactive pod container using the AMQ Streams Kafka image to connect to a
running Kafka broker.

NOTE

If oc times out waiting on the image download, subsequent attempts may result
in an AlreadyExists error.

2. Attach to the pod container.

3. Use the hostname of the Red Hat Single Sign-On instance to prepare a certificate for client
connection using TLS.

oc create secret generic oauth-server-cert --from-file=/tmp/sso.crt -n $NS

SSO_HOST=SSO-HOSTNAME

cat examples/security/keycloak-authorization/kafka-ephemeral-oauth-single-keycloak-
authz.yaml | sed -E 's#\${SSO_HOST}'"#$SSO_HOST#" | oc create -n $NS -f -

NS=sso
oc run -ti --restart=Never --image=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1
kafka-cli -n $NS -- /bin/sh

oc attach -ti kafka-cli -n $NS

SSO_HOST=SSO-HOSTNAME
SSO_HOST_PORT=$SSO_HOST:443
STOREPASS=storepass

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

165

4. Create a truststore for TLS connection to the Kafka brokers.

5. Use the Kafka bootstrap address as the hostname of the Kafka broker and the tls listener port
(9093) to prepare a certificate for the Kafka broker.

6. Add the certificate for the Kafka broker to the truststore.

Keep the session open to check authorized access.

5.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

Check the authorization rules applied through the Red Hat Single Sign-On realm using an interactive
CLI session. Apply the checks using Kafka’s example producer and consumer clients to create topics
with user and service accounts that have different levels of access.

Use the team-a-client and team-b-client clients to check the authorization rules. Use the alice admin
user to perform additional administrative tasks on Kafka.

The AMQ Streams Kafka image used in this example contains Kafka producer and consumer binaries.

Prerequisites

ZooKeeper and Kafka are running in the OpenShift cluster to be able to send and receive
messages.

The interactive CLI Kafka client session is started.
Apache Kafka download .

Setting up client and admin user configuration

1. Prepare a Kafka configuration file with authentication properties for the team-a-client client.

echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.crt

keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias sso -storepass $STOREPASS
-import -file /tmp/sso.crt -noprompt

KAFKA_HOST_PORT=my-cluster-kafka-bootstrap:9093
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $KAFKA_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/my-cluster-kafka.crt

keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias my-cluster-kafka -storepass
$STOREPASS -import -file /tmp/my-cluster-kafka.crt -noprompt

SSO_HOST=SSO-HOSTNAME

cat > /tmp/team-a-client.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

166

http://kafka.apache.org/

The SASL OAUTHBEARER mechanism is used. This mechanism requires a client ID and client
secret, which means the client first connects to the Red Hat Single Sign-On server to obtain an
access token. The client then connects to the Kafka broker and uses the access token to
authenticate.

2. Prepare a Kafka configuration file with authentication properties for the team-b-client client.

3. Authenticate admin user alice by using curl and performing a password grant authentication to
obtain a refresh token.

ssl.truststore.type=PKCS12
sasl.mechanism=OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.client.id="team-a-client" \
 oauth.client.secret="team-a-client-secret" \
 oauth.ssl.truststore.location="/tmp/truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHan
dler
EOF

cat > /tmp/team-b-client.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.client.id="team-b-client" \
 oauth.client.secret="team-b-client-secret" \
 oauth.ssl.truststore.location="/tmp/truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHan
dler
EOF

USERNAME=alice
PASSWORD=alice-password

GRANT_RESPONSE=$(curl -X POST "https://$SSO_HOST/auth/realms/kafka-
authz/protocol/openid-connect/token" -H 'Content-Type: application/x-www-form-urlencoded'
-d
"grant_type=password&username=$USERNAME&password=$PASSWORD&client_id=kafka-
cli&scope=offline_access" -s -k)

REFRESH_TOKEN=$(echo $GRANT_RESPONSE | awk -F "refresh_token\":\"" '{printf $2}' |
awk -F "\"" '{printf $1}')

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

167

The refresh token is an offline token that is long-lived and does not expire.

4. Prepare a Kafka configuration file with authentication properties for the admin user alice.

The kafka-cli public client is used for the oauth.client.id in the sasl.jaas.config. Since it’s a
public client it does not require a secret. The client authenticates with the refresh token that was
authenticated in the previous step. The refresh token requests an access token behind the
scenes, which is then sent to the Kafka broker for authentication.

Producing messages with authorized access

Use the team-a-client configuration to check that you can produce messages to topics that start with
a_ or x_.

1. Write to topic my-topic.

This request returns a Not authorized to access topics: [my-topic] error.

team-a-client has a Dev Team A role that gives it permission to perform any supported actions
on topics that start with a_, but can only write to topics that start with x_. The topic named my-
topic matches neither of those rules.

2. Write to topic a_messages.

Messages are produced to Kafka successfully.

3. Press CTRL+C to exit the CLI application.

cat > /tmp/alice.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.refresh.token="$REFRESH_TOKEN" \
 oauth.client.id="kafka-cli" \
 oauth.ssl.truststore.location="/tmp/truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHan
dler
EOF

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic my-topic \
 --producer.config=/tmp/team-a-client.properties
First message

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --producer.config /tmp/team-a-client.properties
First message
Second message

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

168

4. Check the Kafka container log for a debug log of Authorization GRANTED for the request.

Consuming messages with authorized access

Use the team-a-client configuration to consume messages from topic a_messages.

1. Fetch messages from topic a_messages.

The request returns an error because the Dev Team A role for team-a-client only has access to
consumer groups that have names starting with a_.

2. Update the team-a-client properties to specify the custom consumer group it is permitted to
use.

The consumer receives all the messages from the a_messages topic.

Administering Kafka with authorized access

The team-a-client is an account without any cluster-level access, but it can be used with some
administrative operations.

1. List topics.

The a_messages topic is returned.

2. List consumer groups.

The a_consumer_group_1 consumer group is returned.

Fetch details on the cluster configuration.

The request returns an error because the operation requires cluster level permissions that team-
a-client does not have.

oc logs my-cluster-kafka-0 -f -n $NS

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties --group
a_consumer_group_1

bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties --list

bin/kafka-consumer-groups.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --
command-config /tmp/team-a-client.properties --list

bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties \
 --entity-type brokers --describe --entity-default

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

169

Using clients with different permissions

Use the team-b-client configuration to produce messages to topics that start with b_.

1. Write to topic a_messages.

This request returns a Not authorized to access topics: [a_messages] error.

2. Write to topic b_messages.

Messages are produced to Kafka successfully.

3. Write to topic x_messages.

A Not authorized to access topics: [x_messages] error is returned, The team-b-client can
only read from topic x_messages.

4. Write to topic x_messages using team-a-client.

This request returns a Not authorized to access topics: [x_messages] error. The team-a-
client can write to the x_messages topic, but it does not have a permission to create a topic if
it does not yet exist. Before team-a-client can write to the x_messages topic, an admin power
user must create it with the correct configuration, such as the number of partitions and replicas.

Managing Kafka with an authorized admin user

Use admin user alice to manage Kafka. alice has full access to manage everything on any Kafka cluster.

1. Create the x_messages topic as alice.

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --producer.config /tmp/team-b-client.properties
Message 1

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
b_messages \
 --producer.config /tmp/team-b-client.properties
Message 1
Message 2
Message 3

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-b-client.properties
Message 1

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-a-client.properties
Message 1

bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties \
 --topic x_messages --create --replication-factor 1 --partitions 1

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

170

The topic is created successfully.

2. List all topics as alice.

Admin user alice can list all the topics, whereas team-a-client and team-b-client can only list
the topics they have access to.

The Dev Team A and Dev Team B roles both have Describe permission on topics that start
with x_, but they cannot see the other team’s topics because they do not have Describe
permissions on them.

3. Use the team-a-client to produce messages to the x_messages topic:

As alice created the x_messages topic, messages are produced to Kafka successfully.

4. Use the team-b-client to produce messages to the x_messages topic.

This request returns a Not authorized to access topics: [x_messages] error.

5. Use the team-b-client to consume messages from the x_messages topic:

The consumer receives all the messages from the x_messages topic.

6. Use the team-a-client to consume messages from the x_messages topic.

bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties --list
bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties --list
bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-b-client.properties --list

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-a-client.properties
Message 1
Message 2
Message 3

bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-b-client.properties
Message 4
Message 5

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/team-b-client.properties --group
x_consumer_group_b

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties --group
x_consumer_group_a

CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA

171

This request returns a Not authorized to access topics: [x_messages] error.

7. Use the team-a-client to consume messages from a consumer group that begins with a_.

This request returns a Not authorized to access topics: [x_messages] error.

Dev Team A has no Read access on topics that start with a x_.

8. Use alice to produce messages to the x_messages topic.

Messages are produced to Kafka successfully.

alice can read from or write to any topic.

9. Use alice to read the cluster configuration.

The cluster configuration for this example is empty.

Additional resources

Server Installation and Configuration

Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties --group
a_consumer_group_a

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/alice.properties

bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties \
 --entity-type brokers --describe --entity-default

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

172

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

CHAPTER 6. USING AMQ STREAMS OPERATORS
Use the AMQ Streams operators to manage your Kafka cluster, and Kafka topics and users.

6.1. USING THE CLUSTER OPERATOR

The Cluster Operator is used to deploy a Kafka cluster and other Kafka components.

For information on deploying the Cluster Operator, see Deploying the Cluster Operator .

6.1.1. Cluster Operator configuration

You can configure the Cluster Operator using supported environment variables, and through its logging
configuration.

The environment variables relate to container configuration for the deployment of the Cluster Operator
image. For more information on image configuration, see, Section 14.1.6, “image”.

STRIMZI_NAMESPACE

A comma-separated list of namespaces that the operator should operate in. When not set, set to
empty string, or set to *, the Cluster Operator will operate in all namespaces. The Cluster Operator
deployment might use the OpenShift Downward API to set this automatically to the namespace the
Cluster Operator is deployed in.

Example configuration for Cluster Operator namespaces

STRIMZI_FULL_RECONCILIATION_INTERVAL_MS

Optional, default is 120000 ms. The interval between periodic reconciliations, in milliseconds.

STRIMZI_OPERATION_TIMEOUT_MS

Optional, default 300000 ms. The timeout for internal operations, in milliseconds. This value should
be increased when using AMQ Streams on clusters where regular OpenShift operations take longer
than usual (because of slow downloading of Docker images, for example).

STRIMZI_OPERATIONS_THREAD_POOL_SIZE

Optional, default 10 The worker thread pool size, which is used for various asynchronous and blocking
operations that are run by the cluster operator.

STRIMZI_OPERATOR_NAMESPACE

The name of the namespace where the AMQ Streams Cluster Operator is running. Do not configure
this variable manually. Use the OpenShift Downward API.

env:
 - name: STRIMZI_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

env:
 - name: STRIMZI_OPERATOR_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

CHAPTER 6. USING AMQ STREAMS OPERATORS

173

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/#the-downward-api

STRIMZI_OPERATOR_NAMESPACE_LABELS

Optional. The labels of the namespace where the AMQ Streams Cluster Operator is running.
Namespace labels are used to configure the namespace selector in network policies to allow the
AMQ Streams Cluster Operator to only have access to the operands from the namespace with these
labels. When not set, the namespace selector in network policies is configured to allow access to the
AMQ Streams Cluster Operator from any namespace in the OpenShift cluster.

STRIMZI_LABELS_EXCLUSION_PATTERN

Optional, default regex pattern is ^app.kubernetes.io/(?!part-of).*. Specifies the regex exclusion
pattern used to filter labels propagation from the main custom resource to its subresources. The
labels exclusion filter is not applied to labels in template sections such as
spec.kafka.template.pod.metadata.labels.

STRIMZI_CUSTOM_{COMPONENT_NAME}_LABELS

Optional. One or more custom labels to apply to all the pods created by the {COMPONENT_NAME}
custom resource. The Cluster Operator labels the pods when the custom resource is created or is
next reconciled.
Environment variables exist for the following components:

KAFKA

KAFKA_CONNECT

KAFKA_CONNECT_BUILD

ZOOKEEPER

ENTITY_OPERATOR

KAFKA_MIRROR_MAKER2

KAFKA_MIRROR_MAKER

CRUISE_CONTROL

KAFKA_BRIDGE

KAFKA_EXPORTER

STRIMZI_CUSTOM_RESOURCE_SELECTOR

Optional. Specifies label selector used to filter the custom resources handled by the operator. The
operator will operate only on those custom resources which will have the specified labels set.
Resources without these labels will not be seen by the operator. The label selector applies to Kafka,
KafkaConnect, KafkaBridge, KafkaMirrorMaker, and KafkaMirrorMaker2 resources.
KafkaRebalance and KafkaConnector resources will be operated only when their corresponding
Kafka and Kafka Connect clusters have the matching labels.

env:
 - name: STRIMZI_OPERATOR_NAMESPACE_LABELS
 value: label1=value1,label2=value2

env:
 - name: STRIMZI_LABELS_EXCLUSION_PATTERN
 value: "^key1.*"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

174

STRIMZI_KAFKA_IMAGES

Required. This provides a mapping from Kafka version to the corresponding Docker image containing
a Kafka broker of that version. The required syntax is whitespace or comma separated
<version>=<image> pairs. For example 2.8.0=registry.redhat.io/amq7/amq-streams-kafka-28-
rhel8:2.0.1, 3.0.0=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1. This is used when a
Kafka.spec.kafka.version property is specified but not the Kafka.spec.kafka.image in the Kafka
resource.

STRIMZI_DEFAULT_KAFKA_INIT_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1. The image name to
use as default for the init container started before the broker for initial configuration work (that is,
rack support), if no image is specified as the kafka-init-image in the Kafka resource.

STRIMZI_KAFKA_CONNECT_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka connect of that version. The required syntax is whitespace or comma separated
<version>=<image> pairs. For example 2.8.0=registry.redhat.io/amq7/amq-streams-kafka-28-
rhel8:2.0.1, 3.0.0=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1. This is used when a
KafkaConnect.spec.version property is specified but not the KafkaConnect.spec.image.

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka mirror maker of that version. The required syntax is whitespace or comma
separated <version>=<image> pairs. For example 2.8.0=registry.redhat.io/amq7/amq-streams-
kafka-28-rhel8:2.0.1, 3.0.0=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1. This is
used when a KafkaMirrorMaker.spec.version property is specified but not the
KafkaMirrorMaker.spec.image.

STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1. The image name to
use as the default when deploying the topic operator, if no image is specified as the
Kafka.spec.entityOperator.topicOperator.image in Kafka resource.

STRIMZI_DEFAULT_USER_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1. The image name to
use as the default when deploying the user operator, if no image is specified as the
Kafka.spec.entityOperator.userOperator.image in the Kafka resource.

STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1. The image name to
use as the default when deploying the sidecar container which provides TLS support for the Entity
Operator, if no image is specified as the Kafka.spec.entityOperator.tlsSidecar.image in the Kafka
resource.

STRIMZI_IMAGE_PULL_POLICY

Optional. The ImagePullPolicy which will be applied to containers in all pods managed by AMQ
Streams Cluster Operator. The valid values are Always, IfNotPresent, and Never. If not specified,
the OpenShift defaults will be used. Changing the policy will result in a rolling update of all your
Kafka, Kafka Connect, and Kafka MirrorMaker clusters.

STRIMZI_IMAGE_PULL_SECRETS

Optional. A comma-separated list of Secret names. The secrets referenced here contain the
credentials to the container registries where the container images are pulled from. The secrets are

env:
 - name: STRIMZI_CUSTOM_RESOURCE_SELECTOR
 value: label1=value1,label2=value2

CHAPTER 6. USING AMQ STREAMS OPERATORS

175

used in the imagePullSecrets field for all Pods created by the Cluster Operator. Changing this list
results in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters.

STRIMZI_KUBERNETES_VERSION

Optional. Overrides the OpenShift version information detected from the API server.

Example configuration for OpenShift version override

KUBERNETES_SERVICE_DNS_DOMAIN

Optional. Overrides the default OpenShift DNS domain name suffix.
By default, services assigned in the OpenShift cluster have a DNS domain name that uses the
default suffix cluster.local.

For example, for broker kafka-0:

The DNS domain name is added to the Kafka broker certificates used for hostname verification.

If you are using a different DNS domain name suffix in your cluster, change the
KUBERNETES_SERVICE_DNS_DOMAIN environment variable from the default to the one you are
using in order to establish a connection with the Kafka brokers.

STRIMZI_CONNECT_BUILD_TIMEOUT_MS

Optional, default 300000 ms. The timeout for building new Kafka Connect images with additional
connectots, in milliseconds. This value should be increased when using AMQ Streams to build
container images containing many connectors or using a slow container registry.

STRIMZI_NETWORK_POLICY_GENERATION

Optional, default true. Controls whether AMQ Streams generates network policy resources. Network
policies allow connections between Kafka components.

Set this environment variable to false to disable network policy generation. You might do this, for
example, if you want to use custom network policies. Custom network policies allow more control over
maintaining the connections between components.

STRIMZI_FEATURE_GATES

Optional. Enables or disables features and functionality controlled by feature gates. For more
information about each feature gate, see Section 6.1.1.1, “Feature gates” .

6.1.1.1. Feature gates

env:
 - name: STRIMZI_KUBERNETES_VERSION
 value: |
 major=1
 minor=16
 gitVersion=v1.16.2
 gitCommit=c97fe5036ef3df2967d086711e6c0c405941e14b
 gitTreeState=clean
 buildDate=2019-10-15T19:09:08Z
 goVersion=go1.12.10
 compiler=gc
 platform=linux/amd64

<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc.cluster.local

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

176

AMQ Streams operators support feature gates to enable or disable certain features and functionality.
Enabling a feature gate changes the behavior of the relevant operator and introduces the feature to
your AMQ Streams deployment.

Feature gates have a default state of either enabled or disabled. To modify a feature gate’s default
state, use the STRIMZI_FEATURE_GATES environment variable in the operator’s configuration. You
can modify multiple feature gates using this single environment variable.

Feature gates have three stages of maturity:

Alpha — typically disabled by default

Beta — typically enabled by default

General Availability (GA) — typically enabled by default

Alpha stage features might be experimental or unstable, subject to change, or not sufficiently tested for
production use. Beta stage features are well tested and their functionality is not likely to change. GA
stage features are stable and should not change in future. Alpha and beta stage features are removed if
they do not prove to be useful.

NOTE

Feature gates might be removed when they reach GA. This means that the feature was
incorporated into the AMQ Streams core features and can no longer be disabled.

Table 6.1. All feature gates and the AMQ Streams versions when they moved to alpha, beta, or GA

Feature gate Alpha Beta GA

ControlPlaneListene
r

1.8 - -

ServiceAccountPatc
hing

1.8 - -

Configuring feature gates
You configure feature gates using the STRIMZI_FEATURE_GATES environment variable in the
operator’s configuration. Specify a comma-separated list of feature gate names and prefixes. A + prefix
enables the feature gate and a - prefix disables it.

Example feature gate configuration that enables FeatureGate1 and disables FeatureGate2

6.1.1.1.1. Control plane listener feature gate

Use the ControlPlaneListener feature gate to change the communication paths used for inter-broker
communications within your Kafka cluster.

The OpenShift control plane manages the workloads running on the worker nodes. Services such as the

env:
 - name: STRIMZI_FEATURE_GATES
 value: +FeatureGate1,-FeatureGate2

CHAPTER 6. USING AMQ STREAMS OPERATORS

177

The OpenShift control plane manages the workloads running on the worker nodes. Services such as the
Kubernetes API server and the controller manager run on the control plane. The OpenShift data plane
provides resources to containers, including CPU, memory, network, and storage.

In AMQ Streams, control plane traffic consists of controller connections that maintain the desired state
of the Kafka cluster. Data plane traffic mainly consists of data replication between the leader broker and
the follower brokers.

When the ControlPlaneListener feature gate is disabled, control plane and data plane traffic go
through the same internal listener on port 9091. This was the default behavior before the feature gate
was introduced.

When ControlPlaneListener is enabled, control plane traffic goes through a dedicated control plane
listener on port 9090. Data plane traffic continues to use the internal listener on port 9091.

Using control plane listeners might improve performance because important controller connections,
such as partition leadership changes, are not delayed by data replication across brokers.

Enabling the control plane listener feature gate

The ControlPlaneListener feature gate is in the alpha stage and has a default state of disabled. To
enable it, specify +ControlPlaneListener in the STRIMZI_FEATURE_GATES environment variable in
the Cluster Operator configuration.

This feature gate must be disabled when:

Upgrading from AMQ Streams 1.7 and earlier

Downgrading to AMQ Streams 1.7 and earlier

NOTE

The ControlPlaneListener feature gate was introduced in AMQ Streams 1.8 and is
expected to remain in the alpha stage for a number of releases before moving to the beta
stage.

6.1.1.1.2. Service Account patching feature gate

By default, the Cluster Operator does not update service accounts. To allow the Cluster Operator to
apply updates, enable the ServiceAccountPatching feature gate.

Add +ServiceAccountPatching to the STRIMZI_FEATURE_GATES environment variable in the
Cluster Operator configuration.

The feature gate is currently in the alpha phase and disabled by default. With the feature gate enabled,
the Cluster Operator applies updates to service account configuration in every reconciliation. For
example, you can change service account labels and annotations after the operands are already created.

NOTE

The ServiceAccountPatching feature gate was introduced in AMQ Streams 1.8 and is
expected to remain in the alpha phase for a number of releases before it moves to the
beta phase and is enabled by default.

6.1.1.2. Logging configuration by ConfigMap

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

178

The Cluster Operator’s logging is configured by the strimzi-cluster-operator ConfigMap.

A ConfigMap containing logging configuration is created when installing the Cluster Operator. This
ConfigMap is described in the file install/cluster-operator/050-ConfigMap-strimzi-cluster-
operator.yaml. You configure Cluster Operator logging by changing the data field log4j2.properties in
this ConfigMap.

To update the logging configuration, you can edit the 050-ConfigMap-strimzi-cluster-operator.yaml
file and then run the following command:

Alternatively, edit the ConfigMap directly:

To change the frequency of the reload interval, set a time in seconds in the monitorInterval option in
the created ConfigMap.

If the ConfigMap is missing when the Cluster Operator is deployed, the default logging values are used.

If the ConfigMap is accidentally deleted after the Cluster Operator is deployed, the most recently
loaded logging configuration is used. Create a new ConfigMap to load a new logging configuration.

NOTE

Do not remove the monitorInterval option from the ConfigMap.

6.1.1.3. Restricting Cluster Operator access with network policy

The Cluster Operator can run in the same namespace as the resources it manages, or in a separate
namespace. By default, the STRIMZI_OPERATOR_NAMESPACE environment variable is configured
to use the OpenShift Downward API to find which namespace the Cluster Operator is running in. If the
Cluster Operator is running in the same namespace as the resources, only local access is required, and
allowed by AMQ Streams.

If the Cluster Operator is running in a separate namespace to the resources it manages, any namespace
in the OpenShift cluster is allowed access to the Cluster Operator unless network policy is configured.
Use the optional STRIMZI_OPERATOR_NAMESPACE_LABELS environment variable to establish
network policy for the Cluster Operator using namespace labels. By adding namespace labels, access to
the Cluster Operator is restricted to the namespaces specified.

Network policy configured for the Cluster Operator deployment

6.1.1.4. Periodic reconciliation

Although the Cluster Operator reacts to all notifications about the desired cluster resources received

oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

oc edit configmap strimzi-cluster-operator

#...
env:
 # ...
 - name: STRIMZI_OPERATOR_NAMESPACE_LABELS
 value: label1=value1,label2=value2
 #...

CHAPTER 6. USING AMQ STREAMS OPERATORS

179

Although the Cluster Operator reacts to all notifications about the desired cluster resources received
from the OpenShift cluster, if the operator is not running, or if a notification is not received for any
reason, the desired resources will get out of sync with the state of the running OpenShift cluster.

In order to handle failovers properly, a periodic reconciliation process is executed by the Cluster
Operator so that it can compare the state of the desired resources with the current cluster deployments
in order to have a consistent state across all of them. You can set the time interval for the periodic
reconciliations using the [STRIMZI_FULL_RECONCILIATION_INTERVAL_MS] variable.

6.1.2. Provisioning Role-Based Access Control (RBAC)

For the Cluster Operator to function it needs permission within the OpenShift cluster to interact with
resources such as Kafka, KafkaConnect, and so on, as well as the managed resources, such as
ConfigMaps, Pods, Deployments, StatefulSets and Services. Such permission is described in terms of
OpenShift role-based access control (RBAC) resources:

ServiceAccount,

Role and ClusterRole,

RoleBinding and ClusterRoleBinding.

In addition to running under its own ServiceAccount with a ClusterRoleBinding, the Cluster Operator
manages some RBAC resources for the components that need access to OpenShift resources.

OpenShift also includes privilege escalation protections that prevent components operating under one
ServiceAccount from granting other ServiceAccounts privileges that the granting ServiceAccount
does not have. Because the Cluster Operator must be able to create the ClusterRoleBindings, and
RoleBindings needed by resources it manages, the Cluster Operator must also have those same
privileges.

6.1.2.1. Delegated privileges

When the Cluster Operator deploys resources for a desired Kafka resource it also creates
ServiceAccounts, RoleBindings, and ClusterRoleBindings, as follows:

The Kafka broker pods use a ServiceAccount called cluster-name-kafka

When the rack feature is used, the strimzi-cluster-name-kafka-init ClusterRoleBinding is
used to grant this ServiceAccount access to the nodes within the cluster via a ClusterRole
called strimzi-kafka-broker

When the rack feature is not used and the cluster is not exposed via nodeport, no binding is
created

The ZooKeeper pods use a ServiceAccount called cluster-name-zookeeper

The Entity Operator pod uses a ServiceAccount called cluster-name-entity-operator

The Topic Operator produces OpenShift events with status information, so the
ServiceAccount is bound to a ClusterRole called strimzi-entity-operator which grants this
access via the strimzi-entity-operator RoleBinding

The pods for KafkaConnect resource uses a ServiceAccount called cluster-name-cluster-
connect

The pods for KafkaMirrorMaker use a ServiceAccount called cluster-name-mirror-maker

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

180

The pods for KafkaMirrorMaker2 use a ServiceAccount called cluster-name-mirrormaker2

The pods for KafkaBridge use a ServiceAccount called cluster-name-bridge

6.1.2.2. ServiceAccount

The Cluster Operator is best run using a ServiceAccount:

Example ServiceAccount for the Cluster Operator

The Deployment of the operator then needs to specify this in its
spec.template.spec.serviceAccountName:

Partial example of Deployment for the Cluster Operator

Note line 12, where the strimzi-cluster-operator ServiceAccount is specified as the
serviceAccountName.

6.1.2.3. ClusterRoles

The Cluster Operator needs to operate using ClusterRoles that gives access to the necessary
resources. Depending on the OpenShift cluster setup, a cluster administrator might be needed to create
the ClusterRoles.

NOTE

Cluster administrator rights are only needed for the creation of the ClusterRoles. The
Cluster Operator will not run under the cluster admin account.

The ClusterRoles follow the principle of least privilege and contain only those privileges needed by the
Cluster Operator to operate Kafka, Kafka Connect, and ZooKeeper clusters. The first set of assigned

apiVersion: v1
kind: ServiceAccount
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
spec:
 replicas: 1
 selector:
 matchLabels:
 name: strimzi-cluster-operator
 strimzi.io/kind: cluster-operator
 template:
 # ...

CHAPTER 6. USING AMQ STREAMS OPERATORS

181

privileges allow the Cluster Operator to manage OpenShift resources such as StatefulSets,
Deployments, Pods, and ConfigMaps.

Cluster Operator uses ClusterRoles to grant permission at the namespace-scoped resources level and
cluster-scoped resources level:

ClusterRole with namespaced resources for the Cluster Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-namespaced
 labels:
 app: strimzi
rules:
 - apiGroups:
 - "rbac.authorization.k8s.io"
 resources:
 # The cluster operator needs to access and manage rolebindings to grant Strimzi components
cluster permissions
 - rolebindings
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - "rbac.authorization.k8s.io"
 resources:
 # The cluster operator needs to access and manage roles to grant the entity operator permissions
 - roles
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - ""
 resources:
 # The cluster operator needs to access and delete pods, this is to allow it to monitor pod health
and coordinate rolling updates
 - pods
 # The cluster operator needs to access and manage service accounts to grant Strimzi
components cluster permissions
 - serviceaccounts
 # The cluster operator needs to access and manage config maps for Strimzi components
configuration
 - configmaps
 # The cluster operator needs to access and manage services and endpoints to expose Strimzi
components to network traffic

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

182

 - services
 - endpoints
 # The cluster operator needs to access and manage secrets to handle credentials
 - secrets
 # The cluster operator needs to access and manage persistent volume claims to bind them to
Strimzi components for persistent data
 - persistentvolumeclaims
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - "kafka.strimzi.io"
 resources:
 # The cluster operator runs the KafkaAssemblyOperator, which needs to access and manage
Kafka resources
 - kafkas
 - kafkas/status
 # The cluster operator runs the KafkaConnectAssemblyOperator, which needs to access and
manage KafkaConnect resources
 - kafkaconnects
 - kafkaconnects/status
 # The cluster operator runs the KafkaConnectorAssemblyOperator, which needs to access and
manage KafkaConnector resources
 - kafkaconnectors
 - kafkaconnectors/status
 # The cluster operator runs the KafkaMirrorMakerAssemblyOperator, which needs to access and
manage KafkaMirrorMaker resources
 - kafkamirrormakers
 - kafkamirrormakers/status
 # The cluster operator runs the KafkaBridgeAssemblyOperator, which needs to access and
manage BridgeMaker resources
 - kafkabridges
 - kafkabridges/status
 # The cluster operator runs the KafkaMirrorMaker2AssemblyOperator, which needs to access and
manage KafkaMirrorMaker2 resources
 - kafkamirrormaker2s
 - kafkamirrormaker2s/status
 # The cluster operator runs the KafkaRebalanceAssemblyOperator, which needs to access and
manage KafkaRebalance resources
 - kafkarebalances
 - kafkarebalances/status
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 # The cluster operator needs the extensions api as the operator supports Kubernetes version

CHAPTER 6. USING AMQ STREAMS OPERATORS

183

1.11+
 # apps/v1 was introduced in Kubernetes 1.14
 - "extensions"
 resources:
 # The cluster operator needs to access and manage deployments to run deployment based
Strimzi components
 - deployments
 - deployments/scale
 # The cluster operator needs to access replica sets to manage Strimzi components and to
determine error states
 - replicasets
 # The cluster operator needs to access and manage replication controllers to manage replicasets
 - replicationcontrollers
 # The cluster operator needs to access and manage network policies to lock down
communication between Strimzi components
 - networkpolicies
 # The cluster operator needs to access and manage ingresses which allow external access to the
services in a cluster
 - ingresses
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - "apps"
 resources:
 # The cluster operator needs to access and manage deployments to run deployment based
Strimzi components
 - deployments
 - deployments/scale
 - deployments/status
 # The cluster operator needs to access and manage stateful sets to run stateful sets based
Strimzi components
 - statefulsets
 # The cluster operator needs to access replica-sets to manage Strimzi components and to
determine error states
 - replicasets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - ""
 resources:
 # The cluster operator needs to be able to create events and delegate permissions to do so
 - events
 verbs:
 - create

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

184

 - apiGroups:
 # Kafka Connect Build on OpenShift requirement
 - build.openshift.io
 resources:
 - buildconfigs
 - buildconfigs/instantiate
 - builds
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - networking.k8s.io
 resources:
 # The cluster operator needs to access and manage network policies to lock down
communication between Strimzi components
 - networkpolicies
 # The cluster operator needs to access and manage ingresses which allow external access to the
services in a cluster
 - ingresses
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - route.openshift.io
 resources:
 # The cluster operator needs to access and manage routes to expose Strimzi components for
external access
 - routes
 - routes/custom-host
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - policy
 resources:
 # The cluster operator needs to access and manage pod disruption budgets this limits the number
of concurrent disruptions
 # that a Strimzi component experiences, allowing for higher availability
 - poddisruptionbudgets
 verbs:
 - get

CHAPTER 6. USING AMQ STREAMS OPERATORS

185

The second includes the permissions needed for cluster-scoped resources.

ClusterRole with cluster-scoped resources for the Cluster Operator

The strimzi-kafka-broker ClusterRole represents the access needed by the init container in Kafka
pods that is used for the rack feature. As described in the Delegated privileges section, this role is also
needed by the Cluster Operator in order to be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to

 - list
 - watch
 - create
 - delete
 - patch
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-global
 labels:
 app: strimzi
rules:
 - apiGroups:
 - "rbac.authorization.k8s.io"
 resources:
 # The cluster operator needs to create and manage cluster role bindings in the case of an install
where a user
 # has specified they want their cluster role bindings generated
 - clusterrolebindings
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - storage.k8s.io
 resources:
 # The cluster operator requires "get" permissions to view storage class details
 # This is because only a persistent volume of a supported storage class type can be resized
 - storageclasses
 verbs:
 - get
 - apiGroups:
 - ""
 resources:
 # The cluster operator requires "list" permissions to view all nodes in a cluster
 # The listing is used to determine the node addresses when NodePort access is configured
 # These addresses are then exposed in the custom resource states
 - nodes
 verbs:
 - list

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

186

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka broker pods

The strimzi-topic-operator ClusterRole represents the access needed by the Topic Operator. As
described in the Delegated privileges section, this role is also needed by the Cluster Operator in order to
be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to events to the Topic
Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-kafka-broker
 labels:
 app: strimzi
rules:
 - apiGroups:
 - ""
 resources:
 # The Kafka Brokers require "get" permissions to view the node they are on
 # This information is used to generate a Rack ID that is used for High Availability configurations
 - nodes
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-entity-operator
 labels:
 app: strimzi
rules:
 - apiGroups:
 - "kafka.strimzi.io"
 resources:
 # The entity operator runs the KafkaTopic assembly operator, which needs to access and manage
KafkaTopic resources
 - kafkatopics
 - kafkatopics/status
 # The entity operator runs the KafkaUser assembly operator, which needs to access and manage
KafkaUser resources
 - kafkausers
 - kafkausers/status
 verbs:
 - get
 - list
 - watch
 - create
 - patch
 - update
 - delete
 - apiGroups:
 - ""
 resources:

CHAPTER 6. USING AMQ STREAMS OPERATORS

187

The strimzi-kafka-client ClusterRole represents the access needed by the components based on
Kafka clients which use the client rack-awareness. As described in the Delegated privileges section, this
role is also needed by the Cluster Operator in order to be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka client based pods

6.1.2.4. ClusterRoleBindings

The operator needs ClusterRoleBindings and RoleBindings which associates its ClusterRole with its
ServiceAccount: ClusterRoleBindings are needed for ClusterRoles containing cluster-scoped
resources.

Example ClusterRoleBinding for the Cluster Operator

 - events
 verbs:
 # The entity operator needs to be able to create events
 - create
 - apiGroups:
 - ""
 resources:
 # The entity operator user-operator needs to access and manage secrets to store generated
credentials
 - secrets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-kafka-client
 labels:
 app: strimzi
rules:
 - apiGroups:
 - ""
 resources:
 # The Kafka clients (Connect, Mirror Maker, etc.) require "get" permissions to view the node they
are on
 # This information is used to generate a Rack ID (client.rack option) that is used for consuming
from the closest
 # replicas when enabled
 - nodes
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

188

ClusterRoleBindings are also needed for the ClusterRoles needed for delegation:

Example ClusterRoleBinding for the Cluster Operator for the Kafka broker rack-awareness

and

Example ClusterRoleBinding for the Cluster Operator for the Kafka client rack-awareness

kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-cluster-operator-global
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator-kafka-broker-delegation
 labels:
 app: strimzi
The Kafka broker cluster role must be bound to the cluster operator service account so that it can
delegate the cluster role to the Kafka brokers.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-kafka-broker
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator-kafka-client-delegation
 labels:
 app: strimzi
The Kafka clients cluster role must be bound to the cluster operator service account so that it can
delegate the
cluster role to the Kafka clients using it for consuming from closest replica.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:

CHAPTER 6. USING AMQ STREAMS OPERATORS

189

ClusterRoles containing only namespaced resources are bound using RoleBindings only.

6.1.3. Configuring the Cluster Operator with default proxy settings

If you are running a Kafka cluster behind a HTTP proxy, you can still pass data in and out of the cluster.
For example, you can run Kafka Connect with connectors that push and pull data from outside the proxy.
Or you can use a proxy to connect with an authorization server.

Configure the Cluster Operator deployment to specify the proxy environment variables. The Cluster
Operator accepts standard proxy configuration (HTTP_PROXY, HTTPS_PROXY and NO_PROXY) as
environment variables. The proxy settings are applied to all AMQ Streams containers.

The format for a proxy address is http://IP-ADDRESS:PORT-NUMBER . To set up a proxy with a name
and password, the format is http://USERNAME:PASSWORD@IP-ADDRESS:PORT-NUMBER.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create

 kind: ClusterRole
 name: strimzi-kafka-client
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-cluster-operator-namespaced
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator-entity-operator-delegation
 labels:
 app: strimzi
The Entity Operator cluster role must be bound to the cluster operator service account so that it can
delegate the cluster role to the Entity Operator.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-entity-operator
 apiGroup: rbac.authorization.k8s.io

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

190

1

2

3

CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base Access
Control (RBAC) in the OpenShift cluster usually means that permission to create, edit, and delete these
resources is limited to OpenShift cluster administrators, such as system:admin.

Procedure

1. To add proxy environment variables to the Cluster Operator, update its Deployment
configuration (install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml).

Example proxy configuration for the Cluster Operator

Address of the proxy server.

Secure address of the proxy server.

Addresses for servers that are accessed directly as exceptions to the proxy server. The
URLs are comma-separated.

Alternatively, edit the Deployment directly:

2. If you updated the YAML file instead of editing the Deployment directly, apply the changes:

Additional resources

Host aliases

Designating AMQ Streams administrators

6.2. USING THE TOPIC OPERATOR

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 # ...
 env:
 # ...
 - name: "HTTP_PROXY"
 value: "http://proxy.com" 1
 - name: "HTTPS_PROXY"
 value: "https://proxy.com" 2
 - name: "NO_PROXY"
 value: "internal.com, other.domain.com" 3
 # ...

oc edit deployment strimzi-cluster-operator

oc create -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml

CHAPTER 6. USING AMQ STREAMS OPERATORS

191

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#adding-users-the-strimzi-admin-role-str

When you create, modify or delete a topic using the KafkaTopic resource, the Topic Operator ensures
those changes are reflected in the Kafka cluster.

The Deploying and Upgrading AMQ Streams on OpenShift guide provides instructions to deploy the
Topic Operator:

Using the Cluster Operator (recommended)

Standalone to operate with Kafka clusters not managed by AMQ Streams

6.2.1. Kafka topic resource

The KafkaTopic resource is used to configure topics, including the number of partitions and replicas.

The full schema for KafkaTopic is described in KafkaTopic schema reference.

6.2.1.1. Identifying a Kafka cluster for topic handling

A KafkaTopic resource includes a label that defines the appropriate name of the Kafka cluster (derived
from the name of the Kafka resource) to which it belongs.

For example:

The label is used by the Topic Operator to identify the KafkaTopic resource and create a new topic, and
also in subsequent handling of the topic.

If the label does not match the Kafka cluster, the Topic Operator cannot identify the KafkaTopic and
the topic is not created.

6.2.1.2. Kafka topic usage recommendations

When working with topics, be consistent. Always operate on either KafkaTopic resources or topics
directly in OpenShift. Avoid routinely switching between both methods for a given topic.

Use topic names that reflect the nature of the topic, and remember that names cannot be changed
later.

If creating a topic in Kafka, use a name that is a valid OpenShift resource name, otherwise the Topic
Operator will need to create the corresponding KafkaTopic with a name that conforms to the
OpenShift rules.

NOTE

Recommendations for identifiers and names in OpenShift are outlined in Identifiers and
Names in OpenShift community article.

6.2.1.3. Kafka topic naming conventions

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: topic-name-1
 labels:
 strimzi.io/cluster: my-cluster

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

192

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-topic-operator-using-the-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-topic-operator-standalone-str
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/identifiers.md

1

Kafka and OpenShift impose their own validation rules for the naming of topics in Kafka and
KafkaTopic.metadata.name respectively. There are valid names for each which are invalid in the other.

Using the spec.topicName property, it is possible to create a valid topic in Kafka with a name that would
be invalid for the Kafka topic in OpenShift.

The spec.topicName property inherits Kafka naming validation rules:

The name must not be longer than 249 characters.

Valid characters for Kafka topics are ASCII alphanumerics, ., _, and -.

The name cannot be . or .., though . can be used in a name, such as exampleTopic. or
.exampleTopic.

spec.topicName must not be changed.

For example:

Upper case is invalid in OpenShift.

cannot be changed to:

NOTE

Some Kafka client applications, such as Kafka Streams, can create topics in Kafka
programmatically. If those topics have names that are invalid OpenShift resource names,
the Topic Operator gives them a valid metadata.name based on the Kafka name. Invalid
characters are replaced and a hash is appended to the name. For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: topic-name-1
spec:
 topicName: topicName-1 1
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: topic-name-1
spec:
 topicName: name-2
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: mytopic---c55e57fe2546a33f9e603caf57165db4072e827e
spec:
 topicName: myTopic
 # ...

CHAPTER 6. USING AMQ STREAMS OPERATORS

193

6.2.2. Topic Operator topic store

The Topic Operator uses Kafka to store topic metadata describing topic configuration as key-value
pairs. The topic store is based on the Kafka Streams key-value mechanism, which uses Kafka topics to
persist the state.

Topic metadata is cached in-memory and accessed locally within the Topic Operator. Updates from
operations applied to the local in-memory cache are persisted to a backup topic store on disk. The topic
store is continually synchronized with updates from Kafka topics or OpenShift KafkaTopic custom
resources. Operations are handled rapidly with the topic store set up this way, but should the in-memory
cache crash it is automatically repopulated from the persistent storage.

6.2.2.1. Internal topic store topics

Internal topics support the handling of topic metadata in the topic store.

__strimzi_store_topic

Input topic for storing the topic metadata

__strimzi-topic-operator-kstreams-topic-store-changelog

Retains a log of compacted topic store values

WARNING

Do not delete these topics, as they are essential to the running of the Topic
Operator.

6.2.2.2. Migrating topic metadata from ZooKeeper

In previous releases of AMQ Streams, topic metadata was stored in ZooKeeper. The new process
removes this requirement, bringing the metadata into the Kafka cluster, and under the control of the
Topic Operator.

When upgrading to AMQ Streams 2.0, the transition to Topic Operator control of the topic store is
seamless. Metadata is found and migrated from ZooKeeper, and the old store is deleted.

6.2.2.3. Downgrading to a AMQ Streams version that uses ZooKeeper to store topic
metadata

If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for the
storage of topic metadata, you still downgrade your Cluster Operator to the previous version, then
downgrade Kafka brokers and client applications to the previous Kafka version as standard.

However, you must also delete the topics that were created for the topic store using a kafka-admin
command, specifying the bootstrap address of the Kafka cluster. For example:

oc run kafka-admin -ti --image=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1 --rm=true -
-restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-
operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server
localhost:9092 --topic __strimzi_store_topic --delete

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

194

1

2

3

The command must correspond to the type of listener and authentication used to access the Kafka
cluster.

The Topic Operator will reconstruct the ZooKeeper topic metadata from the state of the topics in
Kafka.

6.2.2.4. Topic Operator topic replication and scaling

The recommended configuration for topics managed by the Topic Operator is a topic replication factor
of 3, and a minimum of 2 in-sync replicas.

The number of partitions for the topic.

The number of replica topic partitions. Currently, this cannot be changed in the KafkaTopic
resource, but it can be changed using the kafka-reassign-partitions.sh tool.

The minimum number of replica partitions that a message must be successfully written to, or an
exception is raised.

NOTE

In-sync replicas are used in conjunction with the acks configuration for producer
applications. The acks configuration determines the number of follower partitions a
message must be replicated to before the message is acknowledged as successfully
received. The Topic Operator runs with acks=all, whereby messages must be
acknowledged by all in-sync replicas.

When scaling Kafka clusters by adding or removing brokers, replication factor configuration is not
changed and replicas are not reassigned automatically. However, you can use the kafka-reassign-
partitions.sh tool to change the replication factor, and manually reassign replicas to brokers.

Alternatively, though the integration of Cruise Control for AMQ Streams cannot change the replication
factor for topics, the optimization proposals it generates for rebalancing Kafka include commands that
transfer partition replicas and change partition leadership.

6.2.2.5. Handling changes to topics

A fundamental problem that the Topic Operator needs to solve is that there is no single source of truth:
both the KafkaTopic resource and the Kafka topic can be modified independently of the Topic
Operator. Complicating this, the Topic Operator might not always be able to observe changes at each

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10 1
 replicas: 3 2
 config:
 min.insync.replicas: 2 3
 #...

CHAPTER 6. USING AMQ STREAMS OPERATORS

195

end in real time. For example, when the Topic Operator is down.

To resolve this, the Topic Operator maintains information about each topic in the topic store. When a
change happens in the Kafka cluster or OpenShift, it looks at both the state of the other system and the
topic store in order to determine what needs to change to keep everything in sync. The same thing
happens whenever the Topic Operator starts, and periodically while it is running.

For example, suppose the Topic Operator is not running, and a KafkaTopic called my-topic is created.
When the Topic Operator starts, the topic store does not contain information on my-topic, so it can infer
that the KafkaTopic was created after it was last running. The Topic Operator creates the topic
corresponding to my-topic, and also stores metadata for my-topic in the topic store.

If you update Kafka topic configuration or apply a change through the KafkaTopic custom resource, the
topic store is updated after the Kafka cluster is reconciled.

The topic store also allows the Topic Operator to manage scenarios where the topic configuration is
changed in Kafka topics and updated through OpenShift KafkaTopic custom resources, as long as the
changes are not incompatible. For example, it is possible to make changes to the same topic config key,
but to different values. For incompatible changes, the Kafka configuration takes priority, and the
KafkaTopic is updated accordingly.

NOTE

You can also use the KafkaTopic resource to delete topics using a oc delete -f KAFKA-
TOPIC-CONFIG-FILE command. To be able to do this, delete.topic.enable must be set
to true (default) in the spec.kafka.config of the Kafka resource.

Additional resources

Downgrading AMQ Streams

Producer configuration tuning and data durability

Scaling cluster and partition reassignment

Cruise Control for cluster rebalancing

6.2.3. Configuring a Kafka topic

Use the properties of the KafkaTopic resource to configure a Kafka topic.

You can use oc apply to create or modify topics, and oc delete to delete existing topics.

For example:

oc apply -f <topic-config-file>

oc delete KafkaTopic <topic-name>

This procedure shows how to create a topic with 10 partitions and 2 replicas.

Before you start

It is important that you consider the following before making your changes:

Kafka does not support making the following changes through the KafkaTopic resource:

Changing topic names using spec.topicName

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

196

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-downgrade-str

Changing topic names using spec.topicName

Decreasing partition size using spec.partitions

You cannot use spec.replicas to change the number of replicas that were initially specified.

Increasing spec.partitions for topics with keys will change how records are partitioned, which
can be particularly problematic when the topic uses semantic partitioning.

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using TLS authentication and
encryption.

A running Topic Operator (typically deployed with the Entity Operator).

For deleting a topic, delete.topic.enable=true (default) in the spec.kafka.config of the Kafka
resource.

Procedure

1. Prepare a file containing the KafkaTopic to be created.

An example KafkaTopic

TIP

When modifying a topic, you can get the current version of the resource using oc get
kafkatopic orders -o yaml.

2. Create the KafkaTopic resource in OpenShift.

6.2.4. Configuring the Topic Operator with resource requests and limits

You can allocate resources, such as CPU and memory, to the Topic Operator and set a limit on the
amount of resources it can consume.

Prerequisites

The Cluster Operator is running.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: orders
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 2

oc apply -f TOPIC-CONFIG-FILE

CHAPTER 6. USING AMQ STREAMS OPERATORS

197

Procedure

1. Update the Kafka cluster configuration in an editor, as required:

2. In the spec.entityOperator.topicOperator.resources property in the Kafka resource, set the
resource requests and limits for the Topic Operator.

3. Apply the new configuration to create or update the resource.

6.3. USING THE USER OPERATOR

When you create, modify or delete a user using the KafkaUser resource, the User Operator ensures
those changes are reflected in the Kafka cluster.

The Deploying and Upgrading AMQ Streams on OpenShift guide provides instructions to deploy the
User Operator:

Using the Cluster Operator (recommended)

Standalone to operate with Kafka clusters not managed by AMQ Streams

For more information about the schema, see KafkaUser schema reference.

Authenticating and authorizing access to Kafka

Use KafkaUser to enable the authentication and authorization mechanisms that a specific client uses to
access Kafka.

For more information on using KafkUser to manage users and secure access to Kafka brokers, see
Securing access to Kafka brokers .

6.3.1. Configuring the User Operator with resource requests and limits

You can allocate resources, such as CPU and memory, to the User Operator and set a limit on the
amount of resources it can consume.

oc edit kafka MY-CLUSTER

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # Kafka and ZooKeeper sections...
 entityOperator:
 topicOperator:
 resources:
 requests:
 cpu: "1"
 memory: 500Mi
 limits:
 cpu: "1"
 memory: 500Mi

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

198

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-user-operator-using-the-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-user-operator-standalone-str

Prerequisites

The Cluster Operator is running.

Procedure

1. Update the Kafka cluster configuration in an editor, as required:

2. In the spec.entityOperator.userOperator.resources property in the Kafka resource, set the
resource requests and limits for the User Operator.

Save the file and exit the editor. The Cluster Operator applies the changes automatically.

6.4. MONITORING OPERATORS USING PROMETHEUS METRICS

AMQ Streams operators expose Prometheus metrics. The metrics are automatically enabled and
contain information about:

Number of reconciliations

Number of Custom Resources the operator is processing

Duration of reconciliations

JVM metrics from the operators

Additionally, we provide an example Grafana dashboard.

For more information about Prometheus, see the Introducing Metrics to Kafka in the Deploying and
Upgrading AMQ Streams on OpenShift guide.

oc edit kafka MY-CLUSTER

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # Kafka and ZooKeeper sections...
 entityOperator:
 userOperator:
 resources:
 requests:
 cpu: "1"
 memory: 500Mi
 limits:
 cpu: "1"
 memory: 500Mi

CHAPTER 6. USING AMQ STREAMS OPERATORS

199

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-str

CHAPTER 7. KAFKA BRIDGE
This chapter provides an overview of the AMQ Streams Kafka Bridge and helps you get started using its
REST API to interact with AMQ Streams.

To try out the Kafka Bridge in your local environment, see the Section 7.3, “Kafka Bridge
quickstart” later in this chapter.

For detailed configuration steps, see Section 2.5, “Kafka Bridge cluster configuration” .

7.1. KAFKA BRIDGE API DOCUMENTATION

For the full list of REST API endpoints and descriptions, including example requests and responses, see
the Kafka Bridge API reference .

7.2. KAFKA BRIDGE OVERVIEW

You can use the AMQ Streams Kafka Bridge as an interface to make specific types of HTTP requests to
the Kafka cluster.

7.2.1. Kafka Bridge interface

The Kafka Bridge provides a RESTful interface that allows HTTP-based clients to interact with a Kafka
cluster. It offers the advantages of a web API connection to AMQ Streams, without the need for client
applications to interpret the Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

7.2.1.1. HTTP requests

The Kafka Bridge supports HTTP requests to a Kafka cluster, with methods to:

Send messages to a topic.

Retrieve messages from topics.

Retrieve a list of partitions for a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Retrieve a list of topics that a consumer is subscribed to.

Unsubscribe consumers from topics.

Assign partitions to consumers.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

The methods provide JSON responses and HTTP response code error handling. Messages can be sent

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

200

https://strimzi.io/docs/bridge/latest/

The methods provide JSON responses and HTTP response code error handling. Messages can be sent
in JSON or binary formats.

Clients can produce and consume messages without the requirement to use the native Kafka protocol.

Additional resources

To view the API documentation, including example requests and responses, see the Kafka
Bridge API reference.

7.2.2. Supported clients for the Kafka Bridge

You can use the Kafka Bridge to integrate both internal and external HTTP client applications with your
Kafka cluster.

Internal clients

Internal clients are container-based HTTP clients running in the same OpenShift cluster as the Kafka
Bridge itself. Internal clients can access the Kafka Bridge on the host and port defined in the
KafkaBridge custom resource.

External clients

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka Bridge is
deployed and running. External clients can access the Kafka Bridge through an OpenShift Route, a
loadbalancer service, or using an Ingress.

HTTP internal and external client integration

7.2.3. Securing the Kafka Bridge

AMQ Streams does not currently provide any encryption, authentication, or authorization for the Kafka

CHAPTER 7. KAFKA BRIDGE

201

https://strimzi.io/docs/bridge/latest/

1

AMQ Streams does not currently provide any encryption, authentication, or authorization for the Kafka
Bridge. This means that requests sent from external clients to the Kafka Bridge are:

Not encrypted, and must use HTTP rather than HTTPS

Sent without authentication

However, you can secure the Kafka Bridge using other methods, such as:

OpenShift Network Policies that define which pods can access the Kafka Bridge.

Reverse proxies with authentication or authorization, for example, OAuth2 proxies.

API Gateways.

Ingress or OpenShift Routes with TLS termination.

The Kafka Bridge supports TLS encryption and TLS and SASL authentication when connecting to the
Kafka Brokers. Within your OpenShift cluster, you can configure:

TLS or SASL-based authentication between the Kafka Bridge and your Kafka cluster

A TLS-encrypted connection between the Kafka Bridge and your Kafka cluster.

For more information, see Section 2.5.1, “Configuring the Kafka Bridge” .

You can use ACLs in Kafka brokers to restrict the topics that can be consumed and produced using the
Kafka Bridge.

7.2.4. Accessing the Kafka Bridge outside of OpenShift

After deployment, the AMQ Streams Kafka Bridge can only be accessed by applications running in the
same OpenShift cluster. These applications use the <kafka_bridge_name>-bridge-service service to
access the API.

If you want to make the Kafka Bridge accessible to applications running outside of the OpenShift cluster,
you can expose it manually by creating one of the following features:

LoadBalancer or NodePort type services

Ingress resources

OpenShift routes

If you decide to create Services, use the labels from the selector of the <kafka_bridge_name>-bridge-
service service to configure the pods to which the service will route the traffic:

Name of the Kafka Bridge custom resource in your OpenShift cluster.

