Troubleshooting

View a list of troubleshooting topics for your cluster. You can also use the must-gather command to collect logs.
Troubleshooting

View a list of troubleshooting topics for your cluster. You can also use the must-gather command to collect logs.
Abstract

View a list of troubleshooting topics for your cluster. You can also use the must-gather command to collect logs.
Table of Contents

CHAPTER 1. TROUBLESHOOTING

1. **DOCUMENTED TROUBLESHOOTING**
 - 1.1. Must-gather scenarios
 - 1.2. Must-gather procedure
 - 1.3. Must-gather in a disconnected environment

2. **RUNNING THE MUST-GATHER COMMAND TO TROUBLESHOOT**
 - 2.1. Must-gather scenarios
 - 2.2. Must-gather procedure
 - 2.3. Must-gather in a disconnected environment

3. **TROUBLESHOOTING INSTALLATION STATUS STUCK IN INSTALLING OR PENDING**
 - 3.1. Symptom: Stuck in Pending status
 - 3.2. Resolving the problem: Adjust worker node sizing

4. **TROUBLESHOOTING REINSTALLATION FAILURE**
 - 4.1. Symptom: Reinstallation failure
 - 4.2. Resolving the problem: Reinstallation failure

5. **TROUBLESHOOTING AN OFFLINE CLUSTER**
 - 5.1. Symptom: Cluster status is offline
 - 5.2. Resolving the problem: Cluster status is offline

6. **TROUBLESHOOTING A MANAGED CLUSTER IMPORT FAILURE**
 - 6.1. Symptom: Imported cluster not available
 - 6.2. Resolving the problem: Imported cluster not available

7. **TROUBLESHOOTING CLUSTER WITH PENDING IMPORT STATUS**
 - 7.1. Symptom: Cluster with pending import status
 - 7.2. Identifying the problem: Cluster with pending import status
 - 7.3. Resolving the problem: Cluster with pending import status

8. **TROUBLESHOOTING CLUSTER WITH ALREADY EXISTS ERROR**
 - 8.2. Identifying the problem: Already exists when importing OpenShift Container Platform cluster
 - 8.3. Resolving the problem: Already exists when importing OpenShift Container Platform cluster

9. **TROUBLESHOOTING CLUSTER CREATION ON VMWARE VSPHERE**
 - 9.1. Managed cluster creation fails with certificate IP SAN error
 - 9.1.1. Symptom: Managed cluster creation fails with certificate IP SAN error
 - 9.1.2. Identifying the problem: Managed cluster creation fails with certificate IP SAN error
 - 9.1.3. Resolving the problem: Managed cluster creation fails with certificate IP SAN error
 - 9.2. Managed cluster creation fails with unknown certificate authority
 - 9.2.1. Symptom: Managed cluster creation fails with unknown certificate authority
 - 9.2.2. Identifying the problem: Managed cluster creation fails with unknown certificate authority
 - 9.2.3. Resolving the problem: Managed cluster creation fails with unknown certificate authority
 - 9.3. Managed cluster creation fails with expired certificate
 - 9.3.1. Symptom: Managed cluster creation fails with expired certificate
 - 9.3.2. Identifying the problem: Managed cluster creation fails with expired certificate
 - 9.3.3. Resolving the problem: Managed cluster creation fails with expired certificate
 - 9.4. Managed cluster creation fails with insufficient privilege for tagging
 - 9.4.1. Symptom: Managed cluster creation fails with insufficient privilege for tagging
 - 9.4.2. Identifying the problem: Managed cluster creation fails with insufficient privilege for tagging
 - 9.4.3. Resolving the problem: Managed cluster creation fails with insufficient privilege for tagging
 - 9.5. Managed cluster creation fails with invalid dnsVIP
 - 9.5.1. Symptom: Managed cluster creation fails with invalid dnsVIP
 - 9.5.2. Identifying the problem: Managed cluster creation fails with invalid dnsVIP
 - 9.5.3. Resolving the problem: Managed cluster creation fails with invalid dnsVIP
 - 9.6. Managed cluster creation fails with incorrect network type
 - 9.6.1. Symptom: Managed cluster creation fails with incorrect network type
 - 9.6.2. Identifying the problem: Managed cluster creation fails with incorrect network type
 - 9.6.3. Resolving the problem: Managed cluster creation fails with incorrect network type
1.9.7. Managed cluster creation fails with an error processing disk changes
1.9.7.1. Symptom: Adding the VMware vSphere managed cluster fails due to an error processing disk changes
1.9.7.2. Identifying the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes
1.9.7.3. Resolving the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

1.10. MANAGED CLUSTER CREATION FAILS ON RED HAT OPENSTACK PLATFORM WITH UNKNOWN AUTHORITY ERROR
1.10.1. Symptom: Managed cluster creation fails with unknown authority error
1.10.2. Identifying the problem: Managed cluster creation fails with unknown authority error
1.10.3. Resolving the problem: Managed cluster creation fails with unknown authority error

1.11. TROUBLESHOOTING OPENSOURCE CONTAINER PLATFORM VERSION 3.11 CLUSTER IMPORT FAILURE
1.11.1. Symptom: OpenShift Container Platform version 3.11 cluster import failure
1.11.2. Identifying the problem: OpenShift Container Platform version 3.11 cluster import failure
1.11.3. Resolving the problem: OpenShift Container Platform version 3.11 cluster import failure

1.12. TROUBLESHOOTING IMPORTED CLUSTERS OFFLINE AFTER CERTIFICATE CHANGE
1.12.1. Symptom: Clusters offline after certificate change
1.12.2. Identifying the problem: Clusters offline after certificate change
1.12.3. Resolving the problem: Clusters offline after certificate change

1.13. NAMESPACE REMAINS AFTER DELETING A CLUSTER
1.13.1. Symptom: Namespace remains after deleting a cluster
1.13.2. Resolving the problem: Namespace remains after deleting a cluster

1.14. AUTO-IMPORT-SECRET-EXISTS ERROR WHEN IMPORTING A CLUSTER
1.14.1. Symptom: Auto import secret exists error when importing a cluster
1.14.2. Resolving the problem: Auto-import-secret-exists error when importing a cluster

1.15. TROUBLESHOOTING CLUSTER STATUS CHANGING FROM OFFLINE TO AVAILABLE
1.15.1. Symptom: Cluster status changing from offline to available
1.15.2. Resolving the problem: Cluster status changing from offline to available

1.16. TROUBLESHOOTING CLUSTER IN CONSOLE WITH PENDING OR FAILED STATUS
1.16.1. Symptom: Cluster in console with pending or failed status
1.16.2. Identifying the problem: Cluster in console with pending or failed status
1.16.3. Resolving the problem: Cluster in console with pending or failed status

1.17. TROUBLESHOOTING APPLICATION GIT SERVER CONNECTION
1.17.1. Symptom: Git server connection
1.17.2. Resolving the problem: Git server connection

1.18. TROUBLESHOOTING GRAFANA
1.18.1. Symptom: Grafana explorer gateway timeout
1.18.2. Resolving the problem: Configure the multicloud-console route

1.19. TROUBLESHOOTING LOCAL CLUSTER NOT SELECTED WITH PLACEMENT RULE
1.19.1. Symptom: Troubleshooting local cluster not selected as a managed cluster
1.19.2. Resolving the problem: Troubleshooting local cluster not selected as a managed cluster

1.20. TROUBLESHOOTING APPLICATION KUBERNETES DEPLOYMENT VERSION
1.20.1. Symptom: Application deployment version
1.20.2. Resolving the problem: Application deployment version

1.21. TROUBLESHOOTING STANDALONE SUBSCRIPTION MEMORY
1.21.1. Symptom: Standalone subscription memory
1.21.2. Resolving the problem: Standalone subscription memory

1.22. TROUBLESHOOTING KLUSTERLET WITH DEGRADED CONDITIONS
1.22.1. Symptom: Klusterlet is in the degraded condition
1.22.2. Identifying the problem: Klusterlet is in the degraded condition
1.22.3. Resolving the problem: Klusterlet is in the degraded condition
1.23. TROUBLESHOOTING KLUSTERLET APPLICATION MANAGER ON MANAGED CLUSTERS
1.23.1. Symptom: Klusterlet application manager on managed cluster
1.23.2. Resolving the problem: Klusterlet application manager on managed cluster

1.24. TROUBLESHOOTING OBJECT STORAGE CHANNEL SECRET
1.24.1. Symptom: Object storage channel secret
1.24.2. Resolving the problem: Object storage channel secret

1.25. TROUBLESHOOTING OBSERVABILITY
1.25.1. Symptom: MultiClusterObservability resource status stuck
1.25.2. Resolving the problem: MultiClusterObservability resource status stuck

