
Red Hat AMQ 7.4

Using AMQ Online on OpenShift Container
Platform

For use with AMQ Online 1.2

Last Updated: 2019-08-15

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

For use with AMQ Online 1.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use AMQ Online.

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. AMQ ONLINE OVERVIEW
1.2. SUPPORTED FEATURES
1.3. AMQ ONLINE USER ROLES
1.4. SUPPORTED CONFIGURATIONS
1.5. DOCUMENT CONVENTIONS

1.5.1. Variable text

CHAPTER 2. MANAGING ADDRESS SPACES
2.1. ADDRESS SPACE
2.2. STANDARD ADDRESS SPACE

2.2.1. Standard address types
2.2.1.1. Queue
2.2.1.2. Topic

2.2.1.2.1. Hierarchical topics and wildcards
2.2.1.2.2. Known issue with creating a subscriber on a hierarchical topic

2.2.1.3. Anycast
2.2.1.4. Multicast
2.2.1.5. Subscription

2.3. BROKERED ADDRESS SPACE
2.3.1. Brokered address types

2.3.1.1. Queue
2.3.1.2. Topic

2.3.1.2.1. Hierarchical topics and wildcards
2.3.1.2.2. Known issue with creating a subscriber on a hierarchical topic

2.4. ADDRESS SPACE PLANS
2.5. LISTING AVAILABLE ADDRESS SPACE PLANS USING THE COMMAND LINE
2.6. LISTING AVAILABLE AUTHENTICATION SERVICES USING THE COMMAND LINE
2.7. ADDRESS SPACE EXAMPLES

2.7.1. Address space example
2.7.2. Address space example using an authentication service
2.7.3. Address space example using an external authentication service allowing overrides
2.7.4. Address space examples exposing endpoints externally

2.7.4.1. OpenShift LoadBalancer service example
2.7.4.2. OpenShift route example

2.7.5. Address space certificate provider configuration examples
2.7.5.1. openshift provider
2.7.5.2. selfsigned provider
2.7.5.3. certBundle provider

2.7.6. Address space example exports
2.7.6.1. ConfigMap and Secret type export examples
2.7.6.2. Service type export example

2.8. EXAMPLE ADDRESS SPACE STATUS OUTPUT
2.9. EXAMPLE OF EXPORTING ADDRESS SPACE INFORMATION INTO THE APPLICATION NAMESPACE
2.10. CREATING ADDRESS SPACES USING THE COMMAND LINE
2.11. CREATING AN ADDRESS SPACE USING THE RED HAT AMQ CONSOLE
2.12. CHANGING THE ADDRESS SPACE PLAN ASSOCIATED WITH AN ADDRESS SPACE USING THE RED HAT
AMQ CONSOLE
2.13. DELETING AN ADDRESS SPACE USING THE RED HAT AMQ CONSOLE
2.14. EXAMPLE COMMANDS FOR RETRIEVING ADDRESS SPACE INFORMATION
2.15. REPLACING ADDRESS SPACES USING THE COMMAND LINE

4
4
5
6
7
7
7

8
8
8
8
8
9
9
9
9
9

10
10
10
10
10
10
11
11
11
11

12
12
12
12
13
13
14
15
15
15
16
16
16
17
17
18
19
19

20
20
21
21

Table of Contents

1

. .

. .

. .

. .

. .

. .

CHAPTER 3. MANAGING ADDRESSES
3.1. ADDRESS
3.2. ADDRESS PLANS

3.2.1. Address example
3.3. LISTING AVAILABLE ADDRESS PLANS USING THE COMMAND LINE
3.4. CREATING ADDRESSES USING THE COMMAND LINE
3.5. CREATING ADDRESSES USING THE RED HAT AMQ CONSOLE
3.6. REPLACING ADDRESSES USING THE COMMAND LINE

CHAPTER 4. USING THE RED HAT AMQ CONSOLE
4.1. RED HAT AMQ CONSOLE USER PERMISSIONS
4.2. ACCESSING THE RED HAT AMQ CONSOLE
4.3. USING THE RED HAT AMQ CONSOLE ADDRESS FILTERING
4.4. VIEWING MESSAGE AND CONNECTION STATISTICS USING THE RED HAT AMQ CONSOLE

CHAPTER 5. USER MODEL
5.1. AUTHENTICATION

5.1.1. Password authentication type
5.1.2. Serviceaccount authentication type

5.2. AUTHORIZATION
5.3. MANAGING USERS

5.3.1. Creating users using the command line
5.3.2. Deleting users using the command line
5.3.3. Managing user permissions using the command line

CHAPTER 6. CONNECTING APPLICATIONS TO AMQ ONLINE
6.1. CLIENT EXAMPLES

6.1.1. AMQ Online Python example
6.1.1.1. Known issue with creating a subscriber on a hierarchical topic

6.1.2. AMQ Online JMS example
6.1.3. AMQ Online JavaScript example

6.1.3.1. AMQ Online JavaScript example using WebSockets
6.1.4. AMQ Online C++ example

6.1.4.1. Known issue with creating a subscriber on a hierarchical topic
6.1.5. AMQ Online .NET example

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading zip and tar files
Registering your system for packages

APPENDIX B. AMQ ONLINE RESOURCES FOR MESSAGING TENANTS

23
23
23
23
23
24
24
25

26
26
26
27
27

29
29
29
30
30
30
30
31
31

33
33
33
33
34
35
36
36
37
38

39
39
39
39
39

40

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

2

Table of Contents

3

CHAPTER 1. INTRODUCTION

1.1. AMQ ONLINE OVERVIEW

Red Hat AMQ Online is an OpenShift-based mechanism for delivering messaging as a managed service.
With Red Hat AMQ Online, administrators can configure a cloud-native, multi-tenant messaging service
either in the cloud or on premise. Developers can provision messaging using the Red Hat AMQ Console.
Multiple development teams can provision the brokers and queues from the Console, without requiring
each team to install, configure, deploy, maintain, or patch any software.

AMQ Online can provision different types of messaging depending on your use case. A user can request
messaging resources by creating an address space. AMQ Online currently supports two address space
types, standard and brokered, each with different semantics. The following diagrams illustrate the high-
level architecture of each address space type:

Figure 1.1. Standard address space

Figure 1.2. Brokered address space

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

4

Figure 1.2. Brokered address space

1.2. SUPPORTED FEATURES

The following table shows the supported features for AMQ Online 1.2:

Table 1.1. Supported features reference table

Feature Brokered address
space

Standard address
space

Address type Queue Yes Yes

Topic Yes Yes

CHAPTER 1. INTRODUCTION

5

Multicast No Yes

Anycast No Yes

Subscription No Yes

Messaging protocol AMQP Yes Yes

MQTT Yes Technology preview only

CORE Yes No

OpenWire Yes No

STOMP Yes No

Transports TCP Yes Yes

WebSocket Yes Yes

Durable subscriptions JMS durable
subscriptions

Yes No

"Named" durable
subscriptions

No Yes

JMS Transaction support Yes No

Selectors on queues Yes No

Message ordering
guarantees (including
prioritization)

Yes No

Scalability Scalable distributed
queues and topics

No Yes

Feature Brokered address
space

Standard address
space

1.3. AMQ ONLINE USER ROLES

AMQ Online users can be defined broadly in terms of two user roles: service administrator and
messaging tenant. Depending on the size of your organization, these roles might be performed by the
same person or different people.