 # ...
 selector:
 strimzi.io/cluster: kafka-bridge-name 1
 strimzi.io/kind: KafkaBridge
 #...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

202

1

7.2.5. Requests to the Kafka Bridge

Specify data formats and HTTP headers to ensure valid requests are submitted to the Kafka Bridge.

7.2.5.1. Content Type headers

API request and response bodies are always encoded as JSON.

When performing consumer operations, POST requests must provide the following Content-
Type header if there is a non-empty body:

When performing producer operations, POST requests must provide Content-Type headers
specifying the embedded data format of the messages produced. This can be either json or
binary.

Embedded data format Content-Type header

JSON Content-Type: application/vnd.kafka.json.v2+json

Binary Content-Type: application/vnd.kafka.binary.v2+json

The embedded data format is set per consumer, as described in the next section.

The Content-Type must not be set if the POST request has an empty body. An empty body can be used
to create a consumer with the default values.

7.2.5.2. Embedded data format

The embedded data format is the format of the Kafka messages that are transmitted, over HTTP, from a
producer to a consumer using the Kafka Bridge. Two embedded data formats are supported: JSON and
binary.

When creating a consumer using the /consumers/groupid endpoint, the POST request body must
specify an embedded data format of either JSON or binary. This is specified in the format field, for
example:

A binary embedded data format.

The embedded data format specified when creating a consumer must match the data format of the
Kafka messages it will consume.

If you choose to specify a binary embedded data format, subsequent producer requests must provide
the binary data in the request body as Base64-encoded strings. For example, when sending messages
using the /topics/topicname endpoint, records.value must be encoded in Base64:

Content-Type: application/vnd.kafka.v2+json

{
 "name": "my-consumer",
 "format": "binary", 1
...
}

CHAPTER 7. KAFKA BRIDGE

203

1

Producer requests must also provide a Content-Type header that corresponds to the embedded data
format, for example, Content-Type: application/vnd.kafka.binary.v2+json.

7.2.5.3. Message format

When sending messages using the /topics endpoint, you enter the message payload in the request body,
in the records parameter.

The records parameter can contain any of these optional fields:

Message headers

Message key

Message value

Destination partition

Example POST request to /topics

The header value in binary format and encoded as Base64.

7.2.5.4. Accept headers

After creating a consumer, all subsequent GET requests must provide an Accept header in the following
format:

{
 "records": [
 {
 "key": "my-key",
 "value": "ZWR3YXJkdGhldGhyZWVsZWdnZWRjYXQ="
 },
]
}

curl -X POST \
 http://localhost:8080/topics/my-topic \
 -H 'content-type: application/vnd.kafka.json.v2+json' \
 -d '{
 "records": [
 {
 "key": "my-key",
 "value": "sales-lead-0001"
 "partition": 2
 "headers": [
 {
 "key": "key1",
 "value": "QXBhY2hlIEthZmthIGlzIHRoZSBib21iIQ==" 1
 }
]
 },
]
}'

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

204

1

The EMBEDDED-DATA-FORMAT is either json or binary.

For example, when retrieving records for a subscribed consumer using an embedded data format of
JSON, include this Accept header:

7.2.6. CORS

Cross-Origin Resource Sharing (CORS) allows you to specify allowed methods and originating URLs for
accessing the Kafka cluster in your Kafka Bridge HTTP configuration .

Example CORS configuration for Kafka Bridge

CORS allows for simple and preflighted requests between origin sources on different domains.

Simple requests are suitable for standard requests using GET, HEAD, POST methods.

A preflighted request sends a HTTP OPTIONS request as an initial check that the actual request is safe
to send. On confirmation, the actual request is sent. Preflight requests are suitable for methods that
require greater safeguards, such as PUT and DELETE, and use non-standard headers.

All requests require an Origin value in their header, which is the source of the HTTP request.

7.2.6.1. Simple request

For example, this simple request header specifies the origin as https://strimzi.io.

The header information is added to the request.

In the response from the Kafka Bridge, an Access-Control-Allow-Origin header is returned.

Returning an asterisk (*) shows the resource can be accessed by any domain.

Accept: application/vnd.kafka.EMBEDDED-DATA-FORMAT.v2+json

Accept: application/vnd.kafka.json.v2+json

...
cors:
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 # ...

Origin: https://strimzi.io

curl -v -X GET HTTP-ADDRESS/bridge-consumer/records \
-H 'Origin: https://strimzi.io'\
-H 'content-type: application/vnd.kafka.v2+json'

HTTP/1.1 200 OK
Access-Control-Allow-Origin: * 1

CHAPTER 7. KAFKA BRIDGE

205

1

2

7.2.6.2. Preflighted request

An initial preflight request is sent to Kafka Bridge using an OPTIONS method. The HTTP OPTIONS
request sends header information to check that Kafka Bridge will allow the actual request.

Here the preflight request checks that a POST request is valid from https://strimzi.io.

Kafka Bridge is alerted that the actual request is a POST request.

The actual request will be sent with a Content-Type header.

OPTIONS is added to the header information of the preflight request.

Kafka Bridge responds to the initial request to confirm that the request will be accepted. The response
header returns allowed origins, methods and headers.

If the origin or method is rejected, an error message is returned.

The actual request does not require Access-Control-Request-Method header, as it was confirmed in
the preflight request, but it does require the origin header.

The response shows the originating URL is allowed.

Additional resources

Fetch CORS specification

7.2.7. Kafka Bridge deployment

You deploy the Kafka Bridge into your OpenShift cluster by using the Cluster Operator.

After the Kafka Bridge is deployed, the Cluster Operator creates Kafka Bridge objects in your OpenShift

OPTIONS /my-group/instances/my-user/subscription HTTP/1.1
Origin: https://strimzi.io
Access-Control-Request-Method: POST 1
Access-Control-Request-Headers: Content-Type 2

curl -v -X OPTIONS -H 'Origin: https://strimzi.io' \
-H 'Access-Control-Request-Method: POST' \
-H 'content-type: application/vnd.kafka.v2+json'

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://strimzi.io
Access-Control-Allow-Methods: GET,POST,PUT,DELETE,OPTIONS,PATCH
Access-Control-Allow-Headers: content-type

curl -v -X POST HTTP-ADDRESS/topics/bridge-topic \
-H 'Origin: https://strimzi.io' \
-H 'content-type: application/vnd.kafka.v2+json'

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://strimzi.io

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

206

https://www.w3.org/TR/cors/

After the Kafka Bridge is deployed, the Cluster Operator creates Kafka Bridge objects in your OpenShift
cluster. Objects include the deployment, service, and pod, each named after the name given in the
custom resource for the Kafka Bridge.

Additional resources

For deployment instructions, see Deploying Kafka Bridge to your OpenShift cluster in the
Deploying and Upgrading AMQ Streams on OpenShift guide.

For detailed information on configuring the Kafka Bridge, see Section 2.5, “Kafka Bridge cluster
configuration”

For information on configuring the host and port for the KafkaBridge resource, see
Section 2.5.1, “Configuring the Kafka Bridge” .

For information on integrating external clients, see Section 7.2.4, “Accessing the Kafka Bridge
outside of OpenShift”.

7.3. KAFKA BRIDGE QUICKSTART

Use this quickstart to try out the AMQ Streams Kafka Bridge in your local development environment.
You will learn how to:

Deploy the Kafka Bridge to your OpenShift cluster

Expose the Kafka Bridge service to your local machine by using port-forwarding

Produce messages to topics and partitions in your Kafka cluster

Create a Kafka Bridge consumer

Perform basic consumer operations, such as subscribing the consumer to topics and retrieving
the messages that you produced

In this quickstart, HTTP requests are formatted as curl commands that you can copy and paste to your
terminal. Access to an OpenShift cluster is required.

Ensure you have the prerequisites and then follow the tasks in the order provided in this chapter.

About data formats

In this quickstart, you will produce and consume messages in JSON format, not binary. For more
information on the data formats and HTTP headers used in the example requests, see Section 7.2.5,
“Requests to the Kafka Bridge”.

Prerequisites for the quickstart

Cluster administrator access to a local or remote OpenShift cluster.

AMQ Streams is installed.

A running Kafka cluster, deployed by the Cluster Operator, in an OpenShift namespace.

The Entity Operator is deployed and running as part of the Kafka cluster.

7.3.1. Deploying the Kafka Bridge to your OpenShift cluster

CHAPTER 7. KAFKA BRIDGE

207

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-bridge-str

1

2

AMQ Streams includes a YAML example that specifies the configuration of the AMQ Streams Kafka
Bridge. Make some minimal changes to this file and then deploy an instance of the Kafka Bridge to your
OpenShift cluster.

Procedure

1. Edit the examples/bridge/kafka-bridge.yaml file.

When the Kafka Bridge is deployed, -bridge is appended to the name of the deployment
and other related resources. In this example, the Kafka Bridge deployment is named
quickstart-bridge and the accompanying Kafka Bridge service is named quickstart-
bridge-service.

In the bootstrapServers property, enter the name of the Kafka cluster as the <cluster-
name>.

2. Deploy the Kafka Bridge to your OpenShift cluster:

A quickstart-bridge deployment, service, and other related resources are created in your
OpenShift cluster.

3. Verify that the Kafka Bridge was successfully deployed:

What to do next

After deploying the Kafka Bridge to your OpenShift cluster, expose the Kafka Bridge service to your
local machine.

Additional resources

For more detailed information about configuring the Kafka Bridge, see Section 2.5, “Kafka
Bridge cluster configuration”.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: quickstart 1
spec:
 replicas: 1
 bootstrapServers: <cluster-name>-kafka-bootstrap:9092 2
 http:
 port: 8080

oc apply -f examples/bridge/kafka-bridge.yaml

oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
quickstart-bridge 1/1 1 1 34m
my-cluster-connect 1/1 1 1 24h
my-cluster-entity-operator 1/1 1 1 24h
#...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

208

7.3.2. Exposing the Kafka Bridge service to your local machine

Use port forwarding to expose the AMQ Streams Kafka Bridge service to your local machine on
http://localhost:8080.

NOTE

Port forwarding is only suitable for development and testing purposes.

Procedure

1. List the names of the pods in your OpenShift cluster:

2. Connect to the quickstart-bridge pod on port 8080:

NOTE

If port 8080 on your local machine is already in use, use an alternative HTTP port,
such as 8008.

API requests are now forwarded from port 8080 on your local machine to port 8080 in the Kafka Bridge
pod.

7.3.3. Producing messages to topics and partitions

After you have deployed Kafka Bridge and exposed its service, you can produce messages to topics in
JSON format by using the topics endpoint. You can specify destination partitions for messages in the
request body, as shown here. The partitions endpoint provides an alternative method for specifying a
single destination partition for all messages as a path parameter.

Procedure

1. In a text editor, create a YAML definition for a Kafka topic with three partitions.

oc get pods -o name

pod/kafka-consumer
...
pod/quickstart-bridge-589d78784d-9jcnr
pod/strimzi-cluster-operator-76bcf9bc76-8dnfm

oc port-forward pod/quickstart-bridge-589d78784d-9jcnr 8080:8080 &

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: bridge-quickstart-topic
 labels:
 strimzi.io/cluster: <kafka-cluster-name> 1
spec:
 partitions: 3 2
 replicas: 1

CHAPTER 7. KAFKA BRIDGE

209

http://localhost:8080
https://strimzi.io/docs/bridge/latest/#_send
https://strimzi.io/docs/bridge/latest/#_sendtopartition

1

2

The name of the Kafka cluster in which the Kafka Bridge is deployed.

The number of partitions for the topic.

2. Save the file to the examples/topic directory as bridge-quickstart-topic.yaml.

3. Create the topic in your OpenShift cluster:

4. Using the Kafka Bridge, produce three messages to the topic you created:

sales-lead-0001 is sent to a partition based on the hash of the key.

sales-lead-0002 is sent directly to partition 2.

sales-lead-0003 is sent to a partition in the bridge-quickstart-topic topic using a round-
robin method.

5. If the request is successful, the Kafka Bridge returns an offsets array, along with a 200 code and
a content-type header of application/vnd.kafka.v2+json. For each message, the offsets array
describes:

The partition that the message was sent to

The current message offset of the partition

Example response

 config:
 retention.ms: 7200000
 segment.bytes: 1073741824

oc apply -f examples/topic/bridge-quickstart-topic.yaml

curl -X POST \
 http://localhost:8080/topics/bridge-quickstart-topic \
 -H 'content-type: application/vnd.kafka.json.v2+json' \
 -d '{
 "records": [
 {
 "key": "my-key",
 "value": "sales-lead-0001"
 },
 {
 "value": "sales-lead-0002",
 "partition": 2
 },
 {
 "value": "sales-lead-0003"
 }
]
}'

#...
{
 "offsets":[

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

210

Additional topic requests

Make other curl requests to find information on topics and partitions.

List topics

Example response

Get topic configuration and partition details

Example response

 {
 "partition":0,
 "offset":0
 },
 {
 "partition":2,
 "offset":0
 },
 {
 "partition":0,
 "offset":1
 }
]
}

curl -X GET \
 http://localhost:8080/topics

[
 "__strimzi_store_topic",
 "__strimzi-topic-operator-kstreams-topic-store-changelog",
 "bridge-quickstart-topic",
 "my-topic"
]

curl -X GET \
 http://localhost:8080/topics/bridge-quickstart-topic

{
 "name": "bridge-quickstart-topic",
 "configs": {
 "compression.type": "producer",
 "leader.replication.throttled.replicas": "",
 "min.insync.replicas": "1",
 "message.downconversion.enable": "true",
 "segment.jitter.ms": "0",
 "cleanup.policy": "delete",
 "flush.ms": "9223372036854775807",
 "follower.replication.throttled.replicas": "",
 "segment.bytes": "1073741824",
 "retention.ms": "604800000",
 "flush.messages": "9223372036854775807",

CHAPTER 7. KAFKA BRIDGE

211

 "message.format.version": "2.8-IV1",
 "max.compaction.lag.ms": "9223372036854775807",
 "file.delete.delay.ms": "60000",
 "max.message.bytes": "1048588",
 "min.compaction.lag.ms": "0",
 "message.timestamp.type": "CreateTime",
 "preallocate": "false",
 "index.interval.bytes": "4096",
 "min.cleanable.dirty.ratio": "0.5",
 "unclean.leader.election.enable": "false",
 "retention.bytes": "-1",
 "delete.retention.ms": "86400000",
 "segment.ms": "604800000",
 "message.timestamp.difference.max.ms": "9223372036854775807",
 "segment.index.bytes": "10485760"
 },
 "partitions": [
 {
 "partition": 0,
 "leader": 0,
 "replicas": [
 {
 "broker": 0,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 1,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true
 }
]
 },
 {
 "partition": 1,
 "leader": 2,
 "replicas": [
 {
 "broker": 2,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 0,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 1,
 "leader": false,
 "in_sync": true

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

212

List the partitions of a specific topic

Example response

 }
]
 },
 {
 "partition": 2,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 0,
 "leader": false,
 "in_sync": true
 }
]
 }
]
}

curl -X GET \
 http://localhost:8080/topics/bridge-quickstart-topic/partitions

[
 {
 "partition": 0,
 "leader": 0,
 "replicas": [
 {
 "broker": 0,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 1,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true
 }
]

CHAPTER 7. KAFKA BRIDGE

213

List the details of a specific topic partition

Example response

 },
 {
 "partition": 1,
 "leader": 2,
 "replicas": [
 {
 "broker": 2,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 0,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 1,
 "leader": false,
 "in_sync": true
 }
]
 },
 {
 "partition": 2,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 0,
 "leader": false,
 "in_sync": true
 }
]
 }
]

curl -X GET \
 http://localhost:8080/topics/bridge-quickstart-topic/partitions/0

{
 "partition": 0,
 "leader": 0,

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

214

List the offsets of a specific topic partition

Example response

What to do next

After producing messages to topics and partitions, create a Kafka Bridge consumer .

Additional resources

POST /topics/{topicname} in the API reference documentation.

POST /topics/{topicname}/partitions/{partitionid} in the API reference documentation.

7.3.4. Creating a Kafka Bridge consumer

Before you can perform any consumer operations in the Kafka cluster, you must first create a consumer
by using the consumers endpoint. The consumer is referred to as a Kafka Bridge consumer.

Procedure

1. Create a Kafka Bridge consumer in a new consumer group named bridge-quickstart-
consumer-group:

 "replicas": [
 {
 "broker": 0,
 "leader": true,
 "in_sync": true
 },
 {
 "broker": 1,
 "leader": false,
 "in_sync": true
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true
 }
]
}

curl -X GET \
 http://localhost:8080/topics/bridge-quickstart-topic/partitions/0/offsets

{
 "beginning_offset": 0,
 "end_offset": 1
}

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-group \
 -H 'content-type: application/vnd.kafka.v2+json' \

CHAPTER 7. KAFKA BRIDGE

215

https://strimzi.io/docs/bridge/latest/#_send
https://strimzi.io/docs/bridge/latest/#_sendtopartition
https://strimzi.io/docs/bridge/latest/#_createconsumer

The consumer is named bridge-quickstart-consumer and the embedded data format is
set as json.

Some basic configuration settings are defined.

The consumer will not commit offsets to the log automatically because the
enable.auto.commit setting is false. You will commit the offsets manually later in this
quickstart.
If the request is successful, the Kafka Bridge returns the consumer ID (instance_id) and
base URL (base_uri) in the response body, along with a 200 code.

Example response

2. Copy the base URL (base_uri) to use in the other consumer operations in this quickstart.

What to do next

Now that you have created a Kafka Bridge consumer, you can subscribe it to topics .

Additional resources

POST /consumers/{groupid} in the API reference documentation.

7.3.5. Subscribing a Kafka Bridge consumer to topics

After you have created a Kafka Bridge consumer, subscribe it to one or more topics by using the
subscription endpoint. Once subscribed, the consumer starts receiving all messages that are produced
to the topic.

Procedure

Subscribe the consumer to the bridge-quickstart-topic topic that you created earlier, in
Producing messages to topics and partitions :

 -d '{
 "name": "bridge-quickstart-consumer",
 "auto.offset.reset": "earliest",
 "format": "json",
 "enable.auto.commit": false,
 "fetch.min.bytes": 512,
 "consumer.request.timeout.ms": 30000
 }'

#...
{
 "instance_id": "bridge-quickstart-consumer",
 "base_uri":"http://<bridge-name>-bridge-service:8080/consumers/bridge-quickstart-
consumer-group/instances/bridge-quickstart-consumer"
}

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/subscription \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "topics": [

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

216

https://strimzi.io/docs/bridge/latest/#_createconsumer
https://strimzi.io/docs/bridge/latest/#_subscribe

The topics array can contain a single topic (as shown here) or multiple topics. If you want to
subscribe the consumer to multiple topics that match a regular expression, you can use the
topic_pattern string instead of the topics array.

If the request is successful, the Kafka Bridge returns a 204 (No Content) code only.

What to do next

After subscribing a Kafka Bridge consumer to topics, you can retrieve messages from the consumer .

Additional resources

POST /consumers/{groupid}/instances/{name}/subscription in the API reference
documentation.

7.3.6. Retrieving the latest messages from a Kafka Bridge consumer

Retrieve the latest messages from the Kafka Bridge consumer by requesting data from the records
endpoint. In production, HTTP clients can call this endpoint repeatedly (in a loop).

Procedure

1. Produce additional messages to the Kafka Bridge consumer, as described in Producing
messages to topics and partitions.

2. Submit a GET request to the records endpoint:

After creating and subscribing to a Kafka Bridge consumer, a first GET request will return an
empty response because the poll operation starts a rebalancing process to assign partitions.

3. Repeat step two to retrieve messages from the Kafka Bridge consumer.
The Kafka Bridge returns an array of messages — describing the topic name, key, value, partition,
and offset — in the response body, along with a 200 code. Messages are retrieved from the
latest offset by default.

 "bridge-quickstart-topic"
]
}'

curl -X GET http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/records \
 -H 'accept: application/vnd.kafka.json.v2+json'

HTTP/1.1 200 OK
content-type: application/vnd.kafka.json.v2+json
#...
[
 {
 "topic":"bridge-quickstart-topic",
 "key":"my-key",
 "value":"sales-lead-0001",
 "partition":0,
 "offset":0
 },
 {

CHAPTER 7. KAFKA BRIDGE

217

https://strimzi.io/docs/bridge/latest/#_subscribe
https://strimzi.io/docs/bridge/latest/#_poll

NOTE

If an empty response is returned, produce more records to the consumer as
described in Producing messages to topics and partitions , and then try retrieving
messages again.

What to do next

After retrieving messages from a Kafka Bridge consumer, try committing offsets to the log .

Additional resources

GET /consumers/{groupid}/instances/{name}/records in the API reference documentation.

7.3.7. Commiting offsets to the log

Use the offsets endpoint to manually commit offsets to the log for all messages received by the Kafka
Bridge consumer. This is required because the Kafka Bridge consumer that you created earlier, in
Creating a Kafka Bridge consumer , was configured with the enable.auto.commit setting as false.

Procedure

Commit offsets to the log for the bridge-quickstart-consumer:

Because no request body is submitted, offsets are committed for all the records that have been
received by the consumer. Alternatively, the request body can contain an array
(OffsetCommitSeekList) that specifies the topics and partitions that you want to commit
offsets for.

If the request is successful, the Kafka Bridge returns a 204 code only.

What to do next

After committing offsets to the log, try out the endpoints for seeking to offsets .

Additional resources

POST /consumers/{groupid}/instances/{name}/offsets in the API reference documentation.

7.3.8. Seeking to offsets for a partition

Use the positions endpoints to configure the Kafka Bridge consumer to retrieve messages for a partition

 "topic":"bridge-quickstart-topic",
 "key":null,
 "value":"sales-lead-0003",
 "partition":0,
 "offset":1
 },
#...

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/offsets

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

218

https://strimzi.io/docs/bridge/latest/#_poll
https://strimzi.io/docs/bridge/latest/#_commit
https://strimzi.io/docs/bridge/latest/#_offsetcommitseeklist
https://strimzi.io/docs/bridge/latest/#_commit

Use the positions endpoints to configure the Kafka Bridge consumer to retrieve messages for a partition
from a specific offset, and then from the latest offset. This is referred to in Apache Kafka as a seek
operation.

Procedure

1. Seek to a specific offset for partition 0 of the quickstart-bridge-topic topic:

If the request is successful, the Kafka Bridge returns a 204 code only.

2. Submit a GET request to the records endpoint:

The Kafka Bridge returns messages from the offset that you seeked to.

3. Restore the default message retrieval behavior by seeking to the last offset for the same
partition. This time, use the positions/end endpoint.

If the request is successful, the Kafka Bridge returns another 204 code.

NOTE

You can also use the positions/beginning endpoint to seek to the first offset for one or
more partitions.

What to do next

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/positions \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "offsets": [
 {
 "topic": "bridge-quickstart-topic",
 "partition": 0,
 "offset": 2
 }
]
}'

curl -X GET http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/records \
 -H 'accept: application/vnd.kafka.json.v2+json'

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/positions/end \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "partitions": [
 {
 "topic": "bridge-quickstart-topic",
 "partition": 0
 }
]
}'

CHAPTER 7. KAFKA BRIDGE

219

https://strimzi.io/docs/bridge/latest/#_seek
https://strimzi.io/docs/bridge/latest/#_seektoend
https://strimzi.io/docs/bridge/latest/#_seektobeginning

In this quickstart, you have used the AMQ Streams Kafka Bridge to perform several common operations
on a Kafka cluster. You can now delete the Kafka Bridge consumer that you created earlier.

Additional resources

POST /consumers/{groupid}/instances/{name}/positions in the API reference documentation.

POST /consumers/{groupid}/instances/{name}/positions/beginning in the API reference
documentation.

POST /consumers/{groupid}/instances/{name}/positions/end in the API reference
documentation.

7.3.9. Deleting a Kafka Bridge consumer

Delete the Kafka Bridge consumer that you used throughout this quickstart.

Procedure

Delete the Kafka Bridge consumer by sending a DELETE request to the instances endpoint.

If the request is successful, the Kafka Bridge returns a 204 code.

Additional resources

DELETE /consumers/{groupid}/instances/{name} in the API reference documentation.

curl -X DELETE http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

220

https://strimzi.io/docs/bridge/latest/#_seek
https://strimzi.io/docs/bridge/latest/#_seektobeginning
https://strimzi.io/docs/bridge/latest/#_seektoend
https://strimzi.io/docs/bridge/latest/#_deleteconsumer
https://strimzi.io/docs/bridge/latest/#_deleteconsumer

CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE
You can deploy and integrate Red Hat 3scale API Management with the AMQ Streams Kafka Bridge.

8.1. USING THE KAFKA BRIDGE WITH 3SCALE

With a plain deployment of the Kafka Bridge, there is no provision for authentication or authorization,
and no support for a TLS encrypted connection to external clients.

3scale can secure the Kafka Bridge with TLS, and provide authentication and authorization. Integration
with 3scale also means that additional features like metrics, rate limiting and billing are available.

With 3scale, you can use different types of authentication for requests from external clients wishing to
access AMQ Streams. 3scale supports the following types of authentication:

Standard API Keys

Single randomized strings or hashes acting as an identifier and a secret token.

Application Identifier and Key pairs

Immutable identifier and mutable secret key strings.

OpenID Connect

Protocol for delegated authentication.

Using an existing 3scale deployment?

If you already have 3scale deployed to OpenShift and you wish to use it with the Kafka Bridge, ensure
that you have the correct setup.

Setup is described in Section 8.2, “Deploying 3scale for the Kafka Bridge” .

8.1.1. Kafka Bridge service discovery

3scale is integrated using service discovery, which requires that 3scale is deployed to the same
OpenShift cluster as AMQ Streams and the Kafka Bridge.

Your AMQ Streams Cluster Operator deployment must have the following environment variables set:

STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_LABELS

STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_ANNOTATIONS

When the Kafka Bridge is deployed, the service that exposes the REST interface of the Kafka Bridge
uses the annotations and labels for discovery by 3scale.

A discovery.3scale.net=true label is used by 3scale to find a service.

Annotations provide information about the service.

You can check your configuration in the OpenShift console by navigating to Services for the Kafka
Bridge instance. Under Annotations you will see the endpoint to the OpenAPI specification for the
Kafka Bridge.

8.1.2. 3scale APIcast gateway policies

3scale is used in conjunction with 3scale APIcast, an API gateway deployed with 3scale that provides a

CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE

221

3scale is used in conjunction with 3scale APIcast, an API gateway deployed with 3scale that provides a
single point of entry for the Kafka Bridge.

APIcast policies provide a mechanism to customize how the gateway operates. 3scale provides a set of
standard policies for gateway configuration. You can also create your own policies.

For more information on APIcast policies, see Administering the API Gateway in the 3scale
documentation.

APIcast policies for the Kafka Bridge

A sample policy configuration for 3scale integration with the Kafka Bridge is provided with the
policies_config.json file, which defines:

Anonymous access

Header modification

Routing

URL rewriting

Gateway policies are enabled or disabled through this file.

You can use this sample as a starting point for defining your own policies.

Anonymous access

The anonymous access policy exposes a service without authentication, providing default credentials
(for anonymous access) when a HTTP client does not provide them. The policy is not mandatory and
can be disabled or removed if authentication is always needed.

Header modification

The header modification policy allows existing HTTP headers to be modified, or new headers added
to requests or responses passing through the gateway. For 3scale integration, the policy adds
headers to every request passing through the gateway from a HTTP client to the Kafka Bridge.
When the Kafka Bridge receives a request for creating a new consumer, it returns a JSON payload
containing a base_uri field with the URI that the consumer must use for all the subsequent requests.
For example:

When using APIcast, clients send all subsequent requests to the gateway and not to the Kafka Bridge
directly. So the URI requires the gateway hostname, not the address of the Kafka Bridge behind the
gateway.

Using header modification policies, headers are added to requests from the HTTP client so that the
Kafka Bridge uses the gateway hostname.

For example, by applying a Forwarded: host=my-gateway:80;proto=http header, the Kafka Bridge
delivers the following to the consumer.

{
 "instance_id": "consumer-1",
 "base_uri":"http://my-bridge:8080/consumers/my-group/instances/consumer1"
}

{
 "instance_id": "consumer-1",
 "base_uri":"http://my-gateway:80/consumers/my-group/instances/consumer1"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

222

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway/index

An X-Forwarded-Path header carries the original path contained in a request from the client to the
gateway. This header is strictly related to the routing policy applied when a gateway supports more
than one Kafka Bridge instance.

Routing

A routing policy is applied when there is more than one Kafka Bridge instance. Requests must be sent
to the same Kafka Bridge instance where the consumer was initially created, so a request must
specify a route for the gateway to forward a request to the appropriate Kafka Bridge instance.
A routing policy names each bridge instance, and routing is performed using the name. You specify
the name in the KafkaBridge custom resource when you deploy the Kafka Bridge.

For example, each request (using X-Forwarded-Path) from a consumer to:

http://my-gateway:80/my-bridge-1/consumers/my-group/instances/consumer1

is forwarded to:

http://my-bridge-1-bridge-service:8080/consumers/my-group/instances/consumer1

URL rewriting policy removes the bridge name, as it is not used when forwarding the request from the
gateway to the Kafka Bridge.

URL rewriting

The URL rewiring policy ensures that a request to a specific Kafka Bridge instance from a client does
not contain the bridge name when forwarding the request from the gateway to the Kafka Bridge.
The bridge name is not used in the endpoints exposed by the bridge.

8.1.3. TLS validation

You can set up APIcast for TLS validation, which requires a self-managed deployment of APIcast using a
template. The apicast service is exposed as a route.

You can also apply a TLS policy to the Kafka Bridge API.

For more information on TLS configuration, see Administering the API Gateway in the 3scale
documentation.

8.1.4. 3scale documentation

The procedure to deploy 3scale for use with the Kafka Bridge assumes some understanding of 3scale.

For more information, refer to the 3scale product documentation:

Product Documentation for Red Hat 3scale API Management

8.2. DEPLOYING 3SCALE FOR THE KAFKA BRIDGE

In order to use 3scale with the Kafka Bridge, you first deploy it and then configure it to discover the
Kafka Bridge API.

You will also use 3scale APIcast and 3scale toolbox.

}

CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE

223

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway/index
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management

APIcast is provided by 3scale as an NGINX-based API gateway for HTTP clients to connect to
the Kafka Bridge API service.

3scale toolbox is a configuration tool that is used to import the OpenAPI specification for the
Kafka Bridge service to 3scale.

In this scenario, you run AMQ Streams, Kafka, the Kafka Bridge and 3scale/APIcast in the same
OpenShift cluster.

NOTE

If you already have 3scale deployed in the same cluster as the Kafka Bridge, you can skip
the deployment steps and use your current deployment.

Prerequisites

AMQ Streams and Kafka is running

The Kafka Bridge is deployed

For the 3scale deployment:

Check the Red Hat 3scale API Management supported configurations .

Installation requires a user with cluster-admin role, such as system:admin.

You need access to the JSON files describing the:

Kafka Bridge OpenAPI specification (openapiv2.json)

Header modification and routing policies for the Kafka Bridge (policies_config.json)
Find the JSON files on GitHub.

Procedure

1. Deploy 3scale API Management to the OpenShift cluster.

a. Create a new project or use an existing project.

b. Deploy 3scale.
Use the information provided in the Installing 3scale guide to deploy 3scale on OpenShift
using a template or operator.

Whichever approach you use, make sure that you set the WILDCARD_DOMAIN parameter
to the domain of your OpenShift cluster.

Make a note of the URLS and credentials presented for accessing the 3scale Admin Portal.

2. Grant authorization for 3scale to discover the Kafka Bridge service:

3. Verify that 3scale was successfully deployed to the Openshift cluster from the OpenShift

oc new-project my-project \
 --description="description" --display-name="display_name"

oc adm policy add-cluster-role-to-user view system:serviceaccount:my-project:amp

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

224

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-bridge-str
https://access.redhat.com/articles/2798521
https://github.com/strimzi-incubator/strimzi-kafka-bridge-api/tree/master/3scale
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/installing_3scale/index

1

2

3

4

5

3. Verify that 3scale was successfully deployed to the Openshift cluster from the OpenShift
console or CLI.
For example:

4. Set up 3scale toolbox.

a. Use the information provided in the Operating 3scale guide to install 3scale toolbox.

b. Set environment variables to be able to interact with 3scale:

REMOTE_NAME is the name assigned to the remote address of the 3scale Admin
Portal.

SYSTEM_NAME is the name of the 3scale service/API created by importing the
OpenAPI specification through the 3scale toolbox.

TENANT is the tenant name of the 3scale Admin Portal (that is,
https://$TENANT.3scale.net).

PORTAL_ENDPOINT is the endpoint running the 3scale Admin Portal.

TOKEN is the access token provided by the 3scale Admin Portal for interaction
through the 3scale toolbox or HTTP requests.

c. Configure the remote web address of the 3scale toolbox:

Now the endpoint address of the 3scale Admin portal does not need to be specified every
time you run the toolbox.

5. Check that your Cluster Operator deployment has the labels and annotations properties
required for the Kafka Bridge service to be discovered by 3scale.

oc get deployment 3scale-operator

export REMOTE_NAME=strimzi-kafka-bridge 1
export SYSTEM_NAME=strimzi_http_bridge_for_apache_kafka 2
export TENANT=strimzi-kafka-bridge-admin 3
export PORTAL_ENDPOINT=$TENANT.3scale.net 4
export TOKEN=3scale access token 5

3scale remote add $REMOTE_NAME https://$TOKEN@$PORTAL_ENDPOINT/

#...
env:
- name: STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_LABELS
 value: |
 discovery.3scale.net=true
- name: STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_ANNOTATIONS
 value: |
 discovery.3scale.net/scheme=http
 discovery.3scale.net/port=8080
 discovery.3scale.net/path=/
 discovery.3scale.net/description-path=/openapi
#...

CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE

225

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/operating_3scale/index

If not, add the properties through the OpenShift console or try redeploying the Cluster
Operator and the Kafka Bridge .

6. Discover the Kafka Bridge API service through 3scale.

a. Log in to the 3scale Admin portal using the credentials provided when 3scale was deployed.

b. From the 3scale Admin Portal, navigate to New API → Import from OpenShift where you
will see the Kafka Bridge service.

c. Click Create Service.
You may need to refresh the page to see the Kafka Bridge service.

Now you need to import the configuration for the service. You do this from an editor, but
keep the portal open to check the imports are successful.

7. Edit the Host field in the OpenAPI specification (JSON file) to use the base URL of the Kafka
Bridge service:
For example:

Check the host URL includes the correct:

Kafka Bridge name (my-bridge)

Project name (my-project)

Port for the Kafka Bridge (8080)

8. Import the updated OpenAPI specification using the 3scale toolbox:

9. Import the header modification and routing policies for the service (JSON file).

a. Locate the ID for the service you created in 3scale.
Here we use the `jq` utility:

You need the ID when importing the policies.

b. Import the policies:

10. From the 3scale Admin Portal, navigate to Integration → Configuration to check that the
endpoints and policies for the Kafka Bridge service have loaded.

"host": "my-bridge-bridge-service.my-project.svc.cluster.local:8080"

3scale import openapi -k -d $REMOTE_NAME openapiv2.json -t myproject-my-bridge-
bridge-service

export SERVICE_ID=$(curl -k -s -X GET
"https://$PORTAL_ENDPOINT/admin/api/services.json?access_token=$TOKEN" | jq
".services[] | select(.service.system_name | contains(\"$SYSTEM_NAME\")) |
.service.id")

curl -k -X PUT
"https://$PORTAL_ENDPOINT/admin/api/services/$SERVICE_ID/proxy/policies.json" --
data "access_token=$TOKEN" --data-urlencode policies_config@policies_config.json

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

226

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-bridge-str
https://stedolan.github.io/jq/

11. Navigate to Applications → Create Application Plan to create an application plan.

12. Navigate to Audience → Developer → Applications → Create Application to create an
application.
The application is required in order to obtain a user key for authentication.

13. (Production environment step) To make the API available to the production gateway, promote
the configuration:

14. Use an API testing tool to verify you can access the Kafka Bridge through the APIcast gateway
using a call to create a consumer, and the user key created for the application.
For example:

If a payload is returned from the Kafka Bridge, the consumer was created successfully.

The base URI is the address that the client will use in subsequent requests.

3scale proxy-config promote $REMOTE_NAME $SERVICE_ID

https//my-project-my-bridge-bridge-service-3scale-apicast-
staging.example.com:443/consumers/my-group?
user_key=3dfc188650101010ecd7fdc56098ce95

{
 "instance_id": "consumer1",
 "base uri": "https//my-project-my-bridge-bridge-service-3scale-apicast-
staging.example.com:443/consumers/my-group/instances/consumer1"
}

CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE

227

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING
You can deploy Cruise Control to your AMQ Streams cluster and use it to rebalance the Kafka cluster.

Cruise Control is an open source system for automating Kafka operations, such as monitoring cluster
workload, rebalancing a cluster based on predefined constraints, and detecting and fixing anomalies. It
consists of four main components—the Load Monitor, the Analyzer, the Anomaly Detector, and the
Executor—and a REST API for client interactions. AMQ Streams utilizes the REST API to support the
following Cruise Control features:

Generating optimization proposals from multiple optimization goals.

Rebalancing a Kafka cluster based on an optimization proposal.

Other Cruise Control features are not currently supported, including anomaly detection, notifications,
write-your-own goals, and changing the topic replication factor.

AMQ Streams provides example configuration files . Example YAML configuration files for Cruise
Control are provided in examples/cruise-control/.

9.1. WHY USE CRUISE CONTROL?

Cruise Control reduces the time and effort involved in running an efficient and balanced Kafka cluster.

A typical cluster can become unevenly loaded over time. Partitions that handle large amounts of
message traffic might be unevenly distributed across the available brokers. To rebalance the cluster,
administrators must monitor the load on brokers and manually reassign busy partitions to brokers with
spare capacity.

Cruise Control automates the cluster rebalancing process. It constructs a workload model of resource
utilization for the cluster—based on CPU, disk, and network load—and generates optimization proposals
(that you can approve or reject) for more balanced partition assignments. A set of configurable
optimization goals is used to calculate these proposals.

When you approve an optimization proposal, Cruise Control applies it to your Kafka cluster. When the
cluster rebalancing operation is complete, the broker pods are used more effectively and the Kafka
cluster is more evenly balanced.

Additional resources

Cruise Control Wiki

9.2. OPTIMIZATION GOALS OVERVIEW

To rebalance a Kafka cluster, Cruise Control uses optimization goals to generate optimization proposals,
which you can approve or reject.

Optimization goals are constraints on workload redistribution and resource utilization across a Kafka
cluster. AMQ Streams supports most of the optimization goals developed in the Cruise Control project.
The supported goals, in the default descending order of priority, are as follows:

1. Rack-awareness

2. Minimum number of leader replicas per broker for a set of topics

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

228

https://github.com/linkedin/cruise-control
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploy-examples-str
https://github.com/linkedin/cruise-control/wiki

3. Replica capacity

4. Capacity: Disk capacity, Network inbound capacity, Network outbound capacity, CPU capacity

5. Replica distribution

6. Potential network output

7. Resource distribution: Disk utilization distribution, Network inbound utilization distribution,
Network outbound utilization distribution, CPU utilization distribution

NOTE

The resource distribution goals are controlled using capacity limits on broker
resources.

8. Leader bytes-in rate distribution

9. Topic replica distribution

10. Leader replica distribution

11. Preferred leader election

For more information on each optimization goal, see Goals in the Cruise Control Wiki.

NOTE

Intra-broker disk goals, "Write your own" goals, and Kafka assigner goals are not yet
supported.

Goals configuration in AMQ Streams custom resources
You configure optimization goals in Kafka and KafkaRebalance custom resources. Cruise Control has
configurations for hard optimization goals that must be satisfied, as well as main, default, and user-
provided optimization goals. Optimization goals for resource distribution (disk, network inbound,
network outbound, and CPU) are subject to capacity limits on broker resources.

The following sections describe each goal configuration in more detail.

Hard goals and soft goals
Hard goals are goals that must be satisfied in optimization proposals. Goals that are not configured as
hard goals are known as soft goals. You can think of soft goals as best effort goals: they do not need to
be satisfied in optimization proposals, but are included in optimization calculations. An optimization
proposal that violates one or more soft goals, but satisfies all hard goals, is valid.

Cruise Control will calculate optimization proposals that satisfy all the hard goals and as many soft goals
as possible (in their priority order). An optimization proposal that does not satisfy all the hard goals is
rejected by Cruise Control and not sent to the user for approval.

NOTE

For example, you might have a soft goal to distribute a topic’s replicas evenly across the
cluster (the topic replica distribution goal). Cruise Control will ignore this goal if doing so
enables all the configured hard goals to be met.

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

229

https://github.com/linkedin/cruise-control/wiki/Pluggable-Components#goals

In Cruise Control, the following main optimization goals are preset as hard goals:

RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal;
NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal

You configure hard goals in the Cruise Control deployment configuration, by editing the hard.goals
property in Kafka.spec.cruiseControl.config.

To inherit the preset hard goals from Cruise Control, do not specify the hard.goals property in
Kafka.spec.cruiseControl.config

To change the preset hard goals, specify the desired goals in the hard.goals property, using
their fully-qualified domain names.

Example Kafka configuration for hard optimization goals

Increasing the number of configured hard goals will reduce the likelihood of Cruise Control generating
valid optimization proposals.

If skipHardGoalCheck: true is specified in the KafkaRebalance custom resource, Cruise Control does
not check that the list of user-provided optimization goals (in KafkaRebalance.spec.goals) contains all
the configured hard goals (hard.goals). Therefore, if some, but not all, of the user-provided
optimization goals are in the hard.goals list, Cruise Control will still treat them as hard goals even if
skipHardGoalCheck: true is specified.

Main optimization goals
The main optimization goals are available to all users. Goals that are not listed in the main optimization
goals are not available for use in Cruise Control operations.

Unless you change the Cruise Control deployment configuration, AMQ Streams will inherit the following
main optimization goals from Cruise Control, in descending priority order:

RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal;

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 config:
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

230

NetworkOutboundCapacityGoal; CpuCapacityGoal; ReplicaDistributionGoal; PotentialNwOutGoal;
DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal;
NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal;
LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal; PreferredLeaderElectionGoal

Six of these goals are preset as hard goals.

To reduce complexity, we recommend that you use the inherited main optimization goals, unless you
need to completely exclude one or more goals from use in KafkaRebalance resources. The priority
order of the main optimization goals can be modified, if desired, in the configuration for default
optimization goals.

You configure main optimization goals, if necessary, in the Cruise Control deployment configuration:
Kafka.spec.cruiseControl.config.goals

To accept the inherited main optimization goals, do not specify the goals property in
Kafka.spec.cruiseControl.config.

If you need to modify the inherited main optimization goals, specify a list of goals, in descending
priority order, in the goals configuration option.

NOTE

If you change the inherited main optimization goals, you must ensure that the hard goals,
if configured in the hard.goals property in Kafka.spec.cruiseControl.config, are a
subset of the main optimization goals that you configured. Otherwise, errors will occur
when generating optimization proposals.

Default optimization goals
Cruise Control uses the default optimization goals to generate the cached optimization proposal . For
more information about the cached optimization proposal, see Section 9.3, “Optimization proposals
overview”.

You can override the default optimization goals by setting user-provided optimization goals in a
KafkaRebalance custom resource.

Unless you specify default.goals in the Cruise Control deployment configuration, the main optimization
goals are used as the default optimization goals. In this case, the cached optimization proposal is
generated using the main optimization goals.

To use the main optimization goals as the default goals, do not specify the default.goals
property in Kafka.spec.cruiseControl.config.

To modify the default optimization goals, edit the default.goals property in
Kafka.spec.cruiseControl.config. You must use a subset of the main optimization goals.

Example Kafka configuration for default optimization goals

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

231

If no default optimization goals are specified, the cached proposal is generated using the main
optimization goals.

User-provided optimization goals
User-provided optimization goals narrow down the configured default goals for a particular optimization
proposal. You can set them, as required, in spec.goals in a KafkaRebalance custom resource:

KafkaRebalance.spec.goals

User-provided optimization goals can generate optimization proposals for different scenarios. For
example, you might want to optimize leader replica distribution across the Kafka cluster without
considering disk capacity or disk utilization. So, you create a KafkaRebalance custom resource
containing a single user-provided goal for leader replica distribution.

User-provided optimization goals must:

Include all configured hard goals, or an error occurs

Be a subset of the main optimization goals

To ignore the configured hard goals when generating an optimization proposal, add the
skipHardGoalCheck: true property to the KafkaRebalance custom resource. See Section 9.7,
“Generating optimization proposals”.

Additional resources

Section 9.5, “Cruise Control configuration”

Configurations in the Cruise Control Wiki.

9.3. OPTIMIZATION PROPOSALS OVERVIEW

An optimization proposal is a summary of proposed changes that would produce a more balanced Kafka
cluster, with partition workloads distributed more evenly among the brokers. Each optimization proposal
is based on the set of optimization goals that was used to generate it, subject to any configured
capacity limits on broker resources .

An optimization proposal is contained in the Status.Optimization Result property of a

 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 config:
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

232

https://github.com/linkedin/cruise-control/wiki/Configurations

An optimization proposal is contained in the Status.Optimization Result property of a
KafkaRebalance custom resource. The information provided is a summary of the full optimization
proposal. Use the summary to decide whether to:

Approve the optimization proposal. This instructs Cruise Control to apply the proposal to the
Kafka cluster and start a cluster rebalance operation.

Reject the optimization proposal. You can change the optimization goals and then generate
another proposal.

All optimization proposals are dry runs: you cannot approve a cluster rebalance without first generating
an optimization proposal. There is no limit to the number of optimization proposals that can be
generated.

Cached optimization proposal
Cruise Control maintains a cached optimization proposal based on the configured default optimization
goals. Generated from the workload model, the cached optimization proposal is updated every 15
minutes to reflect the current state of the Kafka cluster. If you generate an optimization proposal using
the default optimization goals, Cruise Control returns the most recent cached proposal.

To change the cached optimization proposal refresh interval, edit the proposal.expiration.ms setting
in the Cruise Control deployment configuration. Consider a shorter interval for fast changing clusters,
although this increases the load on the Cruise Control server.

Contents of optimization proposals
An optimization proposal consists of two main sections:

The summary is stored in the status of the KafkaRebalance resource.

The broker load is stored in a ConfigMap that contains data as a JSON string.

The summary provides an overview of the proposed cluster rebalance and indicates the scale of the
changes involved. The broker load shows before and after values for the proposed rebalance, so you
can see the impact on each of the brokers in the cluster.

Summary
The following table explains the properties contained in the optimization proposal’s summary section:

Table 9.1. Properties contained in an optimization proposal

JSON property Description

numIntraBrokerReplicaMovem
ents

The total number of partition replicas that will be transferred between
the disks of the cluster’s brokers.

Performance impact during rebalance operation: Relatively high, but
lower than numReplicaMovements.

excludedBrokersForLeadershi
p

Not yet supported. An empty list is returned.

numReplicaMovements The number of partition replicas that will be moved between separate
brokers.

Performance impact during rebalance operation: Relatively high.

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

233

onDemandBalancednessScore
Before,
onDemandBalancednessScore
After

A measurement of the overall balancedness of a Kafka Cluster, before
and after the optimization proposal was generated.

The score is calculated by subtracting the sum of the
BalancednessScore of each violated soft goal from 100. Cruise
Control assigns a BalancednessScore to every optimization goal
based on several factors, including priority—the goal’s position in the
list of default.goals or user-provided goals.

The Before score is based on the current configuration of the Kafka
cluster. The After score is based on the generated optimization
proposal.

intraBrokerDataToMoveMB The sum of the size of each partition replica that will be moved
between disks on the same broker (see also
numIntraBrokerReplicaMovements).

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete. Moving a large amount of data between disks on the same
broker has less impact than between separate brokers (see
dataToMoveMB).

recentWindows The number of metrics windows upon which the optimization proposal
is based.

dataToMoveMB The sum of the size of each partition replica that will be moved to a
separate broker (see also numReplicaMovements).

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete.

monitoredPartitionsPercentag
e

The percentage of partitions in the Kafka cluster covered by the
optimization proposal. Affected by the number of excludedTopics.

excludedTopics If you specified a regular expression in the
spec.excludedTopicsRegex property in the KafkaRebalance
resource, all topic names matching that expression are listed here.
These topics are excluded from the calculation of partition
replica/leader movements in the optimization proposal.

numLeaderMovements The number of partitions whose leaders will be switched to different
replicas. This involves a change to ZooKeeper configuration.

Performance impact during rebalance operation: Relatively low.

excludedBrokersForReplicaM
ove

Not yet supported. An empty list is returned.

JSON property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

234

Broker load
The broker load is stored in a ConfigMap (with the same name as the KafkaRebalance custom resource)
as a JSON formatted string. This JSON string consists of a JSON object with keys for each broker IDs
linking to a number of metrics for each broker. Each metric consist of three values. The first is the metric
value before the optimization proposal is applied, the second is the expected value of the metric after
the proposal is applied, and the third is the difference between the first two values (after minus before).

NOTE

The ConfigMap appears when the KafkaRebalance resource is in the ProposalReady
state and remains after the rebalance is complete.

To extract the JSON string from the ConfigMap you could use the following command, which uses the
jq command line JSON parser tool:

The following table explains the properties contained in the optimization proposal’s broker load
ConfigMap:

JSON property Description

leaders The number of replicas on this broker that are partition leaders.

replicas The number of replicas on this broker.

cpuPercentage The CPU utilization as a percentage of the defined capacity.

diskUsedPercentage The disk utilization as a percentage of the defined capacity.

diskUsedMB The absolute disk usage in MB.

networkOutRate The total network output rate for the broker.

leaderNetworkInRate The network input rate for all partition leader replicas on this broker.

followerNetworkInRate The network input rate for all follower replicas on this broker.

potentialMaxNetworkOutRate The hypothetical maximum network output rate that would be realized
if this broker became the leader of all the replicas it currently hosts.

Additional resources

Section 9.2, “Optimization goals overview”

Section 9.7, “Generating optimization proposals”

Section 9.8, “Approving an optimization proposal”

oc get configmap MY-REBALANCE -o json | jq '.["data"]["brokerLoad.json"]|fromjson|.'

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

235

9.4. REBALANCE PERFORMANCE TUNING OVERVIEW

You can adjust several performance tuning options for cluster rebalances. These options control how
partition replica and leadership movements in a rebalance are executed, as well as the bandwidth that is
allocated to a rebalance operation.

Partition reassignment commands
Optimization proposals are comprised of separate partition reassignment commands. When you
approve a proposal, the Cruise Control server applies these commands to the Kafka cluster.

A partition reassignment command consists of either of the following types of operations:

Partition movement: Involves transferring the partition replica and its data to a new location.
Partition movements can take one of two forms:

Inter-broker movement: The partition replica is moved to a log directory on a different
broker.

Intra-broker movement: The partition replica is moved to a different log directory on the
same broker.

Leadership movement: This involves switching the leader of the partition’s replicas.

Cruise Control issues partition reassignment commands to the Kafka cluster in batches. The
performance of the cluster during the rebalance is affected by the number of each type of movement
contained in each batch.

Replica movement strategies
Cluster rebalance performance is also influenced by the replica movement strategy that is applied to the
batches of partition reassignment commands. By default, Cruise Control uses the
BaseReplicaMovementStrategy, which simply applies the commands in the order they were generated.
However, if there are some very large partition reassignments early in the proposal, this strategy can
slow down the application of the other reassignments.

Cruise Control provides four alternative replica movement strategies that can be applied to
optimization proposals:

PrioritizeSmallReplicaMovementStrategy: Order reassignments in order of ascending size.

PrioritizeLargeReplicaMovementStrategy: Order reassignments in order of descending size.

PostponeUrpReplicaMovementStrategy: Prioritize reassignments for replicas of partitions
which have no out-of-sync replicas.

PrioritizeMinIsrWithOfflineReplicasStrategy: Prioritize reassignments with (At/Under)MinISR
partitions with offline replicas. This strategy will only work if
cruiseControl.config.concurrency.adjuster.min.isr.check.enabled is set to true in the Kafka
custom resource’s spec.

These strategies can be configured as a sequence. The first strategy attempts to compare two partition
reassignments using its internal logic. If the reassignments are equivalent, then it passes them to the
next strategy in the sequence to decide the order, and so on.

Rebalance tuning options
Cruise Control provides several configuration options for tuning the rebalance parameters discussed
above. You can set these tuning options at either the Cruise Control server or optimization proposal
levels:

The Cruise Control server setting can be set in the Kafka custom resource under

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

236

The Cruise Control server setting can be set in the Kafka custom resource under
Kafka.spec.cruiseControl.config.

The individual rebalance performance configurations can be set under KafkaRebalance.spec.

The relevant configurations are summarized below:

Server and KafkaRebalance
Configuration

Description Default Value

num.concurrent.partition.mo
vements.per.broker

The maximum number of inter-
broker partition movements in
each partition reassignment batch

5

concurrentPartitionMovemen
tsPerBroker

num.concurrent.intra.broker.
partition.movements

The maximum number of intra-
broker partition movements in
each partition reassignment batch

2

concurrentIntraBrokerPartiti
onMovements

num.concurrent.leader.move
ments

The maximum number of partition
leadership changes in each
partition reassignment batch

1000

concurrentLeaderMovement
s

default.replication.throttle The bandwidth (in bytes per
second) to be assigned to the
reassigning of partitions

No Limit

replicationThrottle

default.replica.movement.str
ategies

The list of strategies (in priority
order) used to determine the
order in which partition
reassignment commands are
executed for generated
proposals.

For the server setting, use a
comma separated string with the
fully qualified names of the
strategy class (add
com.linkedin.kafka.cruiseco
ntrol.executor.strategy. to the
start of each class name). For the
KafkaRebalance resource
setting use a YAML array of
strategy class names.

BaseReplicaMovementStrate
gy

replicaMovementStrategies

Changing the default settings affects the length of time that the rebalance takes to complete, as well as

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

237

Changing the default settings affects the length of time that the rebalance takes to complete, as well as
the load placed on the Kafka cluster during the rebalance. Using lower values reduces the load but
increases the amount of time taken, and vice versa.

Additional resources

Section 14.2.49, “CruiseControlSpec schema reference”.

