
Red Hat AMQ Streams 2.0

Deploying and Upgrading AMQ Streams on
OpenShift

Deploy AMQ Streams 2.0 on OpenShift Container Platform

Last Updated: 2022-04-26

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on
OpenShift

Deploy AMQ Streams 2.0 on OpenShift Container Platform

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy AMQ Streams to an OpenShift cluster using the OperatorHub or installation artifacts. Use
the AMQ Streams Cluster Operator to deploy and manage Kafka components. Upgrade AMQ
Streams to take advantage of new features. As part of the upgrade, upgrade Kafka to the latest
supported version.

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DEPLOYMENT OVERVIEW
1.1. HOW AMQ STREAMS SUPPORTS KAFKA
1.2. AMQ STREAMS OPERATORS

Operators
1.2.1. Cluster Operator
1.2.2. Topic Operator
1.2.3. User Operator
1.2.4. Feature gates in AMQ Streams Operators

1.3. AMQ STREAMS CUSTOM RESOURCES
1.3.1. AMQ Streams custom resource example

1.4. AMQ STREAMS INSTALLATION METHODS

CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS
2.1. ORDER OF DEPLOYMENT
2.2. ADDITIONAL DEPLOYMENT CONFIGURATION OPTIONS

2.2.1. Securing Kafka
2.2.2. Monitoring your deployment

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT
3.1. DEPLOYMENT PREREQUISITES
3.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS
3.3. EXAMPLE CONFIGURATION AND DEPLOYMENT FILES

3.3.1. Example files location
3.3.2. Example files provided with AMQ Streams

3.4. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY
3.5. DESIGNATING AMQ STREAMS ADMINISTRATORS

CHAPTER 4. DEPLOYING AMQ STREAMS FROM THE OPERATORHUB
4.1. USING THE RED HAT INTEGRATION OPERATOR TO INSTALL THE AMQ STREAMS OPERATOR
4.2. DEPLOYING THE AMQ STREAMS OPERATOR FROM THE OPERATORHUB
4.3. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS OPERATOR

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS
5.1. CREATE THE KAFKA CLUSTER

Deploying a Kafka cluster with the Topic Operator and User Operator
Deploying a standalone Topic Operator and User Operator
5.1.1. Deploying the Cluster Operator

5.1.1.1. Watch options for a Cluster Operator deployment
5.1.1.2. Deploying the Cluster Operator to watch a single namespace
5.1.1.3. Deploying the Cluster Operator to watch multiple namespaces
5.1.1.4. Deploying the Cluster Operator to watch all namespaces

5.1.2. Deploying Kafka
5.1.2.1. Deploying the Kafka cluster
5.1.2.2. Deploying the Topic Operator using the Cluster Operator
5.1.2.3. Deploying the User Operator using the Cluster Operator

5.1.3. Alternative standalone deployment options for AMQ Streams Operators
5.1.3.1. Deploying the standalone Topic Operator
5.1.3.2. Deploying the standalone User Operator

5.2. DEPLOY KAFKA CONNECT
5.2.1. Deploying Kafka Connect to your OpenShift cluster

5

6
6
6
6
7
8
9

10
10
10
13

15
15
15
16
16

17
17
17
17
18
18
19

20

22
22
22
23

25
25
25
25
26
26
27
27
29
30
31
32
33
34
34
37
40
41

Table of Contents

1

. .

. .

. .

5.2.2. Kafka Connect configuration for multiple instances
5.2.3. Extending Kafka Connect with connector plug-ins

5.2.3.1. Creating a new container image automatically using AMQ Streams
5.2.3.2. Creating a Docker image from the Kafka Connect base image

5.2.4. Creating and managing connectors
5.2.4.1. KafkaConnector resources
5.2.4.2. Availability of the Kafka Connect REST API

5.2.5. Deploying the example KafkaConnector resources
Source and sink connector configuration options

5.2.6. Performing a restart of a Kafka connector
5.2.7. Performing a restart of a Kafka connector task

5.3. DEPLOY KAFKA MIRRORMAKER
5.3.1. Deploying Kafka MirrorMaker to your OpenShift cluster

5.4. DEPLOY KAFKA BRIDGE
5.4.1. Deploying Kafka Bridge to your OpenShift cluster

CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA CLUSTER
6.1. DEPLOYING EXAMPLE CLIENTS
6.2. SETTING UP ACCESS FOR CLIENTS OUTSIDE OF OPENSHIFT

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS
7.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER

The importance of monitoring consumer lag
Reducing consumer lag

7.2. MONITORING CRUISE CONTROL OPERATIONS
7.2.1. Exposing Cruise Control metrics
7.2.2. Viewing Cruise Control metrics

7.2.2.1. Monitoring balancedness scores
7.2.2.2. Alerts on anomaly detection

7.3. EXAMPLE METRICS FILES
7.3.1. Example Prometheus metrics configuration
7.3.2. Example Prometheus rules for alert notifications
7.3.3. Example Grafana dashboards

7.4. DEPLOYING PROMETHEUS METRICS CONFIGURATION
7.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT

7.5.1. Prerequisites
7.5.2. Additional resources
7.5.3. Deploying the Prometheus resources
7.5.4. Creating a service account for Grafana
7.5.5. Deploying Grafana with a Prometheus datasource
7.5.6. Creating a route to the Grafana Service
7.5.7. Importing the example Grafana dashboards

CHAPTER 8. UPGRADING AMQ STREAMS
8.1. REQUIRED UPGRADE SEQUENCE

8.1.1. Cluster Operator upgrade options
8.1.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub

8.2. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME
8.2.1. Rolling pods using the AMQ Streams Drain Cleaner
8.2.2. Rolling pods manually while keeping topics available

8.3. AMQ STREAMS CUSTOM RESOURCE UPGRADES
8.4. UPGRADING THE CLUSTER OPERATOR
8.5. UPGRADING KAFKA

8.5.1. Kafka versions

41
42
43
44
46
47
48
48
50
51
51
52
52
53
53

55
55
55

62
63
63
63
64
64
65
65
65
66
67
67
69
70
73
74
74
74
76
77
79
79

81
81

82
82
83
84
84
85
85
87
87

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

2

. .

. .

. .

8.5.2. Strategies for upgrading clients
8.5.3. Kafka version and image mappings
8.5.4. Upgrading Kafka brokers and client applications

8.6. UPGRADING CONSUMERS TO COOPERATIVE REBALANCING

CHAPTER 9. DOWNGRADING AMQ STREAMS
9.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS VERSION
9.2. DOWNGRADING KAFKA

9.2.1. Kafka version compatibility for downgrades
9.2.2. Downgrading Kafka brokers and client applications

CHAPTER 10. USING METERING ON AMQ STREAMS
10.1. METERING RESOURCES
10.2. METERING LABELS FOR AMQ STREAMS

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files

88
90
90
93

95
95
96
96
97

99
99
99

102
102
102
102

Table of Contents

3

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DEPLOYMENT OVERVIEW
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide provides instructions on all the options available for deploying and upgrading AMQ Streams,
describing what is deployed, and the order of deployment required to run Apache Kafka in an OpenShift
cluster.

As well as describing the deployment steps, the guide also provides pre- and post-deployment
instructions to prepare for and verify a deployment. Additional deployment options described include
the steps to introduce metrics. Upgrade instructions are provided for AMQ Streams and Kafka upgrades.

AMQ Streams is designed to work on all types of OpenShift cluster regardless of distribution, from
public and private clouds to local deployments intended for development.

1.1. HOW AMQ STREAMS SUPPORTS KAFKA

AMQ Streams provides container images and Operators for running Kafka on OpenShift. AMQ Streams
Operators are fundamental to the running of AMQ Streams. The Operators provided with AMQ Streams
are purpose-built with specialist operational knowledge to effectively manage Kafka.

Operators simplify the process of:

Deploying and running Kafka clusters

Deploying and running Kafka components

Configuring access to Kafka

Securing access to Kafka

Upgrading Kafka

Managing brokers

Creating and managing topics

Creating and managing users

1.2. AMQ STREAMS OPERATORS

AMQ Streams supports Kafka using Operators to deploy and manage the components and
dependencies of Kafka to OpenShift.

Operators are a method of packaging, deploying, and managing an OpenShift application. AMQ Streams
Operators extend OpenShift functionality, automating common and complex tasks related to a Kafka
deployment. By implementing knowledge of Kafka operations in code, Kafka administration tasks are
simplified and require less manual intervention.

Operators
AMQ Streams provides Operators for managing a Kafka cluster running within an OpenShift cluster.

Cluster Operator

Deploys and manages Apache Kafka clusters, Kafka Connect, Kafka MirrorMaker, Kafka Bridge, Kafka
Exporter, and the Entity Operator

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

6

Entity Operator

Comprises the Topic Operator and User Operator

Topic Operator

Manages Kafka topics

User Operator

Manages Kafka users

The Cluster Operator can deploy the Topic Operator and User Operator as part of an Entity Operator
configuration at the same time as a Kafka cluster.

Operators within the AMQ Streams architecture

1.2.1. Cluster Operator

AMQ Streams uses the Cluster Operator to deploy and manage clusters for:

Kafka (including ZooKeeper, Entity Operator, Kafka Exporter, and Cruise Control)

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Custom resources are used to deploy the clusters.

CHAPTER 1. DEPLOYMENT OVERVIEW

7

For example, to deploy a Kafka cluster:

A Kafka resource with the cluster configuration is created within the OpenShift cluster.

The Cluster Operator deploys a corresponding Kafka cluster, based on what is declared in the
Kafka resource.

The Cluster Operator can also deploy (through configuration of the Kafka resource):

A Topic Operator to provide operator-style topic management through KafkaTopic custom
resources

A User Operator to provide operator-style user management through KafkaUser custom
resources

The Topic Operator and User Operator function within the Entity Operator on deployment.

You can use the Cluster Operator with a deployment of AMQ Streams Drain Cleaner to help with pod
evictions. By deploying the AMQ Streams Drain Cleaner, you can use the Cluster Operator to move
Kafka pods instead of OpenShift. AMQ Streams Drain Cleaner annotates pods being evicted with a
rolling update annotation. The annotation informs the Cluster Operator to perform the rolling update.

Example architecture for the Cluster Operator

1.2.2. Topic Operator

The Topic Operator provides a way of managing topics in a Kafka cluster through OpenShift resources.

Example architecture for the Topic Operator

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

8

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-drain-cleaner-str

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Specifically, if a KafkaTopic is:

Created, the Topic Operator creates the topic

Deleted, the Topic Operator deletes the topic

Changed, the Topic Operator updates the topic

Working in the other direction, if a topic is:

Created within the Kafka cluster, the Operator creates a KafkaTopic

Deleted from the Kafka cluster, the Operator deletes the KafkaTopic

Changed in the Kafka cluster, the Operator updates the KafkaTopic

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

The Topic Operator maintains information about each topic in a topic store, which is continually
synchronized with updates from Kafka topics or OpenShift KafkaTopic custom resources. Updates from
operations applied to a local in-memory topic store are persisted to a backup topic store on disk. If a
topic is reconfigured or reassigned to other brokers, the KafkaTopic will always be up to date.

1.2.3. User Operator

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser resources that
describe Kafka users, and ensuring that they are configured properly in the Kafka cluster.

For example, if a KafkaUser is:

Created, the User Operator creates the user it describes

Deleted, the User Operator deletes the user it describes

CHAPTER 1. DEPLOYMENT OVERVIEW

9

Changed, the User Operator updates the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Kafka topics can be created by applications directly in Kafka, but it is not expected
that the users will be managed directly in the Kafka cluster in parallel with the User Operator.

The User Operator allows you to declare a KafkaUser resource as part of your application’s deployment.
You can specify the authentication and authorization mechanism for the user. You can also configure
user quotas that control usage of Kafka resources to ensure, for example, that a user does not
monopolize access to a broker.

When the user is created, the user credentials are created in a Secret. Your application needs to use the
user and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s access rights in the KafkaUser declaration.

1.2.4. Feature gates in AMQ Streams Operators

You can enable and disable some features of operators using feature gates.

Feature gates are set in the operator configuration and have three stages of maturity: alpha, beta, or
General Availability (GA).

For more information, see Feature gates.

1.3. AMQ STREAMS CUSTOM RESOURCES

A deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. Custom resources are created as instances of APIs added
by Custom resource definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with
the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

1.3.1. AMQ Streams custom resource example

CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage
AMQ Streams-specific resources.

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

Depending on the cluster setup, installation typically requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators. For more
information, see Designating AMQ Streams administrators .

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

10

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#ref-operator-cluster-feature-gates-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#adding-users-the-strimzi-admin-role-str

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

The Kubernetes API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

WARNING

When CRDs are deleted, custom resources of that type are also deleted.
Additionally, the resources created by the custom resource, such as pods and
statefulsets are also deleted.

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind. The custom resources for AMQ Streams components have common configuration
properties, which are defined under spec.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD



apiVersion: kafka.strimzi.io/v1beta2
kind: CustomResourceDefinition
metadata: 1
 name: kafkatopics.kafka.strimzi.io
 labels:
 app: strimzi
spec: 2
 group: kafka.strimzi.io
 versions:
 v1beta2
 scope: Namespaced
 names:
 # ...
 singular: kafkatopic
 plural: kafkatopics
 shortNames:
 - kt 3
 additionalPrinterColumns: 4
 # ...
 subresources:
 status: {} 5
 validation: 6
 openAPIV3Schema:
 properties:
 spec:
 type: object
 properties:
 partitions:
 type: integer
 minimum: 1

CHAPTER 1. DEPLOYMENT OVERVIEW

11

1

2

3

4

5

6

1

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.

The current status of the CRD as described in the schema reference for the resource.

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

Here is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

The kind and apiVersion identify the CRD of which the custom resource is an instance.

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the

 replicas:
 type: integer
 minimum: 1
 maximum: 32767
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic 1
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster 2
spec: 3
 partitions: 1
 replicas: 1
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824
status:
 conditions: 4
 lastTransitionTime: "2019-08-20T11:37:00.706Z"
 status: "True"
 type: Ready
 observedGeneration: 1
 / ...

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

12

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Kafka-reference

2

3

4

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the
Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.

The spec shows the number of partitions and replicas for the topic as well as the configuration
parameters for the topic itself. In this example, the retention period for a message to remain in the
topic and the segment file size for the log are specified.

Status conditions for the KafkaTopic resource. The type condition changed to Ready at the
lastTransitionTime.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

Example configuration files provided with AMQ Streams

1.4. AMQ STREAMS INSTALLATION METHODS

You can install AMQ Streams on OpenShift 4.6 to 4.9 in two ways.

Installation method Description

Installation artifacts (YAML files) Download Red Hat AMQ Streams 2.0 OpenShift
Installation and Example Files from the AMQ Streams
download site. Deploy the YAML installation artifacts
to your OpenShift cluster using oc. You start by
deploying the Cluster Operator from
install/cluster-operator to a single namespace,
multiple namespaces, or all namespaces.

You can also use the install/ artifacts to deploy the
following:

AMQ Streams administrator roles (strimzi-
admin)

A standalone Topic Operator (topic-
operator)

A standalone User Operator (user-
operator)

AMQ Streams Drain Cleaner (drain-
cleaner)

OperatorHub Use the Red Hat Integration - AMQ Streams
Operator in the OperatorHub to deploy AMQ
Streams to a single namespace or all namespaces.

CHAPTER 1. DEPLOYMENT OVERVIEW

13

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploy-examples-str
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

For the greatest flexibility, choose the installation artifacts method. The OperatorHub method provides
a standard configuration and allows you to take advantage of automatic updates.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

14

CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS
Apache Kafka components are provided for deployment to OpenShift with the AMQ Streams
distribution. The Kafka components are generally run as clusters for availability.

A typical deployment incorporating Kafka components might include:

Kafka cluster of broker nodes

ZooKeeper cluster of replicated ZooKeeper instances

Kafka Connect cluster for external data connections

Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster

Kafka Exporter to extract additional Kafka metrics data for monitoring

Kafka Bridge to make HTTP-based requests to the Kafka cluster

Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum.
Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.

2.1. ORDER OF DEPLOYMENT

The required order of deployment to an OpenShift cluster is as follows:

1. Deploy the Cluster Operator to manage your Kafka cluster

2. Deploy the Kafka cluster with the ZooKeeper cluster, and include the Topic Operator and User
Operator in the deployment

3. Optionally deploy:

The Topic Operator and User Operator standalone if you did not deploy them with the
Kafka cluster

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Components for the monitoring of metrics

2.2. ADDITIONAL DEPLOYMENT CONFIGURATION OPTIONS

The deployment procedures in this guide describe a deployment using the example installation YAML
files provided with AMQ Streams. The procedures highlight any important configuration considerations,
but they do not describe all the configuration options available.

You can use custom resources to refine your deployment.

You may wish to review the configuration options available for Kafka components before you deploy
AMQ Streams. For more information on the configuration through custom resources, see Deployment
configuration in the Using AMQ Streams on OpenShift guide.

CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS

15

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-str

2.2.1. Securing Kafka

On deployment, the Cluster Operator automatically sets up TLS certificates for data encryption and
authentication within your cluster.

AMQ Streams provides additional configuration options for encryption, authentication and authorization,
which are described in the Using AMQ Streams on OpenShift guide:

Secure data exchange between the Kafka cluster and clients by Managing secure access to
Kafka.

Configure your deployment to use an authorization server to provide OAuth 2.0 authentication
and OAuth 2.0 authorization .

Secure Kafka using your own certificates .

2.2.2. Monitoring your deployment

AMQ Streams supports additional deployment options to monitor your deployment.

Extract metrics and monitor Kafka components by deploying Prometheus and Grafana with
your Kafka cluster.

Extract additional metrics, particularly related to monitoring consumer lag, by deploying Kafka
Exporter with your Kafka cluster.

Track messages end-to-end by setting up distributed tracing, as described in the Using AMQ
Streams on OpenShift guide.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

16

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-securing-access-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-oauth-authentication_str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-oauth-authorization_str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#security-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-distributed-tracing-str

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS
DEPLOYMENT

This section shows how you prepare for a AMQ Streams deployment, describing:

The prerequisites you need before you can deploy AMQ Streams

How to download the AMQ Streams release artifacts to use in your deployment

How to push the AMQ Streams container images into your own registry (if required)

How to set up admin roles for configuration of custom resources used in deployment

NOTE

To run the commands in this guide, your cluster user must have the rights to manage role-
based access control (RBAC) and CRDs.

3.1. DEPLOYMENT PREREQUISITES

To deploy AMQ Streams, make sure that:

An OpenShift 4.6 to 4.9 cluster is available.
AMQ Streams is based on AMQ Streams Strimzi 0.26.x.

The oc command-line tool is installed and configured to connect to the running cluster.

3.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS

To use deployment files to install AMQ Streams, download and extract the Red Hat AMQ Streams
<version> installation and example files archive from the AMQ Streams download site .

AMQ Streams release artifacts include sample YAML files to help you deploy the components of AMQ
Streams to OpenShift, perform common operations, and configure your Kafka cluster.

