
Red Hat Advanced Cluster Management
for Kubernetes 2.6

Governance

Read more to learn about the governance policy framework, which helps harden
cluster security by using policies.

Last Updated: 2023-10-31

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

Read more to learn about the governance policy framework, which helps harden cluster security by
using policies.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn about the governance policy framework, which helps harden cluster security by
using policies.

. .

. .

Table of Contents

CHAPTER 1. RISK AND COMPLIANCE
1.1. CERTIFICATES

1.1.1. Red Hat Advanced Cluster Management hub cluster certificates
1.1.1.1. Observability certificates
1.1.1.2. Bring Your Own (BYO) observability certificate authority (CA) certificates

1.1.1.2.1. OpenSSL commands to generate CA certificate
1.1.1.2.2. Create the secrets associated with the BYO observability CA certificates
1.1.1.2.3. Replacing certificates for alertmanager route

1.1.2. Red Hat Advanced Cluster Management component certificates
1.1.2.1. List hub cluster managed certificates
1.1.2.2. Refresh hub cluster managed certificates
1.1.2.3. Refresh a Red Hat Advanced Cluster Management webhook certificate

1.1.3. Red Hat Advanced Cluster Management managed certificates
1.1.3.1. Channel certificates
1.1.3.2. Managed cluster certificates

1.1.4. Third-party certificates
1.1.4.1. Rotating the gatekeeper webhook certificate
1.1.4.2. Rotating the integrity shield webhook certificate (Technology Preview)

1.2. REPLACING THE MANAGEMENT INGRESS CERTIFICATES
1.2.1. Prerequisites to replace management ingress certificate

1.2.1.1. Example configuration file for generating a certificate
1.2.1.2. OpenSSL commands for generating a certificate

1.2.2. Replace the Bring Your Own (BYO) ingress certificate
1.2.3. Restore the default self-signed certificate for management ingress

CHAPTER 2. GOVERNANCE
2.1. GOVERNANCE ARCHITECTURE
2.2. POLICY OVERVIEW

2.2.1. Policy YAML structure
2.2.2. Policy YAML table
2.2.3. Policy sample file
2.2.4. Placement YAML sample file

2.3. POLICY CONTROLLERS
2.3.1. Kubernetes configuration policy controller

2.3.1.1. Configuration policy sample
2.3.1.2. Configuration policy YAML table
2.3.1.3. Configure the configuration policy controller

2.3.2. Certificate policy controller
2.3.2.1. Certificate policy controller YAML structure

2.3.2.1.1. Certificate policy controller YAML table
2.3.2.2. Certificate policy sample

2.3.3. IAM policy controller
2.3.3.1. IAM policy YAML structure
2.3.3.2. IAM policy YAML table
2.3.3.3. IAM policy sample

2.3.4. Policy set controller
2.3.4.1. Policy set YAML structure
2.3.4.2. Policy set table
2.3.4.3. Policy set sample

2.4. INTEGRATE THIRD-PARTY POLICY CONTROLLERS
2.4.1. Integrating gatekeeper constraints and constraint templates

6
6
7
7
8
8
8
9
9
9
9

10
10
10
11
11
11
11

12
12
12
13
14
14

15
15
17
18
19

20
22
22
23
23
24
27
27
28
28
31
31
31
32
33
33
33
34
35
35
35

Table of Contents

1

2.4.2. Policy generator
2.4.2.1. Policy generator capabilities
2.4.2.2. Policy generator configuration structure
2.4.2.3. Generating a policy to install an Operator

2.4.2.3.1. A policy to install OpenShift GitOps
2.4.2.3.2. A policy to install the Compliance Operator

2.4.2.4. Install the policy generator on OpenShift GitOps (ArgoCD)
2.4.2.5. Policy generator configuration reference table

2.5. SUPPORTED POLICIES
2.5.1. Table of sample configuration policies
2.5.2. Support matrix for out-of-box policies
2.5.3. Memory usage policy

2.5.3.1. Memory usage policy YAML structure
2.5.3.2. Memory usage policy table
2.5.3.3. Memory usage policy sample

2.5.4. Namespace policy
2.5.4.1. Namespace policy YAML structure
2.5.4.2. Namespace policy YAML table
2.5.4.3. Namespace policy sample

2.5.5. Image vulnerability policy
2.5.5.1. Image vulnerability policy YAML structure
2.5.5.2. Image vulnerability policy sample

2.5.6. Pod policy
2.5.6.1. Pod policy YAML structure
2.5.6.2. Pod policy table
2.5.6.3. Pod policy sample

2.5.7. Pod security policy (Deprecated)
2.5.7.1. Pod security policy YAML structure
2.5.7.2. Pod security policy table
2.5.7.3. Pod security policy sample

2.5.8. Role policy
2.5.8.1. Role policy YAML structure
2.5.8.2. Role policy table
2.5.8.3. Role policy sample

2.5.9. Role binding policy
2.5.9.1. Role binding policy YAML structure
2.5.9.2. Role binding policy table
2.5.9.3. Role binding policy sample

2.5.10. Security Context Constraints policy
2.5.10.1. SCC policy YAML structure
2.5.10.2. SCC policy table
2.5.10.3. SCC policy sample

2.5.11. ETCD encryption policy
2.5.11.1. ETCD encryption policy YAML structure
2.5.11.2. ETCD encryption policy table
2.5.11.3. ETCD encryption policy sample

2.5.12. Compliance operator policy
2.5.12.1. Compliance operator resources

2.5.13. E8 scan policy
2.5.13.1. E8 scan policy resources

2.5.14. OpenShift CIS scan policy
2.5.14.1. OpenShift CIS resources

38
38
38
40
40
43
45
47
54
54
55
57
57
58
58
58
59
59
60
60
60
62
62
62
63
64
64
64
65
66
66
66
68
68
68
69
70
70
70
71
71
72
72
73
73
74
74
74
76
76
78
78

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

2

. .CHAPTER 3. MANAGE SECURITY POLICIES
3.1. GOVERNANCE PAGE
3.2. GOVERNANCE AUTOMATION CONFIGURATION
3.3. CONFIGURING ANSIBLE TOWER FOR GOVERNANCE

3.3.1. Prerequisites
3.3.2. Creating a policy violation automation from the console
3.3.3. Creating a policy violation automation from the CLI

3.4. DEPLOY POLICIES USING GITOPS
3.4.1. Customizing your local repository
3.4.2. Committing to your local repository
3.4.3. Deploying policies to your cluster
3.4.4. Verifying GitOps policy deployments from the console

3.4.4.1. Verifying GitOps policy deployments from the CLI
3.5. SUPPORT FOR TEMPLATES IN CONFIGURATION POLICIES

3.5.1. Prerequisite
3.5.2. Template functions

3.5.2.1. fromSecret function
3.5.2.2. fromConfigmap function
3.5.2.3. fromClusterClaim function
3.5.2.4. lookup function
3.5.2.5. base64enc function
3.5.2.6. base64dec function
3.5.2.7. indent function
3.5.2.8. autoindent function
3.5.2.9. toInt function
3.5.2.10. toBool function
3.5.2.11. protect function
3.5.2.12. toLiteral function
3.5.2.13. Open source community functions

3.5.3. Support for hub cluster templates in configuration policies
3.5.3.1. Template processing
3.5.3.2. Special annotation for reprocessing
3.5.3.3. Bypass template processing
3.5.3.4. Comparison of hub cluster and managed cluster templates

3.6. GOVERNANCE METRIC
3.6.1. Metric overview

3.6.1.1. Metric: policy_governance_info
3.6.1.2. Metric: config_policies_evaluation_duration_

3.7. MANAGING SECURITY POLICIES
3.7.1. Creating a security policy

3.7.1.1. Creating a security policy from the command line interface
3.7.1.1.1. Viewing your security policy from the CLI

3.7.1.2. Creating a cluster security policy from the console
3.7.1.2.1. Viewing your security policy from the console

3.7.1.3. Creating policy sets from the CLI
3.7.1.4. Creating policy sets from the console

3.7.2. Updating security policies
3.7.2.1. Adding a policy to a policy set from the CLI
3.7.2.2. Adding a policy to a policy set from the console
3.7.2.3. Disabling security policies