The messaging tenant can request messaging resources, using both cloud-native APIs and tools. The
messaging tenant can also manage the users and permissions of a particular address space within the

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

6

messaging system as well as create address spaces and addresses. Using AMQ Online on OpenShift
Container Platform provides information about how to accomplish these tasks.

The service administrator role performs the initial installation and any subsequent upgrades. The service
administrator might also deploy and manage the messaging infrastructure, such as monitoring the
routers, brokers, and administration components; and creating the address space plans and address
plans. For more information about how to set up and manage AMQ Online as well as configure the
infrastructure and plans, see Installing and Managing AMQ Online on OpenShift Container Platform .

1.4. SUPPORTED CONFIGURATIONS

For more information about AMQ Online supported configurations see Red Hat AMQ 7 Supported
Configurations.

1.5. DOCUMENT CONVENTIONS

1.5.1. Variable text

This document contains code blocks with variables that you must replace with values specific to your
installation. In this document, such text is styled as italic monospace.

For example, in the following code block, replace my-namespace with the namespace used in your
installation:

sed -i 's/amq-online-infra/my-namespace/' install/bundles/enmasse-with-standard-authservice/*.yaml

CHAPTER 1. INTRODUCTION

7

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/installing_and_managing_amq_online_on_openshift_container_platform/
https://access.redhat.com/articles/2791941

CHAPTER 2. MANAGING ADDRESS SPACES
AMQ Online is configured to support managing address spaces using the OpenShift command-line
tools. Address spaces are managed like any other OpenShift resource using oc.

2.1. ADDRESS SPACE

An address space is a group of addresses that can be accessed through a single connection (per
protocol). This means that clients connected to the endpoints of an address space can send messages
to or receive messages from any authorized address within that address space. An address space can
support multiple protocols, as defined by the address space type.

AMQ Online has two types of address spaces:

Standard

Brokered

2.2. STANDARD ADDRESS SPACE

The standard address space is the default address space in AMQ Online. It consists of an AMQP router
network in combination with attachable storage units. Clients connect to a message router, which
forwards messages to or from one or more message brokers. This address space type is appropriate
when you have many connections and addresses. However, the standard address space has the
following limitations:

No transaction support

No message ordering

No selectors on queues

No browsing on queues

No message groups

Clients connect and send and receive messages in this address space using the AMQP or MQTT
protocols. Note that MQTT does not support qos2 or retained messages.

2.2.1. Standard address types

The standard address space supports five different address types:

queue

topic

anycast

multicast

subscription

2.2.1.1. Queue

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

8

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#con-standard-address-space-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#con-brokered-address-space-messaging

The queue address type is a store-and-forward queue. This address type is appropriate for
implementing a distributed work queue, handling traffic bursts, and other use cases where you want to
decouple the producer and consumer. A queue can be sharded across multiple storage units. Message
ordering might be lost for queues in the standard address space.

2.2.1.2. Topic

The topic address type supports the publish-subscribe messaging pattern where there are 1..N
producers and 1..M consumers. Each message published to a topic address is forwarded to all subscribers
for that address. A subscriber can also be durable, in which case messages are kept until the subscriber
has acknowledged them.

NOTE

If you create a subscription on a topic, any senders to that topic must specify the topic
capability.

2.2.1.2.1. Hierarchical topics and wildcards

A client receiving from a topic address can specify a wildcard address with the topic address as the root.
The wildcard behavior follows the MQTT syntax:

/ is a separator

+ matches one level

matches one or more levels

So, for example:

a/#/b matches a/foo/b, a/bar/b, and a/foo/bar/b

a/+/b matches a/foo/b and a/bar/b, but would not match a/foo/bar

In the standard address space, the first level must always be a defined topic address; that is, # and + are
not valid as the first characters of a subscribing address.

2.2.1.2.2. Known issue with creating a subscriber on a hierarchical topic

A known issue exists where creating a subscriber on a hierarchical topic in AMQ Online causes the broker
to instead create it as a competing consumer (handling the address like a queue rather than a topic). For
more information about the specific workaround for your client, see the applicable client example
section in Connecting applications to AMQ Online .

2.2.1.3. Anycast

The anycast address type is a scalable direct address for sending messages to one consumer. Messages
sent to an anycast address are not stored, but are instead forwarded directly to the consumer. This
method makes this address type ideal for request-reply (RPC) uses or even work distribution. This is the
cheapest address type as it does not require any persistence.

2.2.1.4. Multicast

The multicast address type is a scalable direct address for sending messages to multiple consumers.
Messages sent to a multicast address are forwarded to all consumers receiving messages on that

CHAPTER 2. MANAGING ADDRESS SPACES

9

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#assembly-connecting-applications-messaging

address. Because message acknowledgments from consumers are not propagated to producers, only
pre-settled messages can be sent to multicast addresses.

2.2.1.5. Subscription

The subscription address type allows a subscription to be created for a topic that holds messages
published to the topic even if the subscriber is not attached. The subscription is accessed by the
consumer using <topic-address>::<subscription-address>. For example, for a subscription mysub on a
topic mytopic the consumer consumes from the address mytopic::mysub.

2.3. BROKERED ADDRESS SPACE

The brokered address space is designed to support broker-specific features, at the cost of limited scale
in terms of the number of connections and addresses. This address space supports JMS transactions,
message groups, and selectors on queues and topics.

Clients can connect and send and receive messages in this address space using the AMQP, CORE,
OpenWire, and MQTT protocols.

2.3.1. Brokered address types

The brokered address space supports two address types:

queue

topic

2.3.1.1. Queue

The queue address type is a store-and-forward queue. This address type is appropriate for
implementing a distributed work queue, handling traffic bursts, and other use cases where you want to
decouple the producer and consumer. A queue in the brokered address space supports selectors,
message groups, transactions, and other JMS features. Message order can be lost with released
messages.

2.3.1.2. Topic

The topic address type supports the publish-subscribe messaging pattern in which there are 1..N
producers and 1..M consumers. Each message published to a topic address is forwarded to all subscribers
for that address. A subscriber can also be durable, in which case messages are kept until the subscriber
has acknowledged them.