1.26. TROUBLESHOOTING OPENSHIFT MONITORING SERVICE
1.26.1. Symptom: OpenShift monitoring service is not ready
1.26.2. Resolving the problem: OpenShift monitoring service is not ready

1.27. TROUBLESHOOTING SEARCH AGGREGATOR POD STATUS
1.27.1. Symptom 1: Search aggregator pod in Not Ready state
1.27.2. Resolving the problem: Search aggregator pod in Not Ready state
1.27.3. Symptom 2: Search redisgraph pod in Pending state
1.27.4. Resolving the problem: Search redisgraph pod in Pending state

1.28. TROUBLESHOOTING METRICS-COLLECTOR
1.28.1. Symptom: metrics-collector cannot verify observability-client-ca-certificate
1.28.2. Resolving the problem: metrics-collector cannot verify observability-client-ca-certificate

1.29. TROUBLESHOOTING SUBMARINER NOT CONNECTING AFTER INSTALLATION - GENERAL INFORMATION
1.29.1. Symptom: Submariner not connecting after installation - general information
1.29.2. Identifying the problem: Submariner not connecting after installation - general information
1.29.3. Resolving the problem: Submariner not connecting after installation - general information

1.30. TROUBLESHOOTING SUBMARINER ADD-ON STATUS IS DEGRADED
1.30.1. Symptom: Submariner add-on status is degraded
1.30.2. Resolving the problem: Submariner add-on status is degraded
CHAPTER 1. TROUBLESHOOTING

Before using the Troubleshooting guide, you can run the `oc adm must-gather` command to gather details, logs, and take steps in debugging issues. For more details, see Running the must-gather command to troubleshoot.

Additionally, check your role-based access. See Role-based access control for details.

1.1. DOCUMENTED TROUBLESHOOTING

View the list of troubleshooting topics for Red Hat Advanced Cluster Management for Kubernetes:

Installation

To view the main documentation for the installing tasks, see Installing.

- Troubleshooting installation status stuck in installing or pending
- Troubleshooting reinstallation failure

Cluster management

To view the main documentation about managing your clusters, see Cluster lifecycle architecture or The multicluster engine operator cluster lifecycle overview.

- Troubleshooting an offline cluster
- Troubleshooting a managed cluster import failure
- Troubleshooting cluster with pending import status
- Troubleshooting imported clusters offline after certificate change
- Troubleshooting cluster status changing from offline to available
- Troubleshooting cluster creation on VMware vSphere
- Troubleshooting cluster in console with pending or failed status
- Troubleshooting OpenShift Container Platform version 3.11 cluster import failure
- Troubleshooting Klusterlet with degraded conditions
- Troubleshooting Klusterlet application manager on managed clusters
- Troubleshooting Object storage channel secret
- Namespace remains after deleting a cluster
- Auto-import-secret-exists error when importing a cluster

Application management

To view the main documentation about application management, see Managing applications.

- Troubleshooting application Kubernetes deployment version.
Troubleshooting standalone subscription memory problem.

Troubleshooting application Git server connection.

Troubleshooting local cluster not selected

Governance

To view the security guide, see Risk and compliance.

Console observability

Console observability includes Search, along with header and navigation function. To view the observability guide, see Observability in the console.

Troubleshooting grafana

Troubleshooting observability

Troubleshooting OpenShift monitoring services

Troubleshooting search aggregator pod status

Troubleshooting metrics-collector

Submariner networking and service discovery

This section lists the Submariner troubleshooting procedures that can occur when using Submariner with Red Hat Advanced Cluster Management or multicluster engine for Kubernetes operator. For general Submariner troubleshooting information, see Troubleshooting in the Submariner documentation.

To view the main documentation for the Submariner networking service and service discovery, see Submariner multicluster networking and service discovery.

Troubleshooting Submariner not connecting after installation - general information

Troubleshooting Submariner add-on status is degraded

1.2. RUNNING THE MUST-GATHER COMMAND TO TROUBLESHOOT

To get started with troubleshooting, learn about the troubleshooting scenarios for users to run the must-gather command to debug the issues, then see the procedures to start using the command.

Required access: Cluster administrator

1.2.1. Must-gather scenarios

Scenario one: Use the Documented troubleshooting section to see if a solution to your problem is documented. The guide is organized by the major functions of the product. With this scenario, you check the guide to see if your solution is in the documentation. For instance, for trouble with creating a cluster, you might find a solution in the Manage cluster section.

Scenario two: If your problem is not documented with steps to resolve, run the must-gather command and use the output to debug the issue.
Scenario three: If you cannot debug the issue using your output from the `must-gather` command, then share your output with Red Hat Support.

1.2.2. Must-gather procedure

See the following procedure to start using the `must-gather` command:

1. Learn about the `must-gather` command and install the prerequisites that you need at [Gathering data about your cluster](#) in the Red Hat OpenShift Container Platform documentation.

2. Log in to your cluster. Add the Red Hat Advanced Cluster Management for Kubernetes image that is used for gathering data and the directory. Run the following command, where you insert the image and the directory for the output:

   ```bash
   oc adm must-gather --image=registry.redhat.io/rhacm2/acm-must-gather-rhel8:v2.6.0 --dest-dir=<directory>
   ```

3. For the usual use-case, you should run the `must-gather` while you are logged into your `hub` cluster.

 Note: If you want to check your managed clusters, find the `gather-managed.log` file that is located in the `cluster-scoped-resources` directory:

   ```bash
   <your-directory>/cluster-scoped-resources/gather-managed.log>
   ```

 Check for managed clusters that are not set `True` for the JOINED and AVAILABLE column. You can run the `must-gather` command on those clusters that are not connected with `True` status.

4. Go to your specified directory to see your output, which is organized in the following levels:

 - Two peer levels: `cluster-scoped-resources` and `namespace resources`.
 - Sub-level for each: API group for the custom resource definitions for both cluster-scope and namespace-scope resources.
 - Next level for each: YAML file sorted by `kind`.

1.2.3. Must-gather in a disconnected environment

Complete the following steps to run the `must-gather` command in a disconnected environment:

1. In a disconnected environment, mirror the Red Hat operator catalog images into their mirror registry. For more information, see [Install on disconnected networks](#).

2. Run the following command to extract logs, which reference the image from their mirror registry:

   ```bash
   REGISTRY=registry.example.com:5000
   IMAGE=$REGISTRY/rhacm2/acm-must-gather-rhel8@sha256:ff9f37eb400dc1f7d07a9b6f2da9064992934b69847d17f59e385783c071b9d8
   oc adm must-gather --image=$IMAGE --dest-dir=./data
   ```

3. Run the following commands to collect all of the information:
REGISTRY=<internal.repo.address:port>
IMAGE1=$REGISTRY/rhacm2/acm-must-gather-rhel8:v2.6
IMAGE2=$REGISTRY/multicluster-engine/must-gather-rhel8:v2.1

oc adm must-gather --image=$IMAGE1 --dest-dir=<directory>
oc adm must-gather --image=$IMAGE2 --dest-dir=<directory>

1.3. TROUBLESHOOTING INSTALLATION STATUS STUCK IN INSTALLING OR PENDING

When installing Red Hat Advanced Cluster Management, the MultiClusterHub remains in Installing phase, or multiple pods maintain a Pending status.

1.3.1. Symptom: Stuck in Pending status

More than ten minutes passed since you installed MultiClusterHub and one or more components from the status.components field of the MultiClusterHub resource report ProgressDeadlineExceeded. Resource constraints on the cluster might be the issue.

Check the pods in the namespace where Multiclusterhub was installed. You might see Pending with a status similar to the following:

reason: Unschedulable
message: '0/6 nodes are available: 3 Insufficient cpu, 3 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate.'

In this case, the worker nodes resources are not sufficient in the cluster to run the product.

1.3.2. Resolving the problem: Adjust worker node sizing

If you have this problem, then your cluster needs to be updated with either larger or more worker nodes. See Sizing your cluster for guidelines on sizing your cluster.

1.4. TROUBLESHOOTING REINSTALLATION FAILURE

When reinstalling Red Hat Advanced Cluster Management for Kubernetes, the pods do not start.

1.4.1. Symptom: Reinstallation failure

If your pods do not start after you install Red Hat Advanced Cluster Management, it is likely that Red Hat Advanced Cluster Management was previously installed, and not all of the pieces were removed before you attempted this installation.

In this case, the pods do not start after completing the installation process.

1.4.2. Resolving the problem: Reinstallation failure

If you have this problem, complete the following steps:

1. Run the uninstallation process to remove the current components by following the steps in Uninstalling.
2. Install the Helm CLI binary version 3.2.0, or later, by following the instructions at Installing Helm.

3. Ensure that your Red Hat OpenShift Container Platform CLI is configured to run oc commands. See Getting started with the OpenShift CLI in the OpenShift Container Platform documentation for more information about how to configure the oc commands.