3.7.3. Deleting a security policy
3.7.3.1. Deleting policy sets from the console

3.7.4. Cleaning up resources that are created by policies

80
80
80
81
81
81

82
83
83
84
85
86
87
87
88
88
89
89
90
91

92
92
93
93
94
95
95
96
96
97
97
97
98
98

100
100
100
100
101
101
102
103
104
105
105
105
105
105
105
106
106
106
106

Table of Contents

3

3.8. MANAGING CONFIGURATION POLICIES
3.8.1. Creating a configuration policy

3.8.1.1. Creating a configuration policy from the CLI
3.8.1.2. Viewing your configuration policy from the CLI
3.8.1.3. Creating a configuration policy from the console
3.8.1.4. Viewing your configuration policy from the console

3.8.2. Updating configuration policies
3.8.2.1. Disabling configuration policies

3.8.3. Deleting a configuration policy
3.9. MANAGING GATEKEEPER OPERATOR POLICIES

3.9.1. Installing gatekeeper using a gatekeeper operator policy (Deprecated)
3.9.2. Creating a gatekeeper policy from the console

3.9.2.1. Gatekeeper operator CR
3.9.3. Upgrading gatekeeper and the gatekeeper operator
3.9.4. Updating gatekeeper operator policy

3.9.4.1. Viewing gatekeeper operator policy from the console
3.9.4.2. Disabling gatekeeper operator policy

3.9.5. Deleting gatekeeper operator policy
3.9.6. Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

3.10. MANAGING OPERATOR POLICIES IN DISCONNECTED ENVIRONMENTS
3.11. SECURE THE HUB CLUSTER
3.12. INTEGRITY SHIELD PROTECTION (TECHNOLOGY PREVIEW)

3.12.1. Integrity shield architecture
3.12.2. Supported versions
3.12.3. Enable integrity shield protection (Technology Preview)

3.12.3.1. Prerequisites
3.12.3.2. Enabling integrity shield protection

107
107
107
108
108
109
109
109
109
110
110
110
111

112
112
112
112
112
113
113
114
114
115
115
115
115
116

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

4

Table of Contents

5

CHAPTER 1. RISK AND COMPLIANCE
Manage your security of Red Hat Advanced Cluster Management for Kubernetes components. Govern
your cluster with defined policies and processes to identify and minimize risks. Use policies to define
rules and set controls.

Prerequisite: You must configure authentication service requirements for Red Hat Advanced Cluster
Management for Kubernetes. See Access control for more information.

Review the following topics to learn more about securing your cluster:

Role-based access control

Managing credentials overview

Certificates

Governance

Support for templates in configuration policies

Integrity shield protection (Technology Preview)

1.1. CERTIFICATES

Various certificates are created and used throughout Red Hat Advanced Cluster Management for
Kubernetes.

You can bring your own certificates. You must create a Kubernetes TLS Secret for your certificate. After
you create your certificates, you can replace certain certificates that are created by the Red Hat
Advanced Cluster Management installer.

Required access: Cluster administrator

All certificates required by services that run on Red Hat Advanced Cluster Management are created
during the installation of Red Hat Advanced Cluster Management. Certificates are created and
managed by the following components:

OpenShift Service Serving Certificates

Red Hat Advanced Cluster Management webhook controllers

Kubernetes Certificates API

OpenShift default ingress

Continue reading to learn more about certificate management:

Red Hat Advanced Cluster Management hub cluster certificates

Replacing the management ingress certificates

Replacing the OpenShift default ingress certificate

Observability certificates

Bring Your Own (BYO) observability certificate authority (CA) certificates

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

6

../../html-single/access_control#access-control
../../html-single/access_control#role-based-access-control
../../html-single/multicluster_engine#credentials
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/security_and_compliance/configuring-certificates#add-service-serving
https://docs.openshift.com/container-platform/4.11/security/certificates/replacing-default-ingress-certificate.html

OpenSSL commands to generate CA certificate

Create the secrets associated with the BYO observability CA certificates

Replacing certificates for alertmanager route

Red Hat Advanced Cluster Management component certificates

List hub cluster managed certificates

Refresh hub cluster managed certificates

Refresh a Red Hat Advanced Cluster Management webhook certificate

Red Hat Advanced Cluster Management managed certificates

Channel certificates

Managed cluster certificates

Third-party certificates

Rotating the gatekeeper webhook certificate

Rotating the integrity shield webhook certificate (Technology Preview)

Note: Users are responsible for certificate rotations and updates.

1.1.1. Red Hat Advanced Cluster Management hub cluster certificates

1.1.1.1. Observability certificates

After Red Hat Advanced Cluster Management is installed, observability certificates are created and
used by the observability components, to provide mutual TLS on the traffic between the hub cluster and
managed cluster. The Kubernetes secrets that are associated with the observability certificates.

The open-cluster-management-observability namespace contain the following certificates:

observability-server-ca-certs: Has the CA certificate to sign server-side certificates

observability-client-ca-certs: Has the CA certificate to sign client-side certificates

observability-server-certs: Has the server certificate used by the observability-
observatorium-api deployment

observability-grafana-certs: Has the client certificate used by the observability-rbac-query-
proxy deployment

The open-cluster-management-addon-observability namespace contain the following certificates on
managed clusters:

observability-managed-cluster-certs: Has the same server CA certificate as observability-
server-ca-certs in the hub server

observability-controller-open-cluster-management.io-observability-signer-client-cert: Has
the client certificate used by the metrics-collector-deployment

The CA certificates are valid for five years and other certificates are valid for one year. All observability

CHAPTER 1. RISK AND COMPLIANCE

7

The CA certificates are valid for five years and other certificates are valid for one year. All observability
certificates are automatically refreshed upon expiration.

View the following list to understand the effects when certificates are automatically renewed:

Non-CA certificates are renewed automatically when the remaining valid time is no more than
73 days. After the certificate is renewed, the pods in the related deployments restart
automatically to use the renewed certificates.

CA certificates are renewed automatically when the remaining valid time is no more than one
year. After the certificate is renewed, the old CA is not deleted but co-exist with the renewed
ones. Both old and renewed certificates are used by related deployments, and continue to work.
The old CA certificates are deleted when they expire.

When a certificate is renewed, the traffic between the hub cluster and managed cluster is not
interrupted.

1.1.1.2. Bring Your Own (BYO) observability certificate authority (CA) certificates

If you do not want to use the default observability CA certificates generated by Red Hat Advanced
Cluster Management, you can choose to use the BYO observability CA certificates before you enable
observability.

1.1.1.2.1. OpenSSL commands to generate CA certificate

Observability requires two CA certificates; one is for the server-side and the other is for the client-side.

Generate your CA RSA private keys with the following commands:

openssl genrsa -out serverCAKey.pem 2048

openssl genrsa -out clientCAKey.pem 2048

Generate the self-signed CA certificates using the private keys. Run the following commands:

openssl req -x509 -sha256 -new -nodes -key serverCAKey.pem -days 1825 -out
serverCACert.pem

openssl req -x509 -sha256 -new -nodes -key clientCAKey.pem -days 1825 -out
clientCACert.pem

1.1.1.2.2. Create the secrets associated with the BYO observability CA certificates

Complete the following steps to create the secrets:

1. Create the observability-server-ca-certs secret by using your certificate and private key. Run
the following command:

oc -n open-cluster-management-observability create secret tls observability-server-ca-certs -
-cert ./serverCACert.pem --key ./serverCAKey.pem

2. Create the observability-client-ca-certs secret by using your certificate and private key. Run
the following command:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

8

oc -n open-cluster-management-observability create secret tls observability-client-ca-certs --
cert ./clientCACert.pem --key ./clientCAKey.pem

1.1.1.2.3. Replacing certificates for alertmanager route

You can replace alertmanager certificates by updating the alertmanager route, if you do not want to use
the OpenShift default ingress certificate. Complete the following steps:

1. Examine the observability certificate with the following command:

openssl x509 -noout -text -in ./observability.crt

2. Change the common name (CN) on the certificate to alertmanager.

3. Change the SAN in the csr.cnf configuration file with the hostname for your alertmanager
route.

4. Create the two following secrets in the open-cluster-management-observability namespace.
Run the following command:

oc -n open-cluster-management-observability create secret tls alertmanager-byo-ca --cert
./ca.crt --key ./ca.key

oc -n open-cluster-management-observability create secret tls alertmanager-byo-cert --cert
./ingress.crt --key ./ingress.key

For more information, see OpenSSL commands for generating a certificate . If you want to restore the
default self-signed certificate for alertmanager route, see Restore the default self-signed certificate for
management ingress to delete the two secrets in the open-cluster-management-observability
namespace.