2.3.1.2.1. Hierarchical topics and wildcards

A client receiving from a topic address can specify a wildcard address with the topic address as the root.
The wildcard behavior follows the MQTT syntax:

/ is a separator

+ matches one level

matches one or more levels

So, for example:

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

10

a/#/b matches a/foo/b, a/bar/b, a/foo/bar/b

a/+/b matches a/foo/b and a/bar/b, but would not match a/foo/bar

2.3.1.2.2. Known issue with creating a subscriber on a hierarchical topic

A known issue exists where creating a subscriber on a hierarchical topic in AMQ Online causes the broker
to instead create it as a competing consumer (handling the address like a queue rather than a topic). For
more information about the specific workaround for your client, see the applicable client example
section in Connecting applications to AMQ Online .

2.4. ADDRESS SPACE PLANS

An address space is configured with an address space plan, which describes the allowed resource usage
of that address space. The address space plans are configured by the service administrator and can vary
between AMQ Online installations.

The address space plan can be changed if the address space requires more, or less, resources.

2.5. LISTING AVAILABLE ADDRESS SPACE PLANS USING THE
COMMAND LINE

You can list the address space plans available for your address space type.

Procedure

1. Log in as a messaging tenant:

oc login -u developer

2. Retrieve the schema showing available address space plans (replace standard with brokered
for the brokered address space type):

2.6. LISTING AVAILABLE AUTHENTICATION SERVICES USING THE
COMMAND LINE

You can list the authentication services available for your address space type.

Procedure

1. Log in as a messaging tenant:

oc login -u developer

2. Retrieve the schema with the authentication services listed (replace standard with brokered for
the brokered address space type):

oc get addressspaceschema standard -o jsonpath='{.spec.plans[*].name}'

oc get addressspaceschema standard -o jsonpath='{.spec.authenticationServices}'

CHAPTER 2. MANAGING ADDRESS SPACES

11

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#assembly-connecting-applications-messaging

1

2

1

2.7. ADDRESS SPACE EXAMPLES

2.7.1. Address space example

This address space example shows only the required options to create an AddressSpace.

The address space type can be either brokered or standard.

The address space plan depends on the address space type and what has been configured by the
AMQ Online administrator. To view your available address space plans, see Listing available
address space plans.

2.7.2. Address space example using an authentication service

This address space example shows how you can configure the authentication service of an
AddressSpace.

The authentication service name depends on the available authentication services configured by
the AMQ Online administrator. To view the available authentication services for your address space
type, see Listing available authentication services .

2.7.3. Address space example using an external authentication service allowing
overrides

This address space example shows how you can override the host name, port number, and realm for an
external authentication service. Note that the ability to specify overrides depends on how the external
authentication service is configured by the AMQ Online administrator.

For more information about how to configure an external authentication service to allow a messaging
tenant to override host name, port number, and realm, see External authentication service example
allowing overrides.

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard 1
 plan: standard-unlimited 2

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice 1

apiVersion: enmasse.io/v1beta1

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

12

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-list-available-address-space-plans-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-list-available-auth-services-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/installing_and_managing_amq_online_on_openshift_container_platform/#ref-external-auth-service-example-allow-overrides-messaging

1

2

The authentication service name depends on the available authentication services configured by
the AMQ Online administrator. To view the available authentication services for your address space
type, see Listing available authentication services .

Specifies the override values.

2.7.4. Address space examples exposing endpoints externally

These address space examples show how you can configure the external endpoints of an
AddressSpace to access messaging endpoints outside the OpenShift cluster.

2.7.4.1. OpenShift LoadBalancer service example

To expose AddressSpace endpoints through OpenShift LoadBalancer services, the loadbalancer
type is used:

(Required) The name of the endpoint. The name specified affects the name of the OpenShift

kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: external-authservice 1
 type: external
 overrides: 2
 realm: amq-online-infra-space-standard-auth
 host: standard-authservice-amq-online-infra.apps.wfd-28d9.openshiftworkshop.com
 port: 5671

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice
 endpoints:
 - name: messaging 1
 service: messaging 2
 expose:
 type: loadbalancer 3
 loadBalancerPorts: 4
 - amqp
 - amqps
 annotations: 5
 mykey: myvalue
 loadBalancerSourceRanges: 6
 - 10.0.0.0/8

CHAPTER 2. MANAGING ADDRESS SPACES

13

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-list-available-auth-services-messaging

1

2

3

4

5

6

1

2

3

4

(Required) The name of the endpoint. The name specified affects the name of the OpenShift
service to be created as well as the name of the endpoint in the status section of the
AddressSpace.

(Required) The service configured for the endpoint. Valid values for service are messaging,
console, and mqtt. However, the mqtt service is supported for the standard address space type
only.

(Required) The type of endpoint being exposed. The loadbalancer type creates an OpenShift
LoadBalancer service. Valid values are route and loadbalancer.

(Required) A list of the ports to be exposed on the LoadBalancer service. For the messaging
service, the valid values are amqp and amqps.

(Optional) A set of key-value annotation pairs that are added to the LoadBalancer Service
object.

(Optional) The allowed source ranges that are accepted by the load balancer.

2.7.4.2. OpenShift route example

To expose AddressSpace endpoints as OpenShift routes, the route type is used:

(Required) The name of the endpoint. The name specified affects the name of the OpenShift
service to be created as well as the name of the endpoint in the status section of the
AddressSpace.

(Required) The service configured for the endpoint. Valid values for service are messaging,
console, or mqtt. However, the mqtt service is supported for the standard address space type
only.

(Required) The name of the port to be exposed. With the route type, only a single TLS-enabled
port can be specified. For the messaging service, the valid values are amqps or https. For the
console service, the only valid value is https.

(Required) The TLS termination policy to be used for the OpenShift route. For the messaging

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice
 endpoints:
 - name: messaging 1
 service: messaging 2
 expose:
 type: route
 routeServicePort: amqps 3
 routeTlsTermination: passthrough 4
 routeHost: messaging.example.com 5

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

14

5

1

(Optional) The host name to use for the created route.

2.7.5. Address space certificate provider configuration examples

The following address space examples show how you can configure the endpoints of an AddressSpace
using different certificate providers. The certificate provider determines how certificates are issued for
the endpoints of an AddressSpace.

2.7.5.1. openshift provider

The openshift certificate provider can be used to configure endpoints with certificates signed by the
OpenShift cluster certificate authority (CA).

(Required) The certificate provider type. Valid values are openshift (on OpenShift only),
certBundle, and selfsigned (default value).

2.7.5.2. selfsigned provider

The selfsigned certificate provider can be used to configure endpoints with self-signed certificates.
The CA for these certificates can be found in the status.caCert field of the AddressSpace resource.

(Required) The certificate provider type. Valid values are openshift (on OpenShift only),

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice
 endpoints:
 - name: messaging
 service: messaging
 cert:
 provider: openshift 1

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice
 endpoints:
 - name: messaging
 service: messaging
 cert:
 provider: selfsigned 1

CHAPTER 2. MANAGING ADDRESS SPACES

15

1

1

2

3

(Required) The certificate provider type. Valid values are openshift (on OpenShift only),
certBundle, and selfsigned (default value).