Section 14.2.129, “KafkaRebalanceSpec schema reference”.

9.5. CRUISE CONTROL CONFIGURATION

The config property in Kafka.spec.cruiseControl contains configuration options as keys with values as
one of the following JSON types:

String

Number

Boolean

You can specify and configure all the options listed in the "Configurations" section of the Cruise Control
documentation, apart from those managed directly by AMQ Streams. Specifically, you cannot modify
configuration options with keys equal to or starting with one of the keys mentioned here.

If restricted options are specified, they are ignored and a warning message is printed to the Cluster
Operator log file. All the supported options are passed to Cruise Control.

An example Cruise Control configuration

Cross-Origin Resource Sharing configuration
Cross-Origin Resource Sharing (CORS) allows you to specify allowed methods and originating URLs for
accessing REST APIs.

By default, CORS is disabled for the Cruise Control REST API. When enabled, only GET requests for
read-only access to the Kafka cluster state are allowed. This means that external applications, which are
running in different origins than the AMQ Streams components, cannot make POST requests to the

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 config:
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
 cpu.balance.threshold: 1.1
 metadata.max.age.ms: 300000
 send.buffer.bytes: 131072
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

238

https://github.com/linkedin/cruise-control/wiki/Configurations

Cruise Control API. However, those applications can make GET requests to access read-only
information about the Kafka cluster, such as the current cluster load or the most recent optimization
proposal.

Enabling CORS for Cruise Control

You enable and configure CORS in Kafka.spec.cruiseControl.config.

For more information, see REST APIs in the Cruise Control Wiki .

Capacity configuration
Cruise Control uses capacity limits to determine if optimization goals for resource distribution are being
broken. There are four goals of this type:

DiskUsageDistributionGoal - Disk utilization distribution

CpuUsageDistributionGoal - CPU utilization distribution

NetworkInboundUsageDistributionGoal - Network inbound utilization distribution

NetworkOutboundUsageDistributionGoal - Network outbound utilization distribution

You specify capacity limits for Kafka broker resources in the brokerCapacity property in
Kafka.spec.cruiseControl . They are enabled by default and you can change their default values.
Capacity limits can be set for the following broker resources, using the standard OpenShift byte units
(K, M, G and T) or their bibyte (power of two) equivalents (Ki, Mi, Gi and Ti):

disk - Disk storage per broker (Default: 100000Mi)

cpuUtilization - CPU utilization as a percentage (Default: 100)

inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

outboundNetwork - Outbound network throughput in byte units per second (Default:
10000KiB/s)

Because AMQ Streams Kafka brokers are homogeneous, Cruise Control applies the same capacity limits
to every broker it is monitoring.

An example Cruise Control brokerCapacity configuration using bibyte units

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 config:
 webserver.http.cors.enabled: true
 webserver.http.cors.origin: "*"
 webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

239

https://github.com/linkedin/cruise-control/wiki/REST-APIs

Additional resources

For more information, refer to the Section 14.2.51, “BrokerCapacity schema reference”.

Logging configuration
Cruise Control has its own configurable logger:

rootLogger.level

Cruise Control uses the Apache log4j 2 logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. Here we see examples of inline and
external logging.

Inline logging

External logging

metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 brokerCapacity:
 disk: 100Gi
 cpuUtilization: 100
 inboundNetwork: 10000KiB/s
 outboundNetwork: 10000KiB/s
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
 cruiseControl:
 # ...
 logging:
 type: inline
 loggers:
 rootLogger.level: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

240

Cruise Control REST API security
The Cruise Control REST API is secured with HTTP Basic authentication and SSL to protect the cluster
against potentially destructive Cruise Control operations, such as decommissioning Kafka brokers.

We recommend that Cruise Control in AMQ Streams is only used with these settings enabled. You
should not disable the built-in HTTP Basic authentication or SSL settings described below.

To disable the built-in HTTP Basic authentication, set webserver.security.enable to false.

To disable the built-in SSL, set webserver.ssl.enable to false.

Example Cruise Control configuration to disable API authorization, authentication, and SSL

9.6. DEPLOYING CRUISE CONTROL

To deploy Cruise Control to your AMQ Streams cluster, define the configuration using the
cruiseControl property in the Kafka resource, and then create or update the resource.

Deploy one instance of Cruise Control per Kafka cluster.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the Kafka resource and add the cruiseControl property.
The properties you can configure are shown in this example configuration:

spec:
 cruiseControl:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: cruise-control-log4j.properties
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 config:
 webserver.security.enable: false
 webserver.ssl.enable: false
...

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

241

1

2

Specifies capacity limits for broker resources. For more information, see Capacity
configuration.

Defines the Cruise Control configuration, including the default optimization goals (in
default.goals) and any customizations to the main optimization goals (in goals) or the
hard goals (in hard.goals). You can provide any standard Cruise Control configuration
option apart from those managed directly by AMQ Streams. For more information on

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 brokerCapacity: 1
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 # ...
 config: 2
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
 # ...
 cpu.balance.threshold: 1.1
 metadata.max.age.ms: 300000
 send.buffer.bytes: 131072
 # ...
 resources: 3
 requests:
 cpu: 1
 memory: 512Mi
 limits:
 cpu: 2
 memory: 2Gi
 logging: 4
 type: inline
 loggers:
 rootLogger.level: "INFO"
 template: 5
 pod:
 metadata:
 labels:
 label1: value1
 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
 readinessProbe: 6
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe: 7
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

242

3

4

5

6

7

configuring optimization goals, see Section 9.2, “Optimization goals overview” .

CPU and memory resources reserved for Cruise Control. For more information, see
Section 14.1.5, “resources”.

Defined loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom ConfigMap must be placed under the log4j.properties key. Cruise
Control has a single logger named rootLogger.level. You can set the log level to INFO,
ERROR, WARN, TRACE, DEBUG, FATAL or OFF. For more information, see Logging
configuration.

Customization of deployment templates and pods.

Healthcheck readiness probes.

Healthcheck liveness probes.

2. Create or update the resource:

3. Verify that Cruise Control was successfully deployed:

Auto-created topics
The following table shows the three topics that are automatically created when Cruise Control is
deployed. These topics are required for Cruise Control to work properly and must not be deleted or
changed.

Table 9.2. Auto-created topics

Auto-created
topic

Created by Function

strimzi.cruiseco
ntrol.metrics

AMQ Streams
Metrics Reporter

Stores the raw metrics from the Metrics Reporter in each Kafka
broker.

strimzi.cruiseco
ntrol.partitionm
etricsamples

Cruise Control Stores the derived metrics for each partition. These are created
by the Metric Sample Aggregator.

strimzi.cruiseco
ntrol.modeltrain
ingsamples

Cruise Control Stores the metrics samples used to create the Cluster Workload
Model.

To prevent the removal of records that are needed by Cruise Control, log compaction is disabled in the
auto-created topics.

What to do next

After configuring and deploying Cruise Control, you can generate optimization proposals .

oc apply -f kafka.yaml

oc get deployments -l app.kubernetes.io/name=cruise-control

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

243

https://github.com/linkedin/cruise-control/wiki/Overview#metric-sample-aggregator
https://github.com/linkedin/cruise-control/wiki/Overview#cluster-workload-model

Additional resources

Section 14.2.50, “CruiseControlTemplate schema reference”.

9.7. GENERATING OPTIMIZATION PROPOSALS

When you create or update a KafkaRebalance resource, Cruise Control generates an optimization
proposal for the Kafka cluster based on the configured optimization goals.

Analyze the information in the optimization proposal and decide whether to approve it.

Prerequisites

You have deployed Cruise Control to your AMQ Streams cluster.

You have configured optimization goals and, optionally, capacity limits on broker resources .

Procedure

1. Create a KafkaRebalance resource:

a. To use the default optimization goals defined in the Kafka resource, leave the spec
property empty:

b. To configure user-provided optimization goals instead of using the default goals, add the
goals property and enter one or more goals.
In the following example, rack awareness and replica capacity are configured as user-
provided optimization goals:

c. To ignore the configured hard goals, add the skipHardGoalCheck: true property:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec: {}

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec:
 goals:
 - RackAwareGoal
 - ReplicaCapacityGoal

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

244

2. Create or update the resource:

The Cluster Operator requests the optimization proposal from Cruise Control. This might take a
few minutes depending on the size of the Kafka cluster.

3. Check the status of the KafkaRebalance resource:

Cruise Control returns one of two statuses:

PendingProposal: The rebalance operator is polling the Cruise Control API to check if the
optimization proposal is ready.

ProposalReady: The optimization proposal is ready for review and, if desired, approval. The
optimization proposal is contained in the Status.Optimization Result property of the
KafkaRebalance resource.

4. Review the optimization proposal.

Here is an example proposal:

The properties in the Optimization Result section describe the pending cluster rebalance

 strimzi.io/cluster: my-cluster
spec:
 goals:
 - RackAwareGoal
 - ReplicaCapacityGoal
 skipHardGoalCheck: true

oc apply -f your-file

oc describe kafkarebalance rebalance-cr-name

oc describe kafkarebalance rebalance-cr-name

Status:
 Conditions:
 Last Transition Time: 2020-05-19T13:50:12.533Z
 Status: ProposalReady
 Type: State
 Observed Generation: 1
 Optimization Result:
 Data To Move MB: 0
 Excluded Brokers For Leadership:
 Excluded Brokers For Replica Move:
 Excluded Topics:
 Intra Broker Data To Move MB: 0
 Monitored Partitions Percentage: 100
 Num Intra Broker Replica Movements: 0
 Num Leader Movements: 0
 Num Replica Movements: 26
 On Demand Balancedness Score After: 81.8666802863978
 On Demand Balancedness Score Before: 78.01176356230222
 Recent Windows: 1
 Session Id: 05539377-ca7b-45ef-b359-e13564f1458c

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

245

The properties in the Optimization Result section describe the pending cluster rebalance
operation. For descriptions of each property, see Contents of optimization proposals .

What to do next

Section 9.8, “Approving an optimization proposal”

Additional resources

Section 9.3, “Optimization proposals overview”

9.8. APPROVING AN OPTIMIZATION PROPOSAL

You can approve an optimization proposal generated by Cruise Control, if its status is ProposalReady.
Cruise Control will then apply the optimization proposal to the Kafka cluster, reassigning partitions to
brokers and changing partition leadership.

CAUTION

This is not a dry run. Before you approve an optimization proposal, you must:

Refresh the proposal in case it has become out of date.

Carefully review the contents of the proposal .

Prerequisites

You have generated an optimization proposal from Cruise Control.

The KafkaRebalance custom resource status is ProposalReady.

Procedure

Perform these steps for the optimization proposal that you want to approve:

1. Unless the optimization proposal is newly generated, check that it is based on current
information about the state of the Kafka cluster. To do so, refresh the optimization proposal to
make sure it uses the latest cluster metrics:

a. Annotate the KafkaRebalance resource in OpenShift with refresh:

b. Check the status of the KafkaRebalance resource:

c. Wait until the status changes to ProposalReady.

2. Approve the optimization proposal that you want Cruise Control to apply.
Annotate the KafkaRebalance resource in OpenShift:

3. The Cluster Operator detects the annotated resource and instructs Cruise Control to rebalance

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=refresh

oc describe kafkarebalance rebalance-cr-name

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=approve

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

246

3. The Cluster Operator detects the annotated resource and instructs Cruise Control to rebalance
the Kafka cluster.

4. Check the status of the KafkaRebalance resource:

5. Cruise Control returns one of three statuses:

Rebalancing: The cluster rebalance operation is in progress.

Ready: The cluster rebalancing operation completed successfully. To use the same
KafkaRebalance custom resource to generate another optimization proposal, apply the
refresh annotation to the custom resource. This moves the custom resource to the
PendingProposal or ProposalReady state. You can then review the optimization proposal
and approve it, if desired.

NotReady: An error occurred—see Section 9.10, “Fixing problems with a KafkaRebalance
resource”.

Additional resources

Section 9.3, “Optimization proposals overview”

Section 9.9, “Stopping a cluster rebalance”

9.9. STOPPING A CLUSTER REBALANCE

Once started, a cluster rebalance operation might take some time to complete and affect the overall
performance of the Kafka cluster.

If you want to stop a cluster rebalance operation that is in progress, apply the stop annotation to the
KafkaRebalance custom resource. This instructs Cruise Control to finish the current batch of partition
reassignments and then stop the rebalance. When the rebalance has stopped, completed partition
reassignments have already been applied; therefore, the state of the Kafka cluster is different when
compared to prior to the start of the rebalance operation. If further rebalancing is required, you should
generate a new optimization proposal.

NOTE

The performance of the Kafka cluster in the intermediate (stopped) state might be worse
than in the initial state.

Prerequisites

You have approved the optimization proposal by annotating the KafkaRebalance custom
resource with approve.

The status of the KafkaRebalance custom resource is Rebalancing.

Procedure

1. Annotate the KafkaRebalance resource in OpenShift:

oc describe kafkarebalance rebalance-cr-name

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=stop

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

247

2. Check the status of the KafkaRebalance resource:

3. Wait until the status changes to Stopped.

Additional resources

Section 9.3, “Optimization proposals overview”

9.10. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

If an issue occurs when creating a KafkaRebalance resource or interacting with Cruise Control, the
error is reported in the resource status, along with details of how to fix it. The resource also moves to
the NotReady state.

To continue with the cluster rebalance operation, you must fix the problem in the KafkaRebalance
resource itself or with the overall Cruise Control deployment. Problems might include the following:

A misconfigured parameter in the KafkaRebalance resource.

The strimzi.io/cluster label for specifying the Kafka cluster in the KafkaRebalance resource is
missing.

The Cruise Control server is not deployed as the cruiseControl property in the Kafka resource
is missing.

The Cruise Control server is not reachable.

After fixing the issue, you need to add the refresh annotation to the KafkaRebalance resource. During
a “refresh”, a new optimization proposal is requested from the Cruise Control server.

Prerequisites

You have approved an optimization proposal .

The status of the KafkaRebalance custom resource for the rebalance operation is NotReady.

Procedure

1. Get information about the error from the KafkaRebalance status:

2. Attempt to resolve the issue in the KafkaRebalance resource.

3. Annotate the KafkaRebalance resource in OpenShift:

4. Check the status of the KafkaRebalance resource:

oc describe kafkarebalance rebalance-cr-name

oc describe kafkarebalance rebalance-cr-name

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=refresh

oc describe kafkarebalance rebalance-cr-name

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

248

5. Wait until the status changes to PendingProposal, or directly to ProposalReady.

Additional resources

Section 9.3, “Optimization proposals overview”

CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING

249

CHAPTER 10. VALIDATING SCHEMAS WITH SERVICE
REGISTRY

You can use Red Hat Service Registry with AMQ Streams.

Service Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Service Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

Service Registry stores schemas used to serialize and deserialize messages, which can then be
referenced from your client applications to ensure that the messages that they send and receive are
compatible with those schemas. Service Registry provides Kafka client serializers/deserializers for Kafka
producer and consumer applications. Kafka producer applications use serializers to encode messages
that conform to specific event schemas. Kafka consumer applications use deserializers, which validate
that the messages have been serialized using the correct schema, based on a specific schema ID.

You can enable your applications to use a schema from the registry. This ensures consistent schema
usage and helps to prevent data errors at runtime.

Additional resources

Service Registry documentation

Service Registry is built on the Apicurio Registry open source community project available on
GitHub: Apicurio/apicurio-registry

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

250

https://access.redhat.com/documentation/en-us/red_hat_integration/#category-service-registry
https://github.com/apicurio/apicurio-registry

CHAPTER 11. DISTRIBUTED TRACING
Distributed tracing allows you to track the progress of transactions between applications in a distributed
system. In a microservices architecture, tracing tracks the progress of transactions between services.
Trace data is useful for monitoring application performance and investigating issues with target systems
and end-user applications.

In AMQ Streams, tracing facilitates the end-to-end tracking of messages: from source systems to
Kafka, and then from Kafka to target systems and applications. It complements the metrics that are
available to view in Grafana dashboards, as well as the component loggers.

How AMQ Streams supports tracing
Support for tracing is built in to the following components:

Kafka Connect

MirrorMaker

MirrorMaker 2.0

AMQ Streams Kafka Bridge

You enable and configure tracing for these components using template configuration properties in their
custom resources.

To enable tracing in Kafka producers, consumers, and Kafka Streams API applications, you instrument
application code using the OpenTracing Apache Kafka Client Instrumentation library (included with
AMQ Streams). When instrumented, clients generate trace data; for example, when producing messages
or writing offsets to the log.

Traces are sampled according to a sampling strategy and then visualized in the Jaeger user interface.

NOTE

Tracing is not supported for Kafka brokers.

Setting up tracing for applications and systems beyond AMQ Streams is outside the
scope of this chapter. To learn more about this subject, search for "inject and extract" in
the OpenTracing documentation.

Outline of procedures
To set up tracing for AMQ Streams, follow these procedures in order:

Set up tracing for clients:

Initialize a Jaeger tracer for Kafka clients

Instrument clients with tracers:

Instrument producers and consumers for tracing

Instrument Kafka Streams applications for tracing

Set up tracing for MirrorMaker, Kafka Connect, and the Kafka Bridge

Prerequisites

CHAPTER 11. DISTRIBUTED TRACING

251

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-setup-str
https://github.com/opentracing-contrib/java-kafka-client/blob/master/README.md
https://opentracing.io/docs/overview/

The Jaeger backend components are deployed to your OpenShift cluster. For deployment
instructions, see the Jaeger deployment documentation .

11.1. OVERVIEW OF OPENTRACING AND JAEGER

AMQ Streams uses the OpenTracing and Jaeger projects.

OpenTracing is an API specification that is independent from the tracing or monitoring system.

The OpenTracing APIs are used to instrument application code

Instrumented applications generate traces for individual transactions across the distributed
system

Traces are composed of spans that define specific units of work over time

Jaeger is a tracing system for microservices-based distributed systems.

Jaeger implements the OpenTracing APIs and provides client libraries for instrumentation

The Jaeger user interface allows you to query, filter, and analyze trace data

Additional resources

OpenTracing

Jaeger

11.2. SETTING UP TRACING FOR KAFKA CLIENTS

Initialize a Jaeger tracer to instrument your client applications for distributed tracing.

11.2.1. Initializing a Jaeger tracer for Kafka clients

Configure and initialize a Jaeger tracer using a set of tracing environment variables.

Procedure

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

252

https://www.jaegertracing.io/docs/1.18/deployment/
https://opentracing.io/
https://www.jaegertracing.io/

In each client application:

1. Add Maven dependencies for Jaeger to the pom.xml file for the client application:

2. Define the configuration of the Jaeger tracer using the tracing environment variables.

3. Create the Jaeger tracer from the environment variables that you defined in step two:

NOTE

For alternative ways to initialize a Jaeger tracer, see the Java OpenTracing
library documentation.

4. Register the Jaeger tracer as a global tracer:

A Jaeger tracer is now initialized for the client application to use.

11.2.2. Environment variables for tracing

Use these environment variables when configuring a Jaeger tracer for Kafka clients.

NOTE

The tracing environment variables are part of the Jaeger project and are subject to
change. For the latest environment variables, see the Jaeger documentation.

Property Required Description

JAEGER_SERVICE_NAME Yes The name of the Jaeger tracer
service.

JAEGER_AGENT_HOST No The hostname for communicating
with the jaeger-agent through
the User Datagram Protocol
(UDP).

JAEGER_AGENT_PORT No The port used for communicating
with the jaeger-agent through
UDP.

<dependency>
 <groupId>io.jaegertracing</groupId>
 <artifactId>jaeger-client</artifactId>
 <version>1.5.0.redhat-00001</version>
</dependency>

Tracer tracer = Configuration.fromEnv().getTracer();

GlobalTracer.register(tracer);

CHAPTER 11. DISTRIBUTED TRACING

253

https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core
https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core#configuration-via-environment

JAEGER_ENDPOINT No The traces endpoint. Only define
this variable if the client
application will bypass the
jaeger-agent and connect
directly to the jaeger-collector.

JAEGER_AUTH_TOKEN No The authentication token to send
to the endpoint as a bearer token.

JAEGER_USER No The username to send to the
endpoint if using basic
authentication.

JAEGER_PASSWORD No The password to send to the
endpoint if using basic
authentication.

JAEGER_PROPAGATION No A comma-separated list of
formats to use for propagating
the trace context. Defaults to the
standard Jaeger format. Valid
values are jaeger, b3, and w3c.

JAEGER_REPORTER_LOG_
SPANS

No Indicates whether the reporter
should also log the spans.

JAEGER_REPORTER_MAX_
QUEUE_SIZE

No The reporter’s maximum queue
size.

JAEGER_REPORTER_FLUS
H_INTERVAL

No The reporter’s flush interval, in ms.
Defines how frequently the
Jaeger reporter flushes span
batches.

Property Required Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

254

JAEGER_SAMPLER_TYPE No The sampling strategy to use for
client traces:

Constant

Probabilistic

Rate Limiting

Remote (the default)

To sample all traces, use the
Constant sampling strategy with a
parameter of 1.

For more information, see the
Jaeger documentation.

JAEGER_SAMPLER_PARAM No The sampler parameter (number).

JAEGER_SAMPLER_MANAG
ER_HOST_PORT

No The hostname and port to use if a
Remote sampling strategy is
selected.

JAEGER_TAGS No A comma-separated list of
tracer-level tags that are added
to all reported spans.

The value can also refer to an
environment variable using the
format
${envVarName:default}.
:default is optional and identifies
a value to use if the environment
variable cannot be found.

Property Required Description

Additional resources

Section 11.2.1, “Initializing a Jaeger tracer for Kafka clients”

11.3. INSTRUMENTING KAFKA CLIENTS WITH TRACERS

Instrument Kafka producer and consumer clients, and Kafka Streams API applications for distributed
tracing.

11.3.1. Instrumenting producers and consumers for tracing

Use a Decorator pattern or Interceptors to instrument your Java producer and consumer application
code for tracing.

CHAPTER 11. DISTRIBUTED TRACING

255

https://www.jaegertracing.io/docs/1.14/sampling/#client-sampling-configuration

Procedure

In the application code of each producer and consumer application:

1. Add the Maven dependency for OpenTracing to the producer or consumer’s pom.xml file.

2. Instrument your client application code using either a Decorator pattern or Interceptors.

To use a Decorator pattern:

To use Interceptors:

<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-kafka-client</artifactId>
 <version>0.1.15.redhat-00002</version>
</dependency>

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Create an instance of the TracingKafkaProducer:
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>
(producer,
 tracer);

// Send:
tracingProducer.send(...);

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Create an instance of the TracingKafkaConsumer:
TracingKafkaConsumer<Integer, String> tracingConsumer = new
TracingKafkaConsumer<>(consumer,
 tracer);

// Subscribe:
tracingConsumer.subscribe(Collections.singletonList("messages"));

// Get messages:
ConsumerRecords<Integer, String> records = tracingConsumer.poll(1000);

// Retrieve SpanContext from polled record (consumer side):
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(),
tracer);

// Register the tracer with GlobalTracer:
GlobalTracer.register(tracer);

// Add the TracingProducerInterceptor to the sender properties:
senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingProducerInterceptor.class.getName());

// Create an instance of the KafkaProducer:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

256

11.3.1.1. Custom span names in a Decorator pattern

A span is a logical unit of work in Jaeger, with an operation name, start time, and duration.

To use a Decorator pattern to instrument your producer and consumer applications, define custom span
names by passing a BiFunction object as an additional argument when creating the
TracingKafkaProducer and TracingKafkaConsumer objects. The OpenTracing Apache Kafka Client
Instrumentation library includes several built-in span names.

Example: Using custom span names to instrument client application code in a Decorator
pattern

KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Send:
producer.send(...);

// Add the TracingConsumerInterceptor to the consumer properties:
consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingConsumerInterceptor.class.getName());

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Subscribe:
consumer.subscribe(Collections.singletonList("messages"));

// Get messages:
ConsumerRecords<Integer, String> records = consumer.poll(1000);

// Retrieve the SpanContext from a polled message (consumer side):
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(),
tracer);

// Create a BiFunction for the KafkaProducer that operates on (String operationName,
ProducerRecord consumerRecord) and returns a String to be used as the name:

BiFunction<String, ProducerRecord, String> producerSpanNameProvider =
 (operationName, producerRecord) -> "CUSTOM_PRODUCER_NAME";

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Create an instance of the TracingKafkaProducer
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>(producer,
 tracer,
 producerSpanNameProvider);

// Spans created by the tracingProducer will now have "CUSTOM_PRODUCER_NAME" as the span
name.

// Create a BiFunction for the KafkaConsumer that operates on (String operationName,
ConsumerRecord consumerRecord) and returns a String to be used as the name:

CHAPTER 11. DISTRIBUTED TRACING

257

11.3.1.2. Built-in span names

When defining custom span names, you can use the following BiFunctions in the
ClientSpanNameProvider class. If no spanNameProvider is specified,
CONSUMER_OPERATION_NAME and PRODUCER_OPERATION_NAME are used.

BiFunction Description

CONSUMER_OPERATION_NAME,
PRODUCER_OPERATION_NAME

Returns the operationName as the span name:
"receive" for consumers and "send" for producers.

CONSUMER_PREFIXED_OPERATION_NAME
(String prefix),
PRODUCER_PREFIXED_OPERATION_NAME(
String prefix)

Returns a String concatenation of prefix and
operationName.

CONSUMER_TOPIC, PRODUCER_TOPIC Returns the name of the topic that the message was
sent to or retrieved from in the format
(record.topic()).

PREFIXED_CONSUMER_TOPIC(String
prefix),
PREFIXED_PRODUCER_TOPIC(String prefix)

Returns a String concatenation of prefix and the
topic name in the format (record.topic()).

CONSUMER_OPERATION_NAME_TOPIC,
PRODUCER_OPERATION_NAME_TOPIC

Returns the operation name and the topic name:
"operationName - record.topic()".

CONSUMER_PREFIXED_OPERATION_NAME
_TOPIC(String prefix),
PRODUCER_PREFIXED_OPERATION_NAME
_TOPIC(String prefix)

Returns a String concatenation of prefix and
"operationName - record.topic()".

11.3.2. Instrumenting Kafka Streams applications for tracing

BiFunction<String, ConsumerRecord, String> consumerSpanNameProvider =
 (operationName, consumerRecord) -> operationName.toUpperCase();

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Create an instance of the TracingKafkaConsumer, passing in the consumerSpanNameProvider
BiFunction:

TracingKafkaConsumer<Integer, String> tracingConsumer = new TracingKafkaConsumer<>
(consumer,
 tracer,
 consumerSpanNameProvider);

// Spans created by the tracingConsumer will have the operation name as the span name, in upper-
case.
// "receive" -> "RECEIVE"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

258

This section describes how to instrument Kafka Streams API applications for distributed tracing.

Procedure

In each Kafka Streams API application:

1. Add the opentracing-kafka-streams dependency to the pom.xml file for your Kafka Streams
API application:

2. Create an instance of the TracingKafkaClientSupplier supplier interface:

3. Provide the supplier interface to KafkaStreams:

11.4. SETTING UP TRACING FOR MIRRORMAKER, KAFKA CONNECT,
AND THE KAFKA BRIDGE

Distributed tracing is supported for MirrorMaker, MirrorMaker 2.0, Kafka Connect, and the AMQ
Streams Kafka Bridge.

Tracing in MirrorMaker and MirrorMaker 2.0

For MirrorMaker and MirrorMaker 2.0, messages are traced from the source cluster to the target cluster.
The trace data records messages entering and leaving the MirrorMaker or MirrorMaker 2.0 component.

Tracing in Kafka Connect

Only messages produced and consumed by Kafka Connect itself are traced. To trace messages sent
between Kafka Connect and external systems, you must configure tracing in the connectors for those
systems. For more information, see Section 2.2.1, “Configuring Kafka Connect” .

Tracing in the Kafka Bridge

Messages produced and consumed by the Kafka Bridge are traced. Incoming HTTP requests from client
applications to send and receive messages through the Kafka Bridge are also traced. To have end-to-
end tracing, you must configure tracing in your HTTP clients.

11.4.1. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources

Update the configuration of KafkaMirrorMaker, KafkaMirrorMaker2, KafkaConnect, and KafkaBridge
custom resources to specify and configure a Jaeger tracer service for each resource. Updating a
tracing-enabled resource in your OpenShift cluster triggers two events:

Interceptor classes are updated in the integrated consumers and producers in MirrorMaker,

<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-kafka-streams</artifactId>
 <version>0.1.15.redhat-00002</version>
</dependency>

KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer);

KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config),
supplier);
streams.start();

CHAPTER 11. DISTRIBUTED TRACING

259

Interceptor classes are updated in the integrated consumers and producers in MirrorMaker,
MirrorMaker 2.0, Kafka Connect, or the AMQ Streams Kafka Bridge.

For MirrorMaker, MirrorMaker 2.0, and Kafka Connect, the tracing agent initializes a Jaeger
tracer based on the tracing configuration defined in the resource.

For the Kafka Bridge, a Jaeger tracer based on the tracing configuration defined in the resource
is initialized by the Kafka Bridge itself.

Procedure

Perform these steps for each KafkaMirrorMaker, KafkaMirrorMaker2, KafkaConnect, and
KafkaBridge resource.

1. In the spec.template property, configure the Jaeger tracer service. For example:

Jaeger tracer configuration for Kafka Connect

Jaeger tracer configuration for MirrorMaker

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 template:
 connectContainer: 1
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing: 2
 type: jaeger
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 #...
 template:
 mirrorMakerContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

260

1

2

Jaeger tracer configuration for MirrorMaker 2.0

Jaeger tracer configuration for the Kafka Bridge

Use the tracing environment variables as template configuration properties.

Set the spec.tracing.type property to jaeger.

2. Create or update the resource:

 tracing:
 type: jaeger
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mm2-cluster
spec:
 #...
 template:
 connectContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 #...
 template:
 bridgeContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger
#...

oc apply -f your-file

CHAPTER 11. DISTRIBUTED TRACING

261

Additional resources

Section 14.2.39, “ContainerTemplate schema reference”

Section 2.6, “Customizing OpenShift resources”

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

262

CHAPTER 12. MANAGING TLS CERTIFICATES
AMQ Streams supports encrypted communication between the Kafka and AMQ Streams components
using the TLS protocol. Communication between Kafka brokers (interbroker communication), between
ZooKeeper nodes (internodal communication), and between those components and the AMQ Streams
operators is always encrypted. Communication between Kafka clients and Kafka brokers is encrypted
according to how the cluster is configured. For the Kafka and AMQ Streams components, TLS
certificates are also used for authentication.

The Cluster Operator automatically sets up and renews TLS certificates to enable encryption and
authentication within your cluster. It also sets up other TLS certificates if you want to enable encryption
or TLS authentication between Kafka brokers and clients. Certificates provided by users are not
renewed.

You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or
external listeners which have TLS encryption enabled. For more information, see Section 12.7, “Kafka
listener certificates”.

Figure 12.1. Example architecture of the communication secured by TLS

12.1. CERTIFICATE AUTHORITIES

To support encryption, each AMQ Streams component needs its own private keys and public key
certificates. All component certificates are signed by an internal Certificate Authority (CA) called the
cluster CA .

Similarly, each Kafka client application connecting to AMQ Streams using TLS client authentication
needs to provide private keys and certificates. A second internal CA, named the clients CA, is used to
sign certificates for the Kafka clients.

12.1.1. CA certificates

CHAPTER 12. MANAGING TLS CERTIFICATES

263

Both the cluster CA and clients CA have a self-signed public key certificate.

Kafka brokers are configured to trust certificates signed by either the cluster CA or clients CA.
Components that clients do not need to connect to, such as ZooKeeper, only trust certificates signed by
the cluster CA. Unless TLS encryption for external listeners is disabled, client applications must trust
certificates signed by the cluster CA. This is also true for client applications that perform mutual TLS
authentication.

By default, AMQ Streams automatically generates and renews CA certificates issued by the cluster CA
or clients CA. You can configure the management of these CA certificates in the Kafka.spec.clusterCa
and Kafka.spec.clientsCa objects. Certificates provided by users are not renewed.

You can provide your own CA certificates for the cluster CA or clients CA. For more information, see
Section 12.1.2, “Installing your own CA certificates” . If you provide your own certificates, you must
manually renew them when needed.

12.1.2. Installing your own CA certificates

This procedure describes how to install your own CA certificates and keys instead of using the CA
certificates and private keys generated by the Cluster Operator.

The Cluster Operator automatically generates and renews the following secrets:

CLUSTER-NAME-cluster-ca

The cluster secret that contains the private key for the cluster CA.

CLUSTER-NAME-cluster-ca-cert

The cluster secret that contains a cluster CA certificate. The certificate contains a public key to
validate the identity of Kafka brokers.

CLUSTER-NAME-clients-ca

The client secret that contains the private key for the client CA.

CLUSTER-NAME-clients-ca-cert

The client secret that contains a client CA certificate. The certificate contains a public key to validate
the identity of clients accessing the Kafka brokers.

AMQ Streams uses these secrets by default.

This procedure describes the steps to replace the secrets to use your own cluster or client CA
certificates.

Prerequisites

The Cluster Operator is running.

A Kafka cluster is not yet deployed.

Your own X.509 certificates and keys in PEM format for the cluster CA or clients CA.

If you want to use a cluster or clients CA which is not a Root CA, you have to include the
whole chain in the certificate file. The chain should be in the following order:

1. The cluster or clients CA

2. One or more intermediate CAs

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

264

3. The root CA

All CAs in the chain should be configured using the X509v3 Basic Constraints extension.
Basic Constraints limit the path length of a certificate chain.

The OpenSSL TLS management tool for converting certificates.

Before you begin

The Cluster Operator generates the following files for the CLUSTER-NAME-cluster-ca-cert secret:

ca.crt cluster certificate in PEM format

ca.p12 cluster certificate in PKCS #12 format

ca.password to access the PKCS #12 file

Some applications cannot use PEM certificates and support only PKCS #12 certificates. You can also
add your own cluster certificate in PKCS #12 format.

If you don’t have a cluster certificate in PKCS #12 format, use the OpenSSL TLS management tool to
generate one from your ca.crt file.

Example certificate generation command

Replace P12-PASSWORD with your own password.

You can do the same for the CLUSTER-NAME-clients-ca-cert secret, which also contains certificates in
PEM and PKCS #12 format by default.

Procedure

1. Replace the CA certificate generated by the Cluster Operator.

a. Delete the existing secret.

CA-CERTIFICATE-SECRET is the name of the Secret:

CLUSTER-NAME-cluster-ca-cert for the cluster CA certificate

CLUSTER-NAME-clients-ca-cert for the clients CA certificate

Replace CLUSTER-NAME with the name of your Kafka cluster.

Ignore any "Not Exists" errors.

b. Create the new secret.

Client secret creation with a certificate in PEM format only

openssl pkcs12 -export -in ca.crt --nokeys -out ca.p12 -password pass:P12-PASSWORD -caname
ca.crt

oc delete secret CA-CERTIFICATE-SECRET

oc create secret generic CLUSTER-NAME-clients-ca-cert --from-file=ca.crt=ca.crt

CHAPTER 12. MANAGING TLS CERTIFICATES

265

Cluster secret creation with certificates in PEM and PKCS #12 format

2. Replace the private key generated by the Cluster Operator.

a. Delete the existing secret.

CA-KEY-SECRET is the name of CA key:

CLUSTER-NAME-cluster-ca for the cluster CA key

CLUSTER-NAME-clients-ca for the clients CA key

b. Create the new secret.

3. Label the secrets.

Label strimzi.io/kind=Kafka identifies the Kafka custom resource.

Label strimzi.io/cluster=CLUSTER-NAME identifies the Kafka cluster.

4. Create the Kafka resource for your cluster, configuring either the Kafka.spec.clusterCa or the
Kafka.spec.clientsCa object to not use generated CAs.

Example fragment Kafka resource configuring the cluster CA to use certificates you
supply for yourself

Additional resources

To renew CA certificates you have previously installed, see Section 12.3.5, “Renewing your own
CA certificates”.

Section 12.7.1, “Providing your own Kafka listener certificates” .

oc create secret generic CLUSTER-NAME-cluster-ca-cert \
 --from-file=ca.crt=ca.crt \
 --from-file=ca.p12=ca.p12 \
 --from-literal=ca.password=P12-PASSWORD

oc delete secret CA-KEY-SECRET

oc create secret generic CA-KEY-SECRET --from-file=ca.key=ca.key

oc label secret CA-CERTIFICATE-SECRET strimzi.io/kind=Kafka
strimzi.io/cluster=CLUSTER-NAME

oc label secret CA-KEY-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=CLUSTER-NAME

kind: Kafka
version: kafka.strimzi.io/v1beta2
spec:
 # ...
 clusterCa:
 generateCertificateAuthority: false

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

266

12.2. SECRETS

AMQ Streams uses Secrets to store private keys and certificates for Kafka cluster components and
clients. Secrets are used for establishing TLS encrypted connections between Kafka brokers, and
between brokers and clients. They are also used for mutual TLS authentication.

A Cluster Secret contains a cluster CA certificate to sign Kafka broker certificates, and is used
by a connecting client to establish a TLS encrypted connection with the Kafka cluster to validate
broker identity.

A Client Secret contains a client CA certificate for a user to sign its own client certificate to allow
mutual authentication against the Kafka cluster. The broker validates the client identity through
the client CA certificate itself.

A User Secret contains a private key and certificate, which are generated and signed by the
client CA certificate when a new user is created. The key and certificate are used for
authentication and authorization when accessing the cluster.

Secrets provide private keys and certificates in PEM and PKCS #12 formats. Using private keys and
certificates in PEM format means that users have to get them from the Secrets, and generate a
corresponding truststore (or keystore) to use in their Java applications. PKCS #12 storage provides a
truststore (or keystore) that can be used directly.

All keys are 2048 bits in size.

12.2.1. PKCS #12 storage

PKCS #12 defines an archive file format (.p12) for storing cryptography objects into a single file with
password protection. You can use PKCS #12 to manage certificates and keys in one place.

Each Secret contains fields specific to PKCS #12.

The .p12 field contains the certificates and keys.

The .password field is the password that protects the archive.

12.2.2. Cluster CA Secrets

The following tables describe the Cluster Secrets that are managed by the Cluster Operator in a Kafka
cluster.

Only the <cluster>-cluster-ca-cert Secret needs to be used by clients. All other Secrets described only
need to be accessed by the AMQ Streams components. You can enforce this using OpenShift role-
based access controls, if necessary.

Table 12.1. Fields in the <cluster>-cluster-ca Secret

Field Description

ca.key The current private key for the cluster CA.

Table 12.2. Fields in the <cluster>-cluster-ca-cert Secret

CHAPTER 12. MANAGING TLS CERTIFICATES

267

Field Description

ca.p12 PKCS #12 archive file for storing certificates and keys.

ca.password Password for protecting the PKCS #12 archive file.

ca.crt The current certificate for the cluster CA.

NOTE

The CA certificates in <cluster>-cluster-ca-cert must be trusted by Kafka client
applications so that they validate the Kafka broker certificates when connecting to Kafka
brokers over TLS.

Table 12.3. Fields in the <cluster>-kafka-brokers Secret

Field Description

<cluster>-kafka-<num>.p12 PKCS #12 archive file for storing certificates and keys.

<cluster>-kafka-<num>.password Password for protecting the PKCS #12 archive file.

<cluster>-kafka-<num>.crt Certificate for Kafka broker pod <num>. Signed by a current or
former cluster CA private key in <cluster>-cluster-ca.

<cluster>-kafka-<num>.key Private key for Kafka broker pod <num>.

Table 12.4. Fields in the <cluster>-zookeeper-nodes Secret

Field Description

<cluster>-zookeeper-<num>.p12 PKCS #12 archive file for storing certificates and keys.

<cluster>-
zookeeper-<num>.password

Password for protecting the PKCS #12 archive file.

<cluster>-zookeeper-<num>.crt Certificate for ZooKeeper node <num>. Signed by a current or
former cluster CA private key in <cluster>-cluster-ca.

<cluster>-zookeeper-<num>.key Private key for ZooKeeper pod <num>.

Table 12.5. Fields in the <cluster>-entity-operator-certs Secret

Field Description

entity-operator_.p12 PKCS #12 archive file for storing certificates and keys.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

268

entity-operator_.password Password for protecting the PKCS #12 archive file.

entity-operator_.crt Certificate for TLS communication between the Entity Operator
and Kafka or ZooKeeper. Signed by a current or former cluster
CA private key in <cluster>-cluster-ca.

entity-operator.key Private key for TLS communication between the Entity
Operator and Kafka or ZooKeeper.

Field Description

12.2.3. Client CA Secrets

Table 12.6. Clients CA Secrets managed by the Cluster Operator in <cluster>

Secret name Field within Secret Description

<cluster>-clients-ca ca.key The current private key for the clients CA.

<cluster>-clients-ca-cert ca.p12 PKCS #12 archive file for storing
certificates and keys.

ca.password Password for protecting the PKCS #12
archive file.

ca.crt The current certificate for the clients CA.

The certificates in <cluster>-clients-ca-cert are those which the Kafka brokers trust.

NOTE

<cluster>-clients-ca is used to sign certificates of client applications. It needs to be
accessible to the AMQ Streams components and for administrative access if you are
intending to issue application certificates without using the User Operator. You can
enforce this using OpenShift role-based access controls if necessary.

12.2.4. Adding labels and annotations to Secrets

By configuring the clusterCaCert template property in the Kafka custom resource, you can add custom
labels and annotations to the Cluster CA Secrets created by the Cluster Operator. Labels and
annotations are useful for identifying objects and adding contextual information. You configure
template properties in AMQ Streams custom resources.

Example template customization to add labels and annotations to Secrets

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster

CHAPTER 12. MANAGING TLS CERTIFICATES

269

For more information on configuring template properties, see Section 2.6, “Customizing OpenShift
resources”.

12.2.5. Disabling ownerReference in the CA Secrets

By default, the Cluster and Client CA Secrets are created with an ownerReference property that is set
to the Kafka custom resource. This means that, when the Kafka custom resource is deleted, the CA
secrets are also deleted (garbage collected) by OpenShift.

If you want to reuse the CA for a new cluster, you can disable the ownerReference by setting the
generateSecretOwnerReference property for the Cluster and Client CA Secrets to false in the Kafka
configuration. When the ownerReference is disabled, CA Secrets are not deleted by OpenShift when
the corresponding Kafka custom resource is deleted.

Example Kafka configuration with disabled ownerReference for Cluster and Client CAs

Additional resources

CertificateAuthority schema reference

12.2.6. User Secrets

Table 12.7. Secrets managed by the User Operator

Secret name Field within Secret Description

<user> user.p12 PKCS #12 archive file for storing
certificates and keys.

spec:
 kafka:
 # ...
 template:
 clusterCaCert:
 metadata:
 labels:
 label1: value1
 label2: value2
 annotations:
 annotation1: value1
 annotation2: value2
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
...
 clusterCa:
 generateSecretOwnerReference: false
 clientsCa:
 generateSecretOwnerReference: false
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

270

user.password Password for protecting the PKCS #12
archive file.

user.crt Certificate for the user, signed by the
clients CA

user.key Private key for the user

Secret name Field within Secret Description

12.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS

Cluster CA and clients CA certificates are only valid for a limited time period, known as the validity
period. This is usually defined as a number of days since the certificate was generated.

For CA certificates automatically created by the Cluster Operator, you can configure the validity period
of:

Cluster CA certificates in Kafka.spec.clusterCa.validityDays

Client CA certificates in Kafka.spec.clientsCa.validityDays

The default validity period for both certificates is 365 days. Manually-installed CA certificates should
have their own validity periods defined.

When a CA certificate expires, components and clients that still trust that certificate will not accept TLS
connections from peers whose certificates were signed by the CA private key. The components and
clients need to trust the new CA certificate instead.

To allow the renewal of CA certificates without a loss of service, the Cluster Operator will initiate
certificate renewal before the old CA certificates expire.

You can configure the renewal period of the certificates created by the Cluster Operator:

Cluster CA certificates in Kafka.spec.clusterCa.renewalDays

Client CA certificates in Kafka.spec.clientsCa.renewalDays

The default renewal period for both certificates is 30 days.

The renewal period is measured backwards, from the expiry date of the current certificate.

Validity period against renewal period

Not Before Not After
 | |
 |<--------------- validityDays --------------->|
 <--- renewalDays --->|

To make a change to the validity and renewal periods after creating the Kafka cluster, you configure and
apply the Kafka custom resource, and manually renew the CA certificates. If you do not manually renew
the certificates, the new periods will be used the next time the certificate is renewed automatically.

CHAPTER 12. MANAGING TLS CERTIFICATES

271

Example Kafka configuration for certificate validity and renewal periods

The behavior of the Cluster Operator during the renewal period depends on the settings for the
certificate generation properties, generateCertificateAuthority and generateCertificateAuthority.

true

If the properties are set to true, a CA certificate is generated automatically by the Cluster Operator,
and renewed automatically within the renewal period.

false

If the properties are set to false, a CA certificate is not generated by the Cluster Operator. Use this
option if you are installing your own certificates.

12.3.1. Renewal process with automatically generated CA certificates

The Cluster Operator performs the following process to renew CA certificates:

1. Generate a new CA certificate, but retain the existing key. The new certificate replaces the old
one with the name ca.crt within the corresponding Secret.

2. Generate new client certificates (for ZooKeeper nodes, Kafka brokers, and the Entity Operator).
This is not strictly necessary because the signing key has not changed, but it keeps the validity
period of the client certificate in sync with the CA certificate.

3. Restart ZooKeeper nodes so that they will trust the new CA certificate and use the new client
certificates.

4. Restart Kafka brokers so that they will trust the new CA certificate and use the new client
certificates.

5. Restart the Topic and User Operators so that they will trust the new CA certificate and use the
new client certificates.

12.3.2. Client certificate renewal

The Cluster Operator is not aware of the client applications using the Kafka cluster.

When connecting to the cluster, and to ensure they operate correctly, client applications must:

Trust the cluster CA certificate published in the <cluster>-cluster-ca-cert Secret.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
...
 clusterCa:
 renewalDays: 30
 validityDays: 365
 generateCertificateAuthority: true
 clientsCa:
 renewalDays: 30
 validityDays: 365
 generateCertificateAuthority: true
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

272

Use the credentials published in their <user-name> Secret to connect to the cluster.
The User Secret provides credentials in PEM and PKCS #12 format, or it can provide a password
when using SCRAM-SHA authentication. The User Operator creates the user credentials when a
user is created.

You must ensure clients continue to work after certificate renewal. The renewal process depends on
how the clients are configured.

If you are provisioning client certificates and keys manually, you must generate new client certificates
and ensure the new certificates are used by clients within the renewal period. Failure to do this by the
end of the renewal period could result in client applications being unable to connect to the cluster.

NOTE

For workloads running inside the same OpenShift cluster and namespace, Secrets can be
mounted as a volume so the client Pods construct their keystores and truststores from
the current state of the Secrets. For more details on this procedure, see Configuring
internal clients to trust the cluster CA.

12.3.3. Manually renewing the CA certificates generated by the Cluster Operator

Cluster and clients CA certificates generated by the Cluster Operator auto-renew at the start of their
respective certificate renewal periods. However, you can use the strimzi.io/force-renew annotation to
manually renew one or both of these certificates before the certificate renewal period starts. You might
do this for security reasons, or if you have changed the renewal or validity periods for the certificates .

A renewed certificate uses the same private key as the old certificate.

NOTE

If you are using your own CA certificates, the force-renew annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates .

Prerequisites

The Cluster Operator is running.

A Kafka cluster in which CA certificates and private keys are installed.

Procedure

1. Apply the strimzi.io/force-renew annotation to the Secret that contains the CA certificate that
you want to renew.

Table 12.8. Annotation for the Secret that forces renewal of certificates

Certificate Secret Annotate command

Cluster CA KAFKA-CLUSTER-NAME-
cluster-ca-cert

oc annotate secret
KAFKA-CLUSTER-NAME-
cluster-ca-cert
strimzi.io/force-
renew=true

CHAPTER 12. MANAGING TLS CERTIFICATES

273

Clients CA KAFKA-CLUSTER-NAME-
clients-ca-cert

oc annotate secret
KAFKA-CLUSTER-NAME-
clients-ca-cert
strimzi.io/force-
renew=true

Certificate Secret Annotate command

At the next reconciliation the Cluster Operator will generate a new CA certificate for the Secret
that you annotated. If maintenance time windows are configured, the Cluster Operator will
generate the new CA certificate at the first reconciliation within the next maintenance time
window.

Client applications must reload the cluster and clients CA certificates that were renewed by the
Cluster Operator.

2. Check the period the CA certificate is valid:
For example, using an openssl command:

CA-CERTIFICATE-SECRET is the name of the Secret, which is KAFKA-CLUSTER-NAME-
cluster-ca-cert for the cluster CA certificate and KAFKA-CLUSTER-NAME-clients-ca-cert for
the clients CA certificate.

CA-CERTIFICATE is the name of the CA certificate, such as jsonpath={.data.ca\.crt}.

The command returns a notBefore and notAfter date, which is the validity period for the CA
certificate.

For example, for a cluster CA certificate:

3. Delete old certificates from the Secret.
When components are using the new certificates, older certificates might still be active. Delete
the old certificates to remove any potential security risk.

Additional resources

Section 12.2, “Secrets”

Section 2.1.5, “Maintenance time windows for rolling updates”

Section 14.2.48, “CertificateAuthority schema reference”

12.3.4. Replacing private keys used by the CA certificates generated by the Cluster

oc get secret CA-CERTIFICATE-SECRET -o 'jsonpath={.data.CA-CERTIFICATE}' | base64 -
d | openssl x509 -subject -issuer -startdate -enddate -noout

subject=O = io.strimzi, CN = cluster-ca v0
issuer=O = io.strimzi, CN = cluster-ca v0
notBefore=Jun 30 09:43:54 2020 GMT
notAfter=Jun 30 09:43:54 2021 GMT

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

274

12.3.4. Replacing private keys used by the CA certificates generated by the Cluster
Operator

You can replace the private keys used by the cluster CA and clients CA certificates generated by the
Cluster Operator. When a private key is replaced, the Cluster Operator generates a new CA certificate
for the new private key.

NOTE

If you are using your own CA certificates, the force-replace annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates .

Prerequisites

The Cluster Operator is running.

A Kafka cluster in which CA certificates and private keys are installed.

Procedure

Apply the strimzi.io/force-replace annotation to the Secret that contains the private key that
you want to renew.

Table 12.9. Commands for replacing private keys

Private key for Secret Annotate command

Cluster CA CLUSTER-NAME-cluster-ca oc annotate secret
CLUSTER-NAME-cluster-
ca strimzi.io/force-
replace=true

Clients CA CLUSTER-NAME-clients-ca oc annotate secret
CLUSTER-NAME-clients-
ca strimzi.io/force-
replace=true

At the next reconciliation the Cluster Operator will:

Generate a new private key for the Secret that you annotated

Generate a new CA certificate

If maintenance time windows are configured, the Cluster Operator will generate the new private key and
CA certificate at the first reconciliation within the next maintenance time window.

Client applications must reload the cluster and clients CA certificates that were renewed by the Cluster
Operator.

Additional resources

Section 12.2, “Secrets”

Section 2.1.5, “Maintenance time windows for rolling updates”

CHAPTER 12. MANAGING TLS CERTIFICATES

275

12.3.5. Renewing your own CA certificates

This procedure describes how to renew CA certificates and keys you installed yourself, instead of using
the certificates generated by the Cluster Operator.

If you are using your own certificates, the Cluster Operator will not renew them automatically. Therefore,
it is important that you follow this procedure during the renewal period of the certificate in order to
replace CA certificates that will soon expire.

The procedure describes the renewal of CA certificates in PEM format.

Prerequisites

The Cluster Operator is running.

Your own CA certificates and private keys are installed .

You have new cluster and clients X.509 certificates and keys in PEM format.

These could be generated using an openssl command, such as:

Procedure

1. Check the details of the current CA certificates in the Secret:

CA-CERTIFICATE-SECRET is the name of the Secret, which is KAFKA-CLUSTER-NAME-
cluster-ca-cert for the cluster CA certificate and KAFKA-CLUSTER-NAME-clients-ca-cert for
the clients CA certificate.

2. Create a directory to contain the existing CA certificates in the secret.

3. Fetch the secret for each CA certificate you wish to renew:

Replace CA-CERTIFICATE with the name of each CA certificate.

4. Rename the old ca.crt file as ca-DATE.crt, where DATE is the certificate expiry date in the
format YEAR-MONTH-DAYTHOUR-MINUTE-SECONDZ.
For example ca-2018-09-27T17-32-00Z.crt.

5. Copy your new CA certificate into the directory, naming it ca.crt:

openssl req -x509 -new -days NUMBER-OF-DAYS-VALID --nodes -out ca.crt -keyout ca.key

oc describe secret CA-CERTIFICATE-SECRET

mkdir new-ca-cert-secret
cd new-ca-cert-secret

oc get secret CA-CERTIFICATE-SECRET -o 'jsonpath={.data.CA-CERTIFICATE}' | base64 -
d > CA-CERTIFICATE

mv ca.crt ca-$(date -u -d$(openssl x509 -enddate -noout -in ca.crt | sed 's/.*=//') +'%Y-%m-
%dT%H-%M-%SZ').crt

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

276

6. Put your CA certificate in the corresponding Secret.

a. Delete the existing secret:

CA-CERTIFICATE-SECRET is the name of the Secret, as returned in the first step.

Ignore any "Not Exists" errors.

b. Recreate the secret:

7. Delete the directory you created:

8. Put your CA key in the corresponding Secret.

a. Delete the existing secret:

CA-KEY-SECRET is the name of CA key, which is KAFKA-CLUSTER-NAME-cluster-ca for
the cluster CA key and KAFKA-CLUSTER-NAME-clients-ca for the clients CA key.

b. Recreate the secret with the new CA key:

9. Label the secrets with the labels strimzi.io/kind=Kafka and strimzi.io/cluster=KAFKA-
CLUSTER-NAME:

12.4. TLS CONNECTIONS

12.4.1. ZooKeeper communication

Communication between the ZooKeeper nodes on all ports, as well as between clients and ZooKeeper, is
encrypted using TLS.