4. Copy the following script into a file:

```bash
#!/bin/bash
ACM_NAMESPACE=<namespace>
oc delete mch --all -n $ACM_NAMESPACE
helm ls --namespace $ACM_NAMESPACE | cut -f 1 | tail -n +2 | xargs -n 1 helm delete --namespace $ACM_NAMESPACE
oc delete api-service v1beta1.webhook.certmanager.k8s.io v1.admission.cluster.open-cluster-management.io v1.admission.work.open-cluster-management.io
oc delete clusterimageset --all
oc delete consolelink acm-console-link
oc delete mutatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-v1alpha1 ocm-mutating-webhook managedclustermutators.admission.cluster.open-cluster-management.io
oc delete mutatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-v1alpha1 ocm-mutating-webhook managedclustermutators.admission.cluster.open-cluster-management.io
oc delete validatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-v1alpha1 ocm-validating-webhook
oc delete mutatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-v1alpha1 ocm-validating-webhook managedclustermutators.admission.cluster.open-cluster-management.io
```

Replace `<namespace>` in the script with the name of the namespace where Red Hat Advanced Cluster Management was installed. Ensure that you specify the correct namespace, as the namespace is cleaned out and deleted.

5. Run the script to remove the artifacts from the previous installation.

6. Run the installation. See Installing while connected online.

1.5. TROUBLESHOOTING AN OFFLINE CLUSTER

There are a few common causes for a cluster showing an offline status.

1.5.1. Symptom: Cluster status is offline

After you complete the procedure for creating a cluster, you cannot access it from the Red Hat Advanced Cluster Management console, and it shows a status of offline.

1.5.2. Resolving the problem: Cluster status is offline

1. Determine if the managed cluster is available. You can check this in the Clusters area of the Red Hat Advanced Cluster Management console.
If it is not available, try restarting the managed cluster.

2. If the managed cluster status is still offline, complete the following steps:
 a. Run the `oc get managedcluster <cluster_name> -o yaml` command on the hub cluster. Replace `<cluster_name>` with the name of your cluster.
 b. Find the `status.conditions` section.
 c. Check the messages for `type: ManagedClusterConditionAvailable` and resolve any problems.

1.6. TROUBLESHOOTING A MANAGED CLUSTER IMPORT FAILURE

If your cluster import fails, there are a few steps that you can take to determine why the cluster import failed.

1.6.1. Symptom: Imported cluster not available

After you complete the procedure for importing a cluster, you cannot access it from the Red Hat Advanced Cluster Management for Kubernetes console.

1.6.2. Resolving the problem: Imported cluster not available

There can be a few reasons why an imported cluster is not available after an attempt to import it. If the cluster import fails, complete the following steps, until you find the reason for the failed import:

1. On the Red Hat Advanced Cluster Management hub cluster, run the following command to ensure that the Red Hat Advanced Cluster Management import controller is running.
   ```
kubectl -n multicluster-engine get pods -l app=managedcluster-import-controller-v2
   ```
 You should see two pods that are running. If either of the pods is not running, run the following command to view the log to determine the reason:
   ```
kubectl -n multicluster-engine logs -l app=managedcluster-import-controller-v2 --tail=-1
   ```

2. On the Red Hat Advanced Cluster Management hub cluster, run the following command to determine if the managed cluster import secret was generated successfully by the Red Hat Advanced Cluster Management import controller:
   ```
kubectl -n <managed_cluster_name> get secrets <managed_cluster_name>-import
   ```
 If the import secret does not exist, run the following command to view the log entries for the import controller and determine why it was not created:
   ```
kubectl -n multicluster-engine logs -l app=managedcluster-import-controller-v2 --tail=-1 | grep importconfig-controller
   ```

3. On the Red Hat Advanced Cluster Management hub cluster, if your managed cluster is `local-cluster`, provisioned by Hive, or has an auto-import secret, run the following command to check the import status of the managed cluster.
If the condition ManagedClusterImportSucceeded is not true, the result of the command indicates the reason for the failure.

4. Check the Klusterlet status of the managed cluster for a degraded condition. See Troubleshooting Klusterlet with degraded conditions to find the reason that the Klusterlet is degraded.

1.7. TROUBLESHOOTING CLUSTER WITH PENDING IMPORT STATUS

If you receive Pending import continually on the console of your cluster, follow the procedure to troubleshoot the problem.

1.7.1. Symptom: Cluster with pending import status

After importing a cluster by using the Red Hat Advanced Cluster Management console, the cluster appears in the console with a status of Pending import.

1.7.2. Identifying the problem: Cluster with pending import status

1. Run the following command on the managed cluster to view the Kubernetes pod names that are having the issue:

 kubectl get pod -n open-cluster-management-agent | grep klusterlet-registration-agent

2. Run the following command on the managed cluster to find the log entry for the error:

 kubectl logs <registration_agent_pod> -n open-cluster-management-agent

Replace registration_agent_pod with the pod name that you identified in step 1.

3. Search the returned results for text that indicates there was a networking connectivity problem. Example includes: no such host.

1.7.3. Resolving the problem: Cluster with pending import status

1. Retrieve the port number that is having the problem by entering the following command on the hub cluster:

 oc get infrastructure cluster -o yaml | grep apiServerURL

2. Ensure that the hostname from the managed cluster can be resolved, and that outbound connectivity to the host and port is occurring.
 If the communication cannot be established by the managed cluster, the cluster import is not complete. The cluster status for the managed cluster is Pending import.

1.8. TROUBLESHOOTING CLUSTER WITH ALREADY EXISTS ERROR

If you are unable to import an OpenShift Container Platform cluster into Red Hat Advanced Cluster Management, follow the procedure to troubleshoot the problem.

1.8.1. Symptom: Cluster with already exists error

After importing a cluster by using the Red Hat Advanced Cluster Management console, the cluster appears in the console with a status of Already exists error.
If you are unable to import an OpenShift Container Platform cluster into Red Hat Advanced Cluster Management MultiClusterHub and receive an AlreadyExists error, follow the procedure to troubleshoot the problem.

1.8.1. Symptom: Already exists error log when importing OpenShift Container Platform cluster

An error log shows up when importing an OpenShift Container Platform cluster into Red Hat Advanced Cluster Management MultiClusterHub:

```
error log:
Warning: apiextensions.k8s.io/v1beta1 CustomResourceDefinition is deprecated in v1.16+, unavailable in v1.22+; use apiextensions.k8s.io/v1 CustomResourceDefinition
Error from server (AlreadyExists): error when creating "STDIN":
customresourcedefinitions.apiextensions.k8s.io "klusterlets.operator.open-cluster-management.io" already exists
The cluster cannot be imported because its Klusterlet CRD already exists.
Either the cluster was already imported, or it was not detached completely during a previous detach process.
Detach the existing cluster before trying the import again."
```

1.8.2. Identifying the problem: Already exists when importing OpenShift Container Platform cluster

Check if there are any Red Hat Advanced Cluster Management-related resources on the cluster that you want to import to new the Red Hat Advanced Cluster Management MultiClusterHub by running the following commands:

```
oc get all -n open-cluster-management-agent
noc get all -n open-cluster-management-agent-addon
```

1.8.3. Resolving the problem: Already exists when importing OpenShift Container Platform cluster

Run the following commands to remove pre-existing resources:

```
oc delete namespaces open-cluster-management-agent open-cluster-management-agent-addon --wait=false
noc get crds | grep open-cluster-management.io | awk '{print $1}' | xargs oc delete crds --wait=false
noc get crds | grep open-cluster-management.io | awk '{print $1}' | xargs oc patch crds --type=merge -p '{"metadata":{"finalizers": []}}'
```

1.9. TROUBLESHOOTING CLUSTER CREATION ON VMWARE VSPHERE

If you experience a problem when creating a Red Hat OpenShift Container Platform cluster on VMware vSphere, see the following troubleshooting information to see if one of them addresses your problem.

Note: Sometimes when the cluster creation process fails on VMware vSphere, the link is not enabled for you to view the logs. If this happens, you can identify the problem by viewing the log of the hive-controllers pod. The hive-controllers log is in the hive namespace.

1.9.1. Managed cluster creation fails with certificate IP SAN error
1.9.1.1. Symptom: Managed cluster creation fails with certificate IP SAN error

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails with an error message that indicates a certificate IP SAN error.

1.9.1.2. Identifying the problem: Managed cluster creation fails with certificate IP SAN error

The deployment of the managed cluster fails and returns the following errors in the deployment log:

```
time="2020-08-07T15:27:55Z" level=error msg="Error: error setting up new vSphere SOAP client: Post https://147.1.1.1/sdk: x509: cannot validate certificate for xx.xx.xx.xx because it doesn't contain any IP SANs"
```

time="2020-08-07T15:27:55Z" level=error

1.9.1.3. Resolving the problem: Managed cluster creation fails with certificate IP SAN error

Use the VMware vCenter server fully-qualified host name instead of the IP address in the credential. You can also update the VMware vCenter CA certificate to contain the IP SAN.