Use oc to deploy the Cluster Operator from the install/cluster-operator folder of the downloaded ZIP
file. For more information about deploying and configuring the Cluster Operator, see Section 5.1.1,
“Deploying the Cluster Operator”.

In addition, if you want to use standalone installations of the Topic and User Operators with a Kafka
cluster that is not managed by the AMQ Streams Cluster Operator, you can deploy them from the
install/topic-operator and install/user-operator folders.

NOTE

Additionally, AMQ Streams container images are available through the Red Hat
Ecosystem Catalog. However, we recommend that you use the YAML files provided to
deploy AMQ Streams.

3.3. EXAMPLE CONFIGURATION AND DEPLOYMENT FILES

Use the example configuration and deployment files provided with AMQ Streams to deploy Kafka
components with different configurations and monitor your deployment. Example configuration files for

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

17

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://catalog.redhat.com/software/containers/explore

1

2

3

4

5

6

custom resources contain important properties and values, which you can extend with additional
supported configuration properties for your own deployment.

3.3.1. Example files location

The example files are provided with the downloadable release artifacts from the AMQ Streams
download site.

You can download and apply the examples using the oc command-line tool. The examples can serve as a
starting point when building your own Kafka component configuration for deployment.

NOTE

If you installed AMQ Streams using the Operator, you can still download the example files
and use them to upload configuration.

3.3.2. Example files provided with AMQ Streams

The release artifacts include an examples directory that contains the configuration examples.

Examples directory

examples
├── user 1
├── topic 2
├── security 3
│ ├── tls-auth
│ ├── scram-sha-512-auth
│ └── keycloak-authorization
├── mirror-maker 4
├── metrics 5
├── kafka 6
├── cruise-control 7
├── connect 8
└── bridge 9

KafkaUser custom resource configuration, which is managed by the User Operator.

KafkaTopic custom resource configuration, which is managed by Topic Operator.

Authentication and authorization configuration for Kafka components. Includes example
configuration for TLS and SCRAM-SHA-512 authentication. The Red Hat Single Sign-On example
includes Kafka custom resource configuration and a Red Hat Single Sign-On realm specification.
You can use the example to try Red Hat Single Sign-On authorization services.

Kafka custom resource configuration for a deployment of Mirror Maker. Includes example
configuration for replication policy and synchronization frequency.

Metrics configuration , including Prometheus installation and Grafana dashboard files.

Kafka custom resource configuration for a deployment of Kafka. Includes example configuration
for an ephemeral or persistent single or multi-node deployment.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

18

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

7

8

9

Kafka custom resource with a deployment configuration for Cruise Control. Includes
KafkaRebalance custom resources to generate optimizations proposals from Cruise Control, with

KafkaConnect and KafkaConnector custom resource configuration for a deployment of Kafka
Connect. Includes example configuration for a single or multi-node deployment.

KafkaBridge custom resource configuration for a deployment of Kafka Bridge.

Additional resources

Configuring a AMQ Streams deployment

3.4. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY

Container images for AMQ Streams are available in the Red Hat Ecosystem Catalog . The installation
YAML files provided by AMQ Streams will pull the images directly from the Red Hat Ecosystem Catalog .

If you do not have access to the Red Hat Ecosystem Catalog or want to use your own container
repository:

1. Pull all container images listed here

2. Push them into your own registry

3. Update the image names in the installation YAML files

NOTE

Each Kafka version supported for the release has a separate image.

Container image Namespace/Repository Description

Kafka
registry.redhat.io/amq7/
amq-streams-kafka-30-
rhel8:2.0.1

registry.redhat.io/amq7/
amq-streams-kafka-28-
rhel8:2.0.1

AMQ Streams image for running
Kafka, including:

Kafka Broker

Kafka Connect

Kafka Mirror Maker

ZooKeeper

TLS Sidecars

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

19

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-str
https://catalog.redhat.com/software/containers/explore
https://catalog.redhat.com/software/containers/explore
https://catalog.redhat.com/software/containers/explore

Operator
registry.redhat.io/amq7/
amq-streams-rhel8-
operator:2.0.1

AMQ Streams image for running
the operators:

Cluster Operator

Topic Operator

User Operator

Kafka Initializer

Kafka Bridge
registry.redhat.io/amq7/
amq-streams-bridge-
rhel8:2.0.1

AMQ Streams image for running
the AMQ Streams Kafka Bridge

AMQ Streams Drain Cleaner
registry.redhat.io/amq7/
amq-streams-drain-
cleaner-rhel8:2.0.1

AMQ Streams image for running
the AMQ Streams Drain Cleaner

Container image Namespace/Repository Description

3.5. DESIGNATING AMQ STREAMS ADMINISTRATORS

AMQ Streams provides custom resources for configuration of your deployment. By default, permission
to view, create, edit, and delete these resources is limited to OpenShift cluster administrators. AMQ
Streams provides two cluster roles that you can use to assign these rights to other users:

strimzi-view allows users to view and list AMQ Streams resources.

strimzi-admin allows users to also create, edit or delete AMQ Streams resources.

When you install these roles, they will automatically aggregate (add) these rights to the default
OpenShift cluster roles. strimzi-view aggregates to the view role, and strimzi-admin aggregates to
the edit and admin roles. Because of the aggregation, you might not need to assign these roles to users
who already have similar rights.

The following procedure shows how to assign a strimzi-admin role that allows non-cluster
administrators to manage AMQ Streams resources.

A system administrator can designate AMQ Streams administrators after the Cluster Operator is
deployed.

Prerequisites

The AMQ Streams Custom Resource Definitions (CRDs) and role-based access control (RBAC)
resources to manage the CRDs have been deployed with the Cluster Operator .

Procedure

1. Create the strimzi-view and strimzi-admin cluster roles in OpenShift.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

20

2. If needed, assign the roles that provide access rights to users that require them.

oc create -f install/strimzi-admin

oc create clusterrolebinding strimzi-admin --clusterrole=strimzi-admin --user=user1 --
user=user2

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

21

CHAPTER 4. DEPLOYING AMQ STREAMS FROM THE
OPERATORHUB

Use the Red Hat Integration - AMQ Streams Operator to deploy AMQ Streams from the OperatorHub.

The procedures in this section show how to:

Deploy the AMQ Streams Operator from the OperatorHub

Deploy Kafka components using the AMQ Streams Operator

4.1. USING THE RED HAT INTEGRATION OPERATOR TO INSTALL THE
AMQ STREAMS OPERATOR

The Red Hat Integration Operator allows you to choose and install the Operators that manage your Red
Hat Integration components. If you have more than one Red Hat Integration subscription, you can use
the Red Hat Integration Operator to install and update the AMQ Streams Operator, as well as the
Operators for all subscribed Red Hat Integration components.

As with the AMQ Streams Operator, you can use the Operator Lifecycle Manager (OLM) to install the
Red Hat Integration Operator on an OpenShift Container Platform (OCP) cluster from the
OperatorHub in the OCP console.

Additional resources

For more information on installing and using the Red Hat Integration Operator, see Installing the Red
Hat Integration Operator on OpenShift.

4.2. DEPLOYING THE AMQ STREAMS OPERATOR FROM THE
OPERATORHUB

You can deploy the Cluster Operator to your OpenShift cluster by installing the AMQ Streams Operator
from the OperatorHub.

WARNING

Make sure you use the appropriate update channel. If you are on a supported
version of the OpenShift, installing AMQ Streams from the default stable channel is
generally safe. However, we do not recommend enabling automatic updates on the
stable channel. An automatic upgrade will skip any necessary steps prior to
upgrade. Use automatic upgrades only on version-specific channels.

Prerequisites

The Red Hat Operators OperatorSource is enabled in your OpenShift cluster. If you can see
Red Hat Operators in the OperatorHub, the correct OperatorSource is enabled. For more
information, see the Operators guide.



Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

22

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/installing_the_red_hat_integration_operator_on_openshift/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/operators

Installation requires a user with sufficient privileges to install Operators from the OperatorHub.

Procedure

1. In the OpenShift web console, click Operators > OperatorHub.

2. Search or browse for the AMQ Streams Operator, in the Streaming & Messaging category.

3. Click the Red Hat Integration - AMQ Streams Operator tile and then, in the sidebar on the
right, click Install.

4. On the Create Operator Subscription screen, choose from the following installation and
update options:

Update Channel: Choose the update channel for the AMQ Streams Operator.

The (default) stable channel contains all the latest updates and releases, including
major, minor, and micro releases, which are assumed to be well tested and stable.

An amq-streams-X.x channel contains the minor and micro release updates for a major
release, where X is the major release version number.

An amq-streams-X.Y.x channel contains the micro release updates for a minor release,
where X is the major release version number and Y is the minor release version number.

Installation Mode: Choose to install the AMQ Streams Operator to all namespaces in the
cluster (the default option) or a specific namespace. It is good practice to use namespaces
to separate functions. We recommend that you dedicate a specific namespace to the Kafka
cluster and other AMQ Streams components.

Approval Strategy: By default, the AMQ Streams Operator is automatically upgraded to
the latest AMQ Streams version by the Operator Lifecycle Manager (OLM). Optionally,
select Manual if you want to manually approve future upgrades. For more information, see
the Operators guide in the OpenShift documentation.

5. Click Subscribe; the AMQ Streams Operator is installed to your OpenShift cluster.
The AMQ Streams Operator deploys the Cluster Operator, CRDs, and role-based access
control (RBAC) resources to the selected namespace, or to all namespaces.

6. On the Installed Operators screen, check the progress of the installation. The AMQ Streams
Operator is ready to use when its status changes to InstallSucceeded.

Next, you can use the AMQ Streams Operator to deploy the Kafka components, starting with a Kafka
cluster.

Additional resources

Section 4.3, “Deploying Kafka components using the AMQ Streams Operator”

Section 1.4, “AMQ Streams installation methods”

Section 5.1.2.1, “Deploying the Kafka cluster”

4.3. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS
OPERATOR

When installed on an Openshift Container Platform, the AMQ Streams Operator makes Kafka

CHAPTER 4. DEPLOYING AMQ STREAMS FROM THE OPERATORHUB

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/operators

When installed on an Openshift Container Platform, the AMQ Streams Operator makes Kafka
components available for installation from the user interface.

Kafka components available for installation:

Kafka

Kafka Connect

Kafka MirrorMaker

Kafka MirrorMaker 2

Kafka Topic

Kafka User

Kafka Bridge

Kafka Connector

Kafka Rebalance

Prerequisites

AMQ Streams Operator is installed on the OpenShift Container Platform (OCP) cluster

Procedure

1. Navigate to Installed Operators and click Red Hat Integration - AMQ Streams Operator to
display the Operator details page.

2. From Provided APIs, click Create Instance for the Kafka component you wish to install.
The default configuration for each component is encapsulated in a CRD spec property.

3. (Optional) Configure the installation specification from the form or YAML views before you
perform the installation.

4. Click Create to start the installation of the selected component.
Wait until the status changes to Succeeded.

Additional resources

Section 4.2, “Deploying the AMQ Streams Operator from the OperatorHub”

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

24

CHAPTER 5. DEPLOYING AMQ STREAMS USING
INSTALLATION ARTIFACTS

Having prepared your environment for a deployment of AMQ Streams , you can deploy AMQ Streams to
an OpenShift cluster. You can use the deployment files provided with the release artifacts.

Use the deployment files to create the Kafka cluster .

Optionally, you can deploy the following Kafka components according to your requirements:

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

AMQ Streams is based on Strimzi 0.26.x. You can deploy AMQ Streams 2.0 on OpenShift 4.6 to 4.9.

NOTE

To run the commands in this guide, your cluster user must have the rights to manage role-
based access control (RBAC) and CRDs.

5.1. CREATE THE KAFKA CLUSTER

To be able to manage a Kafka cluster with the Cluster Operator, you must deploy it as a Kafka resource.
AMQ Streams provides example deployment files to do this. You can use these files to deploy the Topic
Operator and User Operator at the same time.

If you haven’t deployed a Kafka cluster as a Kafka resource, you can’t use the Cluster Operator to
manage it. This applies, for example, to a Kafka cluster running outside of OpenShift. But you can deploy
and use the Topic Operator and User Operator as standalone components.

NOTE

The Cluster Operator can watch one, multiple, or all namespaces in an OpenShift cluster.
The Topic Operator and User Operator watch for KafkaTopics and KafkaUsers in the
single namespace of the Kafka cluster deployment.

Deploying a Kafka cluster with the Topic Operator and User Operator
Perform these deployment steps if you want to use the Topic Operator and User Operator with a Kafka
cluster managed by AMQ Streams.

1. Deploy the Cluster Operator

2. Use the Cluster Operator to deploy the:

a. Kafka cluster

b. Topic Operator

c. User Operator

Deploying a standalone Topic Operator and User Operator

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

25

Perform these deployment steps if you want to use the Topic Operator and User Operator with a Kafka
cluster that is not managed by AMQ Streams.

1. Deploy the standalone Topic Operator

2. Deploy the standalone User Operator

5.1.1. Deploying the Cluster Operator

The Cluster Operator is responsible for deploying and managing Apache Kafka clusters within an
OpenShift cluster.

The procedures in this section show:

How to deploy the Cluster Operator to watch:

A single namespace

Multiple namespaces

All namespaces

5.1.1.1. Watch options for a Cluster Operator deployment

When the Cluster Operator is running, it starts to watch for updates of Kafka resources.

You can choose to deploy the Cluster Operator to watch Kafka resources from:

A single namespace (the same namespace containing the Cluster Operator)

Multiple namespaces

All namespaces

NOTE

AMQ Streams provides example YAML files to make the deployment process easier.

The Cluster Operator watches for changes to the following resources:

Kafka for the Kafka cluster.

KafkaConnect for the Kafka Connect cluster.

KafkaConnector for creating and managing connectors in a Kafka Connect cluster.

KafkaMirrorMaker for the Kafka MirrorMaker instance.

KafkaMirrorMaker2 for the Kafka MirrorMaker 2.0 instance.

KafkaBridge for the Kafka Bridge instance.

KafkaRebalance for the Cruise Control optimization requests.

When one of these resources is created in the OpenShift cluster, the operator gets the cluster

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

26

When one of these resources is created in the OpenShift cluster, the operator gets the cluster
description from the resource and starts creating a new cluster for the resource by creating the
necessary OpenShift resources, such as StatefulSets, Services and ConfigMaps.

Each time a Kafka resource is updated, the operator performs corresponding updates on the OpenShift
resources that make up the cluster for the resource.

Resources are either patched or deleted, and then recreated in order to make the cluster for the
resource reflect the desired state of the cluster. This operation might cause a rolling update that might
lead to service disruption.

When a resource is deleted, the operator undeploys the cluster and deletes all related OpenShift
resources.

5.1.1.2. Deploying the Cluster Operator to watch a single namespace

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources in a single
namespace in your OpenShift cluster.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create
CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base
Access Control (RBAC) in the OpenShift cluster usually means that permission to create, edit,
and delete these resources is limited to OpenShift cluster administrators, such as
system:admin.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Deploy the Cluster Operator:

3. Verify that the Cluster Operator was successfully deployed:

5.1.1.3. Deploying the Cluster Operator to watch multiple namespaces

oc create -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

27

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across
multiple namespaces in your OpenShift cluster.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create
CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base
Access Control (RBAC) in the OpenShift cluster usually means that permission to create, edit,
and delete these resources is limited to OpenShift cluster administrators, such as
system:admin.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to add a
list of all the namespaces the Cluster Operator will watch to the STRIMZI_NAMESPACE
environment variable.
For example, in this procedure the Cluster Operator will watch the namespaces watched-
namespace-1, watched-namespace-2, watched-namespace-3.

3. For each namespace listed, install the RoleBindings.
In this example, we replace watched-namespace in these commands with the namespaces
listed in the previous step, repeating them for watched-namespace-1, watched-namespace-2,
watched-namespace-3:

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: watched-namespace-1,watched-namespace-2,watched-namespace-3

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

28

4. Deploy the Cluster Operator:

5. Verify that the Cluster Operator was successfully deployed:

5.1.1.4. Deploying the Cluster Operator to watch all namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across all
namespaces in your OpenShift cluster.

When running in this mode, the Cluster Operator automatically manages clusters in any new
namespaces that are created.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create
CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base
Access Control (RBAC) in the OpenShift cluster usually means that permission to create, edit,
and delete these resources is limited to OpenShift cluster administrators, such as
system:admin.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to set
the value of the STRIMZI_NAMESPACE environment variable to *.

oc create -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n
watched-namespace
oc create -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-
delegation.yaml -n watched-namespace

oc create -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments

apiVersion: apps/v1
kind: Deployment
spec:
 # ...

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

29

3. Create ClusterRoleBindings that grant cluster-wide access for all namespaces to the Cluster
Operator.

Replace my-cluster-operator-namespace with the namespace you want to install the Cluster
Operator into.

4. Deploy the Cluster Operator to your OpenShift cluster.

5. Verify that the Cluster Operator was successfully deployed:

5.1.2. Deploying Kafka

Apache Kafka is an open-source distributed publish-subscribe messaging system for fault-tolerant real-
time data feeds.

The procedures in this section show:

How to use the Cluster Operator to deploy:

An ephemeral or persistent Kafka cluster

The Topic Operator and User Operator by configuring the Kafka custom resource:

Topic Operator

User Operator

Alternative standalone deployment procedures for the Topic Operator and User Operator:

Deploy the standalone Topic Operator

 template:
 spec:
 # ...
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-rhel8-operator:2.0.1
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: "*"
 # ...

oc create clusterrolebinding strimzi-cluster-operator-namespaced --clusterrole=strimzi-
cluster-operator-namespaced --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator
oc create clusterrolebinding strimzi-cluster-operator-entity-operator-delegation --
clusterrole=strimzi-entity-operator --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator

oc create -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

30

Deploy the standalone User Operator

When installing Kafka, AMQ Streams also installs a ZooKeeper cluster and adds the necessary
configuration to connect Kafka with ZooKeeper.

5.1.2.1. Deploying the Kafka cluster

This procedure shows how to deploy a Kafka cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a Kafka resource.

AMQ Streams provides example configuration files . For a Kafka deployment, the following examples are
provided:

kafka-persistent.yaml

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes.

kafka-jbod.yaml

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes (each using multiple
persistent volumes).

kafka-persistent-single.yaml

Deploys a persistent cluster with a single ZooKeeper node and a single Kafka node.

kafka-ephemeral.yaml

Deploys an ephemeral cluster with three ZooKeeper and three Kafka nodes.

kafka-ephemeral-single.yaml

Deploys an ephemeral cluster with three ZooKeeper nodes and a single Kafka node.

In this procedure, we use the examples for an ephemeral and persistent Kafka cluster deployment.

Ephemeral cluster

In general, an ephemeral (or temporary) Kafka cluster is suitable for development and testing
purposes, not for production. This deployment uses emptyDir volumes for storing broker
information (for ZooKeeper) and topics or partitions (for Kafka). Using an emptyDir volume means
that its content is strictly related to the pod life cycle and is deleted when the pod goes down.