1.1.2. Red Hat Advanced Cluster Management component certificates

1.1.2.1. List hub cluster managed certificates

You can view a list of hub cluster managed certificates that use OpenShift Service Serving Certificates
service internally. Run the following command to list the certificates:

for ns in multicluster-engine open-cluster-management ; do echo "$ns:" ; oc get secret -n $ns -o
custom-
columns=Name:.metadata.name,Expiration:.metadata.annotations.service\\.beta\\.openshift\\.io/expiry
| grep -v '<none>' ; echo ""; done

Note: If observability is enabled, there are additional namespaces where certificates are created.

1.1.2.2. Refresh hub cluster managed certificates

You can refresh a hub cluster managed certificate by running the delete secret command in the List
hub cluster managed certificates section. When you identify the certificate that you need to refresh,
delete the secret that is associated with the certificate. For example, you can delete a secret by running
the following command:

oc delete secret grc-0c925-grc-secrets -n open-cluster-management

CHAPTER 1. RISK AND COMPLIANCE

9

https://docs.openshift.com/container-platform/4.11/security/certificates/service-serving-certificate.html

Note: After you delete the secret, a new one is created. However, you must restart pods that use the
secret manually so they can begin to use the new certificate.

1.1.2.3. Refresh a Red Hat Advanced Cluster Management webhook certificate

You can refresh OpenShift Container Platform managed certificates, which are certificates that are
used by Red Hat Advanced Cluster Management webhooks.

Complete the following steps to refresh Red Hat Advanced Cluster Management webhook certificate:

1. Delete the secret that is associated with the OpenShift Container Platform managed certificate
by running the following command:

oc delete secret -n open-cluster-management ocm-webhook-secret

Note: Some services might not have a secret that needs to be deleted.

2. Restart the services that are associated with the OpenShift Container Platform managed
certificate(s) by running the following command:

oc delete po -n open-cluster-management ocm-webhook-679444669c-5cg76

Important: There are replicas of many services; each service must be restarted.

View the following table for a summarized list of the pods that contain certificates and whether a secret
needs to be deleted prior to restarting the pod:

Table 1.1. Pods that contain OpenShift Container Platform managed certificates

Service name Namespace Sample pod name Secret name (if
applicable)

channels-apps-open-
cluster-management-
webhook-svc

open-cluster-
management

multicluster-operators-
application-
8c446664c-5lbfk

channels-apps-open-
cluster-management-
webhook-svc-ca

multicluster-operators-
application-svc

open-cluster-
management

multicluster-operators-
application-
8c446664c-5lbfk

multicluster-operators-
application-svc-ca

cluster-manager-
registration-webhook

open-cluster-
management-hub

cluster-manager-
registration-webhook-
fb7b99c-d8wfc

registration-webhook-
serving-cert

cluster-manager-work-
webhook

open-cluster-
management-hub

cluster-manager-work-
webhook-89b8d7fc-
f4pv8

work-webhook-serving-
cert

1.1.3. Red Hat Advanced Cluster Management managed certificates

1.1.3.1. Channel certificates

CA certificates can be associated with Git channel that are a part of the Red Hat Advanced Cluster

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

10

CA certificates can be associated with Git channel that are a part of the Red Hat Advanced Cluster
Management application management. See Using custom CA certificates for a secure HTTPS
connection for more details.

Helm channels allow you to disable certificate validation. Helm channels where certificate validation is
disabled, must be configured in development environments. Disabling certificate validation introduces
security risks.

1.1.3.2. Managed cluster certificates

Certificates are used to authenticate managed clusters with the hub. Therefore, it is important to be
aware of troubleshooting scenarios associated with these certificates. View Troubleshooting imported
clusters offline after certificate change for more details.

The managed cluster certificates are refreshed automatically.

1.1.4. Third-party certificates

1.1.4.1. Rotating the gatekeeper webhook certificate

Complete the following steps to rotate the gatekeeper webhook certificate:

1. Edit the secret that contains the certificate with the following command:

oc edit secret -n openshift-gatekeeper-system gatekeeper-webhook-server-cert

2. Delete the following content in the data section: ca.crt, ca.key, tls.crt`, and tls.key.

3. Restart the gatekeeper webhook service by deleting the gatekeeper-controller-manager pods
with the following command:

oc delete po -n openshift-gatekeeper-system -l control-plane=controller-manager

The gatekeeper webhook certificate is rotated.

1.1.4.2. Rotating the integrity shield webhook certificate (Technology Preview)

Complete the following steps to rotate the integrity shield webhook certificate:

1. Edit the IntegrityShield custom resource and add the integrity-shield-operator-system
namespace to the excluded list of namespaces in the inScopeNamespaceSelector setting.
Run the following command to edit the resource:

oc edit integrityshield integrity-shield-server -n integrity-shield-operator-system

2. Delete the secret that contains the integrity shield certificate by running the following
command:

oc delete secret -n integrity-shield-operator-system ishield-server-tls

3. Delete the operator so that the secret is recreated. Be sure that the operator pod name
matches the pod name on your system. Run the following command:

CHAPTER 1. RISK AND COMPLIANCE

11

../../html-single/applications#using-custom-CA-certificates-for-secure-HTTPS-connection
../../html-single/troubleshooting#troubleshooting-imported-clusters-offline-after-certificate-change

oc delete po -n integrity-shield-operator-system integrity-shield-operator-controller-manager-
64549569f8-v4pz6

4. Delete the integrity shield server pod to begin using the new certificate with the following
command:

oc delete po -n integrity-shield-operator-system integrity-shield-server-5fbdfbbbd4-bbfbz

Use the certificate policy controller to create and manage certificate policies on managed clusters. See
Policy controllers to learn more about controllers. Return to the Risk and compliance page for more
information.

1.2. REPLACING THE MANAGEMENT INGRESS CERTIFICATES

You can replace management ingress certificates by updating the Red Hat Advanced Cluster
Management for Kubernetes route if you do not want to use the OpenShift default ingress certificate.

Prerequisites to replace management ingress certificate

Replace the Bring Your Own (BYO) ingress certificate

Restore the default self-signed certificate for management ingress

1.2.1. Prerequisites to replace management ingress certificate

Prepare and have your management-ingress certificates and private keys ready. If needed, you can
generate a TLS certificate by using OpenSSL. Set the common name parameter (CN) on the certificate
to manangement-ingress. If you are generating the certificate, include the following settings:

Include the route name for Red Hat Advanced Cluster Management for Kubernetes as the
domain name in your certificate Subject Alternative Name (SAN) list.
Receive the route name by running the following command:

oc get route -n open-cluster-management

You might receive the following response:

multicloud-console.apps.grchub2.dev08.red-chesterfield.com

1.2.1.1. Example configuration file for generating a certificate

The following example configuration file and OpenSSL commands provide an example for how to
generate a TLS certificate by using OpenSSL. View the following csr.cnf configuration file, which
defines the configuration settings for generating certificates with OpenSSL.

[req] # Main settings
default_bits = 2048 # Default key size in bits.
prompt = no # Disables prompting for certificate values so the configuration file values are
used.
default_md = sha256 # Specifies the digest algorithm.
req_extensions = req_ext # Specifies the configuration file section that includes any extensions.
distinguished_name = dn # Specifies the section that includes the distinguished name information.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

12

[dn] # Distinguished name settings
C = US # Country
ST = North Carolina # State or province
L = Raleigh # Locality
O = Red Hat Open Shift # Organization
OU = Red Hat Advanced Container Management # Organizational unit
CN = management-ingress # Common name.

[req_ext] # Extensions
subjectAltName = @alt_names # Subject alternative names

[alt_names] # Subject alternative names
DNS.1 = multicloud-console.apps.grchub2.dev08.red-chesterfield.com

[v3_ext] # x509v3 extensions
authorityKeyIdentifier=keyid,issuer:always # Specifies the public key that corresponds to the private
key that is used to sign a certificate.
basicConstraints=CA:FALSE # Indicates whether the certificate is a CA certificate during
the certificate chain verification process.
#keyUsage=keyEncipherment,dataEncipherment # Defines the purpose of the key that is contained
in the certificate.
extendedKeyUsage=serverAuth # Defines the purposes for which the public key can be
used.
subjectAltName=@alt_names # Identifies the subject alternative names for the identify
that is bound to the public key by the CA.

