
Red Hat Advanced Cluster Management
for Kubernetes 2.6

Observability

Read more to learn how to optimize your managed clusters by enabling and
customizing the observability service.

Last Updated: 2023-10-31

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

Read more to learn how to optimize your managed clusters by enabling and customizing the
observability service.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn how to optimize your managed clusters by enabling and customizing the
observability service.

. .

Table of Contents

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION
1.1. OBSERVING ENVIRONMENTS

1.1.1. Observability service
1.1.2. Metric types
1.1.3. Observability pod capacity requests
1.1.4. Persistent stores used in the observability service
1.1.5. Support

1.2. ENABLE OBSERVABILITY SERVICE
1.2.1. Prerequisites
1.2.2. Enabling observability

1.2.2.1. Creating the MultiClusterObservability custom resource
1.2.3. Enabling observability from the Red Hat OpenShift Container Platform console

1.2.3.1. Using the external metric query
1.2.3.2. Dynamic metrics for single-node OpenShift clusters

1.2.4. Disabling observability
1.3. SEARCH IN THE CONSOLE

1.3.1. Search components
1.3.2. Search customization

1.3.2.1. Options to increase the redisgraph memory
1.3.2.2. Updating saved search limit

1.3.3. Querying in the console
1.3.3.1. Querying ArgoCD applications

1.3.4. Updating klusterlet-addon-search deployments on managed clusters
1.4. CUSTOMIZING OBSERVABILITY

1.4.1. Creating custom rules
1.4.2. Configuring AlertManager
1.4.3. Adding custom metrics
1.4.4. Removing default metrics
1.4.5. Exporting metrics to external endpoints

1.4.5.1. Creating the Kubernetes secret for an external endpoint
1.4.5.2. Updating the multiclusterobservability CR
1.4.5.3. Viewing the status of metric export

1.4.6. Adding advanced configuration
1.4.7. Updating the multiclusterobservability CR replicas from the console
1.4.8. Forwarding alerts

1.4.8.1. Disabling forward alerts for managed clusters
1.4.9. Silencing alerts
1.4.10. Suppressing alerts
1.4.11. Customizing route certification

1.4.11.1. Customizing certificates for accessing the object store
1.4.12. Viewing and exploring data

1.4.12.1. Viewing the etcd table
1.4.12.2. Viewing the cluster fleet service-level overview for the Kubernetes API server dashboard
1.4.12.3. Viewing the cluster service-level overview for the Kubernetes API server dashboard

1.4.13. Disabling observability
1.4.13.1. Disabling observability on all clusters
1.4.13.2. Disabling observability on a single cluster

1.5. DESIGNING YOUR GRAFANA DASHBOARD
1.5.1. Setting up the Grafana developer instance
1.5.2. Design your Grafana dashboard

1.5.2.1. Design your Grafana dashboard with a ConfigMap

4
4
5
5
6
8
9

10
10
11

16
18
18
19
21
21
22
22
22
23
23
24
24
25
26
27
28
28
29
29
30
31
31
31
32
32
33
34
34
35
35
36
36
36
36
36
37
37
37
38
38

Table of Contents

1

1.5.3. Uninstalling the Grafana developer instance
1.6. OBSERVABILITY WITH RED HAT INSIGHTS

1.6.1. Prerequisites
1.6.2. Red Hat Insights from the Red Hat Advanced Cluster Management console

1.7. MANAGING INSIGHT POLICYREPORTS
1.7.1. Searching for insight policy reports
1.7.2. Viewing identified issues from the console

39
40
40
40
40
41
41

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

2

Table of Contents

3

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION
With the observability service enabled, you can use Red Hat Advanced Cluster Management for
Kubernetes to gain insight about and optimize your managed clusters. This information can save cost
and prevent unnecessary events.

Observing environments

Enable observability service

Search in the console

Customizing observability

Designing your Grafana dashboard

Observability with Red Hat Insights

Managing insight PolicyReports

1.1. OBSERVING ENVIRONMENTS

You can use Red Hat Advanced Cluster Management for Kubernetes to gain insight and optimize your
managed clusters. Enable the observability service operator, multicluster-observability-operator, on
your hub cluster to monitor the health of your managed clusters. Learn about the architecture for the
multicluster observability service in the following sections.

Note: The on-demand log provides access for engineers to get logs for a given pod in real-time. Logs
from the hub cluster are not aggregated. These logs can be accessed with the search service and other
parts of the console.

Observability service

Metric types

Observability pod capacity requests

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

4

Persistent stores used in the observability service

Support

1.1.1. Observability service

By default, observability is included with the product installation, but not enabled. Due to the
requirement for persistent storage, the observability service is not enabled by default. Red Hat
Advanced Cluster Management supports the following S3 compatible, stable object stores:

Amazon S3
Note: The object store interface in Thanos support APIs that are AWS S3 restful API
compatible, or other S3 compatible object stores like Minio and Ceph.

Google Cloud Storage

Azure storage

Red Hat OpenShift Data Foundation
Important: When you configure your object store, ensure that you meet the encryption
requirements necessary when sensitive data is persisted. For a complete list of the supported
object stores, see Thanos documentation.

When the service is enabled, the observability-endpoint-operator is automatically deployed to each
imported or created cluster. This controller collects the data from Red Hat OpenShift Container
Platform Prometheus, then sends it to the Red Hat Advanced Cluster Management hub cluster.

If the hub cluster imports itself as the local-cluster, observability is also enabled on it and metrics are
collected from the hub cluster.

The observability service deploys an instance of Prometheus AlertManager, which enables alerts to be
forwarded with third-party applications. It also includes an instance of Grafana to enable data
visualization with dashboards (static) or data exploration. Red Hat Advanced Cluster Management
supports version 8.1.3 of Grafana. You can also design your Grafana dashboard. For more information,
see Designing your Grafana dashboard .

You can customize the observability service by creating custom recording rules or alerting rules.

For more information about enabling observability, see Enable observability service .

1.1.2. Metric types

By default, OpenShift Container Platform sends metrics to Red Hat using the Telemetry service. The
acm_managed_cluster_info is available with Red Hat Advanced Cluster Management and is included
with telemetry, but is not displayed on the Red Hat Advanced Cluster Management Observe
environments overview dashboard.

View the following table of metric types that are supported by the framework:

Table 1.1. Parameter table

Metric name Metric type Labels/tags Status

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

5

https://thanos.io/tip/thanos/storage.md/#object-storage
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

acm_managed_clust
er_info

Gauge hub_cluster_id,
managed_cluster_id,
vendor, cloud,
version, available,
created_via,
core_worker,
socket_worker

Stable

policy_governance_i
nfo

Gauge type, policy,
policy_namespace,
cluster_namespace

Stable. See Governance
metric for more details.

policyreport_info Gauge managed_cluster_id,
category, policy,
result, severity

Stable. See Managing
insight PolicyReports for
more details.

config_policies_eval
uation_duration_sec
onds_bucket

Histogram None. Stable. See Governance
metric for more details.

config_policies_eval
uation_duration_sec
onds_count

Histogram None. Stable. See Governance
metric for more details.

config_policies_eval
uation_duration_sec
onds_sum

Histogram None. Stable. See Governance
metric for more details.

Metric name Metric type Labels/tags Status

Learn from the OpenShift Container Platform documentation what types of metrics are collected and
sent using telemetry. See Information collected by Telemetry for information.

1.1.3. Observability pod capacity requests

Observability components require 2701mCPU and 11972Mi memory to install the observability service.
The following table is a list of the pod capacity requests for five managed clusters with observability-
addons enabled:

Table 1.2. Observability pod capacity requests

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

observabilit
y-
alertmanage
r

alertmanage
r

4 200 3 12 600

config-
reloader

4 25 3 12 75

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

6

../../html-single/governance#gov-metric
../../html-single/governance#gov-metric
../../html-single/governance#gov-metric
../../html-single/governance#gov-metric
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/index#about-remote-health-monitoring

alertmanage
r-proxy

1 20 3 3 60

observabilit
y-grafana

grafana 4 100 2 8 200

grafana-
dashboard-
loader

4 50 2 8 100

observabilit
y-
observatoriu
m-api

observatoriu
m-api

20 128 2 40 256

observabilit
y-
observatoriu
m-operator

observatoriu
m-operator

100 100 1 10 50

observabilit
y-rbac-
query-proxy

rbac-query-
proxy

20 100 2 40 200

oauth-proxy 1 20 2 2 40

observabilit
y-thanos-
compact

thanos-
compact

100 512 1 100 512

observabilit
y-thanos-
query

thanos-
query

300 1024 2 600 2048

observabilit
y-thanos-
query-
frontend

thanos-
query-
frontend

100 256 2 200 512

observabilit
y-thanos-
query-
frontend-
memcached

memcached 45 128 3 135 384

exporter 5 50 3 15 150

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

7

observabilit
y-thanos-
receive-
controller

thanos-
receive-
controller

4 32 1 4 32

observabilit
y-thanos-
receive-
default

thanos-
receive

300 512 3 900 1536

observabilit
y-thanos-
rule

thanos-rule 50 512 3 150 1536

configmap-
reloader

4 25 3 12 75

observabilit
y-thanos-
store-
memcached

memcached 45 128 3 135 384

exporter 5 50 3 15 150

observabilit
y-thanos-
store-shard

thanos-
store

100 1024 3 300 3072

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

1.1.4. Persistent stores used in the observability service

When you install Red Hat Advanced Cluster Management the following persistent volumes (PV) must be
created so that Persistent Volume Claims (PVC) can attach to it automatically. As a reminder, you must
define a storage class in the MultiClusterObservability CR when there is no default storage class
specified or you want to use a non-default storage class to host the PVs. It is recommended to use Block
Storage, similare to what Prometheus uses. Also each replica of alertmanager, thanos-compactor,
thanos-ruler, thanos-receive-default and thanos-store-shard must have its own PV. View the
following table:

Table 1.3. Table list of persistent volumes

Persistent volume name Purpose

alertmanager Alertmanager stores the nflog data and silenced
alerts in its storage. nflog is an append-only log of
active and resolved notifications along with the
notified receiver, and a hash digest of contents that
the notification identified.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

8

thanos-compact The compactor needs local disk space to store
intermediate data for its processing, as well as bucket
state cache. The required space depends on the size
of the underlying blocks. The compactor must have
enough space to download all of the source blocks,
then build the compacted blocks on the disk. On-disk
data is safe to delete between restarts and should be
the first attempt to get crash-looping compactors
unstuck. However, it is recommended to give the
compactor persistent disks in order to effectively use
bucket state cache in between restarts.

thanos-rule The thanos ruler evaluates Prometheus recording
and alerting rules against a chosen query API by
issuing queries at a fixed interval. Rule results are
written back to the disk in the Prometheus 2.0
storage format. The amount of hours or days of data
retained in this stateful set was fixed in the API
version observability.open-cluster-
management.io/v1beta1. It has been exposed as
an API parameter in observability.open-cluster-
management.io/v1beta2: RetentionInLocal

thanos-receive-default Thanos receiver accepts incoming data (Prometheus
remote-write requests) and writes these into a local
instance of the Prometheus TSDB. Periodically
(every 2 hours), TSDB blocks are uploaded to the
object storage for long term storage and
compaction. The amount of hours or days of data
retained in this stateful set, which acts a local cache
was fixed in API Version observability.open-
cluster-management.io/v1beta. It has been
exposed as an API parameter in
observability.open-cluster-
management.io/v1beta2: RetentionInLocal

thanos-store-shard It acts primarily as an API gateway and therefore
does not need significant amounts of local disk
space. It joins a Thanos cluster on startup and
advertises the data it can access. It keeps a small
amount of information about all remote blocks on
local disk and keeps it in sync with the bucket. This
data is generally safe to delete across restarts at the
cost of increased startup times.

Note: The time series historical data is stored in object stores. Thanos uses object storage as the
primary storage for metrics and meta data related to them. For more details about the object storage
and downsampling, see Enable observability service

1.1.5. Support

Red Hat Advanced Cluster Management is tested with and fully supported by Red Hat OpenShift Data
Foundation (formerly Red Hat OpenShift Container Storage).

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

9

Red Hat Advanced Cluster Management supports the function of the multicluster observability
operator on user-provided third-party object storage that is S3 API compatible.

Red Hat Advanced Cluster Management use commercial, reasonable efforts to assist in the
identification of the root cause.

If a support ticket is raised and the root cause has been determined to be a result of the customer-
provided S3 compatible object storage, then the issue must be resolved using the customer support
channels.

Red Hat Advanced Cluster Management does not commit to fix support tickets raised by customers,
where the root cause identified is the S3 compatible object storage provider.

See Customizing observability to learn how to configure the observability service, view metrics and
other data.

1.2. ENABLE OBSERVABILITY SERVICE

Monitor the health of your managed clusters with the observability service (multicluster-observability-
operator).

Required access: Cluster administrator, the open-cluster-management:cluster-manager-admin role,
or S3 administrator.

Prerequisites

Enabling observability

Creating the MultiClusterObservability CR

Enabling observability from the Red Hat OpenShift Container Platform console

Using the external metric query

Disabling observability

1.2.1. Prerequisites

You must install Red Hat Advanced Cluster Management for Kubernetes. See Installing while
connected online for more information.

You must define a storage class in the MultiClusterObservability CR, if there is no default
storage class specified.

Direct network access to the hub cluster is required. Network access to load balancers and
proxies are not supported. For more information, see Networking.

You must configure an object store to create a storage solution. Red Hat Advanced Cluster
Management supports the following cloud providers with stable object stores:

Amazon Web Services S3 (AWS S3)

Red Hat Ceph (S3 compatible API)

Google Cloud Storage

Azure storage

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

10

../../html-single/install#installing-while-connected-online
../../html-single/networking#networking
https://aws.amazon.com/getting-started/hands-on/lightsail-object-storage/
https://www.redhat.com/en/technologies/storage/ceph
https://cloud.google.com/storage
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction

Red Hat OpenShift Data Foundation (formerly known as Red Hat OpenShift Container
Storage)

Red Hat OpenShift on IBM (ROKS)
Important: When you configure your object store, ensure that you meet the encryption
requirements necessary when sensitive data is persisted. For more information on Thanos
supported object stores, see Thanos documentation.

1.2.2. Enabling observability

Enable the observability service by creating a MultiClusterObservability custom resource (CR)
instance. Before you enable observability, see Observability pod capacity requests for more information.

Note: When observability is enabled or disabled on OpenShift Container Platform managed clusters
that are managed by Red Hat Advanced Cluster Management, the observability endpoint operator
updates the cluster-monitoring-config ConfigMap by adding additional alertmanager configuration
that restarts the local Prometheus automatically.

Complete the following steps to enable the observability service:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. Create a namespace for the observability service with the following command:

oc create namespace open-cluster-management-observability

3. Generate your pull-secret. If Red Hat Advanced Cluster Management is installed in the open-
cluster-management namespace, run the following command:

DOCKER_CONFIG_JSON=`oc extract secret/multiclusterhub-operator-pull-secret -n open-
cluster-management --to=-`

If the multiclusterhub-operator-pull-secret is not defined in the namespace, copy the pull-
secret from the openshift-config namespace into the open-cluster-management-
observability namespace. Run the following command:

DOCKER_CONFIG_JSON=`oc extract secret/pull-secret -n openshift-config --to=-`

Then, create the pull-secret in the open-cluster-management-observability namespace, run
the following command:

oc create secret generic multiclusterhub-operator-pull-secret \
 -n open-cluster-management-observability \
 --from-literal=.dockerconfigjson="$DOCKER_CONFIG_JSON" \
 --type=kubernetes.io/dockerconfigjson

Important: If you modify the global pull secret for your cluster by using the OpenShift Container
Platform documentation, be sure to also update the global pull secret in the observability
namespace. See Updating the global pull secret for more details.

4. Create a secret for your object storage for your cloud provider. Your secret must contain the
credentials to your storage solution. For example, run the following command:

oc create -f thanos-object-storage.yaml -n open-cluster-management-observability

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

11

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://www.ibm.com/docs/en/baw/20.x?topic=storage-preparing-cloud-public-roks
https://thanos.io/tip/thanos/storage.md/#object-storage
https://docs.openshift.com/container-platform/4.12/openshift_images/managing_images/using-image-pull-secrets.html#images-update-global-pull-secret_using-image-pull-secrets

View the following examples of secrets for the supported object stores:

For Amazon S3 or S3 compatible, your secret might resemble the following file:

For more details, see Amazon Simple Storage Service user guide .

For Google, your secret might resemble the following file:

For more details, see Google Cloud Storage .

For Azure your secret might resemble the following file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_S3_BUCKET
 endpoint: YOUR_S3_ENDPOINT
 insecure: true
 access_key: YOUR_ACCESS_KEY
 secret_key: YOUR_SECRET_KEY

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: GCS
 config:
 bucket: YOUR_GCS_BUCKET
 service_account: YOUR_SERVICE_ACCOUNT

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: AZURE
 config:
 storage_account: YOUR_STORAGE_ACCT
 storage_account_key: YOUR_STORAGE_KEY
 container: YOUR_CONTAINER
 endpoint: blob.core.windows.net
 max_retries: 0

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

12

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://cloud.google.com/storage/docs/introduction

For more details, see Azure Storage documentation.

Note: If you use Azure as an object storage for a Red Hat OpenShift Container Platform
cluster, the storage account associated with the cluster is not supported. You must create a
new storage account.

For Red Hat OpenShift Data Foundation, your secret might resemble the following file:

For more details, see Red Hat OpenShift Data Foundation . For Red Hat OpenShift on IBM
(ROKS), your secret might resemble the following file:

For more details, follow the IBM Cloud documentation, Cloud Object Storage . Be sure to
use the service credentials to connect with the object storage. For more details, follow the
IBM Cloud documentation, Cloud Object Store and Service Credentials.

For Amazon S3 or S3 compatible storage, you can also use short term, limited-privilege
credentials generated with AWS Security Token Service (AWS STS). Refer to AWS Security
Token Service documentation for more details.
Generating access keys using AWS Security Service require the following additional steps:

Create an IAM policy that limits access to an S3 bucket

Create an IAM role with a trust policy to generate JWT tokens for OpenShift Container

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_RH_DATA_FOUNDATION_BUCKET
 endpoint: YOUR_RH_DATA_FOUNDATION_ENDPOINT
 insecure: false
 access_key: YOUR_RH_DATA_FOUNDATION_ACCESS_KEY
 secret_key: YOUR_RH_DATA_FOUNDATION_SECRET_KEY

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_ROKS_S3_BUCKET
 endpoint: YOUR_ROKS_S3_ENDPOINT
 insecure: true
 access_key: YOUR_ROKS_ACCESS_KEY
 secret_key: YOUR_ROKS_SECRET_KEY

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

13

https://docs.microsoft.com/en-us/azure/storage/
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://cloud.ibm.com/objectstorage/create
https://cloud.ibm.com/objectstorage/create%5BCloud
https://cloud.ibm.com/docs/cloud-object-storage/iam?topic=cloud-object-storage-service-credentials%5BService
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

Create an IAM role with a trust policy to generate JWT tokens for OpenShift Container
Platform service accounts

Specify annotations for the observability service accounts that requires access to the
S3 bucket. You can find an example of how observability on Red Hat OpenShift Service
on AWS (ROSA) cluster can be configured to work with AWS STS tokens in the Set
environment step. See Red Hat OpenShift Service on AWS (ROSA) for more details,
along with ROSA with STS explained for an in-depth description of the requirements
and setup to use STS tokens.