1.9.2. Managed cluster creation fails with unknown certificate authority

1.9.2.1. Symptom: Managed cluster creation fails with unknown certificate authority

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because the certificate is signed by an unknown authority.

1.9.2.2. Identifying the problem: Managed cluster creation fails with unknown certificate authority

The deployment of the managed cluster fails and returns the following errors in the deployment log:

```
Error: error setting up new vSphere SOAP client: Post https://vspherehost.com/sdk: x509: certificate signed by unknown authority"
```

1.9.2.3. Resolving the problem: Managed cluster creation fails with unknown certificate authority

Ensure you entered the correct certificate from the certificate authority when creating the credential.

1.9.3. Managed cluster creation fails with expired certificate

1.9.3.1. Symptom: Managed cluster creation fails with expired certificate

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because the certificate is expired or is not yet valid.

1.9.3.2. Identifying the problem: Managed cluster creation fails with expired certificate

The deployment of the managed cluster fails and returns the following errors in the deployment log:

```
x509: certificate has expired or is not yet valid
```

1.9.3.3. Resolving the problem: Managed cluster creation fails with expired certificate

Use the VMware vCenter server fully-qualified host name instead of the IP address in the credential. You can also update the VMware vCenter CA certificate to contain the IP SAN.
1.9.3.3. Resolving the problem: Managed cluster creation fails with expired certificate
Ensure that the time on your ESXi hosts is synchronized.

1.9.4. Managed cluster creation fails with insufficient privilege for tagging

1.9.4.1. Symptom: Managed cluster creation fails with insufficient privilege for tagging
After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is insufficient privilege to use tagging.

1.9.4.2. Identifying the problem: Managed cluster creation fails with insufficient privilege for tagging
The deployment of the managed cluster fails and returns the following errors in the deployment log:

```
time="2020-08-07T19:41:58Z" level=debug msg="vsphere_tag_category.category: Creating..."
time="2020-08-07T19:41:58Z" level=error
```

1.9.4.3. Resolving the problem: Managed cluster creation fails with insufficient privilege for tagging
Ensure that your VMware vCenter required account privileges are correct. See Image registry removed during information for more information.

1.9.5. Managed cluster creation fails with invalid dnsVIP

1.9.5.1. Symptom: Managed cluster creation fails with invalid dnsVIP
After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is an invalid dnsVIP.

1.9.5.2. Identifying the problem: Managed cluster creation fails with invalid dnsVIP
If you see the following message when trying to deploy a new managed cluster with VMware vSphere, it is because you have an older OpenShift Container Platform release image that does not support VMware Installer Provisioned Infrastructure (IPI):

```
failed to fetch Master Machines: failed to load asset "Install Config": invalid "install-config.yaml" file: platform.vsphere.dnsVIP: Invalid value: "": "" is not a valid IP
```

1.9.5.3. Resolving the problem: Managed cluster creation fails with invalid dnsVIP
Select a release image from a later version of OpenShift Container Platform that supports VMware Installer Provisioned Infrastructure.
1.9.6. Managed cluster creation fails with incorrect network type

1.9.6.1. Symptom: Managed cluster creation fails with incorrect network type

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is an incorrect network type specified.

1.9.6.2. Identifying the problem: Managed cluster creation fails with incorrect network type

If you see the following message when trying to deploy a new managed cluster with VMware vSphere, it is because you have an older OpenShift Container Platform image that does not support VMware Installer Provisioned Infrastructure (IPI):

   ```
   time="2020-08-11T14:31:38-04:00" level=debug msg="vsphereprivate_import_ova.import: Creating..."
   time="2020-08-11T14:31:39-04:00" level=error
   time="2020-08-11T14:31:39-04:00" level=error msg="Error: rpc error: code = Unavailable desc = transport is closing"
   time="2020-08-11T14:31:39-04:00" level=error
   time="2020-08-11T14:31:39-04:00" level=error
   time="2020-08-11T14:31:39-04:00" level=fatal msg="failed to fetch Cluster: failed to generate asset \"Cluster\": failed to create cluster: failed to apply Terraform: failed to complete the change"
   ```

1.9.6.3. Resolving the problem: Managed cluster creation fails with incorrect network type

Select a valid VMware vSphere network type for the specified VMware cluster.

1.9.7. Managed cluster creation fails with an error processing disk changes

1.9.7.1. Symptom: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is an error when processing disk changes.

1.9.7.2. Identifying the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

A message similar to the following is displayed in the logs:

   ```
   ERROR
   ```

1.9.7.3. Resolving the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

Use the VMware vSphere client to give the user All privileges for Profile-driven Storage Privileges.
1.10. MANAGED CLUSTER CREATION FAILS ON RED HAT OPENSTACK PLATFORM WITH UNKNOWN AUTHORITY ERROR

If you experience a problem when creating a Red Hat OpenShift Container Platform cluster on Red Hat OpenStack Platform, see the following troubleshooting information to see if one of them addresses your problem.

1.10.1. Symptom: Managed cluster creation fails with unknown authority error

After creating a new Red Hat OpenShift Container Platform cluster on Red Hat OpenStack Platform using self-signed certificates, the cluster fails with an error message that indicates an unknown authority error.

1.10.2. Identifying the problem: Managed cluster creation fails with unknown authority error

The deployment of the managed cluster fails and returns the following error message:

x509: certificate signed by unknown authority

1.10.3. Resolving the problem: Managed cluster creation fails with unknown authority error

Verify that the following files are configured correctly:

1. The `clouds.yaml` file must specify the path to the `ca.crt` file in the `cacert` parameter. The `cacert` parameter is passed to the OpenShift installer when generating the ignition shim. See the following example:

```yaml
clouds:
  openstack:
    cacert: "/etc/pki/ca-trust/source/anchors/ca.crt"
```

2. The `certificatesSecretRef` parameter must reference a secret with a file name matching the `ca.crt` file. See the following example:

```yaml
spec:
  baseDomain: dev09.red-chesterfield.com
  clusterName: txue-osspoke
  platform:
    openstack:
      cloud: openstack
      credentialsSecretRef:
        name: txue-osspoke-openstack-creds
certificatesSecretRef:
    name: txue-osspoke-openstack-certificatebundle
```

To create a secret with a matching file name, run the following command:

```
oc create secret generic txue-osspoke-openstack-certificatebundle --from-file=ca.crt=ca.crt.pem -n $CLUSTERNAME
```

3. The size of the `ca.cert` file must be less than 63 thousand bytes.
1.11. TROUBLESHOOTING OPENS Shift CONTAINER PLATFORM VERSION 3.11 CLUSTER IMPORT FAILURE

1.11.1. Symptom: OpenShift Container Platform version 3.11 cluster import failure

After you attempt to import a Red Hat OpenShift Container Platform version 3.11 cluster, the import fails with a log message that resembles the following content:

```
customresourcedefinition.apiextensions.k8s.io/klusterlets.operator.open-cluster-management.io configured
clusterrole.rbac.authorization.k8s.io/klusterlet configured
clusterrole.rbac.authorization.k8s.io/open-cluster-management:klusterlet-admin-aggregate-clusterrole configured
clusterrolebinding.rbac.authorization.k8s.io/klusterlet configured
namespace/open-cluster-management-agent configured
secret/open-cluster-management-image-pull-credentials unchanged
serviceaccount/klusterlet configured
deployment.apps/klusterlet unchanged
klusterlet.operator.open-cluster-management.io/klusterlet configured
Error from server (BadRequest): error when creating "STDIN": Secret in version "v1" cannot be handled as a Secret:
v1.Secret.ObjectMeta: Kind: Data: decode base64: illegal base64 data at input byte 1313, error found in #10 byte of ...
dhruy45="},"kind":"...
...|tye56u56u568yuo7i67i67i556574i"},"kind":"Secret","metadata":{"annotations":{"kube...```

1.11.2. Identifying the problem: OpenShift Container Platform version 3.11 cluster import failure

This often occurs because the installed version of the `kubectl` command-line tool is 1.11, or earlier. Run the following command to see which version of the `kubectl` command-line tool you are running:

```
kubectl version
```

If the returned data lists version 1.11, or earlier, complete one of the fixes in Resolving the problem: OpenShift Container Platform version 3.11 cluster import failure.

1.11.3. Resolving the problem: OpenShift Container Platform version 3.11 cluster import failure

You can resolve this issue by completing one of the following procedures:

- Install the latest version of the `kubectl` command-line tool.
  
  1. Download the latest version of the `kubectl` tool from: Install and Set Up `kubectl` in the Kubernetes documentation.
  2. Import the cluster again after upgrading your `kubectl` tool.

- Run a file that contains the import command.
  
  1. Start the procedure in Importing a managed cluster with the CLI.
2. When you create the command to import your cluster, copy that command into a YAML file named `import.yaml`.

3. Run the following command to import the cluster again from the file:

   ```bash
 oc apply -f import.yaml
   ```

1.12. TROUBLESHOOTING IMPORTED CLUSTERS OFFLINE AFTER CERTIFICATE CHANGE

Installing a custom `apiserver` certificate is supported, but one or more clusters that were imported before you changed the certificate information can have an **offline** status.

1.12.1. Symptom: Clusters offline after certificate change

After you complete the procedure for updating a certificate secret, one or more of your clusters that were online are now displaying an **offline** status in the Red Hat Advanced Cluster Management for Kubernetes console.

1.12.2. Identifying the problem: Clusters offline after certificate change

After updating the information for a custom API server certificate, clusters that were imported and running before the new certificate are now in an **offline** state.

The errors that indicate that the certificate is the problem are found in the logs for the pods in the `open-cluster-management-agent` namespace of the offline managed cluster. The following examples are similar to the errors that are displayed in the logs:

**Log of `work-agent`:**

```
E0917 03:04:05.874887 1 base_controller.go:231] "ManifestWorkAgent" controller failed to sync "test-1-klusterlet-addon-workmgr", err: Failed to update work status with err Get "api.aaa-ocp.dev02.location.com:6443/apis/cluster.management.io/v1/namespaces/test-1/manifestworks/test-1-klusterlet-addon-workmgr": x509: certificate signed by unknown authority
```

**Log of `registration-agent`:**

```
1.12.3. Resolving the problem: Clusters offline after certificate change

To manually restore your clusters after updating your certificate information, complete the following steps for each managed cluster:

1. Manually import the cluster again. Red Hat OpenShift Container Platform clusters that were created from Red Hat Advanced Cluster Management will resynchronize every 2 hours, so you can skip this step for those clusters.

 a. On the hub cluster, display the import command by entering the following command:

      ```
      oc get secret -n ${CLUSTER_NAME} ${CLUSTER_NAME}-import -o jsonpath='{.data.import.yaml}' | base64 --decode > import.yaml
      ```

 Replace `CLUSTER_NAME` with the name of the managed cluster that you are importing.

 b. On the managed cluster, apply the `import.yaml` file:

      ```
      oc apply -f import.yaml
      ```

1.13. NAMESPACE REMAINS AFTER DELETING A CLUSTER

When you remove a managed cluster, the namespace is normally removed as part of the cluster removal process. In rare cases, the namespace remains with some artifacts in it. In that case, you must manually remove the namespace.

1.13.1. Symptom: Namespace remains after deleting a cluster

After removing a managed cluster, the namespace is not removed.

1.13.2. Resolving the problem: Namespace remains after deleting a cluster

Complete the following steps to remove the namespace manually:

1. Run the following command to produce a list of the resources that remain in the `<cluster_name>` namespace:

   ```
   oc api-resources --verbs=list --namespaced -o name | grep -E "^secrets|serviceaccounts|managedclusteraddons|roles|rolebindings|manifestworks|lease:
   ```
1. To manually delete the existing **auto-import-secret**, run the following command on the hub cluster:

```
oc delete secret auto-import-secret -n <cluster-namespace>
```

Replace `cluster-namespace` with the namespace of your cluster.

2. Import your cluster again using the procedure in **Importing a target managed cluster to a hub cluster**.
Your cluster is imported.

1.15. TROUBLESHOOTING CLUSTER STATUS CHANGING FROM OFFLINE TO AVAILABLE

The status of the managed cluster alternates between offline and available without any manual change to the environment or cluster.

1.15.1. Symptom: Cluster status changing from offline to available

When the network that connects the managed cluster to the hub cluster is unstable, the status of the managed cluster that is reported by the hub cluster cycles between offline and available.

1.15.2. Resolving the problem: Cluster status changing from offline to available

To attempt to resolve this issue, complete the following steps:

1. Edit your ManagedCluster specification on the hub cluster by entering the following command:

   ```bash
   oc edit managedcluster <cluster-name>
   ```

 Replace cluster-name with the name of your managed cluster.

2. Increase the value of leaseDurationSeconds in your ManagedCluster specification. The default value is 5 minutes, but that might not be enough time to maintain the connection with the network issues. Specify a greater amount of time for the lease. For example, you can raise the setting to 20 minutes.

1.16. TROUBLESHOOTING CLUSTER IN CONSOLE WITH PENDING OR FAILED STATUS

If you observe Pending status or Failed status in the console for a cluster you created, follow the procedure to troubleshoot the problem.

1.16.1. Symptom: Cluster in console with pending or failed status

After creating a new cluster by using the Red Hat Advanced Cluster Management for Kubernetes console, the cluster does not progress beyond the status of Pending or displays Failed status.

1.16.2. Identifying the problem: Cluster in console with pending or failed status

If the cluster displays Failed status, navigate to the details page for the cluster and follow the link to the logs provided. If no logs are found or the cluster displays Pending status, continue with the following procedure to check for logs:

- Procedure 1

 1. Run the following command on the hub cluster to view the names of the Kubernetes pods that were created in the namespace for the new cluster:

     ```bash
     oc get pod -n <new_cluster_name>
     ```

 Replace new_cluster_name with the name of the cluster that you created.
If no pod that contains the string `provision` in the name is listed, continue with Procedure 2.

If there is a pod with `provision` in the title, run the following command on the hub cluster to view the logs of that pod:

```
oc logs <new_cluster_name_provision_pod_name> -n <new_cluster_name> -c hive
```

Replace `new_cluster_name_provision_pod_name` with the name of the cluster that you created, followed by the pod name that contains `provision`.

3. Search for errors in the logs that might explain the cause of the problem.

 - Procedure 2
 If there is not a pod with `provision` in its name, the problem occurred earlier in the process. Complete the following procedure to view the logs:

 1. Run the following command on the hub cluster:

     ```
oc describe clusterdeployments -n <new_cluster_name>
```

 Replace `new_cluster_name` with the name of the cluster that you created. For more information about cluster installation logs, see Gathering installation logs in the Red Hat OpenShift documentation.

1.16.3. Resolving the problem: Cluster in console with pending or failed status

After you identify the errors in the logs, determine how to resolve the errors before you destroy the cluster and create it again.

The following example provides a possible log error of selecting an unsupported zone, and the actions that are required to resolve it:

```
No subnets provided for zones
```

When you created your cluster, you selected one or more zones within a region that are not supported. Complete one of the following actions when you recreate your cluster to resolve the issue:

 - Select a different zone within the region.

 - Omit the zone that does not provide the support, if you have other zones listed.

 - Select a different region for your cluster.

After determining the issues from the log, destroy the cluster and recreate it.

See Creating a cluster for more information about creating a cluster.

1.17. TROUBLESHOOTING APPLICATION GIT SERVER CONNECTION

Logs from the `open-cluster-management` namespace display failure to clone the Git repository.

1.17.1. Symptom: Git server connection
The logs from the subscription controller pod `multicluster-operators-hub-subscription-<random-characters>` in the `open-cluster-management` namespace indicates that it fails to clone the Git repository. You receive a `x509: certificate signed by unknown authority` error, or `BadGateway` error.

1.17.2. Resolving the problem: Git server connection

Important: Upgrade if you are on a previous version.

1. Save `apps.open-cluster-management.io_channels_crd.yaml` as the same file name.

2. On the Red Hat Advanced Cluster Management cluster, run the following command to apply the file:

   ```bash
   oc apply -f apps.open-cluster-management.io_channels_crd.yaml
   ```

3. In the `open-cluster-management` namespace, edit the `advanced-cluster-management.<version, example 2.5.0>` CSV, run the following command and edit:

   ```bash
   oc edit csv advanced-cluster-management.<version, example 2.5.0> -n open-cluster-management
   ```

 Find the following containers:

 - `multicluster-operators-standalone-subscription`
 - `multicluster-operators-hub-subscription`

 Replace the container images with the container that you want to use:

   ```bash
   quay.io/open-cluster-management/multicluster-operators-subscription:<your image tag>
   ```

 The update recreates the following pods in the `open-cluster-management` namespace:

 - `multicluster-operators-standalone-subscription-<random-characters>`
 - `multicluster-operators-hub-subscription-<random-characters>`

4. Check that the new pods are running with the new docker image. Run the following command, then find the new docker image:

   ```bash
   oc get pod multicluster-operators-standalone-subscription-<random-characters> -n open-cluster-management -o yaml
   oc get pod multicluster-operators-hub-subscription-<random-characters> -n open-cluster-management -o yaml
   ```

5. Update the images on managed clusters.

 On the hub cluster, run the following command to update the image value in the `multicluster_operators_subscription` key to the image that you want to use:

   ```bash
   oc edit configmap -n open-cluster-management mch-image-manifest-<version, example 2.5.0>
   ...
   data:
   multicluster_operators_subscription: <your image with tag>
   ```
6. Restart the existing `multicluster-operators-hub-subscription` pod:

```bash
oc delete pods -n open-cluster-management multicluster-operators-hub-subscription--
<random-characters>
```

This recreates the `application-manager-<random-characters>` pod in `open-cluster-
management-agent-addon` namespace on the managed cluster.

7. Check that the new pod is running with the new docker image.

8. When you create an application through the console or the CLI, add `insecureSkipVerify: true` in the channel spec manually. See the following example:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  labels:
    name: sample-channel
  namespace: sample
spec:
  type: GitHub
  pathname: <Git URL>
insecureSkipVerify: true
```

1.18. TROUBLESHOOTING GRAFANA

When you query some time-consuming metrics in the Grafana explorer, you might encounter a **Gateway Time-out** error.