Persistent cluster

A persistent Kafka cluster uses PersistentVolumes to store ZooKeeper and Kafka data. The
PersistentVolume is acquired using a PersistentVolumeClaim to make it independent of the actual
type of the PersistentVolume. For example, it can use Amazon EBS volumes in Amazon AWS
deployments without any changes in the YAML files. The PersistentVolumeClaim can use a
StorageClass to trigger automatic volume provisioning.

The example YAML files specify the latest supported Kafka version, and configuration for its supported
log message format version and inter-broker protocol version. The inter.broker.protocol.version
property for the Kafka config must be the version supported by the specified Kafka version
(spec.kafka.version). The property represents the version of Kafka protocol used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

An update to the inter.broker.protocol.version is required when upgrading Kafka.

The example clusters are named my-cluster by default. The cluster name is defined by the name of the

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

31

resource and cannot be changed after the cluster has been deployed. To change the cluster name
before you deploy the cluster, edit the Kafka.metadata.name property of the Kafka resource in the
relevant YAML file.

Default cluster name and specified Kafka versions

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Create and deploy an ephemeral or persistent cluster.
For development or testing, you might prefer to use an ephemeral cluster. You can use a
persistent cluster in any situation.

To create and deploy an ephemeral cluster:

To create and deploy a persistent cluster:

2. Verify that the Kafka cluster was successfully deployed:

Additional resources

Kafka cluster configuration

5.1.2.2. Deploying the Topic Operator using the Cluster Operator

This procedure describes how to deploy the Topic Operator using the Cluster Operator.

You configure the entityOperator property of the Kafka resource to include the topicOperator. By
default, the Topic Operator watches for KafkaTopics in the namespace of the Kafka cluster
deployment.

If you want to use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 version: 3.0.0
 #...
 config:
 #...
 log.message.format.version: "3.0"
 inter.broker.protocol.version: "3.0"
 # ...

oc apply -f examples/kafka/kafka-ephemeral.yaml

oc apply -f examples/kafka/kafka-persistent.yaml

oc get deployments

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

32

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-config-kafka-str

If you want to use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the Topic Operator as a standalone component .

For more information about configuring the entityOperator and topicOperator properties, see
Configuring the Entity Operator in the Using AMQ Streams on OpenShift guide.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include topicOperator:

2. Configure the Topic Operator spec using the properties described in
EntityTopicOperatorSpec schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:
Use oc apply:

5.1.2.3. Deploying the User Operator using the Cluster Operator

This procedure describes how to deploy the User Operator using the Cluster Operator.

You configure the entityOperator property of the Kafka resource to include the userOperator. By
default, the User Operator watches for KafkaUsers in the namespace of the Kafka cluster deployment.

If you want to use the User Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the User Operator as a standalone component .

For more information about configuring the entityOperator and userOperator properties, see
Configuring the Entity Operator in the Using AMQ Streams on OpenShift guide.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include userOperator:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <your-file>

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

33

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-kafka-entity-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-EntityTopicOperatorSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-kafka-entity-operator-str

2. Configure the User Operator spec using the properties described in EntityUserOperatorSpec
schema reference in the Using AMQ Streams on OpenShift guide.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:

5.1.3. Alternative standalone deployment options for AMQ Streams Operators

You can perform a standalone deployment of the Topic Operator and User Operator. Consider a
standalone deployment of these operators if you are using a Kafka cluster that is not managed by the
Cluster Operator.

You deploy the operators to OpenShift. Kafka can be running outside of OpenShift. For example, you
might be using a Kafka as a managed service. You adjust the deployment configuration for the
standalone operator to match the address of your Kafka cluster.

5.1.3.1. Deploying the standalone Topic Operator

This procedure shows how to deploy the Topic Operator as a standalone component for topic
management. You can use a standalone Topic Operator with a Kafka cluster that is not managed by the
Cluster Operator.

A standalone deployment can operate with any Kafka cluster.

Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-topic-
operator.yaml deployment file to deploy the Topic Operator. Add or set the environment variables
needed to make a connection to a Kafka cluster.

Prerequisites

You are running a Kafka cluster for the Topic Operator to connect to.
As long as the standalone Topic Operator is correctly configured for connection, the Kafka
cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud
application service.

Procedure

1. Edit the env properties in the install/topic-operator/05-Deployment-strimzi-topic-
operator.yaml standalone deployment file.

Example standalone Topic Operator deployment configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <your-file>

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

34

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-EntityUserOperatorSpec-reference

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-topic-operator
 labels:
 app: strimzi
spec:
 # ...
 template:
 # ...
 spec:
 # ...
 containers:
 - name: strimzi-topic-operator
 # ...
 env:
 - name: STRIMZI_NAMESPACE 1
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS 2
 value: my-kafka-bootstrap-address:9092
 - name: STRIMZI_RESOURCE_LABELS 3
 value: "strimzi.io/cluster=my-cluster"
 - name: STRIMZI_ZOOKEEPER_CONNECT 4
 value: my-cluster-zookeeper-client:2181
 - name: STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS 5
 value: "18000"
 - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS 6
 value: "120000"
 - name: STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS 7
 value: "6"
 - name: STRIMZI_LOG_LEVEL 8
 value: INFO
 - name: STRIMZI_TLS_ENABLED 9
 value: "false"
 - name: STRIMZI_JAVA_OPTS 10
 value: "-Xmx=512M -Xms=256M"
 - name: STRIMZI_JAVA_SYSTEM_PROPERTIES 11
 value: "-Djavax.net.debug=verbose -DpropertyName=value"
 - name: STRIMZI_PUBLIC_CA 12
 value: "false"
 - name: STRIMZI_TLS_AUTH_ENABLED 13
 value: "false"
 - name: STRIMZI_SASL_ENABLED 14
 value: "false"
 - name: STRIMZI_SASL_USERNAME 15
 value: "admin"
 - name: STRIMZI_SASL_PASSWORD 16
 value: "password"
 - name: STRIMZI_SASL_MECHANISM 17
 value: "scram-sha-512"
 - name: STRIMZI_SECURITY_PROTOCOL 18

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

The OpenShift namespace for the Topic Operator to watch for KafkaTopic resources.
Specify the namespace of the Kafka cluster.

The host and port pair of the bootstrap broker address to discover and connect to all
brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker
addresses in case a server is down.

The label selector to identify the KafkaTopic resources managed by the Topic Operator.

The host and port pair of the address to connect to the ZooKeeper cluster. This must be
the same ZooKeeper cluster that your Kafka cluster is using.

The ZooKeeper session timeout, in milliseconds. The default is 18000 (18 seconds).

The interval between periodic reconciliations, in milliseconds. The default is 120000 (2
minutes).

The number of attempts at getting topic metadata from Kafka. The time between each
attempt is defined as an exponential backoff. Consider increasing this value when topic
creation takes more time due to the number of partitions or replicas. The default is 6
attempts.

The level for printing logging messages. You can set the level to ERROR, WARNING,
INFO, DEBUG, or TRACE.

Enables TLS support for encrypted communication with the Kafka brokers.

(Optional) The Java options used by the JVM running the Topic Operator.

(Optional) The debugging (-D) options set for the Topic Operator.

(Optional) Skips the generation of trust store certificates if TLS is enabled through
STRIMZI_TLS_ENABLED. If this environment variable is enabled, the brokers must use a
public trusted certificate authority for their TLS certificates. The default is false.

(Optional) Generates key store certificates for mutual TLS authentication. Setting this to
false disables client authentication with TLS to the Kafka brokers. The default is true.

(Optional) Enables SASL support for client authentication when connecting to Kafka
brokers. The default is false.

(Optional) The SASL username for client authentication. Mandatory only if SASL is
enabled through STRIMZI_SASL_ENABLED.

(Optional) The SASL password for client authentication. Mandatory only if SASL is enabled
through STRIMZI_SASL_ENABLED.

(Optional) The SASL mechanism for client authentication. Mandatory only if SASL is
enabled through STRIMZI_SASL_ENABLED. You can set the value to plain, scram-sha-
256, or scram-sha-512.

(Optional) The security protocol used for communication with Kafka brokers. The default
value is "PLAINTEXT". You can set the value to PLAINTEXT, SSL, SASL_PLAINTEXT, or
SASL_SSL.

2. If you want to connect to Kafka brokers that are using certificates from a public certificate

 value: "SSL"

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

36

1

2

3

4

2. If you want to connect to Kafka brokers that are using certificates from a public certificate
authority, set STRIMZI_PUBLIC_CA to true. Set this property to true, for example, if you are
using Amazon AWS MSK service.

3. If you enabled TLS with the STRIMZI_TLS_ENABLED environment variable, specify the
keystore and truststore used to authenticate connection to the Kafka cluster.

Example TLS configuration

The truststore contains the public keys of the Certificate Authorities used to sign the Kafka
and ZooKeeper server certificates.

The password for accessing the truststore.

The keystore contains the private key for TLS client authentication.

The password for accessing the keystore.

4. Deploy the Topic Operator.

5. Verify that the Topic Operator has been deployed successfully.

The Topic Operator is deployed when the Replicas entry shows 1 available.

NOTE

You may experience a delay with the deployment if you have a slow connection to
the OpenShift cluster and the Topic Operator images have not been downloaded
before.

5.1.3.2. Deploying the standalone User Operator

This procedure shows how to deploy the User Operator as a standalone component for user
management. You can use a standalone User Operator with a Kafka cluster that is not managed by the
Cluster Operator.

A standalone deployment can operate with any Kafka cluster.

....
env:
 - name: STRIMZI_TRUSTSTORE_LOCATION 1
 value: "/path/to/truststore.p12"
 - name: STRIMZI_TRUSTSTORE_PASSWORD 2
 value: "TRUSTSTORE-PASSWORD"
 - name: STRIMZI_KEYSTORE_LOCATION 3
 value: "/path/to/keystore.p12"
 - name: STRIMZI_KEYSTORE_PASSWORD 4
 value: "KEYSTORE-PASSWORD"
...

oc create -f install/topic-operator

oc describe deployment strimzi-topic-operator

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

37

Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-user-
operator.yaml deployment file to deploy the User Operator. Add or set the environment variables
needed to make a connection to a Kafka cluster.

Prerequisites

You are running a Kafka cluster for the User Operator to connect to.
As long as the standalone User Operator is correctly configured for connection, the Kafka
cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud
application service.

Procedure

1. Edit the following env properties in the install/user-operator/05-Deployment-strimzi-user-
operator.yaml standalone deployment file.

Example standalone User Operator deployment configuration

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-user-operator
 labels:
 app: strimzi
spec:
 # ...
 template:
 # ...
 spec:
 # ...
 containers:
 - name: strimzi-user-operator
 # ...
 env:
 - name: STRIMZI_NAMESPACE 1
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS 2
 value: my-kafka-bootstrap-address:9092
 - name: STRIMZI_CA_CERT_NAME 3
 value: my-cluster-clients-ca-cert
 - name: STRIMZI_CA_KEY_NAME 4
 value: my-cluster-clients-ca
 - name: STRIMZI_LABELS 5
 value: "strimzi.io/cluster=my-cluster"
 - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS 6
 value: "120000"
 - name: STRIMZI_LOG_LEVEL 7
 value: INFO
 - name: STRIMZI_GC_LOG_ENABLED 8
 value: "true"
 - name: STRIMZI_CA_VALIDITY 9
 value: "365"

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

38

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The OpenShift namespace for the User Operator to watch for KafkaUser resources. Only
one namespace can be specified.

The host and port pair of the bootstrap broker address to discover and connect to all
brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker
addresses in case a server is down.

The OpenShift Secret that contains the public key (ca.crt) value of the Certificate
Authority that signs new user certificates for TLS client authentication.

The OpenShift Secret that contains the private key (ca.key) value of the Certificate
Authority that signs new user certificates for TLS client authentication.

The label selector used to identify the KafkaUser resources managed by the User
Operator.

The interval between periodic reconciliations, in milliseconds. The default is 120000 (2
minutes). The default is 18000 (18 seconds).

The level for printing logging messages. You can set the level to ERROR, WARNING,
INFO, DEBUG, or TRACE.

Enables garbage collection (GC) logging. The default is true.

The validity period for the Certificate Authority. The default is 365 days.

The renewal period for the Certificate Authority. The renewal period is measured
backwards from the expiry date of the current certificate. The default is 30 days to initiate
certificate renewal before the old certificates expire.

(Optional) The Java options used by the JVM running the User Operator

(Optional) The debugging (-D) options set for the User Operator

(Optional) Prefix for the names of OpenShift secrets created by the User Operator.

(Optional) Indicates whether the Kafka cluster supports management of authorization ACL
rules using the Kafka Admin API. When set to false, the User Operator will reject all
resources with simple authorization ACL rules. This helps to avoid unnecessary exceptions
in the Kafka cluster logs. The default is true.

2. If you are using TLS to connect to the Kafka cluster, specify the secrets used to authenticate
connection. Otherwise, go to the next step.

Example TLS configuration

 - name: STRIMZI_CA_RENEWAL 10
 value: "30"
 - name: STRIMZI_JAVA_OPTS 11
 value: "-Xmx=512M -Xms=256M"
 - name: STRIMZI_JAVA_SYSTEM_PROPERTIES 12
 value: "-Djavax.net.debug=verbose -DpropertyName=value"
 - name: STRIMZI_SECRET_PREFIX 13
 value: "kafka-"
 - name: STRIMZI_ACLS_ADMIN_API_SUPPORTED 14
 value: "true"

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

39

1

2

Example TLS configuration

The OpenShift Secret that contains the public key (ca.crt) value of the Certificate
Authority that signs Kafka broker certificates for TLS client authentication.

The OpenShift Secret that contains the keystore (entity-operator.p12) with the private
key and certificate for TLS authentication against the Kafka cluster. The Secret must also
contain the password (entity-operator.password) for accessing the keystore.

3. Deploy the User Operator.

4. Verify that the User Operator has been deployed successfully.

The User Operator is deployed when the Replicas entry shows 1 available.

NOTE

You might experience a delay with the deployment if you have a slow connection
to the OpenShift cluster and the User Operator images have not been
downloaded before.

5.2. DEPLOY KAFKA CONNECT

Kafka Connect is a tool for streaming data between Apache Kafka and external systems.

In AMQ Streams, Kafka Connect is deployed in distributed mode. Kafka Connect can also work in
standalone mode, but this is not supported by AMQ Streams.

Using the concept of connectors, Kafka Connect provides a framework for moving large amounts of
data into and out of your Kafka cluster while maintaining scalability and reliability.

Kafka Connect is typically used to integrate Kafka with external databases and storage and messaging
systems.

The procedures in this section show how to:

Deploy a Kafka Connect cluster using a KafkaConnect resource

Run multiple Kafka Connect instances

Create a Kafka Connect image containing the connectors you need to make your connection

....
env:
 - name: STRIMZI_CLUSTER_CA_CERT_SECRET_NAME 1
 value: my-cluster-cluster-cert
 - name: STRIMZI_EO_KEY_SECRET_NAME 2
 value: my-cluster-entity-operator-certs
..."

oc create -f install/user-operator

oc describe deployment strimzi-user-operator

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

40

https://kafka.apache.org/documentation/#connect

Create and manage connectors using a KafkaConnector resource or the Kafka Connect REST
API

Deploy a KafkaConnector resource to Kafka Connect

Restart a Kafka connector by annotating a KafkaConnector resource

Restart a Kafka connector task by annotating a KafkaConnector resource

NOTE

The term connector is used interchangeably to mean a connector instance running within
a Kafka Connect cluster, or a connector class. In this guide, the term connector is used
when the meaning is clear from the context.

5.2.1. Deploying Kafka Connect to your OpenShift cluster

This procedure shows how to deploy a Kafka Connect cluster to your OpenShift cluster using the Cluster
Operator.

A Kafka Connect cluster is implemented as a Deployment with a configurable number of nodes (also
called workers) that distribute the workload of connectors as tasks so that the message flow is highly
scalable and reliable.

The deployment uses a YAML file to provide the specification to create a KafkaConnect resource.

AMQ Streams provides example configuration files . In this procedure, we use the following example file:

examples/connect/kafka-connect.yaml

Prerequisites

The Cluster Operator must be deployed.

Running Kafka cluster.

Procedure

1. Deploy Kafka Connect to your OpenShift cluster. Use the examples/connect/kafka-
connect.yaml file to deploy Kafka Connect.

2. Verify that Kafka Connect was successfully deployed:

Additional resources

Kafka Connect cluster configuration

5.2.2. Kafka Connect configuration for multiple instances

If you are running multiple instances of Kafka Connect, you have to change the default configuration of

oc apply -f examples/connect/kafka-connect.yaml

oc get deployments

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

41

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-kafka-connect-str

1

2

3

4

If you are running multiple instances of Kafka Connect, you have to change the default configuration of
the following config properties:

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

NOTE

Values for the three topics must be the same for all Kafka Connect instances with the
same group.id.

Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka
cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a
cluster and use the same topics.

If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected
and generate errors.

If you wish to run multiple Kafka Connect instances, change the values of these properties for each
instance.

5.2.3. Extending Kafka Connect with connector plug-ins

The AMQ Streams container images for Kafka Connect include two built-in file connectors for moving
file-based data into and out of your Kafka cluster.

Table 5.1. File connectors

File Connector Description

FileStreamSourceConnector Transfers data to your Kafka cluster from a file (the
source).

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: connect-cluster 1
 offset.storage.topic: connect-cluster-offsets 2
 config.storage.topic: connect-cluster-configs 3
 status.storage.topic: connect-cluster-status 4
 # ...
...

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

42

FileStreamSinkConnector Transfers data from your Kafka cluster to a file (the
sink).

File Connector Description

The procedures in this section show how to add your own connector classes to connector images by:

Creating a new container image automatically using AMQ Streams

Creating a container image from the Kafka Connect base image (manually or using continuous
integration)

IMPORTANT

You create the configuration for connectors directly using the Kafka Connect REST API
or KafkaConnector custom resources.

5.2.3.1. Creating a new container image automatically using AMQ Streams

This procedure shows how to configure Kafka Connect so that AMQ Streams automatically builds a new
container image with additional connectors. You define the connector plugins using the
.spec.build.plugins property of the KafkaConnect custom resource. AMQ Streams will automatically
download and add the connector plugins into a new container image. The container is pushed into the
container repository specified in .spec.build.output and automatically used in the Kafka Connect
deployment.

Prerequisites

The Cluster Operator must be deployed.

A container registry.

You need to provide your own container registry where images can be pushed to, stored, and pulled
from. AMQ Streams supports private container registries as well as public registries such as Quay or
Docker Hub.

Procedure

1. Configure the KafkaConnect custom resource by specifying the container registry in
.spec.build.output, and additional connectors in .spec.build.plugins:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec: 1
 #...
 build:
 output: 2
 type: docker
 image: my-registry.io/my-org/my-connect-cluster:latest

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

43

https://quay.io/
https://hub.docker.com//

1

2

3

The specification for the Kafka Connect cluster .