Complete the following steps to generate access keys using the AWS Security Service:

1. Set up the AWS environment. Run the following commands:

2. Create an S3 bucket with the following command:

3. Create a s3-policy JSON file for access to your S3 bucket. Run the following command:

export POLICY_VERSION=$(date +"%m-%d-%y")
export TRUST_POLICY_VERSION=$(date +"%m-%d-%y")
export CLUSTER_NAME=<my-cluster>
export S3_BUCKET=$CLUSTER_NAME-acm-observability
export REGION=us-east-2
export NAMESPACE=open-cluster-management-observability
export SA=tbd
export SCRATCH_DIR=/tmp/scratch
export OIDC_PROVIDER=$(oc get authentication.config.openshift.io cluster -o json | jq -r
.spec.serviceAccountIssuer| sed -e "s/^https:\/\///")
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
export AWS_PAGER=""
rm -rf $SCRATCH_DIR
mkdir -p $SCRATCH_DIR

aws s3 mb s3://$S3_BUCKET

{
 "Version": "$POLICY_VERSION",
 "Statement": [
 {
 "Sid": "Statement",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:CreateBucket",
 "s3:DeleteBucket"
],
 "Resource": [
 "arn:aws:s3:::$S3_BUCKET/*",
 "arn:aws:s3:::$S3_BUCKET"
]

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

14

https://www.rosaworkshop.io/
https://www.rosaworkshop.io/rosa/15-sts_explained/

4. Apply the policy with the following command:

S3_POLICY=$(aws iam create-policy --policy-name $CLUSTER_NAME-acm-obs \
--policy-document file://$SCRATCH_DIR/s3-policy.json \
--query 'Policy.Arn' --output text)
echo $S3_POLICY

5. Create a TrustPolicy JSON file. Run the following command:

6. Create a role for AWS Prometheus and CloudWatch with the following command:

S3_ROLE=$(aws iam create-role \
 --role-name "$CLUSTER_NAME-acm-obs-s3" \
 --assume-role-policy-document file://$SCRATCH_DIR/TrustPolicy.json \
 --query "Role.Arn" --output text)
echo $S3_ROLE

7. Attach the policies to the role. Run the following command:

aws iam attach-role-policy \
 --role-name "$CLUSTER_NAME-acm-obs-s3" \
 --policy-arn $S3_POLICY

Your secret might resemble the following file. The config section specifies
signature_version2: false and does not specify access_key and secret_key:

 }
]
 }

{
 "Version": "$TRUST_POLICY_VERSION",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_PROVIDER}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "${OIDC_PROVIDER}:sub": [
 "system:serviceaccount:${NAMESPACE}:observability-thanos-query",
 "system:serviceaccount:${NAMESPACE}:observability-thanos-store-shard",
 "system:serviceaccount:${NAMESPACE}:observability-thanos-compact"
 "system:serviceaccount:${NAMESPACE}:observability-thanos-rule",
 "system:serviceaccount:${NAMESPACE}:observability-thanos-receive",
]
 }
 }
 }
]
}

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

15

8. Specify service account annotations when you the MultiClusterObservability custom resource
(CR) as described in Creating the MultiClusterObservability CR section.

9. You can retrieve the S3 access key and secret key for your cloud providers with the following
commands. You must decode, edit, and encode your base64 string in the secret:

YOUR_CLOUD_PROVIDER_ACCESS_KEY=$(oc -n open-cluster-management-
observability get secret <object-storage-secret> -o jsonpath="{.data.thanos\.yaml}" | base64 -
-decode | grep access_key | awk '{print $2}')

echo $ACCESS_KEY

YOUR_CLOUD_PROVIDER_SECRET_KEY=$(oc -n open-cluster-management-
observability get secret <object-storage-secret> -o jsonpath="{.data.thanos\.yaml}" | base64 -
-decode | grep secret_key | awk '{print $2}')

echo $SECRET_KEY

You must decode, edit, and encode your base64 string in the secret.

10. Verify that observability is enabled by checking the pods for the following deployments and
stateful sets. You might receive the following information:

observability-thanos-query (deployment)
observability-thanos-compact (statefulset)
observability-thanos-receive-default (statefulset)
observability-thanos-rule (statefulset)
observability-thanos-store-shard-x (statefulsets)

1.2.2.1. Creating the MultiClusterObservability custom resource

Complete the following steps to create the MultiClusterObservability custom resource for your hub
cluster:

1. Create the MultiClusterObservability custom resource YAML file named
multiclusterobservability_cr.yaml.
View the following default YAML file for observability:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: $S3_BUCKET
 endpoint: s3.$REGION.amazonaws.com
 signature_version2: false

apiVersion: observability.open-cluster-management.io/v1beta2
kind: MultiClusterObservability

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

16

You might want to modify the value for the retentionConfig parameter in the advanced
section. For more information, see Thanos Downsampling resolution and retention . Depending
on the number of managed clusters, you might want to update the amount of storage for
stateful sets. If your S3 bucket is configured to use STS tokens, annotate the service accounts
to use STS with S3 role. View the following configuration:

See Observability API for more information.

2. To deploy on infrastructure machine sets, you must set a label for your set by updating the
nodeSelector in the MultiClusterObservability YAML. Your YAML might resemble the
following content:

 nodeSelector:
 node-role.kubernetes.io/infra:

For more information, see Creating infrastructure machine sets.

3. Apply the observability YAML to your cluster by running the following command:

oc apply -f multiclusterobservability_cr.yaml

All the pods in open-cluster-management-observability namespace for Thanos, Grafana and
AlertManager are created. All the managed clusters connected to the Red Hat Advanced
Cluster Management hub cluster are enabled to send metrics back to the Red Hat Advanced
Cluster Management Observability service.

4. Validate that the observability service is enabled and the data is populated by launching the
Grafana dashboards. Click the Grafana link that is near the console header, from either the
console Overview page or the Clusters page.
Note: If you want to exclude specific managed clusters from collecting the observability data,
add the following cluster label to your clusters: observability: disabled.

The observability service is enabled. After you enable the observability service, the following functions

metadata:
 name: observability
spec:
 observabilityAddonSpec: {}
 storageConfig:
 metricObjectStorage:
 name: thanos-object-storage
 key: thanos.yaml

spec:
 advanced:
 compact:
 eks.amazonaws.com/role-arn=$S3_ROLE
 store:
 eks.amazonaws.com/role-arn=$S3_ROLE
 rule:
 eks.amazonaws.com/role-arn=$S3_ROLE
 receive:
 eks.amazonaws.com/role-arn=$S3_ROLE
 query:
 eks.amazonaws.com/role-arn=$S3_ROLE

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

17

https://thanos.io/v0.8/components/compact/#downsampling-resolution-and-retention
../../html-single/apis#observability-api
https://docs.openshift.com/container-platform/4.11/machine_management/creating-infrastructure-machinesets.html

The observability service is enabled. After you enable the observability service, the following functions
are initiated:

All the alert managers from the managed clusters are forwarded to the Red Hat Advanced
Cluster Management hub cluster.

All the managed clusters that are connected to the Red Hat Advanced Cluster Management
hub cluster are enabled to send alerts back to the Red Hat Advanced Cluster Management
observability service. You can configure the Red Hat Advanced Cluster Management
Alertmanager to take care of deduplicating, grouping, and routing the alerts to the correct
receiver integration such as email, PagerDuty, or OpsGenie. You can also handle silencing and
inhibition of the alerts.
Note: Alert forwarding to the Red Hat Advanced Cluster Management hub cluster feature is
only supported by managed clusters with Red Hat OpenShift Container Platform version 4.8 or
later. After you install Red Hat Advanced Cluster Management with observability enabled, alerts
from OpenShift Container Platform v4.8 and later are automatically forwarded to the hub
cluster. See Forwarding alerts to learn more.

Access the OpenShift Container Platform 3.11 Grafana dashboards with the following URL:
https://$ACM_URL/grafana/dashboards. Select the folder named OCP 3.11 to view the
OpenShift Container Platform 3.11 dashboards.

1.2.3. Enabling observability from the Red Hat OpenShift Container Platform
console

Optionally, you can enable observability from the Red Hat OpenShift Container Platform console,
create a project named open-cluster-management-observability. Be sure to create an image pull-
secret named, multiclusterhub-operator-pull-secret in the open-cluster-management-observability
project.

Create your object storage secret named, thanos-object-storage in the open-cluster-management-
observability project. Enter the object storage secret details, then click Create. See step four of the
Enabling observability section to view an example of a secret.

Create the MultiClusterObservability CR instance. When you receive the following message, the
obseravbility service is enabled successfully from OpenShift Container Platform: Observability
components are deployed and running.

1.2.3.1. Using the external metric query

Observability provides an external API for metrics to be queried through the OpenShift route, rbac-
query-proxy. View the following tasks to use rbac-query-proxy route:

You can get the details of the route with the following command:

oc get route rbac-query-proxy -n open-cluster-management-observability

To access the rbac-query-proxy route, you must have an OpenShift OAuth access token. The
token should be associated with a user or service account, which has permission to get
namespaces. For more information, see Managing user-owned OAuth access tokens .