1.18.1. Symptom: Grafana explorer gateway timeout

If you hit the **Gateway Time-out** error when you query some time-consuming metrics in the Grafana explorer, it is possible that the timeout is caused by the `multicloud-console` route in the `open-cluster-
management` namespace.

1.18.2. Resolving the problem: Configure the `multicloud-console` route

If you have this problem, complete the following steps:

1. Verify that the default configuration of Grafana has expected timeout settings:
 a. To verify that the default timeout setting of Grafana, run the following command:

   ```bash
   oc get secret grafana-config -n open-cluster-management-observability -o jsonpath="
   {.data.grafana\.ini}" | base64 -d | grep dataproxy -A 4
   ```

 The following timeout settings should be displayed:

   ```yaml
   [dataproxy]
timeout = 300
dial_timeout = 30
keep_alive_seconds = 300
   ```
 b. To verify the default data source query timeout for Grafana, run the following command:
The following timeout settings should be displayed:

```
queryTimeout: 300s
```

2. If you verified the default configuration of Grafana has expected timeout settings, then you can configure the `multicloud-console` route in the `open-cluster-management` namespace by running the following command:

```
oc annotate route multicloud-console -n open-cluster-management --overwrite haproxy.router.openshift.io/timeout=300s
```

Refresh the Grafana page and try to query the metrics again. The **Gateway Time-out** error is no longer displayed.

1.19. TROUBLESHOOTING LOCAL CLUSTER NOT SELECTED WITH PLACEMENT RULE

The managed clusters are selected with a placement rule, but the `local-cluster`, which is a hub cluster that is also managed, is not selected. The placement rule user is not granted permission to get the `managedcluster` resources in the `local-cluster` namespace.

1.19.1. Symptom: Troubleshooting local cluster not selected as a managed cluster

All managed clusters are selected with a placement rule, but the `local-cluster` is not. The placement rule user is not granted permission to get the `managedcluster` resources in the `local-cluster` namespace.

1.19.2. Resolving the problem: Troubleshooting local cluster not selected as a managed cluster

To resolve this issue, you need to grant the `managedcluster` administrative permission in the `local-cluster` namespace. Complete the following steps:

1. Confirm that the list of managed clusters does include `local-cluster`, and that the placement rule decisions list does not display the `local-cluster`. Run the following command and view the results:

```
% oc get managedclusters
```

See in the sample output that `local-cluster` is joined, but it is not in the YAML for `PlacementRule`:

```
NAME            HUB ACCEPTED   MANAGED CLUSTER URLS   JOINED   AVAILABLE
AGE
local-cluster   true                                  True     True        56d
cluster1        true                                  True     True        16h
```

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
```
Create a Role in your YAML file to grant the managedcluster administrative permission in the local-cluster namespace. See the following example:

```
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: managedcluster-admin-user-zisis
  namespace: local-cluster
rules:
  - apiGroups:
    - cluster.open-cluster-management.io
    resources:
    - managedclusters
    verbs:
    - get
```

Create a RoleBinding resource to grant the placement rule user access to the local-cluster namespace. See the following example:

```
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: managedcluster-admin-user-zisis
  namespace: local-cluster
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: managedcluster-admin-user-zisis
  namespace: local-cluster
subjects:
  - kind: User
    name: zisis
    apiGroup: rbac.authorization.k8s.io
```

1.20. TROUBLESHOOTING APPLICATION KUBERNETES DEPLOYMENT VERSION

A managed cluster with a deprecated Kubernetes apiVersion might not be supported. See the Kubernetes issue for more details about the deprecated API version.

1.20.1. Symptom: Application deployment version

If one or more of your application resources in the Subscription YAML file uses the deprecated API, you might receive an error similar to the following error:

```
name: all-ready-clusters
namespace: default
spec:
  clusterSelector: {}
status:
  decisions:
  - clusterName: cluster1
    clusterNamespace: cluster1
```
failed to install release: unable to build kubernetes objects from release manifest: unable to recognize "": no matches for kind "Deployment" in version "extensions/v1beta1"

Or with new Kubernetes API version in your YAML file named old.yaml for instance, you might receive the following error:

error: unable to recognize "old.yaml": no matches for kind "Deployment" in version "deployment/v1beta1"

1.20.2. Resolving the problem: Application deployment version

1. Update the apiVersion in the resource. For example, if the error displays for Deployment kind in the subscription YAML file, you need to update the apiVersion from extensions/v1beta1 to apps/v1.

 See the following example:

   ```yaml
   apiVersion: apps/v1
   kind: Deployment
   ```

2. Verify the available versions by running the following command on the managed cluster:

   ```bash
   kubectl explain <resource>
   ```

3. Check for VERSION.

1.21. TROUBLESHOOTING STANDALONE SUBSCRIPTION MEMORY

The multicluster-operators-standalone-subscription pod restarts regularly because of a memory issue.

1.21.1. Symptom: Standalone subscription memory

When Operator Lifecycle Manager (OLM) deploys all operators, not only the multicluster-subscription-operator, the multicluster-operators-standalone-subscription pod restarts because not enough memory is allocated to the standalone subscription container.

The memory limit of the multicluster-operators-standalone-subscription pod was increased to 2GB in the multicluster subscription community operator CSV, but this resource limit setting is ignored by OLM.

1.21.2. Resolving the problem: Standalone subscription memory

1. After installation, find the operator subscription CR that subscribes the multicluster subscription community operator. Run the following command:

   ```bash
   % oc get sub -n open-cluster-management acm-operator-subscription
   ```

2. Edit the operator subscription custom resource by appending the spec.config.resources.yaml file to define resource limits.

 Note: Do not create a new operator subscription custom resource that subscribes the same multicluster subscription community operator. Because two operator subscriptions are linked to
one operator, the operator pods are "killed" and restarted by the two operator subscription custom resources.

See the following updated .yam file example:

```yaml
apiVersion: operators.coreos.com/v1alpha1
displayName: multicluster-operators-subscription
kinds:
  - Subscription
metadata:
  name: multicluster-operators-subscription-alpha-community-operators-openshift-marketplace
  namespace: open-cluster-management
spec:
  channel: release-2.2
  config:
    resources:
      limits:
        cpu: 750m
        memory: 2Gi
      requests:
        cpu: 150m
        memory: 128Mi
installPlanApproval: Automatic
name: multicluster-operators-subscription
source: community-operators
sourceNamespace: openshift-marketplace
```

3. After the resource is saved, ensure that the standalone subscription pod is restarted with 2GB memory limit. Run the following command:

```bash
% oc get pods -n open-cluster-management multicluster-operators-standalone-subscription-7c8cbf885f-c94kz -o yaml
```