(Required) Configuration of the container registry where new images are pushed.

(Required) List of connector plugins and their artifacts to add to the new container image.
Each plugin must be configured with at least one artifact.

2. Create or update the resource:

$ oc apply -f KAFKA-CONNECT-CONFIG-FILE

3. Wait for the new container image to build, and for the Kafka Connect cluster to be deployed.

4. Use the Kafka Connect REST API or the KafkaConnector custom resources to use the
connector plugins you added.

Additional resources

See the Using AMQ Streams on OpenShift guide for more information on:

Kafka Connect Build schema reference

5.2.3.2. Creating a Docker image from the Kafka Connect base image

This procedure shows how to create a custom image and add it to the /opt/kafka/plugins directory.

You can use the Kafka container image on Red Hat Ecosystem Catalog as a base image for creating
your own custom image with additional connector plug-ins.

At startup, the AMQ Streams version of Kafka Connect loads any third-party connector plug-ins
contained in the /opt/kafka/plugins directory.

Prerequisites

The Cluster Operator must be deployed.

 pushSecret: my-registry-credentials
 plugins: 3
 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/1.3.1.Final/debezium-connector-postgres-1.3.1.Final-plugin.tar.gz
 sha512sum:
962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb54804
5e115e33a9e69b1b2a352bee24df035a0447cb820077af00c03
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.7.0/camel-telegram-kafka-connector-0.7.0-package.tar.gz
 sha512sum:
a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e
8020bf4187870699819f54ef5859c7846ee4081507f48873479
 #...

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

44

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference
https://catalog.redhat.com/software/containers/explore

Procedure

1. Create a new Dockerfile using registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1 as
the base image:

FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Example plug-in file

$ tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── bson-3.4.2.jar
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mongodb-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mongodb-driver-3.4.2.jar
│ ├── mongodb-driver-core-3.4.2.jar
│ └── README.md
├── debezium-connector-mysql
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mysql-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mysql-binlog-connector-java-0.13.0.jar
│ ├── mysql-connector-java-5.1.40.jar
│ ├── README.md
│ └── wkb-1.0.2.jar
└── debezium-connector-postgres
 ├── CHANGELOG.md
 ├── CONTRIBUTE.md
 ├── COPYRIGHT.txt
 ├── debezium-connector-postgres-0.7.1.jar
 ├── debezium-core-0.7.1.jar
 ├── LICENSE.txt
 ├── postgresql-42.0.0.jar
 ├── protobuf-java-2.6.1.jar
 └── README.md

NOTE

This example uses the Debezium connectors for MongoDB, MySQL, and
PostgreSQL. Debezium running in Kafka Connect looks the same as any other
Kafka Connect task.

2. Build the container image.

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

45

1

2

3

3. Push your custom image to your container registry.

4. Point to the new container image.
You can either:

Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource.
If set, this property overrides the STRIMZI_KAFKA_CONNECT_IMAGES variable in the
Cluster Operator.

The specification for the Kafka Connect cluster .

The docker image for the pods.

Configuration of the Kafka Connect workers (not connectors).

or

In the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file, edit
the STRIMZI_KAFKA_CONNECT_IMAGES variable to point to the new container image,
and then reinstall the Cluster Operator.

Additional resources

See the Using AMQ Streams on OpenShift guide for more information on:

Container image configuration and the KafkaConnect.spec.image property

Cluster Operator configuration and the STRIMZI_KAFKA_CONNECT_IMAGES variable

5.2.4. Creating and managing connectors

When you have created a container image for your connector plug-in, you need to create a connector
instance in your Kafka Connect cluster. You can then configure, monitor, and manage a running
connector instance.

A connector is an instance of a particular connector class that knows how to communicate with the
relevant external system in terms of messages. Connectors are available for many external systems, or
you can create your own.

You can create source and sink types of connector.

Source connector

A source connector is a runtime entity that fetches data from an external system and feeds it to
Kafka as messages.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec: 1
 #...
 image: my-new-container-image 2
 config: 3
 #...

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

46

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-common-configuration-images-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#ref-operator-cluster-str

Sink connector

A sink connector is a runtime entity that fetches messages from Kafka topics and feeds them to an
external system.

AMQ Streams provides two APIs for creating and managing connectors:

KafkaConnector resources (referred to as KafkaConnectors)

Kafka Connect REST API

Using the APIs, you can:

Check the status of a connector instance

Reconfigure a running connector

Increase or decrease the number of connector tasks for a connector instance

Restart connectors

Restart connector tasks, including failed tasks

Pause a connector instance

Resume a previously paused connector instance

Delete a connector instance

5.2.4.1. KafkaConnector resources

KafkaConnectors allow you to create and manage connector instances for Kafka Connect in an
OpenShift-native way, so an HTTP client such as cURL is not required. Like other Kafka resources, you
declare a connector’s desired state in a KafkaConnector YAML file that is deployed to your OpenShift
cluster to create the connector instance. KafkaConnector resources must be deployed to the same
namespace as the Kafka Connect cluster they link to.

You manage a running connector instance by updating its corresponding KafkaConnector resource, and
then applying the updates. Annotations are used to manually restart connector instances and connector
tasks. You remove a connector by deleting its corresponding KafkaConnector.

To ensure compatibility with earlier versions of AMQ Streams, KafkaConnectors are disabled by default.
To enable them for a Kafka Connect cluster, you must use annotations on the KafkaConnect resource.
For instructions, see Configuring Kafka Connect in the Using AMQ Streams on OpenShift guide.

When KafkaConnectors are enabled, the Cluster Operator begins to watch for them. It updates the
configurations of running connector instances to match the configurations defined in their
KafkaConnectors.

AMQ Streams provides example configuration files , including the following example KafkaConnector
file:

examples/connect/source-connector.yaml.

You can use this example to create and manage a FileStreamSourceConnector and a
FileStreamSinkConnector as described in Section 5.2.5, “Deploying the example KafkaConnector
resources”.

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

47

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str

5.2.4.2. Availability of the Kafka Connect REST API

The Kafka Connect REST API is available on port 8083 as the <connect-cluster-name>-connect-api
service.

If KafkaConnectors are enabled, manual changes made directly using the Kafka Connect REST API are
reverted by the Cluster Operator.

The operations supported by the REST API are described in the Apache Kafka documentation.

5.2.5. Deploying the example KafkaConnector resources

Use KafkaConnectors with Kafka Connect to stream data to and from a Kafka cluster.

AMQ Streams provides example configuration files . In this procedure, we use the following example file:

examples/connect/source-connector.yaml.

The file is used to create the following connector instances:

A FileStreamSourceConnector instance that reads each line from the Kafka license file (the
source) and writes the data as messages to a single Kafka topic.

A FileStreamSinkConnector instance that reads messages from the Kafka topic and writes the
messages to a temporary file (the sink).

NOTE

In a production environment, you prepare container images containing your desired Kafka
Connect connectors, as described in Section 5.2.3, “Extending Kafka Connect with
connector plug-ins”.

The FileStreamSourceConnector and FileStreamSinkConnector are provided as
examples. Running these connectors in containers as described here is unlikely to be
suitable for production use cases.

Prerequisites

A Kafka Connect deployment

KafkaConnectors are enabled in the Kafka Connect deployment

The Cluster Operator is running

Procedure

1. Edit the examples/connect/source-connector.yaml file:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster 2
spec:

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

48

https://kafka.apache.org/documentation/#connect_rest
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str

1

2

3

4

5

6

7

1

2

Name of the KafkaConnector resource, which is used as the name of the connector. Use
any name that is valid for an OpenShift resource.

Name of the Kafka Connect cluster to create the connector instance in. Connectors must
be deployed to the same namespace as the Kafka Connect cluster they link to.

Full name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

Maximum number of Kafka Connect Tasks that the connector can create.

Connector configuration as key-value pairs.

This example source connector configuration reads data from the /opt/kafka/LICENSE
file.

Kafka topic to publish the source data to.

2. Create the source KafkaConnector in your OpenShift cluster:

3. Create an examples/connect/sink-connector.yaml file:

4. Paste the following YAML into the sink-connector.yaml file:

Full name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

Connector configuration as key-value pairs.

 class: org.apache.kafka.connect.file.FileStreamSourceConnector 3
 tasksMax: 2 4
 config: 5
 file: "/opt/kafka/LICENSE" 6
 topic: my-topic 7
 # ...

oc apply -f examples/connect/source-connector.yaml

touch examples/connect/sink-connector.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-sink-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 class: org.apache.kafka.connect.file.FileStreamSinkConnector 1
 tasksMax: 2
 config: 2
 file: "/tmp/my-file" 3
 topics: my-topic 4

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

49

3

4

Temporary file to publish the source data to.

Kafka topic to read the source data from.

5. Create the sink KafkaConnector in your OpenShift cluster:

6. Check that the connector resources were created:

Replace MY-CONNECT-CLUSTER with your Kafka Connect cluster.

7. In the container, execute kafka-console-consumer.sh to read the messages that were written
to the topic by the source connector:

Source and sink connector configuration options
The connector configuration is defined in the spec.config property of the KafkaConnector resource.

The FileStreamSourceConnector and FileStreamSinkConnector classes support the same
configuration options as the Kafka Connect REST API. Other connectors support different configuration
options.

Table 5.2. Configuration options for the FileStreamSource connector class

Name Type Default value Description

file String Null Source file to write
messages to. If not
specified, the standard
input is used.

topic List Null The Kafka topic to
publish data to.

Table 5.3. Configuration options for FileStreamSinkConnector class

Name Type Default value Description

file String Null Destination file to write
messages to. If not
specified, the standard
output is used.

oc apply -f examples/connect/sink-connector.yaml

oc get kctr --selector strimzi.io/cluster=MY-CONNECT-CLUSTER -o name

my-source-connector
my-sink-connector

oc exec MY-CLUSTER-kafka-0 -i -t -- bin/kafka-console-consumer.sh --bootstrap-server MY-
CLUSTER-kafka-bootstrap.NAMESPACE.svc:9092 --topic my-topic --from-beginning

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

50

topics List Null One or more Kafka
topics to read data from.

topics.regex String Null A regular expression
matching one or more
Kafka topics to read
data from.

Name Type Default value Description

Additional resources

Section 5.2.4, “Creating and managing connectors”

5.2.6. Performing a restart of a Kafka connector

This procedure describes how to manually trigger a restart of a Kafka connector by using an OpenShift
annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector you
want to restart:

2. To restart the connector, annotate the KafkaConnector resource in OpenShift. For example,
using oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector is restarted, as long as the annotation was detected by the reconciliation
process. When Kafka Connect accepts the restart request, the annotation is removed from the
KafkaConnector custom resource.

5.2.7. Performing a restart of a Kafka connector task

This procedure describes how to manually trigger a restart of a Kafka connector task by using an
OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector task

oc get KafkaConnector

oc annotate KafkaConnector KAFKACONNECTOR-NAME strimzi.io/restart=true

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

51

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector task
you want to restart:

2. Find the ID of the task to be restarted from the KafkaConnector custom resource. Task IDs are
non-negative integers, starting from 0.

3. To restart the connector task, annotate the KafkaConnector resource in OpenShift. For
example, using oc annotate to restart task 0:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector task is restarted, as long as the annotation was detected by the
reconciliation process. When Kafka Connect accepts the restart request, the annotation is
removed from the KafkaConnector custom resource.

5.3. DEPLOY KAFKA MIRRORMAKER

The Cluster Operator deploys one or more Kafka MirrorMaker replicas to replicate data between Kafka
clusters. This process is called mirroring to avoid confusion with the Kafka partitions replication concept.
MirrorMaker consumes messages from the source cluster and republishes those messages to the target
cluster.

5.3.1. Deploying Kafka MirrorMaker to your OpenShift cluster

This procedure shows how to deploy a Kafka MirrorMaker cluster to your OpenShift cluster using the
Cluster Operator.

The deployment uses a YAML file to provide the specification to create a KafkaMirrorMaker or
KafkaMirrorMaker2 resource depending on the version of MirrorMaker deployed.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

AMQ Streams provides example configuration files . In this procedure, we use the following example
files:

examples/mirror-maker/kafka-mirror-maker.yaml

examples/mirror-maker/kafka-mirror-maker-2.yaml

Prerequisites

oc get KafkaConnector

oc describe KafkaConnector KAFKACONNECTOR-NAME

oc annotate KafkaConnector KAFKACONNECTOR-NAME strimzi.io/restart-task=0

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

52

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#unidirectional_replication_activepassive

The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka MirrorMaker to your OpenShift cluster:
For MirrorMaker:

For MirrorMaker 2.0:

2. Verify that MirrorMaker was successfully deployed:

Additional resources

Kafka MirrorMaker cluster configuration

5.4. DEPLOY KAFKA BRIDGE

The Cluster Operator deploys one or more Kafka bridge replicas to send data between Kafka clusters
and clients via HTTP API.

5.4.1. Deploying Kafka Bridge to your OpenShift cluster

This procedure shows how to deploy a Kafka Bridge cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a KafkaBridge resource.

AMQ Streams provides example configuration files . In this procedure, we use the following example file:

examples/bridge/kafka-bridge.yaml

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka Bridge to your OpenShift cluster:

2. Verify that Kafka Bridge was successfully deployed:

Additional resources

oc apply -f examples/mirror-maker/kafka-mirror-maker.yaml

oc apply -f examples/mirror-maker/kafka-mirror-maker-2.yaml

oc get deployments

oc apply -f examples/bridge/kafka-bridge.yaml

oc get deployments

CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

53

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-kafka-mirror-maker-str

Kafka Bridge cluster configuration

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

54

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-config-kafka-bridge-str

CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA
CLUSTER

After you have deployed AMQ Streams , the procedures in this section explain how to:

Deploy example producer and consumer clients, which you can use to verify your deployment

Set up external client access to the Kafka cluster
The steps to set up access to the Kafka cluster for a client outside OpenShift are more complex,
and require familiarity with the Kafka component configuration procedures described in the
Using AMQ Streams on OpenShift guide.

6.1. DEPLOYING EXAMPLE CLIENTS

This procedure shows how to deploy example producer and consumer clients that use the Kafka cluster
you created to send and receive messages.

Prerequisites

The Kafka cluster is available for the clients.

Procedure

1. Deploy a Kafka producer.

2. Type a message into the console where the producer is running.

3. Press Enter to send the message.

4. Deploy a Kafka consumer.

5. Confirm that you see the incoming messages in the consumer console.

6.2. SETTING UP ACCESS FOR CLIENTS OUTSIDE OF OPENSHIFT

This procedure shows how to configure client access to a Kafka cluster from outside OpenShift.

Using the address of the Kafka cluster, you can provide external access to a client on a different
OpenShift namespace or outside OpenShift entirely.

You configure an external Kafka listener to provide the access.

The following external listener types are supported:

route to use OpenShift Route and the default HAProxy router

oc run kafka-producer -ti --image=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1
--rm=true --restart=Never -- bin/kafka-console-producer.sh --broker-list cluster-name-kafka-
bootstrap:9092 --topic my-topic

oc run kafka-consumer -ti --image=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1
--rm=true --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server cluster-name-
kafka-bootstrap:9092 --topic my-topic --from-beginning

CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA CLUSTER

55

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-str

loadbalancer to use loadbalancer services

nodeport to use ports on OpenShift nodes

ingress to use OpenShift Ingress and the NGINX Ingress Controller for Kubernetes

The type chosen depends on your requirements, and your environment and infrastructure. For example,
loadbalancers might not be suitable for certain infrastructure, such as bare metal, where node ports
provide a better option.

In this procedure:

1. An external listener is configured for the Kafka cluster, with TLS encryption and authentication,
and Kafka simple authorization is enabled.

2. A KafkaUser is created for the client, with TLS authentication and Access Control Lists (ACLs)
defined for simple authorization.

You can configure your listener to use TLS, SCRAM-SHA-512 or OAuth 2.0 authentication. TLS always
uses encryption, but it is recommended to also use encryption with SCRAM-SHA-512 and OAuth 2.0
authentication.

You can configure simple, OAuth 2.0, OPA or custom authorization for Kafka brokers. When enabled,
authorization is applied to all enabled listeners.

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

You should have at least one listener supporting the authentication you want to use for the KafkaUser.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with TLS if it is not
also enabled in the Kafka configuration.

AMQ Streams operators automate the configuration process:

The Cluster Operator creates the listeners and sets up the cluster and client certificate
authority (CA) certificates to enable authentication within the Kafka cluster.

The User Operator creates the user representing the client and the security credentials used for
client authentication, based on the chosen authentication type.

In this procedure, the certificates generated by the Cluster Operator are used, but you can replace them
by installing your own certificates. You can also configure your listener to use a Kafka listener certificate
managed by an external Certificate Authority.

Certificates are available in PKCS #12 (.p12) and PEM (.crt) formats. This procedure shows PKCS #12
certificates.

Prerequisites

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

56

https://github.com/kubernetes/ingress-nginx
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#installing-your-own-ca-certificates-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#kafka-listener-certificates-str

1

2

3

4

The Kafka cluster is available for the client

The Cluster Operator and User Operator are running in the cluster

A client outside the OpenShift cluster to connect to the Kafka cluster

Procedure

1. Configure the Kafka cluster with an external Kafka listener.

Define the authentication required to access the Kafka broker through the listener

Enable authorization on the Kafka broker
For example:

Configuration options for enabling external listeners are described in the Generic
Kafka listener schema reference.

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within
a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of
ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on
the listener type, the port number might not be the same as the port number that
connects Kafka clients.

External listener type specified as route, loadbalancer, nodeport or ingress. An
internal listener is specified as internal.

Enables TLS encryption on the listener. Default is false. TLS encryption is not required

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners: 1
 - name: external 2
 port: 9094 3
 type: LISTENER-TYPE 4
 tls: true 5
 authentication:
 type: tls 6
 configuration:
 preferredNodePortAddressType: InternalDNS 7
 bootstrap and broker service overrides 8
 #...
 authorization: 9
 type: simple
 superUsers:
 - super-user-name 10
 # ...

CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA CLUSTER

57

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-GenericKafkaListener-reference

5

6

7

8

9

10

Enables TLS encryption on the listener. Default is false. TLS encryption is not required
for route listeners.

Authentication specified as tls.

(Optional, for nodeport listeners only) Configuration to specify a preference for the
first address type used by AMQ Streams as the node address.

(Optional) AMQ Streams automatically determines the addresses to advertise to
clients. The addresses are automatically assigned by OpenShift. You can override
bootstrap and broker service addresses if the infrastructure on which you are running
AMQ Streams does not provide the right address. Validation is not performed on the
overrides. The override configuration differs according to the listener type. For
example, you can override hosts for route, DNS names or IP addresses for
loadbalancer, and node ports for nodeport.

Authorization specified as simple, which uses the AclAuthorizer Kafka plugin.

(Optional) Super users can access all brokers regardless of any access restrictions
defined in ACLs.