Get the default CA certificate and store the content of the key tls.crt in a local file. Run the
following command:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

18

https:/grafana/dashboards
https://docs.openshift.com/container-platform/4.11/authentication/managing-oauth-access-tokens.html

oc -n openshift-ingress get secret router-certs-default -o jsonpath="{.data.tls\.crt}" | base64 -d
> ca.crt

Run the following command to query metrics:

curl --cacert ./ca.crt -H "Authorization: Bearer {TOKEN}"
https://{PROXY_ROUTE_URL}/api/v1/query?query={QUERY_EXPRESSION}

Note: The QUERY_EXPRESSION is the standard Prometheus query expression. For example,
query the metrics cluster_infrastructure_provider by replacing the URL in the previously
mentioned command, with the following URL: https://{PROXY_ROUTE_URL}/api/v1/query?
query=cluster_infrastructure_provider. For more details, see Querying prometheus.

You can also replace certificates for the rbac-query-proxy route. See OpenSSL commands for
generating a certificate to create certificates. When you customize the csr.cnf, update the
DNS.1 to the hostname for the rbac-query-proxy route.

Run the following command to create proxy-byo-ca and proxy-byo-cert secrets using the
generated certificates:

oc -n open-cluster-management-observability create secret tls proxy-byo-ca --cert
./ca.crt --key ./ca.key

oc -n open-cluster-management-observability create secret tls proxy-byo-cert --cert
./ingress.crt --key ./ingress.key

1.2.3.2. Dynamic metrics for single-node OpenShift clusters

Dynamic metrics collection supports automatic metric collection based on certain conditions. By default,
a SNO cluster does not collect pod and container resource metrics. Once a SNO cluster reaches a
specific level of resource consumption, the defined granular metrics are collected dynamically. When
the cluster resource consumption is consistently less than the threshold for a period of time, granular
metric collection stops.

The metrics are collected dynamically based on the conditions on the managed cluster specified by a
collection rule. Because these metrics are collected dynamically, the following Red Hat Advanced
Cluster Management Grafana dashboards do not display any data. When a collection rule is activated
and the corresponding metrics are collected, the following panels display data for the duration of the
time that the collection rule is initiated:

Kubernetes/Compute Resources/Namespace (Pods)

Kubernetes/Compute Resources/Namespace (Workloads)

Kubernetes/Compute Resources/Nodes (Pods)

Kubernetes/Compute Resources/Pod

Kubernetes/Compute Resources/Workload

A collection rule includes the following conditions:

A set of metrics to collect dynamically.

Conditions written as a PromQL expression.

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

19

https:/api/v1/query?query=cluster_infrastructure_provider
https://prometheus.io/docs/prometheus/latest/querying/basics/
../../html-single/governance#openssl-commands-for-generating-a-certificate

A time interval for the collection, which must be set to true.

A match expression to select clusters where the collect rule must be evaluated.

By default, collection rules are evaluated continuously on managed clusters every 30 seconds, or at a
specific time interval. The lowest value between the collection interval and time interval takes
precedence. Once the collection rule condition persists for the duration specified by the for attribute,
the collection rule starts and the metrics specified by the rule are automatically collected on the
managed cluster. Metrics collection stops automatically after the collection rule condition no longer
exists on the managed cluster, at least 15 minutes after it starts.

The collection rules are grouped together as a parameter section named collect_rules, where it can be
enabled or disabled as a group. Red Hat Advanced Cluster Management installation includes the
collection rule group, SNOResourceUsage with two default collection rules: HighCPUUsage and
HighMemoryUsage. The HighCPUUsage collection rule begins when the node CPU usage exceeds
70%. The HighMemoryUsage collection rule begins if the overall memory utilization of the SNO cluster
exceeds 70% of the available node memory. Currently, the previously mentioned thresholds are fixed
and cannot be changed. When a collection rule begins for more than the interval specified by the for
attribute, the system automatically starts collecting the metrics that are specified in the
dynamic_metrics section.

View the list of dynamic metrics that from the collect_rules section, in the following YAML file:

collect_rules:
 - group: SNOResourceUsage
 annotations:
 description: >
 By default, a SNO cluster does not collect pod and container resource metrics. Once a SNO
cluster
 reaches a level of resource consumption, these granular metrics are collected dynamically.
 When the cluster resource consumption is consistently less than the threshold for a period of
time,
 collection of the granular metrics stops.
 selector:
 matchExpressions:
 - key: clusterType
 operator: In
 values: ["SNO"]
 rules:
 - collect: SNOHighCPUUsage
 annotations:
 description: >
 Collects the dynamic metrics specified if the cluster cpu usage is constantly more than 70% for
2 minutes
 expr: (1 - avg(rate(node_cpu_seconds_total{mode=\"idle\"}[5m]))) * 100 > 70
 for: 2m
 dynamic_metrics:
 names:
 - container_cpu_cfs_periods_total
 - container_cpu_cfs_throttled_periods_total
 - kube_pod_container_resource_limits
 - kube_pod_container_resource_requests
 - namespace_workload_pod:kube_pod_owner:relabel
 - node_namespace_pod_container:container_cpu_usage_seconds_total:sum_irate
 - node_namespace_pod_container:container_cpu_usage_seconds_total:sum_rate
 - collect: SNOHighMemoryUsage

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

20

A collect_rules.group can be disabled in the custom-allowlist as shown in the following example.
When a collect_rules.group is disabled, metrics collection reverts to the previous behavior. These
metrics are collected at regularly, specified intervals:

The data is only displayed in Grafana when the rule is initiated.

1.2.4. Disabling observability

To disable the observability service, uninstall the observability resource. From the OpenShift Container
Platform console navigation, select Operators > Installed Operators > Advanced Cluster Manager for
Kubernetes. Remove the MultiClusterObservability custom resource.

To learn more about customizing the observability service, see Customizing observability.

1.3. SEARCH IN THE CONSOLE

For Red Hat Advanced Cluster Management for Kubernetes, search provides visibility into your
Kubernetes resources across all of your clusters. Search indexes the Kubernetes resources and the
relationships to other resources. You can create a searchcustomization custom resource to define the
storage settings for search persistence if you want to change the storage class and storage size.

Search components

Search customization

Options to increase the redisgraph memory

Updating saved search limit

Querying in the console

Querying ArgoCD applications

Updating klusterlet-addon-search deployments on managed clusters

 annotations:
 description: >
 Collects the dynamic metrics specified if the cluster memory usage is constantly more than 70%
for 2 minutes
 expr: (1 - sum(:node_memory_MemAvailable_bytes:sum) /
sum(kube_node_status_allocatable{resource=\"memory\"})) * 100 > 70
 for: 2m
 dynamic_metrics:
 names:
 - kube_pod_container_resource_limits
 - kube_pod_container_resource_requests
 - namespace_workload_pod:kube_pod_owner:relabel
 matches:
 - __name__="container_memory_cache",container!=""
 - __name__="container_memory_rss",container!=""
 - __name__="container_memory_swap",container!=""
 - __name__="container_memory_working_set_bytes",container!=""

collect_rules:
 - group: -SNOResourceUsage

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

21

1.3.1. Search components

The search architecture is composed of the following components:

Collector: Watches the Kubernetes resources and creates an index. The search-collector
computes relationships for resources within the managed cluster.

Aggregator: Receives data from the collector and writes to a database. The search-
aggregator watches resources in the hub cluster, computes multicluster relationships, and
tracks the activity from connected collectors.

Search API: Provides access to the data in the search index and enforces role-based access
control.

Search is enabled by default. Search is also enabled when you provision or manually import a managed
cluster. If you want to disable search on your managed cluster, see Modifying the klusterlet add-ons
settings of your cluster for more information.

1.3.2. Search customization

When you install Red Hat Advanced Cluster Management, the product is configured to persist the data
in-memory to a file system. The StatefulSet search-redisgraph deploys the Redisgraph pod, which
mounts the persistent volume named persist. If your cluster has a defined default storage class, the
search component creates a Persistent Volume Claim (PVC) of 10Gi on the default storage class. If a
default storage class does not exist in your cluster, search saves the index in an empty directory
(emptyDir).

You can customize the storage settings for search by creating the searchcustomization custom
resource. Search customization is namespace-scoped and located where search is installed in the hub
cluster. View the following example of the search customization custom resource:

Run the following command to view search customization custom resource definition:

oc get crd searchcustomizations.search.open-cluster-management.io -o yaml

You can disable persistence by updating the persistence flag to false in the customization custom
resource, which turns off saving search index to the file system. A status for persistence can be retrieved
from the search operator (searchoperator) custom resource. Run the following command to view
search operator custom resource: oc get searchoperator searchoperator -o yaml.

1.3.2.1. Options to increase the redisgraph memory

Redisgraph is an in-memory database that needs linear growth of memory as the number of objects are

apiVersion: search.open-cluster-management.io/v1alpha1
kind: SearchCustomization
metadata:
 name: searchcustomization
 namespace: open-cluster-management
 labels:
 cluster.open-cluster-management.io/backup: ""
spec:
 persistence: true
 storageClass: gp2
 storageSize: 12Gi

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

22

../../html-single/clusters#modifying-the-klusterlet-add-ons-settings-of-your-cluster

cached. A Red Hat Advanced Cluster Management cluster with many managed clusters, or with a large
number of Kubernetes objects require limit memory updates for the redisgraph pod (search-
redisgraph-0).

By default, the redisgraph pod (search-redisgraph-0) is deployed with a memory limit of 4Gi. If you are
managing larger clusters, you might need to increase this limit by editing the
redisgraph_resource.limit_memory for the searchoperator in the hub cluster namespace. For
example, you can update the limit to 8Gi with the following command:

oc patch searchoperator searchoperator --type='merge' -p '{"spec":{"redisgraph_resource":
{"limit_memory":"8Gi"}}}'

After the change is made, the search-redisgraph pod automatically restarts with the updated
configuration.