Note: Be sure to update the SAN labeled, DNS.1 with the correct hostname for your management
ingress.

1.2.1.2. OpenSSL commands for generating a certificate

The following OpenSSL commands are used with the preceding configuration file to generate the
required TLS certificate.

1. Generate your certificate authority (CA) RSA private key:

openssl genrsa -out ca.key 4096

2. Generate a self-signed CA certificate by using your CA key:

openssl req -x509 -new -nodes -key ca.key -subj "/C=US/ST=North
Carolina/L=Raleigh/O=Red Hat OpenShift" -days 400 -out ca.crt

3. Generate the RSA private key for your certificate:

openssl genrsa -out ingress.key 4096

4. Generate the Certificate Signing request (CSR) by using the private key:

openssl req -new -key ingress.key -out ingress.csr -config csr.cnf

5. Generate a signed certificate by using your CA certificate and key and CSR:

CHAPTER 1. RISK AND COMPLIANCE

13

openssl x509 -req -in ingress.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out ingress.crt -
sha256 -days 300 -extensions v3_ext -extfile csr.cnf

6. Examine the certificate contents:

openssl x509 -noout -text -in ./ingress.crt

1.2.2. Replace the Bring Your Own (BYO) ingress certificate

Complete the following steps to replace your BYO ingress certificate:

1. Create the byo-ingress-tls secret by using your certificate and private key. Run the following
command:

oc -n open-cluster-management create secret tls byo-ingress-tls-secret --cert ./ingress.crt --
key ./ingress.key

2. Verify that the secret is created in the correct namespace with the following command:

oc get secret -n open-cluster-management | grep -e byo-ingress-tls-secret -e byo-ca-cert

3. Optional: Create a secret containing the CA certificate by running the following command:

oc -n open-cluster-management create secret tls byo-ca-cert --cert ./ca.crt --key ./ca.key

4. Delete the management-ingress subscription in order to redeploy the subscription. The
secrets created in the previous steps are used automatically. Run the following command:

oc delete subscription management-ingress-sub -n open-cluster-management

5. Verify that the current certificate is your certificate, and that all console access and login
functionality remain the same.

1.2.3. Restore the default self-signed certificate for management ingress

1. Delete the bring your own certificate secrets with the following command:

oc delete secret byo-ca-cert byo-ingress-tls-secret -n open-cluster-management

2. Delete the management-ingress subscription in order to redeploy the subscription. The
secrets created in the previous steps are used automatically. Run the following command:

oc delete subscription management-ingress-sub -n open-cluster-management

3. Verify that the current certificate is your certificate, and that all console access and login
functionality remain the same.

See Certificates for more information about certificates that are created and managed by Red Hat
Advanced Cluster Management. Return to the Risk and compliance page for more information on
securing your cluster.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

14

CHAPTER 2. GOVERNANCE
Enterprises must meet internal standards for software engineering, secure engineering, resiliency,
security, and regulatory compliance for workloads hosted on private, multi and hybrid clouds. Red Hat
Advanced Cluster Management for Kubernetes governance provides an extensible policy framework for
enterprises to introduce their own security policies.

2.1. GOVERNANCE ARCHITECTURE

Enhance the security for your cluster with the Red Hat Advanced Cluster Management for Kubernetes
governance lifecycle. The product governance lifecycle is based on defined policies, processes, and
procedures to manage security and compliance from a central interface page. View the following
diagram of the governance architecture:

CHAPTER 2. GOVERNANCE

15

The governance architecture is composed of the following components:

Governance dashboard: Provides a summary of your cloud governance and risk details, which
include policy and cluster violations.
Notes:

When a policy is propagated to a managed cluster, it is first replicated to the cluster
namespace on the hub cluster, and is named and labeled using
namespaceName.policyName. When you create a policy, make sure that the length of the
namespaceName.policyName does not exceed 63 characters due to the Kubernetes
length limit for label values.

When you search for a policy in the hub cluster, you might also receive the name of the

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

16

replicated policy in the managed cluster namespace. For example, if you search for policy-
dhaz-cert in the default namespace, the following policy name from the hub cluster might
also appear in the managed cluster namespace: default.policy-dhaz-cert.

Policy-based governance framework: Supports policy creation and deployment to various
managed clusters based on attributes associated with clusters, such as a geographical region.
See the policy-collection repository to view examples of the predefined policies and
instructions on deploying policies to your cluster. You can also contribute custom policies to the
collection. In addition, when policies are violated automations can be configured to run and take
any action that the user chooses. See Configuring Ansible Tower for governance for more
information.
Use the policy_governance_info metric to view trends and analyze any policy failures. See
Governance metric for more details.

Policy controller: Evaluates one or more policies on the managed cluster against your specified
control and generates Kubernetes events for violations. Violations are propagated to the hub
cluster. Policy controllers that are included in your installation are the following: Kubernetes
configuration, Certificate, and IAM.

Open source community: Supports community contributions with a foundation of the Red Hat
Advanced Cluster Management policy framework. Policy controllers and third-party policies are
also a part of the stolostron/policy-collection repository. Learn how to contribute and deploy
policies using GitOps. For more information, see Deploy policies using GitOps . Learn how to
integrate third-party policies with Red Hat Advanced Cluster Management for Kubernetes. For
more information, see Integrate third-party policy controllers .

Learn about the structure of an Red Hat Advanced Cluster Management for Kubernetes policy
framework, and how to use the Red Hat Advanced Cluster Management for Kubernetes Governance
dashboard.

Policy overview

Policy controllers

Supported policies

Manage security policies

Secure the hub cluster

2.2. POLICY OVERVIEW

Use the Red Hat Advanced Cluster Management for Kubernetes security policy framework to create
and manage policies. Kubernetes custom resource definition (CRD) instances are used to create
policies.

Each Red Hat Advanced Cluster Management policy can have at least one or more templates. For more
details about the policy elements, view the Policy YAML table section on this page.

The policy requires a PlacementRule or Placement that defines the clusters that the policy document is
applied to, and a PlacementBinding that binds the Red Hat Advanced Cluster Management for
Kubernetes policy to the placement rule. For more on how to define a PlacementRule, see Placement
rules in the Application lifecycle documentation. For more on how to define a Placement see Placement
overview in the Cluster lifecycle documentation.

Important:

CHAPTER 2. GOVERNANCE

17

https://github.com/stolostron/policy-collection
../../html-single/applications#placement-rules
../../html-single/multicluster_engine#placement-overview

You must create the PlacementBinding to bind your policy with either a PlacementRule or a
Placement in order to propagate the policy to the managed clusters.
Best practice: Use the command line interface (CLI) to make updates to the policies when you
use the Placement resource.

You can create a policy in any namespace on the hub cluster except the cluster namespace. If
you create a policy in the cluster namespace, it is deleted by Red Hat Advanced Cluster
Management for Kubernetes.

Each client and provider is responsible for ensuring that their managed cloud environment
meets internal enterprise security standards for software engineering, secure engineering,
resiliency, security, and regulatory compliance for workloads hosted on Kubernetes clusters. Use
the governance and security capability to gain visibility and remediate configurations to meet
standards.

Learn more details about the policy components in the following sections:

Policy YAML structure

Policy YAML table

Policy sample file

Placement YAML sample file

2.2.1. Policy YAML structure

When you create a policy, you must include required parameter fields and values. Depending on your
policy controller, you might need to include other optional fields and values. View the following YAML
structure for the explained parameter fields:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 policy-templates:
 - objectDefinition:
 apiVersion:
 kind:
 metadata:
 name:
 spec:
 remediationAction:
 disabled:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name:
placementRef:
 name:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

18

2.2.2. Policy YAML table

Table 2.1. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.annotations Optional Used to specify a set of security
details that describes the set of
standards the policy is trying to
validate. All annotations
documented here are
represented as a string that
contains a comma-separated list.