WARNING

An OpenShift Route address comprises the name of the Kafka cluster,
the name of the listener, and the name of the namespace it is created
in. For example, my-cluster-kafka-listener1-bootstrap-myproject
(CLUSTER-NAME-kafka-LISTENER-NAME-bootstrap-NAMESPACE).
If you are using a route listener type, be careful that the whole length of
the address does not exceed a maximum limit of 63 characters.

2. Create or update the Kafka resource.

The Kafka cluster is configured with a Kafka broker listener using TLS authentication.

A service is created for each Kafka broker pod.

A service is created to serve as the bootstrap address for connection to the Kafka cluster.

A service is also created as the external bootstrap address for external connection to the Kafka
cluster using nodeport listeners.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Find the bootstrap address and port from the status of the Kafka resource.



oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}'

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

58

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-GenericKafkaListenerConfiguration-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-GenericKafkaListenerConfiguration-reference

1

2

3

Use the bootstrap address in your Kafka client to connect to the Kafka cluster.

4. Create or modify a user representing the client that requires access to the Kafka cluster.

Specify the same authentication type as the Kafka listener.

Specify the authorization ACLs for simple authorization.
For example:

The label must match the label of the Kafka cluster for the user to be created.

Authentication specified as tls.

Simple authorization requires an accompanying list of ACL rules to apply to the user.
The rules define the operations allowed on Kafka resources based on the username
(my-user).

5. Create or modify the KafkaUser resource.

The user is created, as well as a Secret with the same name as the KafkaUser resource. The
Secret contains a private and public key for TLS client authentication.

For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster 1
spec:
 authentication:
 type: tls 2
 authorization:
 type: simple
 acls: 3
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group
 name: my-group
 patternType: literal
 operation: Read

oc apply -f USER-CONFIG-FILE

CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA CLUSTER

59

1

2

3

4

6. Extract the public cluster CA certificate to the desired certificate format:

7. Extract the password from the password file:

8. Configure your client with the authentication details for the public cluster certificates:

Sample client code

Enables TLS encryption (with or without TLS client authentication).

Specifies the truststore location where the certificates were imported.

Specifies the password for accessing the truststore. This property can be omitted if it is
not needed by the truststore.

Identifies the truststore type.

NOTE

Use security.protocol: SASL_SSL when using SCRAM-SHA authentication over
TLS.

9. Extract the user CA certificate from the user Secret to the desired certificate format:

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: PUBLIC-KEY-OF-THE-CLIENT-CA
 user.crt: USER-CERTIFICATE-CONTAINING-PUBLIC-KEY-OF-USER
 user.key: PRIVATE-KEY-OF-USER
 user.p12: P12-ARCHIVE-FILE-STORING-CERTIFICATES-AND-KEYS
 user.password: PASSWORD-PROTECTING-P12-ARCHIVE

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64
-d > ca.p12

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.password}' |
base64 -d > ca.password

properties.put("security.protocol","SSL"); 1
properties.put(SslConfigs.SSL_TRUSTSTORE_LOCATION_CONFIG,"/path/to/ca.p12"); 2
properties.put(SslConfigs.SSL_TRUSTSTORE_PASSWORD_CONFIG,CA-PASSWORD);
3

properties.put(SslConfigs.SSL_TRUSTSTORE_TYPE_CONFIG,"PKCS12"); 4

oc get secret USER-NAME -o jsonpath='{.data.user\.p12}' | base64 -d > user.p12

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

60

1

2

3

10. Extract the password from the password file:

11. Configure your client with the authentication details for the user CA certificate:

Sample client code

Specifies the keystore location where the certificates were imported.

Specifies the password for accessing the keystore. This property can be omitted if it is not
needed by the keystore. The public user certificate is signed by the client CA when it is
created.

Identifies the keystore type.

12. Add the bootstrap address and port for connecting to the Kafka cluster:

Additional resources

Listener authentication options

Kafka authorization options

If you are using an authorization server, you can use token-based OAuth 2.0 authentication and
OAuth 2.0 authorization .

oc get secret USER-NAME -o jsonpath='{.data.user\.password}' | base64 -d > user.password

properties.put(SslConfigs.SSL_KEYSTORE_LOCATION_CONFIG,"/path/to/user.p12"); 1
properties.put(SslConfigs.SSL_KEYSTORE_PASSWORD_CONFIG,"<user.password>"); 2
properties.put(SslConfigs.SSL_KEYSTORE_TYPE_CONFIG,"PKCS12"); 3

bootstrap.servers: BOOTSTRAP-ADDRESS:PORT

CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA CLUSTER

61

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-securing-kafka-authentication-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-securing-kafka-authorization-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-oauth-authentication_str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-oauth-authorization_str

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR
AMQ STREAMS

You can use Prometheus and Grafana to monitor your AMQ Streams deployment.

You can monitor your AMQ Streams deployment by viewing key metrics on dashboards and setting up
alerts that trigger under certain conditions. Metrics are available for each of the components of AMQ
Streams.

To provide metrics information, AMQ Streams uses Prometheus rules and Grafana dashboards.

When configured with a set of rules for each component of AMQ Streams, Prometheus consumes key
metrics from the pods that are running in your cluster. Grafana then visualizes those metrics on
dashboards. AMQ Streams includes example Grafana dashboards that you can customize to suit your
deployment.

AMQ Streams employs monitoring for user-defined projects (an OpenShift feature) to simplify the
Prometheus setup process.

Depending on your requirements, you can:

Set up and deploy Prometheus to expose metrics

Deploy Kafka Exporter to provide additional metrics

Use Grafana to present the Prometheus metrics

With Prometheus and Grafana set up, you can use the example Grafana dashboards provided by AMQ
Streams for monitoring.

Additionally, you can configure your deployment to track messages end-to-end by setting up distributed
tracing.

NOTE

AMQ Streams provides example installation files for Prometheus and Grafana. You can
use these files as a starting point when trying out monitoring of AMQ Streams. For further
support, try engaging with the Prometheus and Grafana developer communities.

Supporting documentation for metrics and monitoring tools

For more information on the metrics and monitoring tools, refer to the supporting documentation:

Prometheus

Prometheus configuration

Kafka Exporter

Grafana Labs

Apache Kafka Monitoring describes JMX metrics exposed by Apache Kafka

ZooKeeper JMX describes JMX metrics exposed by Apache ZooKeeper

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

62

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-distributed-tracing-str
https://github.com/prometheus
https://prometheus.io/docs/prometheus/latest/configuration/configuration
https://github.com/danielqsj/kafka_exporter
https://grafana.com/
http://kafka.apache.org/documentation/#monitoring
https://zookeeper.apache.org/doc/current/zookeeperJMX.html

7.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER

Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.
You can configure the Kafka resource to deploy Kafka Exporter with your Kafka cluster . Kafka Exporter
extracts additional metrics data from Kafka brokers related to offsets, consumer groups, consumer lag,
and topics. The metrics data is used, for example, to help identify slow consumers. Lag data is exposed
as Prometheus metrics, which can then be presented in Grafana for analysis.

IMPORTANT

Kafka Exporter provides only additional metrics related to consumer lag and consumer
offsets. For regular Kafka metrics, you have to configure the Prometheus metrics in Kafka
brokers.

Consumer lag indicates the difference in the rate of production and consumption of messages.
Specifically, consumer lag for a given consumer group indicates the delay between the last message in
the partition and the message being currently picked up by that consumer.

The lag reflects the position of the consumer offset in relation to the end of the partition log.

Consumer lag between the producer and consumer offset

This difference is sometimes referred to as the delta between the producer offset and consumer offset:
the read and write positions in the Kafka broker topic partitions.

Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset
(the topic partition head) and the last offset the consumer has read means a 10-second delay.

The importance of monitoring consumer lag
For applications that rely on the processing of (near) real-time data, it is critical to monitor consumer lag
to check that it does not become too big. The greater the lag becomes, the further the process moves
from the real-time processing objective.

Consumer lag, for example, might be a result of consuming too much old data that has not been purged,
or through unplanned shutdowns.

Reducing consumer lag
Use the Grafana charts to analyze lag and to check if actions to reduce lag are having an impact on an
affected consumer group. If, for example, Kafka brokers are adjusted to reduce lag, the dashboard will
show the Lag by consumer group chart going down and the Messages consumed per minute chart going
up.

Typical actions to reduce lag include:

Scaling-up consumer groups by adding new consumers

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

63

https://github.com/danielqsj/kafka_exporter

Increasing the retention time for a message to remain in a topic

Adding more disk capacity to increase the message buffer

Actions to reduce consumer lag depend on the underlying infrastructure and the use cases AMQ
Streams is supporting. For instance, a lagging consumer is less likely to benefit from the broker being
able to service a fetch request from its disk cache. And in certain cases, it might be acceptable to
automatically drop messages until a consumer has caught up.

7.2. MONITORING CRUISE CONTROL OPERATIONS

Cruise Control monitors Kafka brokers in order to track the utilization of brokers, topics, and partitions.
Cruise Control also provides a set of metrics for monitoring its own performance.

The Cruise Control metrics reporter collects raw metrics data from Kafka brokers. The data is produced
to topics that are automatically created by Cruise Control. The metrics are used to generate
optimization proposals for Kafka clusters.

Cruise Control metrics are available for real-time monitoring of Cruise Control operations. For example,
you can use Cruise Control metrics to monitor the status of rebalancing operations that are running or
provide alerts on any anomalies that are detected in an operation’s performance.

You expose Cruise Control metrics by enabling the Prometheus JMX Exporter in the Cruise Control
configuration.

NOTE

For a full list of available Cruise Control metrics, which are known as sensors, see the
Cruise Control documentation.

7.2.1. Exposing Cruise Control metrics

If you want to expose metrics on Cruise Control operations, configure the Kafka resource to deploy
Cruise Control and enable Prometheus metrics in the deployment. You can use your own configuration
or use the example kafka-cruise-control-metrics.yaml file provided by AMQ Streams.

You add the configuration to the metricsConfig of the CruiseControl property in the Kafka resource.
The configuration enables the Prometheus JMX Exporter to expose Cruise Control metrics through an
HTTP endpoint. The HTTP endpoint is scraped by the Prometheus server.

Example metrics configuration for Cruise Control

 apiVersion: kafka.strimzi.io/v1beta2
 kind: Kafka
 metadata:
 name: my-cluster
 Spec:
 # ...
 cruiseControl:
 # ...
 metricsConfig:
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: cruise-control-metrics

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

64

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str
https://github.com/prometheus/jmx_exporter
https://github.com/linkedin/cruise-control/wiki/Sensors
https://github.com/prometheus/jmx_exporter

7.2.2. Viewing Cruise Control metrics

After you expose the Cruise Control metrics, you can use Prometheus or another suitable monitoring
system to view information on the metrics data. AMQ Streams provides an example Grafana dashboard
to display visualizations of Cruise Control metrics. The dashboard is a JSON file called strimzi-cruise-
control.json. The exposed metrics provide the monitoring data when you enable the Grafana
dashboard.

7.2.2.1. Monitoring balancedness scores

Cruise Control metrics include a balancedness score. Balancedness is the measure of how evenly a
workload is distributed in a Kafka cluster.

The Cruise Control metric for balancedness score (balancedness-score) might differ from the
balancedness score in the KafkaRebalance resource. Cruise Control calculates each score using
anomaly.detection.goals which might not be the same as the default.goals used in the
KafkaRebalance resource. The anomaly.detection.goals are specified in the
spec.cruiseControl.config of the Kafka custom resource.

NOTE

Refreshing the KafkaRebalance resource fetches an optimization proposal. The latest
cached optimization proposal is fetched if one of the following conditions applies:

KafkaRebalance goals match the goals configured in the default.goals section
of the Kafka resource

KafkaRebalance goals are not specified

Otherwise, Cruise Control generates a new optimization proposal based on
KafkaRebalance goals. If new proposals are generated with each refresh, this can impact
performance monitoring.

7.2.2.2. Alerts on anomaly detection

Cruise control’s anomaly detector provides metrics data for conditions that block the generation of
optimization goals, such as broker failures. If you want more visibility, you can use the metrics provided
by the anomaly detector to set up alerts and send out notifications. You can set up Cruise Control’s
anomaly notifier to route alerts based on these metrics through a specified notification channel.
Alternatively, you can set up Prometheus to scrape the metrics data provided by the anomaly detector
and generate alerts. Prometheus Alertmanager can then route the alerts generated by Prometheus.

The Cruise Control documentation provides information on AnomalyDetector metrics and the anomaly

 key: metrics-config.yml

 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: cruise-control-metrics
 labels:
 app: strimzi
 data:
 metrics-config.yml: |
 # metrics configuration...

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

65

1

2

3

4

5

6

7

8

The Cruise Control documentation provides information on AnomalyDetector metrics and the anomaly
notifier.

7.3. EXAMPLE METRICS FILES

You can find example Grafana dashboards and other metrics configuration files in the example
configuration files provided by AMQ Streams.

Example metrics files provided with AMQ Streams

metrics
├── grafana-dashboards 1
│ ├── strimzi-cruise-control.json
│ ├── strimzi-kafka-bridge.json
│ ├── strimzi-kafka-connect.json
│ ├── strimzi-kafka-exporter.json
│ ├── strimzi-kafka-mirror-maker-2.json
│ ├── strimzi-kafka.json
│ ├── strimzi-operators.json
│ └── strimzi-zookeeper.json
├── grafana-install
│ └── grafana.yaml 2
├── prometheus-additional-properties
│ └── prometheus-additional.yaml 3
├── prometheus-alertmanager-config
│ └── alert-manager-config.yaml 4
├── prometheus-install
│ ├── alert-manager.yaml 5
│ ├── prometheus-rules.yaml 6
│ ├── prometheus.yaml 7
│ ├── strimzi-pod-monitor.yaml 8
├── kafka-bridge-metrics.yaml 9
├── kafka-connect-metrics.yaml 10
├── kafka-cruise-control-metrics.yaml 11
├── kafka-metrics.yaml 12
└── kafka-mirror-maker-2-metrics.yaml 13

Example Grafana dashboards for the different AMQ Streams components.

Installation file for the Grafana image.

Additional configuration to scrape metrics for CPU, memory and disk volume usage, which comes
directly from the OpenShift cAdvisor agent and kubelet on the nodes.

Hook definitions for sending notifications through Alertmanager.

Resources for deploying and configuring Alertmanager.

Alerting rules examples for use with Prometheus Alertmanager (deployed with Prometheus).

Installation resource file for the Prometheus image.

PodMonitor definitions translated by the Prometheus Operator into jobs for the Prometheus
server to be able to scrape metrics data directly from pods.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

66

https://github.com/linkedin/cruise-control/wiki/Configurations

9

10

11

12

13

Kafka Bridge resource with metrics enabled.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Connect.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Cruise Control.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka and
ZooKeeper.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Mirror
Maker 2.0.

7.3.1. Example Prometheus metrics configuration

AMQ Streams uses the Prometheus JMX Exporter to expose metrics through an HTTP endpoint, which
can be scraped by the Prometheus server.

Grafana dashboards are dependent on Prometheus JMX Exporter relabeling rules, which are defined for
AMQ Streams components in the custom resource configuration.

A label is a name-value pair. Relabeling is the process of writing a label dynamically. For example, the
value of a label may be derived from the name of a Kafka server and client ID.

AMQ Streams provides example custom resource configuration YAML files with relabeling rules. When
deploying Prometheus metrics configuration, you can can deploy the example custom resource or copy
the metrics configuration to your own custom resource definition.

Table 7.1. Example custom resources with metrics configuration

Component Custom resource Example YAML file

Kafka and ZooKeeper Kafka kafka-metrics.yaml

Kafka Connect KafkaConnect kafka-connect-metrics.yaml

Kafka MirrorMaker 2.0 KafkaMirrorMaker2 kafka-mirror-maker-2-
metrics.yaml

Kafka Bridge KafkaBridge kafka-bridge-metrics.yaml

Cruise Control Kafka kafka-cruise-control-
metrics.yaml

7.3.2. Example Prometheus rules for alert notifications

Example Prometheus rules for alert notifications are provided with the example metrics configuration
files provided by AMQ Streams. The rules are specified in the example prometheus-rules.yaml file for
use in a Prometheus deployment.

Alerting rules provide notifications about specific conditions observed in metrics. Rules are declared on
the Prometheus server, but Prometheus Alertmanager is responsible for alert notifications.

Prometheus alerting rules describe conditions using PromQL expressions that are continuously

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

67

https://github.com/prometheus/jmx_exporter

Prometheus alerting rules describe conditions using PromQL expressions that are continuously
evaluated.

When an alert expression becomes true, the condition is met and the Prometheus server sends alert
data to the Alertmanager. Alertmanager then sends out a notification using the communication method
configured for its deployment.

General points about the alerting rule definitions:

A for property is used with the rules to determine the period of time a condition must persist
before an alert is triggered.

A tick is a basic ZooKeeper time unit, which is measured in milliseconds and configured using the
tickTime parameter of Kafka.spec.zookeeper.config. For example, if ZooKeeper
tickTime=3000, 3 ticks (3 x 3000) equals 9000 milliseconds.

The availability of the ZookeeperRunningOutOfSpace metric and alert is dependent on the
OpenShift configuration and storage implementation used. Storage implementations for
certain platforms may not be able to supply the information on available space required for the
metric to provide an alert.

Alertmanager can be configured to use email, chat messages or other notification methods. Adapt the
default configuration of the example rules according to your specific needs.

Kafka alerting rules

UnderReplicatedPartitions

Gives the number of partitions for which the current broker is the lead replica but which have fewer
replicas than the min.insync.replicas configured for their topic. This metric provides insights about
brokers that host the follower replicas. Those followers are not keeping up with the leader. Reasons
for this could include being (or having been) offline, and over-throttled interbroker replication. An
alert is raised when this value is greater than zero, providing information on the under-replicated
partitions for each broker.

AbnormalControllerState

Indicates whether the current broker is the controller for the cluster. The metric can be 0 or 1. During
the life of a cluster, only one broker should be the controller and the cluster always needs to have an
active controller. Having two or more brokers saying that they are controllers indicates a problem. If
the condition persists, an alert is raised when the sum of all the values for this metric on all brokers is
not equal to 1, meaning that there is no active controller (the sum is 0) or more than one controller
(the sum is greater than 1).

UnderMinIsrPartitionCount

Indicates that the minimum number of in-sync replicas (ISRs) for a lead Kafka broker, specified using
min.insync.replicas, that must acknowledge a write operation has not been reached. The metric
defines the number of partitions that the broker leads for which the in-sync replicas count is less than
the minimum in-sync. An alert is raised when this value is greater than zero, providing information on
the partition count for each broker that did not achieve the minimum number of acknowledgments.

OfflineLogDirectoryCount

Indicates the number of log directories which are offline (for example, due to a hardware failure) so
that the broker cannot store incoming messages anymore. An alert is raised when this value is greater
than zero, providing information on the number of offline log directories for each broker.

KafkaRunningOutOfSpace

Indicates the remaining amount of disk space that can be used for writing data. An alert is raised

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

68

https://prometheus.io/docs/prometheus/latest/querying/basics/

Indicates the remaining amount of disk space that can be used for writing data. An alert is raised
when this value is lower than 5GiB, providing information on the disk that is running out of space for
each persistent volume claim. The threshold value may be changed in prometheus-rules.yaml.