Communication between Kafka brokers and ZooKeeper nodes is also encrypted.

cp PATH-TO-NEW-CERTIFICATE ca.crt

oc delete secret CA-CERTIFICATE-SECRET

oc create secret generic CA-CERTIFICATE-SECRET --from-file=.

cd ..
rm -r new-ca-cert-secret

oc delete secret CA-KEY-SECRET

oc create secret generic CA-KEY-SECRET --from-file=ca.key=CA-KEY-SECRET-
FILENAME

oc label secret CA-CERTIFICATE-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=KAFKA-
CLUSTER-NAME
oc label secret CA-KEY-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=KAFKA-CLUSTER-
NAME

CHAPTER 12. MANAGING TLS CERTIFICATES

277

12.4.2. Kafka inter-broker communication

Communication between Kafka brokers is always encrypted using TLS.

Unless the ControlPlaneListener feature gate is enabled, all inter-broker communication goes through
an internal listener on port 9091. If you enable the feature gate, traffic from the control plane goes
through an internal control plane listener on port 9090. Traffic from the data plane continues to use the
existing internal listener on port 9091.

These internal listeners are not available to Kafka clients.

12.4.3. Topic and User Operators

All Operators use encryption for communication with both Kafka and ZooKeeper. In Topic and User
Operators, a TLS sidecar is used when communicating with ZooKeeper.

12.4.4. Cruise Control

Cruise Control uses encryption for communication with both Kafka and ZooKeeper. A TLS sidecar is
used when communicating with ZooKeeper.

12.4.5. Kafka Client connections

Encrypted or unencrypted communication between Kafka brokers and clients is configured using the tls
property for spec.kafka.listeners.

12.5. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides inside the OpenShift cluster —
connecting to a TLS listener — to trust the cluster CA certificate.

The easiest way to achieve this for an internal client is to use a volume mount to access the Secrets
containing the necessary certificates and keys.

Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka
Producer, Consumer, and Streams APIs.

Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12) or
PEM (.crt).

The steps describe how to mount the Cluster Secret that verifies the identity of the Kafka cluster to the
client pod.

Prerequisites

The Cluster Operator must be running.

There needs to be a Kafka resource within the OpenShift cluster.

You need a Kafka client application inside the OpenShift cluster that will connect using TLS, and
needs to trust the cluster CA certificate.

The client application must be running in the same namespace as the Kafka resource.

Using PKCS #12 format (.p12)

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

278

1. Mount the cluster Secret as a volume when defining the client pod.
For example:

Here we’re mounting:

The PKCS #12 file into an exact path, which can be configured

The password into an environment variable, where it can be used for Java configuration

2. Configure the Kafka client with the following properties:

A security protocol option:

security.protocol: SSL when using TLS for encryption (with or without TLS
authentication).

security.protocol: SASL_SSL when using SCRAM-SHA authentication over TLS.

ssl.truststore.location with the truststore location where the certificates were imported.

ssl.truststore.password with the password for accessing the truststore.

ssl.truststore.type=PKCS12 to identify the truststore type.

Using PEM format (.crt)

1. Mount the cluster Secret as a volume when defining the client pod.
For example:

kind: Pod
apiVersion: v1
metadata:
 name: client-pod
spec:
 containers:
 - name: client-name
 image: client-name
 volumeMounts:
 - name: secret-volume
 mountPath: /data/p12
 env:
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: my-password
 volumes:
 - name: secret-volume
 secret:
 secretName: my-cluster-cluster-ca-cert

kind: Pod
apiVersion: v1
metadata:
 name: client-pod
spec:

CHAPTER 12. MANAGING TLS CERTIFICATES

279

2. Use the certificate with clients that use certificates in X.509 format.

12.6. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides outside the OpenShift cluster –
connecting to an external listener – to trust the cluster CA certificate. Follow this procedure when
setting up the client and during the renewal period, when the old clients CA certificate is replaced.

Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka
Producer, Consumer, and Streams APIs.

Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12) or
PEM (.crt).

The steps describe how to obtain the certificate from the Cluster Secret that verifies the identity of the
Kafka cluster.

IMPORTANT

The <cluster-name>-cluster-ca-cert Secret will contain more than one CA certificate
during the CA certificate renewal period. Clients must add all of them to their truststores.

Prerequisites

The Cluster Operator must be running.

There needs to be a Kafka resource within the OpenShift cluster.

You need a Kafka client application outside the OpenShift cluster that will connect using TLS,
and needs to trust the cluster CA certificate.

Using PKCS #12 format (.p12)

1. Extract the cluster CA certificate and password from the CLUSTER-NAME-cluster-ca-cert
Secret of the Kafka cluster.

Replace CLUSTER-NAME with the name of the Kafka cluster.

 containers:
 - name: client-name
 image: client-name
 volumeMounts:
 - name: secret-volume
 mountPath: /data/crt
 volumes:
 - name: secret-volume
 secret:
 secretName: my-cluster-cluster-ca-cert

oc get secret CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d >
ca.p12

oc get secret CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d
> ca.password

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

280

2. Configure the Kafka client with the following properties:

A security protocol option:

security.protocol: SSL when using TLS for encryption (with or without TLS
authentication).

security.protocol: SASL_SSL when using SCRAM-SHA authentication over TLS.

ssl.truststore.location with the truststore location where the certificates were imported.

ssl.truststore.password with the password for accessing the truststore. This property can
be omitted if it is not needed by the truststore.

ssl.truststore.type=PKCS12 to identify the truststore type.

Using PEM format (.crt)

1. Extract the cluster CA certificate from the CLUSTER-NAME-cluster-ca-cert Secret of the
Kafka cluster.

2. Use the certificate with clients that use certificates in X.509 format.

12.7. KAFKA LISTENER CERTIFICATES

You can provide your own server certificates and private keys for the following types of listeners:

Internal TLS listeners for communication within the OpenShift cluster

External listeners (route, loadbalancer, ingress, and nodeport types), which have TLS
encryption enabled, for communication between Kafka clients and Kafka brokers

These user-provided certificates are called Kafka listener certificates.

Providing Kafka listener certificates for external listeners allows you to leverage existing security
infrastructure, such as your organization’s private CA or a public CA. Kafka clients will connect to Kafka
brokers using Kafka listener certificates rather than certificates signed by the cluster CA or clients CA.

You must manually renew Kafka listener certificates when needed.

12.7.1. Providing your own Kafka listener certificates

This procedure shows how to configure a listener to use your own private key and server certificate,
called a Kafka listener certificate.

Your client applications should use the CA public key as a trusted certificate in order to verify the
identity of the Kafka broker.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

oc get secret CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d >
ca.crt

CHAPTER 12. MANAGING TLS CERTIFICATES

281

For each listener, a compatible server certificate signed by an external CA.

Provide an X.509 certificate in PEM format.

Specify the correct Subject Alternative Names (SANs) for each listener. For more
information, see Section 12.7.2, “Alternative subjects in server certificates for Kafka
listeners”.

You can provide a certificate that includes the whole CA chain in the certificate file.

Procedure

1. Create a Secret containing your private key and server certificate:

2. Edit the Kafka resource for your cluster. Configure the listener to use your Secret, certificate
file, and private key file in the configuration.brokerCertChainAndKey property.

Example configuration for a loadbalancer external listener with TLS encryption
enabled

Example configuration for a TLS listener

oc create secret generic my-secret --from-file=my-listener-key.key --from-file=my-listener-
certificate.crt

...
listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-listener-certificate.crt
 key: my-listener-key.key
...

...
listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

282

3. Apply the new configuration to create or update the resource:

The Cluster Operator starts a rolling update of the Kafka cluster, which updates the
configuration of the listeners.

NOTE

A rolling update is also started if you update a Kafka listener certificate in a
Secret that is already used by a TLS or external listener.

Additional resources

Alternative subjects in server certificates for Kafka listeners

GenericKafkaListener schema reference

Kafka listener certificates

12.7.2. Alternative subjects in server certificates for Kafka listeners

In order to use TLS hostname verification with your own Kafka listener certificates, you must use the
correct Subject Alternative Names (SANs) for each listener. The certificate SANs must specify
hostnames for:

All of the Kafka brokers in your cluster

The Kafka cluster bootstrap service

You can use wildcard certificates if they are supported by your CA.

12.7.2.1. TLS listener SAN examples

Use the following examples to help you specify hostnames of the SANs in your certificates for TLS
listeners.

Wildcards example

 type: tls
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-listener-certificate.crt
 key: my-listener-key.key
...

oc apply -f kafka.yaml

//Kafka brokers
*.<cluster-name>-kafka-brokers
*.<cluster-name>-kafka-brokers.<namespace>.svc

// Bootstrap service
<cluster-name>-kafka-bootstrap
<cluster-name>-kafka-bootstrap.<namespace>.svc

CHAPTER 12. MANAGING TLS CERTIFICATES

283

Non-wildcards example

12.7.2.2. External listener SAN examples

For external listeners which have TLS encryption enabled, the hostnames you need to specify in
certificates depends on the external listener type.

Table 12.10. SANs for each type of external listener

External listener type In the SANs, specify…

Route Addresses of all Kafka broker Routes and the
address of the bootstrap Route.

You can use a matching wildcard name.

loadbalancer Addresses of all Kafka broker loadbalancers and
the bootstrap loadbalancer address.

You can use a matching wildcard name.

NodePort Addresses of all OpenShift worker nodes that the
Kafka broker pods might be scheduled to.

You can use a matching wildcard name.

Additional resources

Section 12.7.1, “Providing your own Kafka listener certificates”

// Kafka brokers
<cluster-name>-kafka-0.<cluster-name>-kafka-brokers
<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc
<cluster-name>-kafka-1.<cluster-name>-kafka-brokers
<cluster-name>-kafka-1.<cluster-name>-kafka-brokers.<namespace>.svc
...

// Bootstrap service
<cluster-name>-kafka-bootstrap
<cluster-name>-kafka-bootstrap.<namespace>.svc

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

284

CHAPTER 13. MANAGING AMQ STREAMS
This chapter covers tasks to maintain a deployment of AMQ Streams.

13.1. WORKING WITH CUSTOM RESOURCES

You can use oc commands to retrieve information and perform other operations on AMQ Streams
custom resources.

Using oc with the status subresource of a custom resource allows you to get the information about the
resource.

13.1.1. Performing oc operations on custom resources

Use oc commands, such as get, describe, edit, or delete, to perform operations on resource types. For
example, oc get kafkatopics retrieves a list of all Kafka topics and oc get kafkas retrieves all deployed
Kafka clusters.

When referencing resource types, you can use both singular and plural names: oc get kafkas gets the
same results as oc get kafka.

You can also use the short name of the resource. Learning short names can save you time when
managing AMQ Streams. The short name for Kafka is k, so you can also run oc get k to list all Kafka
clusters.

Table 13.1. Long and short names for each AMQ Streams resource

AMQ Streams resource Long name Short name

Kafka kafka k

Kafka Topic kafkatopic kt

Kafka User kafkauser ku

Kafka Connect kafkaconnect kc

Kafka Connector kafkaconnector kctr

Kafka Mirror Maker kafkamirrormaker kmm

Kafka Mirror Maker 2 kafkamirrormaker2 kmm2

Kafka Bridge kafkabridge kb

oc get k

NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS
my-cluster 3 3

CHAPTER 13. MANAGING AMQ STREAMS

285

Kafka Rebalance kafkarebalance kr

AMQ Streams resource Long name Short name

13.1.1.1. Resource categories

Categories of custom resources can also be used in oc commands.

All AMQ Streams custom resources belong to the category strimzi, so you can use strimzi to get all the
AMQ Streams resources with one command.

For example, running oc get strimzi lists all AMQ Streams custom resources in a given namespace.

The oc get strimzi -o name command returns all resource types and resource names. The -o name
option fetches the output in the type/name format

You can combine this strimzi command with other commands. For example, you can pass it into a oc
delete command to delete all resources in a single command.

Deleting all resources in a single operation might be useful, for example, when you are testing new AMQ
Streams features.

13.1.1.2. Querying the status of sub-resources

There are other values you can pass to the -o option. For example, by using -o yaml you get the output
in YAML format. Usng -o json will return it as JSON.

You can see all the options in oc get --help.

One of the most useful options is the JSONPath support, which allows you to pass JSONPath

oc get strimzi

NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS
kafka.kafka.strimzi.io/my-cluster 3 3

NAME PARTITIONS REPLICATION FACTOR
kafkatopic.kafka.strimzi.io/kafka-apps 3 3

NAME AUTHENTICATION AUTHORIZATION
kafkauser.kafka.strimzi.io/my-user tls simple

oc get strimzi -o name

kafka.kafka.strimzi.io/my-cluster
kafkatopic.kafka.strimzi.io/kafka-apps
kafkauser.kafka.strimzi.io/my-user

oc delete $(oc get strimzi -o name)

kafka.kafka.strimzi.io "my-cluster" deleted
kafkatopic.kafka.strimzi.io "kafka-apps" deleted
kafkauser.kafka.strimzi.io "my-user" deleted

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

286

One of the most useful options is the JSONPath support, which allows you to pass JSONPath
expressions to query the Kubernetes API. A JSONPath expression can extract or navigate specific parts
of any resource.

For example, you can use the JSONPath expression {.status.listeners[?
(@.type=="tls")].bootstrapServers} to get the bootstrap address from the status of the Kafka custom
resource and use it in your Kafka clients.

Here, the command finds the bootstrapServers value of the tls listeners.

By changing the type condition to @.type=="external" or @.type=="plain" you can also get the
address of the other Kafka listeners.

You can use jsonpath to extract any other property or group of properties from any custom resource.

13.1.2. AMQ Streams custom resource status information

Several resources have a status property, as described in the following table.

Table 13.2. Custom resource status properties

AMQ Streams resource Schema reference Publishes status information
on…

Kafka Section 14.2.54, “KafkaStatus
schema reference”

The Kafka cluster.

KafkaConnect Section 14.2.83,
“KafkaConnectStatus schema
reference”

The Kafka Connect cluster, if
deployed.

KafkaConnector Section 14.2.121,
“KafkaConnectorStatus
schema reference”

KafkaConnector resources, if
deployed.

KafkaMirrorMaker Section 14.2.109,
“KafkaMirrorMakerStatus
schema reference”

The Kafka MirrorMaker tool, if
deployed.

KafkaTopic Section 14.2.87,
“KafkaTopicStatus schema
reference”

Kafka topics in your Kafka cluster.

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.type=="tls")].bootstrapServers}{"\n"}'

my-cluster-kafka-bootstrap.myproject.svc:9093

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.type=="external")].bootstrapServers}{"\n"}'

192.168.1.247:9094

CHAPTER 13. MANAGING AMQ STREAMS

287

https://kubernetes.io/docs/reference/kubectl/jsonpath/

KafkaUser Section 14.2.103,
“KafkaUserStatus schema
reference”

Kafka users in your Kafka cluster.

KafkaBridge Section 14.2.118,
“KafkaBridgeStatus schema
reference”

The AMQ Streams Kafka Bridge, if
deployed.

AMQ Streams resource Schema reference Publishes status information
on…

The status property of a resource provides information on the resource’s:

Current state, in the status.conditions property

Last observed generation, in the status.observedGeneration property

The status property also provides resource-specific information. For example:

KafkaStatus provides information on listener addresses, and the id of the Kafka cluster.

KafkaConnectStatus provides the REST API endpoint for Kafka Connect connectors.

KafkaUserStatus provides the user name of the Kafka user and the Secret in which their
credentials are stored.

KafkaBridgeStatus provides the HTTP address at which external client applications can access
the Bridge service.

A resource’s current state is useful for tracking progress related to the resource achieving its desired
state, as defined by the spec property. The status conditions provide the time and reason the state of
the resource changed and details of events preventing or delaying the operator from realizing the
resource’s desired state.

The last observed generation is the generation of the resource that was last reconciled by the Cluster
Operator. If the value of observedGeneration is different from the value of metadata.generation, the
operator has not yet processed the latest update to the resource. If these values are the same, the
status information reflects the most recent changes to the resource.

AMQ Streams creates and maintains the status of custom resources, periodically evaluating the current
state of the custom resource and updating its status accordingly. When performing an update on a
custom resource using oc edit, for example, its status is not editable. Moreover, changing the status
would not affect the configuration of the Kafka cluster.

Here we see the status property specified for a Kafka custom resource.

Kafka custom resource with status

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
spec:
 # ...
status:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

288

1

2

3

4

5

Status conditions describe criteria related to the status that cannot be deduced from the existing
resource information, or are specific to the instance of a resource.

The Ready condition indicates whether the Cluster Operator currently considers the Kafka cluster
able to handle traffic.

The observedGeneration indicates the generation of the Kafka custom resource that was last
reconciled by the Cluster Operator.

The listeners describe the current Kafka bootstrap addresses by type.

The Kafka cluster id.

IMPORTANT

The address in the custom resource status for external listeners with type nodeport
is currently not supported.

NOTE

The Kafka bootstrap addresses listed in the status do not signify that those endpoints or
the Kafka cluster is in a ready state.

 conditions: 1
 - lastTransitionTime: 2021-07-23T23:46:57+0000
 status: "True"
 type: Ready 2
 observedGeneration: 4 3
 listeners: 4
 - addresses:
 - host: my-cluster-kafka-bootstrap.myproject.svc
 port: 9092
 type: plain
 - addresses:
 - host: my-cluster-kafka-bootstrap.myproject.svc
 port: 9093
 certificates:
 - |
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 type: tls
 - addresses:
 - host: 172.29.49.180
 port: 9094
 certificates:
 - |
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 type: external
 clusterId: CLUSTER-ID 5
...

CHAPTER 13. MANAGING AMQ STREAMS

289

Accessing status information

You can access status information for a resource from the command line. For more information, see
Section 13.1.3, “Finding the status of a custom resource” .

13.1.3. Finding the status of a custom resource

This procedure describes how to find the status of a custom resource.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

Specify the custom resource and use the -o jsonpath option to apply a standard JSONPath
expression to select the status property:

This expression returns all the status information for the specified custom resource. You can use
dot notation, such as status.listeners or status.observedGeneration, to fine-tune the status
information you wish to see.

Additional resources

Section 13.1.2, “AMQ Streams custom resource status information”

For more information about using JSONPath, see JSONPath support.

13.2. PAUSING RECONCILIATION OF CUSTOM RESOURCES

Sometimes it is useful to pause the reconciliation of custom resources managed by AMQ Streams
Operators, so that you can perform fixes or make updates. If reconciliations are paused, any changes
made to custom resources are ignored by the Operators until the pause ends.

If you want to pause reconciliation of a custom resource, set the strimzi.io/pause-reconciliation
annotation to true in its configuration. This instructs the appropriate Operator to pause reconciliation of
the custom resource. For example, you can apply the annotation to the KafkaConnect resource so that
reconciliation by the Cluster Operator is paused.

You can also create a custom resource with the pause annotation enabled. The custom resource is
created, but it is ignored.

Prerequisites

The AMQ Streams Operator that manages the custom resource is running.

Procedure

1. Annotate the custom resource in OpenShift, setting pause-reconciliation to true:

oc get kafka <kafka_resource_name> -o jsonpath='{.status}'

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

290

https://kubernetes.io/docs/reference/kubectl/jsonpath/

For example, for the KafkaConnect custom resource:

2. Check that the status conditions of the custom resource show a change to
ReconciliationPaused:

The type condition changes to ReconciliationPaused at the lastTransitionTime.

Example custom resource with a paused reconciliation condition type

Resuming from pause

To resume reconciliation, you can set the annotation to false, or remove the annotation.

Additional resources

Customizing OpenShift resources

Finding the status of a custom resource

13.3. EVICTING PODS WITH AMQ STREAMS DRAIN CLEANER

Kafka and ZooKeeper pods might be evicted during OpenShift upgrades, maintenance or pod
rescheduling. If your Kafka broker and ZooKeeper pods were deployed by AMQ Streams, you can use the
AMQ Streams Drain Cleaner tool to handle the pod evictions. You need to set the
podDisruptionBudget for your Kafka deployment to 0 (zero) for the AMQ Streams Drain Cleaner to
work.

By deploying the AMQ Streams Drain Cleaner, you can use the Cluster Operator to move Kafka pods
instead of OpenShift. The Cluster Operator ensures that topics are never under-replicated. Kafka can
remain operational during the eviction process. The Cluster Operator waits for topics to synchronize, as

oc annotate KIND-OF-CUSTOM-RESOURCE NAME-OF-CUSTOM-RESOURCE
strimzi.io/pause-reconciliation="true"

oc annotate KafkaConnect my-connect strimzi.io/pause-reconciliation="true"

oc describe KIND-OF-CUSTOM-RESOURCE NAME-OF-CUSTOM-RESOURCE

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 annotations:
 strimzi.io/pause-reconciliation: "true"
 strimzi.io/use-connector-resources: "true"
 creationTimestamp: 2021-03-12T10:47:11Z
 #...
spec:
 # ...
status:
 conditions:
 - lastTransitionTime: 2021-03-12T10:47:41.689249Z
 status: "True"
 type: ReconciliationPaused

CHAPTER 13. MANAGING AMQ STREAMS

291

the OpenShift worker nodes drain consecutively.

An admission webhook notifies the AMQ Streams Drain Cleaner of pod eviction requests to the
Kubernetes API. The AMQ Streams Drain Cleaner then adds a rolling update annotation to the pods to
be drained. This informs the Cluster Operator to perform a rolling update of an evicted pod.

NOTE

If you are not using the AMQ Streams Drain Cleaner, you can add pod annotations to
perform rolling updates manually.

Webhook configuration

The AMQ Streams Drain Cleaner deployment files include a ValidatingWebhookConfiguration
resource file. The resource provides the configuration for registering the webhook with the Kubernetes
API.

The configuration defines the rules for the Kubernetes API to follow in the event of a pod eviction
request. The rules specify that only CREATE operations related to pods/eviction sub-resources are
intercepted. If these rules are met, the API forwards the notification.

The clientConfig points to the AMQ Streams Drain Cleaner service and /drainer endpoint that exposes
the webhook. The webhook uses a secure TLS connection, which requires authentication. The caBundle
property specifies the certificate chain to validate HTTPS communication. Certificates are encoded in
Base64.

Webhook configuration for pod eviction notifications

13.3.1. Prerequisites

To deploy and use the AMQ Streams Drain Cleaner, you need to download the deployment files.

The AMQ Streams Drain Cleaner deployment files are provided with the downloadable installation and
example files from the AMQ Streams download site .

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
...
webhooks:
 - name: strimzi-drain-cleaner.strimzi.io
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods/eviction"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "strimzi-drain-cleaner"
 name: "strimzi-drain-cleaner"
 path: /drainer
 port: 443
 caBundle: Cg==
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

292

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

1

13.3.2. Deploying the AMQ Streams Drain Cleaner

Deploy the AMQ Streams Drain Cleaner to the OpenShift cluster where the Cluster Operator and Kafka
cluster are running.

Prerequisites

You have downloaded the AMQ Streams Drain Cleaner deployment files .

You have a highly available Kafka cluster deployment running with OpenShift worker nodes that
you would like to update.

Topics are replicated for high availability.
Topic configuration specifies a replication factor of at least 3 and a minimum number of in-sync
replicas to 1 less than the replication factor.

Kafka topic replicated for high availability

Excluding ZooKeeper

If you don’t want to include ZooKeeper, you can remove the --zookeeper command option from the
AMQ Streams Drain Cleaner Deployment configuration file.

Remove this option to exclude ZooKeeper from AMQ Streams Drain Cleaner operations.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 3
 config:
 # ...
 min.insync.replicas: 2
 # ...

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-drain-cleaner
 containers:
 - name: strimzi-drain-cleaner
 # ...
 command:
 - "/application"
 - "-Dquarkus.http.host=0.0.0.0"
 - "--kafka"
 - "--zookeeper" 1
 # ...

CHAPTER 13. MANAGING AMQ STREAMS

293

Procedure

1. Configure a pod disruption budget of 0 (zero) for your Kafka deployment using template
settings in the Kafka resource.

Specifying a pod disruption budget

Reducing the maximum pod disruption budget to zero prevents OpenShift from automatically
evicting the pods in case of voluntary disruptions, so pods must be evicted by the AMQ Streams
Drain Cleaner.

Add the same configuration for ZooKeeper if you want to use AMQ Streams Drain Cleaner to
drain ZooKeeper nodes.

2. Update the Kafka resource:

3. Deploy the AMQ Streams Drain Cleaner:

13.3.3. Using the AMQ Streams Drain Cleaner

Use the AMQ Streams Drain Cleaner in combination with the Cluster Operator to move Kafka broker or
ZooKeeper pods from nodes that are being drained. When you run the AMQ Streams Drain Cleaner, it
annotates pods with a rolling update pod annotation. The Cluster Operator performs rolling updates
based on the annotation.

Prerequisites

You have deployed the AMQ Streams Drain Cleaner .

Procedure

1. Drain a specified OpenShift node hosting the Kafka broker or ZooKeeper pods.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 template:
 podDisruptionBudget:
 maxUnavailable: 0

 # ...
 zookeeper:
 template:
 podDisruptionBudget:
 maxUnavailable: 0
 # ...

oc apply -f <kafka-configuration-file>

oc apply -f ./install/drain-cleaner/openshift

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

294

2. Check the eviction events in the AMQ Streams Drain Cleaner log to verify that the pods have
been annotated for restart.

AMQ Streams Drain Cleaner log show annotations of pods

3. Check the reconciliation events in the Cluster Operator log to verify the rolling updates.

Cluster Operator log shows rolling updates

13.4. MANUALLY STARTING ROLLING UPDATES OF KAFKA AND
ZOOKEEPER CLUSTERS

AMQ Streams supports the use of annotations on StatefulSet and Pod resources to manually trigger a
rolling update of Kafka and ZooKeeper clusters through the Cluster Operator. Rolling updates restart
the pods of the resource with new ones.

Manually performing a rolling update on a specific pod or set of pods from the same StatefulSet is
usually only required in exceptional circumstances. However, rather than deleting the pods directly, if
you perform the rolling update through the Cluster Operator you ensure that:

The manual deletion of the pod does not conflict with simultaneous Cluster Operator
operations, such as deleting other pods in parallel.

The Cluster Operator logic handles the Kafka configuration specifications, such as the number
of in-sync replicas.

13.4.1. Prerequisites

To perform a manual rolling update, you need a running Cluster Operator and Kafka cluster.

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

oc get nodes
oc drain <name-of-node> --delete-emptydir-data --ignore-daemonsets --timeout=6000s --
force

INFO ... Received eviction webhook for Pod my-cluster-zookeeper-2 in namespace my-
project
INFO ... Pod my-cluster-zookeeper-2 in namespace my-project will be annotated for restart
INFO ... Pod my-cluster-zookeeper-2 in namespace my-project found and annotated for
restart

INFO ... Received eviction webhook for Pod my-cluster-kafka-0 in namespace my-project
INFO ... Pod my-cluster-kafka-0 in namespace my-project will be annotated for restart
INFO ... Pod my-cluster-kafka-0 in namespace my-project found and annotated for restart

INFO PodOperator:68 - Reconciliation #13(timer) Kafka(my-project/my-cluster): Rolling Pod
my-cluster-zookeeper-2
INFO PodOperator:68 - Reconciliation #13(timer) Kafka(my-project/my-cluster): Rolling Pod
my-cluster-kafka-0
INFO AbstractOperator:500 - Reconciliation #13(timer) Kafka(my-project/my-cluster):
reconciled

CHAPTER 13. MANAGING AMQ STREAMS

295

Cluster Operator

Kafka cluster

13.4.2. Performing a rolling update using a StatefulSet annotation

This procedure describes how to manually trigger a rolling update of an existing Kafka cluster or
ZooKeeper cluster using an OpenShift StatefulSet annotation.

Procedure

1. Find the name of the StatefulSet that controls the Kafka or ZooKeeper pods you want to
manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding StatefulSet names
are my-cluster-kafka and my-cluster-zookeeper.

2. Annotate the StatefulSet resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of all
pods within the annotated StatefulSet is triggered, as long as the annotation was detected by
the reconciliation process. When the rolling update of all the pods is complete, the annotation is
removed from the StatefulSet.

13.4.3. Performing a rolling update using a Pod annotation

This procedure describes how to manually trigger a rolling update of an existing Kafka cluster or
ZooKeeper cluster using an OpenShift Pod annotation. When multiple pods from the same StatefulSet
are annotated, consecutive rolling updates are performed within the same reconciliation run.

Prerequisites

You can perform a rolling update on a Kafka cluster regardless of the topic replication factor used. But
for Kafka to stay operational during the update, you’ll need the following:

A highly available Kafka cluster deployment running with nodes that you wish to update.

Topics replicated for high availability.
Topic configuration specifies a replication factor of at least 3 and a minimum number of in-sync
replicas to 1 less than the replication factor.

Kafka topic replicated for high availability

oc annotate statefulset cluster-name-kafka strimzi.io/manual-rolling-update=true

oc annotate statefulset cluster-name-zookeeper strimzi.io/manual-rolling-update=true

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

296

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str

Procedure

1. Find the name of the Kafka or ZooKeeper Pod you want to manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding Pod names are my-
cluster-kafka-index and my-cluster-zookeeper-index. The index starts at zero and ends at the
total number of replicas minus one.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of the
annotated Pod is triggered, as long as the annotation was detected by the reconciliation
process. When the rolling update of a pod is complete, the annotation is removed from the Pod.

13.5. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS

Service discovery makes it easier for client applications running in the same OpenShift cluster as AMQ
Streams to interact with a Kafka cluster.

A service discovery label and annotation is generated for services used to access the Kafka cluster:

Internal Kafka bootstrap service

HTTP Bridge service

The label helps to make the service discoverable, and the annotation provides connection details that a
client application can use to make the connection.

The service discovery label, strimzi.io/discovery, is set as true for the Service resources. The service
discovery annotation has the same key, providing connection details in JSON format for each service.

Example internal Kafka bootstrap service

 replicas: 3
 config:
 # ...
 min.insync.replicas: 2
 # ...

oc annotate pod cluster-name-kafka-index strimzi.io/manual-rolling-update=true

oc annotate pod cluster-name-zookeeper-index strimzi.io/manual-rolling-update=true

apiVersion: v1
kind: Service
metadata:
 annotations:
 strimzi.io/discovery: |-
 [{
 "port" : 9092,
 "tls" : false,
 "protocol" : "kafka",
 "auth" : "scram-sha-512"
 }, {
 "port" : 9093,

CHAPTER 13. MANAGING AMQ STREAMS

297

Example HTTP Bridge service

13.5.1. Returning connection details on services

You can find the services by specifying the discovery label when fetching services from the command
line or a corresponding API call.

The connection details are returned when retrieving the service discovery label.

13.6. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES

You can recover a Kafka cluster from persistent volumes (PVs) if they are still present.

You might want to do this, for example, after:

A namespace was deleted unintentionally

A whole OpenShift cluster is lost, but the PVs remain in the infrastructure

13.6.1. Recovery from namespace deletion

Recovery from namespace deletion is possible because of the relationship between persistent volumes

 "tls" : true,
 "protocol" : "kafka",
 "auth" : "tls"
 }]
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/discovery: "true"
 strimzi.io/kind: Kafka
 strimzi.io/name: my-cluster-kafka-bootstrap
 name: my-cluster-kafka-bootstrap
spec:
 #...

apiVersion: v1
kind: Service
metadata:
 annotations:
 strimzi.io/discovery: |-
 [{
 "port" : 8080,
 "tls" : false,
 "auth" : "none",
 "protocol" : "http"
 }]
 labels:
 strimzi.io/cluster: my-bridge
 strimzi.io/discovery: "true"
 strimzi.io/kind: KafkaBridge
 strimzi.io/name: my-bridge-bridge-service

oc get service -l strimzi.io/discovery=true

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

298

Recovery from namespace deletion is possible because of the relationship between persistent volumes
and namespaces. A PersistentVolume (PV) is a storage resource that lives outside of a namespace. A
PV is mounted into a Kafka pod using a PersistentVolumeClaim (PVC), which lives inside a namespace.

The reclaim policy for a PV tells a cluster how to act when a namespace is deleted. If the reclaim policy is
set as:

Delete (default), PVs are deleted when PVCs are deleted within a namespace

Retain, PVs are not deleted when a namespace is deleted

To ensure that you can recover from a PV if a namespace is deleted unintentionally, the policy must be
reset from Delete to Retain in the PV specification using the persistentVolumeReclaimPolicy
property:

Alternatively, PVs can inherit the reclaim policy of an associated storage class. Storage classes are used
for dynamic volume allocation.

By configuring the reclaimPolicy property for the storage class, PVs that use the storage class are
created with the appropriate reclaim policy. The storage class is configured for the PV using the
storageClassName property.

NOTE

If you are using Retain as the reclaim policy, but you want to delete an entire cluster, you
need to delete the PVs manually. Otherwise they will not be deleted, and may cause
unnecessary expenditure on resources.

13.6.2. Recovery from loss of an OpenShift cluster

When a cluster is lost, you can use the data from disks/volumes to recover the cluster if they were

apiVersion: v1
kind: PersistentVolume
...
spec:
 # ...
 persistentVolumeReclaimPolicy: Retain

apiVersion: v1
kind: StorageClass
metadata:
 name: gp2-retain
parameters:
 # ...
...
reclaimPolicy: Retain

apiVersion: v1
kind: PersistentVolume
...
spec:
 # ...
 storageClassName: gp2-retain

CHAPTER 13. MANAGING AMQ STREAMS

299

When a cluster is lost, you can use the data from disks/volumes to recover the cluster if they were
preserved within the infrastructure. The recovery procedure is the same as with namespace deletion,
assuming PVs can be recovered and they were created manually.

13.6.3. Recovering a deleted cluster from persistent volumes

This procedure describes how to recover a deleted cluster from persistent volumes (PVs).

In this situation, the Topic Operator identifies that topics exist in Kafka, but the KafkaTopic resources
do not exist.

When you get to the step to recreate your cluster, you have two options:

1. Use Option 1 when you can recover all KafkaTopic resources.
The KafkaTopic resources must therefore be recovered before the cluster is started so that
the corresponding topics are not deleted by the Topic Operator.

2. Use Option 2 when you are unable to recover all KafkaTopic resources.
In this case, you deploy your cluster without the Topic Operator, delete the Topic Operator
topic store metadata, and then redeploy the Kafka cluster with the Topic Operator so it can
recreate the KafkaTopic resources from the corresponding topics.

NOTE

If the Topic Operator is not deployed, you only need to recover the
PersistentVolumeClaim (PVC) resources.

Before you begin

In this procedure, it is essential that PVs are mounted into the correct PVC to avoid data corruption. A
volumeName is specified for the PVC and this must match the name of the PV.

For more information, see:

Persistent Volume Claim naming

JBOD and Persistent Volume Claims

NOTE

The procedure does not include recovery of KafkaUser resources, which must be
recreated manually. If passwords and certificates need to be retained, secrets must be
recreated before creating the KafkaUser resources.

Procedure

1. Check information on the PVs in the cluster:

Information is presented for PVs with data.

Example output showing columns important to this procedure:

oc get pv

NAME RECLAIMPOLICY CLAIM

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

300

NAME shows the name of each PV.

RECLAIM POLICY shows that PVs are retained.

CLAIM shows the link to the original PVCs.

2. Recreate the original namespace:

3. Recreate the original PVC resource specifications, linking the PVCs to the appropriate PV:
For example:

4. Edit the PV specifications to delete the claimRef properties that bound the original PVC.
For example:

pvc-5e9c5c7f-3317-11ea-a650-06e1eadd9a4c ... Retain ... myproject/data-my-cluster-
zookeeper-1
pvc-5e9cc72d-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-my-cluster-
zookeeper-0
pvc-5ead43d1-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-my-cluster-
zookeeper-2
pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c ... Retain ... myproject/data-0-my-cluster-
kafka-0
pvc-7e21042e-3317-11ea-9786-02deaf9aa87e ... Retain ... myproject/data-0-my-cluster-
kafka-1
pvc-7e226978-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-0-my-cluster-
kafka-2

oc create namespace myproject

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: data-0-my-cluster-kafka-0
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Gi
 storageClassName: gp2-retain
 volumeMode: Filesystem
 volumeName: pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c

apiVersion: v1
kind: PersistentVolume
metadata:
 annotations:
 kubernetes.io/createdby: aws-ebs-dynamic-provisioner
 pv.kubernetes.io/bound-by-controller: "yes"
 pv.kubernetes.io/provisioned-by: kubernetes.io/aws-ebs
 creationTimestamp: "<date>"
 finalizers:
 - kubernetes.io/pv-protection
 labels:
 failure-domain.beta.kubernetes.io/region: eu-west-1

CHAPTER 13. MANAGING AMQ STREAMS

301

In the example, the following properties are deleted:

5. Deploy the Cluster Operator.

6. Recreate your cluster.
Follow the steps depending on whether or not you have all the KafkaTopic resources needed to
recreate your cluster.

Option 1: If you have all the KafkaTopic resources that existed before you lost your cluster,

 failure-domain.beta.kubernetes.io/zone: eu-west-1c
 name: pvc-7e226978-3317-11ea-97b0-0aef8816c7ea
 resourceVersion: "39431"
 selfLink: /api/v1/persistentvolumes/pvc-7e226978-3317-11ea-97b0-0aef8816c7ea
 uid: 7efe6b0d-3317-11ea-a650-06e1eadd9a4c
spec:
 accessModes:
 - ReadWriteOnce
 awsElasticBlockStore:
 fsType: xfs
 volumeID: aws://eu-west-1c/vol-09db3141656d1c258
 capacity:
 storage: 100Gi
 claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: data-0-my-cluster-kafka-2
 namespace: myproject
 resourceVersion: "39113"
 uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 operator: In
 values:
 - eu-west-1c
 - key: failure-domain.beta.kubernetes.io/region
 operator: In
 values:
 - eu-west-1
 persistentVolumeReclaimPolicy: Retain
 storageClassName: gp2-retain
 volumeMode: Filesystem

claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: data-0-my-cluster-kafka-2
 namespace: myproject
 resourceVersion: "39113"
 uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea

oc create -f install/cluster-operator -n my-project

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

302

1

Option 1: If you have all the KafkaTopic resources that existed before you lost your cluster,
including internal topics such as committed offsets from __consumer_offsets:

1. Recreate all KafkaTopic resources.
It is essential that you recreate the resources before deploying the cluster, or the Topic
Operator will delete the topics.

2. Deploy the Kafka cluster.
For example:

Option 2: If you do not have all the KafkaTopic resources that existed before you lost your
cluster:

1. Deploy the Kafka cluster, as with the first option, but without the Topic Operator by
removing the topicOperator property from the Kafka resource before deploying.
If you include the Topic Operator in the deployment, the Topic Operator will delete all the
topics.

2. Delete the internal topic store topics from the Kafka cluster:

The command must correspond to the type of listener and authentication used to access
the Kafka cluster.

3. Enable the Topic Operator by redeploying the Kafka cluster with the topicOperator
property to recreate the KafkaTopic resources.
For example:

Here we show the default configuration, which has no additional properties. You specify
the required configuration using the properties described in Section 14.2.44,
“EntityTopicOperatorSpec schema reference”.

7. Verify the recovery by listing the KafkaTopic resources:

oc apply -f kafka.yaml

oc run kafka-admin -ti --image=registry.redhat.io/amq7/amq-streams-kafka-30-
rhel8:2.0.1 --rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server
localhost:9092 --topic __strimzi-topic-operator-kstreams-topic-store-changelog --delete
&& ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi_store_topic --
delete

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {} 1
 #...

oc get KafkaTopic

CHAPTER 13. MANAGING AMQ STREAMS

303

1

2

3

13.7. SETTING LIMITS ON BROKERS USING THE KAFKA STATIC
QUOTA PLUGIN

Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster.
You enable the plugin and set limits by configuring the Kafka resource. You can set a byte-rate
threshold and storage quotas to put limits on the clients interacting with your brokers.

You can set byte-rate thresholds for producer and consumer bandwidth. The total limit is distributed
across all clients accessing the broker. For example, you can set a byte-rate threshold of 40 MBps for
producers. If two producers are running, they are each limited to a throughput of 20 MBps.

Storage quotas throttle Kafka disk storage limits between a soft limit and hard limit. The limits apply to
all available disk space. Producers are slowed gradually between the soft and hard limit. The limits
prevent disks filling up too quickly and exceeding their capacity. Full disks can lead to issues that are
hard to rectify. The hard limit is the maximum storage limit.

NOTE

For JBOD storage, the limit applies across all disks. If a broker is using two 1 TB disks and
the quota is 1.1 TB, one disk might fill and the other disk will be almost empty.

Prerequisites

The Cluster Operator that manages the Kafka cluster is running.

Procedure

1. Add the plugin properties to the config of the Kafka resource.
The plugin properties are shown in this example configuration.

Example Kafka Static Quota plugin configuration

Loads the Kafka Static Quota plugin.

Sets the producer byte-rate threshold. 1 MBps in this example.

Sets the consumer byte-rate threshold. 1 MBps in this example.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback 1
 client.quota.callback.static.produce: 1000000 2
 client.quota.callback.static.fetch: 1000000 3
 client.quota.callback.static.storage.soft: 400000000000 4
 client.quota.callback.static.storage.hard: 500000000000 5
 client.quota.callback.static.storage.check-interval: 5 6

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

304

4

5

6

Sets the lower soft limit for storage. 400 GB in this example.

Sets the higher hard limit for storage. 500 GB in this example.

Sets the interval in seconds between checks on storage. 5 seconds in this example. You can
set this to 0 to disable the check.

2. Update the resource.

Additional resources

Kafka broker configuration tuning

Setting user quotas

13.8. TUNING KAFKA CONFIGURATION

Use configuration properties to optimize the performance of Kafka brokers, producers and consumers.

A minimum set of configuration properties is required, but you can add or adjust properties to change
how producers and consumers interact with Kafka brokers. For example, you can tune latency and
throughput of messages so that clients can respond to data in real time.

You might start by analyzing metrics to gauge where to make your initial configurations, then make
incremental changes and further comparisons of metrics until you have the configuration you need.

For more information about Apache Kafka configuration properties, see the Apache Kafka
documentation.

13.8.1. Kafka broker configuration tuning

Use configuration properties to optimize the performance of Kafka brokers. You can use standard Kafka
broker configuration options, except for properties managed directly by AMQ Streams.

13.8.1.1. Basic broker configuration

Certain broker configuration options are managed directly by AMQ Streams, driven by the Kafka custom
resource specification:

broker.id is the ID of the Kafka broker

log.dirs are the directories for log data

zookeeper.connect is the configuration to connect Kafka with ZooKeeper

listener exposes the Kafka cluster to clients

authorization mechanisms allow or decline actions executed by users

authentication mechanisms prove the identity of users requiring access to Kafka

Broker IDs start from 0 (zero) and correspond to the number of broker replicas. Log directories are

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 13. MANAGING AMQ STREAMS

305

https://kafka.apache.org/documentation/

Broker IDs start from 0 (zero) and correspond to the number of broker replicas. Log directories are
mounted to /var/lib/kafka/data/kafka-logIDX based on the spec.kafka.storage configuration in the
Kafka custom resource. IDX is the Kafka broker pod index.

As such, you cannot configure these options through the config property of the Kafka custom
resource. For a list of exclusions, see the KafkaClusterSpec schema reference.

However, a typical broker configuration will include settings for properties related to topics, threads and
logs.

Basic broker configuration properties

13.8.1.2. Replicating topics for high availability

Basic topic properties set the default number of partitions and replication factor for topics, which will
apply to topics that are created without these properties being explicitly set, including when topics are
created automatically.

The auto.create.topics.enable property is enabled by default so that topics that do not already exist
are created automatically when needed by producers and consumers. If you are using automatic topic
creation, you can set the default number of partitions for topics using num.partitions. Generally,
however, this property is disabled so that more control is provided over topics through explicit topic
creation. For example, you can use the AMQ Streams KafkaTopic resource or applications to create
topics.

For high availability environments, it is advisable to increase the replication factor to at least 3 for topics
and set the minimum number of in-sync replicas required to 1 less than the replication factor. For topics
created using the KafkaTopic resource, the replication factor is set using spec.replicas.

...
num.partitions=1
default.replication.factor=3
offsets.topic.replication.factor=3
transaction.state.log.replication.factor=3
transaction.state.log.min.isr=2
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
num.network.threads=3
num.io.threads=8
num.recovery.threads.per.data.dir=1
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
group.initial.rebalance.delay.ms=0
zookeeper.connection.timeout.ms=6000
...

...
num.partitions=1
auto.create.topics.enable=false
default.replication.factor=3
min.insync.replicas=2
replica.fetch.max.bytes=1048576
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

306

For data durability, you should also set min.insync.replicas in your topic configuration and message
delivery acknowledgments using acks=all in your producer configuration.

Use replica.fetch.max.bytes to set the maximum size, in bytes, of messages fetched by each follower
that replicates the leader partition. Change this value according to the average message size and
throughput. When considering the total memory allocation required for read/write buffering, the
memory available must also be able to accommodate the maximum replicated message size when
multiplied by all followers.

The delete.topic.enable property is enabled by default to allow topics to be deleted. In a production
environment, you should disable this property to avoid accidental topic deletion, resulting in data loss.
You can, however, temporarily enable it and delete topics and then disable it again. If
delete.topic.enable is enabled, you can delete topics using the KafkaTopic resource.

13.8.1.3. Internal topic settings for transactions and commits

If you are using transactions to enable atomic writes to partitions from producers, the state of the
transactions is stored in the internal __transaction_state topic. By default, the brokers are configured
with a replication factor of 3 and a minimum of 2 in-sync replicas for this topic, which means that a
minimum of three brokers are required in your Kafka cluster.

Similarly, the internal __consumer_offsets topic, which stores consumer state, has default settings for
the number of partitions and replication factor.

Do not reduce these settings in production. You can increase the settings in a production
environment. As an exception, you might want to reduce the settings in a single-broker test
environment.

13.8.1.4. Improving request handling throughput by increasing I/O threads

Network threads handle requests to the Kafka cluster, such as produce and fetch requests from client
applications. Produce requests are placed in a request queue. Responses are placed in a response queue.

The number of network threads should reflect the replication factor and the levels of activity from client
producers and consumers interacting with the Kafka cluster. If you are going to have a lot of requests,
you can increase the number of threads, using the amount of time threads are idle to determine when to
add more threads.

To reduce congestion and regulate the request traffic, you can limit the number of requests allowed in

...
auto.create.topics.enable=false
delete.topic.enable=true
...

...
transaction.state.log.replication.factor=3
transaction.state.log.min.isr=2
...

...
offsets.topic.num.partitions=50
offsets.topic.replication.factor=3
...

CHAPTER 13. MANAGING AMQ STREAMS

307

1

2

3

4

To reduce congestion and regulate the request traffic, you can limit the number of requests allowed in
the request queue before the network thread is blocked.

I/O threads pick up requests from the request queue to process them. Adding more threads can
improve throughput, but the number of CPU cores and disk bandwidth imposes a practical upper limit.
At a minimum, the number of I/O threads should equal the number of storage volumes.

The number of network threads for the Kafka cluster.

The number of requests allowed in the request queue.

The number of I/O threads for a Kafka broker.

The number of threads used for log loading at startup and flushing at shutdown.

Configuration updates to the thread pools for all brokers might occur dynamically at the cluster level.
These updates are restricted to between half the current size and twice the current size.

NOTE

Kafka broker metrics can help with working out the number of threads required. For
example, metrics for the average time network threads are idle
(kafka.network:type=SocketServer,name=NetworkProcessorAvgIdlePercent)
indicate the percentage of resources used. If there is 0% idle time, all resources are in
use, which means that adding more threads might be beneficial.

If threads are slow or limited due to the number of disks, you can try increasing the size of the buffers for
network requests to improve throughput:

And also increase the maximum number of bytes Kafka can receive:

13.8.1.5. Increasing bandwidth for high latency connections

Kafka batches data to achieve reasonable throughput over high-latency connections from Kafka to
clients, such as connections between datacenters. However, if high latency is a problem, you can
increase the size of the buffers for sending and receiving messages.

...
num.network.threads=3 1
queued.max.requests=500 2
num.io.threads=8 3
num.recovery.threads.per.data.dir=1 4
...

...
replica.socket.receive.buffer.bytes=65536
...

...
socket.request.max.bytes=104857600
...

...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

308

You can estimate the optimal size of your buffers using a bandwidth-delay product calculation, which
multiplies the maximum bandwidth of the link (in bytes/s) with the round-trip delay (in seconds) to give
an estimate of how large a buffer is required to sustain maximum throughput.

13.8.1.6. Managing logs with data retention policies

Kafka uses logs to store message data. Logs are a series of segments associated with various indexes.
New messages are written to an active segment, and never subsequently modified. Segments are read
when serving fetch requests from consumers. Periodically, the active segment is rolled to become read-
only and a new active segment is created to replace it. There is only a single segment active at a time.
Older segments are retained until they are eligible for deletion.

Configuration at the broker level sets the maximum size in bytes of a log segment and the amount of
time in milliseconds before an active segment is rolled:

You can override these settings at the topic level using segment.bytes and segment.ms. Whether you
need to lower or raise these values depends on the policy for segment deletion. A larger size means the
active segment contains more messages and is rolled less often. Segments also become eligible for
deletion less often.

You can set time-based or size-based log retention and cleanup policies so that logs are kept
manageable. Depending on your requirements, you can use log retention configuration to delete old
segments. If log retention policies are used, non-active log segments are removed when retention limits
are reached. Deleting old segments bounds the storage space required for the log so you do not exceed
disk capacity.

For time-based log retention, you set a retention period based on hours, minutes and milliseconds. The
retention period is based on the time messages were appended to the segment.

The milliseconds configuration has priority over minutes, which has priority over hours. The minutes and
milliseconds configuration is null by default, but the three options provide a substantial level of control
over the data you wish to retain. Preference should be given to the milliseconds configuration, as it is the
only one of the three properties that is dynamically updateable.

If log.retention.ms is set to -1, no time limit is applied to log retention, so all logs are retained. Disk
usage should always be monitored, but the -1 setting is not generally recommended as it can lead to
issues with full disks, which can be hard to rectify.

For size-based log retention, you set a maximum log size (of all segments in the log) in bytes:

socket.send.buffer.bytes=1048576
socket.receive.buffer.bytes=1048576
...

...
log.segment.bytes=1073741824
log.roll.ms=604800000
...

...
log.retention.ms=1680000
...

CHAPTER 13. MANAGING AMQ STREAMS

309

In other words, a log will typically have approximately log.retention.bytes/log.segment.bytes segments
once it reaches a steady state. When the maximum log size is reached, older segments are removed.

A potential issue with using a maximum log size is that it does not take into account the time messages
were appended to a segment. You can use time-based and size-based log retention for your cleanup
policy to get the balance you need. Whichever threshold is reached first triggers the cleanup.

If you wish to add a time delay before a segment file is deleted from the system, you can add the delay
using log.segment.delete.delay.ms for all topics at the broker level or file.delete.delay.ms for specific
topics in the topic configuration.

13.8.1.7. Removing log data with cleanup policies

The method of removing older log data is determined by the log cleaner configuration.

The log cleaner is enabled for the broker by default:

You can set the cleanup policy at the topic or broker level. Broker-level configuration is the default for
topics that do not have policy set.

You can set policy to delete logs, compact logs, or do both:

The delete policy corresponds to managing logs with data retention policies. It is suitable when data
does not need to be retained forever. The compact policy guarantees to keep the most recent message
for each message key. Log compaction is suitable where message values are changeable, and you want
to retain the latest update.

If cleanup policy is set to delete logs, older segments are deleted based on log retention limits.
Otherwise, if the log cleaner is not enabled, and there are no log retention limits, the log will continue to
grow.

If cleanup policy is set for log compaction, the head of the log operates as a standard Kafka log, with
writes for new messages appended in order. In the tail of a compacted log, where the log cleaner
operates, records will be deleted if another record with the same key occurs later in the log. Messages
with null values are also deleted. If you’re not using keys, you can’t use compaction because keys are
needed to identify related messages. While Kafka guarantees that the latest messages for each key will
be retained, it does not guarantee that the whole compacted log will not contain duplicates.

Figure 13.1. Log showing key value writes with offset positions before compaction

...
log.retention.bytes=1073741824
...

...
log.segment.delete.delay.ms=60000
...

...
log.cleaner.enable=true
...

...
log.cleanup.policy=compact,delete
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

310

Figure 13.1. Log showing key value writes with offset positions before compaction

Using keys to identify messages, Kafka compaction keeps the latest message (with the highest offset)
for a specific message key, eventually discarding earlier messages that have the same key. In other
words, the message in its latest state is always available and any out-of-date records of that particular
message are eventually removed when the log cleaner runs. You can restore a message back to a
previous state.

Records retain their original offsets even when surrounding records get deleted. Consequently, the tail
can have non-contiguous offsets. When consuming an offset that’s no longer available in the tail, the
record with the next higher offset is found.

Figure 13.2. Log after compaction

If you choose only a compact policy, your log can still become arbitrarily large. In which case, you can set
policy to compact and delete logs. If you choose to compact and delete, first the log data is compacted,
removing records with a key in the head of the log. After which, data that falls before the log retention
threshold is deleted.

Figure 13.3. Log retention point and compaction point

You set the frequency the log is checked for cleanup in milliseconds:

CHAPTER 13. MANAGING AMQ STREAMS

311

Adjust the log retention check interval in relation to the log retention settings. Smaller retention sizes
might require more frequent checks.

The frequency of cleanup should be often enough to manage the disk space, but not so often it affects
performance on a topic.

You can also set a time in milliseconds to put the cleaner on standby if there are no logs to clean:

If you choose to delete older log data, you can set a period in milliseconds to retain the deleted data
before it is purged:

The deleted data retention period gives time to notice the data is gone before it is irretrievably deleted.

To delete all messages related to a specific key, a producer can send a tombstone message. A
tombstone has a null value and acts as a marker to tell a consumer the value is deleted. After
compaction, only the tombstone is retained, which must be for a long enough period for the consumer
to know that the message is deleted. When older messages are deleted, having no value, the tombstone
key is also deleted from the partition.

13.8.1.8. Managing disk utilization

There are many other configuration settings related to log cleanup, but of particular importance is
memory allocation.

The deduplication property specifies the total memory for cleanup across all log cleaner threads. You
can set an upper limit on the percentage of memory used through the buffer load factor.

Each log entry uses exactly 24 bytes, so you can work out how many log entries the buffer can handle in
a single run and adjust the setting accordingly.