Note: You can view policy
violations based on the standards
and categories that you define for
your policy on the Policies page,
from the console.

annotations.policy.open-
cluster-
management.io/standards

Optional The name or names of security
standards the policy is related to.
For example, National Institute of
Standards and Technology
(NIST) and Payment Card
Industry (PCI).

 kind:
 apiGroup:
subjects:
- name:
 kind:
 apiGroup:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name:
spec:
 clusterConditions:
 - type:
 clusterLabels:
 matchLabels:
 cloud:

CHAPTER 2. GOVERNANCE

19

annotations.policy.open-
cluster-
management.io/categories

Optional A security control category
represent specific requirements
for one or more standards. For
example, a System and
Information Integrity category
might indicate that your policy
contains a data transfer protocol
to protect personal information,
as required by the HIPAA and PCI
standards.

annotations.policy.open-
cluster-
management.io/controls

Optional The name of the security control
that is being checked. For
example, Access Control or
System and Information Integrity.

spec.policy-templates Required Used to create one or more
policies to apply to a managed
cluster.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.remediationAction Optional. Specifies the remediation of your
policy. The parameter values are
enforce and inform. If specified,
the spec.remediationAction
value that is defined overrides
any remediationAction
parameter defined in the child
policies in the policy-templates
section. For example, if the
spec.remediationAction value
is set to enforce, then the
remediationAction in the
policy-templates section is set
to enforce during runtime.

Important: Some policy kinds
might not support the enforce
feature.

Field Optional or required Description

2.2.3. Policy sample file

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-role

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

20

 annotations:
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/categories: AC Access Control
 policy.open-cluster-management.io/controls: AC-3 Access Enforcement
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-role-example
 spec:
 remediationAction: inform # the policy-template spec.remediationAction is overridden by the
preceding parameter value for spec.remediationAction.
 severity: high
 namespaceSelector:
 include: ["default"]
 object-templates:
 - complianceType: mustonlyhave # role definition should exact match
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: sample-role
 rules:
 - apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
placementRef:
 name: placement-policy-role
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-role
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable
 clusterSelector:
 matchExpressions:
 - {key: environment, operator: In, values: ["dev"]}

CHAPTER 2. GOVERNANCE

21

2.2.4. Placement YAML sample file

The PlacementBinding and Placement resources can be combined with the previous policy example to
deploy the policy using the cluster Placement API instead of the PlacementRule API.

See Managing security policies to create and update a policy. You can also enable and updateRed Hat
Advanced Cluster Management policy controllers to validate the compliance of your policies. Refer to
Policy controllers. To learn more policy topics, see Governance.

2.3. POLICY CONTROLLERS

Policy controllers monitor and report whether your cluster is compliant with a policy. Use the Red Hat
Advanced Cluster Management for Kubernetes policy framework by using the out-of-the-box policy
templates to apply policies managed by these controllers. The policy controllers manage Kubernetes
custom resource definition (CRD) instances.

Policy controllers monitor for policy violations, and can make the cluster status compliant if the
controller supports the enforcement feature.

View the following topics to learn more about the following Red Hat Advanced Cluster Management for
Kubernetes policy controllers:

Kubernetes configuration policy controller

Certificate policy controller

IAM policy controller

Policy set controller

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
placementRef:
 name: placement-policy-role
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

//Depends on if governance would like to use v1beta1
apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement-policy-role
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions:
 - {key: environment, operator: In, values: ["dev"]}

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

22

Important: Only the configuration policy controller policies support the enforce feature. You must
manually remediate policies, where the policy controller does not support the enforce feature.

Refer to Governance for more topics about managing your policies.

2.3.1. Kubernetes configuration policy controller

The configuration policy controller can be used to configure any Kubernetes resource and apply security
policies across your clusters. The configuration policy is provided in the policy-templates field of the
policy on the hub cluster, and is propagated to the selected managed clusters by the governance
framework. See the Policy overview for more details on the hub cluster policy.

A Kubernetes object is defined (in whole or in part) in the object-templates array in the configuration
policy, indicating to the configuration policy controller of the fields to compare with objects on the
managed cluster. The configuration policy controller communicates with the local Kubernetes API server
to get the list of your configurations that are in your cluster.

The configuration policy controller is created on the managed cluster during installation. The
configuration policy controller supports the enforce feature to remediate when the configuration policy
is non-compliant. When the remediationAction for the configuration policy is set to enforce, the
controller applies the specified configuration to the target managed cluster. Note: Configuration
policies that specify an object without a name can only be inform.

You can also use templated values within the configuration policies. For more information, see Support
for templates in configuration policies.

If you have existing Kubernetes manifests that you want to put in a policy, the policy generator is a useful
tool to accomplish this.

Continue reading to learn more about the configuration policy controller:

Configuration policy sample

Configuration policy YAML table

Configure the configuration policy controller

2.3.1.1. Configuration policy sample

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-config
spec:
 namespaceSelector:
 include: ["default"]
 exclude: []
 matchExpressions: []
 matchLabels: {}
 remediationAction: inform
 severity: low
 evaluationInterval:
 compliant:
 noncompliant:
 object-templates:
 - complianceType: musthave

CHAPTER 2. GOVERNANCE

23

2.3.1.2. Configuration policy YAML table

Table 2.2. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to
ConfigurationPolicy to
indicate the type of policy.

metadata.name Required The name of the policy.

spec.namespaceSelector Required for namespaced objects
that do not have a namespace
specified

Determines namespaces in the
managed cluster that the object
is applied to. The include and
exclude parameters accept file
path expressions to include and
exclude namespaces by name.
The matchExpressions and
matchLabels parameters
specify namespaces to include by
label. See the Kubernetes labels
and selectors documentation.
The resulting list is compiled by
using the intersection of results
from all parameters.

spec.remediationAction Required Specifies the action to take when
the policy is non-compliant. Use
the following parameter values:
inform or enforce.

spec.severity Required Specifies the severity when the
policy is non-compliant. Use the
following parameter values: low,
medium, high, or critical.

 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: pod
 spec:
 containers:
 - image: pod-image
 name: pod-name
 ports:
 - containerPort: 80

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

24

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

spec.evaluationInterval.com
pliant

Optional Used to define how often the
policy is evaluated when it is in the
compliant state. The values must
be in the format of a duration
which is a sequence of numbers
with time unit suffixes. For
example, 12h30m5s represents
12 hours, 30 minutes, and 5
seconds. It can also be set to
never so that the policy is not
reevaluated on the compliant
cluster, unless the policy spec is
updated.

spec.evaluationInterval.nonc
ompliant

Optional Used to define how often the
policy is evaluated when it is in the
non-compliant state. Similar to
the
evaluationInterval.compliant
parameter, the values must be in
the format of a duration which is
a sequence of numbers with time
unit suffixes. It can also be set to
never so that the policy is not
reevaluated on the non-compliant
cluster, unless the policy spec is
updated.

spec.object-templates Required The array of Kubernetes objects
(either fully defined or containing
a subset of fields) for the
controller to compare with
objects on the managed cluster.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

25

spec.object-
templates[].complianceType

Required Used to define the desired state
of the Kubernetes object on the
managed clusters. You must use
one of the following verbs as the
parameter value:

mustonlyhave: Indicates that
an object must exist with the
exact fields and values as defined
in the objectDefinition.

musthave: Indicates an object
must exist with the same fields as
specified in the
objectDefinition. The fields in
the template are a subset of what
exists in the object. In general,
array values are appended. The
exception for the array to be
patched is when the item contains
a name key with a value that
matches an existing item. Use a
fully defined objectDefinition
using the mustonlyhave
compliance type, if you want to
replace the array.

mustnothave: Indicates that an
object with the same fields as
specified in the objectDefinition
cannot exist.

spec.object-
templates[].metadataComplia
nceType

Optional Overrides spec.object-
templates[].complianceType
when comparing the manifest’s
metadata section to objects on
the cluster ("musthave",
"mustonlyhave"). Default is unset
to not override
complianceType for metadata.

spec.object-
templates[].objectDefinition

Required A Kubernetes object (either fully
defined or containing a subset of
fields) for the controller to
compare with objects on the
managed cluster.

Field Optional or required Description

See the policy samples that use NIST Special Publication 800-53 (Rev. 4) , and are supported by Red
Hat Advanced Cluster Management from the CM-Configuration-Management folder. Learn about how
policies are applied on your hub cluster, see Supported policies for more details.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

26

https://nvd.nist.gov/800-53/Rev4/control/CA-1
https://github.com/stolostron/policy-collection/tree/main/stable/CM-Configuration-Management

Learn how to create and customize policies, see Manage security policies . Refer to Policy controllers for
more details about controllers.