2.7.5.3. certBundle provider

The certBundle certificate provider can be used to configure endpoints with user-supplied certificates
signed by your own CA. Certificate rotation can be performed by updating the tlsKey and tlsCert fields
with updated certificates, and then updating the AddressSpace resource.

(Required) The certificate provider type. Valid values are openshift (on OpenShift only),
certBundle, and selfsigned (default value).

(Required) The base64-encoded value of the PEM private key (including the preamble).

(Required) The base64-encoded value of the PEM certificate (including the preamble).

2.7.6. Address space example exports

You can export your address space information using the following three export types:

ConfigMap

Secret

Service

2.7.6.1. ConfigMap and Secret type export examples

This example shows the format used by the ConfigMap export type. The format of the Secret export
type uses the same keys as the ConfigMap export type, but the values are Base64-encoded.

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice
 endpoints:
 - name: messaging
 service: messaging
 cert:
 provider: certBundle 1
 tlsKey: Y2VydGJ1bmRsZXByb3ZpZGVyY2VydA== 2
 tlsCert: Y2VydGJ1bmRsZXByb3ZpZGVyY2VydA== 3

service.host: messaging.svc
service.port.amqp: 5672
external.host: external.example.com

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

16

1

2

3

4

2.7.6.2. Service type export example

This example shows the format used by the Service export type.

2.8. EXAMPLE ADDRESS SPACE STATUS OUTPUT

The AddressSpace resource contains a status field that can be used to retrieve information about its
state and endpoints. The following output is an example of the output you can get from running oc get
addressspace myspace -o yaml:

The status.isReady field can be either true or false.

The status.endpointStatuses field provides information about available endpoints for this address
space.

The cert field contains the base64-encoded certificate for a given endpoint.

The serviceHost field contains the cluster-internal host name for a given endpoint.

external.port: 5671
ca.crt: // PEM formatted CA

 externalName: messaging.svc
 ports:
 - name: amqp
 port: 5672
 protocol: TCP
 targetPort: 5672

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 ...
status:
 isReady: false 1
 messages:
 - "One or more deployments are not ready: "
 endpointStatuses: 2
 - name: messaging
 cert: aGVsbG8= 3
 serviceHost: messaging-123.enmasse-infra.svc 4
 servicePorts: 5
 - name: amqp
 port: 5672
 - name: amqps
 port: 5671
 externalHost: messaging.example.com 6
 externalPorts: 7
 - name: amqps
 port: 443

CHAPTER 2. MANAGING ADDRESS SPACES

17

5

6

7

1

2

The servicePorts field contains the available ports for the cluster-internal host.

The externalHost field contains the external host name for a given endpoint.

The externalPorts field contains the available ports for the external host.

2.9. EXAMPLE OF EXPORTING ADDRESS SPACE INFORMATION INTO
THE APPLICATION NAMESPACE

This address space example shows how you can export the endpoint information of an AddressSpace
resource to a ConfigMap, Secret, or Service in the same namespace as the messaging application.

(Required) The type of export: ConfigMap, Secret, or Service. The resulting ConfigMap contains
the values in the format shown in example exports format . For Secret, the same keys are used, but
the values are base64-encoded. For Service, a OpenShift service of the type ExternalName is
created. This provides applications running on OpenShift with a way to inject endpoint information
or provide a proxy service in the same namespace as the application. For more information see
example exports format .

(Required) The name of the resource to create and update.

When exporting endpoint information, the AMQ Online address-space-controller service account
running in the AMQ Online namespace must be granted privileges to create, update, and delete the
configmap specified in the exports list. You can do this by creating an RBAC role and role-binding such
as this one:

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited
 authenticationService:
 name: standard-authservice
 endpoints:
 - name: messaging
 service: messaging
 exports:
 - kind: ConfigMap 1
 name: my-config 2

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: rbac
rules:
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["create"]
 - apiGroups: [""]
 resources: ["configmaps"]
 resourceNames: ["my-config"]

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

18

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-address-space-example-exports-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-address-space-example-exports-messaging

2.10. CREATING ADDRESS SPACES USING THE COMMAND LINE

In AMQ Online, you create address spaces using standard command-line tools.

Procedure

1. Log in as a messaging tenant:

oc login -u developer

2. Create the project for the messaging application:

oc new-project myapp

3. Create an address space definition:

4. Create the address space:

oc create -f standard-address-space.yaml

5. Check the status of the address space:

oc get addressspace myspace -o jsonpath={.status.isReady}

The address space is ready for use when the previous command outputs true.

2.11. CREATING AN ADDRESS SPACE USING THE RED HAT AMQ
CONSOLE

 verbs: ["get", "update", "patch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: rbac-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: rbac
subjects:
- kind: ServiceAccount
 name: address-space-controller
 namespace: amq-online-infra

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-unlimited

CHAPTER 2. MANAGING ADDRESS SPACES

19

You can create a new address space using the Red Hat AMQ Console.

Procedure

1. Log in to the Red Hat AMQ Console.
For more information about how to access the Red Hat AMQ Console, see Accessing the Red
Hat AMQ Console.

2. Click Create. The Create an instance wizard opens.

3. Complete the required fields and when you are finished, click Finish to create the new address
space.

When the address space has been successfully created, you can click the address space name to go to
the Red Hat AMQ Console and view information about the newly created address space.

2.12. CHANGING THE ADDRESS SPACE PLAN ASSOCIATED WITH AN
ADDRESS SPACE USING THE RED HAT AMQ CONSOLE

You can change the address space plan that is associated with an address space using the Red Hat AMQ
Console.

Prerequisites

You must have already created an address space. For more information see Creating an address
space using the Red Hat AMQ Console.

Procedure

1. Log in to the Red Hat AMQ Console. For more information, see Accessing the Red Hat AMQ
Console.

2. Locate the address space for which you want to change the address space plan.

3. In the far right column, click the vertical ellipsis icon and select Edit. The Edit window opens.

4. In the Address space plan field, select a different plan from the list and click Save. The address
space plan is changed for that address space.

2.13. DELETING AN ADDRESS SPACE USING THE RED HAT AMQ
CONSOLE

You can delete an existing address space using the Red Hat AMQ Console.

Procedure

1. Log in to the Red Hat AMQ Console.
For more information about how to access the Red Hat AMQ Console, see Accessing the Red
Hat AMQ Console.

2. Locate the address space that you want to delete.

3. In the far right column, click the vertical ellipsis icon and select Delete. The delete confirmation
window opens.

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

20

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#logging-into-console-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-create-address-space-console-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#logging-into-console-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#logging-into-console-messaging

4. Confirm your selection by clicking Delete. The address space is deleted.

2.14. EXAMPLE COMMANDS FOR RETRIEVING ADDRESS SPACE
INFORMATION

The following table shows the commands for retrieving address space information, such as the Red Hat
AMQ Console host name.