If possible, consider increasing the number of log cleaner threads if you are looking to reduce the log
cleaning time:

If you are experiencing issues with 100% disk bandwidth usage, you can throttle the log cleaner I/O so

...
log.retention.check.interval.ms=300000
...

...
log.cleaner.backoff.ms=15000
...

...
log.cleaner.delete.retention.ms=86400000
...

...
log.cleaner.dedupe.buffer.size=134217728
log.cleaner.io.buffer.load.factor=0.9
...

...
log.cleaner.threads=8
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

312

If you are experiencing issues with 100% disk bandwidth usage, you can throttle the log cleaner I/O so
that the sum of the read/write operations is less than a specified double value based on the capabilities
of the disks performing the operations:

13.8.1.9. Handling large message sizes

The default batch size for messages is 1MB, which is optimal for maximum throughput in most use cases.
Kafka can accommodate larger batches at a reduced throughput, assuming adequate disk capacity.

Large message sizes are handled in four ways:

1. Producer-side message compression writes compressed messages to the log.

2. Reference-based messaging sends only a reference to data stored in some other system in the
message’s value.

3. Inline messaging splits messages into chunks that use the same key, which are then combined
on output using a stream-processor like Kafka Streams.

4. Broker and producer/consumer client application configuration built to handle larger message
sizes.

The reference-based messaging and message compression options are recommended and cover most
situations. With any of these options, care must be take to avoid introducing performance issues.

Producer-side compression

For producer configuration, you specify a compression.type, such as Gzip, which is then applied to
batches of data generated by the producer. Using the broker configuration
compression.type=producer, the broker retains whatever compression the producer used. Whenever
producer and topic compression do not match, the broker has to compress batches again prior to
appending them to the log, which impacts broker performance.

Compression also adds additional processing overhead on the producer and decompression overhead
on the consumer, but includes more data in a batch, so is often beneficial to throughput when message
data compresses well.

Combine producer-side compression with fine-tuning of the batch size to facilitate optimum
throughput. Using metrics helps to gauge the average batch size needed.

Reference-based messaging

Reference-based messaging is useful for data replication when you do not know how big a message will
be. The external data store must be fast, durable, and highly available for this configuration to work. Data
is written to the data store and a reference to the data is returned. The producer sends a message
containing the reference to Kafka. The consumer gets the reference from the message and uses it to
fetch the data from the data store.

Figure 13.4. Reference-based messaging flow

...
log.cleaner.io.max.bytes.per.second=1.7976931348623157E308
...

CHAPTER 13. MANAGING AMQ STREAMS

313

Figure 13.4. Reference-based messaging flow

As the message passing requires more trips, end-to-end latency will increase. Another significant
drawback of this approach is there is no automatic clean up of the data in the external system when the
Kafka message gets cleaned up. A hybrid approach would be to only send large messages to the data
store and process standard-sized messages directly.

Inline messaging

Inline messaging is complex, but it does not have the overhead of depending on external systems like
reference-based messaging.

The producing client application has to serialize and then chunk the data if the message is too big. The
producer then uses the Kafka ByteArraySerializer or similar to serialize each chunk again before
sending it. The consumer tracks messages and buffers chunks until it has a complete message. The
consuming client application receives the chunks, which are assembled before deserialization. Complete
messages are delivered to the rest of the consuming application in order according to the offset of the
first or last chunk for each set of chunked messages. Successful delivery of the complete message is
checked against offset metadata to avoid duplicates during a rebalance.

Figure 13.5. Inline messaging flow

Inline messaging has a performance overhead on the consumer side because of the buffering required,
particularly when handling a series of large messages in parallel. The chunks of large messages can
become interleaved, so that it is not always possible to commit when all the chunks of a message have
been consumed if the chunks of another large message in the buffer are incomplete. For this reason, the
buffering is usually supported by persisting message chunks or by implementing commit logic.

Configuration to handle larger messages

If larger messages cannot be avoided, and to avoid blocks at any point of the message flow, you can
increase message limits. To do this, configure message.max.bytes at the topic level to set the
maximum record batch size for individual topics. If you set message.max.bytes at the broker level,
larger messages are allowed for all topics.

The broker will reject any message that is greater than the limit set with message.max.bytes. The

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

314

The broker will reject any message that is greater than the limit set with message.max.bytes. The
buffer size for the producers (max.request.size) and consumers (message.max.bytes) must be able
to accommodate the larger messages.

13.8.1.10. Controlling the log flush of message data

Log flush properties control the periodic writes of cached message data to disk. The scheduler specifies
the frequency of checks on the log cache in milliseconds:

You can control the frequency of the flush based on the maximum amount of time that a message is
kept in-memory and the maximum number of messages in the log before writing to disk:

The wait between flushes includes the time to make the check and the specified interval before the
flush is carried out. Increasing the frequency of flushes can affect throughput.

Generally, the recommendation is to not set explicit flush thresholds and let the operating system
perform background flush using its default settings. Partition replication provides greater data durability
than writes to any single disk as a failed broker can recover from its in-sync replicas.

If you are using application flush management, setting lower flush thresholds might be appropriate if you
are using faster disks.

13.8.1.11. Partition rebalancing for availability

Partitions can be replicated across brokers for fault tolerance. For a given partition, one broker is
elected leader and handles all produce requests (writes to the log). Partition followers on other brokers
replicate the partition data of the partition leader for data reliability in the event of the leader failing.

Followers do not normally serve clients, though rack configuration allows a consumer to consume
messages from the closest replica when a Kafka cluster spans multiple datacenters. Followers operate
only to replicate messages from the partition leader and allow recovery should the leader fail. Recovery
requires an in-sync follower. Followers stay in sync by sending fetch requests to the leader, which
returns messages to the follower in order. The follower is considered to be in sync if it has caught up
with the most recently committed message on the leader. The leader checks this by looking at the last
offset requested by the follower. An out-of-sync follower is usually not eligible as a leader should the
current leader fail, unless unclean leader election is allowed.

You can adjust the lag time before a follower is considered out of sync:

Lag time puts an upper limit on the time to replicate a message to all in-sync replicas and how long a
producer has to wait for an acknowledgment. If a follower fails to make a fetch request and catch up with
the latest message within the specified lag time, it is removed from in-sync replicas. You can reduce the

...
log.flush.scheduler.interval.ms=2000
...

...
log.flush.interval.ms=50000
log.flush.interval.messages=100000
...

...
replica.lag.time.max.ms=30000
...

CHAPTER 13. MANAGING AMQ STREAMS

315

lag time to detect failed replicas sooner, but by doing so you might increase the number of followers
that fall out of sync needlessly. The right lag time value depends on both network latency and broker
disk bandwidth.

When a leader partition is no longer available, one of the in-sync replicas is chosen as the new leader.
The first broker in a partition’s list of replicas is known as the preferred leader. By default, Kafka is
enabled for automatic partition leader rebalancing based on a periodic check of leader distribution. That
is, Kafka checks to see if the preferred leader is the current leader. A rebalance ensures that leaders are
evenly distributed across brokers and brokers are not overloaded.

You can use Cruise Control for AMQ Streams to figure out replica assignments to brokers that balance
load evenly across the cluster. Its calculation takes into account the differing load experienced by
leaders and followers. A failed leader affects the balance of a Kafka cluster because the remaining
brokers get the extra work of leading additional partitions.

For the assignment found by Cruise Control to actually be balanced it is necessary that partitions are
lead by the preferred leader. Kafka can automatically ensure that the preferred leader is being used
(where possible), changing the current leader if necessary. This ensures that the cluster remains in the
balanced state found by Cruise Control.

You can control the frequency, in seconds, of the rebalance check and the maximum percentage of
imbalance allowed for a broker before a rebalance is triggered.

The percentage leader imbalance for a broker is the ratio between the current number of partitions for
which the broker is the current leader and the number of partitions for which it is the preferred leader.
You can set the percentage to zero to ensure that preferred leaders are always elected, assuming they
are in sync.

If the checks for rebalances need more control, you can disable automated rebalances. You can then
choose when to trigger a rebalance using the kafka-leader-election.sh command line tool.

NOTE

The Grafana dashboards provided with AMQ Streams show metrics for under-replicated
partitions and partitions that do not have an active leader.

13.8.1.12. Unclean leader election

Leader election to an in-sync replica is considered clean because it guarantees no loss of data. And this
is what happens by default. But what if there is no in-sync replica to take on leadership? Perhaps the ISR
(in-sync replica) only contained the leader when the leader’s disk died. If a minimum number of in-sync
replicas is not set, and there are no followers in sync with the partition leader when its hard drive fails
irrevocably, data is already lost. Not only that, but a new leader cannot be elected because there are no
in-sync followers.

You can configure how Kafka handles leader failure:

#...
auto.leader.rebalance.enable=true
leader.imbalance.check.interval.seconds=300
leader.imbalance.per.broker.percentage=10
#...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

316

Unclean leader election is disabled by default, which means that out-of-sync replicas cannot become
leaders. With clean leader election, if no other broker was in the ISR when the old leader was lost, Kafka
waits until that leader is back online before messages can be written or read. Unclean leader election
means out-of-sync replicas can become leaders, but you risk losing messages. The choice you make
depends on whether your requirements favor availability or durability.

You can override the default configuration for specific topics at the topic level. If you cannot afford the
risk of data loss, then leave the default configuration.

13.8.1.13. Avoiding unnecessary consumer group rebalances

For consumers joining a new consumer group, you can add a delay so that unnecessary rebalances to
the broker are avoided:

The delay is the amount of time that the coordinator waits for members to join. The longer the delay,
the more likely it is that all the members will join in time and avoid a rebalance. But the delay also
prevents the group from consuming until the period has ended.

Additional resources

Setting limits on brokers using the Kafka Static Quota plugin

13.8.2. Kafka producer configuration tuning

Use a basic producer configuration with optional properties that are tailored to specific use cases.

Adjusting your configuration to maximize throughput might increase latency or vice versa. You will need
to experiment and tune your producer configuration to get the balance you need.

13.8.2.1. Basic producer configuration

Connection and serializer properties are required for every producer. Generally, it is good practice to
add a client id for tracking, and use compression on the producer to reduce batch sizes in requests.

In a basic producer configuration:

The order of messages in a partition is not guaranteed.

The acknowledgment of messages reaching the broker does not guarantee durability.

Basic producer configuration properties

...
unclean.leader.election.enable=false
...

...
group.initial.rebalance.delay.ms=3000
...

...
bootstrap.servers=localhost:9092 1
key.serializer=org.apache.kafka.common.serialization.StringSerializer 2
value.serializer=org.apache.kafka.common.serialization.StringSerializer 3

CHAPTER 13. MANAGING AMQ STREAMS

317

1

2

3

4

5

1

1

(Required) Tells the producer to connect to a Kafka cluster using a host:port bootstrap server
address for a Kafka broker. The producer uses the address to discover and connect to all brokers in
the cluster. Use a comma-separated list to specify two or three addresses in case a server is down,
but it’s not necessary to provide a list of all the brokers in the cluster.

(Required) Serializer to transform the key of each message to bytes prior to them being sent to a
broker.

(Required) Serializer to transform the value of each message to bytes prior to them being sent to a
broker.

(Optional) The logical name for the client, which is used in logs and metrics to identify the source
of a request.

(Optional) The codec for compressing messages, which are sent and might be stored in
compressed format and then decompressed when reaching a consumer. Compression is useful for
improving throughput and reducing the load on storage, but might not be suitable for low latency
applications where the cost of compression or decompression could be prohibitive.

13.8.2.2. Data durability

You can apply greater data durability, to minimize the likelihood that messages are lost, using message
delivery acknowledgments.

Specifying acks=all forces a partition leader to replicate messages to a certain number of followers
before acknowledging that the message request was successfully received. Because of the
additional checks, acks=all increases the latency between the producer sending a message and
receiving acknowledgment.

The number of brokers which need to have appended the messages to their logs before the
acknowledgment is sent to the producer is determined by the topic’s min.insync.replicas
configuration. A typical starting point is to have a topic replication factor of 3, with two in-sync replicas
on other brokers. In this configuration, the producer can continue unaffected if a single broker is
unavailable. If a second broker becomes unavailable, the producer won’t receive acknowledgments and
won’t be able to produce more messages.

Topic configuration to support acks=all

Use 2 in-sync replicas. The default is 1.

NOTE

client.id=my-client 4
compression.type=gzip 5
...

...
acks=all 1
...

...
min.insync.replicas=2 1
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

318

1

2

3

4

1

2

NOTE

If the system fails, there is a risk of unsent data in the buffer being lost.

13.8.2.3. Ordered delivery

Idempotent producers avoid duplicates as messages are delivered exactly once. IDs and sequence
numbers are assigned to messages to ensure the order of delivery, even in the event of failure. If you are
using acks=all for data consistency, enabling idempotency makes sense for ordered delivery.

Ordered delivery with idempotency

Set to true to enable the idempotent producer.

With idempotent delivery the number of in-flight requests may be greater than 1 while still
providing the message ordering guarantee. The default is 5 in-flight requests.

Set acks to all.

Set the number of attempts to resend a failed message request.

If you are not using acks=all and idempotency because of the performance cost, set the number of in-
flight (unacknowledged) requests to 1 to preserve ordering. Otherwise, a situation is possible where
Message-A fails only to succeed after Message-B was already written to the broker.

Ordered delivery without idempotency

Set to false to disable the idempotent producer.

Set the number of in-flight requests to exactly 1.

13.8.2.4. Reliability guarantees

Idempotence is useful for exactly once writes to a single partition. Transactions, when used with
idempotence, allow exactly once writes across multiple partitions.

Transactions guarantee that messages using the same transactional ID are produced once, and either all
are successfully written to the respective logs or none of them are.

...
enable.idempotence=true 1
max.in.flight.requests.per.connection=5 2
acks=all 3
retries=2147483647 4
...

...
enable.idempotence=false 1
max.in.flight.requests.per.connection=1 2
retries=2147483647
...

CHAPTER 13. MANAGING AMQ STREAMS

319

1

2

Specify a unique transactional ID.

Set the maximum allowed time for transactions in milliseconds before a timeout error is returned.
The default is 900000 or 15 minutes.

The choice of transactional.id is important in order that the transactional guarantee is maintained. Each
transactional id should be used for a unique set of topic partitions. For example, this can be achieved
using an external mapping of topic partition names to transactional ids, or by computing the
transactional id from the topic partition names using a function that avoids collisions.

13.8.2.5. Optimizing throughput and latency

Usually, the requirement of a system is to satisfy a particular throughput target for a proportion of
messages within a given latency. For example, targeting 500,000 messages per second with 95% of
messages being acknowledged within 2 seconds.

It’s likely that the messaging semantics (message ordering and durability) of your producer are defined
by the requirements for your application. For instance, it’s possible that you don’t have the option of
using acks=0 or acks=1 without breaking some important property or guarantee provided by your
application.

Broker restarts have a significant impact on high percentile statistics. For example, over a long period
the 99th percentile latency is dominated by behavior around broker restarts. This is worth considering
when designing benchmarks or comparing performance numbers from benchmarking with performance
numbers seen in production.

Depending on your objective, Kafka offers a number of configuration parameters and techniques for
tuning producer performance for throughput and latency.

Message batching (linger.ms and batch.size)

Message batching delays sending messages in the hope that more messages destined for the same
broker will be sent, allowing them to be batched into a single produce request. Batching is a
compromise between higher latency in return for higher throughput. Time-based batching is
configured using linger.ms, and size-based batching is configured using batch.size.

Compression (compression.type)

Message compression adds latency in the producer (CPU time spent compressing the messages),
but makes requests (and potentially disk writes) smaller, which can increase throughput. Whether
compression is worthwhile, and the best compression to use, will depend on the messages being sent.
Compression happens on the thread which calls KafkaProducer.send(), so if the latency of this
method matters for your application you should consider using more threads.

Pipelining (max.in.flight.requests.per.connection)

Pipelining means sending more requests before the response to a previous request has been
received. In general more pipelining means better throughput, up to a threshold at which other
effects, such as worse batching, start to counteract the effect on throughput.

...
enable.idempotence=true
max.in.flight.requests.per.connection=5
acks=all
retries=2147483647
transactional.id=UNIQUE-ID 1
transaction.timeout.ms=900000 2
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

320

1

2

3

Lowering latency

When your application calls KafkaProducer.send() the messages are:

Processed by any interceptors

Serialized

Assigned to a partition

Compressed

Added to a batch of messages in a per-partition queue

At which point the send() method returns. So the time send() is blocked is determined by:

The time spent in the interceptors, serializers and partitioner

The compression algorithm used

The time spent waiting for a buffer to use for compression

Batches will remain in the queue until one of the following occurs:

The batch is full (according to batch.size)

The delay introduced by linger.ms has passed

The sender is about to send message batches for other partitions to the same broker, and it is
possible to add this batch too

The producer is being flushed or closed

Look at the configuration for batching and buffering to mitigate the impact of send() blocking on
latency.

The linger property adds a delay in milliseconds so that larger batches of messages are
accumulated and sent in a request. The default is 0'.

If a maximum batch.size in bytes is used, a request is sent when the maximum is reached, or
messages have been queued for longer than linger.ms (whichever comes sooner). Adding the
delay allows batches to accumulate messages up to the batch size.

The buffer size must be at least as big as the batch size, and be able to accommodate buffering,
compression and in-flight requests.

Increasing throughput

Improve throughput of your message requests by adjusting the maximum time to wait before a message
is delivered and completes a send request.

...
linger.ms=100 1
batch.size=16384 2
buffer.memory=33554432 3
...

CHAPTER 13. MANAGING AMQ STREAMS

321

1

2

1

You can also direct messages to a specified partition by writing a custom partitioner to replace the
default.

The maximum time in milliseconds to wait for a complete send request. You can set the value to
MAX_LONG to delegate to Kafka an indefinite number of retries. The default is 120000 or 2
minutes.

Specify the class name of the custom partitioner.

13.8.3. Kafka consumer configuration tuning

Use a basic consumer configuration with optional properties that are tailored to specific use cases.

When tuning your consumers your primary concern will be ensuring that they cope efficiently with the
amount of data ingested. As with the producer tuning, be prepared to make incremental changes until
the consumers operate as expected.

13.8.3.1. Basic consumer configuration

Connection and deserializer properties are required for every consumer. Generally, it is good practice to
add a client id for tracking.

In a consumer configuration, irrespective of any subsequent configuration:

The consumer fetches from a given offset and consumes the messages in order, unless the
offset is changed to skip or re-read messages.

The broker does not know if the consumer processed the responses, even when committing
offsets to Kafka, because the offsets might be sent to a different broker in the cluster.

Basic consumer configuration properties

(Required) Tells the consumer to connect to a Kafka cluster using a host:port bootstrap server
address for a Kafka broker. The consumer uses the address to discover and connect to all brokers
in the cluster. Use a comma-separated list to specify two or three addresses in case a server is
down, but it is not necessary to provide a list of all the brokers in the cluster. If you are using a
loadbalancer service to expose the Kafka cluster, you only need the address for the service
because the availability is handled by the loadbalancer.

...
delivery.timeout.ms=120000 1
partitioner.class=my-custom-partitioner 2

...

...
bootstrap.servers=localhost:9092 1
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer 2
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer 3
client.id=my-client 4
group.id=my-group-id 5
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

322

2

3

4

5

1

(Required) Deserializer to transform the bytes fetched from the Kafka broker into message keys.

(Required) Deserializer to transform the bytes fetched from the Kafka broker into message values.

(Optional) The logical name for the client, which is used in logs and metrics to identify the source
of a request. The id can also be used to throttle consumers based on processing time quotas.

(Conditional) A group id is required for a consumer to be able to join a consumer group.

13.8.3.2. Scaling data consumption using consumer groups

Consumer groups share a typically large data stream generated by one or multiple producers from a
given topic. Consumers are grouped using a group.id property, allowing messages to be spread across
the members. One of the consumers in the group is elected leader and decides how the partitions are
assigned to the consumers in the group. Each partition can only be assigned to a single consumer.

If you do not already have as many consumers as partitions, you can scale data consumption by adding
more consumer instances with the same group.id. Adding more consumers to a group than there are
partitions will not help throughput, but it does mean that there are consumers on standby should one
stop functioning. If you can meet throughput goals with fewer consumers, you save on resources.

Consumers within the same consumer group send offset commits and heartbeats to the same broker.
So the greater the number of consumers in the group, the higher the request load on the broker.

Add a consumer to a consumer group using a group id.

13.8.3.3. Message ordering guarantees

Kafka brokers receive fetch requests from consumers that ask the broker to send messages from a list
of topics, partitions and offset positions.

A consumer observes messages in a single partition in the same order that they were committed to the
broker, which means that Kafka only provides ordering guarantees for messages in a single partition.
Conversely, if a consumer is consuming messages from multiple partitions, the order of messages in
different partitions as observed by the consumer does not necessarily reflect the order in which they
were sent.

If you want a strict ordering of messages from one topic, use one partition per consumer.

13.8.3.4. Optimizing throughput and latency

Control the number of messages returned when your client application calls KafkaConsumer.poll().

Use the fetch.max.wait.ms and fetch.min.bytes properties to increase the minimum amount of data
fetched by the consumer from the Kafka broker. Time-based batching is configured using
fetch.max.wait.ms, and size-based batching is configured using fetch.min.bytes.

If CPU utilization in the consumer or broker is high, it might be because there are too many requests
from the consumer. You can adjust fetch.max.wait.ms and fetch.min.bytes properties higher so that

...
group.id=my-group-id 1
...

CHAPTER 13. MANAGING AMQ STREAMS

323

1

2

1

2

there are fewer requests and messages are delivered in bigger batches. By adjusting higher, throughput
is improved with some cost to latency. You can also adjust higher if the amount of data being produced
is low.

For example, if you set fetch.max.wait.ms to 500ms and fetch.min.bytes to 16384 bytes, when Kafka
receives a fetch request from the consumer it will respond when the first of either threshold is reached.

Conversely, you can adjust the fetch.max.wait.ms and fetch.min.bytes properties lower to improve
end-to-end latency.

The maximum time in milliseconds the broker will wait before completing fetch requests. The
default is 500 milliseconds.

If a minimum batch size in bytes is used, a request is sent when the minimum is reached, or
messages have been queued for longer than fetch.max.wait.ms (whichever comes sooner).
Adding the delay allows batches to accumulate messages up to the batch size.

Lowering latency by increasing the fetch request size

Use the fetch.max.bytes and max.partition.fetch.bytes properties to increase the maximum amount
of data fetched by the consumer from the Kafka broker.

The fetch.max.bytes property sets a maximum limit in bytes on the amount of data fetched from the
broker at one time.

The max.partition.fetch.bytes sets a maximum limit in bytes on how much data is returned for each
partition, which must always be larger than the number of bytes set in the broker or topic configuration
for max.message.bytes.

The maximum amount of memory a client can consume is calculated approximately as:

If memory usage can accommodate it, you can increase the values of these two properties. By allowing
more data in each request, latency is improved as there are fewer fetch requests.

The maximum amount of data in bytes returned for a fetch request.

The maximum amount of data in bytes returned for each partition.

13.8.3.5. Avoiding data loss or duplication when committing offsets

The Kafka auto-commit mechanism allows a consumer to commit the offsets of messages automatically.

...
fetch.max.wait.ms=500 1
fetch.min.bytes=16384 2
...

NUMBER-OF-BROKERS * fetch.max.bytes and NUMBER-OF-PARTITIONS *
max.partition.fetch.bytes

...
fetch.max.bytes=52428800 1
max.partition.fetch.bytes=1048576 2
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

324

1

The Kafka auto-commit mechanism allows a consumer to commit the offsets of messages automatically.
If enabled, the consumer will commit offsets received from polling the broker at 5000ms intervals.

The auto-commit mechanism is convenient, but it introduces a risk of data loss and duplication. If a
consumer has fetched and transformed a number of messages, but the system crashes with processed
messages in the consumer buffer when performing an auto-commit, that data is lost. If the system
crashes after processing the messages, but before performing the auto-commit, the data is duplicated
on another consumer instance after rebalancing.

Auto-committing can avoid data loss only when all messages are processed before the next poll to the
broker, or the consumer closes.

To minimize the likelihood of data loss or duplication, you can set enable.auto.commit to false and
develop your client application to have more control over committing offsets. Or you can use
auto.commit.interval.ms to decrease the intervals between commits.

Auto commit is set to false to provide more control over committing offsets.

By setting to enable.auto.commit to false, you can commit offsets after all processing has been
performed and the message has been consumed. For example, you can set up your application to call
the Kafka commitSync and commitAsync commit APIs.

The commitSync API commits the offsets in a message batch returned from polling. You call the API
when you are finished processing all the messages in the batch. If you use the commitSync API, the
application will not poll for new messages until the last offset in the batch is committed. If this negatively
affects throughput, you can commit less frequently, or you can use the commitAsync API. The
commitAsync API does not wait for the broker to respond to a commit request, but risks creating more
duplicates when rebalancing. A common approach is to combine both commit APIs in an application,
with the commitSync API used just before shutting the consumer down or rebalancing to make sure the
final commit is successful.

13.8.3.5.1. Controlling transactional messages

Consider using transactional ids and enabling idempotence (enable.idempotence=true) on the
producer side to guarantee exactly-once delivery. On the consumer side, you can then use the
isolation.level property to control how transactional messages are read by the consumer.

The isolation.level property has two valid values:

read_committed

read_uncommitted (default)

Use read_committed to ensure that only transactional messages that have been committed are read by
the consumer. However, this will cause an increase in end-to-end latency, because the consumer will not
be able to return a message until the brokers have written the transaction markers that record the result
of the transaction (committed or aborted).

...
enable.auto.commit=false 1
...

...
enable.auto.commit=false
isolation.level=read_committed 1

CHAPTER 13. MANAGING AMQ STREAMS

325

1

1

2

Set to read_committed so that only committed messages are read by the consumer.

13.8.3.6. Recovering from failure to avoid data loss

Use the session.timeout.ms and heartbeat.interval.ms properties to configure the time taken to
check and recover from consumer failure within a consumer group.

The session.timeout.ms property specifies the maximum amount of time in milliseconds a consumer
within a consumer group can be out of contact with a broker before being considered inactive and a
rebalancing is triggered between the active consumers in the group. When the group rebalances, the
partitions are reassigned to the members of the group.

The heartbeat.interval.ms property specifies the interval in milliseconds between heartbeat checks to
the consumer group coordinator to indicate that the consumer is active and connected. The heartbeat
interval must be lower, usually by a third, than the session timeout interval.

If you set the session.timeout.ms property lower, failing consumers are detected earlier, and
rebalancing can take place quicker. However, take care not to set the timeout so low that the broker
fails to receive a heartbeat in time and triggers an unnecessary rebalance.

Decreasing the heartbeat interval reduces the chance of accidental rebalancing, but more frequent
heartbeats increases the overhead on broker resources.

13.8.3.7. Managing offset policy

Use the auto.offset.reset property to control how a consumer behaves when no offsets have been
committed, or a committed offset is no longer valid or deleted.

Suppose you deploy a consumer application for the first time, and it reads messages from an existing
topic. Because this is the first time the group.id is used, the __consumer_offsets topic does not
contain any offset information for this application. The new application can start processing all existing
messages from the start of the log or only new messages. The default reset value is latest, which starts
at the end of the partition, and consequently means some messages are missed. To avoid data loss, but
increase the amount of processing, set auto.offset.reset to earliest to start at the beginning of the
partition.

Also consider using the earliest option to avoid messages being lost when the offsets retention period
(offsets.retention.minutes) configured for a broker has ended. If a consumer group or standalone
consumer is inactive and commits no offsets during the retention period, previously committed offsets
are deleted from __consumer_offsets.

Adjust the heartbeat interval lower according to anticipated rebalances.

If no heartbeats are received by the Kafka broker before the timeout duration expires, the
consumer is removed from the consumer group and a rebalance is initiated. If the broker
configuration has a group.min.session.timeout.ms and group.max.session.timeout.ms, the

...

...
heartbeat.interval.ms=3000 1
session.timeout.ms=10000 2
auto.offset.reset=earliest 3
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

326

3

1

2

3

session timeout value must be within that range.

Set to earliest to return to the start of a partition and avoid data loss if offsets were not
committed.

If the amount of data returned in a single fetch request is large, a timeout might occur before the
consumer has processed it. In this case, you can lower max.partition.fetch.bytes or increase
session.timeout.ms.

13.8.3.8. Minimizing the impact of rebalances

The rebalancing of a partition between active consumers in a group is the time it takes for:

Consumers to commit their offsets

The new consumer group to be formed

The group leader to assign partitions to group members

The consumers in the group to receive their assignments and start fetching

Clearly, the process increases the downtime of a service, particularly when it happens repeatedly during
a rolling restart of a consumer group cluster.

In this situation, you can use the concept of static membership to reduce the number of rebalances.
Rebalancing assigns topic partitions evenly among consumer group members. Static membership uses
persistence so that a consumer instance is recognized during a restart after a session timeout.

The consumer group coordinator can identify a new consumer instance using a unique id that is
specified using the group.instance.id property. During a restart, the consumer is assigned a new
member id, but as a static member it continues with the same instance id, and the same assignment of
topic partitions is made.

If the consumer application does not make a call to poll at least every max.poll.interval.ms
milliseconds, the consumer is considered to be failed, causing a rebalance. If the application cannot
process all the records returned from poll in time, you can avoid a rebalance by using the
max.poll.interval.ms property to specify the interval in milliseconds between polls for new messages
from a consumer. Or you can use the max.poll.records property to set a maximum limit on the number
of records returned from the consumer buffer, allowing your application to process fewer records within
the max.poll.interval.ms limit.

The unique instance id ensures that a new consumer instance receives the same assignment of
topic partitions.

Set the interval to check the consumer is continuing to process messages.

Sets the number of processed records returned from the consumer.

...
group.instance.id=UNIQUE-ID 1
max.poll.interval.ms=300000 2
max.poll.records=500 3
...

CHAPTER 13. MANAGING AMQ STREAMS

327

13.9. UNINSTALLING AMQ STREAMS

This procedure describes how to uninstall AMQ Streams and remove resources related to the
deployment.

Prerequisites

In order to perform this procedure, identify resources created specifically for a deployment and
referenced from the AMQ Streams resource.

Such resources include:

Secrets (Custom CAs and certificates, Kafka Connect secrets, and other Kafka secrets)

Logging ConfigMaps (of type external)

These are resources referenced by Kafka, KafkaConnect, KafkaMirrorMaker, or KafkaBridge
configuration.

Procedure

1. Delete the Cluster Operator Deployment, related CustomResourceDefinitions, and RBAC
resources:

oc delete -f install/cluster-operator

WARNING

Deleting CustomResourceDefinitions results in the garbage collection of
the corresponding custom resources (Kafka, KafkaConnect,
KafkaMirrorMaker, or KafkaBridge) and the resources dependent on them
(Deployments, StatefulSets, and other dependent resources).

2. Delete the resources you identified in the prerequisites.

13.10. FREQUENTLY ASKED QUESTIONS

13.10.1. Questions related to the Cluster Operator

13.10.1.1. Why do I need cluster administrator privileges to install AMQ Streams?

To install AMQ Streams, you need to be able to create the following cluster-scoped resources:

Custom Resource Definitions (CRDs) to instruct OpenShift about resources that are specific to
AMQ Streams, such as Kafka and KafkaConnect

ClusterRoles and ClusterRoleBindings

Cluster-scoped resources, which are not scoped to a particular OpenShift namespace, typically require

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

328

Cluster-scoped resources, which are not scoped to a particular OpenShift namespace, typically require
cluster administrator privileges to install.

As a cluster administrator, you can inspect all the resources being installed (in the /install/ directory) to
ensure that the ClusterRoles do not grant unnecessary privileges.

After installation, the Cluster Operator runs as a regular Deployment, so any standard (non-admin)
OpenShift user with privileges to access the Deployment can configure it. The cluster administrator can
grant standard users the privileges necessary to manage Kafka custom resources.

See also:

Why does the Cluster Operator need to create ClusterRoleBindings?

Can standard OpenShift users create Kafka custom resources?

13.10.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?

OpenShift has built-in privilege escalation prevention , which means that the Cluster Operator cannot
grant privileges it does not have itself, specifically, it cannot grant such privileges in a namespace it
cannot access. Therefore, the Cluster Operator must have the privileges necessary for all the
components it orchestrates.

The Cluster Operator needs to be able to grant access so that:

The Topic Operator can manage KafkaTopics, by creating Roles and RoleBindings in the
namespace that the operator runs in

The User Operator can manage KafkaUsers, by creating Roles and RoleBindings in the
namespace that the operator runs in

The failure domain of a Node is discovered by AMQ Streams, by creating a ClusterRoleBinding

When using rack-aware partition assignment, the broker pod needs to be able to get information about
the Node it is running on, for example, the Availability Zone in Amazon AWS. A Node is a cluster-scoped
resource, so access to it can only be granted through a ClusterRoleBinding, not a namespace-scoped
RoleBinding.

13.10.1.3. Can standard OpenShift users create Kafka custom resources?

By default, standard OpenShift users will not have the privileges necessary to manage the custom
resources handled by the Cluster Operator. The cluster administrator can grant a user the necessary
privileges using OpenShift RBAC resources.

For more information, see Designating AMQ Streams administrators in the Deploying and Upgrading
AMQ Streams on OpenShift guide.

13.10.1.4. What do the failed to acquire lock warnings in the log mean?

For each cluster, the Cluster Operator executes only one operation at a time. The Cluster Operator uses
locks to make sure that there are never two parallel operations running for the same cluster. Other
operations must wait until the current operation completes before the lock is released.

INFO

Examples of cluster operations include cluster creation , rolling update, scale down , and scale up.

CHAPTER 13. MANAGING AMQ STREAMS

329

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#privilege-escalation-prevention-and-bootstrapping
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#adding-users-the-strimzi-admin-role-str

If the waiting time for the lock takes too long, the operation times out and the following warning
message is printed to the log:

Depending on the exact configuration of STRIMZI_FULL_RECONCILIATION_INTERVAL_MS and
STRIMZI_OPERATION_TIMEOUT_MS, this warning message might appear occasionally without
indicating any underlying issues. Operations that time out are picked up in the next periodic
reconciliation, so that the operation can acquire the lock and execute again.

Should this message appear periodically, even in situations when there should be no other operations
running for a given cluster, it might indicate that the lock was not properly released due to an error. If this
is the case, try restarting the Cluster Operator.

13.10.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

Currently, off-cluster access using NodePorts with TLS encryption enabled does not support TLS
hostname verification. As a result, the clients that verify the hostname will fail to connect. For example,
the Java client will fail with the following exception:

To connect, you must disable hostname verification. In the Java client, you can do this by setting the
configuration option ssl.endpoint.identification.algorithm to an empty string.

When configuring the client using a properties file, you can do it this way:

When configuring the client directly in Java, set the configuration option to an empty string:

2018-03-04 17:09:24 WARNING AbstractClusterOperations:290 - Failed to acquire lock for kafka
cluster lock::kafka::myproject::my-cluster

Caused by: java.security.cert.CertificateException: No subject alternative names matching IP address
168.72.15.231 found
 at sun.security.util.HostnameChecker.matchIP(HostnameChecker.java:168)
 at sun.security.util.HostnameChecker.match(HostnameChecker.java:94)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:455)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:436)
 at sun.security.ssl.X509TrustManagerImpl.checkTrusted(X509TrustManagerImpl.java:252)
 at sun.security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:136)
 at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1501)
 ... 17 more

ssl.endpoint.identification.algorithm=

props.put("ssl.endpoint.identification.algorithm", "");

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

330

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

14.1. COMMON CONFIGURATION PROPERTIES

Common configuration properties apply to more than one resource.

14.1.1. replicas

Use the replicas property to configure replicas.

The type of replication depends on the resource.

KafkaTopic uses a replication factor to configure the number of replicas of each partition within
a Kafka cluster.

Kafka components use replicas to configure the number of pods in a deployment to provide
better availability and scalability.

NOTE

When running a Kafka component on OpenShift it may not be necessary to run multiple
replicas for high availability. When the node where the component is deployed crashes,
OpenShift will automatically reschedule the Kafka component pod to a different node.
However, running Kafka components with multiple replicas can provide faster failover
times as the other nodes will be up and running.

14.1.2. bootstrapServers

Use the bootstrapServers property to configure a list of bootstrap servers.

The bootstrap server lists can refer to Kafka clusters that are not deployed in the same OpenShift
cluster. They can also refer to a Kafka cluster not deployed by AMQ Streams.

If on the same OpenShift cluster, each list must ideally contain the Kafka cluster bootstrap service which
is named CLUSTER-NAME-kafka-bootstrap and a port number. If deployed by AMQ Streams but on
different OpenShift clusters, the list content depends on the approach used for exposing the clusters
(routes, ingress, nodeports or loadbalancers).

When using Kafka with a Kafka cluster not managed by AMQ Streams, you can specify the bootstrap
servers list according to the configuration of the given cluster.

14.1.3. ssl

Use the three allowed ssl configuration options for client connection using a specific cipher suite for a
TLS version. A cipher suite combines algorithms for secure connection and data transfer.

You can also configure the ssl.endpoint.identification.algorithm property to enable or disable
hostname verification.

Example SSL configuration

...
spec:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

331

1

2

3

4

The cipher suite for TLS using a combination of ECDHE key exchange mechanism, RSA
authentication algorithm, AES bulk encyption algorithm and SHA384 MAC algorithm.

The SSl protocol TLSv1.2 is enabled.

Specifies the TLSv1.2 protocol to generate the SSL context. Allowed values are TLSv1.1 and
TLSv1.2.

Hostname verification is enabled by setting to HTTPS. An empty string disables the verification.

14.1.4. trustedCertificates

Having set tls to configure TLS encryption, use the trustedCertificates property to provide a list of
secrets with key names under which the certificates are stored in X.509 format.

You can use the secrets created by the Cluster Operator for the Kafka cluster, or you can create your
own TLS certificate file, then create a Secret from the file:

Example TLS encryption configuration

If certificates are stored in the same secret, it can be listed multiple times.

If you want to enable TLS, but use the default set of public certification authorities shipped with Java,
you can specify trustedCertificates as an empty array:

Example of enabling TLS with the default Java certificates

For information on configuring TLS client authentication, see KafkaClientAuthenticationTls schema
reference.

14.1.5. resources

You request CPU and memory resources for components. Limits specify the maximum resources that

 config:
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 1
 ssl.enabled.protocols: "TLSv1.2" 2
 ssl.protocol: "TLSv1.2" 3
 ssl.endpoint.identification.algorithm: HTTPS 4
...

oc create secret generic MY-SECRET \
--from-file=MY-TLS-CERTIFICATE-FILE.crt

tls:
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt

tls:
 trustedCertificates: []

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

332

You request CPU and memory resources for components. Limits specify the maximum resources that
can be consumed by a given container.

Resource requests and limits for the Topic Operator and User Operator are set in the Kafka resource.

Use the reources.requests and resources.limits properties to configure resource requests and limits.

For every deployed container, AMQ Streams allows you to request specific resources and define the
maximum consumption of those resources.

AMQ Streams supports requests and limits for the following types of resources:

cpu

memory

AMQ Streams uses the OpenShift syntax for specifying these resources.

For more information about managing computing resources on OpenShift, see Managing Compute
Resources for Containers.

Resource requests

Requests specify the resources to reserve for a given container. Reserving the resources ensures that
they are always available.

IMPORTANT

If the resource request is for more than the available free resources in the OpenShift
cluster, the pod is not scheduled.

A request may be configured for one or more supported resources.

Example resource requests configuration

Resource limits

Limits specify the maximum resources that can be consumed by a given container. The limit is not
reserved and might not always be available. A container can use the resources up to the limit only when
they are available. Resource limits should be always higher than the resource requests.

A resource may be configured for one or more supported limits.

Example resource limits configuration

...
resources:
 requests:
 cpu: 12
 memory: 64Gi
...

...
resources:
 limits:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

333

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Supported CPU formats

CPU requests and limits are supported in the following formats:

Number of CPU cores as integer (5 CPU core) or decimal (2.5 CPU core).

Number or millicpus / millicores (100m) where 1000 millicores is the same 1 CPU core.

Example CPU units

NOTE

The computing power of 1 CPU core may differ depending on the platform where
OpenShift is deployed.

For more information on CPU specification, see the Meaning of CPU.

Supported memory formats

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes.

To specify memory in megabytes, use the M suffix. For example 1000M.

To specify memory in gigabytes, use the G suffix. For example 1G.

To specify memory in mebibytes, use the Mi suffix. For example 1000Mi.

To specify memory in gibibytes, use the Gi suffix. For example 1Gi.

Example resources using different memory units

For more details about memory specification and additional supported units, see Meaning of memory.

14.1.6. image

 cpu: 12
 memory: 64Gi
...

...
resources:
 requests:
 cpu: 500m
 limits:
 cpu: 2.5
...

...
resources:
 requests:
 memory: 512Mi
 limits:
 memory: 2Gi
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

334

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory

Use the image property to configure the container image used by the component.

Overriding container images is recommended only in special situations where you need to use a different
container registry or a customized image.

For example, if your network does not allow access to the container repository used by AMQ Streams,
you can copy the AMQ Streams images or build them from the source. However, if the configured image
is not compatible with AMQ Streams images, it might not work properly.

A copy of the container image might also be customized and used for debugging.

You can specify which container image to use for a component using the image property in the
following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

Configuring the image property for Kafka, Kafka Connect, and Kafka MirrorMaker

Kafka, Kafka Connect, and Kafka MirrorMaker support multiple versions of Kafka. Each component
requires its own image. The default images for the different Kafka versions are configured in the
following environment variables:

STRIMZI_KAFKA_IMAGES

STRIMZI_KAFKA_CONNECT_IMAGES

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

These environment variables contain mappings between the Kafka versions and their corresponding
images. The mappings are used together with the image and version properties:

If neither image nor version are given in the custom resource then the version will default to
the Cluster Operator’s default Kafka version, and the image will be the one corresponding to
this version in the environment variable.

If image is given but version is not, then the given image is used and the version is assumed to
be the Cluster Operator’s default Kafka version.

If version is given but image is not, then the image that corresponds to the given version in the
environment variable is used.

If both version and image are given, then the given image is used. The image is assumed to

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

335

If both version and image are given, then the given image is used. The image is assumed to
contain a Kafka image with the given version.

The image and version for the different components can be configured in the following properties:

For Kafka in spec.kafka.image and spec.kafka.version.

For Kafka Connect and Kafka MirrorMaker in spec.image and spec.version.

WARNING

It is recommended to provide only the version and leave the image property
unspecified. This reduces the chance of making a mistake when configuring the
custom resource. If you need to change the images used for different versions of
Kafka, it is preferable to configure the Cluster Operator’s environment variables.

Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1 container image.

For Kafka Exporter:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_EXPORTER_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1 container image.

For Kafka Bridge:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

336

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_BRIDGE_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-bridge-rhel8:2.0.1 container image.

For Kafka broker initializer:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1 container image.

Example container image configuration

14.1.7. livenessProbe and readinessProbe healthchecks

Use the livenessProbe and readinessProbe properties to configure healthcheck probes supported in
AMQ Streams.

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

For more details about the probes, see Configure Liveness and Readiness Probes .

Both livenessProbe and readinessProbe support the following options:

initialDelaySeconds

timeoutSeconds

periodSeconds

successThreshold

failureThreshold

Example of liveness and readiness probe configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

...
readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
livenessProbe:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

337

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

For more information about the livenessProbe and readinessProbe options, see Probe schema
reference.

14.1.8. metricsConfig

Use the metricsConfig property to enable and configure Prometheus metrics.

The metricsConfig property contains a reference to a ConfigMap that has additional configurations for
the Prometheus JMX Exporter. AMQ Streams supports Prometheus metrics using Prometheus JMX
exporter to convert the JMX metrics supported by Apache Kafka and ZooKeeper to Prometheus
metrics.

To enable Prometheus metrics export without further configuration, you can reference a ConfigMap
containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key. When referencing an
empty file, all metrics are exposed as long as they have not been renamed.

Example ConfigMap with metrics configuration for Kafka

Example metrics configuration for Kafka

 initialDelaySeconds: 15
 timeoutSeconds: 5
...

kind: ConfigMap
apiVersion: v1
metadata:
 name: my-configmap
data:
 my-key: |
 lowercaseOutputName: true
 rules:
 # Special cases and very specific rules
 - pattern: kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
 name: kafka_server_$1_$2
 type: GAUGE
 labels:
 clientId: "$3"
 topic: "$4"
 partition: "$5"
 # further configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metricsConfig:
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

338

https://github.com/prometheus/jmx_exporter

When metrics are enabled, they are exposed on port 9404.

When the metricsConfig (or deprecated metrics) property is not defined in the resource, the
Prometheus metrics are disabled.

For more information about setting up and deploying Prometheus and Grafana, see Introducing Metrics
to Kafka in the Deploying and Upgrading AMQ Streams on OpenShift guide.

14.1.9. jvmOptions

The following AMQ Streams components run inside a Java Virtual Machine (JVM):

Apache Kafka

Apache ZooKeeper

Apache Kafka Connect

Apache Kafka MirrorMaker

AMQ Streams Kafka Bridge

To optimize their performance on different platforms and architectures, you configure the jvmOptions
property in the following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

You can specify the following options in your configuration:

-Xms

Minimum initial allocation heap size when the JVM starts.

-Xmx

Maximum heap size.

-XX

Advanced runtime options for the JVM.

javaSystemProperties

Additional system properties.

gcLoggingEnabled

Enables garbage collector logging .

 # ...
 zookeeper:
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

339

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-setup-str

The full schema of jvmOptions is described in JvmOptions schema reference.

NOTE

The units accepted by JVM settings, such as -Xmx and -Xms, are the same units
accepted by the JDK java binary in the corresponding image. Therefore, 1g or 1G means
1,073,741,824 bytes, and Gi is not a valid unit suffix. This is different from the units used
for memory requests and limits , which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes

-Xms and -Xmx options

The default values used for -Xms and -Xmx depend on whether there is a memory request limit
configured for the container.

If there is a memory limit, the JVM’s minimum and maximum memory is set to a value
corresponding to the limit.

If there is no memory limit, the JVM’s minimum memory is set to 128M. The JVM’s maximum
memory is not defined to allow the memory to increase as needed. This is ideal for single node
environments in test and development.

Before setting -Xmx explicitly, consider the following:

Total JVM memory usage can be a lot more than the maximum heap size. Try experimenting to
find a value for -Xmx that makes the best use of the container’s memory request without
exceeding it.

Setting an appropriate OpenShift memory request.

OpenShift might kill the container if there is pressure on memory from other pods running
on the node.

OpenShift might schedule the container to a node with insufficient memory. If -Xms is set
to -Xmx, the container will crash immediately; if not, the container will crash at a later time.

It is recommended to:

Set the memory request and the memory limit to the same value

Use a memory request that is at least 4.5 × the -Xmx

Consider setting -Xms to the same value as -Xmx

In this example, the JVM uses 2 GiB (=2,147,483,648 bytes) for its heap. Its total memory usage is
approximately 8GiB.

Example -Xmx and -Xms configuration

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to

...
jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

340

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed.

IMPORTANT

Containers performing lots of disk I/O, such as Kafka broker containers, require available
memory for use as an operating system page cache. On such containers, the requested
memory should be significantly higher than the memory used by the JVM.

-XX option

-XX options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example -XX configuration

JVM options resulting from the -XX configuration

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When no -XX options are specified, the default Apache Kafka configuration of
KAFKA_JVM_PERFORMANCE_OPTS is used.

javaSystemProperties

javaSystemProperties are used to configure additional Java system properties, such as debugging
utilities.

Example javaSystemProperties configuration

14.1.10. Garbage collector logging

The jvmOptions property also allows you to enable and disable garbage collector (GC) logging. GC
logging is disabled by default. To enable it, set the gcLoggingEnabled property as follows:

Example GC logging configuration

jvmOptions:
 "-XX":
 "UseG1GC": true
 "MaxGCPauseMillis": 20
 "InitiatingHeapOccupancyPercent": 35
 "ExplicitGCInvokesConcurrent": true

jvmOptions:
 javaSystemProperties:
 - name: javax.net.debug
 value: ssl

...
jvmOptions:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

341

14.2. SCHEMA PROPERTIES

14.2.1. Kafka schema reference

Property Description

spec The specification of the Kafka and ZooKeeper
clusters, and Topic Operator.

KafkaSpec

status The status of the Kafka and ZooKeeper clusters, and
Topic Operator.

KafkaStatus

14.2.2. KafkaSpec schema reference

Used in: Kafka

Property Description

kafka Configuration of the Kafka cluster.

KafkaClusterSpec

zookeeper Configuration of the ZooKeeper cluster.

ZookeeperClusterSpec

entityOperator Configuration of the Entity Operator.

EntityOperatorSpec

clusterCa Configuration of the cluster certificate authority.

CertificateAuthority

clientsCa Configuration of the clients certificate authority.

CertificateAuthority

cruiseControl Configuration for Cruise Control deployment.
Deploys a Cruise Control instance when specified.

CruiseControlSpec

 gcLoggingEnabled: true
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

342

kafkaExporter Configuration of the Kafka Exporter. Kafka Exporter
can provide additional metrics, for example lag of
consumer group at topic/partition.KafkaExporterSpec

maintenanceTimeWindows A list of time windows for maintenance tasks (that is,
certificates renewal). Each time window is defined by
a cron expression.string array

Property Description

14.2.3. KafkaClusterSpec schema reference

Used in: KafkaSpec

Full list of KafkaClusterSpec schema properties

Configures a Kafka cluster.

14.2.3.1. listeners

Use the listeners property to configure listeners to provide access to Kafka brokers.

Example configuration of a plain (unencrypted) listener without authentication

14.2.3.2. config

Use the config properties to configure Kafka broker options as keys.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Broker ID configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 # ...
 zookeeper:
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

343

Configuration of log data directories

Inter-broker communication

ZooKeeper connectivity

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, all configuration options with
keys equal to or starting with one of the following strings are forbidden:

listeners

advertised.

broker.

listener.

host.name

port

inter.broker.listener.name

sasl.

ssl.

security.

password.

principal.builder.class

log.dir

zookeeper.connect

zookeeper.set.acl

authorizer.

super.user

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to Kafka.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties. You can also configure the
zookeeper.connection.timeout.ms property to set the maximum time allowed for establishing a

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

344

http://kafka.apache.org/documentation/#brokerconfigs

ZooKeeper connection.

Example Kafka broker configuration

14.2.3.3. brokerRackInitImage

When rack awareness is enabled, Kafka broker pods use init container to collect the labels from the
OpenShift cluster nodes. The container image used for this container can be configured using the
brokerRackInitImage property. When the brokerRackInitImage field is missing, the following images
are used in order of priority:

1. Container image specified in STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment variable
in the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1 container image.

Example brokerRackInitImage configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 num.partitions: 1
 num.recovery.threads.per.data.dir: 1
 default.replication.factor: 3
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 1
 log.retention.hours: 168
 log.segment.bytes: 1073741824
 log.retention.check.interval.ms: 300000
 num.network.threads: 3
 num.io.threads: 8
 socket.send.buffer.bytes: 102400
 socket.receive.buffer.bytes: 102400
 socket.request.max.bytes: 104857600
 group.initial.rebalance.delay.ms: 0
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 zookeeper.connection.timeout.ms: 6000
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

345

NOTE

Overriding container images is recommended only in special situations, where you need to
use a different container registry. For example, because your network does not allow
access to the container registry used by AMQ Streams. In this case, you should either
copy the AMQ Streams images or build them from the source. If the configured image is
not compatible with AMQ Streams images, it might not work properly.

14.2.3.4. logging

Kafka has its own configurable loggers:

log4j.logger.org.I0Itec.zkclient.ZkClient

log4j.logger.org.apache.zookeeper

log4j.logger.kafka

log4j.logger.org.apache.kafka

log4j.logger.kafka.request.logger

log4j.logger.kafka.network.Processor

log4j.logger.kafka.server.KafkaApis

log4j.logger.kafka.network.RequestChannel$

log4j.logger.kafka.controller

log4j.logger.kafka.log.LogCleaner

log4j.logger.state.change.logger

log4j.logger.kafka.authorizer.logger

Kafka uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

 topologyKey: topology.kubernetes.io/zone
 brokerRackInitImage: my-org/my-image:latest
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

346

https://logging.apache.org/

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If Kafka was deployed using the Cluster Operator, changes to Kafka logging levels are applied
dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.3.5. KafkaClusterSpec schema properties

Property Description

version The kafka broker version. Defaults to 3.0.0. Consult
the user documentation to understand the process
required to upgrade or downgrade the version.string

replicas The number of pods in the cluster.

integer

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 # ...
 logging:
 type: inline
 loggers:
 kafka.root.logger.level: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: kafka-log4j.properties
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

347

image The docker image for the pods. The default value
depends on the configured
Kafka.spec.kafka.version.string

listeners Configures listeners of Kafka brokers.

GenericKafkaListener array

config Kafka broker config properties with the following
prefixes cannot be set: listeners, advertised., broker.,
listener., host.name, port, inter.broker.listener.name,
sasl., ssl., security., password., principal.builder.class,
log.dir, zookeeper.connect, zookeeper.set.acl,
zookeeper.ssl, zookeeper.clientCnxnSocket,
authorizer., super.user, cruise.control.metrics.topic,
cruise.control.metrics.reporter.bootstrap.servers
(with the exception of:
zookeeper.connection.timeout.ms, ssl.cipher.suites,
ssl.protocol,
ssl.enabled.protocols,cruise.control.metrics.topic.nu
m.partitions,
cruise.control.metrics.topic.replication.factor,
cruise.control.metrics.topic.retention.ms,cruise.contr
ol.metrics.topic.auto.create.retries,
cruise.control.metrics.topic.auto.create.timeout.ms,cr
uise.control.metrics.topic.min.insync.replicas).

map

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim, jbod].

EphemeralStorage, PersistentClaimStorage,
JbodStorage

authorization Authorization configuration for Kafka brokers. The
type depends on the value of the
authorization.type property within the given
object, which must be one of [simple, opa, keycloak,
custom].

KafkaAuthorizationSimple,
KafkaAuthorizationOpa,
KafkaAuthorizationKeycloak,
KafkaAuthorizationCustom

rack Configuration of the broker.rack broker config.

Rack

brokerRackInitImage The image of the init container used for initializing
the broker.rack.

string

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

348

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options for Kafka brokers.