2.3.1.3. Configure the configuration policy controller

You can configure the concurrency of the configuration policy controller for each managed cluster to
change how many configuration policies it can evaluate at the same time. To change the default value
of 2, set the policy-evaluation-concurrency annotation with a non-zero integer within quotes. You can
set the value on the ManagedClusterAddOn object called config-policy-controller in the managed
cluster namespace of the hub cluster.

Note: Higher concurrency values increase CPU and memory utilization on the config-policy-controller
pod, Kubernetes API server, and OpenShift API server.

In the following YAML example, concurrency is set to 5 on the managed cluster called cluster1:

Continue reading the following topics to learn more about how you can you use configuration policies:

Support for templates in configuration policies

Supported policy samples

Generate configuration policies from existing manifests

2.3.2. Certificate policy controller

Certificate policy controller can be used to detect certificates that are close to expiring, time durations
(hours) that are too long, or contain DNS names that fail to match specified patterns. The certificate
policy is provided in the policy-templates field of the policy on the hub cluster and is propagated to the
selected managed clusters by the governance framework. See the Policy overview documentation for
more details on the hub cluster policy.

Configure and customize the certificate policy controller by updating the following parameters in your
controller policy:

minimumDuration

minimumCADuration

maximumDuration

maximumCADuration

allowedSANPattern

disallowedSANPattern

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: config-policy-controller
 namespace: cluster1
 annotations:
 policy-evaluation-concurrency: "5"
spec:
 installNamespace: open-cluster-management-agent-addon

CHAPTER 2. GOVERNANCE

27

Your policy might become non-compliant due to either of the following scenarios:

When a certificate expires in less than the minimum duration of time or exceeds the maximum
time.

When DNS names fail to match the specified pattern.

The certificate policy controller is created on your managed cluster. The controller communicates with
the local Kubernetes API server to get the list of secrets that contain certificates and determine all non-
compliant certificates.

Certificate policy controller does not support the enforce feature.

2.3.2.1. Certificate policy controller YAML structure

View the following example of a certificate policy and review the element in the YAML table:

2.3.2.1.1. Certificate policy controller YAML table

Table 2.3. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to
CertificatePolicy to indicate
the type of policy.

metadata.name Required The name to identify the policy.

apiVersion: policy.open-cluster-management.io/v1
kind: CertificatePolicy
metadata:
 name: certificate-policy-example
spec:
 namespaceSelector:
 include: ["default"]
 exclude: []
 matchExpressions: []
 matchLabels: {}
 remediationAction:
 severity:
 minimumDuration:
 minimumCADuration:
 maximumDuration:
 maximumCADuration:
 allowedSANPattern:
 disallowedSANPattern:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

28

metadata.labels Optional In a certificate policy, the
category=system-and-
information-integrity label
categorizes the policy and
facilitates querying the certificate
policies. If there is a different
value for the category key in
your certificate policy, the value is
overridden by the certificate
controller.

spec.namespaceSelector Required Determines namespaces in the
managed cluster where secrets
are monitored. The include and
exclude parameters accept file
path expressions to include and
exclude namespaces by name.
The matchExpressions and
matchLabels parameters
specify namespaces to be
included by label. See the
Kubernetes labels and selectors
documentation. The resulting list
is compiled by using the
intersection of results from all
parameters.

Note: If the
namespaceSelector for the
certificate policy controller does
not match any namespace, the
policy is considered compliant.

spec.remediationAction Required Specifies the remediation of your
policy. Set the parameter value to
inform. Certificate policy
controller only supports inform
feature.

spec.severity Optional Informs the user of the severity
when the policy is non-compliant.
Use the following parameter
values: low, medium, high, or
critical.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

29

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

spec.minimumDuration Required When a value is not specified, the
default value is 100h. This
parameter specifies the smallest
duration (in hours) before a
certificate is considered non-
compliant. The parameter value
uses the time duration format
from Golang. See Golang Parse
Duration for more information.

spec.minimumCADuration Optional Set a value to identify signing
certificates that might expire
soon with a different value from
other certificates. If the
parameter value is not specified,
the CA certificate expiration is the
value used for the
minimumDuration. See Golang
Parse Duration for more
information.

spec.maximumDuration Optional Set a value to identify certificates
that have been created with a
duration that exceeds your
desired limit. The parameter uses
the time duration format from
Golang. See Golang Parse
Duration for more information.

spec.maximumCADuration Optional Set a value to identify signing
certificates that have been
created with a duration that
exceeds your defined limit. The
parameter uses the time duration
format from Golang. See Golang
Parse Duration for more
information.

spec.allowedSANPattern Optional A regular expression that must
match every SAN entry that you
have defined in your certificates.
This parameter checks DNS
names against patterns. See the
Golang Regular Expression syntax
for more information.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

30

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/regexp/syntax/

spec.disallowedSANPattern Optional A regular expression that must
not match any SAN entries you
have defined in your certificates.
This parameter checks DNS
names against patterns.

Note: To detect wild-card
certificate, use the following SAN
pattern:
disallowedSANPattern: "[*]"

See the Golang Regular
Expression syntax for more
information.

Field Optional or required Description

2.3.2.2. Certificate policy sample

When your certificate policy controller is created on your hub cluster, a replicated policy is created on
your managed cluster. See policy-certificate.yaml to view the certificate policy sample.

Learn how to manage a certificate policy, see Managing security policies for more details. Refer to
Policy controllers for more topics.

2.3.3. IAM policy controller

The Identity and Access Management (IAM) policy controller can be used to receive notifications about
IAM policies that are non-compliant. The compliance check is based on the parameters that you
configure in the IAM policy. The IAM policy is provided in the policy-templates field of the policy on the
hub cluster and is propagated to the selected managed clusters by the governance framework. See the
Policy YAML structure documentation for more details on the hub cluster policy.

The IAM policy controller monitors for the desired maximum number of users with a particular cluster
role (i.e. ClusterRole) in your cluster. The default cluster role to monitor is cluster-admin. The IAM
policy controller communicates with the local Kubernetes API server.

The IAM policy controller runs on your managed cluster. View the following sections to learn more:

IAM policy YAML structure

IAM policy YAML table

IAM policy sample

2.3.3.1. IAM policy YAML structure

View the following example of an IAM policy and review the parameters in the YAML table:

apiVersion: policy.open-cluster-management.io/v1
kind: IamPolicy
metadata:
 name:
spec:

CHAPTER 2. GOVERNANCE

31

https://golang.org/pkg/regexp/syntax/
https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-certificate.yaml

2.3.3.2. IAM policy YAML table

View the following parameter table for descriptions:

Table 2.4. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

spec.clusterRole Optional The cluster role (i.e.
ClusterRole) to monitor. This
defaults to cluster-admin if not
specified.

spec.severity Optional Informs the user of the severity
when the policy is non-compliant.
Use the following parameter
values: low, medium, high, or
critical.

spec.remediationAction Optional Specifies the remediation of your
policy. Enter inform. The IAM
policy controller only supports the
inform feature.

 clusterRole:
 severity:
 remediationAction:
 maxClusterRoleBindingUsers:
 ignoreClusterRoleBindings:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

32

spec.ignoreClusterRoleBindi
ngs

Optional A list of regular expression
(regex) values that indicate which
cluster role binding names to
ignore. These regular expression
values must follow Go regexp
syntax. By default, all cluster role
bindings that have a name that
starts with system: are ignored.
It is recommended to set this to a
stricter value. To not ignore any
cluster role binding names, set the
list to a single value of . ̂or some
other regular expression that
never matches.

spec.maxClusterRoleBinding
Users

Required Maximum number of IAM role
bindings that are available before
a policy is considered non-
compliant.

Field Optional or required Description

2.3.3.3. IAM policy sample

See policy-limitclusteradmin.yaml to view the IAM policy sample. See Managing security policies for
more information. Refer to Policy controllers for more topics.

2.3.4. Policy set controller

The policy set controller aggregates the policy status scoped to policies that are defined in the same
namespace. Create a policy set (PolicySet) to group policies that in the same namespace. All policies in
the PolicySet are placed together in a selected cluster by creating a PlacementBinding to bind the
PolicySet and Placement. The policy set is deployed to the hub cluster.