ZooKeeper alerting rules

AvgRequestLatency

Indicates the amount of time it takes for the server to respond to a client request. An alert is raised
when this value is greater than 10 (ticks), providing the actual value of the average request latency for
each server.

OutstandingRequests

Indicates the number of queued requests in the server. This value goes up when the server receives
more requests than it can process. An alert is raised when this value is greater than 10, providing the
actual number of outstanding requests for each server.

ZookeeperRunningOutOfSpace

Indicates the remaining amount of disk space that can be used for writing data to ZooKeeper. An
alert is raised when this value is lower than 5GiB., providing information on the disk that is running out
of space for each persistent volume claim.

Kafka Exporter alerting rules

If you perform the steps to introduce metrics to your deployment, you will already have your Kafka
cluster configured to use the alert notification rules that support Kafka Exporter.

UnderReplicatedPartition

An alert to warn that a topic is under-replicated and the broker is not replicating to enough
partitions. The default configuration is for an alert if there are one or more under-replicated
partitions for a topic. The alert might signify that a Kafka instance is down or the Kafka cluster is
overloaded. A planned restart of the Kafka broker may be required to restart the replication process.

TooLargeConsumerGroupLag

An alert to warn that the lag on a consumer group is too large for a specific topic partition. The
default configuration is 1000 records. A large lag might indicate that consumers are too slow and are
falling behind the producers.

NoMessageForTooLong

An alert to warn that a topic has not received messages for a period of time. The default
configuration for the time period is 10 minutes. The delay might be a result of a configuration issue
preventing a producer from publishing messages to the topic.

7.3.3. Example Grafana dashboards

If you deploy Prometheus to provide metrics, you can use the example Grafana dashboards provided
with AMQ Streams to monitor AMQ Streams components.

Example dashboards are provided in the examples/metrics/grafana-dashboards directory as JSON
files.

All dashboards provide JVM metrics, as well as metrics specific to the component. For example, the
Grafana dashboard for AMQ Streams operators provides information on the number of reconciliations
or custom resources they are processing.

The example dashboards don’t show all the metrics supported by Kafka. The dashboards are populated
with a representative set of metrics for monitoring.

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

69

Table 7.2. Example Grafana dashboard files

Component Example JSON file

AMQ Streams operators strimzi-operators.json

Kafka strimzi-kafka.json

ZooKeeper strimzi-zookeeper.json

Kafka Connect strimzi-kafka-connect.json

Kafka MirrorMaker 2.0 strimzi-kafka-mirror-maker-2.json

Kafka Bridge strimzi-kafka-bridge.json

Cruise Control strimzi-cruise-control.json

Kafka Exporter strimzi-kafka-exporter.json

7.4. DEPLOYING PROMETHEUS METRICS CONFIGURATION

Deploy Prometheus metrics configuration to use Prometheus with AMQ Streams. Use the
metricsConfig property to enable and configure Prometheus metrics.

You can use your own configuration or the example custom resource configuration files provided with
AMQ Streams.

kafka-metrics.yaml

kafka-connect-metrics.yaml

kafka-mirror-maker-2-metrics.yaml

kafka-bridge-metrics.yaml

kafka-cruise-control-metrics.yaml

The example configuration files have relabeling rules and the configuration required to enable
Prometheus metrics. Prometheus scrapes metrics from target HTTP endpoints. The example files are a
good way to try Prometheus with AMQ Streams.

To apply the relabeling rules and metrics configuration, do one of the following:

Copy the example configuration to your own custom resources

Deploy the custom resource with the metrics configuration

If you want to include Kafka Exporter metrics, add kafkaExporter configuration to your Kafka resource.

IMPORTANT

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

70

IMPORTANT

Kafka Exporter provides only additional metrics related to consumer lag and consumer
offsets. For regular Kafka metrics, you have to configure the Prometheus metrics in Kafka
brokers.

This procedure shows how to deploy Prometheus metrics configuration in the Kafka resource. The
process is the same when using the example files for other resources.

Procedure

1. Deploy the example custom resource with the Prometheus configuration.
For example, for each Kafka resource you apply the kafka-metrics.yaml file.

Deploying the example configuration

Alternatively, you can copy the example configuration in kafka-metrics.yaml to your own Kafka
resource.

Copying the example configuration

Copy the metricsConfig property and the ConfigMap it references to your Kafka resource.

Example metrics configuration for Kafka

oc apply -f kafka-metrics.yaml

oc edit kafka <kafka-configuration-file>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metricsConfig: 1
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

kind: ConfigMap 2
apiVersion: v1
metadata:
 name: kafka-metrics
 labels:
 app: strimzi
data:
 kafka-metrics-config.yml: |
 # metrics configuration...

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

71

1

2

Copy the metricsConfig property that references the ConfigMap that contains metrics
configuration.

Copy the whole ConfigMap that specifies the metrics configuration.

NOTE

For Kafka Bridge, you specify the enableMetrics property and set it to true.

2. To deploy Kafka Exporter, add kafkaExporter configuration.
kafkaExporter configuration is only specified in the Kafka resource.

Example configuration for deploying Kafka Exporter

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 bootstrapServers: my-cluster-kafka:9092
 http:
 # ...
 enableMetrics: true
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 kafkaExporter:
 image: my-registry.io/my-org/my-exporter-cluster:latest 1
 groupRegex: ".*" 2
 topicRegex: ".*" 3
 resources: 4
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 logging: debug 5
 enableSaramaLogging: true 6
 template: 7
 pod:
 metadata:
 labels:
 label1: value1
 imagePullSecrets:
 - name: my-docker-credentials

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

72

1

2

3

4

5

6

7

8

9

ADVANCED OPTION: Container image configuration, which is recommended only in
special situations.

A regular expression to specify the consumer groups to include in the metrics.

A regular expression to specify the topics to include in the metrics.

CPU and memory resources to reserve .

Logging configuration, to log messages with a given severity (debug, info, warn, error,
fatal) or above.

Boolean to enable Sarama logging, a Go client library used by Kafka Exporter.

Customization of deployment templates and pods.

Healthcheck readiness probes.

Healthcheck liveness probes.

Additional resources

KafkaExporterTemplate schema reference

metricsConfig schema reference

7.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT

When AMQ Streams is deployed to OpenShift Container Platform, metrics are provided through
monitoring for user-defined projects. This OpenShift feature gives developers access to a separate
Prometheus instance for monitoring their own projects (for example, a Kafka project).

If monitoring for user-defined projects is enabled, the openshift-user-workload-monitoring project
contains the following components:

A Prometheus Operator

A Prometheus instance (automatically deployed by the Prometheus Operator)

A Thanos Ruler instance

AMQ Streams uses these components to consume metrics.

A cluster administrator must enable monitoring for user-defined projects and then grant developers

 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
 readinessProbe: 8
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe: 9
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

73

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-common-configuration-images-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-common-configuration-resources-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-customizing-kubernetes-resources-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-common-configuration-healthchecks-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-common-configuration-healthchecks-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-KafkaExporterTemplate-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#con-common-configuration-prometheus-reference

A cluster administrator must enable monitoring for user-defined projects and then grant developers
and other users permission to monitor applications within their own projects.

Grafana deployment

You can deploy a Grafana instance to the project containing your Kafka cluster. The example Grafana
dashboards can then be used to visualize Prometheus metrics for AMQ Streams in the Grafana user
interface.

IMPORTANT

The openshift-monitoring project provides monitoring for core platform components.
Do not use the Prometheus and Grafana components in this project to configure
monitoring for AMQ Streams on OpenShift Container Platform 4.x.

Grafana version 6.3 is the minimum supported version.

Procedure outline

To set up AMQ Streams monitoring in OpenShift Container Platform, follow these procedures in order:

1. Prerequisite: Deploy the Prometheus metrics configuration

2. Deploy the Prometheus resources

3. Create a service account for Grafana

4. Deploy Grafana with a Prometheus datasource

5. Create a Route to the Grafana Service

6. Import the example Grafana dashboards

7.5.1. Prerequisites

You have deployed the Prometheus metrics configuration using the example YAML files.

Monitoring for user-defined projects is enabled. A cluster administrator has created a cluster-
monitoring-config config map in your OpenShift cluster.

A cluster administrator has assigned you a monitoring-rules-edit or monitoring-edit role.

For more information on creating a cluster-monitoring-config config map and granting users
permission to monitor user-defined projects, see OpenShift Container Platform Monitoring.

7.5.2. Additional resources

OpenShift Container Platform Monitoring

7.5.3. Deploying the Prometheus resources

Use Prometheus to obtain monitoring data in your Kafka cluster.

You can use your own Prometheus deployment or deploy Prometheus using the example metrics
configuration files provided by AMQ Streams. To use the example files, you configure and deploy the
PodMonitor resources. The PodMonitors scrape data directly from pods for Apache Kafka, ZooKeeper,

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/monitoring/index

1

Operators, the Kafka Bridge, and Cruise Control.

Then, you deploy the example alerting rules for Alertmanager.

Prerequisites

A running Kafka cluster.

Check the example alerting rules provided with AMQ Streams.

Procedure

1. Check that monitoring for user-defined projects is enabled:

If enabled, pods for the monitoring components are returned. For example:

If no pods are returned, monitoring for user-defined projects is disabled. See the Prerequisites
in Section 7.5, “Viewing Kafka metrics and dashboards in OpenShift” .

2. Multiple PodMonitor resources are defined in examples/metrics/prometheus-install/strimzi-
pod-monitor.yaml.
For each PodMonitor resource, edit the spec.namespaceSelector.matchNames property:

The project where the pods to scrape the metrics from are running, for example, Kafka.

3. Deploy the strimzi-pod-monitor.yaml file to the project where your Kafka cluster is running:

oc get pods -n openshift-user-workload-monitoring

NAME READY STATUS RESTARTS AGE
prometheus-operator-5cc59f9bc6-kgcq8 1/1 Running 0 25s
prometheus-user-workload-0 5/5 Running 1 14s
prometheus-user-workload-1 5/5 Running 1 14s
thanos-ruler-user-workload-0 3/3 Running 0 14s
thanos-ruler-user-workload-1 3/3 Running 0 14s

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: cluster-operator-metrics
 labels:
 app: strimzi
spec:
 selector:
 matchLabels:
 strimzi.io/kind: cluster-operator
 namespaceSelector:
 matchNames:
 - <project-name> 1
 podMetricsEndpoints:
 - path: /metrics
 port: http
...

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

75

1

4. Deploy the example Prometheus rules to the same project:

7.5.4. Creating a service account for Grafana

A Grafana instance for AMQ Streams needs to run with a service account that is assigned the cluster-
monitoring-view role.

Create a service account if you are using Grafana to present metrics for monitoring.

Prerequisites

Deploy the Prometheus resources

Procedure

1. Create a ServiceAccount for Grafana. Here the resource is named grafana-serviceaccount.

2. Deploy the ServiceAccount to the project containing your Kafka cluster:

3. Create a ClusterRoleBinding resource that assigns the cluster-monitoring-view role to the
Grafana ServiceAccount. Here the resource is named grafana-cluster-monitoring-binding.

Name of your project.

oc apply -f strimzi-pod-monitor.yaml -n MY-PROJECT

oc apply -f prometheus-rules.yaml -n MY-PROJECT

apiVersion: v1
kind: ServiceAccount
metadata:
 name: grafana-serviceaccount
 labels:
 app: strimzi

oc apply -f GRAFANA-SERVICEACCOUNT -n MY-PROJECT

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: grafana-cluster-monitoring-binding
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: grafana-serviceaccount
 namespace: <my-project> 1
roleRef:
 kind: ClusterRole
 name: cluster-monitoring-view
 apiGroup: rbac.authorization.k8s.io

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

76

4. Deploy the ClusterRoleBinding to the project containing your Kafka cluster:

7.5.5. Deploying Grafana with a Prometheus datasource

Deploy Grafana to present Prometheus metrics. A Grafana application requires configuration for the
OpenShift Container Platform monitoring stack.

OpenShift Container Platform includes a Thanos Querier instance in the openshift-monitoring project.
Thanos Querier is used to aggregate platform metrics.

To consume the required platform metrics, your Grafana instance requires a Prometheus data source
that can connect to Thanos Querier. To configure this connection, you create a config map that
authenticates, by using a token, to the oauth-proxy sidecar that runs alongside Thanos Querier. A
datasource.yaml file is used as the source of the config map.

Finally, you deploy the Grafana application with the config map mounted as a volume to the project
containing your Kafka cluster.

Prerequisites

Deploy the Prometheus resources

Create a service account for Grafana

Procedure

1. Get the access token of the Grafana ServiceAccount:

Copy the access token to use in the next step.

2. Create a datasource.yaml file containing the Thanos Querier configuration for Grafana.
Paste the access token into the httpHeaderValue1 property as indicated.

oc apply -f <grafana-cluster-monitoring-binding> -n <my-project>

oc serviceaccounts get-token grafana-serviceaccount -n MY-PROJECT

apiVersion: 1

datasources:
- name: Prometheus
 type: prometheus
 url: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091
 access: proxy
 basicAuth: false
 withCredentials: false
 isDefault: true
 jsonData:
 timeInterval: 5s
 tlsSkipVerify: true
 httpHeaderName1: "Authorization"
 secureJsonData:
 httpHeaderValue1: "Bearer ${GRAFANA-ACCESS-TOKEN}" 1
 editable: true

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

77

1 GRAFANA-ACCESS-TOKEN: The value of the access token for the Grafana
ServiceAccount.

3. Create a config map named grafana-config from the datasource.yaml file:

4. Create a Grafana application consisting of a Deployment and a Service.
The grafana-config config map is mounted as a volume for the datasource configuration.

oc create configmap grafana-config --from-file=datasource.yaml -n MY-PROJECT

apiVersion: apps/v1
kind: Deployment
metadata:
 name: grafana
 labels:
 app: strimzi
spec:
 replicas: 1
 selector:
 matchLabels:
 name: grafana
 template:
 metadata:
 labels:
 name: grafana
 spec:
 serviceAccountName: grafana-serviceaccount
 containers:
 - name: grafana
 image: grafana/grafana:7.3.7
 ports:
 - name: grafana
 containerPort: 3000
 protocol: TCP
 volumeMounts:
 - name: grafana-data
 mountPath: /var/lib/grafana
 - name: grafana-logs
 mountPath: /var/log/grafana
 - name: grafana-config
 mountPath: /etc/grafana/provisioning/datasources/datasource.yaml
 readOnly: true
 subPath: datasource.yaml
 readinessProbe:
 httpGet:
 path: /api/health
 port: 3000
 initialDelaySeconds: 5
 periodSeconds: 10
 livenessProbe:
 httpGet:
 path: /api/health
 port: 3000
 initialDelaySeconds: 15

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

78

5. Deploy the Grafana application to the project containing your Kafka cluster:

7.5.6. Creating a route to the Grafana Service

You can access the Grafana user interface through a Route that exposes the Grafana service.

Prerequisites

Deploy the Prometheus resources

Create a service account for Grafana

Deploy Grafana with a Prometheus datasource

Procedure

Create an edge route to the grafana service:

7.5.7. Importing the example Grafana dashboards

Use Grafana to provide visualizations of Prometheus metrics on customizable dashboards.

AMQ Streams provides example dashboard configuration files for Grafana in JSON format.

 periodSeconds: 20
 volumes:
 - name: grafana-data
 emptyDir: {}
 - name: grafana-logs
 emptyDir: {}
 - name: grafana-config
 configMap:
 name: grafana-config

apiVersion: v1
kind: Service
metadata:
 name: grafana
 labels:
 app: strimzi
spec:
 ports:
 - name: grafana
 port: 3000
 targetPort: 3000
 protocol: TCP
 selector:
 name: grafana
 type: ClusterIP

oc apply -f <grafana-application> -n <my-project>

oc create route edge <my-grafana-route> --service=grafana --namespace=KAFKA-
NAMESPACE

CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

79

examples/metrics/grafana-dashboards

This procedure uses the example Grafana dashboards.

The example dashboards are a good starting point for monitoring key metrics, but they don’t show all
the metrics supported by Kafka. You can modify the example dashboards or add other metrics,
depending on your infrastructure.

Prerequisites

Deploy the Prometheus resources

Create a service account for Grafana

Deploy Grafana with a Prometheus datasource

Create a Route to the Grafana Service

Procedure

1. Get the details of the Route to the Grafana Service. For example:

2. In a web browser, access the Grafana login screen using the URL for the Route host and port.

3. Enter your user name and password, and then click Log In.
The default Grafana user name and password are both admin. After logging in for the first time,
you can change the password.

4. In Configuration > Data Sources, check that the Prometheus data source was created. The
data source was created in Section 7.5.5, “Deploying Grafana with a Prometheus datasource” .

5. Click the + icon and then click Import.

6. In examples/metrics/grafana-dashboards, copy the JSON of the dashboard to import.

7. Paste the JSON into the text box, and then click Load.

8. Repeat steps 5-7 for the other example Grafana dashboards.

The imported Grafana dashboards are available to view from the Dashboards home page.

oc get routes

NAME HOST/PORT PATH SERVICES
MY-GRAFANA-ROUTE MY-GRAFANA-ROUTE-amq-streams.net grafana

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

80

CHAPTER 8. UPGRADING AMQ STREAMS
AMQ Streams can be upgraded to version 2.0 to take advantage of new features and enhancements,
performance improvements, and security options.

As part of the upgrade, you upgrade Kafka to the latest supported version. Each Kafka release
introduces new features, improvements, and bug fixes to your AMQ Streams deployment.

AMQ Streams can be downgraded to the previous version if you encounter issues with the newer
version.

Released versions of AMQ Streams are listed in the Product Downloads section of the Red Hat
Customer Portal.

Upgrade paths

Two upgrade paths are possible:

Incremental

Upgrading AMQ Streams from the previous minor version to version 2.0.

Multi-version

Upgrading AMQ Streams from an old version to version 2.0 within a single upgrade (skipping one or
more intermediate versions).
For example, upgrading from AMQ Streams 1.7 directly to AMQ Streams 2.0.

Kafka version support

The Kafka versions table lists the supported Kafka versions for AMQ Streams 2.0. In the table:

The latest Kafka version is supported for production use.

The previous Kafka version is supported only for the purpose of upgrading to AMQ Streams 2.0.

Decide which Kafka version to upgrade to before beginning the AMQ Streams upgrade process.

NOTE

You can upgrade to a higher Kafka version as long as it is supported by your version of
AMQ Streams. In some cases, you can also downgrade to a previous supported Kafka
version.

Downtime and availability

If topics are configured for high availability, upgrading AMQ Streams should not cause any downtime for
consumers and producers that publish and read data from those topics. Highly available topics have a
replication factor of at least 3 and partitions distributed evenly among the brokers.

Upgrading AMQ Streams triggers rolling updates, where all brokers are restarted in turn, at different
stages of the process. During rolling updates, not all brokers are online, so overall cluster availability is
temporarily reduced. A reduction in cluster availability increases the chance that a broker failure will
result in lost messages.