KafkaJmxOptions

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

logging Logging configuration for Kafka. The type depends
on the value of the logging.type property within the
given object, which must be one of [inline, external].InlineLogging, ExternalLogging

template Template for Kafka cluster resources. The template
allows users to specify how are the StatefulSet,
Pods and Services generated.KafkaClusterTemplate

Property Description

14.2.4. GenericKafkaListener schema reference

Used in: KafkaClusterSpec

Full list of GenericKafkaListener schema properties

Configures listeners to connect to Kafka brokers within and outside OpenShift.

You configure the listeners in the Kafka resource.

Example Kafka resource showing listener configuration

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

349

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

14.2.4.1. listeners

You configure Kafka broker listeners using the listeners property in the Kafka resource. Listeners are
defined as an array.

Example listener configuration

The name and port must be unique within the Kafka cluster. The name can be up to 25 characters long,
comprising lower-case letters and numbers. Allowed port numbers are 9092 and higher with the
exception of ports 9404 and 9999, which are already used for Prometheus and JMX.

kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 #...
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external1
 port: 9094
 type: route
 tls: true
 - name: external2
 port: 9095
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myingress.com
 brokers:
 - broker: 0
 host: broker-0.myingress.com
 - broker: 1
 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
 #...

listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

350

By specifying a unique name and port for each listener, you can configure multiple listeners.

14.2.4.2. type

The type is set as internal, or for external listeners, as route, loadbalancer, nodeport or ingress.

internal

You can configure internal listeners with or without encryption using the tls property.

Example internal listener configuration

route

Configures an external listener to expose Kafka using OpenShift Routes and the HAProxy router.
A dedicated Route is created for every Kafka broker pod. An additional Route is created to serve as
a Kafka bootstrap address. Kafka clients can use these Routes to connect to Kafka on port 443. The
client connects on port 443, the default router port, but traffic is then routed to the port you
configure, which is 9094 in this example.

Example route listener configuration

ingress

Configures an external listener to expose Kafka using Kubernetes Ingress and the NGINX Ingress
Controller for Kubernetes.

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 #...

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: external1
 port: 9094
 type: route
 tls: true
 #...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

351

https://github.com/kubernetes/ingress-nginx

A dedicated Ingress resource is created for every Kafka broker pod. An additional Ingress resource
is created to serve as a Kafka bootstrap address. Kafka clients can use these Ingress resources to
connect to Kafka on port 443. The client connects on port 443, the default controller port, but traffic
is then routed to the port you configure, which is 9095 in the following example.

You must specify the hostnames used by the bootstrap and per-broker services using
GenericKafkaListenerConfigurationBootstrap and GenericKafkaListenerConfigurationBroker
properties.

Example ingress listener configuration

NOTE

External listeners using Ingress are currently only tested with the NGINX Ingress
Controller for Kubernetes.

loadbalancer

Configures an external listener to expose Kafka Loadbalancer type Services.
A new loadbalancer service is created for every Kafka broker pod. An additional loadbalancer is
created to serve as a Kafka bootstrap address. Loadbalancers listen to the specified port number,
which is port 9094 in the following example.

You can use the loadBalancerSourceRanges property to configure source ranges to restrict
access to the specified IP addresses.

Example loadbalancer listener configuration

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: external2
 port: 9095
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myingress.com
 brokers:
 - broker: 0
 host: broker-0.myingress.com
 - broker: 1
 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
 #...

#...
spec:
 kafka:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

352

https://github.com/kubernetes/ingress-nginx

nodeport

Configures an external listener to expose Kafka using NodePort type Services.
Kafka clients connect directly to the nodes of OpenShift. An additional NodePort type of service is
created to serve as a Kafka bootstrap address.

When configuring the advertised addresses for the Kafka broker pods, AMQ Streams uses the
address of the node on which the given pod is running. You can use
preferredNodePortAddressType property to configure the first address type checked as the node
address.

Example nodeport listener configuration

NOTE

TLS hostname verification is not currently supported when exposing Kafka clusters
using node ports.

14.2.4.3. port

The port number is the port used in the Kafka cluster, which might not be the same port used for access
by a client.

loadbalancer listeners use the specified port number, as do internal listeners

ingress and route listeners use port 443 for access

nodeport listeners use the port number assigned by OpenShift

 #...
 listeners:
 - name: external3
 port: 9094
 type: loadbalancer
 tls: true
 configuration:
 loadBalancerSourceRanges:
 - 10.0.0.0/8
 - 88.208.76.87/32
 #...

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: external4
 port: 9095
 type: nodeport
 tls: false
 configuration:
 preferredNodePortAddressType: InternalDNS
 #...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

353

For client connection, use the address and port for the bootstrap service of the listener. You can
retrieve this from the status of the Kafka resource.

Example command to retrieve the address and port for client connection

NOTE

Listeners cannot be configured to use the ports set aside for interbroker communication
(9091) and metrics (9404).

14.2.4.4. tls

The TLS property is required.

By default, TLS encryption is not enabled. To enable it, set the tls property to true.

TLS encryption is always used with route listeners.

14.2.4.5. authentication

Authentication for the listener can be specified as:

Mutual TLS (tls)

SCRAM-SHA-512 (scram-sha-512)

Token-based OAuth 2.0 (oauth).

14.2.4.6. networkPolicyPeers

Use networkPolicyPeers to configure network policies that restrict access to a listener at the network
level. The following example shows a networkPolicyPeers configuration for a plain and a tls listener.

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

listeners:
 #...
 - name: plain
 port: 9092
 type: internal
 tls: true
 authentication:
 type: scram-sha-512
 networkPolicyPeers:
 - podSelector:
 matchLabels:
 app: kafka-sasl-consumer
 - podSelector:
 matchLabels:
 app: kafka-sasl-producer
 - name: tls
 port: 9093
 type: internal

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

354

In the example:

Only application pods matching the labels app: kafka-sasl-consumer and app: kafka-sasl-
producer can connect to the plain listener. The application pods must be running in the same
namespace as the Kafka broker.

Only application pods running in namespaces matching the labels project: myproject and
project: myproject2 can connect to the tls listener.

The syntax of the networkPolicyPeers field is the same as the from field in NetworkPolicy resources.

14.2.4.7. GenericKafkaListener schema properties

Property Description

name Name of the listener. The name will be used to
identify the listener and the related OpenShift
objects. The name has to be unique within given a
Kafka cluster. The name can consist of lowercase
characters and numbers and be up to 11 characters
long.

string

port Port number used by the listener inside Kafka. The
port number has to be unique within a given Kafka
cluster. Allowed port numbers are 9092 and higher
with the exception of ports 9404 and 9999, which
are already used for Prometheus and JMX.
Depending on the listener type, the port number
might not be the same as the port number that
connects Kafka clients.

integer

 tls: true
 authentication:
 type: tls
 networkPolicyPeers:
 - namespaceSelector:
 matchLabels:
 project: myproject
 - namespaceSelector:
 matchLabels:
 project: myproject2
...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

355

type Type of the listener. Currently the supported types
are internal, route, loadbalancer, nodeport and
ingress.

internal type exposes Kafka internally only
within the OpenShift cluster.

route type uses OpenShift Routes to
expose Kafka.

loadbalancer type uses LoadBalancer
type services to expose Kafka.

nodeport type uses NodePort type
services to expose Kafka.

ingress type uses OpenShift Nginx Ingress
to expose Kafka.

string (one of [ingress, internal, route, loadbalancer,
nodeport])

tls Enables TLS encryption on the listener. This is a
required property.

boolean

authentication Authentication configuration for this listener. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512,
KafkaListenerAuthenticationOAuth

configuration Additional listener configuration.

GenericKafkaListenerConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

Property Description

14.2.5. KafkaListenerAuthenticationTls schema reference

Used in: GenericKafkaListener

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationTls type

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

356

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationTls type
from KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationOAuth. It must have
the value tls for the type KafkaListenerAuthenticationTls.

Property Description

type Must be tls.

string

14.2.6. KafkaListenerAuthenticationScramSha512 schema reference

Used in: GenericKafkaListener

The type property is a discriminator that distinguishes use of the
KafkaListenerAuthenticationScramSha512 type from KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationOAuth. It must have the value scram-sha-512 for the type
KafkaListenerAuthenticationScramSha512.

Property Description

type Must be scram-sha-512.

string

14.2.7. KafkaListenerAuthenticationOAuth schema reference

Used in: GenericKafkaListener

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationOAuth
type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512. It must have
the value oauth for the type KafkaListenerAuthenticationOAuth.

Property Description

accessTokenIsJwt Configure whether the access token is treated as
JWT. This must be set to false if the authorization
server returns opaque tokens. Defaults to true.boolean

checkAccessTokenType Configure whether the access token type check is
performed or not. This should be set to false if the
authorization server does not include 'typ' claim in
JWT token. Defaults to true.

boolean

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

357

checkAudience Enable or disable audience checking. Audience
checks identify the recipients of tokens. If audience
checking is enabled, the OAuth Client ID also has to
be configured using the clientId property. The Kafka
broker will reject tokens that do not have its clientId
in their aud (audience) claim.Default value is false.

boolean

checkIssuer Enable or disable issuer checking. By default issuer is
checked using the value configured by
validIssuerUri. Default value is true.boolean

clientAudience The audience to use when making requests to the
authorization server’s token endpoint. Used for inter-
broker authentication and for configuring OAuth 2.0
over PLAIN using the clientId and secret method.

string

clientId OAuth Client ID which the Kafka broker can use to
authenticate against the authorization server and use
the introspect endpoint URI.string

clientScope The scope to use when making requests to the
authorization server’s token endpoint. Used for inter-
broker authentication and for configuring OAuth 2.0
over PLAIN using the clientId and secret method.

string

clientSecret Link to OpenShift Secret containing the OAuth client
secret which the Kafka broker can use to
authenticate against the authorization server and use
the introspect endpoint URI.

GenericSecretSource

customClaimCheck JsonPath filter query to be applied to the JWT token
or to the response of the introspection endpoint for
additional token validation. Not set by default.string

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

enableECDSA The enableECDSA property has been
deprecated. Enable or disable ECDSA support by
installing BouncyCastle crypto provider. ECDSA
support is always enabled. The BouncyCastle libraries
are no longer packaged with AMQ Streams. Value is
ignored.

boolean

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

358

enableOauthBearer Enable or disable OAuth authentication over
SASL_OAUTHBEARER. Default value is true.

boolean

enablePlain Enable or disable OAuth authentication over
SASL_PLAIN. There is no re-authentication support
when this mechanism is used. Default value is false.boolean

fallbackUserNameClaim The fallback username claim to be used for the user
id if the claim specified by userNameClaim is not
present. This is useful when client_credentials
authentication only results in the client id being
provided in another claim. It only takes effect if
userNameClaim is set.

string

fallbackUserNamePrefix The prefix to use with the value of
fallbackUserNameClaim to construct the user id.
This only takes effect if fallbackUserNameClaim
is true, and the value is present for the claim.
Mapping usernames and client ids into the same user
id space is useful in preventing name collisions.

string

introspectionEndpointUri URI of the token introspection endpoint which can be
used to validate opaque non-JWT tokens.

string

jwksEndpointUri URI of the JWKS certificate endpoint, which can be
used for local JWT validation.

string

jwksExpirySeconds Configures how often are the JWKS certificates
considered valid. The expiry interval has to be at least
60 seconds longer then the refresh interval specified
in jwksRefreshSeconds. Defaults to 360 seconds.

integer

jwksMinRefreshPauseSeconds The minimum pause between two consecutive
refreshes. When an unknown signing key is
encountered the refresh is scheduled immediately,
but will always wait for this minimum pause. Defaults
to 1 second.

integer

jwksRefreshSeconds Configures how often are the JWKS certificates
refreshed. The refresh interval has to be at least 60
seconds shorter then the expiry interval specified in
jwksExpirySeconds. Defaults to 300 seconds.

integer

Property Description

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

359

maxSecondsWithoutReauthentication Maximum number of seconds the authenticated
session remains valid without re-authentication. This
enables Apache Kafka re-authentication feature, and
causes sessions to expire when the access token
expires. If the access token expires before max time
or if max time is reached, the client has to re-
authenticate, otherwise the server will drop the
connection. Not set by default - the authenticated
session does not expire when the access token
expires. This option only applies to
SASL_OAUTHBEARER authentication mechanism
(when enableOauthBearer is true).

integer

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

tokenEndpointUri URI of the Token Endpoint to use with SASL_PLAIN
mechanism when the client authenticates with
clientId and a secret. If set, the client can
authenticate over SASL_PLAIN by either setting
username to clientId, and setting password to
client secret, or by setting username to account
username, and password to access token prefixed
with $accessToken:. If this option is not set, the
password is always interpreted as an access token
(without a prefix), and username as the account
username (a so called 'no-client-credentials' mode).

string

type Must be oauth.

string

userInfoEndpointUri URI of the User Info Endpoint to use as a fallback to
obtaining the user id when the Introspection
Endpoint does not return information that can be
used for the user id.

string

userNameClaim Name of the claim from the JWT authentication
token, Introspection Endpoint response or User Info
Endpoint response which will be used to extract the
user id. Defaults to sub.

string

validIssuerUri URI of the token issuer used for authentication.

string

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

360

validTokenType Valid value for the token_type attribute returned by
the Introspection Endpoint. No default value, and not
checked by default.string

Property Description

14.2.8. GenericSecretSource schema reference

Used in: KafkaClientAuthenticationOAuth, KafkaListenerAuthenticationOAuth

Property Description

key The key under which the secret value is stored in the
OpenShift Secret.

string

secretName The name of the OpenShift Secret containing the
secret value.

string

14.2.9. CertSecretSource schema reference

Used in: ClientTls, KafkaAuthorizationKeycloak, KafkaClientAuthenticationOAuth,
KafkaListenerAuthenticationOAuth

Property Description

certificate The name of the file certificate in the Secret.

string

secretName The name of the Secret containing the certificate.

string

14.2.10. GenericKafkaListenerConfiguration schema reference

Used in: GenericKafkaListener

Full list of GenericKafkaListenerConfiguration schema properties

Configuration for Kafka listeners.

14.2.10.1. brokerCertChainAndKey

The brokerCertChainAndKey property is only used with listeners that have TLS encryption enabled.
You can use the property to providing your own Kafka listener certificates.

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

361

Example configuration for a loadbalancer external listener with TLS encryption enabled

14.2.10.2. externalTrafficPolicy

The externalTrafficPolicy property is used with loadbalancer and nodeport listeners. When exposing
Kafka outside of OpenShift you can choose Local or Cluster. Local avoids hops to other nodes and
preserves the client IP, whereas Cluster does neither. The default is Cluster.

14.2.10.3. loadBalancerSourceRanges

The loadBalancerSourceRanges property is only used with loadbalancer listeners. When exposing
Kafka outside of OpenShift use source ranges, in addition to labels and annotations, to customize how a
service is created.

Example source ranges configured for a loadbalancer listener

14.2.10.4. class

The class property is only used with ingress listeners. You can configure the Ingress class using the
class property.

Example of an external listener of type ingress using Ingress class nginx-internal

listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-listener-certificate.crt
 key: my-listener-key.key
...

listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: false
 configuration:
 externalTrafficPolicy: Local
 loadBalancerSourceRanges:
 - 10.0.0.0/8
 - 88.208.76.87/32
 # ...
...

listeners:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

362

14.2.10.5. preferredNodePortAddressType

The preferredNodePortAddressType property is only used with nodeport listeners.

Use the preferredNodePortAddressType property in your listener configuration to specify the first
address type checked as the node address. This property is useful, for example, if your deployment does
not have DNS support, or you only want to expose a broker internally through an internal DNS or IP
address. If an address of this type is found, it is used. If the preferred address type is not found, AMQ
Streams proceeds through the types in the standard order of priority:

1. ExternalDNS

2. ExternalIP

3. Hostname

4. InternalDNS

5. InternalIP

Example of an external listener configured with a preferred node port address type

14.2.10.6. useServiceDnsDomain

The useServiceDnsDomain property is only used with internal listeners. It defines whether the fully-
qualified DNS names that include the cluster service suffix (usually .cluster.local) are used. With
useServiceDnsDomain set as false, the advertised addresses are generated without the service suffix;
for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc. With
useServiceDnsDomain set as true, the advertised addresses are generated with the service suffix; for
example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc.cluster.local. Default is false.

Example of an internal listener configured to use the Service DNS domain

 #...
 - name: external
 port: 9094
 type: ingress
 tls: true
 configuration:
 class: nginx-internal
 # ...
...

listeners:
 #...
 - name: external
 port: 9094
 type: nodeport
 tls: false
 configuration:
 preferredNodePortAddressType: InternalDNS
 # ...
...

listeners:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

363

If your OpenShift cluster uses a different service suffix than .cluster.local, you can configure the suffix
using the KUBERNETES_SERVICE_DNS_DOMAIN environment variable in the Cluster Operator
configuration. See Section 6.1.1, “Cluster Operator configuration” for more details.

14.2.10.7. GenericKafkaListenerConfiguration schema properties

Property Description

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair which will be used for this
listener. The certificate can optionally contain the
whole chain. This field can be used only with listeners
with enabled TLS encryption.

CertAndKeySecretSource

externalTrafficPolicy Specifies whether the service routes external traffic
to node-local or cluster-wide endpoints. Cluster
may cause a second hop to another node and
obscures the client source IP. Local avoids a second
hop for LoadBalancer and Nodeport type services
and preserves the client source IP (when supported
by the infrastructure). If unspecified, OpenShift will
use Cluster as the default.This field can be used
only with loadbalancer or nodeport type listener.

string (one of [Local, Cluster])

loadBalancerSourceRanges A list of CIDR ranges (for example 10.0.0.0/8 or
130.211.204.1/32) from which clients can connect
to load balancer type listeners. If supported by the
platform, traffic through the loadbalancer is
restricted to the specified CIDR ranges. This field is
applicable only for loadbalancer type services and is
ignored if the cloud provider does not support the
feature. For more information, see https://v1-
17.docs.kubernetes.io/docs/tasks/access-
application-cluster/configure-cloud-provider-
firewall/. This field can be used only with
loadbalancer type listener.

string array

bootstrap Bootstrap configuration.

GenericKafkaListenerConfigurationBootstrap

brokers Per-broker configurations.

 #...
 - name: plain
 port: 9092
 type: internal
 tls: false
 configuration:
 useServiceDnsDomain: true
 # ...
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

364

https://v1-17.docs.kubernetes.io/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/

GenericKafkaListenerConfigurationBroker
array

ipFamilyPolicy Specifies the IP Family Policy used by the service.
Available options are SingleStack,
PreferDualStack and RequireDualStack.
SingleStack is for a single IP family.
PreferDualStack is for two IP families on dual-
stack configured clusters or a single IP family on
single-stack clusters. RequireDualStack fails
unless there are two IP families on dual-stack
configured clusters. If unspecified, OpenShift will
choose the default value based on the service type.
Available on OpenShift 1.20 and newer.

string (one of [RequireDualStack, SingleStack,
PreferDualStack])

ipFamilies Specifies the IP Families used by the service.
Available options are IPv4 and IPv6. If
unspecified, OpenShift will choose the
default value based on the `ipFamilyPolicy
setting. Available on OpenShift 1.20 and newer.

string (one or more of [IPv6, IPv4]) array

class Configures the Ingress class that defines which
Ingress controller will be used. This field can be
used only with ingress type listener. If not specified,
the default Ingress controller will be used.

string

finalizers A list of finalizers which will be configured for the
LoadBalancer type Services created for this
listener. If supported by the platform, the finalizer
service.kubernetes.io/load-balancer-cleanup
to make sure that the external load balancer is
deleted together with the service.For more
information, see
https://kubernetes.io/docs/tasks/access-
application-cluster/create-external-load-
balancer/#garbage-collecting-load-balancers. This
field can be used only with loadbalancer type
listeners.

string array

maxConnectionCreationRate The maximum connection creation rate we allow in
this listener at any time. New connections will be
throttled if the limit is reached.integer

maxConnections The maximum number of connections we allow for
this listener in the broker at any time. New
connections are blocked if the limit is reached.integer

Property Description

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

365

https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#garbage-collecting-load-balancers

preferredNodePortAddressType Defines which address type should be used as the
node address. Available types are: ExternalDNS,
ExternalIP, InternalDNS, InternalIP and
Hostname. By default, the addresses will be used in
the following order (the first one found will be used):

ExternalDNS

ExternalIP

InternalDNS

InternalIP

Hostname

This field is used to select the preferred address
type, which is checked first. If no address is found for
this address type, the other types are checked in the
default order. This field can only be used with
nodeport type listener.

string (one of [ExternalDNS, ExternalIP, Hostname,
InternalIP, InternalDNS])

useServiceDnsDomain Configures whether the OpenShift service DNS
domain should be used or not. If set to true, the
generated addresses will contain the service DNS
domain suffix (by default .cluster.local, can be
configured using environment variable
KUBERNETES_SERVICE_DNS_DOMAIN).
Defaults to false.This field can be used only with
internal type listener.

boolean

Property Description

14.2.11. CertAndKeySecretSource schema reference

Used in: GenericKafkaListenerConfiguration, KafkaClientAuthenticationTls

Property Description

certificate The name of the file certificate in the Secret.

string

key The name of the private key in the Secret.

string

secretName The name of the Secret containing the certificate.

string

14.2.12. GenericKafkaListenerConfigurationBootstrap schema reference

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

366

Used in: GenericKafkaListenerConfiguration

Full list of GenericKafkaListenerConfigurationBootstrap schema properties

Broker service equivalents of nodePort, host, loadBalancerIP and annotations properties are
configured in the GenericKafkaListenerConfigurationBroker schema.

14.2.12.1. alternativeNames

You can specify alternative names for the bootstrap service. The names are added to the broker
certificates and can be used for TLS hostname verification. The alternativeNames property is
applicable to all types of listeners.

Example of an external route listener configured with an additional bootstrap address

14.2.12.2. host

The host property is used with route and ingress listeners to specify the hostnames used by the
bootstrap and per-broker services.

A host property value is mandatory for ingress listener configuration, as the Ingress controller does not
assign any hostnames automatically. Make sure that the hostnames resolve to the Ingress endpoints.
AMQ Streams will not perform any validation that the requested hosts are available and properly routed
to the Ingress endpoints.

Example of host configuration for an ingress listener

listeners:
 #...
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 alternativeNames:
 - example.hostname1
 - example.hostname2
...

listeners:
 #...
 - name: external
 port: 9094
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myingress.com
 brokers:
 - broker: 0

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

367

By default, route listener hosts are automatically assigned by OpenShift. However, you can override the
assigned route hosts by specifying hosts.

AMQ Streams does not perform any validation that the requested hosts are available. You must ensure
that they are free and can be used.

Example of host configuration for a route listener

14.2.12.3. nodePort

By default, the port numbers used for the bootstrap and broker services are automatically assigned by
OpenShift. You can override the assigned node ports for nodeport listeners by specifying the
requested port numbers.

AMQ Streams does not perform any validation on the requested ports. You must ensure that they are
free and available for use.

Example of an external listener configured with overrides for node ports

 host: broker-0.myingress.com
 - broker: 1
 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
...

...
listeners:
 #...
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myrouter.com
 brokers:
 - broker: 0
 host: broker-0.myrouter.com
 - broker: 1
 host: broker-1.myrouter.com
 - broker: 2
 host: broker-2.myrouter.com
...

...
listeners:
 #...
 - name: external
 port: 9094
 type: nodeport
 tls: true
 authentication:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

368

14.2.12.4. loadBalancerIP

Use the loadBalancerIP property to request a specific IP address when creating a loadbalancer. Use this
property when you need to use a loadbalancer with a specific IP address. The loadBalancerIP field is
ignored if the cloud provider does not support the feature.

Example of an external listener of type loadbalancer with specific loadbalancer IP address
requests

14.2.12.5. annotations

Use the annotations property to add annotations to OpenShift resources related to the listeners. You
can use these annotations, for example, to instrument DNS tooling such as External DNS, which
automatically assigns DNS names to the loadbalancer services.

Example of an external listener of type loadbalancer using annotations

 type: tls
 configuration:
 bootstrap:
 nodePort: 32100
 brokers:
 - broker: 0
 nodePort: 32000
 - broker: 1
 nodePort: 32001
 - broker: 2
 nodePort: 32002
...

...
listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 loadBalancerIP: 172.29.3.10
 brokers:
 - broker: 0
 loadBalancerIP: 172.29.3.1
 - broker: 1
 loadBalancerIP: 172.29.3.2
 - broker: 2
 loadBalancerIP: 172.29.3.3
...

...
listeners:
 #...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

369

https://github.com/kubernetes-incubator/external-dns

14.2.12.6. GenericKafkaListenerConfigurationBootstrap schema properties

Property Description

alternativeNames Additional alternative names for the bootstrap
service. The alternative names will be added to the
list of subject alternative names of the TLS
certificates.

string array

host The bootstrap host. This field will be used in the
Ingress resource or in the Route resource to specify
the desired hostname. This field can be used only
with route (optional) or ingress (required) type
listeners.

string

nodePort Node port for the bootstrap service. This field can be
used only with nodeport type listener.

integer

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.This field can
be used only with loadbalancer type listener.

string

 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-bootstrap.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 brokers:
 - broker: 0
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-0.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 - broker: 1
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-1.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 - broker: 2
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-2.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

370

annotations Annotations that will be added to the Ingress,
Route, or Service resource. You can use this field
to configure DNS providers such as External DNS.
This field can be used only with loadbalancer,
nodeport, route, or ingress type listeners.

map

labels Labels that will be added to the Ingress, Route, or
Service resource. This field can be used only with
loadbalancer, nodeport, route, or ingress type
listeners.

map

Property Description

14.2.13. GenericKafkaListenerConfigurationBroker schema reference

Used in: GenericKafkaListenerConfiguration

Full list of GenericKafkaListenerConfigurationBroker schema properties

You can see example configuration for the nodePort, host, loadBalancerIP and annotations
properties in the GenericKafkaListenerConfigurationBootstrap schema, which configures bootstrap
service overrides.

Advertised addresses for brokers

By default, AMQ Streams tries to automatically determine the hostnames and ports that your Kafka
cluster advertises to its clients. This is not sufficient in all situations, because the infrastructure on which
AMQ Streams is running might not provide the right hostname or port through which Kafka can be
accessed.

You can specify a broker ID and customize the advertised hostname and port in the configuration
property of the listener. AMQ Streams will then automatically configure the advertised address in the
Kafka brokers and add it to the broker certificates so it can be used for TLS hostname verification.
Overriding the advertised host and ports is available for all types of listeners.

Example of an external route listener configured with overrides for advertised addresses

listeners:
 #...
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 configuration:
 brokers:
 - broker: 0
 advertisedHost: example.hostname.0
 advertisedPort: 12340
 - broker: 1
 advertisedHost: example.hostname.1
 advertisedPort: 12341

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

371

14.2.13.1. GenericKafkaListenerConfigurationBroker schema properties

Property Description

broker ID of the kafka broker (broker identifier). Broker IDs
start from 0 and correspond to the number of broker
replicas.integer

advertisedHost The host name which will be used in the brokers'
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers'
advertised.brokers.

integer

host The broker host. This field will be used in the Ingress
resource or in the Route resource to specify the
desired hostname. This field can be used only with
route (optional) or ingress (required) type
listeners.

string

nodePort Node port for the per-broker service. This field can
be used only with nodeport type listener.

integer

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.This field can
be used only with loadbalancer type listener.

string

annotations Annotations that will be added to the Ingress or
Service resource. You can use this field to configure
DNS providers such as External DNS. This field can
be used only with loadbalancer, nodeport, or
ingress type listeners.

map

labels Labels that will be added to the Ingress, Route, or
Service resource. This field can be used only with
loadbalancer, nodeport, route, or ingress type
listeners.

map

 - broker: 2
 advertisedHost: example.hostname.2
 advertisedPort: 12342
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

372

14.2.14. EphemeralStorage schema reference

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the EphemeralStorage type from
PersistentClaimStorage. It must have the value ephemeral for the type EphemeralStorage.

Property Description

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

sizeLimit When type=ephemeral, defines the total amount of
local storage required for this EmptyDir volume (for
example 1Gi).string

type Must be ephemeral.

string

14.2.15. PersistentClaimStorage schema reference

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the PersistentClaimStorage type from
EphemeralStorage. It must have the value persistent-claim for the type PersistentClaimStorage.

Property Description

type Must be persistent-claim.

string

size When type=persistent-claim, defines the size of the
persistent volume claim (i.e 1Gi). Mandatory when
type=persistent-claim.string

selector Specifies a specific persistent volume to use. It
contains key:value pairs representing labels for
selecting such a volume.map

deleteClaim Specifies if the persistent volume claim has to be
deleted when the cluster is un-deployed.

boolean

class The storage class to use for dynamic volume
allocation.

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

373

string

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

overrides Overrides for individual brokers. The overrides field
allows to specify a different configuration for
different brokers.PersistentClaimStorageOverride array

Property Description

14.2.16. PersistentClaimStorageOverride schema reference

Used in: PersistentClaimStorage

Property Description

class The storage class to use for dynamic volume
allocation for this broker.

string

broker Id of the kafka broker (broker identifier).

integer

14.2.17. JbodStorage schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the JbodStorage type from
EphemeralStorage, PersistentClaimStorage. It must have the value jbod for the type JbodStorage.

Property Description

type Must be jbod.

string

volumes List of volumes as Storage objects representing the
JBOD disks array.

EphemeralStorage, PersistentClaimStorage
array

14.2.18. KafkaAuthorizationSimple schema reference

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

374

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationSimple schema properties

Simple authorization in AMQ Streams uses the AclAuthorizer plugin, the default Access Control Lists
(ACLs) authorization plugin provided with Apache Kafka. ACLs allow you to define which users have
access to which resources at a granular level.

Configure the Kafka custom resource to use simple authorization. Set the type property in the
authorization section to the value simple, and configure a list of super users.

Access rules are configured for the KafkaUser, as described in the ACLRule schema reference .

14.2.18.1. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL
rules. For more information see Kafka authorization.

An example of simple authorization configuration

NOTE

The super.user configuration option in the config property in Kafka.spec.kafka is
ignored. Designate super users in the authorization property instead. For more
information, see Kafka broker configuration .

14.2.18.2. KafkaAuthorizationSimple schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationSimple type from
KafkaAuthorizationOpa, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom. It must have the
value simple for the type KafkaAuthorizationSimple.

Property Description

type Must be simple.

string

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: simple
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

375

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

Property Description

14.2.19. KafkaAuthorizationOpa schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationOpa schema properties

To use Open Policy Agent authorization, set the type property in the authorization section to the value
opa, and configure OPA properties as required. AMQ Streams uses Bisnode’s Kafka authorization plugin
as the Open Policy Agent authorizer. For more information about the format of the input data and
policy examples, see Open Policy Agent plugin for Kafka authorization .

14.2.19.1. url

The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will
be queried by the authorizer. Required.

14.2.19.2. allowOnError

Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query
the Open Policy Agent, for example, when it is temporarily unavailable. Defaults to false - all actions will
be denied.

14.2.19.3. initialCacheCapacity

Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for
every request. Defaults to 5000.

14.2.19.4. maximumCacheSize

Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent
for every request. Defaults to 50000.

14.2.19.5. expireAfterMs

The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every
request. Defines how often the cached authorization decisions are reloaded from the Open Policy Agent
server. In milliseconds. Defaults to 3600000 milliseconds (1 hour).

14.2.19.6. superUsers

A list of user principals treated as super users, so that they are always allowed without querying the open
Policy Agent policy. For more information see Kafka authorization.

An example of Open Policy Agent authorizer configuration

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

376

https://www.openpolicyagent.org/
https://github.com/Bisnode/opa-kafka-plugin

14.2.19.7. KafkaAuthorizationOpa schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationOpa type from
KafkaAuthorizationSimple, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom. It must have
the value opa for the type KafkaAuthorizationOpa.

Property Description

type Must be opa.

string

url The URL used to connect to the Open Policy Agent
server. The URL has to include the policy which will
be queried by the authorizer. This option is required.string

allowOnError Defines whether a Kafka client should be allowed or
denied by default when the authorizer fails to query
the Open Policy Agent, for example, when it is
temporarily unavailable). Defaults to false - all
actions will be denied.

boolean

initialCacheCapacity Initial capacity of the local cache used by the
authorizer to avoid querying the Open Policy Agent
for every request Defaults to 5000.integer

maximumCacheSize Maximum capacity of the local cache used by the
authorizer to avoid querying the Open Policy Agent
for every request. Defaults to 50000.integer

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: opa
 url: http://opa:8181/v1/data/kafka/allow
 allowOnError: false
 initialCacheCapacity: 1000
 maximumCacheSize: 10000
 expireAfterMs: 60000
 superUsers:
 - CN=fred
 - sam
 - CN=edward
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

377

expireAfterMs The expiration of the records kept in the local cache
to avoid querying the Open Policy Agent for every
request. Defines how often the cached authorization
decisions are reloaded from the Open Policy Agent
server. In milliseconds. Defaults to 3600000.

integer

superUsers List of super users, which is specifically a list of user
principals that have unlimited access rights.

string array

Property Description

14.2.20. KafkaAuthorizationKeycloak schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the KafkaAuthorizationKeycloak type
from KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationCustom. It must have
the value keycloak for the type KafkaAuthorizationKeycloak.

Property Description

type Must be keycloak.

string

clientId OAuth Client ID which the Kafka client can use to
authenticate against the OAuth server and use the
token endpoint URI.string

tokenEndpointUri Authorization server token endpoint URI.

string

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

delegateToKafkaAcls Whether authorization decision should be delegated
to the 'Simple' authorizer if DENIED by Red Hat
Single Sign-On Authorization Services policies.
Default value is false.

boolean

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

378

grantsRefreshPeriodSeconds The time between two consecutive grants refresh
runs in seconds. The default value is 60.

integer

grantsRefreshPoolSize The number of threads to use to refresh grants for
active sessions. The more threads, the more
parallelism, so the sooner the job completes.
However, using more threads places a heavier load
on the authorization server. The default value is 5.

integer

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

Property Description

14.2.21. KafkaAuthorizationCustom schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationCustom schema properties

To use custom authorization in AMQ Streams, you can configure your own Authorizer plugin to define
Access Control Lists (ACLs).

ACLs allow you to define which users have access to which resources at a granular level.

Configure the Kafka custom resource to use custom authorization. Set the type property in the
authorization section to the value custom, and the set following properties.

IMPORTANT

The custom authorizer must implement the
org.apache.kafka.server.authorizer.Authorizer interface, and support configuration of
super.users using the super.users configuration property.

14.2.21.1. authorizerClass

(Required) Java class that implements the org.apache.kafka.server.authorizer.Authorizer interface
to support custom ACLs.

14.2.21.2. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL
rules. For more information see Kafka authorization.

You can add configuration for initializing the custom authorizer using Kafka.spec.kafka.config.

An example of custom authorization configuration under Kafka.spec

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

379

In addition to the Kafka custom resource configuration, the JAR file containing the custom authorizer
class along with its dependencies must be available on the classpath of the Kafka broker.

The AMQ Streams Maven build process provides a mechanism to add custom third-party libraries to the
generated Kafka broker container image by adding them as dependencies in the pom.xml file under the
docker-images/kafka/kafka-thirdparty-libs directory. The directory contains different folders for
different Kafka versions. Choose the appropriate folder. Before modifying the pom.xml file, the third-
party library must be available in a Maven repository, and that Maven repository must be accessible to
the AMQ Streams build process.

NOTE

The super.user configuration option in the config property in Kafka.spec.kafka is
ignored. Designate super users in the authorization property instead. For more
information, see Kafka broker configuration .

14.2.21.3. KafkaAuthorizationCustom schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationCustom type
from KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationKeycloak. It must have
the value custom for the type KafkaAuthorizationCustom.

Property Description

type Must be custom.

string

authorizerClass Authorization implementation class, which must be
available in classpath.

string

kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: custom
 authorizerClass: io.mycompany.CustomAuthorizer
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 # ...
 config:
 authorization.custom.property1=value1
 authorization.custom.property2=value2
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

380

superUsers List of super users, which are user principals with
unlimited access rights.

string array

supportsAdminApi Indicates whether the custom authorizer supports
the APIs for managing ACLs using the Kafka Admin
API. Defaults to false.boolean

Property Description

14.2.22. Rack schema reference

Used in: KafkaClusterSpec, KafkaConnectSpec

Full list of Rack schema properties

The rack option configures rack awareness. A rack can represent an availability zone, data center, or an
actual rack in your data center. The rack is configured through a topologyKey. topologyKey identifies a
label on OpenShift nodes that contains the name of the topology in its value. An example of such a label
is topology.kubernetes.io/zone (or failure-domain.beta.kubernetes.io/zone on older OpenShift
versions), which contains the name of the availability zone in which the OpenShift node runs. You can
configure your Kafka cluster to be aware of the rack in which it runs, and enable additional features such
as spreading partition replicas across different racks or consuming messages from the closest replicas.

For more information about OpenShift node labels, see Well-Known Labels, Annotations and Taints .
Consult your OpenShift administrator regarding the node label that represents the zone or rack into
which the node is deployed.

14.2.22.1. Spreading partition replicas across racks

When rack awareness is configured, AMQ Streams will set broker.rack configuration for each Kafka
broker. The broker.rack configuration assigns a rack ID to each broker. When broker.rack is configured,
Kafka brokers will spread partition replicas across as many different racks as possible. When replicas are
spread across multiple racks, the probability that multiple replicas will fail at the same time is lower than
if they would be in the same rack. Spreading replicas improves resiliency, and is important for availability
and reliability. To enable rack awareness in Kafka, add the rack option to the .spec.kafka section of the
Kafka custom resource as shown in the example below.

Example rack configuration for Kafka

NOTE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

381

https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/

NOTE

The rack in which brokers are running can change in some cases when the pods are
deleted or restarted. As a result, the replicas running in different racks might then share
the same rack. Use Cruise Control and the KafkaRebalance resource with the
RackAwareGoal to make sure that replicas remain distributed across different racks.

When rack awareness is enabled in the Kafka custom resource, AMQ Streams will automatically add the
OpenShift preferredDuringSchedulingIgnoredDuringExecution affinity rule to distribute the Kafka
brokers across the different racks. However, the preferred rule does not guarantee that the brokers will
be spread. Depending on your exact OpenShift and Kafka configurations, you should add additional
affinity rules or configure topologySpreadConstraints for both ZooKeeper and Kafka to make sure the
nodes are properly distributed accross as many racks as possible. For more information see Section 2.7,
“Configuring pod scheduling”.

14.2.22.2. Consuming messages from the closest replicas

Rack awareness can also be used in consumers to fetch data from the closest replica. This is useful for
reducing the load on your network when a Kafka cluster spans multiple datacenters and can also reduce
costs when running Kafka in public clouds. However, it can lead to increased latency.

In order to be able to consume from the closest replica, rack awareness has to be configured in the Kafka
cluster, and the RackAwareReplicaSelector has to be enabled. The replica selector plugin provides the
logic that enables clients to consume from the nearest replica. The default implementation uses
LeaderSelector to always select the leader replica for the client. Specify RackAwareReplicaSelector
for the replica.selector.class to switch from the default implementation.

Example rack configuration with enabled replica-aware selector

In addition to the Kafka broker configuration, you also need to specify the client.rack option in your
consumers. The client.rack option should specify the rack ID in which the consumer is running.
RackAwareReplicaSelector associates matching broker.rack and client.rack IDs, to find the nearest
replica and consume from it. If there are multiple replicas in the same rack, RackAwareReplicaSelector
always selects the most up-to-date replica. If the rack ID is not specified, or if it cannot find a replica
with the same rack ID, it will fall back to the leader replica.

Figure 14.1. Example showing client consuming from replicas in the same availability zone

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 config:
 # ...
 replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

382

Figure 14.1. Example showing client consuming from replicas in the same availability zone

Consuming messages from the closest replicas can be used also in Kafka Connect for sink connectors
which are consuming messages. When deploying Kafka Connect using AMQ Streams, you can use the
rack section in the KafkaConnect custom resource to automatically configure the client.rack option.

Example rack configuration for Kafka Connect

Enabling rack awareness in the KafkaConnect custom resource will not set any affinity rules, but you
can also configure affinity or topologySpreadConstraints. For more information see Section 2.7,
“Configuring pod scheduling”.

14.2.22.3. Rack schema properties

Property Description

topologyKey A key that matches labels assigned to the OpenShift
cluster nodes. The value of the label is used to set
the broker’s broker.rack config and client.rack in
Kafka Connect.

string

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
...
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

383

14.2.23. Probe schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaExporterSpec, KafkaMirrorMaker2Spec,
KafkaMirrorMakerSpec, TlsSidecar, ZookeeperClusterSpec

Property Description

failureThreshold Minimum consecutive failures for the probe to be
considered failed after having succeeded. Defaults to
3. Minimum value is 1.integer

initialDelaySeconds The initial delay before first the health is first
checked. Default to 15 seconds. Minimum value is 0.

integer

periodSeconds How often (in seconds) to perform the probe.
Default to 10 seconds. Minimum value is 1.

integer

successThreshold Minimum consecutive successes for the probe to be
considered successful after having failed. Defaults to
1. Must be 1 for liveness. Minimum value is 1.integer

timeoutSeconds The timeout for each attempted health check.
Default to 5 seconds. Minimum value is 1.

integer

14.2.24. JvmOptions schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec,
ZookeeperClusterSpec

Property Description

-XX A map of -XX options to the JVM.

map

-Xms -Xms option to to the JVM.

string

-Xmx -Xmx option to to the JVM.

string

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

384

gcLoggingEnabled Specifies whether the Garbage Collection logging is
enabled. The default is false.

boolean

javaSystemProperties A map of additional system properties which will be
passed using the -D option to the JVM.

SystemProperty array

Property Description

14.2.25. SystemProperty schema reference

Used in: JvmOptions

Property Description

name The system property name.

string

value The system property value.

string

14.2.26. KafkaJmxOptions schema reference

Used in: KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, ZookeeperClusterSpec

Full list of KafkaJmxOptions schema properties

Configures JMX connection options.

JMX metrics are obtained from Kafka brokers, Zookeeper nodes, Kafka Connect, and MirrorMaker 2.0 by
opening a JMX port on 9999. Use the jmxOptions property to configure a password-protected or an
unprotected JMX port. Using password protection prevents unauthorized pods from accessing the port.

You can then obtain metrics about the component.

For example, for each Kafka broker you can obtain bytes-per-second usage data from clients, or the
request rate of the network of the broker.

To enable security for the JMX port, set the type parameter in the authentication field to password.

Example password-protected JMX configuration for Kafka brokers and Zookeeper nodes

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

385

You can then deploy a pod into a cluster and obtain JMX metrics using the headless service by
specifying which broker you want to address.

For example, to get JMX metrics from broker 0 you specify:

CLUSTER-NAME-kafka-0 is name of the broker pod, and CLUSTER-NAME-kafka-brokers is the name
of the headless service to return the IPs of the broker pods.

If the JMX port is secured, you can get the username and password by referencing them from the JMX
Secret in the deployment of your pod.

For an unprotected JMX port, use an empty object {} to open the JMX port on the headless service.
You deploy a pod and obtain metrics in the same way as for the protected port, but in this case any pod
can read from the JMX port.

Example open port JMX configuration for Kafka brokers and Zookeeper nodes

Additional resources

For more information on the Kafka component metrics exposed using JMX, see the Apache
Kafka documentation.

14.2.26.1. KafkaJmxOptions schema properties

spec:
 kafka:
 # ...
 jmxOptions:
 authentication:
 type: "password"
 # ...
 zookeeper:
 # ...
 jmxOptions:
 authentication:
 type: "password"
 #...

"CLUSTER-NAME-kafka-0.CLUSTER-NAME-kafka-brokers"

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jmxOptions: {}
 # ...
 zookeeper:
 # ...
 jmxOptions: {}
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

386

https://kafka.apache.org/documentation/

Property Description

authentication Authentication configuration for connecting to the
JMX port. The type depends on the value of the
authentication.type property within the given
object, which must be one of [password].

KafkaJmxAuthenticationPassword

14.2.27. KafkaJmxAuthenticationPassword schema reference

Used in: KafkaJmxOptions

The type property is a discriminator that distinguishes use of the KafkaJmxAuthenticationPassword
type from other subtypes which may be added in the future. It must have the value password for the
type KafkaJmxAuthenticationPassword.

Property Description

type Must be password.

string

14.2.28. JmxPrometheusExporterMetrics schema reference

Used in: CruiseControlSpec, KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec,
KafkaMirrorMakerSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the JmxPrometheusExporterMetrics
type from other subtypes which may be added in the future. It must have the value
jmxPrometheusExporter for the type JmxPrometheusExporterMetrics.

Property Description

type Must be jmxPrometheusExporter.

string

valueFrom ConfigMap entry where the Prometheus JMX
Exporter configuration is stored. For details of the
structure of this configuration, see the Prometheus
JMX Exporter.

ExternalConfigurationReference

14.2.29. ExternalConfigurationReference schema reference

Used in: ExternalLogging, JmxPrometheusExporterMetrics

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

387

https://github.com/prometheus/jmx_exporter

Property Description

configMapKeyRef Reference to the key in the ConfigMap containing
the configuration. For more information, see the
external documentation for core/v1
configmapkeyselector.

ConfigMapKeySelector

14.2.30. InlineLogging schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec,
ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the InlineLogging type from
ExternalLogging. It must have the value inline for the type InlineLogging.

Property Description

type Must be inline.

string

loggers A Map from logger name to logger level.

map

14.2.31. ExternalLogging schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec,
ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the ExternalLogging type from
InlineLogging. It must have the value external for the type ExternalLogging.

Property Description

type Must be external.

string

valueFrom ConfigMap entry where the logging configuration is
stored.

ExternalConfigurationReference

14.2.32. KafkaClusterTemplate schema reference

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

388

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core

Used in: KafkaClusterSpec

Property Description

statefulset Template for Kafka StatefulSet.

StatefulSetTemplate

pod Template for Kafka Pods.

PodTemplate

bootstrapService Template for Kafka bootstrap Service.

InternalServiceTemplate

brokersService Template for Kafka broker Service.

InternalServiceTemplate

externalBootstrapService Template for Kafka external bootstrap Service.

ResourceTemplate

perPodService Template for Kafka per-pod Services used for
access from outside of OpenShift.

ResourceTemplate

externalBootstrapRoute Template for Kafka external bootstrap Route.

ResourceTemplate

perPodRoute Template for Kafka per-pod Routes used for access
from outside of OpenShift.

ResourceTemplate

externalBootstrapIngress Template for Kafka external bootstrap Ingress.

ResourceTemplate

perPodIngress Template for Kafka per-pod Ingress used for access
from outside of OpenShift.

ResourceTemplate

persistentVolumeClaim Template for all Kafka PersistentVolumeClaims.

ResourceTemplate

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

389

podDisruptionBudget Template for Kafka PodDisruptionBudget.

PodDisruptionBudgetTemplate

kafkaContainer Template for the Kafka broker container.

ContainerTemplate

initContainer Template for the Kafka init container.

ContainerTemplate

clusterCaCert Template for Secret with Kafka Cluster certificate
public key.

ResourceTemplate

serviceAccount Template for the Kafka service account.

ResourceTemplate

jmxSecret Template for Secret of the Kafka Cluster JMX
authentication.

ResourceTemplate

clusterRoleBinding Template for the Kafka ClusterRoleBinding.

ResourceTemplate

Property Description

14.2.33. StatefulSetTemplate schema reference

Used in: KafkaClusterTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

podManagementPolicy PodManagementPolicy which will be used for this
StatefulSet. Valid values are Parallel and
OrderedReady. Defaults to Parallel.string (one of [OrderedReady, Parallel])

14.2.34. MetadataTemplate schema reference

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

390

Used in: BuildConfigTemplate, DeploymentTemplate, InternalServiceTemplate,
PodDisruptionBudgetTemplate, PodTemplate, ResourceTemplate, StatefulSetTemplate

Full list of MetadataTemplate schema properties

Labels and Annotations are used to identify and organize resources, and are configured in the
metadata property.

For example:

The labels and annotations fields can contain any labels or annotations that do not contain the
reserved string strimzi.io. Labels and annotations containing strimzi.io are used internally by AMQ
Streams and cannot be configured.

14.2.34.1. MetadataTemplate schema properties

Property Description

labels Labels added to the resource template. Can be
applied to different resources such as StatefulSets,
Deployments, Pods, and Services.map

annotations Annotations added to the resource template. Can be
applied to different resources such as StatefulSets,
Deployments, Pods, and Services.map

14.2.35. PodTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate,
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of PodTemplate schema properties

Configures the template for Kafka pods.

Example PodTemplate configuration

...
template:
 statefulset:
 metadata:
 labels:
 label1: value1
 label2: value2
 annotations:
 annotation1: value1
 annotation2: value2
...

...
template:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

391

14.2.35.1. hostAliases

Use the hostAliases property to a specify a list of hosts and IP addresses, which are injected into the
/etc/hosts file of the pod.

This configuration is especially useful for Kafka Connect or MirrorMaker when a connection outside of
the cluster is also requested by users.

Example hostAliases configuration

14.2.35.2. PodTemplate schema properties

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

 pod:
 metadata:
 labels:
 label1: value1
 annotations:
 anno1: value1
 imagePullSecrets:
 - name: my-docker-credentials
 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
#...
spec:
 # ...
 template:
 pod:
 hostAliases:
 - ip: "192.168.1.86"
 hostnames:
 - "my-host-1"
 - "my-host-2"
 #...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

392

imagePullSecrets List of references to secrets in the same namespace
to use for pulling any of the images used by this Pod.
When the STRIMZI_IMAGE_PULL_SECRETS
environment variable in Cluster Operator and the
imagePullSecrets option are specified, only the
imagePullSecrets variable is used and the
STRIMZI_IMAGE_PULL_SECRETS variable is
ignored. For more information, see the external
documentation for core/v1 localobjectreference.

LocalObjectReference array

securityContext Configures pod-level security attributes and common
container settings. For more information, see the
external documentation for core/v1
podsecuritycontext.

PodSecurityContext

terminationGracePeriodSeconds The grace period is the duration in seconds after the
processes running in the pod are sent a termination
signal, and the time when the processes are forcibly
halted with a kill signal. Set this value to longer than
the expected cleanup time for your process. Value
must be a non-negative integer. A zero value
indicates delete immediately. You might need to
increase the grace period for very large Kafka
clusters, so that the Kafka brokers have enough time
to transfer their work to another broker before they
are terminated. Defaults to 30 seconds.

integer

affinity The pod’s affinity rules. For more information, see
the external documentation for core/v1 affinity.

Affinity

tolerations The pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

priorityClassName The name of the priority class used to assign priority
to the pods. For more information about priority
classes, see Pod Priority and Preemption.string

schedulerName The name of the scheduler used to dispatch this
Pod. If not specified, the default scheduler will be
used.string

hostAliases The pod’s HostAliases. HostAliases is an optional list
of hosts and IPs that will be injected into the Pod’s
hosts file if specified. For more information, see the
external documentation for core/v1 HostAlias.

HostAlias array

Property Description

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

393

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#HostAlias-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#HostAlias-v1-core

tmpDirSizeLimit Defines the total amount (for example 1Gi) of local
storage required for temporary EmptyDir volume
(/tmp). Default value is 1Mi.string

enableServiceLinks Indicates whether information about services should
be injected into Pod’s environment variables.

boolean

topologySpreadConstraints The pod’s topology spread constraints. For more
information, see the external documentation for
core/v1 topologyspreadconstraint.

TopologySpreadConstraint array

Property Description

14.2.36. InternalServiceTemplate schema reference

Used in: CruiseControlTemplate, KafkaBridgeTemplate, KafkaClusterTemplate,
KafkaConnectTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

ipFamilyPolicy Specifies the IP Family Policy used by the service.
Available options are SingleStack,
PreferDualStack and RequireDualStack.
SingleStack is for a single IP family.
PreferDualStack is for two IP families on dual-
stack configured clusters or a single IP family on
single-stack clusters. RequireDualStack fails
unless there are two IP families on dual-stack
configured clusters. If unspecified, OpenShift will
choose the default value based on the service type.
Available on OpenShift 1.20 and newer.

string (one of [RequireDualStack, SingleStack,
PreferDualStack])

ipFamilies Specifies the IP Families used by the service.
Available options are IPv4 and IPv6. If
unspecified, OpenShift will choose the
default value based on the `ipFamilyPolicy
setting. Available on OpenShift 1.20 and newer.

string (one or more of [IPv6, IPv4]) array

14.2.37. ResourceTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate,
KafkaMirrorMakerTemplate, KafkaUserTemplate, ZookeeperClusterTemplate

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

394

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#topologyspreadconstraint-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#topologyspreadconstraint-v1-core

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

14.2.38. PodDisruptionBudgetTemplate schema reference

Used in: CruiseControlTemplate, KafkaBridgeTemplate, KafkaClusterTemplate,
KafkaConnectTemplate, KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of PodDisruptionBudgetTemplate schema properties

AMQ Streams creates a PodDisruptionBudget for every new StatefulSet or Deployment. By default,
pod disruption budgets only allow a single pod to be unavailable at a given time. You can increase the
amount of unavailable pods allowed by changing the default value of the maxUnavailable property.

An example of PodDisruptionBudget template

14.2.38.1. PodDisruptionBudgetTemplate schema properties

Property Description

metadata Metadata to apply to the
PodDisruptionBudgetTemplate resource.

MetadataTemplate

maxUnavailable Maximum number of unavailable pods to allow
automatic Pod eviction. A Pod eviction is allowed
when the maxUnavailable number of pods or
fewer are unavailable after the eviction. Setting this
value to 0 prevents all voluntary evictions, so the
pods must be evicted manually. Defaults to 1.

integer

14.2.39. ContainerTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,

...
template:
 podDisruptionBudget:
 metadata:
 labels:
 key1: label1
 key2: label2
 annotations:
 key1: label1
 key2: label2
 maxUnavailable: 1
...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

395

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate,
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of ContainerTemplate schema properties

You can set custom security context and environment variables for a container.

The environment variables are defined under the env property as a list of objects with name and value
fields. The following example shows two custom environment variables and a custom security context
set for the Kafka broker containers:

Environment variables prefixed with KAFKA_ are internal to AMQ Streams and should be avoided. If you
set a custom environment variable that is already in use by AMQ Streams, it is ignored and a warning is
recorded in the log.

14.2.39.1. ContainerTemplate schema properties

Property Description

env Environment variables which should be applied to the
container.