1.3.2.2. Updating saved search limit

By default, there is a limit of ten saved searches for each user. Only a user with the administrator role
can update the limit by adding the following key value to the console-config ConfigMap, key:value:
SAVED_SEARCH_LIMIT: x.

1.3.3. Querying in the console

You can type any text value in the Search box and results include anything with that value from any
property, such as a name or namespace. Users are unable to search for values that contain an empty
space.

For more specific search results, include the property selector in your search. You can combine related
values for the property, for a more precise scope of your search. For example, search for cluster:dev
red to receive results that match the string "red" in the dev cluster.

View the following steps to make queries with search:

1. Click Search in the navigation menu.

2. Type a word in the Search box , then Search finds your resources that contain that value.

As you search for resources, you receive other resources that are related to your original
search result, which help you visualize how the resources interact with other resources in the
system.

Search returns and lists each cluster with the resource that you search. For resources in the
hub cluster, the cluster name is displayed as local-cluster.

Your search results are grouped by kind, and each resource kind is grouped in a table.

Your search options depend on your cluster objects. You can refine your results with specific
labels. Search is case-sensitive when you query labels. See the following examples: name,
namespace, status, and other resource fields. Auto-complete provides suggestions to refine
your search. See the following example:

Search for a single field, such as kind:pod to find all pod resources.

Search for multiple fields, such as kind:pod namespace:default to find the pods in the
default namespace.
Notes:

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

23

1

You can also search with conditions by using characters, such as >, >=, <, <=, !=.

When you search for more than one property selector with multiple values, the search
returns either of the values that were queried. View the following examples:

When you search for kind:pod name:a, any pod named a is returned.

When you search for kind:pod name:a,b, any pod named a or b are returned.

Search for kind:pod status:!Running to find all pod resources where the status is
not Running.

Search for kind:pod restarts:>1 to find all pods that restarted at least twice.

By default, there is a limit of 2500 images in the search drop-down menu. To increase the
image limit, you can edit the search-api deployment by adding the
defaultImageQueryLimit environment variable. You can use search to find the deployment.
View the following example:

x represents the number of images that you want to be displayed from the search
drop-down menu.

Alternatively, you can patch the deployment by using the following command:

3. If you want to save your search, click the Save search icon.

1.3.3.1. Querying ArgoCD applications

When you search for an ArgoCD application, you are directed to the Applications page. Complete the
following steps to access the ArgoCD application from the Search page:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. From the console header, select the Search icon.

3. Filter your query with the following values: kind:application and apigroup:argoproj.io

4. Select an application to view. The Application page displays an overview of information for the
application.

1.3.4. Updating klusterlet-addon-search deployments on managed clusters

To collect the Kubernetes objects from the managed clusters, the klusterlet-addon-search pod is run
on all the managed clusters where search is enabled. This deployment is run in the open-cluster-
management-agent-addon namespace. A managed cluster with a high number of resources might
require more memory for the klusterlet-addon-search deployment to function.

Resource requirements for the klusterlet-addon-search pod in a managed cluster can be specified in

name: defaultImageQueryLimit
 value: x 1

oc patch deployment search-api -n open-cluster-management -p '{"spec":
{"template": {"spec": {"containers": [{"name": "search-api","env": [{"name":
"defaultImageQueryLimit","value": "X"}]}]}}}}'

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

24

the ManagedClusterAddon custom resource in your Red Hat Advanced Cluster Management hub
cluster. There is a namespace for each managed cluster with the managed cluster name. Edit the
ManagedClusterAddon custom resource from the namespace matching the managed cluster name.
Run the following command to update the resource requirement in xyz managed cluster:

oc edit managedclusteraddon search-collector -n xyz

Append the resource requirements as annotations. View the following example:

The annotation overrides the resource requirements on the managed clusters and automatically restarts
the pod with new resource requirements.

Learn more about the Red Hat Advanced Cluster Management for Kubernetes console, see Web
console.

1.4. CUSTOMIZING OBSERVABILITY

Review the following sections to learn more about customizing, managing, and viewing data that is
collected by the observability service.

Collect logs about new information that is created for observability resources with the must-gather
command. For more information, see the Must-gather section in the Troubleshooting documentation.

Creating custom rules

Configuring AlertManager

Adding custom metrics

Removing default metrics

Exporting metrics to external endpoints

Creating the Kubernetes secret for an external endpoint

Updating the multiclusterobservability CR

Viewing the status of metric export

Adding advanced configuration

Updating the multiclusterobservability CR replicas from the console

Forwarding alerts

Silencing alerts

Suppressing alerts

Customizing route certification

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 annotations: addon.open-cluster-management.io/search_memory_limit: 2048Mi
 addon.open-cluster-management.io/search_memory_request: 512Mi

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

25

../../html-single/web_console#web-console
../../html-single/troubleshooting

Customizing certificates for accessing the object store

Viewing and exploring data

Viewing the etcd table

Viewing the cluster fleet service-level overview for the Kubernetes API server dashboard

Viewing the cluster service-level overview for the Kubernetes API server dashboard

Disabling observability

1.4.1. Creating custom rules

Create custom rules for the observability installation by adding Prometheus recording rules and alerting
rules to the observability resource. For more information, see Prometheus configuration.

Recording rules provide you the ability to precalculate, or computate expensive expressions as
needed. The results are saved as a new set of time series.

Alerting rules provide you the ability to specify the alert conditions based on how an alert should
be sent to an external service.

Define custom rules with Prometheus to create alert conditions, and send notifications to an external
messaging service. Note: When you update your custom rules, observability-thanos-rule pods are
restarted automatically.

Create a ConfigMap named thanos-ruler-custom-rules in the open-cluster-management-
observability namespace. The key must be named, custom_rules.yaml, as shown in the following
example. You can create multiple rules in the configuration.

By default, the out-of-the-box alert rules are defined in the thanos-ruler-default-rules
ConfigMap in the open-cluster-management-observability namespace.
For example, you can create a custom alert rule that notifies you when your CPU usage passes
your defined value. Your YAML might resemble the following content:

You can also create a custom recording rule within the thanos-ruler-custom-rules ConfigMap.

data:
 custom_rules.yaml: |
 groups:
 - name: cluster-health
 rules:
 - alert: ClusterCPUHealth-jb
 annotations:
 summary: Notify when CPU utilization on a cluster is greater than the defined
utilization limit
 description: "The cluster has a high CPU usage: {{ $value }} core for {{ $labels.cluster
}} {{ $labels.clusterID }}."
 expr: |
 max(cluster:cpu_usage_cores:sum) by (clusterID, cluster, prometheus) > 0
 for: 5s
 labels:
 cluster: "{{ $labels.cluster }}"
 prometheus: "{{ $labels.prometheus }}"
 severity: critical

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

26

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

For example, you can create a recording rule that provides you the ability to get the sum of the
container memory cache of a pod. Your YAML might resemble the following content:

Note: If this is the first new custom rule, it is created immediately. For changes to the
ConfigMap, the configuration is automatically reloaded. The configuration is reloaded due to the
config-reload within the observability-thanos-ruler sidecar.

To verify that the alert rules are functioning appropriately, launch the Grafana dashboard, navigate to
the Explore page, and query ALERTS. The alert is only available in Grafana if the alert is initiated.

1.4.2. Configuring AlertManager

Integrate external messaging tools such as email, Slack, and PagerDuty to receive notifications from
AlertManager. You must override the alertmanager-config secret in the open-cluster-management-
observability namespace to add integrations, and configure routes for AlertManager. Complete the
following steps to update the custom receiver rules:

1. Extract the data from the alertmanager-config secret. Run the following command:

oc -n open-cluster-management-observability get secret alertmanager-config --template='{{
index .data "alertmanager.yaml" }}' |base64 -d > alertmanager.yaml

2. Edit and save the alertmanager.yaml file configuration by running the following command:

oc -n open-cluster-management-observability create secret generic alertmanager-config --
from-file=alertmanager.yaml --dry-run -o=yaml | oc -n open-cluster-management-
observability replace secret --filename=-

Your updated secret might resemble the following content:

data:
 custom_rules.yaml: |
 groups:
 - name: container-memory
 recording_rules:
 - record: pod:container_memory_cache:sum
 expr: sum(container_memory_cache{pod!=""}) BY (pod, container)

global
 smtp_smarthost: 'localhost:25'
 smtp_from: 'alertmanager@example.org'
 smtp_auth_username: 'alertmanager'
 smtp_auth_password: 'password'
templates:
- '/etc/alertmanager/template/*.tmpl'
route:
 group_by: ['alertname', 'cluster', 'service']
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 3h
 receiver: team-X-mails
 routes:

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

27

Your changes are applied immediately after it is modified. For an example of AlertManager, see
prometheus/alertmanager.

1.4.3. Adding custom metrics

Add metrics to the metrics_list.yaml file, to be collected from managed clusters.

Before you add a custom metric, verify that mco observability is enabled with the following command:
oc get mco observability -o yaml. Check for the following message in the
status.conditions.message reads: Observability components are deployed and running.

Create a file named observability-metrics-custom-allowlist.yaml and add the name of the custom
metric to the metrics_list.yaml parameter. Your YAML for the ConfigMap might resemble the following
content:

In the names section, add the name of the custom metrics that is to be collected from the
managed cluster.

In the rules section, enter only one value for the expr and record parameter pair to define the
query expression. The metrics are collected as the name that is defined in the record parameter
from your managed cluster. The metric value returned are the results after you run the query
expression.

The names and rules sections are optional. You can use either one or both of the sections.

Create the observability-metrics-custom-allowlist ConfigMap in the open-cluster-management-
observability namespace with the following command: oc apply -n open-cluster-management-
observability -f observability-metrics-custom-allowlist.yaml.