8.1. REQUIRED UPGRADE SEQUENCE

To upgrade brokers and clients without downtime, you must complete the AMQ Streams upgrade

CHAPTER 8. UPGRADING AMQ STREAMS

81

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

To upgrade brokers and clients without downtime, you must complete the AMQ Streams upgrade
procedures in the following order:

1. Make sure your Kubernetes cluster version is supported.
AMQ Streams 2.0 is supported by OpenShift 4.6 to 4.9.

You can upgrade Kubernetes with minimal downtime .

2. When upgrading AMQ Streams from 1.7 or earlier, update existing custom resources to support
the v1beta2 API version.

3. Update your Cluster Operator to a new AMQ Streams version.

4. Upgrade all Kafka brokers and client applications to the latest supported Kafka version.

5. Optional: Upgrade consumers and Kafka Streams applications to use the incremental
cooperative rebalance protocol for partition rebalances.

8.1.1. Cluster Operator upgrade options

How you upgrade the Cluster Operator depends on the way you deployed it.

Using installation files

If you deployed the Cluster Operator using the installation YAML files, perform your upgrade by
modifying the Operator installation files, as described in Upgrading the Cluster Operator .

Using the OperatorHub

If you deployed AMQ Streams from the OperatorHub, use the Operator Lifecycle Manager (OLM) to
change the update channel for the AMQ Streams operators to a new AMQ Streams version.
Depending on your chosen upgrade strategy, after updating the channel, either:

An automatic upgrade is initiated

A manual upgrade will require approval before the installation begins
For more information on using the OperatorHub to upgrade Operators, see Upgrading
installed Operators in the OpenShift documentation.

8.1.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub

Action required if upgrading from AMQ Streams 1.7 or earlier using the OperatorHub

The Red Hat Integration - AMQ Streams Operator supports v1beta2 custom resources only. Before
you upgrade the AMQ Streams Operator to version 2.0 in the OperatorHub, custom resources must be
upgraded to v1beta2.

The v1beta2 API version for all custom resources was introduced with AMQ Streams 1.7. For AMQ
Streams 1.8, the v1alpha1 and v1beta1 API versions were removed from all AMQ Streams custom
resources apart from KafkaTopic and KafkaUser.

If you are upgrading from an AMQ Streams version prior to version 1.7:

1. Upgrade to AMQ Streams 1.7.

2. Download the Red Hat AMQ Streams API Conversion Tool provided with AMQ Streams 1.8
from the AMQ Streams download site .

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

82

https://docs.openshift.com/container-platform/latest/operators/admin/olm-upgrading-operators.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

3. Convert custom resources and CRDs to v1beta2.
For more information, see the AMQ Streams 1.7 upgrade documentation .

4. In the OperatorHub, delete version 1.7.0 of the Red Hat Integration - AMQ Streams Operator.

5. If it also exists, delete version 2.0.0 of the Red Hat Integration - AMQ Streams Operator.
If it does not exist, go to the next step.

If the Approval Strategy for the AMQ Streams Operator was set to Automatic, version 2.0.0
of the operator might already exist in your cluster. If you did not convert custom resources and
CRDs to the v1beta2 API version before release, the operator-managed custom resources and
CRDs will be using the old API version. As a result, the 2.0.0 Operator is stuck in Pending status.
In this situation, you need to delete version 2.0.0 of the Red Hat Integration - AMQ Streams
Operator as well as version 1.7.0.

If you delete both operators, reconciliations are paused until the new operator version is
installed. Follow the next step immediately so that any changes to custom resources are not
delayed.

6. In the OperatorHub, install version 2.0.0 of the Red Hat Integration - AMQ Streams Operator
immediately.
The installed 2.0.0 operator begins to watch the cluster and performs rolling updates. You
might notice a temporary decrease in cluster performance during this process.

NOTE

As an alternative, you can install the custom resources from version 1.7, convert the
resources, and then upgrade to 1.8 or newer.

8.2. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME

If you are upgrading OpenShift, refer to the OpenShift upgrade documentation to check the upgrade
path and the steps to upgrade your nodes correctly. Before upgrading OpenShift, check the supported
versions for your version of AMQ Streams.

When performing your upgrade, you’ll want to keep your Kafka clusters available.

You can employ one of the following strategies:

1. Configuring pod disruption budgets

2. Rolling pods by one of these methods:

a. Using the AMQ Streams Drain Cleaner

b. Manually by applying an annotation to your pod

You have to configure the pod disruption budget before using one of the methods to roll your pods.

For Kafka to stay operational, topics must also be replicated for high availability. This requires topic
configuration that specifies a replication factor of at least 3 and a minimum number of in-sync replicas
to 1 less than the replication factor.

Kafka topic replicated for high availability

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 8. UPGRADING AMQ STREAMS

83

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/deploying_and_upgrading_amq_streams_on_openshift/assembly-upgrade-str#assembly-upgrade-resources-str
https://access.redhat.com/articles/6644711

In a highly available environment, the Cluster Operator maintains a minimum number of in-sync replicas
for topics during the upgrade process so that there is no downtime.

8.2.1. Rolling pods using the AMQ Streams Drain Cleaner

You can use the AMQ Streams Drain Cleaner tool to evict nodes during an upgrade. The AMQ Streams
Drain Cleaner annotates pods with a rolling update pod annotation. This informs the Cluster Operator to
perform a rolling update of an evicted pod.

A pod disruption budget allows only a specified number of pods to be unavailable at a given time. During
planned maintenance of Kafka broker pods, a pod disruption budget ensures Kafka continues to run in a
highly available environment.

You specify a pod disruption budget using a template customization for a Kafka component. By default,
pod disruption budgets allow only a single pod to be unavailable at a given time.

To do this, you set maxUnavailable to 0 (zero). Reducing the maximum pod disruption budget to zero
prevents voluntary disruptions, so pods must be evicted manually.

Specifying a pod disruption budget

8.2.2. Rolling pods manually while keeping topics available

During an upgrade, you can trigger a manual rolling update of pods through the Cluster Operator. Using
Pod resources, rolling updates restart the pods of resources with new pods. As with using the AMQ
Streams Drain Cleaner, you’ll need to set the maxUnavailable value to zero for the pod disruption
budget.

You need to watch the pods that need to be drained. You then add a pod annotation to make the

kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 3
 config:
 # ...
 min.insync.replicas: 2
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 template:
 podDisruptionBudget:
 maxUnavailable: 0
...

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

84

You need to watch the pods that need to be drained. You then add a pod annotation to make the
update.

Here, the annotation updates a Kafka broker.

Performing a manual rolling update on a Kafka broker pod

You replace <cluster_name> with the name of the cluster. Kafka broker pods are named <cluster-name>-
kafka-<index>, where <index> starts at zero and ends at the total number of replicas minus one. For
example, my-cluster-kafka-0.

Additional resources

OpenShift documentation

Draining pods using the AMQ Streams Drain Cleaner

Replicating topics for high availability

PodDisruptionBudgetTemplate schema reference

Performing a rolling update using a pod annotation

8.3. AMQ STREAMS CUSTOM RESOURCE UPGRADES

When upgrading AMQ Streams to 2.0 from 1.7 or earlier, you must ensure that your custom resources
are using API version v1beta2. You must upgrade the Custom Resource Definitions and the custom
resources before upgrading to AMQ Streams 1.8 or newer. To perform the upgrade, you can use the API
conversion tool provided with AMQ Streams 1.7. For more information, see the AMQ Streams 1.7
upgrade documentation.

8.4. UPGRADING THE CLUSTER OPERATOR

This procedure describes how to upgrade a Cluster Operator deployment to use AMQ Streams 2.0.

Follow this procedure if you deployed the Cluster Operator using the installation YAML files.

The availability of Kafka clusters managed by the Cluster Operator is not affected by the upgrade
operation.

NOTE

Refer to the documentation supporting a specific version of AMQ Streams for
information on how to upgrade to that version.

Prerequisites

An existing Cluster Operator deployment is available.

You have downloaded the release artifacts for AMQ Streams 2.0 .

Procedure

oc annotate pod <cluster_name>-kafka-<index> strimzi.io/manual-rolling-update=true

CHAPTER 8. UPGRADING AMQ STREAMS

85

https://access.redhat.com/documentation/en-us/openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-drain-cleaner-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#replicating_topics_for_high_availability
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-PodDisruptionBudgetTemplate-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-manual-rolling-update-pods-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/deploying_and_upgrading_amq_streams_on_openshift/assembly-upgrade-str#assembly-upgrade-resources-str

1. Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator directory). Any changes will be overwritten by the new version of the
Cluster Operator.

2. Update your custom resources to reflect the supported configuration options available for AMQ
Streams version 2.0.

3. Update the Cluster Operator.

a. Modify the installation files for the new Cluster Operator version according to the
namespace the Cluster Operator is running in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

b. If you modified one or more environment variables in your existing Cluster Operator
Deployment, edit the install/cluster-operator/060-Deployment-strimzi-cluster-
operator.yaml file to use those environment variables.

4. When you have an updated configuration, deploy it along with the rest of the installation
resources:

Wait for the rolling updates to complete.

5. If the new Operator version no longer supports the Kafka version you are upgrading from, the
Cluster Operator returns an error message to say the version is not supported. Otherwise, no
error message is returned.

If the error message is returned, upgrade to a Kafka version that is supported by the new
Cluster Operator version:

a. Edit the Kafka custom resource.

b. Change the spec.kafka.version property to a supported Kafka version.

If the error message is not returned, go to the next step. You will upgrade the Kafka version
later.

6. Get the image for the Kafka pod to ensure the upgrade was successful:

The image tag shows the new Operator version. For example:

Your Cluster Operator was upgraded to version 2.0 but the version of Kafka running in the cluster it

oc replace -f install/cluster-operator

oc get pods my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

registry.redhat.io/amq7/amq-streams-kafka-28-rhel8:{ContainerVersion}

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

86

Your Cluster Operator was upgraded to version 2.0 but the version of Kafka running in the cluster it
manages is unchanged.

Following the Cluster Operator upgrade, you must perform a Kafka upgrade.

8.5. UPGRADING KAFKA

After you have upgraded your Cluster Operator to 2.0, the next step is to upgrade all Kafka brokers to
the latest supported version of Kafka.

Kafka upgrades are performed by the Cluster Operator through rolling updates of the Kafka brokers.

The Cluster Operator initiates rolling updates based on the Kafka cluster configuration.

If Kafka.spec.kafka.config contains…​ The Cluster Operator initiates…​

Both the inter.broker.protocol.version and the
log.message.format.version.

A single rolling update. After the update, the
inter.broker.protocol.version must be updated
manually, followed by
log.message.format.version. Changing each will
trigger a further rolling update.

Either the inter.broker.protocol.version or the
log.message.format.version.

Two rolling updates.

No configuration for the
inter.broker.protocol.version or the
log.message.format.version.

Two rolling updates.

IMPORTANT

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set. The
log.message.format.version property for brokers and the message.format.version
property for topics are deprecated and will be removed in a future release of Kafka.

As part of the Kafka upgrade, the Cluster Operator initiates rolling updates for ZooKeeper.

A single rolling update occurs even if the ZooKeeper version is unchanged.

Additional rolling updates occur if the new version of Kafka requires a new ZooKeeper version.

8.5.1. Kafka versions

Kafka’s log message format version and inter-broker protocol version specify, respectively, the log
format version appended to messages and the version of the Kafka protocol used in a cluster. To ensure
the correct versions are used, the upgrade process involves making configuration changes to existing
Kafka brokers and code changes to client applications (consumers and producers).

The following table shows the differences between Kafka versions:

CHAPTER 8. UPGRADING AMQ STREAMS

87

Kafka version Interbroker protocol
version

Log message format
version

ZooKeeper version

3.0.0 3.0 3.0 3.6.3

2.8.0 2.8 2.8 3.5.9

Inter-broker protocol version

In Kafka, the network protocol used for inter-broker communication is called the inter-broker protocol.
Each version of Kafka has a compatible version of the inter-broker protocol. The minor version of the
protocol typically increases to match the minor version of Kafka, as shown in the preceding table.

The inter-broker protocol version is set cluster wide in the Kafka resource. To change it, you edit the
inter.broker.protocol.version property in Kafka.spec.kafka.config.

Log message format version

When a producer sends a message to a Kafka broker, the message is encoded using a specific format.
The format can change between Kafka releases, so messages specify which version of the message
format they were encoded with.

The properties used to set a specific message format version are as follows:

message.format.version property for topics

log.message.format.version property for Kafka brokers

From Kafka 3.0.0, the message format version values are assumed to match the
inter.broker.protocol.version and don’t need to be set. The values reflect the Kafka version used.

When upgrading to Kafka 3.0.0 or higher, you can remove these settings when you update the
inter.broker.protocol.version. Otherwise, set the message format version based on the Kafka version
you are upgrading to.

The default value of message.format.version for a topic is defined by the
log.message.format.version that is set on the Kafka broker. You can manually set the
message.format.version of a topic by modifying its topic configuration.

8.5.2. Strategies for upgrading clients

The right approach to upgrading your client applications (including Kafka Connect connectors) depends
on your particular circumstances.

Consuming applications need to receive messages in a message format that they understand. You can
ensure that this is the case in one of two ways:

By upgrading all the consumers for a topic before upgrading any of the producers.

By having the brokers down-convert messages to an older format.

Using broker down-conversion puts extra load on the brokers, so it is not ideal to rely on down-
conversion for all topics for a prolonged period of time. For brokers to perform optimally they should not
be down converting messages at all.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

88

Broker down-conversion is configured in two ways:

The topic-level message.format.version configures it for a single topic.

The broker-level log.message.format.version is the default for topics that do not have the
topic-level message.format.version configured.

Messages published to a topic in a new-version format will be visible to consumers, because brokers
perform down-conversion when they receive messages from producers, not when they are sent to
consumers.

Common strategies you can use to upgrade your clients are described as follows. Other strategies for
upgrading client applications are also possible.

IMPORTANT

The steps outlined in each strategy change slightly when upgrading to Kafka 3.0.0 or
later. From Kafka 3.0.0, the message format version values are assumed to match the
inter.broker.protocol.version and don’t need to be set.

Broker-level consumers first strategy

1. Upgrade all the consuming applications.

2. Change the broker-level log.message.format.version to the new version.

3. Upgrade all the producing applications.

This strategy is straightforward, and avoids any broker down-conversion. However, it assumes that all
consumers in your organization can be upgraded in a coordinated way, and it does not work for
applications that are both consumers and producers. There is also a risk that, if there is a problem with
the upgraded clients, new-format messages might get added to the message log so that you cannot
revert to the previous consumer version.

Topic-level consumers first strategy

For each topic:

1. Upgrade all the consuming applications.

2. Change the topic-level message.format.version to the new version.

3. Upgrade all the producing applications.

This strategy avoids any broker down-conversion, and means you can proceed on a topic-by-topic basis.
It does not work for applications that are both consumers and producers of the same topic. Again, it has
the risk that, if there is a problem with the upgraded clients, new-format messages might get added to
the message log.

Topic-level consumers first strategy with down conversion

For each topic:

1. Change the topic-level message.format.version to the old version (or rely on the topic
defaulting to the broker-level log.message.format.version).

2. Upgrade all the consuming and producing applications.

CHAPTER 8. UPGRADING AMQ STREAMS

89

3. Verify that the upgraded applications function correctly.

4. Change the topic-level message.format.version to the new version.

This strategy requires broker down-conversion, but the load on the brokers is minimized because it is
only required for a single topic (or small group of topics) at a time. It also works for applications that are
both consumers and producers of the same topic. This approach ensures that the upgraded producers
and consumers are working correctly before you commit to using the new message format version.

The main drawback of this approach is that it can be complicated to manage in a cluster with many
topics and applications.

NOTE

It is also possible to apply multiple strategies. For example, for the first few applications
and topics the "per-topic consumers first, with down conversion" strategy can be used.
When this has proved successful another, more efficient strategy can be considered
acceptable to use instead.

8.5.3. Kafka version and image mappings

When upgrading Kafka, consider your settings for the STRIMZI_KAFKA_IMAGES environment variable
and the Kafka.spec.kafka.version property.

Each Kafka resource can be configured with a Kafka.spec.kafka.version.

The Cluster Operator’s STRIMZI_KAFKA_IMAGES environment variable provides a mapping
between the Kafka version and the image to be used when that version is requested in a given
Kafka resource.

If Kafka.spec.kafka.image is not configured, the default image for the given version is
used.

If Kafka.spec.kafka.image is configured, the default image is overridden.

WARNING

The Cluster Operator cannot validate that an image actually contains a Kafka broker
of the expected version. Take care to ensure that the given image corresponds to
the given Kafka version.

8.5.4. Upgrading Kafka brokers and client applications

This procedure describes how to upgrade a AMQ Streams Kafka cluster to the latest supported Kafka
version.

Compared to your current Kafka version, the new version might support a higher log message format
version or inter-broker protocol version , or both. Follow the steps to upgrade these versions, if required.
For more information, see Section 8.5.1, “Kafka versions”.

You should also choose a strategy for upgrading clients . Kafka clients are upgraded in step 6 of this



Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

90

You should also choose a strategy for upgrading clients . Kafka clients are upgraded in step 6 of this
procedure.

Prerequisites

For the Kafka resource to be upgraded, check that:

The Cluster Operator, which supports both versions of Kafka, is up and running.

The Kafka.spec.kafka.config does not contain options that are not supported in the new Kafka
version.

Procedure

1. Update the Kafka cluster configuration:

2. If configured, ensure that Kafka.spec.kafka.config has the log.message.format.version and
inter.broker.protocol.version set to the defaults for the current Kafka version.
For example, if upgrading from Kafka version 2.8.0 to 3.0.0:

If log.message.format.version and inter.broker.protocol.version are not configured, AMQ
Streams automatically updates these versions to the current defaults after the update to the
Kafka version in the next step.

NOTE

The value of log.message.format.version and inter.broker.protocol.version
must be strings to prevent them from being interpreted as floating point
numbers.

3. Change the Kafka.spec.kafka.version to specify the new Kafka version; leave the
log.message.format.version and inter.broker.protocol.version at the defaults for the current
Kafka version.

NOTE

Changing the kafka.version ensures that all brokers in the cluster will be
upgraded to start using the new broker binaries. During this process, some
brokers are using the old binaries while others have already upgraded to the new
ones. Leaving the inter.broker.protocol.version unchanged ensures that the
brokers can continue to communicate with each other throughout the upgrade.

oc edit kafka my-cluster

kind: Kafka
spec:
 # ...
 kafka:
 version: 2.8.0
 config:
 log.message.format.version: "2.8"
 inter.broker.protocol.version: "2.8"
 # ...

CHAPTER 8. UPGRADING AMQ STREAMS

91

1

2

3

For example, if upgrading from Kafka 2.8.0 to 3.0.0:

Kafka version is changed to the new version.

Message format version is unchanged.

Inter-broker protocol version is unchanged.