```yaml
apiVersion: v1
displayName: multicluster-operators-subscription
kinds:
  - Pod
metadata:
  name: multicluster-operators-subscription-7c8cbf885f-c94kz-primary
  namespace: open-cluster-management
spec:
  containers:
    - image: quay.io/open-cluster-management/multicluster-operators-subscription:community-2.2
      resources:
        limits:
          cpu: 750m
          memory: 2Gi
        requests:
          cpu: 150m
          memory: 128Mi
  qosClass: Burstable
```

1.22. TROUBLESHOOTING KLUSTERLET WITH DEGRADED CONDITIONS
The Klusterlet degraded conditions can help to diagnose the status of Klusterlet agents on managed cluster. If a Klusterlet is in the degraded condition, the Klusterlet agents on managed cluster might have errors that need to be troubleshooted. See the following information for Klusterlet degraded conditions that are set to **True**.

1.22.1. **Symptom: Klusterlet is in the degraded condition**

After deploying a Klusterlet on managed cluster, the `KlusterletRegistrationDegraded` or `KlusterletWorkDegraded` condition displays a status of **True**.

1.22.2. **Identifying the problem: Klusterlet is in the degraded condition**

1. Run the following command on the managed cluster to view the Klusterlet status:

   ```bash
   kubectl get klusterlets klusterlet -oyaml
   ```

2. Check `KlusterletRegistrationDegraded` or `KlusterletWorkDegraded` to see if the condition is set to **True**. Proceed to **Resolving the problem** for any degraded conditions that are listed.

1.22.3. **Resolving the problem: Klusterlet is in the degraded condition**

See the following list of degraded statuses and how you can attempt to resolve those issues:

- If the `KlusterletRegistrationDegraded` condition with a status of **True** and the condition reason is `BootStrapSecretMissing`, you need create a bootstrap secret on `open-cluster-management-agent` namespace.

- If the `KlusterletRegistrationDegraded` condition displays **True** and the condition reason is a `BootstrapSecretError`, or `BootstrapSecretUnauthorized`, then the current bootstrap secret is invalid. Delete the current bootstrap secret and recreate a valid bootstrap secret on `open-cluster-management-agent` namespace.

- If the `KlusterletRegistrationDegraded` and `KlusterletWorkDegraded` displays **True** and the condition reason is `HubKubeConfigSecretMissing`, delete the Klusterlet and recreate it.

- If the `KlusterletRegistrationDegraded` and `KlusterletWorkDegraded` displays **True** and the condition reason is `ClusterNameMissing`, `KubeConfigMissing`, `HubConfigSecretError`, or `HubConfigSecretUnauthorized`, delete the hub cluster kubeconfig secret from `open-cluster-management-agent` namespace. The registration agent will bootstrap again to get a new hub cluster kubeconfig secret.

- If the `KlusterletRegistrationDegraded` displays **True** and the condition reason is `GetRegistrationDeploymentFailed`, or `UnavailableRegistrationPod`, you can check the condition message to get the problem details and attempt to resolve.

- If the `KlusterletWorkDegraded` displays **True** and the condition reason is `GetWorkDeploymentFailed`, or `UnavailableWorkPod`, you can check the condition message to get the problem details and attempt to resolve.

1.23. **TROUBLESHOOTING KLUSTERLET APPLICATION MANAGER ON MANAGED CLUSTERS**
When you upgrade from Red Hat Advanced Cluster Management for Kubernetes, the `klusterlet-addon-appmgr` pod on Red Hat OpenShift Container Platform managed clusters version 4.5 and 4.6 are **OOMKilled**.

1.23.1. Symptom: Klusterlet application manager on managed cluster

You receive an error for the `klusterlet-addon-appmgr` pod on Red Hat OpenShift Container Platform managed clusters version 4.5 and 4.6: **OOMKilled**.

1.23.2. Resolving the problem: Klusterlet application manager on managed cluster

For Red Hat Advanced Cluster Management for Kubernetes 2.1.x and 2.2, you need to manually increase the memory limit of the pod to **8Gb**. See the following steps:

1. On your hub cluster, annotate the `klusterletaddonconfig` to pause replication. See the following command:

   ```bash
   oc annotate klusterletaddonconfig -n ${CLUSTER_NAME} ${CLUSTER_NAME} klusterletaddonconfig-pause=true -- overwrite=true
   ```

2. On your hub cluster, scale down the `klusterlet-addon-operator`. See the following command:

   ```bash
   oc edit manifestwork ${CLUSTER_NAME}-klusterlet-addon-operator -n ${CLUSTER_NAME}
   ```

3. Find the `klusterlet-addon-operator` Deployment and add `replicas: 0` to the spec to scale down.

   ```yaml
   - apiVersion: apps/v1
     kind: Deployment
     metadata:
       labels:
         app: cluster1
         name: klusterlet-addon-operator
       namespace: open-cluster-management-agent-addon
     spec:
       replicas: 0
   ```

 On the managed cluster, the `open-cluster-management-agent-addon/klusterlet-addon-operator` pod will be terminated.

4. Log in to the managed cluster to manually increase the memory limit in the `appmgr` pod. Run the following command:

   ```bash
   % oc edit deployments -n open-cluster-management-agent-addon klusterlet-addon-appmgr
   ```

 For example, if the limit is 5G, increase the limit to 8G.

   ```yaml
   resources:
     limits:
       memory: 2Gi -> 8Gi
     requests:
       memory: 128Mi -> 256Mi
   ```

1.24. TROUBLESHOOTING OBJECT STORAGE CHANNEL SECRET
If you change the SecretAccessKey, the subscription of an Object storage channel cannot pick up the updated secret automatically and you receive an error.

1.24.1. Symptom: Object storage channel secret

The subscription of an Object storage channel cannot pick up the updated secret automatically. This prevents the subscription operator from reconciliation and deploys resources from Object storage to the managed cluster.

1.24.2. Resolving the problem: Object storage channel secret

You need to manually input the credentials to create a secret, then refer to the secret within a channel.

1. Annotate the subscription CR in order to generate a reconcile single to subscription operator. See the following data specification:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: deva
  namespace: ch-obj
labels:
  name: obj-sub
spec:
  type: ObjectBucket
sourceNamespaces:
  - default
secretRef:
  nameRef: dev

---

apiVersion: v1
kind: Secret
metadata:
  name: dev
  namespace: ch-obj
labels:
  name: obj-sub
data:
  AccessKeyID: YWRtaW4=
  SecretAccessKey: cGFzc3dvcmRhZG1pbg==
```

2. Run `oc annotate` to test:

```
oc annotate appsub -n <subscription-namespace> <subscription-name> test=true
```

After you run the command, you can go to the Application console to verify that the resource is deployed to the managed cluster. Or you can log in to the managed cluster to see if the application resource is created at the given namespace.

1.25. TROUBLESHOOTING OBSERVABILITY

After you install the observability component, the component might be stuck and an **Installing** status is displayed.
1.25.1. Symptom: MultiClusterObservability resource status stuck

If the observability status is stuck in an **Installing** status after you install and create the Observability custom resource definition (CRD), it is possible that there is no value defined for the `spec:storageConfig:storageClass` parameter. Alternatively, the observability component automatically finds the default `storageClass`, but if there is no value for the storage, the component remains stuck with the **Installing** status.

1.25.2. Resolving the problem: MultiClusterObservability resource status stuck

If you have this problem, complete the following steps:

1. Verify that the observability components are installed:

 a. To verify that the **multicluster-observability-operator**, run the following command:

      ```
      kubectl get pods -n open-cluster-management|grep observability
      ```

 b. To verify that the appropriate CRDs are present, run the following command:

      ```
      kubectl get crd|grep observ
      ```

 The following CRDs must be displayed before you enable the component:

      ```
      multiclusterobservabilities.observability.open-cluster-management.io
      observabilityaddons.observability.open-cluster-management.io
      observatoria.core.observatorium.io
      ```

2. If you create your own storageClass for a Bare Metal cluster, see [How to create an NFS provisioner in the cluster or out of the cluster](#).

3. To ensure that the observability component can find the default storageClass, update the `storageClass` parameter in the **multicluster-observability-operator** CRD. Your parameter might resemble the following value:

   ```
   storageclass.kubernetes.io/is-default-class: "true"
   ```

 The observability component status is updated to a **Ready** status when the installation is complete. If the installation fails to complete, the **Fail** status is displayed.

1.26. TROUBLESHOOTING OPENSHIFT MONITORING SERVICE

Observability service in a managed cluster needs to scrape metrics from the OpenShift Container Platform monitoring stack. The **metrics-collector** is not installed if the OpenShift Container Platform monitoring stack is not ready.

1.26.1. Symptom: OpenShift monitoring service is not ready

The **endpoint-observability-operator-x** pod checks if the **prometheus-k8s** service is available in the `openshift-monitoring` namespace. If the service is not present in the `openshift-monitoring` namespace, then the **metrics-collector** is not deployed. You might receive the following error message: **Failed to get prometheus resource.**
1.26.2. Resolving the problem: OpenShift monitoring service is not ready

If you have this problem, complete the following steps:

1. Log in to your OpenShift Container Platform cluster.

2. Access the openshift-monitoring namespace to verify that the prometheus-k8s service is available.

1.27. TROUBLESHOOTING SEARCH AGGREGATOR POD STATUS

The search-aggregator fail to run.