Verify that data from your custom metric is being collected by querying the metric from the Explore
page, from the Grafana dashboard. You can also use the custom metrics in your own dashboard. For
more information about viewing the dashboard, see Designing your Grafana dashboard .

1.4.4. Removing default metrics

If you want data to not be collected in your managed cluster for a specific metric, remove the metric
from the observability-metrics-custom-allowlist.yaml file. When you remove a metric, the metric data

 - match_re:
 service: ^(foo1|foo2|baz)$
 receiver: team-X-mails

kind: ConfigMap
apiVersion: v1
metadata:
 name: observability-metrics-custom-allowlist
data:
 metrics_list.yaml: |
 names:
 - node_memory_MemTotal_bytes
 rules:
 - record: apiserver_request_duration_seconds:histogram_quantile_90
 expr:
histogram_quantile(0.90,sum(rate(apiserver_request_duration_seconds_bucket{job=\"apiserver\",
 verb!=\"WATCH\"}[5m])) by (verb,le))

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

28

https://github.com/prometheus/alertmanager/blob/master/doc/examples/simple.yml

is not collected in your managed clusters. As mentioned previously, first verify that mco observability is
enabled.

Add the name of the default metric to the metrics_list.yaml parameter with a hyphen - at the start of
the metric name. For example, -cluster_infrastructure_provider.

Create the observability-metrics-custom-allowlist ConfigMap in the open-cluster-management-
observability namespace with the following command: oc apply -n open-cluster-management-
observability -f observability-metrics-custom-allowlist.yaml.

Verify that the specific metric is not being collected from your managed clusters. When you query the
metric from the Grafana dashboard, the metric is not displayed.

1.4.5. Exporting metrics to external endpoints

You can customize observability to export the metrics to external endpoints, which support Prometheus
Remote Write protocol in real time. For more information, see Prometheus Remote Write protocol.

1.4.5.1. Creating the Kubernetes secret for an external endpoint

You must create a Kubernetes secret with the access information of the external endpoint in the open-
cluster-management-observability namespace. View the following example secret:

The ep.yaml is the key of the content and is used in the multiclusterobservability CR in next step.
Currently, observability supports exporting metrics to endpoints without any security checks, with basic
authentication or with tls enablement. View the following tables for a full list of supported parameters:

Name Description Schema

url
required

URL for the external endpoint. string

http_client_co
nfig
optional

Advanced configuration for the HTTP client. HttpClientConfig

HttpClientConfig

apiVersion: v1
kind: Secret
metadata:
 name: victoriametrics
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 ep.yaml: |
 url: http://victoriametrics:8428/api/v1/write
 http_client_config:
 basic_auth:
 username: test
 password: test

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

29

https://docs.google.com/document/d/1LPhVRSFkGNSuU1fBd81ulhsCPR4hkSZyyBj1SZ8fWOM/edit#heading=h.3p42p5s8n0ui

Name Description Schema

basic_auth
optional

HTTP client configuration for
basic authentication.

BasicAuth

tls_config
optional

HTTP client configuration for TLS. TLSConfig

BasicAuth

Name Description Schema

username
optional

User name for basic authorization. string

password
optional

Password for basic authorization. string

TLSConfig

Name Description Schema

secret_name
required

Name of the secret that contains
certificates.

string

ca_file_key
optional

Key of the CA certificate in the
secret (only optional if
insecure_skip_verify is set to
true).

string

cert_file_key
required

Key of the client certificate in the
secret.

string

key_file_key
required

Key of the client key in the secret. string

insecure_skip_verify
optional

Parameter to skip the verification
for target certificate.

bool

1.4.5.2. Updating the multiclusterobservability CR

After you create the Kubernetes secret, you must update the multiclusterobservability CR to add
writeStorage in the spec.storageConfig parameter. View the following example:

spec:
 storageConfig:
 writeStorage:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

30

The value for writeStorage is a list. You can add an item to the list when you want to export metrics to
one external endpoint. If you add more than one item to the list, then the metrics are exported to
multiple external endpoints. Each item contains two attributes: name and key. Name is the name of the
Kubernetes secret that contains endpoint access information, and key is the key of the content in the
secret. View the following description table for the

1.4.5.3. Viewing the status of metric export

After the metrics export is enabled, you can view the status of metrics export by checking the
acm_remote_write_requests_total metric. From the OpenShift console of your hub cluster, navigate
to the Metrics page by clicking Metrics in the Observe section.

Then query the acm_remote_write_requests_total metric. The value of that metric is the total number
of requests with a specific response for one external endpoint, on one observatorium API instance. The
name label is the name for the external endpoint. The code label is the return code of the HTTP
request for the metrics export.

1.4.6. Adding advanced configuration

Add the advanced configuration section to update the retention for each observability component,
according to your needs.

Edit the MultiClusterObservability CR and add the advanced section with the following command: oc
edit mco observability -o yaml. Your YAML file might resemble the following contents:

For descriptions of all the parameters that can added into the advanced configuration, see the
Observability API.

1.4.7. Updating the multiclusterobservability CR replicas from the console

If your workload increases, increase the number of replicas of your observability pods. Navigate to the
Red Hat OpenShift Container Platform console from your hub cluster. Locate the
multiclusterobservability custom resource (CR), and update the replicas parameter value for the
component where you want to change the replicas. Your updated YAML might resemble the following
content:

 - key: ep.yaml
 name: victoriametrics

spec:
 advanced:
 retentionConfig:
 blockDuration: 2h
 deleteDelay: 48h
 retentionInLocal: 24h
 retentionResolutionRaw: 30d
 retentionResolution5m: 180d
 retentionResolution1h: 0d
 receive:
 resources:
 limits:
 memory: 4096Gi
 replicas: 3

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

31

../../html-single/apis

For more information about the parameters within the mco observability CR, see the Observability API.

1.4.8. Forwarding alerts

After you enable observability, alerts from your OpenShift Container Platform managed clusters are
automatically sent to the hub cluster. You can use the alertmanager-config YAML file to configure
alerts with an external notification system.

View the following example of the alertmanager-config YAML file:

If you want to configure a proxy for alert forwarding, add the following global entry to the
alertmanager-config YAML file:

To learn more, see the Prometheus Alertmanager documentation.

1.4.8.1. Disabling forward alerts for managed clusters

Disable alert forwarding for managed clusters. Add the following annotation to the
MultiClusterObservability custom resource:

When you set the annotation, the alert forwarding configuration on the managed clusters is reverted.
Any changes made to the ocp-monitoring-config ConfigMap in the openshift-monitoring namespace
are reverted. Setting the annotation ensures that the ocp-monitoring-config ConfigMap is no longer
managed or updated by the observability operator endpoint. After you update the configuration, the
Prometheus instance on your managed cluster restarts.

Important: Metrics on your managed cluster are lost if you have a Prometheus instance with a persistent

spec:
 advanced:
 receive:
 replicas: 6

global:
 slack_api_url: '<slack_webhook_url>'

route:
 receiver: 'slack-notifications'
 group_by: [alertname, datacenter, app]

receivers:
- name: 'slack-notifications'
 slack_configs:
 - channel: '#alerts'
 text: 'https://internal.myorg.net/wiki/alerts/{{ .GroupLabels.app }}/{{ .GroupLabels.alertname }}'

global:
 slack_api_url: '<slack_webhook_url>'
 http_config:
 proxy_url: http://****

metadata:
 annotations:
 mco-disable-alerting: "true"

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

32

../../html-single/apis#observability-api
https://prometheus.io/docs/alerting/latest/alertmanager/

Important: Metrics on your managed cluster are lost if you have a Prometheus instance with a persistent
volume for metrics, and the Prometheus instance restarts. However, metrics from the hub cluster are
not affected.

When the changes are reverted, a ConfigMap named cluster-monitoring-reverted is createde in the
open-cluster-management-addon-observability namespace. Any new, manually added alert forward
configurations are not reverted from the ConfigMap.

Verify that the hub cluster alert manager is no longer propagating managed cluster alerts to third-party
messaging tools. See the previous section, Configuring AlertManager.

1.4.9. Silencing alerts

Add alerts that you do not want to receive. You can silence alerts by the alert name, match label, or time
duration. After you add the alert that you want to silence, an ID is created. Your ID for your silenced alert
might resemble the following string, d839aca9-ed46-40be-84c4-dca8773671da.

Continue reading for ways to silence alerts:

To silence a Red Hat Advanced Cluster Management alert, you must have access to the
alertmanager-main pod in the open-cluster-management-observability namespace. For
example, enter the following command in the pod terminal to silence SampleAlert:

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" alertname="SampleAlert"

Silence an alert by using multiple match labels. The following command uses match-label-1 and
match-label-2:

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" <match-label-1>=<match-value-1> <match-label-2>=
<match-value-2>

If you want to silence an alert for a specific period of time, use the --duration flag. Run the
following command to silence the SampleAlert for an hour:

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" --duration="1h" alertname="SampleAlert"

You can also specify a start or end time for the silenced alert. Enter the following command to
silence the SampleAlert at a specific start time:

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" --start="2023-04-14T15:04:05-07:00"
alertname="SampleAlert"

To view all silenced alerts that are created, run the following command:

amtool silence --alertmanager.url="http://localhost:9093"

If you no longer want an alert to be silenced, end the silencing of the alert by running the
following command:

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

33

1

2

amtool silence expire --alertmanager.url="http://localhost:9093" "d839aca9-ed46-40be-84c4-
dca8773671da"

To end the silencing of all alerts, run the following command:

amtool silence expire --alertmanager.url="http://localhost:9093" $(amtool silence query --
alertmanager.url="http://localhost:9093" -q)

1.4.10. Suppressing alerts

Suppress Red Hat Advanced Cluster Management alerts across your clusters globally that are less
severe. Suppress alerts by defining an inhibition rule in the alertmanager-config in the open-cluster-
management-observability namespace.