Table 2.1. Retrieving address space information commands table

To retrieve the…​ Run this command:

Red Hat AMQ Console
host name

oc get routes console -o jsonpath={.spec.host}

status of an address
space

oc get addressspace myspace -o jsonpath={.status.isReady}

base64-encoded PEM
certificate for the
messaging endpoint

oc get addressspace myspace -o 'jsonpath={.status.caCert}'

host name for the
messaging endpoint

oc get addressspace myspace -o 'jsonpath=
{.status.endpointStatuses[?(@.name=="messaging")].externalHost}'

2.15. REPLACING ADDRESS SPACES USING THE COMMAND LINE

Address spaces can be replaced in order to change the plan, endpoints, or network policies, or to replace
certificates if using the certBundle certificate provider. When changing the plan, AMQ Online will
attempt to apply the new plan if the current set of addresses fits within the new quota. If it does not, an
error is provided on the AddressSpace resource.

Procedure

1. Log in as a messaging tenant:

oc login -u developer

2. Select the project for the messaging application:

oc project myapp

3. Update address space definition:

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myspace
spec:
 type: standard
 plan: standard-small

CHAPTER 2. MANAGING ADDRESS SPACES

21

4. Replace the address space:

oc replace -f standard-address-space-replace.yaml

5. Check the status of the address space:

oc get addressspace myspace -o jsonpath={.status.isReady}

The address space is ready for use when the above command outputs true.

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

22

1

2

3

4

CHAPTER 3. MANAGING ADDRESSES
AMQ Online is configured to support managing addresses using the OpenShift command-line tools and
the Red Hat AMQ Console. Address resources can be managed like any other OpenShift API resource
using oc.

3.1. ADDRESS

An address is part of an address space and represents a destination for sending and receiving messages.
An address has a type, which defines the semantics of sending messages to and receiving messages
from that address.

The types of addresses available in AMQ Online depend on the address space type.

3.2. ADDRESS PLANS

An address is configured with an address plan, which describes the resource usage of that address. The
address plans are configured by the service administrator and can vary between AMQ Online
installations. The number of addresses that can be created, and what plans are available, depends on
quota enforced by the address space plan.

Some address types also support changing the plan field: queue, anycast, and multicast address types
in the standard address space support changing the plan as long as the new plan does not exceed the
allowed quota. For queues, addresses are dynamically migrated across brokers, which might cause
reordering of messages.

3.2.1. Address example

The address name must be prefixed with the address space name and a dot. Address names can
only include alphanumeric characters.

The address is the messaging address this address resource represents.

The address type dictates the semantics of this address.

The address plan describes the resource usage for the address. For more information about how to
view the available plans see Listing available address plans .

3.3. LISTING AVAILABLE ADDRESS PLANS USING THE COMMAND
LINE

You can list the address plans available for an address type, such as queue.

apiVersion: enmasse.io/v1beta1
kind: Address
metadata:
 name: myspace.myqueue 1
spec:
 address: myqueue 2
 type: queue 3
 plan: standard-small-queue 4

CHAPTER 3. MANAGING ADDRESSES

23

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-list-available-address-plans-messaging

Procedure

1. Log in as a messaging tenant:

oc login -u developer

2. Retrieve the schema with the address plans listed (replace standard with brokered for the
brokered address space type):

3.4. CREATING ADDRESSES USING THE COMMAND LINE

You can create addresses using the command line.

Procedure

1. Create an address definition:

NOTE

Prefixing the name with the address space name is required to ensure addresses
from different address spaces do not collide.

2. Create the address:

3. List the addresses:

3.5. CREATING ADDRESSES USING THE RED HAT AMQ CONSOLE

You can create new addresses using the Red Hat AMQ Console. The type of addresses that you can
create are determined by the type of address space.

Prerequisites

You must have created an address space. For more information see Creating an address space .

oc get addressspaceschema standard -o 'jsonpath={.spec.addressTypes[?
(@.name=="queue")].plans[*].name}'

apiVersion: enmasse.io/v1beta1
kind: Address
metadata:
 name: myspace.myqueue
spec:
 address: myqueue
 type: queue
 plan: standard-small-queue

oc create -f standard-small-queue.yaml

oc get addresses -o yaml

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

24

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#create-address-space-cli-messaging

Procedure

1. Log in to the Red Hat AMQ Console. For more information, see Accessing the Red Hat AMQ
Console.

2. Click the address space link for the address space where you want to create a new address.

3. Click Create. The Create new address window opens.

4. Type a name and select the address type. If selecting subscription, from the Topic list select
the topic name to which you want to create a subscription.

5. Click Next.

6. Select a plan and click Next.

7. Click Create. Your address is displayed in the Red Hat AMQ Console.

3.6. REPLACING ADDRESSES USING THE COMMAND LINE

Procedure

1. Update an address definition:

2. Replace the address:

3. List the addresses:

apiVersion: enmasse.io/v1beta1
kind: Address
metadata:
 name: myspace.myqueue
spec:
 address: myqueue
 type: queue
 plan: standard-xlarge-queue

oc replace -f standard-xlarge-queue.yaml

oc get addresses -o yaml

CHAPTER 3. MANAGING ADDRESSES

25

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#logging-into-console-messaging

CHAPTER 4. USING THE RED HAT AMQ CONSOLE
You can use the Red Hat AMQ Console to perform tasks such as creating and deleting an address
space, creating an address, and viewing message and connection statistics .

4.1. RED HAT AMQ CONSOLE USER PERMISSIONS

Red Hat AMQ Console uses the OpenShift RBAC permissions model. For more information about the
OpenShift RBAC permissions model, see the OpenShift documentation.

To use Red Hat AMQ Console, the OpenShift user requires a role that grants access to addressspace
and address resources. For example, for edit access, edit permissions need be to given to the
associated role object, and for view-only access, list permissions need to be granted.

For more information about the AMQ Online example roles, see AMQ Online example roles .

4.2. ACCESSING THE RED HAT AMQ CONSOLE

Prerequisites

You must have obtained the host name for the Red Hat AMQ Console. For more information
about how to obtain the host name, see Example commands for retrieving address space
information.

Procedure

1. In a web browser, navigate to https://console-host-name where console-host-name is the
Red Hat AMQ Console host name.

2. Log in with your OpenShift user credentials. The Red Hat AMQ Console opens.

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

26

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-create-address-space-console-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-delete-address-space-console-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#create-address-console-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-view-message-connection-stats-table-messaging
https://docs.openshift.com/container-platform/3.11/admin_guide/manage_rbac.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/installing_and_managing_amq_online_on_openshift_container_platform/#ref-example-roles-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#retrieving-address-space-information-messaging

4.3. USING THE RED HAT AMQ CONSOLE ADDRESS FILTERING

The address name filtering feature in the Red Hat AMQ Console uses regular expressions. Also, filters
are cumulative.