ContainerEnvVar array

securityContext Security context for the container. For more
information, see the external documentation for
core/v1 securitycontext.SecurityContext

14.2.40. ContainerEnvVar schema reference

Used in: ContainerTemplate

Property Description

name The environment variable key.

string

...
template:
 kafkaContainer:
 env:
 - name: EXAMPLE_ENV_1
 value: example.env.one
 - name: EXAMPLE_ENV_2
 value: example.env.two
 securityContext:
 runAsUser: 2000
...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

396

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#securitycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#securitycontext-v1-core

value The environment variable value.

string

Property Description

14.2.41. ZookeeperClusterSpec schema reference

Used in: KafkaSpec

Full list of ZookeeperClusterSpec schema properties

Configures a ZooKeeper cluster.

14.2.41.1. config

Use the config properties to configure ZooKeeper options as keys.

Standard Apache ZooKeeper configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Configuration of data directories

ZooKeeper cluster composition

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the ZooKeeper documentation with the exception of
those managed directly by AMQ Streams. Specifically, all configuration options with keys equal to or
starting with one of the following strings are forbidden:

server.

dataDir

dataLogDir

clientPort

authProvider

quorum.auth

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

397

https://zookeeper.apache.org/doc/r3.5.8/zookeeperAdmin.html

requireClientAuthScheme

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to ZooKeeper.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example ZooKeeper configuration

14.2.41.2. logging

ZooKeeper has a configurable logger:

zookeeper.root.logger

ZooKeeper uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 config:
 autopurge.snapRetainCount: 3
 autopurge.purgeInterval: 1
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 zookeeper:

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

398

https://logging.apache.org/

External logging

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.41.3. ZookeeperClusterSpec schema properties

Property Description

replicas The number of pods in the cluster.

integer

image The docker image for the pods.

string

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim].

EphemeralStorage, PersistentClaimStorage

 # ...
 logging:
 type: inline
 loggers:
 zookeeper.root.logger: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 zookeeper:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: zookeeper-log4j.properties
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

399

config The ZooKeeper broker config. Properties with the
following prefixes cannot be set: server., dataDir,
dataLogDir, clientPort, authProvider, quorum.auth,
requireClientAuthScheme, snapshot.trust.empty,
standaloneEnabled, reconfigEnabled,
4lw.commands.whitelist, secureClientPort, ssl.,
serverCnxnFactory, sslQuorum (with the exception
of: ssl.protocol, ssl.quorum.protocol,
ssl.enabledProtocols, ssl.quorum.enabledProtocols,
ssl.ciphersuites, ssl.quorum.ciphersuites,
ssl.hostnameVerification,
ssl.quorum.hostnameVerification).

map

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options for Zookeeper nodes.

KafkaJmxOptions

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

logging Logging configuration for ZooKeeper. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

template Template for ZooKeeper cluster resources. The
template allows users to specify how are the
StatefulSet, Pods and Services generated.ZookeeperClusterTemplate

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

400

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

14.2.42. ZookeeperClusterTemplate schema reference

Used in: ZookeeperClusterSpec

Property Description

statefulset Template for ZooKeeper StatefulSet.

StatefulSetTemplate

pod Template for ZooKeeper Pods.

PodTemplate

clientService Template for ZooKeeper client Service.

InternalServiceTemplate

nodesService Template for ZooKeeper nodes Service.

InternalServiceTemplate

persistentVolumeClaim Template for all ZooKeeper
PersistentVolumeClaims.

ResourceTemplate

podDisruptionBudget Template for ZooKeeper PodDisruptionBudget.

PodDisruptionBudgetTemplate

zookeeperContainer Template for the ZooKeeper container.

ContainerTemplate

serviceAccount Template for the ZooKeeper service account.

ResourceTemplate

jmxSecret Template for Secret of the Zookeeper Cluster JMX
authentication.

ResourceTemplate

14.2.43. EntityOperatorSpec schema reference

Used in: KafkaSpec

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

401

Property Description

topicOperator Configuration of the Topic Operator.

EntityTopicOperatorSpec

userOperator Configuration of the User Operator.

EntityUserOperatorSpec

tlsSidecar TLS sidecar configuration.

TlsSidecar

template Template for Entity Operator resources. The
template allows users to specify how is the
Deployment and Pods generated.EntityOperatorTemplate

14.2.44. EntityTopicOperatorSpec schema reference

Used in: EntityOperatorSpec

Full list of EntityTopicOperatorSpec schema properties

Configures the Topic Operator.

14.2.44.1. logging

The Topic Operator has a configurable logger:

rootLogger.level

The Topic Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.topicOperator field of the Kafka resource Kafka
resource to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j2.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

402

https://logging.apache.org/

External logging

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.44.2. EntityTopicOperatorSpec schema properties

Property Description

watchedNamespace The namespace the Topic Operator should watch.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging:
 type: inline
 loggers:
 rootLogger.level: INFO
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: topic-operator-log4j2.properties
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

403

string

image The image to use for the Topic Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds Timeout for the ZooKeeper session.

integer

startupProbe Pod startup checking.

Probe

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

topicMetadataMaxAttempts The number of attempts at getting topic metadata.

integer

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

Property Description

14.2.45. EntityUserOperatorSpec schema reference

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

404

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

Used in: EntityOperatorSpec

Full list of EntityUserOperatorSpec schema properties

Configures the User Operator.

14.2.45.1. logging

The User Operator has a configurable logger:

rootLogger.level

The User Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.userOperator field of the Kafka resource to configure
loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j2.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging:
 type: inline
 loggers:
 rootLogger.level: INFO
 # ...

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

405

https://logging.apache.org/

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.45.2. EntityUserOperatorSpec schema properties

Property Description

watchedNamespace The namespace the User Operator should watch.

string

image The image to use for the User Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds The zookeeperSessionTimeoutSeconds
property has been deprecated. This property has
been deprecated because ZooKeeper is not used
anymore by the User Operator. Timeout for the
ZooKeeper session.

integer

secretPrefix The prefix that will be added to the KafkaUser name
to be used as the Secret name.

string

kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: user-operator-log4j2.properties
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

406

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

Property Description

14.2.46. TlsSidecar schema reference

Used in: CruiseControlSpec, EntityOperatorSpec

Full list of TlsSidecar schema properties

Configures a TLS sidecar, which is a container that runs in a pod, but serves a supporting purpose. In
AMQ Streams, the TLS sidecar uses TLS to encrypt and decrypt communication between components
and ZooKeeper.

The TLS sidecar is used in:

Entity Operator

Cruise Control

The TLS sidecar is configured using the tlsSidecar property in:

Kafka.spec.entityOperator

Kafka.spec.cruiseControl

The TLS sidecar supports the following additional options:

image

resources

logLevel

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

407

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

readinessProbe

livenessProbe

The resources property specifies the memory and CPU resources allocated for the TLS sidecar.

The image property configures the container image which will be used.

The readinessProbe and livenessProbe properties configure healthcheck probes for the TLS sidecar.

The logLevel property specifies the logging level. The following logging levels are supported:

emerg

alert

crit

err

warning

notice

info

debug

The default value is notice.

Example TLS sidecar configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 entityOperator:
 # ...
 tlsSidecar:
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 # ...
 cruiseControl:
 # ...
 tlsSidecar:
 image: my-org/my-image:latest
 resources:
 requests:
 cpu: 200m
 memory: 64Mi

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

408

14.2.46.1. TlsSidecar schema properties

Property Description

image The docker image for the container.

string

livenessProbe Pod liveness checking.

Probe

logLevel The log level for the TLS sidecar. Default value is
notice.

string (one of [emerg, debug, crit, err, alert, warning,
notice, info])

readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

14.2.47. EntityOperatorTemplate schema reference

Used in: EntityOperatorSpec

Property Description

deployment Template for Entity Operator Deployment.

ResourceTemplate

pod Template for Entity Operator Pods.

 limits:
 cpu: 500m
 memory: 128Mi
 logLevel: debug
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

409

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

PodTemplate

topicOperatorContainer Template for the Entity Topic Operator container.

ContainerTemplate

userOperatorContainer Template for the Entity User Operator container.

ContainerTemplate

tlsSidecarContainer Template for the Entity Operator TLS sidecar
container.

ContainerTemplate

serviceAccount Template for the Entity Operator service account.

ResourceTemplate

Property Description

14.2.48. CertificateAuthority schema reference

Used in: KafkaSpec

Configuration of how TLS certificates are used within the cluster. This applies to certificates used for
both internal communication within the cluster and to certificates used for client access via
Kafka.spec.kafka.listeners.tls.

Property Description

generateCertificateAuthority If true then Certificate Authority certificates will be
generated automatically. Otherwise the user will need
to provide a Secret with the CA certificate. Default is
true.

boolean

generateSecretOwnerReference If true, the Cluster and Client CA Secrets are
configured with the ownerReference set to the
Kafka resource. If the Kafka resource is deleted
when true, the CA Secrets are also deleted. If false,
the ownerReference is disabled. If the Kafka
resource is deleted when false, the CA Secrets are
retained and available for reuse. Default is true.

boolean

validityDays The number of days generated certificates should be
valid for. The default is 365.

integer

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

410

renewalDays The number of days in the certificate renewal period.
This is the number of days before the a certificate
expires during which renewal actions may be
performed. When generateCertificateAuthority is
true, this will cause the generation of a new
certificate. When generateCertificateAuthority is
true, this will cause extra logging at WARN level
about the pending certificate expiry. Default is 30.

integer

certificateExpirationPolicy How should CA certificate expiration be handled
when generateCertificateAuthority=true. The
default is for a new CA certificate to be generated
reusing the existing private key.

string (one of [replace-key, renew-certificate])

Property Description

14.2.49. CruiseControlSpec schema reference

Used in: KafkaSpec

Property Description

image The docker image for the pods.

string

tlsSidecar TLS sidecar configuration.

TlsSidecar

resources CPU and memory resources to reserve for the Cruise
Control container. For more information, see the
external documentation for core/v1
resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking for the Cruise Control
container.

Probe

readinessProbe Pod readiness checking for the Cruise Control
container.

Probe

jvmOptions JVM Options for the Cruise Control container.

JvmOptions

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

411

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

logging Logging configuration (Log4j 2) for Cruise Control.
The type depends on the value of the logging.type
property within the given object, which must be one
of [inline, external].

InlineLogging, ExternalLogging

template Template to specify how Cruise Control resources,
Deployments and Pods, are generated.

CruiseControlTemplate

brokerCapacity The Cruise Control brokerCapacity configuration.

BrokerCapacity

config The Cruise Control configuration. For a full list of
configuration options refer to
https://github.com/linkedin/cruise-
control/wiki/Configurations. Note that properties
with the following prefixes cannot be set:
bootstrap.servers, client.id, zookeeper., network.,
security., failed.brokers.zk.path,webserver.http.,
webserver.api.urlprefix, webserver.session.path,
webserver.accesslog., two.step.,
request.reason.required,metric.reporter.sampler.boot
strap.servers, metric.reporter.topic,
partition.metric.sample.store.topic,
broker.metric.sample.store.topic,capacity.config.file,
self.healing., ssl. (with the exception of:
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols,
webserver.http.cors.enabled,
webserver.http.cors.origin,
webserver.http.cors.exposeheaders,
webserver.security.enable, webserver.ssl.enable).

map

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

14.2.50. CruiseControlTemplate schema reference

Used in: CruiseControlSpec

Property Description

deployment Template for Cruise Control Deployment.

ResourceTemplate

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

412

https://github.com/linkedin/cruise-control/wiki/Configurations

pod Template for Cruise Control Pods.

PodTemplate

apiService Template for Cruise Control API Service.

InternalServiceTemplate

podDisruptionBudget Template for Cruise Control
PodDisruptionBudget.

PodDisruptionBudgetTemplate

cruiseControlContainer Template for the Cruise Control container.

ContainerTemplate

tlsSidecarContainer Template for the Cruise Control TLS sidecar
container.

ContainerTemplate

serviceAccount Template for the Cruise Control service account.

ResourceTemplate

Property Description

14.2.51. BrokerCapacity schema reference

Used in: CruiseControlSpec

Property Description

disk Broker capacity for disk in bytes, for example, 100Gi.

string

cpuUtilization Broker capacity for CPU resource utilization as a
percentage (0 - 100).

integer

inboundNetwork Broker capacity for inbound network throughput in
bytes per second, for example, 10000KB/s.

string

outboundNetwork Broker capacity for outbound network throughput in
bytes per second, for example 10000KB/s.

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

413

string

Property Description

14.2.52. KafkaExporterSpec schema reference

Used in: KafkaSpec

Property Description

image The docker image for the pods.

string

groupRegex Regular expression to specify which consumer groups
to collect. Default value is .*.

string

topicRegex Regular expression to specify which topics to collect.
Default value is .*.

string

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

logging Only log messages with the given severity or above.
Valid levels: [info, debug, trace]. Default log level is
info.string

enableSaramaLogging Enable Sarama logging, a Go client library used by
the Kafka Exporter.

boolean

template Customization of deployment templates and pods.

KafkaExporterTemplate

livenessProbe Pod liveness check.

Probe

readinessProbe Pod readiness check.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

414

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

Probe

Property Description

14.2.53. KafkaExporterTemplate schema reference

Used in: KafkaExporterSpec

Property Description

deployment Template for Kafka Exporter Deployment.

ResourceTemplate

pod Template for Kafka Exporter Pods.

PodTemplate

service The service property has been deprecated. The
Kafka Exporter service has been removed. Template
for Kafka Exporter Service.ResourceTemplate

container Template for the Kafka Exporter container.

ContainerTemplate

serviceAccount Template for the Kafka Exporter service account.

ResourceTemplate

14.2.54. KafkaStatus schema reference

Used in: Kafka

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

listeners Addresses of the internal and external listeners.

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

415

ListenerStatus array

clusterId Kafka cluster Id.

string

Property Description

14.2.55. Condition schema reference

Used in: KafkaBridgeStatus, KafkaConnectorStatus, KafkaConnectStatus,
KafkaMirrorMaker2Status, KafkaMirrorMakerStatus, KafkaRebalanceStatus, KafkaStatus,
KafkaTopicStatus, KafkaUserStatus

Property Description

type The unique identifier of a condition, used to
distinguish between other conditions in the resource.

string

status The status of the condition, either True, False or
Unknown.

string

lastTransitionTime Last time the condition of a type changed from one
status to another. The required format is 'yyyy-MM-
ddTHH:mm:ssZ', in the UTC time zone.string

reason The reason for the condition’s last transition (a single
word in CamelCase).

string

message Human-readable message indicating details about
the condition’s last transition.

string

14.2.56. ListenerStatus schema reference

Used in: KafkaStatus

Property Description

type The type of the listener. Can be one of the following
three types: plain, tls, and external.

string

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

416

addresses A list of the addresses for this listener.

ListenerAddress array

bootstrapServers A comma-separated list of host:port pairs for
connecting to the Kafka cluster using this listener.

string

certificates A list of TLS certificates which can be used to verify
the identity of the server when connecting to the
given listener. Set only for tls and external listeners.string array

Property Description

14.2.57. ListenerAddress schema reference

Used in: ListenerStatus

Property Description

host The DNS name or IP address of the Kafka bootstrap
service.

string

port The port of the Kafka bootstrap service.

integer

14.2.58. KafkaConnect schema reference

Property Description

spec The specification of the Kafka Connect cluster.

KafkaConnectSpec

status The status of the Kafka Connect cluster.

KafkaConnectStatus

14.2.59. KafkaConnectSpec schema reference

Used in: KafkaConnect

Full list of KafkaConnectSpec schema properties

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

417

Configures a Kafka Connect cluster.

14.2.59.1. config

Use the config properties to configure Kafka options as keys.

Standard Apache Kafka Connect configuration may be provided, restricted to those properties not
managed directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Listener / REST interface configuration

Plugin path configuration

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, configuration options with
keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

listeners

plugin.path

rest.

bootstrap.servers

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka Connect.

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Connect cluster might not start or
might become unstable. In this circumstance, fix the configuration in the
KafkaConnect.spec.config object, then the Cluster Operator can roll out the new
configuration to all Kafka Connect nodes.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

418

http://kafka.apache.org/documentation/#connectconfigs

Certain options have default values:

group.id with default value connect-cluster

offset.storage.topic with default value connect-cluster-offsets

config.storage.topic with default value connect-cluster-configs

status.storage.topic with default value connect-cluster-status

key.converter with default value org.apache.kafka.connect.json.JsonConverter

value.converter with default value org.apache.kafka.connect.json.JsonConverter

These options are automatically configured in case they are not present in the
KafkaConnect.spec.config properties.

There are exceptions to the forbidden options. You can use three allowed ssl configuration options for
client connection using a specific cipher suite for a TLS version. A cipher suite combines algorithms for
secure connection and data transfer. You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.

Example Kafka Connect configuration

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

14.2.59.2. logging

Kafka Connect has its own configurable loggers:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 ssl.endpoint.identification.algorithm: HTTPS
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

419

connect.root.logger.level

log4j.logger.org.reflections

Further loggers are added depending on the Kafka Connect plugins running.

Use a curl request to get a complete list of Kafka Connect loggers running from any Kafka broker pod:

Kafka Connect uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

curl -s http://<connect-cluster-name>-connect-api:8083/admin/loggers/

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
 # ...
 logging:
 type: inline
 loggers:
 connect.root.logger.level: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: connect-logging.log4j
 # ...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

420

https://logging.apache.org/

If Kafka Connect was deployed using the Cluster Operator, changes to Kafka Connect logging levels are
applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.59.3. KafkaConnectSpec schema properties

Property Description

version The Kafka Connect version. Defaults to 3.0.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

bootstrapServers Bootstrap servers to connect to. This should be
given as a comma separated list of
<hostname>:<port> pairs.string

tls TLS configuration.

ClientTls

authentication Authentication configuration for Kafka Connect. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The Kafka Connect configuration. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers,
consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

421

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options.

KafkaJmxOptions

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

template Template for Kafka Connect and Kafka Mirror Maker
2 resources. The template allows users to specify
how the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

build Configures how the Connect container image should
be built. Optional.

Build

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

422

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

clientRackInitImage The image of the init container used for initializing
the client.rack.

string

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

rack Configuration of the node label which will be used as
the client.rack consumer configuration.

Rack

Property Description

14.2.60. ClientTls schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of ClientTls schema properties

Configures TLS trusted certificates for connecting KafkaConnect, KafkaBridge, KafkaMirror,
KafkaMirrorMaker2 to the cluster.

14.2.60.1. trustedCertificates

Provide a list of secrets using the trustedCertificates property.

14.2.60.2. ClientTls schema properties

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

14.2.61. KafkaClientAuthenticationTls schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationTls schema properties

To configure TLS client authentication, set the type property to the value tls. TLS client authentication
uses a TLS certificate to authenticate.

14.2.61.1. certificateAndKey

The certificate is specified in the certificateAndKey property and is always loaded from an OpenShift

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

423

The certificate is specified in the certificateAndKey property and is always loaded from an OpenShift
secret. In the secret, the certificate must be stored in X509 format under two different keys: public and
private.

You can use the secrets created by the User Operator, or you can create your own TLS certificate file,
with the keys used for authentication, then create a Secret from the file:

NOTE

TLS client authentication can only be used with TLS connections.

Example TLS client authentication configuration

14.2.61.2. KafkaClientAuthenticationTls schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationTls type
from KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth. It must have the value tls for the type
KafkaClientAuthenticationTls.

Property Description

certificateAndKey Reference to the Secret which holds the certificate
and private key pair.

CertAndKeySecretSource

type Must be tls.

string

14.2.62. KafkaClientAuthenticationScramSha512 schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationScramSha512 schema properties

To configure SASL-based SCRAM-SHA-512 authentication, set the type property to scram-sha-512.
The SCRAM-SHA-512 authentication mechanism requires a username and password.

oc create secret generic MY-SECRET \
--from-file=MY-PUBLIC-TLS-CERTIFICATE-FILE.crt \
--from-file=MY-PRIVATE.key

authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: my-public-tls-certificate-file.crt
 key: private.key

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

424

14.2.62.1. username

Specify the username in the username property.

14.2.62.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, you can create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

Example Secret for SCRAM-SHA-512 client authentication for Kafka Connect

The secretName property contains the name of the Secret, and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password property.

Example SASL-based SCRAM-SHA-512 client authentication configuration for Kafka
Connect

14.2.62.3. KafkaClientAuthenticationScramSha512 schema properties

The type property is a discriminator that distinguishes use of the
KafkaClientAuthenticationScramSha512 type from KafkaClientAuthenticationTls,
KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth. It must have the value scram-
sha-512 for the type KafkaClientAuthenticationScramSha512.

echo -n PASSWORD > MY-PASSWORD.txt

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
 name: my-connect-secret-name
type: Opaque
data:
 my-connect-password-field: LFTIyFRFlMmU2N2Tm

authentication:
 type: scram-sha-512
 username: my-connect-username
 passwordSecret:
 secretName: my-connect-secret-name
 password: my-connect-password-field

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

425

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be scram-sha-512.

string

username Username used for the authentication.

string

14.2.63. PasswordSecretSource schema reference

Used in: KafkaClientAuthenticationPlain, KafkaClientAuthenticationScramSha512

Property Description

password The name of the key in the Secret under which the
password is stored.

string

secretName The name of the Secret containing the password.

string

14.2.64. KafkaClientAuthenticationPlain schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationPlain schema properties

To configure SASL-based PLAIN authentication, set the type property to plain. SASL PLAIN
authentication mechanism requires a username and password.

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

426

14.2.64.1. username

Specify the username in the username property.

14.2.64.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

Example Secret for PLAIN client authentication for Kafka Connect

The secretName property contains the name of the Secret and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password property.

An example SASL based PLAIN client authentication configuration

14.2.64.3. KafkaClientAuthenticationPlain schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationPlain type
from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationOAuth. It must have the value plain for the type
KafkaClientAuthenticationPlain.

echo -n PASSWORD > MY-PASSWORD.txt

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
 name: my-connect-secret-name
type: Opaque
data:
 my-password-field-name: LFTIyFRFlMmU2N2Tm

authentication:
 type: plain
 username: my-connect-username
 passwordSecret:
 secretName: my-connect-secret-name
 password: my-password-field-name

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

427

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be plain.

string

username Username used for the authentication.

string

14.2.65. KafkaClientAuthenticationOAuth schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationOAuth schema properties

To configure OAuth client authentication, set the type property to oauth.

OAuth authentication can be configured using one of the following options:

Client ID and secret

Client ID and refresh token

Access token

TLS

Client ID and secret

You can configure the address of your authorization server in the tokenEndpointUri property together
with the client ID and client secret used in authentication. The OAuth client will connect to the OAuth
server, authenticate using the client ID and secret and get an access token which it will use to
authenticate with the Kafka broker. In the clientSecret property, specify a link to a Secret containing
the client secret.

An example of OAuth client authentication using client ID and client secret

Optionally, scope and audience can be specified if needed.

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 clientSecret:
 secretName: my-client-oauth-secret
 key: client-secret

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

428

Client ID and refresh token

You can configure the address of your OAuth server in the tokenEndpointUri property together with
the OAuth client ID and refresh token. The OAuth client will connect to the OAuth server, authenticate
using the client ID and refresh token and get an access token which it will use to authenticate with the
Kafka broker. In the refreshToken property, specify a link to a Secret containing the refresh token.

+ .An example of OAuth client authentication using client ID and refresh token

Access token

You can configure the access token used for authentication with the Kafka broker directly. In this case,
you do not specify the tokenEndpointUri. In the accessToken property, specify a link to a Secret
containing the access token.

An example of OAuth client authentication using only an access token

TLS

Accessing the OAuth server using the HTTPS protocol does not require any additional configuration as
long as the TLS certificates used by it are signed by a trusted certification authority and its hostname is
listed in the certificate.

If your OAuth server is using certificates which are self-signed or are signed by a certification authority
which is not trusted, you can configure a list of trusted certificates in the custom resource. The
tlsTrustedCertificates property contains a list of secrets with key names under which the certificates
are stored. The certificates must be stored in X509 format.

An example of TLS certificates provided

The OAuth client will by default verify that the hostname of your OAuth server matches either the

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 refreshToken:
 secretName: my-refresh-token-secret
 key: refresh-token

authentication:
 type: oauth
 accessToken:
 secretName: my-access-token-secret
 key: access-token

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 refreshToken:
 secretName: my-refresh-token-secret
 key: refresh-token
 tlsTrustedCertificates:
 - secretName: oauth-server-ca
 certificate: tls.crt

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

429

The OAuth client will by default verify that the hostname of your OAuth server matches either the
certificate subject or one of the alternative DNS names. If it is not required, you can disable the
hostname verification.

An example of disabled TLS hostname verification

14.2.65.1. KafkaClientAuthenticationOAuth schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationOAuth
type from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain. It must have the value oauth for the type
KafkaClientAuthenticationOAuth.

Property Description

accessToken Link to OpenShift Secret containing the access
token which was obtained from the authorization
server.GenericSecretSource

accessTokenIsJwt Configure whether access token should be treated
as JWT. This should be set to false if the
authorization server returns opaque tokens. Defaults
to true.

boolean

audience OAuth audience to use when authenticating against
the authorization server. Some authorization servers
require the audience to be explicitly set. The possible
values depend on how the authorization server is
configured. By default, audience is not specified
when performing the token endpoint request.

string

clientId OAuth Client ID which the Kafka client can use to
authenticate against the OAuth server and use the
token endpoint URI.string

clientSecret Link to OpenShift Secret containing the OAuth client
secret which the Kafka client can use to authenticate
against the OAuth server and use the token endpoint
URI.

GenericSecretSource

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 refreshToken:
 secretName: my-refresh-token-secret
 key: refresh-token
 disableTlsHostnameVerification: true

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

430

boolean

maxTokenExpirySeconds Set or limit time-to-live of the access tokens to the
specified number of seconds. This should be set if
the authorization server returns opaque tokens.integer

refreshToken Link to OpenShift Secret containing the refresh
token which can be used to obtain access token from
the authorization server.GenericSecretSource

scope OAuth scope to use when authenticating against the
authorization server. Some authorization servers
require this to be set. The possible values depend on
how authorization server is configured. By default
scope is not specified when doing the token
endpoint request.

string

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

tokenEndpointUri Authorization server token endpoint URI.

string

type Must be oauth.

string

Property Description

14.2.66. JaegerTracing schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec

The type property is a discriminator that distinguishes use of the JaegerTracing type from other
subtypes which may be added in the future. It must have the value jaeger for the type JaegerTracing.

Property Description

type Must be jaeger.

string

14.2.67. KafkaConnectTemplate schema reference

Used in: KafkaConnectSpec, KafkaMirrorMaker2Spec

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

431

Property Description

deployment Template for Kafka Connect Deployment.

DeploymentTemplate

pod Template for Kafka Connect Pods.

PodTemplate

apiService Template for Kafka Connect API Service.

InternalServiceTemplate

connectContainer Template for the Kafka Connect container.

ContainerTemplate

initContainer Template for the Kafka init container.

ContainerTemplate

podDisruptionBudget Template for Kafka Connect
PodDisruptionBudget.

PodDisruptionBudgetTemplate

serviceAccount Template for the Kafka Connect service account.

ResourceTemplate

clusterRoleBinding Template for the Kafka Connect ClusterRoleBinding.

ResourceTemplate

buildPod Template for Kafka Connect Build Pods. The build
pod is used only on OpenShift.

PodTemplate

buildContainer Template for the Kafka Connect Build container. The
build container is used only on OpenShift.

ContainerTemplate

buildConfig Template for the Kafka Connect BuildConfig used to
build new container images. The BuildConfig is used
only on OpenShift.BuildConfigTemplate

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

432

buildServiceAccount Template for the Kafka Connect Build service
account.

ResourceTemplate

jmxSecret Template for Secret of the Kafka Connect Cluster
JMX authentication.

ResourceTemplate

Property Description

14.2.68. DeploymentTemplate schema reference

Used in: KafkaBridgeTemplate, KafkaConnectTemplate, KafkaMirrorMakerTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

deploymentStrategy DeploymentStrategy which will be used for this
Deployment. Valid values are RollingUpdate and
Recreate. Defaults to RollingUpdate.string (one of [RollingUpdate, Recreate])

14.2.69. BuildConfigTemplate schema reference

Used in: KafkaConnectTemplate

Property Description

metadata Metadata to apply to the
PodDisruptionBudgetTemplate resource.

MetadataTemplate

pullSecret Container Registry Secret with the credentials for
pulling the base image.

string

14.2.70. ExternalConfiguration schema reference

Used in: KafkaConnectSpec, KafkaMirrorMaker2Spec

Full list of ExternalConfiguration schema properties

Configures external storage properties that define configuration options for Kafka Connect connectors.

You can mount ConfigMaps or Secrets into a Kafka Connect pod as environment variables or volumes.

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

433

You can mount ConfigMaps or Secrets into a Kafka Connect pod as environment variables or volumes.
Volumes and environment variables are configured in the externalConfiguration property in
KafkaConnect.spec.

When applied, the environment variables and volumes are available for use when developing your
connectors.

14.2.70.1. env

Use the env property to specify one or more environment variables. These variables can contain a value
from either a ConfigMap or a Secret.

Example Secret containing values for environment variables

NOTE

The names of user-defined environment variables cannot start with KAFKA_ or
STRIMZI_.

To mount a value from a Secret to an environment variable, use the valueFrom property and the
secretKeyRef.

Example environment variables set to values from a Secret

A common use case for mounting Secrets is for a connector to communicate with Amazon AWS. The
connector needs to be able to read the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

apiVersion: v1
kind: Secret
metadata:
 name: aws-creds
type: Opaque
data:
 awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
 awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

434

To mount a value from a ConfigMap to an environment variable, use configMapKeyRef in the
valueFrom property as shown in the following example.

Example environment variables set to values from a ConfigMap

14.2.70.2. volumes

Use volumes to mount ConfigMaps or Secrets to a Kafka Connect pod.

Using volumes instead of environment variables is useful in the following scenarios:

Mounting a properties file that is used to configure Kafka Connect connectors

Mounting truststores or keystores with TLS certificates

Volumes are mounted inside the Kafka Connect containers on the path /opt/kafka/external-
configuration/<volume-name>. For example, the files from a volume named connector-config will
appear in the directory /opt/kafka/external-configuration/connector-config.

Configuration providers load values from outside the configuration. Use a provider mechanism to avoid
passing restricted information over the Kafka Connect REST interface.

FileConfigProvider loads configuration values from properties in a file.

DirectoryConfigProvider loads configuration values from separate files within a directory
structure.

Use a comma-separated list if you want to add more than one provider, including custom providers. You
can use custom providers to load values from other file locations.

Using FileConfigProvider to load property values

In this example, a Secret named mysecret contains connector properties that specify a database name
and password:

Example Secret with database properties

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

435

1

2

1

2

3

4

The connector configuration in properties file format.

Database username and password properties used in the configuration.

The Secret and the FileConfigProvider configuration provider are specified in the Kafka Connect
configuration.

The Secret is mounted to a volume named connector-config.

FileConfigProvider is given the alias file.

Example external volumes set to values from a Secret

The alias for the configuration provider is used to define other configuration parameters.

FileConfigProvider provides values from properties files. The parameter uses the alias from
config.providers, taking the form config.providers.${alias}.class.

The name of the volume containing the Secret. Each volume must specify a name in the name
property and a reference to a ConfigMap or Secret.

The name of the Secret.

Placeholders for the property values in the Secret are referenced in the connector configuration. The
placeholder structure is file:PATH-AND-FILE-NAME:PROPERTY. FileConfigProvider reads and
extracts the database username and password property values from the mounted Secret in connector
configurations.

Example connector configuration showing placeholders for external values

stringData:
 connector.properties: |- 1
 dbUsername: my-username 2
 dbPassword: my-password

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: file 1
 config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider 2
 #...
 externalConfiguration:
 volumes:
 - name: connector-config 3
 secret:
 secretName: mysecret 4

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

436

Using DirectoryConfigProvider to load property values from separate files

In this example, a Secret contains TLS truststore and keystore user credentials in separate files.

Example Secret with user credentials

The Secret and the DirectoryConfigProvider configuration provider are specified in the Kafka Connect
configuration.

The Secret is mounted to a volume named connector-config.

DirectoryConfigProvider is given the alias directory.

Example external volumes set for user credentials files

metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 2
 config:
 database.hostname: 192.168.99.1
 database.port: "3306"
 database.user: "${file:/opt/kafka/external-configuration/connector-config/mysecret:dbUsername}"
 database.password: "${file:/opt/kafka/external-configuration/connector-
config/mysecret:dbPassword}"
 database.server.id: "184054"
 #...

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data: 1
 ca.crt: # Public key of the client CA
 user.crt: # User certificate that contains the public key of the user
 user.key: # Private key of the user
 user.p12: # PKCS #12 archive file for storing certificates and keys
 user.password: # Password for protecting the PKCS #12 archive file

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: directory
 config.providers.directory.class: org.apache.kafka.common.config.provider.DirectoryConfigProvider

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

437

1 1 The DirectoryConfigProvider provides values from files in a directory. The parameter uses the
alias from config.providers, taking the form config.providers.${alias}.class.

Placeholders for the credentials are referenced in the connector configuration. The placeholder
structure is directory:PATH:FILE-NAME. DirectoryConfigProvider reads and extracts the credentials
from the mounted Secret in connector configurations.

Example connector configuration showing placeholders for external values

14.2.70.3. ExternalConfiguration schema properties

Property Description

env Makes data from a Secret or ConfigMap available in
the Kafka Connect pods as environment variables.

ExternalConfigurationEnv array

volumes Makes data from a Secret or ConfigMap available in
the Kafka Connect pods as volumes.

ExternalConfigurationVolumeSource array

14.2.71. ExternalConfigurationEnv schema reference

Used in: ExternalConfiguration

1
 #...
 externalConfiguration:
 volumes:
 - name: connector-config
 secret:
 secretName: mysecret

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 2
 config:
 security.protocol: SSL
 ssl.truststore.type: PEM
 ssl.truststore.location: "${directory:/opt/kafka/external-configuration/connector-config:ca.crt}"
 ssl.keystore.type: PEM
 ssl.keystore.location: "${directory:/opt/kafka/external-configuration/connector-config:user.key}"
 #...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

438

Property Description

name Name of the environment variable which will be
passed to the Kafka Connect pods. The name of the
environment variable cannot start with KAFKA_ or
STRIMZI_.

string

valueFrom Value of the environment variable which will be
passed to the Kafka Connect pods. It can be passed
either as a reference to Secret or ConfigMap field.
The field has to specify exactly one Secret or
ConfigMap.

ExternalConfigurationEnvVarSource

14.2.72. ExternalConfigurationEnvVarSource schema reference

Used in: ExternalConfigurationEnv

Property Description

configMapKeyRef Reference to a key in a ConfigMap. For more
information, see the external documentation for
core/v1 configmapkeyselector.ConfigMapKeySelector

secretKeyRef Reference to a key in a Secret. For more information,
see the external documentation for core/v1
secretkeyselector.SecretKeySelector

14.2.73. ExternalConfigurationVolumeSource schema reference

Used in: ExternalConfiguration

Property Description

configMap Reference to a key in a ConfigMap. Exactly one
Secret or ConfigMap has to be specified. For more
information, see the external documentation for
core/v1 configmapvolumesource.

ConfigMapVolumeSource

name Name of the volume which will be added to the Kafka
Connect pods.

string

secret Reference to a key in a Secret. Exactly one Secret or
ConfigMap has to be specified. For more
information, see the external documentation for
core/v1 secretvolumesource.

SecretVolumeSource

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

439

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretvolumesource-v1-core

14.2.74. Build schema reference

Used in: KafkaConnectSpec

Full list of Build schema properties

Configures additional connectors for Kafka Connect deployments.

14.2.74.1. output

To build new container images with additional connector plugins, AMQ Streams requires a container
registry where the images can be pushed to, stored, and pulled from. AMQ Streams does not run its own
container registry, so a registry must be provided. AMQ Streams supports private container registries as
well as public registries such as Quay or Docker Hub. The container registry is configured in the
.spec.build.output section of the KafkaConnect custom resource. The output configuration, which is
required, supports two types: docker and imagestream.

Using Docker registry

To use a Docker registry, you have to specify the type as docker, and the image field with the full name
of the new container image. The full name must include:

The address of the registry

Port number (if listening on a non-standard port)

The tag of the new container image

Example valid container image names:

docker.io/my-org/my-image/my-tag

quay.io/my-org/my-image/my-tag

image-registry.image-registry.svc:5000/myproject/kafka-connect-build:latest

Each Kafka Connect deployment must use a separate image, which can mean different tags at the most
basic level.

If the registry requires authentication, use the pushSecret to set a name of the Secret with the registry
credentials. For the Secret, use the kubernetes.io/dockerconfigjson type and a .dockerconfigjson
file to contain the Docker credentials. For more information on pulling an image from a private registry,
see Create a Secret based on existing Docker credentials .

Example output configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 type: docker 1

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

440

https://quay.io/
https://hub.docker.com//
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-existing-credentials

1

2

3

1

2

(Required) Type of output used by AMQ Streams.

(Required) Full name of the image used, including the repository and tag.

(Optional) Name of the secret with the container registry credentials.

Using OpenShift ImageStream

Instead of Docker, you can use OpenShift ImageStream to store a new container image. The
ImageStream has to be created manually before deploying Kafka Connect. To use ImageStream, set the
type to imagestream, and use the image property to specify the name of the ImageStream and the tag
used. For example, my-connect-image-stream:latest.

Example output configuration

(Required) Type of output used by AMQ Streams.

(Required) Name of the ImageStream and tag.

14.2.74.2. plugins

Connector plugins are a set of files that define the implementation required to connect to certain types
of external system. The connector plugins required for a container image must be configured using the
.spec.build.plugins property of the KafkaConnect custom resource. Each connector plugin must have
a name which is unique within the Kafka Connect deployment. Additionally, the plugin artifacts must be
listed. These artifacts are downloaded by AMQ Streams, added to the new container image, and used in
the Kafka Connect deployment. The connector plugin artifacts can also include additional components,
such as (de)serializers. Each connector plugin is downloaded into a separate directory so that the
different connectors and their dependencies are properly sandboxed. Each plugin must be configured
with at least one artifact.

Example plugins configuration with two connector plugins

 image: my-registry.io/my-org/my-connect-cluster:latest 2
 pushSecret: my-registry-credentials 3
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 type: imagestream 1
 image: my-connect-build:latest 2
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

441

1 (Required) List of connector plugins and their artifacts.

AMQ Streams supports the following types of artifacts:

JAR files, which are downloaded and used directly

TGZ archives, which are downloaded and unpacked

ZIP archives, which are downloaded and unpacked

Maven artifacts, which uses Maven coordinates

Other artifacts, which are downloaded and used directly

IMPORTANT

AMQ Streams does not perform any security scanning of the downloaded artifacts. For
security reasons, you should first verify the artifacts manually, and configure the
checksum verification to make sure the same artifact is used in the automated build and
in the Kafka Connect deployment.

Using JAR artifacts

JAR artifacts represent a JAR file that is downloaded and added to a container image. To use a JAR
artifacts, set the type property to jar, and specify the download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum of the artifact while building the new container image.

Example JAR artifact

spec:
 #...
 build:
 output:
 #...
 plugins: 1
 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/1.3.1.Final/debezium-connector-postgres-1.3.1.Final-plugin.tar.gz
 sha512sum:
962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb548045e115e
33a9e69b1b2a352bee24df035a0447cb820077af00c03
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.7.0/camel-telegram-kafka-connector-0.7.0-package.tar.gz
 sha512sum:
a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e8020bf4
187870699819f54ef5859c7846ee4081507f48873479
 #...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

442

1

2

3

(Required) Type of artifact.

(Required) URL from which the artifact is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

Using TGZ artifacts

TGZ artifacts are used to download TAR archives that have been compressed using Gzip compression.
The TGZ artifact can contain the whole Kafka Connect connector, even when comprising multiple
different files. The TGZ artifact is automatically downloaded and unpacked by AMQ Streams while
building the new container image. To use TGZ artifacts, set the type property to tgz, and specify the
download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum before unpacking it and building the new container image.

Example TGZ artifact

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: jar 1
 url: https://my-domain.tld/my-jar.jar 2
 sha512sum: 589...ab4 3
 - type: jar
 url: https://my-domain.tld/my-jar2.jar
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: tgz 1
 url: https://my-domain.tld/my-connector-archive.tgz 2
 sha512sum: 158...jg10 3
 #...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

443

1

2

3

1

2

3

4

5

(Required) Type of artifact.

(Required) URL from which the archive is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

Using ZIP artifacts

ZIP artifacts are used to download ZIP compressed archives. Use ZIP artifacts in the same way as the
TGZ artifacts described in the previous section. The only difference is you specify type: zip instead of
type: tgz.

Using Maven artifacts

maven artifacts are used to specify connector plugin artifacts as Maven coordinates. The Maven
coordinates identify plugin artifacts and dependencies so that they can be located and fetched from a
Maven repository.

NOTE

The Maven repository must be accessible for the connector build process to add the
artifacts to the container image.

Example Maven artifact

(Required) Type of artifact.

(Optional) Maven repository to download the artifacts from. If you do not specify a repository,
Maven Central repository is used by default.

(Required) Maven group ID.

(Required) Maven artifact type.

(Required) Maven version number.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: maven 1
 repository: https://mvnrepository.com 2
 group: org.apache.camel.kafkaconnector 3
 artifact: camel-kafka-connector 4
 version: 0.11.0 5
 #...

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

444

https://mvnrepository.com/repos/central

1

2

3

4

Using other artifacts

other artifacts represent any kind of file that is downloaded and added to a container image. If you want
to use a specific name for the artifact in the resulting container image, use the fileName field. If a file
name is not specified, the file is named based on the URL hash.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum of the artifact while building the new container image.

Example other artifact

(Required) Type of artifact.

(Required) URL from which the artifact is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

(Optional) The name under which the file is stored in the resulting container image.

14.2.74.3. Build schema properties

Property Description

output Configures where should the newly built image be
stored. Required. The type depends on the value of
the output.type property within the given object,
which must be one of [docker, imagestream].

DockerOutput, ImageStreamOutput

resources CPU and memory resources to reserve for the build.
For more information, see the external
documentation for core/v1 resourcerequirements.ResourceRequirements

plugins List of connector plugins which should be added to
the Kafka Connect. Required.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: other 1
 url: https://my-domain.tld/my-other-file.ext 2
 sha512sum: 589...ab4 3
 fileName: name-the-file.ext 4
 #...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

445

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

Plugin array

Property Description

14.2.75. DockerOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the DockerOutput type from
ImageStreamOutput. It must have the value docker for the type DockerOutput.

Property Description

image The full name which should be used for tagging and
pushing the newly built image. For example
quay.io/my-organization/my-custom-
connect:latest. Required.

string

pushSecret Container Registry Secret with the credentials for
pushing the newly built image.

string

additionalKanikoOptions Configures additional options which will be passed to
the Kaniko executor when building the new Connect
image. Allowed options are: --customPlatform, --
insecure, --insecure-pull, --insecure-registry, --log-
format, --log-timestamp, --registry-mirror, --
reproducible, --single-snapshot, --skip-tls-verify, --
skip-tls-verify-pull, --skip-tls-verify-registry, --
verbosity, --snapshotMode, --use-new-run. These
options will be used only on OpenShift where the
Kaniko executor is used. They will be ignored on
OpenShift. The options are described in the Kaniko
GitHub repository. Changing this field does not
trigger new build of the Kafka Connect image.

string array

type Must be docker.

string

14.2.76. ImageStreamOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the ImageStreamOutput type from
DockerOutput. It must have the value imagestream for the type ImageStreamOutput.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

446

https://github.com/GoogleContainerTools/kaniko

Property Description

image The name and tag of the ImageStream where the
newly built image will be pushed. For example my-
custom-connect:latest. Required.string

type Must be imagestream.

string

14.2.77. Plugin schema reference

Used in: Build

Property Description

name The unique name of the connector plugin. Will be
used to generate the path where the connector
artifacts will be stored. The name has to be unique
within the KafkaConnect resource. The name has to
follow the following pattern: ̂ [a-z][-_a-z0-9]*[a-
z]$. Required.

string

artifacts List of artifacts which belong to this connector
plugin. Required.

JarArtifact, TgzArtifact, ZipArtifact,
MavenArtifact, OtherArtifact array

14.2.78. JarArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

447

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be jar.

string

Property Description

14.2.79. TgzArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be tgz.

string

14.2.80. ZipArtifact schema reference

Used in: Plugin

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

448

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be zip.

string

14.2.81. MavenArtifact schema reference

Used in: Plugin

The type property is a discriminator that distinguishes use of the MavenArtifact type from JarArtifact,
TgzArtifact, ZipArtifact, OtherArtifact. It must have the value maven for the type MavenArtifact.

Property Description

repository Maven repository to download the artifact from.
Applicable to the maven artifact type only.

string

group Maven group id. Applicable to the maven artifact
type only.

string

artifact Maven artifact id. Applicable to the maven artifact
type only.

string

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

449

version Maven version number. Applicable to the maven
artifact type only.

string

type Must be maven.

string

Property Description

14.2.82. OtherArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

fileName Name under which the artifact will be stored.

string

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be other.

string

14.2.83. KafkaConnectStatus schema reference

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

450

Used in: KafkaConnect

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

14.2.84. ConnectorPlugin schema reference

Used in: KafkaConnectStatus, KafkaMirrorMaker2Status

Property Description

type The type of the connector plugin. The available types
are sink and source.

string

version The version of the connector plugin.

string

class The class of the connector plugin.

string

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

451

14.2.85. KafkaTopic schema reference

Property Description

spec The specification of the topic.

KafkaTopicSpec

status The status of the topic.

KafkaTopicStatus

14.2.86. KafkaTopicSpec schema reference

Used in: KafkaTopic

Property Description

partitions The number of partitions the topic should have. This
cannot be decreased after topic creation. It can be
increased after topic creation, but it is important to
understand the consequences that has, especially for
topics with semantic partitioning. When absent this
will default to the broker configuration for
num.partitions.

integer

replicas The number of replicas the topic should have. When
absent this will default to the broker configuration for
default.replication.factor.integer

config The topic configuration.

map

topicName The name of the topic. When absent this will default
to the metadata.name of the topic. It is
recommended to not set this unless the topic name is
not a valid OpenShift resource name.

string

14.2.87. KafkaTopicStatus schema reference

Used in: KafkaTopic

Property Description

conditions List of status conditions.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

452

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

topicName Topic name.

string

Property Description

14.2.88. KafkaUser schema reference

Property Description

spec The specification of the user.

KafkaUserSpec

status The status of the Kafka User.

KafkaUserStatus

14.2.89. KafkaUserSpec schema reference

Used in: KafkaUser

Property Description

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

453

authentication Authentication mechanism enabled for this Kafka
user. The supported authentication mechanisms are
scram-sha-512, tls, and tls-external.

scram-sha-512 generates a secret with
SASL SCRAM-SHA-512 credentials.

tls generates a secret with user certificate
for mutual TLS authentication.

tls-external does not generate a user
certificate. But prepares the user for using
mutual TLS authentication using a user
certificate generated outside the User
Operator. ACLs and quotas set for this user
are configured in the CN=<username>
format.

Authentication is optional. If authentication is not
configured, no credentials are generated. ACLs and
quotas set for the user are configured in the
<username> format suitable for SASL
authentication. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, tls-external, scram-
sha-512].

KafkaUserTlsClientAuthentication,
KafkaUserTlsExternalClientAuthentication,
KafkaUserScramSha512ClientAuthentication

authorization Authorization rules for this Kafka user. The type
depends on the value of the authorization.type
property within the given object, which must be one
of [simple].

KafkaUserAuthorizationSimple

quotas Quotas on requests to control the broker resources
used by clients. Network bandwidth and request rate
quotas can be enforced.Kafka documentation for
Kafka User quotas can be found at
http://kafka.apache.org/documentation/#design_qu
otas.

KafkaUserQuotas

template Template to specify how Kafka User Secrets are
generated.

KafkaUserTemplate

Property Description

14.2.90. KafkaUserTlsClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserTlsClientAuthentication
type from KafkaUserTlsExternalClientAuthentication,
KafkaUserScramSha512ClientAuthentication. It must have the value tls for the type
KafkaUserTlsClientAuthentication.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

454

http://kafka.apache.org/documentation/#design_quotas

Property Description

type Must be tls.

string

14.2.91. KafkaUserTlsExternalClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the
KafkaUserTlsExternalClientAuthentication type from KafkaUserTlsClientAuthentication,
KafkaUserScramSha512ClientAuthentication. It must have the value tls-external for the type
KafkaUserTlsExternalClientAuthentication.

Property Description

type Must be tls-external.

string

14.2.92. KafkaUserScramSha512ClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the
KafkaUserScramSha512ClientAuthentication type from KafkaUserTlsClientAuthentication,
KafkaUserTlsExternalClientAuthentication. It must have the value scram-sha-512 for the type
KafkaUserScramSha512ClientAuthentication.

Property Description

password Specify the password for the user. If not set, a new
password is generated by the User Operator.

Password

type Must be scram-sha-512.

string

14.2.93. Password schema reference

Used in: KafkaUserScramSha512ClientAuthentication

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

455

Property Description

valueFrom Secret from which the password should be read.

PasswordSource

14.2.94. PasswordSource schema reference

Used in: Password

Property Description

secretKeyRef Selects a key of a Secret in the resource’s
namespace. For more information, see the external
documentation for core/v1 secretkeyselector.SecretKeySelector

14.2.95. KafkaUserAuthorizationSimple schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserAuthorizationSimple type
from other subtypes which may be added in the future. It must have the value simple for the type
KafkaUserAuthorizationSimple.

Property Description

type Must be simple.

string

acls List of ACL rules which should be applied to this
user.

AclRule array

14.2.96. AclRule schema reference

Used in: KafkaUserAuthorizationSimple

Full list of AclRule schema properties

Configures access control rules for a KafkaUser when brokers are using the AclAuthorizer.

Example KafkaUser configuration with authorization

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

456

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretkeyselector-v1-core

14.2.96.1. resource

Use the resource property to specify the resource that the rule applies to.

Simple authorization supports four resource types, which are specified in the type property:

Topics (topic)

Consumer Groups (group)

Clusters (cluster)

Transactional IDs (transactionalId)

For Topic, Group, and Transactional ID resources you can specify the name of the resource the rule
applies to in the name property.

Cluster type resources have no name.

A name is specified as a literal or a prefix using the patternType property.

Literal names are taken exactly as they are specified in the name field.

Prefix names use the name value as a prefix and then apply the rule to all resources with names
starting with that value.

When patternType is set as literal, you can set the name to * to indicate that the rule applies to all
resources.

Example ACL rule that allows the user to read messages from all topics

 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group
 name: my-group
 patternType: prefix
 operation: Read

 acls:
 - resource:

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

457

14.2.96.2. type

The type of rule, which is to allow or deny (not currently supported) an operation.

The type field is optional. If type is unspecified, the ACL rule is treated as an allow rule.

14.2.96.3. operation

Specify an operation for the rule to allow or deny.

The following operations are supported:

Read

Write

Delete

Alter

Describe

All

IdempotentWrite

ClusterAction

Create

AlterConfigs

DescribeConfigs

Only certain operations work with each resource.

For more details about AclAuthorizer, ACLs and supported combinations of resources and operations,
see Authorization and ACLs.

14.2.96.4. host

Use the host property to specify a remote host from which the rule is allowed or denied.

Use an asterisk (*) to allow or deny the operation from all hosts. The host field is optional. If host is
unspecified, the * value is used by default.

14.2.96.5. AclRule schema properties

 type: topic
 name: "*"
 patternType: literal
 operation: Read

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

458

http://kafka.apache.org/documentation/#security_authz

Property Description

host The host from which the action described in the ACL
rule is allowed or denied.

string

operation Operation which will be allowed or denied. Supported
operations are: Read, Write, Create, Delete, Alter,
Describe, ClusterAction, AlterConfigs,
DescribeConfigs, IdempotentWrite and All.

string (one of [Read, Write, Delete, Alter, Describe,
All, IdempotentWrite, ClusterAction, Create,
AlterConfigs, DescribeConfigs])

resource Indicates the resource for which given ACL rule
applies. The type depends on the value of the
resource.type property within the given object,
which must be one of [topic, group, cluster,
transactionalId].

AclRuleTopicResource,
AclRuleGroupResource,
AclRuleClusterResource,
AclRuleTransactionalIdResource

type The type of the rule. Currently the only supported
type is allow. ACL rules with type allow are used to
allow user to execute the specified operations.
Default value is allow.

string (one of [allow, deny])

14.2.97. AclRuleTopicResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTopicResource type from
AclRuleGroupResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value topic for the type AclRuleTopicResource.

Property Description

type Must be topic.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

459

14.2.98. AclRuleGroupResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleGroupResource type from
AclRuleTopicResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value group for the type AclRuleGroupResource.

Property Description

type Must be group.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

14.2.99. AclRuleClusterResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleClusterResource type from
AclRuleTopicResource, AclRuleGroupResource, AclRuleTransactionalIdResource. It must have the
value cluster for the type AclRuleClusterResource.

Property Description

type Must be cluster.

string

14.2.100. AclRuleTransactionalIdResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTransactionalIdResource
type from AclRuleTopicResource, AclRuleGroupResource, AclRuleClusterResource. It must have
the value transactionalId for the type AclRuleTransactionalIdResource.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

460

Property Description

type Must be transactionalId.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full name. With prefix pattern type,
the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

14.2.101. KafkaUserQuotas schema reference

Used in: KafkaUserSpec

Full list of KafkaUserQuotas schema properties

Kafka allows a user to set quotas to control the use of resources by clients.

14.2.101.1. quotas

You can configure your clients to use the following types of quotas:

Network usage quotas specify the byte rate threshold for each group of clients sharing a quota.

CPU utilization quotas specify a window for broker requests from clients. The window is the
percentage of time for clients to make requests. A client makes requests on the I/O threads and
network threads of the broker.

Partition mutation quotas limit the number of partition mutations which clients are allowed to
make per second.

A partition mutation quota prevents Kafka clusters from being overwhelmed by concurrent topic
operations. Partition mutations occur in response to the following types of user requests:

Creating partitions for a new topic

Adding partitions to an existing topic

Deleting partitions from a topic

You can configure a partition mutation quota to control the rate at which mutations are accepted for
user requests.