An inhibition rule mutes an alert when there is a set of parameter matches that match another set of
existing matchers. In order for the rule to take effect, both the target and source alerts must have the
same label values for the label names in the equal list. Your inhibit_rules might resemble the following:

The inhibit_rules parameter section is defined to look for alerts in the same namespace. When a
critical alert is initiated within a namespace and if there are any other alerts that contain the
severity level warning or info in that namespace, only the critical alerts are routed to the
AlertManager receiver. The following alerts might be displayed when there are matches:

ALERTS{alertname="foo", namespace="ns-1", severity="critical"}
ALERTS{alertname="foo", namespace="ns-1", severity="warning"}

If the value of the source_match and target_match_re parameters do not match, the alert is
routed to the receiver:

ALERTS{alertname="foo", namespace="ns-1", severity="critical"}
ALERTS{alertname="foo", namespace="ns-2", severity="warning"}

To view suppressed alerts in Red Hat Advanced Cluster Management, enter the following
command:

amtool alert --alertmanager.url="http://localhost:9093" --inhibited

1.4.11. Customizing route certification

If you want to customize the OpenShift Container Platform route certification, you must add the routes
in the alt_names section. To ensure your OpenShift Container Platform routes are accessible, add the

global:
 resolve_timeout: 1h
inhibit_rules: 1
 - equal:
 - namespace
 source_match: 2
 severity: critical
 target_match_re:
 severity: warning|info

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

34

following information: alertmanager.apps.<domainname>, observatorium-api.apps.<domainname>,
rbac-query-proxy.apps.<domainname>.

Note: Users are responsible for certificate rotations and updates.

1.4.11.1. Customizing certificates for accessing the object store

You can customize certificates for accessing the object store. Edit the http_config section by adding
the certificate in the object store secret. View the following example:

You must provide a secret in the open-cluster-management-observability namespace. The secret
must contain the ca.crt that you defined in the previous secret example. If you want to enable Mutual
TLS, you need to provide public.crt, and private.key in the previous secret. View the following example:

You can also configure the secret name, the TLSSecretName parameter in the
MultiClusterObservability CR. View the following example where the secret name is tls-certs-secret:

This secret can be mounted into all components that need to access the object store, and it includes the
following components: receiver, store, ruler, compact.

1.4.12. Viewing and exploring data

View the data from your managed clusters by accessing Grafana from the hub cluster. You can query
specific alerts and add filters for the query.

For example, to cluster_infrastructure_provider from a single node cluster, use the following query

 thanos.yaml: |
 type: s3
 config:
 bucket: "thanos"
 endpoint: "minio:9000"
 insecure: false
 access_key: "minio"
 secret_key: "minio123"
 http_config:
 tls_config:
 ca_file: /etc/minio/certs/ca.crt
 insecure_skip_verify: false

 thanos.yaml: |
 type: s3
 config:
 ...
 http_config:
 tls_config:
 ca_file: /etc/minio/certs/ca.crt
 cert_file: /etc/minio/certs/public.crt
 key_file: /etc/minio/certs/private.key
 insecure_skip_verify: false

metricObjectStorage:
 key: thanos.yaml
 name: thanos-object-storage
 tlsSecretName: tls-certs-secret

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

35

For example, to cluster_infrastructure_provider from a single node cluster, use the following query
expression: cluster_infrastructure_provider{clusterType="SNO"}

Note: Do not set the ObservabilitySpec.resources.CPU.limits parameter if observability is enabled on
single node managed clusters. When you set the CPU limits, it causes the observability pod to be
counted against the capacity for your managed cluster. See Management Workload Partitioning for
more information.

1.4.12.1. Viewing the etcd table

View the etcd table from the hub cluster dashboard in Grafana to learn the stability of the etcd as a data
store.

Select the Grafana link from your hub cluster to view the etcd table data, which is collected from your
hub cluster. The Leader election changes across managed clusters are displayed.

1.4.12.2. Viewing the cluster fleet service-level overview for the Kubernetes API server
dashboard

View the cluster fleet Kubernetes API service-level overview from the hub cluster dashboard in Grafana.

After you navigate to the Grafana dashboard, access the managed dashboard menu by selecting
Kubernetes > Service-Level Overview > API Server. The Fleet Overview and Top Cluster details are
displayed.

View the total number of clusters that are exceeding or meeting the targeted service-level objective
(SLO) value for the past seven or 30-day period, offending and non-offending clusters, and API Server
Request Duration.

1.4.12.3. Viewing the cluster service-level overview for the Kubernetes API server dashboard

View the Kubernetes API service-level overview table from the hub cluster dashboard in Grafana.

After you navigate to the Grafana dashboard, access the managed dashboard menu by selecting
Kubernetes > Service-Level Overview > API Server. The Fleet Overview and Top Cluster details are
displayed.

View the error budget for the past seven or 30-day period, the remaining downtime, and trend.

1.4.13. Disabling observability

You can disable observability, which stops data collection on the Red Hat Advanced Cluster
Management hub cluster.

1.4.13.1. Disabling observability on all clusters

Disable observability by removing observability components on all managed clusters.

Update the multicluster-observability-operator resource by setting enableMetrics to false. Your
updated resource might resemble the following change:

spec:
 imagePullPolicy: Always
 imagePullSecret: multiclusterhub-operator-pull-secret

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

36

https://github.com/openshift/enhancements/blob/master/enhancements/workload-partitioning/management-workload-partitioning.md#management-workload-partitioning

1.4.13.2. Disabling observability on a single cluster

Disable observability by removing observability components on specific managed clusters. Add the
observability: disabled label to the managedclusters.cluster.open-cluster-management.io custom
resource.

From the Red Hat Advanced Cluster Management console Clusters page, add the
observability=disabled label to the specified cluster.

Note: When a managed cluster with the observability component is detached, the metrics-collector
deployments are removed.

For more information about monitoring data from the console with the observability service, see
Observing environments introduction .

1.5. DESIGNING YOUR GRAFANA DASHBOARD

You can design your Grafana dashboard by creating a grafana-dev instance.

Setting up the Grafana developer instance

Design your Grafana dashboard

Uninstalling the Grafana developer instance

1.5.1. Setting up the Grafana developer instance

First, clone the stolostron/multicluster-observability-operator/ repository, so that you are able to run
the scripts that are in the tools folder. Be sure to use the most current grafana-dev instance.

Complete the following steps to set up the Grafana developer instance:

1. Run the setup-grafana-dev.sh to setup your Grafana instance. When you run the script the
following resources are created: secret/grafana-dev-config, deployment.apps/grafana-dev,
service/grafana-dev, ingress.extensions/grafana-dev, persistentvolumeclaim/grafana-dev:

./setup-grafana-dev.sh --deploy
secret/grafana-dev-config created
deployment.apps/grafana-dev created
service/grafana-dev created
serviceaccount/grafana-dev created
clusterrolebinding.rbac.authorization.k8s.io/open-cluster-management:grafana-crb-dev
created
route.route.openshift.io/grafana-dev created
persistentvolumeclaim/grafana-dev created
oauthclient.oauth.openshift.io/grafana-proxy-client-dev created
deployment.apps/grafana-dev patched
service/grafana-dev patched
route.route.openshift.io/grafana-dev patched

 observabilityAddonSpec: # The ObservabilityAddonSpec defines the global settings for all managed
clusters which have observability add-on enabled
 enableMetrics: false #indicates the observability addon push metrics to hub server

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

37

https://github.com/stolostron/multicluster-observability-operator

oauthclient.oauth.openshift.io/grafana-proxy-client-dev patched
clusterrolebinding.rbac.authorization.k8s.io/open-cluster-management:grafana-crb-dev
patched

2. Switch the user role to Grafana administrator with the switch-to-grafana-admin.sh script.

a. Select the Grafana URL, https://grafana-dev-open-cluster-management-observability.
{OPENSHIFT_INGRESS_DOMAIN}, and log in.

b. Then run the following command to add the switched user as Grafana administrator. For
example, after you log in using kubeadmin, run following command:

./switch-to-grafana-admin.sh kube:admin
User <kube:admin> switched to be grafana admin

The Grafana developer instance is set up.

1.5.2. Design your Grafana dashboard

After you set up the Grafana instance, you can design the dashboard. Complete the following steps to
refresh the Grafana console and design your dashboard:

1. From the Grafana console, create a dashboard by selecting the Create icon from the navigation
panel. Select Dashboard, and then click Add new panel.

2. From the New Dashboard/Edit Panel view, navigate to the Query tab.

3. Configure your query by selecting Observatorium from the data source selector and enter a
PromQL query.

4. From the Grafana dashboard header, click the Save icon that is in the dashboard header.

5. Add a descriptive name and click Save.

1.5.2.1. Design your Grafana dashboard with a ConfigMap

Design your Grafana dashboard with a ConfigMap. You can use the generate-dashboard-configmap-
yaml.sh script to generate the dashboard ConfigMap, and to save the ConfigMap locally:

./generate-dashboard-configmap-yaml.sh "Your Dashboard Name"
Save dashboard <your-dashboard-name> to ./your-dashboard-name.yaml

If you do not have permissions to run the previously mentioned script, complete the following steps:

1. Select a dashboard and click the Dashboard settings icon.

2. Click the JSON Model icon from the navigation panel.

3. Copy the dashboard JSON data and paste it in the data section.

4. Modify the name and replace $your-dashboard-name. Enter a universally unique identifier
(UUID) in the uid field in data.$your-dashboard-name.json.$$your_dashboard_json. You can
use a program such as uuidegen to create a UUID. Your ConfigMap might resemble the
following file:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

38

https:
https://man7.org/linux/man-pages/man1/uuidgen.1.html

Notes:

If your dashboard is created within the grafana-dev instance, you can take the name of the
dashboard and pass it as an argument in the script. For example, a dashboard named Demo
Dashboard is created in the grafana-dev instance. From the CLI, you can run the following
script:

./generate-dashboard-configmap-yaml.sh "Demo Dashboard"

After running the script, you might receive the following message:

Save dashboard <demo-dashboard> to ./demo-dashboard.yaml

If your dashboard is not in the General folder, you can specify the folder name in the
annotations section of this ConfigMap:

annotations:
 observability.open-cluster-management.io/dashboard-folder: Custom

After you complete your updates for the ConfigMap, you can install it to import the
dashboard to the Grafana instance.