Table 4.1. Red Hat AMQ Console address name filtering behavior

To match…​ Use…​ Results in…​

The beginning of an expression
only

A caret followed by an expression:
^my

All addresses beginning with my

An expression The matching string: my All addresses containing my

The end of an expression only An expression followed by the
dollar sign: my$

All addresses ending with my

An exact expression A caret followed by an expression
and a dollar sign: ^my$

Only the address my

4.4. VIEWING MESSAGE AND CONNECTION STATISTICS USING THE
RED HAT AMQ CONSOLE

Prerequisites

You must be logged into the Red Hat AMQ Console.

CHAPTER 4. USING THE RED HAT AMQ CONSOLE

27

Table 4.2. Message statistics reference table

To view…​ On the Addresses page see…​

Address status The first column (the symbol preceding the address
name)

Address type The third column

Address plan The fourth column

Message ingress rate (during the last 5 minutes) Messages In

Message egress rate (during the last 5 minutes) Messages Out

Number of senders attached Senders

Number of receivers attached Receivers

Queue and topic address types only: Number of
stored messages on the broker or brokers

Stored

Standard address space only: Message deliveries per
second

For the desired address, expand the twisty on the left
to show the Senders table; see the Delivery Rate
column.

Table 4.3. Connection statistics reference table

To view…​ On the Connections page see…​

Total number of messages received as long the
connection has existed

Messages In

Standard address space only: Total number of
messages sent as long the connection has existed

Messages Out

Total number of messages delivered For the desired connection, expand the twisty on the
left to show the Senders and Receivers tables; see
the Deliveries columns.

Standard address space only: Username used by the
client to connect

The third column

NOTE

For the brokered address space only, on the Connections page, the number of senders is
either 0 or 1. As soon as one or more senders exist, 1 is displayed rather than reflecting
the actual number of senders.

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

28

CHAPTER 5. USER MODEL
A messaging client connects using a MessagingUser. A MessagingUser specifies an authorization policy
that controls which addresses may be used and the operations that may be performed on those
addresses.

Users are configured as MessagingUser resources. Users can be created, deleted, read, updated, and
listed.

The following example shows the user-example1.yaml file:

The following fields are required:

metadata.name

metadata.namespace

spec.authentication

spec.authorization

The spec.authentication object defines how the user is authenticated, whereas spec.authorization
defines the authorization policies for that user.

5.1. AUTHENTICATION

The supported values for the authentication type are password and serviceaccount. When using the
password authentication type, you specify the username and password to be used by your messaging
client when connecting. With the serviceaccount authentication type, you use the special string
@@serviceaccount@@ as the username, and a OpenShift service account token as the password.

5.1.1. Password authentication type

For the password type, an additional field password must be set to a base64-encoded value of the
password for that user. The password will not be printed out when reading the resource.

A password can be base64-encoded on the command line. To encode my-password, for example:

apiVersion: user.enmasse.io/v1beta1
kind: MessagingUser
metadata:
 name: myspace.user1
spec:
 username: user1
 authentication:
 type: password
 password: cGFzc3dvcmQ= # Base64 encoded
 authorization:
 - addresses: ["myqueue", "queue1", "queue2", "topic*"]
 operations: ["send", "recv"]
 - addresses: ["anycast1"]
 operations: ["send"]

$ echo -n my-password | base64
bXktcGFzc3dvcmQ=

CHAPTER 5. USER MODEL

29

5.1.2. Serviceaccount authentication type

For the serviceaccount type, the username field must contain the OpenShift serviceaccount name
that will be used to authenticate. When connecting with the messaging client, use the string
@@serviceaccount@@ as the username, and the service account token as the password.

5.2. AUTHORIZATION

In addition, authorization policies can be defined using operations and addresses. Valid operations are
send, recv, view, and manage.

The manage and view operations apply to all addresses in the address space.

In the standard address space, the asterisk wildcard can be used at the end of an address. The address
top* matches addresses topic and topic/sub.

In the brokered address space, the plus sign and asterisk wildcards can be used at the end of an address
to match a single word (plus sign) or all words (asterisk) after the forward slash delimiter. So, the
address topic/+ matches topic/sub but not topic/s/sub. The address topic/* matches topic/sub and
topic/s/sub.

5.3. MANAGING USERS

AMQ Online user management is only supported when using the standard authentication service. On
OpenShift, users can be managed using the OpenShift command-line tools.

Prerequisites

You must have already created an address space.

5.3.1. Creating users using the command line

In AMQ Online users can be created using standard command-line tools.

Prerequisites

You must have already created an address space.

Procedure

1. To correctly base64 encode a password for the user definition file, run the following command:

echo -n password | base64 #cGFzc3dvcmQ=

NOTE

Be sure to use the -n parameter when running this command. Not specifying that
parameter will result in an improperly coded password and cause log-in issues.

2. Save the user definition to a file:

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

30

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#con-address-space-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#create-address-space-cli-messaging

3. Create the user and associated user permissions:

oc create -f user-example1.yaml

4. Confirm that the user was created:

oc get messagingusers

5.3.2. Deleting users using the command line

Users can be deleted using standard command-line tools.

Prerequisites

An address space must have been created.

A user must have been created.

Procedure

1. List the current users:

oc get messagingusers

2. Delete the desired user:

oc delete messaginguser myspace.user1

5.3.3. Managing user permissions using the command line

You can edit the permissions for an existing user using the command line.

Prerequisites

You must have already created a user. For more information see Creating users using the
command line.

apiVersion: user.enmasse.io/v1beta1
kind: MessagingUser
metadata:
 name: myspace.user1
spec:
 username: user1
 authentication:
 type: password
 password: cGFzc3dvcmQ= # Base64 encoded
 authorization:
 - addresses: ["myqueue", "queue1", "queue2", "topic*"]
 operations: ["send", "recv"]
 - addresses: ["anycast1"]
 operations: ["send"]

CHAPTER 5. USER MODEL

31

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#proc-creating-users-cli-messaging

Procedure

1. Retrieve the user whose permissions you want to edit:

oc get messaginguser myspace.user1 -o yaml > user-example1.yaml

2. Make the desired permissions change and save the file.

3. From the command line, run the following command to apply the change:

oc apply -f user-example1.yaml

The new user permissions are applied.

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

32

CHAPTER 6. CONNECTING APPLICATIONS TO AMQ ONLINE
You can connect your application to AMQ Online using one of the following client examples.

AMQ Online Python

AMQ Online JMS

AMQ Online JavaScript

AMQ Online C++

AMQ Online .NET

To connect to the messaging service from outside the OpenShift cluster, TLS must be used with SNI set
to specify the fully qualified host name for the address space. The port used is 443.

The messaging protocols supported depends on the type of address space used. For more information
about address space types, see Address space.

6.1. CLIENT EXAMPLES

6.1.1. AMQ Online Python example

You can use the following AMQ Online Python example to connect your application to AMQ Online. This
example assumes you have created an address of type queue named myqueue.