Using quotas for Kafka clients might be useful in a number of situations. Consider a wrongly configured
Kafka producer which is sending requests at too high a rate. Such misconfiguration can cause a denial of

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

461

service to other clients, so the problematic client ought to be blocked. By using a network limiting quota,
it is possible to prevent this situation from significantly impacting other clients.

AMQ Streams supports user-level quotas, but not client-level quotas.

Example Kafka user quota configuration

For more information about Kafka user quotas, refer to the Apache Kafka documentation.

14.2.101.2. KafkaUserQuotas schema properties

Property Description

consumerByteRate A quota on the maximum bytes per-second that each
client group can fetch from a broker before the
clients in the group are throttled. Defined on a per-
broker basis.

integer

controllerMutationRate A quota on the rate at which mutations are accepted
for the create topics request, the create partitions
request and the delete topics request. The rate is
accumulated by the number of partitions created or
deleted.

number

producerByteRate A quota on the maximum bytes per-second that each
client group can publish to a broker before the clients
in the group are throttled. Defined on a per-broker
basis.

integer

requestPercentage A quota on the maximum CPU utilization of each
client group as a percentage of network and I/O
threads.integer

14.2.102. KafkaUserTemplate schema reference

Used in: KafkaUserSpec

Full list of KafkaUserTemplate schema properties

Specify additional labels and annotations for the secret created by the User Operator.

An example showing the KafkaUserTemplate

spec:
 quotas:
 producerByteRate: 1048576
 consumerByteRate: 2097152
 requestPercentage: 55
 controllerMutationRate: 10

apiVersion: kafka.strimzi.io/v1beta2

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

462

http://kafka.apache.org/documentation/#design_quotas

14.2.102.1. KafkaUserTemplate schema properties

Property Description

secret Template for KafkaUser resources. The template
allows users to specify how the Secret with
password or TLS certificates is generated.ResourceTemplate

14.2.103. KafkaUserStatus schema reference

Used in: KafkaUser

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

username Username.

string

secret The name of Secret where the credentials are
stored.

string

14.2.104. KafkaMirrorMaker schema reference

kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 template:
 secret:
 metadata:
 labels:
 label1: value1
 annotations:
 anno1: value1
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

463

The type KafkaMirrorMaker has been deprecated. Please use KafkaMirrorMaker2 instead.

Property Description

spec The specification of Kafka MirrorMaker.

KafkaMirrorMakerSpec

status The status of Kafka MirrorMaker.

KafkaMirrorMakerStatus

14.2.105. KafkaMirrorMakerSpec schema reference

Used in: KafkaMirrorMaker

Full list of KafkaMirrorMakerSpec schema properties

Configures Kafka MirrorMaker.

14.2.105.1. include

Use the include property to configure a list of topics that Kafka MirrorMaker mirrors from the source to
the target Kafka cluster.

The property allows any regular expression from the simplest case with a single topic name to complex
patterns. For example, you can mirror topics A and B using A|B or all topics using *. You can also pass
multiple regular expressions separated by commas to the Kafka MirrorMaker.

14.2.105.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec

Use the KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec to configure source
(consumer) and target (producer) clusters.

Kafka MirrorMaker always works together with two Kafka clusters (source and target). To establish a
connection, the bootstrap servers for the source and the target Kafka clusters are specified as comma-
separated lists of HOSTNAME:PORT pairs. Each comma-separated list contains one or more Kafka
brokers or a Service pointing to Kafka brokers specified as a HOSTNAME:PORT pair.

14.2.105.3. logging

Kafka MirrorMaker has its own configurable logger:

mirrormaker.root.logger

MirrorMaker uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

464

logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging:

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.105.4. KafkaMirrorMakerSpec schema properties

Property Description

version The Kafka MirrorMaker version. Defaults to 3.0.0.
Consult the documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
 # ...
 logging:
 type: inline
 loggers:
 mirrormaker.root.logger: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: mirror-maker-log4j.properties
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

465

https://logging.apache.org/

consumer Configuration of source cluster.

KafkaMirrorMakerConsumerSpec

producer Configuration of target cluster.

KafkaMirrorMakerProducerSpec

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

whitelist The whitelist property has been deprecated, and
should now be configured using spec.include. List
of topics which are included for mirroring. This option
allows any regular expression using Java-style
regular expressions. Mirroring two topics named A
and B is achieved by using the expression A|B. Or, as
a special case, you can mirror all topics using the
regular expression *. You can also specify multiple
regular expressions separated by commas.

string

include List of topics which are included for mirroring. This
option allows any regular expression using Java-style
regular expressions. Mirroring two topics named A
and B is achieved by using the expression A|B. Or, as
a special case, you can mirror all topics using the
regular expression *. You can also specify multiple
regular expressions separated by commas.

string

jvmOptions JVM Options for pods.

JvmOptions

logging Logging configuration for MirrorMaker. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

tracing The configuration of tracing in Kafka MirrorMaker.
The type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

466

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

template Template to specify how Kafka MirrorMaker
resources, Deployments and Pods, are generated.

KafkaMirrorMakerTemplate

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

Property Description

14.2.106. KafkaMirrorMakerConsumerSpec schema reference

Used in: KafkaMirrorMakerSpec

Full list of KafkaMirrorMakerConsumerSpec schema properties

Configures a MirrorMaker consumer.

14.2.106.1. numStreams

Use the consumer.numStreams property to configure the number of streams for the consumer.

You can increase the throughput in mirroring topics by increasing the number of consumer threads.
Consumer threads belong to the consumer group specified for Kafka MirrorMaker. Topic partitions are
assigned across the consumer threads, which consume messages in parallel.

14.2.106.2. offsetCommitInterval

Use the consumer.offsetCommitInterval property to configure an offset auto-commit interval for the
consumer.

You can specify the regular time interval at which an offset is committed after Kafka MirrorMaker has
consumed data from the source Kafka cluster. The time interval is set in milliseconds, with a default
value of 60,000.

14.2.106.3. config

Use the consumer.config properties to configure Kafka options for the consumer.

The config property contains the Kafka MirrorMaker consumer configuration options as keys, with
values set in one of the following JSON types:

String

Number

Boolean

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

467

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for
consumers.

However, there are exceptions for options automatically configured and managed directly by AMQ
Streams related to:

Kafka cluster bootstrap address

Security (encryption, authentication, and authorization)

Consumer group identifier

Interceptors

Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

bootstrap.servers

group.id

interceptor.classes

ssl. (not including specific exceptions)

sasl.

security.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka MirrorMaker.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might
become unstable. In such cases, the configuration in the
KafkaMirrorMaker.spec.consumer.config object should be fixed and the Cluster
Operator will roll out the new configuration for Kafka MirrorMaker.

14.2.106.4. groupId

Use the consumer.groupId property to configure a consumer group identifier for the consumer.

Kafka MirrorMaker uses a Kafka consumer to consume messages, behaving like any other Kafka
consumer client. Messages consumed from the source Kafka cluster are mirrored to a target Kafka
cluster. A group identifier is required, as the consumer needs to be part of a consumer group for the
assignment of partitions.

14.2.106.5. KafkaMirrorMakerConsumerSpec schema properties

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

468

http://kafka.apache.org/documentation/#consumerconfigs

Property Description

numStreams Specifies the number of consumer stream threads to
create.

integer

offsetCommitInterval Specifies the offset auto-commit interval in ms.
Default value is 60000.

integer

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

groupId A unique string that identifies the consumer group
this consumer belongs to.

string

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The MirrorMaker consumer config. Properties with
the following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security.,
interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

tls TLS configuration for connecting MirrorMaker to the
cluster.

ClientTls

14.2.107. KafkaMirrorMakerProducerSpec schema reference

Used in: KafkaMirrorMakerSpec

Full list of KafkaMirrorMakerProducerSpec schema properties

Configures a MirrorMaker producer.

14.2.107.1. abortOnSendFailure

Use the producer.abortOnSendFailure property to configure how to handle message send failure from
the producer.

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

469

By default, if an error occurs when sending a message from Kafka MirrorMaker to a Kafka cluster:

The Kafka MirrorMaker container is terminated in OpenShift.

The container is then recreated.

If the abortOnSendFailure option is set to false, message sending errors are ignored.

14.2.107.2. config

Use the producer.config properties to configure Kafka options for the producer.

The config property contains the Kafka MirrorMaker producer configuration options as keys, with values
set in one of the following JSON types:

String

Number

Boolean

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for
producers.

However, there are exceptions for options automatically configured and managed directly by AMQ
Streams related to:

Kafka cluster bootstrap address

Security (encryption, authentication, and authorization)

Interceptors

Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

bootstrap.servers

interceptor.classes

ssl. (not including specific exceptions)

sasl.

security.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka MirrorMaker.

IMPORTANT

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

470

http://kafka.apache.org/documentation/#producerconfigs

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might
become unstable. In such cases, the configuration in the
KafkaMirrorMaker.spec.producer.config object should be fixed and the Cluster
Operator will roll out the new configuration for Kafka MirrorMaker.

14.2.107.3. KafkaMirrorMakerProducerSpec schema properties

Property Description

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

abortOnSendFailure Flag to set the MirrorMaker to exit on a failed send.
Default value is true.

boolean

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The MirrorMaker producer config. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security., interceptor.classes
(with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

tls TLS configuration for connecting MirrorMaker to the
cluster.

ClientTls

14.2.108. KafkaMirrorMakerTemplate schema reference

Used in: KafkaMirrorMakerSpec

Property Description

deployment Template for Kafka MirrorMaker Deployment.

DeploymentTemplate

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

471

pod Template for Kafka MirrorMaker Pods.

PodTemplate

podDisruptionBudget Template for Kafka MirrorMaker
PodDisruptionBudget.

PodDisruptionBudgetTemplate

mirrorMakerContainer Template for Kafka MirrorMaker container.

ContainerTemplate

serviceAccount Template for the Kafka MirrorMaker service account.

ResourceTemplate

Property Description

14.2.109. KafkaMirrorMakerStatus schema reference

Used in: KafkaMirrorMaker

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

14.2.110. KafkaBridge schema reference

Property Description

spec The specification of the Kafka Bridge.

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

472

KafkaBridgeSpec

status The status of the Kafka Bridge.

KafkaBridgeStatus

Property Description

14.2.111. KafkaBridgeSpec schema reference

Used in: KafkaBridge

Full list of KafkaBridgeSpec schema properties

Configures a Kafka Bridge cluster.

Configuration options relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Consumer configuration

Producer configuration

HTTP configuration

14.2.111.1. logging

Kafka Bridge has its own configurable loggers:

logger.bridge

logger.<operation-id>

You can replace <operation-id> in the logger.<operation-id> logger to set log levels for specific
operations:

createConsumer

deleteConsumer

subscribe

unsubscribe

poll

assign

commit

send

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

473

sendToPartition

seekToBeginning

seekToEnd

seek

healthy

ready

openapi

Each operation is defined according OpenAPI specification, and has a corresponding API endpoint
through which the bridge receives requests from HTTP clients. You can change the log level on each
endpoint to create fine-grained logging information about the incoming and outgoing HTTP requests.

Each logger has to be configured assigning it a name as http.openapi.operation.<operation-id>. For
example, configuring the logging level for the send operation logger means defining the following:

logger.send.name = http.openapi.operation.send
logger.send.level = DEBUG

Kafka Bridge uses the Apache log4j2 logger implementation. Loggers are defined in the
log4j2.properties file, which has the following default configuration for healthy and ready endpoints:

logger.healthy.name = http.openapi.operation.healthy
logger.healthy.level = WARN
logger.ready.name = http.openapi.operation.ready
logger.ready.level = WARN

The log level of all other operations is set to INFO by default.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. The
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. Default logging is used if the name or key is not set. Inside the ConfigMap,
the logging configuration is described using log4j.properties. For more information about log levels, see
Apache logging services .

Here we see examples of inline and external logging.

Inline logging

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
 # ...
 logging:
 type: inline
 loggers:
 logger.bridge.level: "INFO"

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

474

https://logging.apache.org/

External logging

Any available loggers that are not configured have their level set to OFF.

If the Kafka Bridge was deployed using the Cluster Operator, changes to Kafka Bridge logging levels are
applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

14.2.111.2. KafkaBridgeSpec schema properties

Property Description

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

tls TLS configuration for connecting Kafka Bridge to the
cluster.

ClientTls

 # enabling DEBUG just for send operation
 logger.send.name: "http.openapi.operation.send"
 logger.send.level: "DEBUG"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: bridge-logj42.properties
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

475

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

http The HTTP related configuration.

KafkaBridgeHttpConfig

adminClient Kafka AdminClient related configuration.

KafkaBridgeAdminClientSpec

consumer Kafka consumer related configuration.

KafkaBridgeConsumerSpec

producer Kafka producer related configuration.

KafkaBridgeProducerSpec

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

jvmOptions Currently not supported JVM Options for pods.

JvmOptions

logging Logging configuration for Kafka Bridge. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

enableMetrics Enable the metrics for the Kafka Bridge. Default is
false.

boolean

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Property Description

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

476

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

Probe

template Template for Kafka Bridge resources. The template
allows users to specify how is the Deployment and
Pods generated.KafkaBridgeTemplate

tracing The configuration of tracing in Kafka Bridge. The type
depends on the value of the tracing.type property
within the given object, which must be one of
[jaeger].

JaegerTracing

Property Description

14.2.112. KafkaBridgeHttpConfig schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeHttpConfig schema properties

Configures HTTP access to a Kafka cluster for the Kafka Bridge.

The default HTTP configuration is for the Kafka Bridge to listen on port 8080.

14.2.112.1. cors

As well as enabling HTTP access to a Kafka cluster, HTTP properties provide the capability to enable and
define access control for the Kafka Bridge through Cross-Origin Resource Sharing (CORS). CORS is a
HTTP mechanism that allows browser access to selected resources from more than one origin. To
configure CORS, you define a list of allowed resource origins and HTTP access methods. For the origins,
you can use a URL or a Java regular expression.

Example Kafka Bridge HTTP configuration

14.2.112.2. KafkaBridgeHttpConfig schema properties

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 http:
 port: 8080
 cors:
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

477

Property Description

port The port which is the server listening on.

integer

cors CORS configuration for the HTTP Bridge.

KafkaBridgeHttpCors

14.2.113. KafkaBridgeHttpCors schema reference

Used in: KafkaBridgeHttpConfig

Property Description

allowedOrigins List of allowed origins. Java regular expressions can
be used.

string array

allowedMethods List of allowed HTTP methods.

string array

14.2.114. KafkaBridgeAdminClientSpec schema reference

Used in: KafkaBridgeSpec

Property Description

config The Kafka AdminClient configuration used for
AdminClient instances created by the bridge.

map

14.2.115. KafkaBridgeConsumerSpec schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeConsumerSpec schema properties

Configures consumer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

String

Number

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

478

Boolean

You can specify and configure the options listed in the Apache Kafka configuration documentation for
consumers with the exception of those options which are managed directly by AMQ Streams.
Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

ssl.

sasl.

security.

bootstrap.servers

group.id

When one of the forbidden options is present in the config property, it is ignored and a warning
message will be printed to the Cluster Operator log file. All other options will be passed to Kafka

IMPORTANT

The Cluster Operator does not validate keys or values in the config object. If an invalid
configuration is provided, the Kafka Bridge cluster might not start or might become
unstable. Fix the configuration so that the Cluster Operator can roll out the new
configuration to all Kafka Bridge nodes.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example Kafka Bridge consumer configuration

14.2.115.1. KafkaBridgeConsumerSpec schema properties

Property Description

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 consumer:
 config:
 auto.offset.reset: earliest
 enable.auto.commit: true
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 ssl.endpoint.identification.algorithm: HTTPS
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

479

http://kafka.apache.org/documentation/#consumerconfigs

config The Kafka consumer configuration used for consumer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security. (with the
exception of: ssl.endpoint.identification.algorithm,
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

map

Property Description

14.2.116. KafkaBridgeProducerSpec schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeProducerSpec schema properties

Configures producer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka configuration documentation for
producers with the exception of those options which are managed directly by AMQ Streams. Specifically,
all configuration options with keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

bootstrap.servers

When one of the forbidden options is present in the config property, it is ignored and a warning
message will be printed to the Cluster Operator log file. All other options will be passed to Kafka

IMPORTANT

The Cluster Operator does not validate keys or values in the config object. If an invalid
configuration is provided, the Kafka Bridge cluster might not start or might become
unstable. Fix the configuration so that the Cluster Operator can roll out the new
configuration to all Kafka Bridge nodes.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example Kafka Bridge producer configuration

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

480

http://kafka.apache.org/documentation/#producerconfigs

14.2.116.1. KafkaBridgeProducerSpec schema properties

Property Description

config The Kafka producer configuration used for producer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security. (with the exception
of: ssl.endpoint.identification.algorithm,
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

map

14.2.117. KafkaBridgeTemplate schema reference

Used in: KafkaBridgeSpec

Property Description

deployment Template for Kafka Bridge Deployment.

DeploymentTemplate

pod Template for Kafka Bridge Pods.

PodTemplate

apiService Template for Kafka Bridge API Service.

InternalServiceTemplate

podDisruptionBudget Template for Kafka Bridge PodDisruptionBudget.

PodDisruptionBudgetTemplate

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 producer:
 config:
 acks: 1
 delivery.timeout.ms: 300000
 ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
 ssl.enabled.protocols: "TLSv1.2"
 ssl.protocol: "TLSv1.2"
 ssl.endpoint.identification.algorithm: HTTPS
 # ...

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

481

bridgeContainer Template for the Kafka Bridge container.

ContainerTemplate

serviceAccount Template for the Kafka Bridge service account.

ResourceTemplate

Property Description

14.2.118. KafkaBridgeStatus schema reference

Used in: KafkaBridge

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL at which external client applications can
access the Kafka Bridge.

string

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

14.2.119. KafkaConnector schema reference

Property Description

spec The specification of the Kafka Connector.

KafkaConnectorSpec

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

482

status The status of the Kafka Connector.

KafkaConnectorStatus

Property Description

14.2.120. KafkaConnectorSpec schema reference

Used in: KafkaConnector

Property Description

class The Class for the Kafka Connector.

string

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

config The Kafka Connector configuration. The following
properties cannot be set: connector.class, tasks.max.

map

pause Whether the connector should be paused. Defaults
to false.

boolean

14.2.121. KafkaConnectorStatus schema reference

Used in: KafkaConnector

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

connectorStatus The connector status, as reported by the Kafka
Connect REST API.

map

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

483

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

topics The list of topics used by the Kafka Connector.

string array

Property Description

14.2.122. KafkaMirrorMaker2 schema reference

Property Description

spec The specification of the Kafka MirrorMaker 2.0
cluster.

KafkaMirrorMaker2Spec

status The status of the Kafka MirrorMaker 2.0 cluster.

KafkaMirrorMaker2Status

14.2.123. KafkaMirrorMaker2Spec schema reference

Used in: KafkaMirrorMaker2

Property Description

version The Kafka Connect version. Defaults to 3.0.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

connectCluster The cluster alias used for Kafka Connect. The alias
must match a cluster in the list at spec.clusters.

string

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

484

clusters Kafka clusters for mirroring.

KafkaMirrorMaker2ClusterSpec array

mirrors Configuration of the MirrorMaker 2.0 connectors.

KafkaMirrorMaker2MirrorSpec array

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options.

KafkaJmxOptions

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

template Template for Kafka Connect and Kafka Mirror Maker
2 resources. The template allows users to specify
how the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

Property Description

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

485

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core

ExternalConfiguration

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

14.2.124. KafkaMirrorMaker2ClusterSpec schema reference

Used in: KafkaMirrorMaker2Spec

Full list of KafkaMirrorMaker2ClusterSpec schema properties

Configures Kafka clusters for mirroring.

14.2.124.1. config

Use the config properties to configure Kafka options.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

14.2.124.2. KafkaMirrorMaker2ClusterSpec schema properties

Property Description

alias Alias used to reference the Kafka cluster.

string

bootstrapServers A comma-separated list of host:port pairs for
establishing the connection to the Kafka cluster.

string

tls TLS configuration for connecting MirrorMaker 2.0
connectors to a cluster.

ClientTls

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

486

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The MirrorMaker 2.0 cluster config. Properties with
the following prefixes cannot be set: ssl., sasl.,
security., listeners, plugin.path, rest.,
bootstrap.servers, consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

Property Description

14.2.125. KafkaMirrorMaker2MirrorSpec schema reference

Used in: KafkaMirrorMaker2Spec

Property Description

sourceCluster The alias of the source cluster used by the Kafka
MirrorMaker 2.0 connectors. The alias must match a
cluster in the list at spec.clusters.string

targetCluster The alias of the target cluster used by the Kafka
MirrorMaker 2.0 connectors. The alias must match a
cluster in the list at spec.clusters.string

sourceConnector The specification of the Kafka MirrorMaker 2.0
source connector.

KafkaMirrorMaker2ConnectorSpec

heartbeatConnector The specification of the Kafka MirrorMaker 2.0
heartbeat connector.

KafkaMirrorMaker2ConnectorSpec

checkpointConnector The specification of the Kafka MirrorMaker 2.0
checkpoint connector.

KafkaMirrorMaker2ConnectorSpec

topicsPattern A regular expression matching the topics to be
mirrored, for example, "topic1|topic2|topic3".
Comma-separated lists are also supported.string

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

487

topicsBlacklistPattern The topicsBlacklistPattern property has been
deprecated, and should now be configured using
.spec.mirrors.topicsExcludePattern. A regular
expression matching the topics to exclude from
mirroring. Comma-separated lists are also
supported.

string

topicsExcludePattern A regular expression matching the topics to exclude
from mirroring. Comma-separated lists are also
supported.string

groupsPattern A regular expression matching the consumer groups
to be mirrored. Comma-separated lists are also
supported.string

groupsBlacklistPattern The groupsBlacklistPattern property has been
deprecated, and should now be configured using
.spec.mirrors.groupsExcludePattern. A regular
expression matching the consumer groups to exclude
from mirroring. Comma-separated lists are also
supported.

string

groupsExcludePattern A regular expression matching the consumer groups
to exclude from mirroring. Comma-separated lists
are also supported.string

Property Description

14.2.126. KafkaMirrorMaker2ConnectorSpec schema reference

Used in: KafkaMirrorMaker2MirrorSpec

Property Description

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

config The Kafka Connector configuration. The following
properties cannot be set: connector.class, tasks.max.

map

pause Whether the connector should be paused. Defaults
to false.

boolean

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

488

14.2.127. KafkaMirrorMaker2Status schema reference

Used in: KafkaMirrorMaker2

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

connectors List of MirrorMaker 2.0 connector statuses, as
reported by the Kafka Connect REST API.

map array

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

14.2.128. KafkaRebalance schema reference

Property Description

spec The specification of the Kafka rebalance.

KafkaRebalanceSpec

status The status of the Kafka rebalance.

KafkaRebalanceStatus

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

489

14.2.129. KafkaRebalanceSpec schema reference

Used in: KafkaRebalance

Property Description

goals A list of goals, ordered by decreasing priority, to use
for generating and executing the rebalance proposal.
The supported goals are available at
https://github.com/linkedin/cruise-control#goals. If
an empty goals list is provided, the goals declared in
the default.goals Cruise Control configuration
parameter are used.

string array

skipHardGoalCheck Whether to allow the hard goals specified in the Kafka
CR to be skipped in optimization proposal
generation. This can be useful when some of those
hard goals are preventing a balance solution being
found. Default is false.

boolean

excludedTopics A regular expression where any matching topics will
be excluded from the calculation of optimization
proposals. This expression will be parsed by the
java.util.regex.Pattern class; for more information on
the supported formar consult the documentation for
that class.

string

concurrentPartitionMovementsPerBroker The upper bound of ongoing partition replica
movements going into/out of each broker. Default is
5.integer

concurrentIntraBrokerPartitionMovements The upper bound of ongoing partition replica
movements between disks within each broker.
Default is 2.integer

concurrentLeaderMovements The upper bound of ongoing partition leadership
movements. Default is 1000.

integer

replicationThrottle The upper bound, in bytes per second, on the
bandwidth used to move replicas. There is no limit by
default.integer

replicaMovementStrategies A list of strategy class names used to determine the
execution order for the replica movements in the
generated optimization proposal. By default
BaseReplicaMovementStrategy is used, which will
execute the replica movements in the order that they
were generated.

string array

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

490

https://github.com/linkedin/cruise-control#goals

14.2.130. KafkaRebalanceStatus schema reference

Used in: KafkaRebalance

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

sessionId The session identifier for requests to Cruise Control
pertaining to this KafkaRebalance resource. This is
used by the Kafka Rebalance operator to track the
status of ongoing rebalancing operations.

string

optimizationResult A JSON object describing the optimization result.

map

CHAPTER 14. CUSTOM RESOURCE API REFERENCE

491

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2022-06-24 10:00:48 UTC

Red Hat AMQ Streams 2.0 Using AMQ Streams on OpenShift

492

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW OF AMQ STREAMS
	1.1. KAFKA CAPABILITIES
	1.2. KAFKA USE CASES
	1.3. HOW AMQ STREAMS SUPPORTS KAFKA
	1.4. AMQ STREAMS OPERATORS
	Operators
	1.4.1. Cluster Operator
	1.4.2. Topic Operator
	1.4.3. User Operator
	1.4.4. Feature gates in AMQ Streams Operators

	1.5. AMQ STREAMS CUSTOM RESOURCES
	1.5.1. AMQ Streams custom resource example

	1.6. LISTENER CONFIGURATION
	1.7. DOCUMENT CONVENTIONS

	CHAPTER 2. DEPLOYMENT CONFIGURATION
	2.1. KAFKA CLUSTER CONFIGURATION
	2.1.1. Configuring Kafka
	2.1.2. Configuring the Entity Operator
	2.1.2.1. Entity Operator configuration properties
	2.1.2.2. Topic Operator configuration properties
	2.1.2.3. User Operator configuration properties

	2.1.3. Kafka and ZooKeeper storage types
	2.1.3.1. Data storage considerations
	2.1.3.2. Ephemeral storage
	2.1.3.3. Persistent storage
	2.1.3.4. Resizing persistent volumes
	2.1.3.5. JBOD storage overview
	2.1.3.6. Adding volumes to JBOD storage
	2.1.3.7. Removing volumes from JBOD storage

	2.1.4. Scaling clusters
	2.1.4.1. Broker scaling configuration
	2.1.4.2. Partition reassignment tool
	2.1.4.3. Generating reassignment JSON files
	2.1.4.4. Scaling up a Kafka cluster
	2.1.4.5. Scaling down a Kafka cluster

	2.1.5. Maintenance time windows for rolling updates
	2.1.5.1. Maintenance time windows overview
	2.1.5.2. Maintenance time window definition
	2.1.5.3. Configuring a maintenance time window

	2.1.6. Connecting to ZooKeeper from a terminal
	2.1.7. Deleting Kafka nodes manually
	2.1.8. Deleting ZooKeeper nodes manually
	2.1.9. List of Kafka cluster resources

	2.2. KAFKA CONNECT CLUSTER CONFIGURATION
	2.2.1. Configuring Kafka Connect
	2.2.2. Kafka Connect configuration for multiple instances
	2.2.3. Configuring Kafka Connect user authorization
	2.2.4. Performing a restart of a Kafka connector
	2.2.5. Performing a restart of a Kafka connector task
	2.2.6. Exposing the Kafka Connect API
	2.2.7. List of Kafka Connect cluster resources
	2.2.8. Integrating with Debezium for change data capture

	2.3. KAFKA MIRRORMAKER CLUSTER CONFIGURATION
	2.3.1. Configuring Kafka MirrorMaker
	2.3.2. List of Kafka MirrorMaker cluster resources

	2.4. KAFKA MIRRORMAKER 2.0 CLUSTER CONFIGURATION
	2.4.1. MirrorMaker 2.0 data replication
	2.4.2. Cluster configuration
	2.4.2.1. Bidirectional replication (active/active)
	2.4.2.2. Unidirectional replication (active/passive)
	2.4.2.3. Topic configuration synchronization
	2.4.2.4. Data integrity
	2.4.2.5. Offset tracking
	2.4.2.6. Synchronizing consumer group offsets
	2.4.2.7. Connectivity checks

	2.4.3. ACL rules synchronization
	2.4.4. Synchronizing data between Kafka clusters using MirrorMaker 2.0
	2.4.5. Performing a restart of a Kafka MirrorMaker 2.0 connector
	2.4.6. Performing a restart of a Kafka MirrorMaker 2.0 connector task

	2.5. KAFKA BRIDGE CLUSTER CONFIGURATION
	2.5.1. Configuring the Kafka Bridge
	2.5.2. List of Kafka Bridge cluster resources

	2.6. CUSTOMIZING OPENSHIFT RESOURCES
	2.6.1. Customizing the image pull policy

	2.7. CONFIGURING POD SCHEDULING
	2.7.1. Specifying affinity, tolerations, and topology spread constraints
	2.7.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
	2.7.1.2. Use node affinity to schedule workloads onto specific nodes
	2.7.1.3. Use node affinity and tolerations for dedicated nodes

	2.7.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
	2.7.3. Configuring pod anti-affinity in Kafka components
	2.7.4. Configuring node affinity in Kafka components
	2.7.5. Setting up dedicated nodes and scheduling pods on them

	2.8. LOGGING CONFIGURATION
	2.8.1. Logging options for Kafka components and operators
	2.8.2. Creating a ConfigMap for logging
	2.8.3. Adding logging filters to Operators

	CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
	3.1. LOADING CONFIGURATION VALUES FROM A CONFIG MAP
	3.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT VARIABLES

	CHAPTER 4. ACCESSING KAFKA OUTSIDE OF THE OPENSHIFT CLUSTER
	4.1. ACCESSING KAFKA USING NODE PORTS
	4.2. ACCESSING KAFKA USING LOADBALANCERS
	4.3. ACCESSING KAFKA USING INGRESS
	4.4. ACCESSING KAFKA USING OPENSHIFT ROUTES

	CHAPTER 5. MANAGING SECURE ACCESS TO KAFKA
	5.1. SECURITY OPTIONS FOR KAFKA
	5.1.1. Listener authentication
	5.1.1.1. Mutual TLS authentication
	5.1.1.2. SCRAM-SHA-512 authentication
	5.1.1.3. Network policies
	5.1.1.4. Additional listener configuration options

	5.1.2. Kafka authorization
	5.1.2.1. Super users

	5.2. SECURITY OPTIONS FOR KAFKA CLIENTS
	5.2.1. Identifying a Kafka cluster for user handling
	5.2.2. User authentication
	5.2.2.1. TLS client authentication
	5.2.2.2. TLS client authentication using a certificate issued outside the User Operator
	5.2.2.3. SCRAM-SHA-512 authentication

	5.2.3. User authorization
	5.2.3.1. ACL rules
	5.2.3.2. Super user access to Kafka brokers
	5.2.3.3. User quotas

	5.3. SECURING ACCESS TO KAFKA BROKERS
	5.3.1. Securing Kafka brokers
	5.3.2. Securing user access to Kafka
	5.3.3. Restricting access to Kafka listeners using network policies

	5.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
	5.4.1. OAuth 2.0 authentication mechanisms
	5.4.2. OAuth 2.0 Kafka broker configuration
	5.4.2.1. OAuth 2.0 client configuration on an authorization server
	5.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
	5.4.2.3. Fast local JWT token validation configuration
	5.4.2.4. OAuth 2.0 introspection endpoint configuration

	5.4.3. Session re-authentication for Kafka brokers
	5.4.4. OAuth 2.0 Kafka client configuration
	5.4.5. OAuth 2.0 client authentication flow
	5.4.5.1. Example client authentication flows

	5.4.6. Configuring OAuth 2.0 authentication
	5.4.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
	5.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
	5.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
	5.4.6.4. Configuring OAuth 2.0 for Kafka components

	5.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
	5.5.1. OAuth 2.0 authorization mechanism
	5.5.1.1. Kafka broker custom authorizer

	5.5.2. Configuring OAuth 2.0 authorization support
	5.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization Services
	5.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview
	5.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model
	5.5.3.3. Example permissions required for Kafka operations

	5.5.4. Trying Red Hat Single Sign-On Authorization Services
	5.5.4.1. Accessing the Red Hat Single Sign-On Admin Console
	5.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization
	5.5.4.3. Preparing TLS connectivity for a CLI Kafka client session
	5.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

	CHAPTER 6. USING AMQ STREAMS OPERATORS
	6.1. USING THE CLUSTER OPERATOR
	6.1.1. Cluster Operator configuration
	6.1.1.1. Feature gates
	6.1.1.2. Logging configuration by ConfigMap
	6.1.1.3. Restricting Cluster Operator access with network policy
	6.1.1.4. Periodic reconciliation

	6.1.2. Provisioning Role-Based Access Control (RBAC)
	6.1.2.1. Delegated privileges
	6.1.2.2. ServiceAccount
	6.1.2.3. ClusterRoles
	6.1.2.4. ClusterRoleBindings

	6.1.3. Configuring the Cluster Operator with default proxy settings

	6.2. USING THE TOPIC OPERATOR
	6.2.1. Kafka topic resource
	6.2.1.1. Identifying a Kafka cluster for topic handling
	6.2.1.2. Kafka topic usage recommendations
	6.2.1.3. Kafka topic naming conventions

	6.2.2. Topic Operator topic store
	6.2.2.1. Internal topic store topics
	6.2.2.2. Migrating topic metadata from ZooKeeper
	6.2.2.3. Downgrading to a AMQ Streams version that uses ZooKeeper to store topic metadata
	6.2.2.4. Topic Operator topic replication and scaling
	6.2.2.5. Handling changes to topics

	6.2.3. Configuring a Kafka topic
	6.2.4. Configuring the Topic Operator with resource requests and limits

	6.3. USING THE USER OPERATOR
	6.3.1. Configuring the User Operator with resource requests and limits

	6.4. MONITORING OPERATORS USING PROMETHEUS METRICS

	CHAPTER 7. KAFKA BRIDGE
	7.1. KAFKA BRIDGE API DOCUMENTATION
	7.2. KAFKA BRIDGE OVERVIEW
	7.2.1. Kafka Bridge interface
	7.2.1.1. HTTP requests

	7.2.2. Supported clients for the Kafka Bridge
	7.2.3. Securing the Kafka Bridge
	7.2.4. Accessing the Kafka Bridge outside of OpenShift
	7.2.5. Requests to the Kafka Bridge
	7.2.5.1. Content Type headers
	7.2.5.2. Embedded data format
	7.2.5.3. Message format
	7.2.5.4. Accept headers

	7.2.6. CORS
	7.2.6.1. Simple request
	7.2.6.2. Preflighted request

	7.2.7. Kafka Bridge deployment

	7.3. KAFKA BRIDGE QUICKSTART
	7.3.1. Deploying the Kafka Bridge to your OpenShift cluster
	7.3.2. Exposing the Kafka Bridge service to your local machine
	7.3.3. Producing messages to topics and partitions
	7.3.4. Creating a Kafka Bridge consumer
	7.3.5. Subscribing a Kafka Bridge consumer to topics
	7.3.6. Retrieving the latest messages from a Kafka Bridge consumer
	7.3.7. Commiting offsets to the log
	7.3.8. Seeking to offsets for a partition
	7.3.9. Deleting a Kafka Bridge consumer

	CHAPTER 8. USING THE KAFKA BRIDGE WITH 3SCALE
	8.1. USING THE KAFKA BRIDGE WITH 3SCALE
	8.1.1. Kafka Bridge service discovery
	8.1.2. 3scale APIcast gateway policies
	8.1.3. TLS validation
	8.1.4. 3scale documentation

	8.2. DEPLOYING 3SCALE FOR THE KAFKA BRIDGE

	CHAPTER 9. CRUISE CONTROL FOR CLUSTER REBALANCING
	9.1. WHY USE CRUISE CONTROL?
	9.2. OPTIMIZATION GOALS OVERVIEW
	Goals configuration in AMQ Streams custom resources
	Hard goals and soft goals
	Main optimization goals
	Default optimization goals
	User-provided optimization goals

	9.3. OPTIMIZATION PROPOSALS OVERVIEW
	Cached optimization proposal
	Contents of optimization proposals
	Summary
	Broker load

	9.4. REBALANCE PERFORMANCE TUNING OVERVIEW
	Partition reassignment commands
	Replica movement strategies
	Rebalance tuning options

	9.5. CRUISE CONTROL CONFIGURATION
	Cross-Origin Resource Sharing configuration
	Capacity configuration
	Logging configuration
	Cruise Control REST API security

	9.6. DEPLOYING CRUISE CONTROL
	Auto-created topics

	9.7. GENERATING OPTIMIZATION PROPOSALS
	9.8. APPROVING AN OPTIMIZATION PROPOSAL
	9.9. STOPPING A CLUSTER REBALANCE
	9.10. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

	CHAPTER 10. VALIDATING SCHEMAS WITH SERVICE REGISTRY
	CHAPTER 11. DISTRIBUTED TRACING
	How AMQ Streams supports tracing
	Outline of procedures
	11.1. OVERVIEW OF OPENTRACING AND JAEGER
	11.2. SETTING UP TRACING FOR KAFKA CLIENTS
	11.2.1. Initializing a Jaeger tracer for Kafka clients
	11.2.2. Environment variables for tracing

	11.3. INSTRUMENTING KAFKA CLIENTS WITH TRACERS
	11.3.1. Instrumenting producers and consumers for tracing
	11.3.1.1. Custom span names in a Decorator pattern
	11.3.1.2. Built-in span names

	11.3.2. Instrumenting Kafka Streams applications for tracing

	11.4. SETTING UP TRACING FOR MIRRORMAKER, KAFKA CONNECT, AND THE KAFKA BRIDGE
	11.4.1. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources

	CHAPTER 12. MANAGING TLS CERTIFICATES
	12.1. CERTIFICATE AUTHORITIES
	12.1.1. CA certificates
	12.1.2. Installing your own CA certificates

	12.2. SECRETS
	12.2.1. PKCS #12 storage
	12.2.2. Cluster CA Secrets
	12.2.3. Client CA Secrets
	12.2.4. Adding labels and annotations to Secrets
	12.2.5. Disabling ownerReference in the CA Secrets
	12.2.6. User Secrets

	12.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS
	12.3.1. Renewal process with automatically generated CA certificates
	12.3.2. Client certificate renewal
	12.3.3. Manually renewing the CA certificates generated by the Cluster Operator
	12.3.4. Replacing private keys used by the CA certificates generated by the Cluster Operator
	12.3.5. Renewing your own CA certificates

	12.4. TLS CONNECTIONS
	12.4.1. ZooKeeper communication
	12.4.2. Kafka inter-broker communication
	12.4.3. Topic and User Operators
	12.4.4. Cruise Control
	12.4.5. Kafka Client connections

	12.5. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
	12.6. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
	12.7. KAFKA LISTENER CERTIFICATES
	12.7.1. Providing your own Kafka listener certificates
	12.7.2. Alternative subjects in server certificates for Kafka listeners
	12.7.2.1. TLS listener SAN examples
	12.7.2.2. External listener SAN examples

	CHAPTER 13. MANAGING AMQ STREAMS
	13.1. WORKING WITH CUSTOM RESOURCES
	13.1.1. Performing oc operations on custom resources
	13.1.1.1. Resource categories
	13.1.1.2. Querying the status of sub-resources

	13.1.2. AMQ Streams custom resource status information
	13.1.3. Finding the status of a custom resource

	13.2. PAUSING RECONCILIATION OF CUSTOM RESOURCES
	13.3. EVICTING PODS WITH AMQ STREAMS DRAIN CLEANER
	13.3.1. Prerequisites
	13.3.2. Deploying the AMQ Streams Drain Cleaner
	13.3.3. Using the AMQ Streams Drain Cleaner

	13.4. MANUALLY STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS
	13.4.1. Prerequisites
	13.4.2. Performing a rolling update using a StatefulSet annotation
	13.4.3. Performing a rolling update using a Pod annotation

	13.5. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
	Example internal Kafka bootstrap service
	Example HTTP Bridge service
	13.5.1. Returning connection details on services

	13.6. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES
	13.6.1. Recovery from namespace deletion
	13.6.2. Recovery from loss of an OpenShift cluster
	13.6.3. Recovering a deleted cluster from persistent volumes

	13.7. SETTING LIMITS ON BROKERS USING THE KAFKA STATIC QUOTA PLUGIN
	13.8. TUNING KAFKA CONFIGURATION
	13.8.1. Kafka broker configuration tuning
	13.8.1.1. Basic broker configuration
	13.8.1.2. Replicating topics for high availability
	13.8.1.3. Internal topic settings for transactions and commits
	13.8.1.4. Improving request handling throughput by increasing I/O threads
	13.8.1.5. Increasing bandwidth for high latency connections
	13.8.1.6. Managing logs with data retention policies
	13.8.1.7. Removing log data with cleanup policies
	13.8.1.8. Managing disk utilization
	13.8.1.9. Handling large message sizes
	13.8.1.10. Controlling the log flush of message data
	13.8.1.11. Partition rebalancing for availability
	13.8.1.12. Unclean leader election
	13.8.1.13. Avoiding unnecessary consumer group rebalances

	13.8.2. Kafka producer configuration tuning
	13.8.2.1. Basic producer configuration
	13.8.2.2. Data durability
	13.8.2.3. Ordered delivery
	13.8.2.4. Reliability guarantees
	13.8.2.5. Optimizing throughput and latency

	13.8.3. Kafka consumer configuration tuning
	13.8.3.1. Basic consumer configuration
	13.8.3.2. Scaling data consumption using consumer groups
	13.8.3.3. Message ordering guarantees
	13.8.3.4. Optimizing throughput and latency
	13.8.3.5. Avoiding data loss or duplication when committing offsets
	13.8.3.6. Recovering from failure to avoid data loss
	13.8.3.7. Managing offset policy
	13.8.3.8. Minimizing the impact of rebalances

	13.9. UNINSTALLING AMQ STREAMS
	13.10. FREQUENTLY ASKED QUESTIONS
	13.10.1. Questions related to the Cluster Operator
	13.10.1.1. Why do I need cluster administrator privileges to install AMQ Streams?
	13.10.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?
	13.10.1.3. Can standard OpenShift users create Kafka custom resources?
	13.10.1.4. What do the failed to acquire lock warnings in the log mean?
	13.10.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

	CHAPTER 14. CUSTOM RESOURCE API REFERENCE
	14.1. COMMON CONFIGURATION PROPERTIES
	14.1.1. replicas
	14.1.2. bootstrapServers
	14.1.3. ssl
	14.1.4. trustedCertificates
	14.1.5. resources
	14.1.6. image
	14.1.7. livenessProbe and readinessProbe healthchecks
	14.1.8. metricsConfig
	14.1.9. jvmOptions
	14.1.10. Garbage collector logging

	14.2. SCHEMA PROPERTIES
	14.2.1. Kafka schema reference
	14.2.2. KafkaSpec schema reference
	14.2.3. KafkaClusterSpec schema reference
	14.2.3.1. listeners
	14.2.3.2. config
	14.2.3.3. brokerRackInitImage
	14.2.3.4. logging
	14.2.3.5. KafkaClusterSpec schema properties

	14.2.4. GenericKafkaListener schema reference
	14.2.4.1. listeners
	14.2.4.2. type
	14.2.4.3. port
	14.2.4.4. tls
	14.2.4.5. authentication
	14.2.4.6. networkPolicyPeers
	14.2.4.7. GenericKafkaListener schema properties

	14.2.5. KafkaListenerAuthenticationTls schema reference
	14.2.6. KafkaListenerAuthenticationScramSha512 schema reference
	14.2.7. KafkaListenerAuthenticationOAuth schema reference
	14.2.8. GenericSecretSource schema reference
	14.2.9. CertSecretSource schema reference
	14.2.10. GenericKafkaListenerConfiguration schema reference
	14.2.10.1. brokerCertChainAndKey
	14.2.10.2. externalTrafficPolicy
	14.2.10.3. loadBalancerSourceRanges
	14.2.10.4. class
	14.2.10.5. preferredNodePortAddressType
	14.2.10.6. useServiceDnsDomain
	14.2.10.7. GenericKafkaListenerConfiguration schema properties

	14.2.11. CertAndKeySecretSource schema reference
	14.2.12. GenericKafkaListenerConfigurationBootstrap schema reference
	14.2.12.1. alternativeNames
	14.2.12.2. host
	14.2.12.3. nodePort
	14.2.12.4. loadBalancerIP
	14.2.12.5. annotations
	14.2.12.6. GenericKafkaListenerConfigurationBootstrap schema properties

	14.2.13. GenericKafkaListenerConfigurationBroker schema reference
	14.2.13.1. GenericKafkaListenerConfigurationBroker schema properties

	14.2.14. EphemeralStorage schema reference
	14.2.15. PersistentClaimStorage schema reference
	14.2.16. PersistentClaimStorageOverride schema reference
	14.2.17. JbodStorage schema reference
	14.2.18. KafkaAuthorizationSimple schema reference
	14.2.18.1. superUsers
	14.2.18.2. KafkaAuthorizationSimple schema properties

	14.2.19. KafkaAuthorizationOpa schema reference
	14.2.19.1. url
	14.2.19.2. allowOnError
	14.2.19.3. initialCacheCapacity
	14.2.19.4. maximumCacheSize
	14.2.19.5. expireAfterMs
	14.2.19.6. superUsers
	14.2.19.7. KafkaAuthorizationOpa schema properties

	14.2.20. KafkaAuthorizationKeycloak schema reference
	14.2.21. KafkaAuthorizationCustom schema reference
	14.2.21.1. authorizerClass
	14.2.21.2. superUsers
	14.2.21.3. KafkaAuthorizationCustom schema properties

	14.2.22. Rack schema reference
	14.2.22.1. Spreading partition replicas across racks
	14.2.22.2. Consuming messages from the closest replicas
	14.2.22.3. Rack schema properties

	14.2.23. Probe schema reference
	14.2.24. JvmOptions schema reference
	14.2.25. SystemProperty schema reference
	14.2.26. KafkaJmxOptions schema reference
	14.2.26.1. KafkaJmxOptions schema properties

	14.2.27. KafkaJmxAuthenticationPassword schema reference
	14.2.28. JmxPrometheusExporterMetrics schema reference
	14.2.29. ExternalConfigurationReference schema reference
	14.2.30. InlineLogging schema reference
	14.2.31. ExternalLogging schema reference
	14.2.32. KafkaClusterTemplate schema reference
	14.2.33. StatefulSetTemplate schema reference
	14.2.34. MetadataTemplate schema reference
	14.2.34.1. MetadataTemplate schema properties

	14.2.35. PodTemplate schema reference
	14.2.35.1. hostAliases
	14.2.35.2. PodTemplate schema properties

	14.2.36. InternalServiceTemplate schema reference
	14.2.37. ResourceTemplate schema reference
	14.2.38. PodDisruptionBudgetTemplate schema reference
	14.2.38.1. PodDisruptionBudgetTemplate schema properties

	14.2.39. ContainerTemplate schema reference
	14.2.39.1. ContainerTemplate schema properties

	14.2.40. ContainerEnvVar schema reference
	14.2.41. ZookeeperClusterSpec schema reference
	14.2.41.1. config
	14.2.41.2. logging
	14.2.41.3. ZookeeperClusterSpec schema properties

	14.2.42. ZookeeperClusterTemplate schema reference
	14.2.43. EntityOperatorSpec schema reference
	14.2.44. EntityTopicOperatorSpec schema reference
	14.2.44.1. logging
	14.2.44.2. EntityTopicOperatorSpec schema properties

	14.2.45. EntityUserOperatorSpec schema reference
	14.2.45.1. logging
	14.2.45.2. EntityUserOperatorSpec schema properties

	14.2.46. TlsSidecar schema reference
	14.2.46.1. TlsSidecar schema properties

	14.2.47. EntityOperatorTemplate schema reference
	14.2.48. CertificateAuthority schema reference
	14.2.49. CruiseControlSpec schema reference
	14.2.50. CruiseControlTemplate schema reference
	14.2.51. BrokerCapacity schema reference
	14.2.52. KafkaExporterSpec schema reference
	14.2.53. KafkaExporterTemplate schema reference
	14.2.54. KafkaStatus schema reference
	14.2.55. Condition schema reference
	14.2.56. ListenerStatus schema reference
	14.2.57. ListenerAddress schema reference
	14.2.58. KafkaConnect schema reference
	14.2.59. KafkaConnectSpec schema reference
	14.2.59.1. config
	14.2.59.2. logging
	14.2.59.3. KafkaConnectSpec schema properties

	14.2.60. ClientTls schema reference
	14.2.60.1. trustedCertificates
	14.2.60.2. ClientTls schema properties

	14.2.61. KafkaClientAuthenticationTls schema reference
	14.2.61.1. certificateAndKey
	14.2.61.2. KafkaClientAuthenticationTls schema properties

	14.2.62. KafkaClientAuthenticationScramSha512 schema reference
	14.2.62.1. username
	14.2.62.2. passwordSecret
	14.2.62.3. KafkaClientAuthenticationScramSha512 schema properties

	14.2.63. PasswordSecretSource schema reference
	14.2.64. KafkaClientAuthenticationPlain schema reference
	14.2.64.1. username
	14.2.64.2. passwordSecret
	14.2.64.3. KafkaClientAuthenticationPlain schema properties

	14.2.65. KafkaClientAuthenticationOAuth schema reference
	14.2.65.1. KafkaClientAuthenticationOAuth schema properties

	14.2.66. JaegerTracing schema reference
	14.2.67. KafkaConnectTemplate schema reference
	14.2.68. DeploymentTemplate schema reference
	14.2.69. BuildConfigTemplate schema reference
	14.2.70. ExternalConfiguration schema reference
	14.2.70.1. env
	14.2.70.2. volumes
	14.2.70.3. ExternalConfiguration schema properties

	14.2.71. ExternalConfigurationEnv schema reference
	14.2.72. ExternalConfigurationEnvVarSource schema reference
	14.2.73. ExternalConfigurationVolumeSource schema reference
	14.2.74. Build schema reference
	14.2.74.1. output
	14.2.74.2. plugins
	14.2.74.3. Build schema properties

	14.2.75. DockerOutput schema reference
	14.2.76. ImageStreamOutput schema reference
	14.2.77. Plugin schema reference
	14.2.78. JarArtifact schema reference
	14.2.79. TgzArtifact schema reference
	14.2.80. ZipArtifact schema reference
	14.2.81. MavenArtifact schema reference
	14.2.82. OtherArtifact schema reference
	14.2.83. KafkaConnectStatus schema reference
	14.2.84. ConnectorPlugin schema reference
	14.2.85. KafkaTopic schema reference
	14.2.86. KafkaTopicSpec schema reference
	14.2.87. KafkaTopicStatus schema reference
	14.2.88. KafkaUser schema reference
	14.2.89. KafkaUserSpec schema reference
	14.2.90. KafkaUserTlsClientAuthentication schema reference
	14.2.91. KafkaUserTlsExternalClientAuthentication schema reference
	14.2.92. KafkaUserScramSha512ClientAuthentication schema reference
	14.2.93. Password schema reference
	14.2.94. PasswordSource schema reference
	14.2.95. KafkaUserAuthorizationSimple schema reference
	14.2.96. AclRule schema reference
	14.2.96.1. resource
	14.2.96.2. type
	14.2.96.3. operation
	14.2.96.4. host
	14.2.96.5. AclRule schema properties

	14.2.97. AclRuleTopicResource schema reference
	14.2.98. AclRuleGroupResource schema reference
	14.2.99. AclRuleClusterResource schema reference
	14.2.100. AclRuleTransactionalIdResource schema reference
	14.2.101. KafkaUserQuotas schema reference
	14.2.101.1. quotas
	14.2.101.2. KafkaUserQuotas schema properties

	14.2.102. KafkaUserTemplate schema reference
	14.2.102.1. KafkaUserTemplate schema properties

	14.2.103. KafkaUserStatus schema reference
	14.2.104. KafkaMirrorMaker schema reference
	14.2.105. KafkaMirrorMakerSpec schema reference
	14.2.105.1. include
	14.2.105.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec
	14.2.105.3. logging
	14.2.105.4. KafkaMirrorMakerSpec schema properties

	14.2.106. KafkaMirrorMakerConsumerSpec schema reference
	14.2.106.1. numStreams
	14.2.106.2. offsetCommitInterval
	14.2.106.3. config
	14.2.106.4. groupId
	14.2.106.5. KafkaMirrorMakerConsumerSpec schema properties

	14.2.107. KafkaMirrorMakerProducerSpec schema reference
	14.2.107.1. abortOnSendFailure
	14.2.107.2. config
	14.2.107.3. KafkaMirrorMakerProducerSpec schema properties

	14.2.108. KafkaMirrorMakerTemplate schema reference
	14.2.109. KafkaMirrorMakerStatus schema reference
	14.2.110. KafkaBridge schema reference
	14.2.111. KafkaBridgeSpec schema reference
	14.2.111.1. logging
	14.2.111.2. KafkaBridgeSpec schema properties

	14.2.112. KafkaBridgeHttpConfig schema reference
	14.2.112.1. cors
	14.2.112.2. KafkaBridgeHttpConfig schema properties

	14.2.113. KafkaBridgeHttpCors schema reference
	14.2.114. KafkaBridgeAdminClientSpec schema reference
	14.2.115. KafkaBridgeConsumerSpec schema reference
	14.2.115.1. KafkaBridgeConsumerSpec schema properties

	14.2.116. KafkaBridgeProducerSpec schema reference
	14.2.116.1. KafkaBridgeProducerSpec schema properties

	14.2.117. KafkaBridgeTemplate schema reference
	14.2.118. KafkaBridgeStatus schema reference
	14.2.119. KafkaConnector schema reference
	14.2.120. KafkaConnectorSpec schema reference
	14.2.121. KafkaConnectorStatus schema reference
	14.2.122. KafkaMirrorMaker2 schema reference
	14.2.123. KafkaMirrorMaker2Spec schema reference
	14.2.124. KafkaMirrorMaker2ClusterSpec schema reference
	14.2.124.1. config
	14.2.124.2. KafkaMirrorMaker2ClusterSpec schema properties

	14.2.125. KafkaMirrorMaker2MirrorSpec schema reference
	14.2.126. KafkaMirrorMaker2ConnectorSpec schema reference
	14.2.127. KafkaMirrorMaker2Status schema reference
	14.2.128. KafkaRebalance schema reference
	14.2.129. KafkaRebalanceSpec schema reference
	14.2.130. KafkaRebalanceStatus schema reference

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files