Additionally, when a policy is a part of multiple policy sets, existing and new Placement resources remain
in the policy. When a user removes a policy from the policy set, the policy is not applied to the cluster
that is selected in the policy set, but the placements remain. The policy set controller only checks for
violations in clusters that include the policy set placement.

Note: The Red Hat Advanced Cluster Management hardening sample policy set uses cluster placement.
If you use cluster placement, bind the namespace containing the policy to the managed cluster set. See
Deploying policies to your cluster for more details on using cluster placement.

Learn more details about the policy set structure in the following sections:

Policy set controller YAML structure

Policy set controller YAML table

Policy set sample

2.3.4.1. Policy set YAML structure

Your policy set might resemble the following YAML file:

CHAPTER 2. GOVERNANCE

33

https://pkg.go.dev/regexp/syntax
https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-limitclusteradmin.yaml

2.3.4.2. Policy set table

View the following parameter table for descriptions:

Table 2.5. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-
management.io/v1beta1.

kind Required Set the value to PolicySet to
indicate the type of policy.

apiVersion: policy.open-cluster-management.io/v1beta1
kind: PolicySet
metadata:
 name: demo-policyset
spec:
 policies:
 - policy-demo

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: demo-policyset-pb
placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: demo-policyset-pr
subjects:
- apiGroup: policy.open-cluster-management.io
 kind: PolicySet
 name: demo-policyset

apiVersion: apps.open-cluster-management.io
kind: PlacementRule
metadata:
 name: demo-policyset-pr
spec:
 clusterConditions:pagewidth:
 - status: "True"
 type: ManagedCLusterConditionAvailable
 clusterSelectors:
 matchExpressions:
 - key: name
 operator: In
 values:
 - local-cluster

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

34

metadata.name Required The name for identifying the
policy resource.

spec Required Add configuration details for your
policy.

spec.policies Optional The list of policies that you want
to group together in the policy
set.

Field Optional or required Description

2.3.4.3. Policy set sample

See the Creating policy sets section in the Managing security policies topic. Also view the stable
PolicySets, which require the policy generator for deployment, PolicySets-- Stable. See the Policy
generator documentation.

2.4. INTEGRATE THIRD-PARTY POLICY CONTROLLERS

Integrate third-party policies to create custom annotations within the policy templates to specify one or
more compliance standards, control categories, and controls.

You can also use the third-party party policies from the policy-collection/community.

Learn to integrate the following third-party policies:

Integrating gatekeeper constraints and constraint templates

Policy generator

2.4.1. Integrating gatekeeper constraints and constraint templates

Gatekeeper is a validating webhook that enforces custom resource definition (CRD) based policies that
are run with the Open Policy Agent (OPA). You can install gatekeeper on your cluster by using the

apiVersion: policy.open-cluster-management.io/v1beta1
kind: PolicySet
metadata:
 name: pci
 namespace: default
spec:
 description: Policies for PCI compliance
 policies:
 - policy-pod
 - policy-namespace
status:
 compliant: NonCompliant
 placement:
 - placementBinding: binding1
 placementRule: placement1
 policySet: policyset-ps

CHAPTER 2. GOVERNANCE

35

https://github.com/stolostron/policy-collection/tree/main/policygenerator/policy-sets/stable
https://github.com/stolostron/policy-collection/tree/master/community

gatekeeper operator policy. Gatekeeper policy can be used to evaluate Kubernetes resource
compliance. You can leverage a OPA as the policy engine, and use Rego as the policy language.

The gatekeeper policy is created as a Kubernetes configuration policy in Red Hat Advanced Cluster
Management. Gatekeeper policies include constraint templates (ConstraintTemplates) and
Constraints, audit templates, and admission templates. For more information, see the Gatekeeper
upstream repository.

Red Hat Advanced Cluster Management supports version 3.3.0 for Gatekeeper and applies the
following constraint templates in your Red Hat Advanced Cluster Management gatekeeper policy:

ConstraintTemplates and constraints: Use the policy-gatekeeper-k8srequiredlabels policy to
create a gatekeeper constraint template on the managed cluster.

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-k8srequiredlabels
spec:
 remediationAction: enforce # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: templates.gatekeeper.sh/v1beta1
 kind: ConstraintTemplate
 metadata:
 name: k8srequiredlabels
 spec:
 crd:
 spec:
 names:
 kind: K8sRequiredLabels
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 labels:
 type: array
 items: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredlabels
 violation[{"msg": msg, "details": {"missing_labels": missing}}] {
 provided := {label | input.review.object.metadata.labels[label]}
 required := {label | label := input.parameters.labels[_]}
 missing := required - provided
 count(missing) > 0
 msg := sprintf("you must provide labels: %v", [missing])
 }
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

36

https://github.com/open-policy-agent/gatekeeper#gatekeeper

audit template: Use the policy-gatekeeper-audit to periodically check and evaluate existing
resources against the gatekeeper policies that are enforced to detect existing
misconfigurations.

admission template: Use the policy-gatekeeper-admission to check for misconfigurations that
are created by the gatekeeper admission webhook:

 name: ns-must-have-gk
 spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 namespaces:
 - e2etestsuccess
 - e2etestfail
 parameters:
 labels: ["gatekeeper"]

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-audit
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 status:
 totalViolations: 0

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-admission
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: mustnothave
 objectDefinition:
 apiVersion: v1
 kind: Event
 metadata:
 namespace: openshift-gatekeeper-system # set it to the actual namespace where
gatekeeper is running if different
 annotations:
 constraint_action: deny

CHAPTER 2. GOVERNANCE

37

See policy-gatekeeper-sample.yaml for more details.

See Managing configuration policies for more information about managing other policies. Refer to
Governance for more topics on the security framework.

2.4.2. Policy generator

The policy generator is a part of the Red Hat Advanced Cluster Management for Kubernetes application
lifecycle subscription GitOps workflow that generates Red Hat Advanced Cluster Management policies
using Kustomize. The policy generator builds Red Hat Advanced Cluster Management policies from
Kubernetes manifest YAML files, which are provided through a PolicyGenerator manifest YAML file
that is used to configure it. The policy generator is implemented as a Kustomize generator plugin. For
more information on Kustomize, see the Kustomize documentation.

The policy generator version bundled in this version of Red Hat Advanced Cluster Management is v1.9.0.

2.4.2.1. Policy generator capabilities

The policy generator and its integration with the Red Hat Advanced Cluster Management application
lifecycle subscription GitOps workflow simplifies the distribution of Kubernetes resource objects to
managed OpenShift clusters, and Kubernetes clusters through Red Hat Advanced Cluster Management
policies. In particular, use the policy generator to complete the following actions:

Convert any Kubernetes manifest files to Red Hat Advanced Cluster Management
configuration policies, including manifests created from a Kustomize directory.

Patch the input Kubernetes manifests before they are inserted into a generated Red Hat
Advanced Cluster Management policy.

Generate additional configuration policies to be able to report on Gatekeeper and policy
violations through Red Hat Advanced Cluster Management for Kubernetes.

Generate policy sets on the hub cluster. See Policy set controller for more details.

View the following topics to for more information:

Policy generator configuration structure

Generating a policy to install an Operator

A policy to install OpenShift GitOps

A policy to install the Compliance Operator

Install the policy generator on OpenShift GitOps (ArgoCD)

Policy generator configuration reference table

2.4.2.2. Policy generator configuration structure

The policy generator is a Kustomize generator plugin that is configured with a manifest of the
PolicyGenerator kind and policy.open-cluster-management.io/v1 API version.

 constraint_kind: K8sRequiredLabels
 constraint_name: ns-must-have-gk
 event_type: violation

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

38

https://github.com/stolostron/policy-collection/blob/main/community/CM-Configuration-Management/policy-gatekeeper-sample.yaml
https://kustomize.io/
../../html-single/applications#applying-kustomize
../../html-single/governance#kubernetes-configuration-policy-controller
https://open-policy-agent.github.io/gatekeeper/website/docs/

To use the plugin, start by adding a generators section in a kustomization.yaml file. View the following
example:

The policy-generator-config.yaml file referenced in the previous example is a YAML file with the
instructions of the policies to generate. A simple policy generator configuration file might resemble the
following example:

The configmap.yaml represents a Kubernetes manifest YAML file to be included in the policy.
Alternatively, you can set the path to a Kustomize directory, or a directory with multiple Kubernetes
manifest YAML files. View the following example:

The generated Policy, along with the generated PlacementRule and PlacementBinding might
resemble the following example:

generators:
 - policy-generator-config.yaml

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: config-data-policies
policyDefaults:
 namespace: policies
 policySets: []
policies:
 - name: config-data
 manifests:
 - path: configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-config
 namespace: default
data:
 key1: value1
 key2: value2

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-config-data
 namespace: policies
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable
 clusterSelector:
 matchExpressions: []

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-config-data
 namespace: policies

CHAPTER 2. GOVERNANCE

39

https://kubectl.docs.kubernetes.io/references/kustomize/kustomization/

See the policy-generator-plugin repository for more details.