6.1.1.1. Known issue with creating a subscriber on a hierarchical topic

A known issue exists where creating a subscriber on a hierarchical topic in AMQ Online causes the broker

from __future__ import print_function, unicode_literals
from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import Container

class HelloWorld(MessagingHandler):
 def __init__(self, server, address):
 super(HelloWorld, self).__init__()
 self.server = server
 self.address = address

 def on_start(self, event):
 conn = event.container.connect(self.server)
 event.container.create_receiver(conn, self.address)
 event.container.create_sender(conn, self.address)

 def on_sendable(self, event):
 event.sender.send(Message(body="Hello World!"))
 event.sender.close()

 def on_message(self, event):
 print(event.message.body)
 event.connection.close()

Container(HelloWorld("amqps://_messaging-route-hostname_:443", "myqueue")).run()

CHAPTER 6. CONNECTING APPLICATIONS TO AMQ ONLINE

33

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-python-example-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-jms-example-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-javascript-example-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-cpp-example-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#ref-dotnet-example-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_online_on_openshift_container_platform/#con-address-space-messaging

A known issue exists where creating a subscriber on a hierarchical topic in AMQ Online causes the broker
to instead create it as a competing consumer (handling the address like a queue rather than a topic).

The workaround for this issue involves setting the capability "topic" in the source.

Procedure

1. In the simple_recv.py file, modify the from proton.reactor import Container to add the
ReceiverOption:

1. Modify the following line to add options=CapabilityOptions():

6.1.2. AMQ Online JMS example

You can use the following AMQ Online JMS example to connect your application to AMQ Online. This
example assumes you have created an address of type queue named myqueue.

class CapabilityOptions(ReceiverOption):
 def apply(self, receiver):
 receiver.source.capabilities.put_object(symbol("topic"))

def on_start(self, event):
 event.container.create_receiver(conn, self.address, options=CapabilityOptions())

package org.apache.qpid.jms.example;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.naming.Context;
import javax.naming.InitialContext;

public class HelloWorld {
 public static void main(String[] args) throws Exception {
 try {
 // The configuration for the Qpid InitialContextFactory has been supplied in
 // a jndi.properties file in the classpath, which results in it being picked
 // up automatically by the InitialContext constructor.
 Context context = new InitialContext();

 ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
 Destination queue = (Destination) context.lookup("myQueueLookup");

 Connection connection = factory.createConnection(System.getProperty("USER"),
System.getProperty("PASSWORD"));
 connection.setExceptionListener(new MyExceptionListener());

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

34

with jndi.properties:

connectionfactory.myFactoryLookup = amqps://messaging-route-hostname:443?
transport.trustAll=true&transport.verifyHost=false
queue.myQueueLookup = myqueue

6.1.3. AMQ Online JavaScript example

You can use the following AMQ Online JavaScript example to connect your application to AMQ Online.
This example assumes you have created an address of type queue named myqueue.

 connection.start();

 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer messageProducer = session.createProducer(queue);
 MessageConsumer messageConsumer = session.createConsumer(queue);

 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(message, DeliveryMode.NON_PERSISTENT,
Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE);
 TextMessage receivedMessage = (TextMessage) messageConsumer.receive(2000L);

 if (receivedMessage != null) {
 System.out.println(receivedMessage.getText());
 } else {
 System.out.println("No message received within the given timeout!");
 }

 connection.close();
 } catch (Exception exp) {
 System.out.println("Caught exception, exiting.");
 exp.printStackTrace(System.out);
 System.exit(1);
 }
 }

 private static class MyExceptionListener implements ExceptionListener {
 @Override
 public void onException(JMSException exception) {
 System.out.println("Connection ExceptionListener fired, exiting.");
 exception.printStackTrace(System.out);
 System.exit(1);
 }
 }
}

var container = require('rhea');
container.on('connection_open', function (context) {
 context.connection.open_receiver('myqueue');
 context.connection.open_sender('myqueue');
});
container.on('message', function (context) {
 console.log(context.message.body);
 context.connection.close();

CHAPTER 6. CONNECTING APPLICATIONS TO AMQ ONLINE

35

6.1.3.1. AMQ Online JavaScript example using WebSockets

6.1.4. AMQ Online C++ example

The C++ client has equivalent simple_recv and simple_send examples with the same options as
Python. However, the C++ library does not perform the same level of processing on the URL; in
particular it will not accept amqps:// to imply using TLS, so the example needs to be modified as follows:

});
container.on('sendable', function (context) {
 context.sender.send({body:'Hello World!'});
 context.sender.detach();
});
container.connect({username: 'username', password: 'password', port:443, host:'messaging-route-
hostname', transport:'tls', rejectUnauthorized:false});

var container = require('rhea');
var WebSocket = require('ws');

container.on('connection_open', function (context) {
 context.connection.open_receiver('myqueue');
 context.connection.open_sender('myqueue');
});
container.on('message', function (context) {
 console.log(context.message.body);
 context.connection.close();
});
container.on('sendable', function (context) {
 context.sender.send({body:'Hello World!'});
 context.sender.detach();
});

var ws = container.websocket_connect(WebSocket);
container.connect({username: 'username', password: 'password', connection_details:
ws("wss://messaging-route-hostname:443", ["binary"], {rejectUnauthorized: false})});

#include <proton/connection.hpp>
#include <proton/container.hpp>
#include <proton/default_container.hpp>
#include <proton/delivery.hpp>
#include <proton/message.hpp>
#include <proton/messaging_handler.hpp>
#include <proton/ssl.hpp>
#include <proton/thread_safe.hpp>
#include <proton/tracker.hpp>
#include <proton/url.hpp>

#include <iostream>

#include "fake_cpp11.hpp"

class hello_world : public proton::messaging_handler {
 private:
 proton::url url;

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

36

6.1.4.1. Known issue with creating a subscriber on a hierarchical topic

A known issue exists where creating a subscriber on a hierarchical topic in AMQ Online causes the broker
to instead create it as a competing consumer (handling the address like a queue rather than a topic).

The workaround involves setting the capability "topic" in the source.

Procedure

In the topic_receive.cpp file, edit the code so that it is similar to what is shown in this example:

 public:
 hello_world(const std::string& u) : url(u) {}

 void on_container_start(proton::container& c) OVERRIDE {
 proton::connection_options co;
 co.ssl_client_options(proton::ssl_client_options());
 c.client_connection_options(co);
 c.connect(url);
 }

 void on_connection_open(proton::connection& c) OVERRIDE {
 c.open_receiver(url.path());
 c.open_sender(url.path());
 }

 void on_sendable(proton::sender &s) OVERRIDE {
 proton::message m("Hello World!");
 s.send(m);
 s.close();
 }

 void on_message(proton::delivery &d, proton::message &m) OVERRIDE {
 std::cout << m.body() << std::endl;
 d.connection().close();
 }
};

int main(int argc, char **argv) {
 try {
 std::string url = argc > 1 ? argv[1] : "messaging-route-hostname:443/myqueue";

 hello_world hw(url);
 proton::default_container(hw).run();

 return 0;
 } catch (const std::exception& e) {
 std::cerr << e.what() << std::endl;
 }

 return 1;
}

void on_container_start(proton::container& cont) override {

CHAPTER 6. CONNECTING APPLICATIONS TO AMQ ONLINE

37

6.1.5. AMQ Online .NET example

You can use the following AMQ Online .NET example to connect your application to AMQ Online. This
example assumes you have created an address of type queue named myqueue.