WARNING

You cannot downgrade Kafka if the inter.broker.protocol.version for the
new Kafka version changes. The inter-broker protocol version determines
the schemas used for persistent metadata stored by the broker, including
messages written to __consumer_offsets. The downgraded cluster will not
understand the messages.

4. If the image for the Kafka cluster is defined in the Kafka custom resource, in
Kafka.spec.kafka.image, update the image to point to a container image with the new Kafka
version.
See Kafka version and image mappings

5. Save and exit the editor, then wait for rolling updates to complete.
Check the progress of the rolling updates by watching the pod state transitions:

The rolling updates ensure that each pod is using the broker binaries for the new version of
Kafka.

6. Depending on your chosen strategy for upgrading clients , upgrade all client applications to use
the new version of the client binaries.
If required, set the version property for Kafka Connect and MirrorMaker as the new version of
Kafka:

a. For Kafka Connect, update KafkaConnect.spec.version.

b. For MirrorMaker, update KafkaMirrorMaker.spec.version.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.0.0 1
 config:
 log.message.format.version: "2.8" 2
 inter.broker.protocol.version: "2.8" 3
 # ...



oc get pods my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

92

c. For MirrorMaker 2.0, update KafkaMirrorMaker2.spec.version.

7. If configured, update the Kafka resource to use the new inter.broker.protocol.version version.
Otherwise, go to step 9.
For example, if upgrading to Kafka 3.0.0:

8. Wait for the Cluster Operator to update the cluster.

9. If configured, update the Kafka resource to use the new log.message.format.version version.
Otherwise, go to step 10.
For example, if upgrading to Kafka 3.0.0:

IMPORTANT

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher,
the log.message.format.version option is ignored and doesn’t need to be set.

10. Wait for the Cluster Operator to update the cluster.

The Kafka cluster and clients are now using the new Kafka version.

The brokers are configured to send messages using the inter-broker protocol version and
message format version of the new version of Kafka.

Following the Kafka upgrade, if required, you can:

Upgrade consumers to use the incremental cooperative rebalance protocol

8.6. UPGRADING CONSUMERS TO COOPERATIVE REBALANCING

You can upgrade Kafka consumers and Kafka Streams applications to use the incremental cooperative

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.0.0
 config:
 log.message.format.version: "2.8"
 inter.broker.protocol.version: "3.0"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.0.0
 config:
 log.message.format.version: "3.0"
 inter.broker.protocol.version: "3.0"
 # ...

CHAPTER 8. UPGRADING AMQ STREAMS

93

You can upgrade Kafka consumers and Kafka Streams applications to use the incremental cooperative
rebalance protocol for partition rebalances instead of the default eager rebalance protocol. The new
protocol was added in Kafka 2.4.0.

Consumers keep their partition assignments in a cooperative rebalance and only revoke them at the end
of the process, if needed to achieve a balanced cluster. This reduces the unavailability of the consumer
group or Kafka Streams application.

NOTE

Upgrading to the incremental cooperative rebalance protocol is optional. The eager
rebalance protocol is still supported.

Prerequisites

You have upgraded Kafka brokers and client applications to Kafka 3.0.0.

Procedure

To upgrade a Kafka consumer to use the incremental cooperative rebalance protocol:

1. Replace the Kafka clients .jar file with the new version.

2. In the consumer configuration, append cooperative-sticky to the
partition.assignment.strategy. For example, if the range strategy is set, change the
configuration to range, cooperative-sticky.

3. Restart each consumer in the group in turn, waiting for the consumer to rejoin the group after
each restart.

4. Reconfigure each consumer in the group by removing the earlier
partition.assignment.strategy from the consumer configuration, leaving only the cooperative-
sticky strategy.

5. Restart each consumer in the group in turn, waiting for the consumer to rejoin the group after
each restart.

To upgrade a Kafka Streams application to use the incremental cooperative rebalance protocol:

1. Replace the Kafka Streams .jar file with the new version.

2. In the Kafka Streams configuration, set the upgrade.from configuration parameter to the Kafka
version you are upgrading from (for example, 2.3).

3. Restart each of the stream processors (nodes) in turn.

4. Remove the upgrade.from configuration parameter from the Kafka Streams configuration.

5. Restart each consumer in the group in turn.

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

94

CHAPTER 9. DOWNGRADING AMQ STREAMS
If you are encountering issues with the version of AMQ Streams you upgraded to, you can revert your
installation to the previous version.

You can perform a downgrade to:

1. Revert your Cluster Operator to the previous AMQ Streams version.

Section 9.1, “Downgrading the Cluster Operator to a previous version”

2. Downgrade all Kafka brokers and client applications to the previous Kafka version.

Section 9.2, “Downgrading Kafka”

If the previous version of AMQ Streams does not support the version of Kafka you are using, you can
also downgrade Kafka as long as the log message format versions appended to messages match.

9.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS
VERSION

If you are encountering issues with AMQ Streams, you can revert your installation.

This procedure describes how to downgrade a Cluster Operator deployment to a previous version.

Prerequisites

An existing Cluster Operator deployment is available.

You have downloaded the installation files for the previous version .

Procedure

1. Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator directory). Any changes will be overwritten by the previous version of
the Cluster Operator.

2. Revert your custom resources to reflect the supported configuration options available for the
version of AMQ Streams you are downgrading to.

3. Update the Cluster Operator.

a. Modify the installation files for the previous version according to the namespace the Cluster
Operator is running in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

b. If you modified one or more environment variables in your existing Cluster Operator

CHAPTER 9. DOWNGRADING AMQ STREAMS

95

b. If you modified one or more environment variables in your existing Cluster Operator
Deployment, edit the install/cluster-operator/060-Deployment-strimzi-cluster-
operator.yaml file to use those environment variables.

4. When you have an updated configuration, deploy it along with the rest of the installation
resources:

Wait for the rolling updates to complete.

5. Get the image for the Kafka pod to ensure the downgrade was successful:

The image tag shows the new AMQ Streams version followed by the Kafka version. For example,
NEW-STRIMZI-VERSION-kafka-CURRENT-KAFKA-VERSION.

Your Cluster Operator was downgraded to the previous version.

9.2. DOWNGRADING KAFKA

Kafka version downgrades are performed by the Cluster Operator.

9.2.1. Kafka version compatibility for downgrades

Kafka downgrades are dependent on compatible current and target Kafka versions, and the state at
which messages have been logged.

You cannot revert to the previous Kafka version if that version does not support any of the
inter.broker.protocol.version settings which have ever been used in that cluster, or messages have
been added to message logs that use a newer log.message.format.version.

The inter.broker.protocol.version determines the schemas used for persistent metadata stored by the
broker, such as the schema for messages written to __consumer_offsets. If you downgrade to a version
of Kafka that does not understand an inter.broker.protocol.version that has ever been previously used
in the cluster the broker will encounter data it cannot understand.

If the target downgrade version of Kafka has:

The same log.message.format.version as the current version, the Cluster Operator
downgrades by performing a single rolling restart of the brokers.

A different log.message.format.version, downgrading is only possible if the running cluster has
always had log.message.format.version set to the version used by the downgraded version.
This is typically only the case if the upgrade procedure was aborted before the
log.message.format.version was changed. In this case, the downgrade requires:

Two rolling restarts of the brokers if the interbroker protocol of the two versions is different

A single rolling restart if they are the same

Downgrading is not possible if the new version has ever used a log.message.format.version that is not
supported by the previous version, including when the default value for log.message.format.version is
used. For example, this resource can be downgraded to Kafka version 2.8.0 because the
log.message.format.version has not been changed:

oc replace -f install/cluster-operator

oc get pod my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

96

The downgrade would not be possible if the log.message.format.version was set at "3.0" or a value
was absent, so that the parameter took the default value for a 3.0.0 broker of 3.0.

IMPORTANT

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

9.2.2. Downgrading Kafka brokers and client applications

This procedure describes how you can downgrade a AMQ Streams Kafka cluster to a lower (previous)
version of Kafka, such as downgrading from 3.0.0 to 2.8.0.

Prerequisites

Before you downgrade the AMQ Streams Kafka cluster, check the following for the Kafka resource:

IMPORTANT: Compatibility of Kafka versions.

The Cluster Operator, which supports both versions of Kafka, is up and running.

The Kafka.spec.kafka.config does not contain options that are not supported by the Kafka
version being downgraded to.

The Kafka.spec.kafka.config has a log.message.format.version and
inter.broker.protocol.version that is supported by the Kafka version being downgraded to.
From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

Procedure

1. Update the Kafka cluster configuration.

2. Change the Kafka.spec.kafka.version to specify the previous version.
For example, if downgrading from Kafka 3.0.0 to 2.8.0:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.0.0
 config:
 log.message.format.version: "2.8"
 # ...

oc edit kafka KAFKA-CONFIGURATION-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.8.0 1

CHAPTER 9. DOWNGRADING AMQ STREAMS

97

1

2

3

Kafka version is changed to the previous version.

Message format version is unchanged.

Inter-broker protocol version is unchanged.

NOTE

The value of log.message.format.version and inter.broker.protocol.version
must be strings to prevent them from being interpreted as floating point
numbers.

3. If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES for the Cluster Operator, update Kafka.spec.kafka.image.
See Section 8.5.3, “Kafka version and image mappings”

4. Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:

Check the Cluster Operator logs for an INFO level message:

5. Downgrade all client applications (consumers) to use the previous version of the client binaries.
The Kafka cluster and clients are now using the previous Kafka version.

6. If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for
the storage of topic metadata, delete the internal topic store topics from the Kafka cluster.

Additional resources

Topic Operator topic store

 config:
 log.message.format.version: "2.8" 2
 inter.broker.protocol.version: "2.8" 3
 # ...

oc logs -f CLUSTER-OPERATOR-POD-NAME | grep -E "Kafka version downgrade from [0-
9.]+ to [0-9.]+, phase ([0-9]+) of \1 completed"

oc get pod -w

Reconciliation #NUM(watch) Kafka(NAMESPACE/NAME): Kafka version downgrade from
FROM-VERSION to TO-VERSION, phase 1 of 1 completed

oc run kafka-admin -ti --image=registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.1 --
rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic
__strimzi-topic-operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --
bootstrap-server localhost:9092 --topic __strimzi_store_topic --delete

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

98

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#ref-topic-operator-store-str

CHAPTER 10. USING METERING ON AMQ STREAMS
You can use the Metering tool that is available on OpenShift to generate metering reports from
different data sources. As a cluster administrator, you can use metering to analyze what is happening in
your cluster. You can either write your own, or use predefined SQL queries to define how you want to
process data from the different data sources you have available. Using Prometheus as a default data
source, you can generate reports on pods, namespaces, and most other Kubernetes resources.

You can also use the OpenShift Metering operator to analyze your installed AMQ Streams components
to determine whether you are in compliance with your Red Hat subscription.

To use metering with AMQ Streams, you must first install and configure the Metering operator on
OpenShift Container Platform.

10.1. METERING RESOURCES

Metering has many resources which can be used to manage the deployment and installation of metering,
as well as the reporting functionality metering provides. Metering is managed using the following CRDs:

Table 10.1. Metering resources

Name Description

MeteringConfig Configures the metering stack for deployment. Contains
customizations and configuration options to control each
component that makes up the metering stack.

Reports Controls what query to use, when, and how often the query
should be run, and where to store the results.

ReportQueries Contains the SQL queries used to perform analysis on the data
contained within ReportDataSources.

ReportDataSources Controls the data available to ReportQueries and Reports.
Allows configuring access to different databases for use within
metering.

10.2. METERING LABELS FOR AMQ STREAMS

The following table lists the metering labels for AMQ Streams infrastructure components and
integrations.

Table 10.2. Metering Labels

Label Possible values

com.company Red_Hat

rht.prod_name Red_Hat_Integration

rht.prod_ver 2021.Q4

CHAPTER 10. USING METERING ON AMQ STREAMS

99

https://operatorhub.io/operator/application-services-metering-operator

rht.comp AMQ_Streams

rht.comp_ver 2.0

rht.subcomp Infrastructure

cluster-operator

entity-operator

zookeeper

Application

kafka-broker

kafka-connect

kafka-connect-build

kafka-mirror-maker2

kafka-mirror-maker

cruise-control

kafka-bridge

kafka-exporter

drain-cleaner

rht.subcomp_t infrastructure

application

Label Possible values

Examples

Infrastructure example (where the infrastructure component is entity-operator)

Application example (where the integration deployment name is kafka-bridge)

com.company=Red_Hat
rht.prod_name=Red_Hat_Integration
rht.prod_ver=2021.Q4
rht.comp=AMQ_Streams
rht.comp_ver=2.0
rht.subcomp=entity-operator
rht.comp_t=infrastructure

com.company=Red_Hat
rht.prod_name=Red_Hat_Integration

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

100

rht.prod_ver=2021.Q4
rht.comp=AMQ_Streams
rht.comp_ver=2.0
rht.subcomp=kafka-bridge
rht.comp_t=application

CHAPTER 10. USING METERING ON AMQ STREAMS

101

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2022-04-26 10:11:41 UTC

Red Hat AMQ Streams 2.0 Deploying and Upgrading AMQ Streams on OpenShift

102

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DEPLOYMENT OVERVIEW
	1.1. HOW AMQ STREAMS SUPPORTS KAFKA
	1.2. AMQ STREAMS OPERATORS
	Operators
	1.2.1. Cluster Operator
	1.2.2. Topic Operator
	1.2.3. User Operator
	1.2.4. Feature gates in AMQ Streams Operators

	1.3. AMQ STREAMS CUSTOM RESOURCES
	1.3.1. AMQ Streams custom resource example

	1.4. AMQ STREAMS INSTALLATION METHODS

	CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS
	2.1. ORDER OF DEPLOYMENT
	2.2. ADDITIONAL DEPLOYMENT CONFIGURATION OPTIONS
	2.2.1. Securing Kafka
	2.2.2. Monitoring your deployment

	CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT
	3.1. DEPLOYMENT PREREQUISITES
	3.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS
	3.3. EXAMPLE CONFIGURATION AND DEPLOYMENT FILES
	3.3.1. Example files location
	3.3.2. Example files provided with AMQ Streams

	3.4. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY
	3.5. DESIGNATING AMQ STREAMS ADMINISTRATORS

	CHAPTER 4. DEPLOYING AMQ STREAMS FROM THE OPERATORHUB
	4.1. USING THE RED HAT INTEGRATION OPERATOR TO INSTALL THE AMQ STREAMS OPERATOR
	4.2. DEPLOYING THE AMQ STREAMS OPERATOR FROM THE OPERATORHUB
	4.3. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS OPERATOR

	CHAPTER 5. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS
	5.1. CREATE THE KAFKA CLUSTER
	Deploying a Kafka cluster with the Topic Operator and User Operator
	Deploying a standalone Topic Operator and User Operator
	5.1.1. Deploying the Cluster Operator
	5.1.1.1. Watch options for a Cluster Operator deployment
	5.1.1.2. Deploying the Cluster Operator to watch a single namespace
	5.1.1.3. Deploying the Cluster Operator to watch multiple namespaces
	5.1.1.4. Deploying the Cluster Operator to watch all namespaces

	5.1.2. Deploying Kafka
	5.1.2.1. Deploying the Kafka cluster
	5.1.2.2. Deploying the Topic Operator using the Cluster Operator
	5.1.2.3. Deploying the User Operator using the Cluster Operator

	5.1.3. Alternative standalone deployment options for AMQ Streams Operators
	5.1.3.1. Deploying the standalone Topic Operator
	5.1.3.2. Deploying the standalone User Operator

	5.2. DEPLOY KAFKA CONNECT
	5.2.1. Deploying Kafka Connect to your OpenShift cluster
	5.2.2. Kafka Connect configuration for multiple instances
	5.2.3. Extending Kafka Connect with connector plug-ins
	5.2.3.1. Creating a new container image automatically using AMQ Streams
	5.2.3.2. Creating a Docker image from the Kafka Connect base image

	5.2.4. Creating and managing connectors
	5.2.4.1. KafkaConnector resources
	5.2.4.2. Availability of the Kafka Connect REST API

	5.2.5. Deploying the example KafkaConnector resources
	Source and sink connector configuration options

	5.2.6. Performing a restart of a Kafka connector
	5.2.7. Performing a restart of a Kafka connector task

	5.3. DEPLOY KAFKA MIRRORMAKER
	5.3.1. Deploying Kafka MirrorMaker to your OpenShift cluster

	5.4. DEPLOY KAFKA BRIDGE
	5.4.1. Deploying Kafka Bridge to your OpenShift cluster

	CHAPTER 6. SETTING UP CLIENT ACCESS TO THE KAFKA CLUSTER
	6.1. DEPLOYING EXAMPLE CLIENTS
	6.2. SETTING UP ACCESS FOR CLIENTS OUTSIDE OF OPENSHIFT

	CHAPTER 7. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS
	7.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER
	The importance of monitoring consumer lag
	Reducing consumer lag

	7.2. MONITORING CRUISE CONTROL OPERATIONS
	7.2.1. Exposing Cruise Control metrics
	7.2.2. Viewing Cruise Control metrics
	7.2.2.1. Monitoring balancedness scores
	7.2.2.2. Alerts on anomaly detection

	7.3. EXAMPLE METRICS FILES
	7.3.1. Example Prometheus metrics configuration
	7.3.2. Example Prometheus rules for alert notifications
	7.3.3. Example Grafana dashboards

	7.4. DEPLOYING PROMETHEUS METRICS CONFIGURATION
	7.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT
	7.5.1. Prerequisites
	7.5.2. Additional resources
	7.5.3. Deploying the Prometheus resources
	7.5.4. Creating a service account for Grafana
	7.5.5. Deploying Grafana with a Prometheus datasource
	7.5.6. Creating a route to the Grafana Service
	7.5.7. Importing the example Grafana dashboards

	CHAPTER 8. UPGRADING AMQ STREAMS
	8.1. REQUIRED UPGRADE SEQUENCE
	8.1.1. Cluster Operator upgrade options
	8.1.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub

	8.2. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME
	8.2.1. Rolling pods using the AMQ Streams Drain Cleaner
	8.2.2. Rolling pods manually while keeping topics available

	8.3. AMQ STREAMS CUSTOM RESOURCE UPGRADES
	8.4. UPGRADING THE CLUSTER OPERATOR
	8.5. UPGRADING KAFKA
	8.5.1. Kafka versions
	8.5.2. Strategies for upgrading clients
	8.5.3. Kafka version and image mappings
	8.5.4. Upgrading Kafka brokers and client applications

	8.6. UPGRADING CONSUMERS TO COOPERATIVE REBALANCING

	CHAPTER 9. DOWNGRADING AMQ STREAMS
	9.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS VERSION
	9.2. DOWNGRADING KAFKA
	9.2.1. Kafka version compatibility for downgrades
	9.2.2. Downgrading Kafka brokers and client applications

	CHAPTER 10. USING METERING ON AMQ STREAMS
	10.1. METERING RESOURCES
	10.2. METERING LABELS FOR AMQ STREAMS

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files