Verify that the YAML file is created by applying the YAML from the CLI or OpenShift Container
Platform console. A ConfigMap within the open-cluster-management-observability namespace is
created. Run the following command from the CLI:

oc apply -f demo-dashboard.yaml

From the OpenShift Container Platform console, create the ConfigMap using the demo-
dashboard.yaml file. The dashboard is located in the Custom folder.

1.5.3. Uninstalling the Grafana developer instance

When you uninstall the instance, the related resources are also deleted. Run the following command:

./setup-grafana-dev.sh --clean
secret "grafana-dev-config" deleted
deployment.apps "grafana-dev" deleted
serviceaccount "grafana-dev" deleted
route.route.openshift.io "grafana-dev" deleted
persistentvolumeclaim "grafana-dev" deleted
oauthclient.oauth.openshift.io "grafana-proxy-client-dev" deleted
clusterrolebinding.rbac.authorization.k8s.io "open-cluster-management:grafana-crb-dev" deleted

kind: ConfigMap
apiVersion: v1
metadata:
 name: $your-dashboard-name
 namespace: open-cluster-management-observability
 labels:
 grafana-custom-dashboard: "true"
data:
 $your-dashboard-name.json: |-
 $your_dashboard_json

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

39

1.6. OBSERVABILITY WITH RED HAT INSIGHTS

Red Hat Insights is integrated with Red Hat Advanced Cluster Management observability, and is enabled
to help identify existing or potential problems in your clusters. Red Hat Insights helps you to identify,
prioritize, and resolve stability, performance, network, and security risks. Red Hat OpenShift Container
Platform offers cluster health monitoring through OpenShift Cluster Manager. OpenShift Cluster
Manager collects anonymized, aggregated information about the health, usage, and size of the clusters.
For more information, see Red Hat Insights product documentation .

When you create or import an OpenShift cluster, anonymized data from your managed cluster is
automatically sent to Red Hat. This information is used to create insights, which provide cluster health
information. Red Hat Advanced Cluster Management administrator can use this health information to
create alerts based on severity.

Required access: Cluster administrator

1.6.1. Prerequisites

Ensure that Red Hat Insights is enabled. For more information, see Modifying the global cluster
pull secret to disable remote health reporting.

Install OpenShift Container Platform version 4.0 or later.

Hub cluster user, who is registered to OpenShift Cluster Manager, must be able to manage all
the Red Hat Advanced Cluster Management managed clusters in OpenShift Cluster Manager.

1.6.2. Red Hat Insights from the Red Hat Advanced Cluster Management console

Continue reading to view functionality descriptions of the integration:

When you select a cluster from the Clusters page, you can select the Number of identified
issues from the Status card. The Status card displays information about Nodes, Applications,
Policy violations , and Identified issues. The Identified issues card represents the information from
Red Hat insights. The Identified issues status displays the number of issues by severity. The
triage levels used for the issues are the following severity categories: Critical, Major, Low, and
Warning.

After you click the number, the Potential issue side panel is displayed. A summary and chart of
the total issues are displayed in the panel. You can also use the search feature to search for
recommended remediations. The remediation option displays the Description of the
vulnerability, Category that vulnerability is associated with, and the Total risk.

From the Description section, you can select the link to the vulnerability. View steps to resolve
your vulnerability by selecting the How to remediate tab. You can also view why the vulnerability
occurred by clicking the Reason tab.

See Managing insight PolicyReports for more information.

1.7. MANAGING INSIGHT POLICYREPORTS

Red Hat Advanced Cluster Management for Kubernetes PolicyReports are violations that are
generated by the insights-client. The PolicyReports are used to define and configure alerts that are
sent to incident management systems. When there is a violation, alerts from a PolicyReport are sent to
incident management system.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Observability

40

https://access.redhat.com/documentation/en-us/red_hat_insights/2021/
https://docs.openshift.com/container-platform/4.11/support/remote_health_monitoring/opting-out-of-remote-health-reporting.html#insights-operator-new-pull-secret_opting-out-remote-health-reporting

View the following sections to learn how to manage and view insight PolicyReports:

Searching for insight policy reports

Viewing identified issues from the console

1.7.1. Searching for insight policy reports

You can search for a specific insight PolicyReport that has a violation, across your managed clusters.

After you log into your Red Hat Advanced Cluster Management hub cluster, click the Search icon in the
console header to navigate to the Search page. Enter the following query: kind:policyreport.

Note: The PolicyReport name matches the name of the cluster.

You can also further specify your query by the insight policy violation and categories. When you select a
PolicyReport name, you are redirected to the Details page of the associated cluster. The Insights
sidebar is automatically displayed.

If the search service is disabled and you want to search for an insight, run the following command from
your hub cluster:

oc get policyreport --all-namespaces

1.7.2. Viewing identified issues from the console

You can view the identified issues on a specific cluster.

After you log into your Red Hat Advanced Cluster Management cluster, select Overview from the
navigation menu. Select a severity to view the PolicyReports that are associated with that severity.
Details of the cluster issues and the severities are displayed from the Cluster issues summary card.

Alternatively, you can select Clusters from the navigation menu. Select a managed cluster from the
table to view more details. From the Status card, view the number of identified issues.

Select the number of potential issues to view the severity chart and recommended remediations for the
issues. Click the link to the vulnerability to view steps on How to remediate and the Reason for the
vulnerability.

Note: After the issue is resolved, the Red Hat Insights are received by Red Hat Advanced Cluster
Management every 30 minutes and Red Hat Insights is updated every two hours.

Be sure to verify which component sent the alert message from the PolicyReport. Navigate to the
Governance page and select a specific policyreport. Select the Status tab and click the View details link
to view the PolicyReport YAML file.

Locate the source parameter, which informs you of the component that sent the violation. The value
options are grc and insights.

Learn how to create custom alert rules for the PolicyReports, see Configuring AlertManager for more
information.

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

41

	Table of Contents
	CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION
	1.1. OBSERVING ENVIRONMENTS
	1.1.1. Observability service
	1.1.2. Metric types
	1.1.3. Observability pod capacity requests
	1.1.4. Persistent stores used in the observability service
	1.1.5. Support

	1.2. ENABLE OBSERVABILITY SERVICE
	1.2.1. Prerequisites
	1.2.2. Enabling observability
	1.2.2.1. Creating the MultiClusterObservability custom resource

	1.2.3. Enabling observability from the Red Hat OpenShift Container Platform console
	1.2.3.1. Using the external metric query
	1.2.3.2. Dynamic metrics for single-node OpenShift clusters

	1.2.4. Disabling observability

	1.3. SEARCH IN THE CONSOLE
	1.3.1. Search components
	1.3.2. Search customization
	1.3.2.1. Options to increase the redisgraph memory
	1.3.2.2. Updating saved search limit

	1.3.3. Querying in the console
	1.3.3.1. Querying ArgoCD applications

	1.3.4. Updating klusterlet-addon-search deployments on managed clusters

	1.4. CUSTOMIZING OBSERVABILITY
	1.4.1. Creating custom rules
	1.4.2. Configuring AlertManager
	1.4.3. Adding custom metrics
	1.4.4. Removing default metrics
	1.4.5. Exporting metrics to external endpoints
	1.4.5.1. Creating the Kubernetes secret for an external endpoint
	1.4.5.2. Updating the multiclusterobservability CR
	1.4.5.3. Viewing the status of metric export

	1.4.6. Adding advanced configuration
	1.4.7. Updating the multiclusterobservability CR replicas from the console
	1.4.8. Forwarding alerts
	1.4.8.1. Disabling forward alerts for managed clusters

	1.4.9. Silencing alerts
	1.4.10. Suppressing alerts
	1.4.11. Customizing route certification
	1.4.11.1. Customizing certificates for accessing the object store

	1.4.12. Viewing and exploring data
	1.4.12.1. Viewing the etcd table
	1.4.12.2. Viewing the cluster fleet service-level overview for the Kubernetes API server dashboard
	1.4.12.3. Viewing the cluster service-level overview for the Kubernetes API server dashboard

	1.4.13. Disabling observability
	1.4.13.1. Disabling observability on all clusters
	1.4.13.2. Disabling observability on a single cluster

	1.5. DESIGNING YOUR GRAFANA DASHBOARD
	1.5.1. Setting up the Grafana developer instance
	1.5.2. Design your Grafana dashboard
	1.5.2.1. Design your Grafana dashboard with a ConfigMap

	1.5.3. Uninstalling the Grafana developer instance

	1.6. OBSERVABILITY WITH RED HAT INSIGHTS
	1.6.1. Prerequisites
	1.6.2. Red Hat Insights from the Red Hat Advanced Cluster Management console

	1.7. MANAGING INSIGHT POLICYREPORTS
	1.7.1. Searching for insight policy reports
	1.7.2. Viewing identified issues from the console