 proton::connection conn = cont.connect(conn_url_);
 proton::receiver_options opts {};
 proton::source_options sopts {};

 sopts.capabilities(std::vector<proton::symbol> { "topic" });
 opts.source(sopts);

 conn.open_receiver(address_, opts);
 }

using System;
using Amqp;

namespace Test
{
 public class Program
 {
 public static void Main(string[] args)
 {
 String url = (args.Length > 0) ? args[0] : "amqps://messaging-route-hostname:443";
 String address = (args.Length > 1) ? args[1] : "myqueue";

 Connection.DisableServerCertValidation = true;
 Connection connection = new Connection(new Address(url));
 Session session = new Session(connection);
 SenderLink sender = new SenderLink(session, "test-sender", address);

 Message messageSent = new Message("Test Message");
 sender.Send(messageSent);

 ReceiverLink receiver = new ReceiverLink(session, "test-receiver", address);
 Message messageReceived = receiver.Receive(TimeSpan.FromSeconds(2));
 Console.WriteLine(messageReceived.Body);
 receiver.Accept(messageReceived);

 sender.Close();
 receiver.Close();
 session.Close();
 connection.Close();
 }
 }
}

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

38

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Online is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading zip and tar files
To access zip or tar files, use the Red Hat Customer Portal to find the relevant files for download. If you
are using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Online entries in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Online product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

APPENDIX A. USING YOUR SUBSCRIPTION

39

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

APPENDIX B. AMQ ONLINE RESOURCES FOR MESSAGING
TENANTS

The following table describes the AMQ Online resources that pertain to the messaging tenant role.

Table B.1. AMQ Online messaging tenant resources table

Resource Description

addresses Specifies the address.

addressspaces Specifies the address space.

messagingusers Specifies the authorization policy that controls which
addresses may be used and the operations that may
be performed on those addresses.

Revised on 2019-08-15 21:23:09 UTC

Red Hat AMQ 7.4 Using AMQ Online on OpenShift Container Platform

40

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. AMQ ONLINE OVERVIEW
	1.2. SUPPORTED FEATURES
	1.3. AMQ ONLINE USER ROLES
	1.4. SUPPORTED CONFIGURATIONS
	1.5. DOCUMENT CONVENTIONS
	1.5.1. Variable text

	CHAPTER 2. MANAGING ADDRESS SPACES
	2.1. ADDRESS SPACE
	2.2. STANDARD ADDRESS SPACE
	2.2.1. Standard address types
	2.2.1.1. Queue
	2.2.1.2. Topic
	2.2.1.3. Anycast
	2.2.1.4. Multicast
	2.2.1.5. Subscription

	2.3. BROKERED ADDRESS SPACE
	2.3.1. Brokered address types
	2.3.1.1. Queue
	2.3.1.2. Topic

	2.4. ADDRESS SPACE PLANS
	2.5. LISTING AVAILABLE ADDRESS SPACE PLANS USING THE COMMAND LINE
	2.6. LISTING AVAILABLE AUTHENTICATION SERVICES USING THE COMMAND LINE
	2.7. ADDRESS SPACE EXAMPLES
	2.7.1. Address space example
	2.7.2. Address space example using an authentication service
	2.7.3. Address space example using an external authentication service allowing overrides
	2.7.4. Address space examples exposing endpoints externally
	2.7.4.1. OpenShift LoadBalancer service example
	2.7.4.2. OpenShift route example

	2.7.5. Address space certificate provider configuration examples
	2.7.5.1. openshift provider
	2.7.5.2. selfsigned provider
	2.7.5.3. certBundle provider

	2.7.6. Address space example exports
	2.7.6.1. ConfigMap and Secret type export examples
	2.7.6.2. Service type export example

	2.8. EXAMPLE ADDRESS SPACE STATUS OUTPUT
	2.9. EXAMPLE OF EXPORTING ADDRESS SPACE INFORMATION INTO THE APPLICATION NAMESPACE
	2.10. CREATING ADDRESS SPACES USING THE COMMAND LINE
	2.11. CREATING AN ADDRESS SPACE USING THE RED HAT AMQ CONSOLE
	2.12. CHANGING THE ADDRESS SPACE PLAN ASSOCIATED WITH AN ADDRESS SPACE USING THE RED HAT AMQ CONSOLE
	2.13. DELETING AN ADDRESS SPACE USING THE RED HAT AMQ CONSOLE
	2.14. EXAMPLE COMMANDS FOR RETRIEVING ADDRESS SPACE INFORMATION
	2.15. REPLACING ADDRESS SPACES USING THE COMMAND LINE

	CHAPTER 3. MANAGING ADDRESSES
	3.1. ADDRESS
	3.2. ADDRESS PLANS
	3.2.1. Address example

	3.3. LISTING AVAILABLE ADDRESS PLANS USING THE COMMAND LINE
	3.4. CREATING ADDRESSES USING THE COMMAND LINE
	3.5. CREATING ADDRESSES USING THE RED HAT AMQ CONSOLE
	3.6. REPLACING ADDRESSES USING THE COMMAND LINE

	CHAPTER 4. USING THE RED HAT AMQ CONSOLE
	4.1. RED HAT AMQ CONSOLE USER PERMISSIONS
	4.2. ACCESSING THE RED HAT AMQ CONSOLE
	4.3. USING THE RED HAT AMQ CONSOLE ADDRESS FILTERING
	4.4. VIEWING MESSAGE AND CONNECTION STATISTICS USING THE RED HAT AMQ CONSOLE

	CHAPTER 5. USER MODEL
	5.1. AUTHENTICATION
	5.1.1. Password authentication type
	5.1.2. Serviceaccount authentication type

	5.2. AUTHORIZATION
	5.3. MANAGING USERS
	5.3.1. Creating users using the command line
	5.3.2. Deleting users using the command line
	5.3.3. Managing user permissions using the command line

	CHAPTER 6. CONNECTING APPLICATIONS TO AMQ ONLINE
	6.1. CLIENT EXAMPLES
	6.1.1. AMQ Online Python example
	6.1.1.1. Known issue with creating a subscriber on a hierarchical topic

	6.1.2. AMQ Online JMS example
	6.1.3. AMQ Online JavaScript example
	6.1.3.1. AMQ Online JavaScript example using WebSockets

	6.1.4. AMQ Online C++ example
	6.1.4.1. Known issue with creating a subscriber on a hierarchical topic

	6.1.5. AMQ Online .NET example

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading zip and tar files
	Registering your system for packages

	APPENDIX B. AMQ ONLINE RESOURCES FOR MESSAGING TENANTS