1.27.1. Symptom 1: Search aggregator pod in Not Ready state

Search aggregator pods are in a Not Ready state if the redisgraph-user-secret is updated. You might receive the following error:

```
W0113 15:04:42.428100       1 healthProbes.go:36] Unable to reach Redis.
W0113 15:04:44.266003       1 healthProbes.go:36] Unable to reach Redis.
W0113 15:04:46.317029       1 healthProbes.go:36] Unable to reach Redis.
```

1.27.2. Resolving the problem: Search aggregator pod in Not Ready state

If you have this problem, delete the search-aggregator and search-api pods to restart the pods. Run the following commands to delete the previously mentioned pods.

```
oc delete pod -n open-cluster-management <search-aggregator>
oc delete pod -n open-cluster-management <search-api>
```

1.27.3. Symptom 2: Search redisgraph pod in Pending state

The search-redisgraph pod fail to run when it is in Pending state.

1.27.4. Resolving the problem: Search redisgraph pod in Pending state

If you have this problem complete the following steps:

1. Check the pod events on the hub cluster namespace with the following command:

```
oc describe pod search-redisgraph-0
```
2. If you have created a searchcustomization CR, check if the storage class and storage size is valid, and check if a PVC can be created. List the PVC by running the following command:

```
oc get pvc <storageclassname>-search-redisgraph-0
```

3. Make sure the PVC can be bound to the search-redisgraph-0 pod. If the problem is still not resolved, delete the StatefulSet search-redisgraph. The search operator recreates the StatefulSet. Run the following command:

```
oc delete statefulset -n open-cluster-management search-redisgraph
```

1.28. TROUBLESHOOTING METRICS-COLLECTOR

When the observability-client-ca-certificate secret is not refreshed in the managed cluster, you might receive an internal server error.

1.28.1. Symptom: metrics-collector cannot verify observability-client-ca-certificate

There might be a managed cluster, where the metrics are unavailable. If this is the case, you might receive the following error from the metrics-collector deployment:

```
error: response status code is 500 Internal Server Error, response body is x509: certificate signed by unknown authority (possibly because of "crypto/rsa: verification error" while trying to verify candidate authority certificate "observability-client-ca-certificate")
```

1.28.2. Resolving the problem: metrics-collector cannot verify observability-client-ca-certificate

If you have this problem, complete the following steps:

1. Log in to your managed cluster.

2. Delete the secret named, observability-controller-open-cluster-management.io-observability-signer-client-cert that is in the open-cluster-management-addon-observability namespace. Run the following command:

```
oc delete observability-controller-open-cluster-management.io-observability-signer-client-cert -n open-cluster-management-addon-observability
```

Note: The observability-controller-open-cluster-management.io-observability-signer-client-cert is automatically recreated with new certificates.

The metrics-collector deployment is recreated and the observability-controller-open-cluster-management.io-observability-signer-client-cert secret is updated.

1.29. TROUBLESHOOTING SUBMARINER NOT CONNECTING AFTER INSTALLATION - GENERAL INFORMATION

If you configure Submariner and it does not run correctly, there are some things that you can do to identify the problem and resolve it.

1.29.1. Symptom: Submariner not connecting after installation - general information
Your Submariner network is not communicating after installation.

1.29.2. Identifying the problem: Submariner not connecting after installation - general information

If the network connectivity is not established after deploying Submariner, begin the troubleshooting steps. Note that it might take several minutes for the processes to complete when you deploy Submariner.

1.29.3. Resolving the problem: Submariner not connecting after installation - general information

When Submariner does not run correctly after deployment, there are a few troubleshooting steps and resources that you can use to diagnose the problem:

1. Check for the following requirements to determine whether the components of Submariner deployed correctly:
 - The `submariner-addon` pod is running in the `open-cluster-management` namespace of your hub cluster.
 - The following pods are running in the `submariner-operator` namespace of each managed cluster:
 - `submariner-addon`
 - `submariner-gateway`
 - `submariner-routeagent`
 - `submariner-operator`
 - `submariner-globalnet` (only if Globalnet is enabled in the ClusterSet)
 - `submariner-lighthouse-agent`
 - `submariner-lighthouse-coredns`
 - `submariner-networkplugin-syncer` (only if the specified CNI value is `OVNKubernetes`)

2. Run the `subctl diagnose` command to check the status of the required pods, with the exception of the `submariner-addon` pods.

3. Run the `subctl gather` command on the managed cluster to gather logs of various Submariner pods, with the exception of the `submariner-addon` pods.

4. Open an issue. If the other steps do not identify the problem, open an issue with the following information:
 a. Run `subctl gather` to collect all the relevant Submariner logs and add them to the issue.
 b. Capture the information for the `submariner` instance of the `ManagedClusterAddon` resource type, and for the `submariner` instance of the `SubmarinerConfig` resource type from the `ManagedCluster` namespace on the hub cluster.
 c. Provide the following information in your issue, as well as the other template information:
- What happened?
- What you expected to happen?
- How do you reproduce it (as minimally and precisely as possible)?
- Anything else that we need to know?
- Environment information:
 - Submariner version (use the subctl version command)
 - Kubernetes version (use the kubectl version command)
 - Diagnose information gathered (use the subctl diagnose all command)
 - Gather information (use the subctl gather command)
 - Cloud provider or hardware configuration:
 - OS (use the cat /etc/os-release command)
 - Kernel (use the uname -a command)
 - Install tools
 - Other environment information that might be useful

1.30. TROUBLESHOOTING SUBMARINER ADD-ON STATUS IS DEGRADED

After adding the Submariner add-on to the clusters in your cluster set, the status in the Connection status, Agent status, and Gateway nodes show unexpected status for the clusters.

1.30.1. Symptom: Submariner add-on status is degraded

You add the Submariner add-on to the clusters in your cluster set, the following status is shown in the Gateway nodes, Agent status, and Connection status for the clusters:

- Gateway nodes labeled
 - **Progressing**: The process to label the gateway nodes started.
 - **Nodes not labeled**: The gateway nodes are not labeled, possibly because the process to label them has not completed.
 - **Nodes not labeled**: The gateway nodes are not yet labeled, possibly because the process is waiting for another process to finish.
 - Nodes labeled: The gateway nodes have been labeled.

- Agent status
 - **Progressing**: The installation of the Submariner agent started.
 - **Degraded**: The Submariner agent is not running correctly, possibly because it is still in progress.
- Connection status
 - Progressing: The process to establish a connection with the Submariner add-on started.
 - Degraded: The connection is not ready. If you just installed the add-on, the process might still be in progress. If it was after the connection has already been established and running, then two clusters have lost the connection to each other. When there are multiple clusters, all clusters display a Degraded status if any of the clusters is in a disconnected state.

It will also show which clusters are connected, and which ones are disconnected.

1.30.2. Resolving the problem: Submariner add-on status is degraded

- The degraded status often resolves itself as the processes complete. You can see the current step of the process by clicking the status in the table. You can use that information to determine whether the process is finished and you need to take other troubleshooting steps.

- For an issue that does not resolve itself, complete the following steps to troubleshoot the problem:

 1. You can use the `diagnose` command with the `subctl` utility to run some tests on the Submariner connections when the following conditions exist:
 a. The Agent status or Connection status is in a Degraded state. The `diagnose` command provides detailed analysis about the issue.
 b. Everything is green in console, but the networking connections are not working correctly. The `diagnose` command helps to confirm that there are no other connectivity or deployment issues outside of the console. It is considered best practice to run the `diagnostics` command after any deployment to identify issues. See `diagnose` in the Submariner documentation for more information about how to run the command.

 2. If a problem continues with the Connection status, you can start by running the `diagnose` command of the `subctl` utility tool to get a more detailed status for the connection between two Submariner clusters. The format for the command is:
     ```
     subctl diagnose all --kubeconfig <path-to-kubeconfig-file>
     ```
 Replace `path-to-kubeconfig-file` with the path to the `kubeconfig` file. See `diagnose` in the Submariner documentation for more information about the command.

 3. Check the firewall settings. Sometimes a problem with the connection is caused by firewall permissions issues that prevent the clusters from communicating. This can cause the Connection status to show as degraded. Run the following command to check the firewall issues:
     ```
     subctl diagnose firewall inter-cluster <path-to-local-kubeconfig> <path-to-remote-cluster-kubeconfig>
     ```
 Replace `path-to-local-kubeconfig` with the path to the `kubeconfig` file of one of the clusters.
 Replace `path-to-remote-kubeconfig` with the path to the `kubeconfig` file of the other cluster. You can run the `verify` command with your `subctl` utility tool to test the connection between two Submariner clusters. The basic format for the command is:
4. If a problem continues with the Connection status, you can run the verify command with your subctl utility tool to test the connection between two Submariner clusters. The basic format for the command is:

```bash
subctl verify --kubecontexts <cluster1>,<cluster2> [flags]
```

Replace cluster1 and cluster2 with the names of the clusters that you are testing. See verify in the Submariner documentation for more information about the command.

5. After the troubleshooting steps resolve the issue, use the benchmark command with the subctl tool to establish a base on which to compare when you run additional diagnostics. See benchmark in the Submariner documentation for additional information about the options for the command.