2.4.2.3. Generating a policy to install an Operator

A common use of Red Hat Advanced Cluster Management policies is to install an Operator on one or
more managed OpenShift clusters. View the following examples of the different installation modes and
the required resources.

2.4.2.3.1. A policy to install OpenShift GitOps

This example shows how to generate a policy that installs OpenShift GitOps using the policy generator.
The OpenShift GitOps operator offers the all namespaces installation mode. First, a Subscription
manifest file called openshift-gitops-subscription.yaml needs to be created like the following
example.

placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: placement-config-data
subjects:
- apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: config-data

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 name: config-data
 namespace: policies
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: config-data
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 data:
 key1: value1
 key2: value2
 kind: ConfigMap
 metadata:
 name: my-config
 namespace: default
 remediationAction: inform
 severity: low

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

40

https://github.com/open-cluster-management-io/policy-generator-plugin
hhttps://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/operators/administrator-tasks#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/operators/administrator-tasks#olm-installing-operators-from-operatorhub_olm-adding-operators-to-a-cluster

To pin to a specific version of the operator, you can add the following parameter and value:
spec.startingCSV: openshift-gitops-operator.v<version>. Replace <version> with your preferred
version.

Next, a policy generator configuration file called policy-generator-config.yaml is required. The
following example shows a single policy that installs OpenShift GitOps on all OpenShift managed
clusters:

The last file that is required is the kustomization.yaml file. The kustomization.yaml file requires the
following configuration:

The generated policy might resemble the following file:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
spec:
 channel: stable
 name: openshift-gitops-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: install-openshift-gitops
policyDefaults:
 namespace: policies
 placement:
 clusterSelectors:
 vendor: "OpenShift"
 remediationAction: enforce
policies:
 - name: install-openshift-gitops
 manifests:
 - path: openshift-gitops-subscription.yaml

generators:
 - policy-generator-config.yaml

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-install-openshift-gitops
 namespace: policies
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable
 clusterSelector:
 matchExpressions:
 - key: vendor
 operator: In

CHAPTER 2. GOVERNANCE

41

All policies where the input is from the OpenShift Container Platform documentation and are generated
by the policy generator are fully supported. View the following examples of YAML input that is
supported in the OpenShift Container Platform documentation:

Post-installation cluster tasks

 values:
 - OpenShift

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-install-openshift-gitops
 namespace: policies
placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: placement-install-openshift-gitops
subjects:
 - apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: install-openshift-gitops

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 name: install-openshift-gitops
 namespace: policies
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: install-openshift-gitops
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
 spec:
 channel: stable
 name: openshift-gitops-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 remediationAction: enforce
 severity: low

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

42

https://docs.openshift.com/container-platform/4.10/post_installation_configuration/cluster-tasks.html

Configuring the audit log policy

About forwarding logs to third-party systems

See Understanding OpenShift GitOps and the Operator documentation for more details.

2.4.2.3.2. A policy to install the Compliance Operator

For an operator that uses the namespaced installation mode, such as the Compliance Operator, an
OperatorGroup manifest is also required. This example shows a generated policy to install the
Compliance Operator.

First, a YAML file with a Namespace, a Subscription, and an OperatorGroup manifest called
compliance-operator.yaml must be created. The following example installs these manifests in the
compliance-operator namespace:

Next, a policy generator configuration file called policy-generator-config.yaml is required. The
following example shows a single policy that installs the Compliance Operator on all OpenShift managed
clusters:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-compliance

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:
 channel: release-0.1
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:
 targetNamespaces:
 - compliance-operator

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: install-compliance-operator
policyDefaults:
 namespace: policies
 placement:
 clusterSelectors:
 vendor: "OpenShift"
 remediationAction: enforce

CHAPTER 2. GOVERNANCE

43

https://docs.openshift.com/container-platform/4.10/security/audit-log-policy-config.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/logging/cluster-logging-external#cluster-logging-collector-log-forwarding-about_cluster-logging-external
https://docs.openshift.com/container-platform/4.11/cicd/gitops/understanding-openshift-gitops.html
https://cloud.redhat.com/learn/topics/operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/operators/administrator-tasks#olm-installing-operators-from-operatorhub_olm-adding-operators-to-a-cluster

The last file that is required is the kustomization.yaml file. The following configuration is required in the
kustomization.yaml file:

As a result, the generated policy resembles the following file:

policies:
 - name: install-compliance-operator
 manifests:
 - path: compliance-operator.yaml

generators:
 - policy-generator-config.yaml

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-install-compliance-operator
 namespace: policies
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable
 clusterSelector:
 matchExpressions:
 - key: vendor
 operator: In
 values:
 - OpenShift

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-install-compliance-operator
 namespace: policies
placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: placement-install-compliance-operator
subjects:
 - apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: install-compliance-operator

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 name: install-compliance-operator
 namespace: policies
spec:
 disabled: false
 policy-templates:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

44

See the Compliance Operator documentation for more details.

2.4.2.4. Install the policy generator on OpenShift GitOps (ArgoCD)

OpenShift GitOps, based on ArgoCD, can also be used to generate policies using the policy generator
through GitOps. Since the policy generator does not come preinstalled in the OpenShift GitOps
container image, some customization must take place. In order to follow along, it is expected that you
have the OpenShift GitOps Operator installed on the Red Hat Advanced Cluster Management hub
cluster and be sure to log into the hub cluster.

In order for OpenShift GitOps to have access to the policy generator when you run Kustomize, an Init
Container is required to copy the policy generator binary from the Red Hat Advanced Cluster
Management Application Subscription container image to the OpenShift GitOps container, that runs
Kustomize. For more details, see Using Init Containers to perform tasks before a pod is deployed .
Additionally, OpenShift GitOps must be configured to provide the --enable-alpha-plugins flag when
you run Kustomize. Start editing the OpenShift GitOps argocd object with the following command:

 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: install-compliance-operator
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 name: openshift-compliance
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 channel: release-0.1
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 targetNamespaces:
 - compliance-operator
 remediationAction: enforce
 severity: low

oc -n openshift-gitops edit argocd openshift-gitops

CHAPTER 2. GOVERNANCE

45

https://docs.openshift.com/container-platform/4.11/security/compliance_operator/compliance-operator-understanding.html
https://argoproj.github.io/argo-cd/
https://docs.openshift.com/container-platform/4.10/cicd/gitops/installing-openshift-gitops.html
https://docs.openshift.com/container-platform/4.10/nodes/containers/nodes-containers-init.html

Then modify the OpenShift GitOps argocd object to contain the following additional YAML content.
When a new major version of Red Hat Advanced Cluster Management is released and you want to
update the policy generator to a newer version, you need to update the
registry.redhat.io/rhacm2/multicluster-operators-subscription-rhel8 image used by the Init
Container to a newer tag. View the following example and replace <version> with 2.6 or your desired
Red Hat Advanced Cluster Management version:

Now that OpenShift GitOps can use the policy generator, OpenShift GitOps must be granted access to
create policies on the Red Hat Advanced Cluster Management hub cluster. Create the following
ClusterRole resource called openshift-gitops-policy-admin, with access to create, read, update, and
delete policies and placements. Your ClusterRole might resemble the following example:

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: openshift-gitops
 namespace: openshift-gitops
spec:
 kustomizeBuildOptions: --enable-alpha-plugins
 repo:
 env:
 - name: KUSTOMIZE_PLUGIN_HOME
 value: /etc/kustomize/plugin
 initContainers:
 - args:
 - -c
 - cp /etc/kustomize/plugin/policy.open-cluster-management.io/v1/policygenerator/PolicyGenerator
 /policy-generator/PolicyGenerator
 command:
 - /bin/bash
 image: registry.redhat.io/rhacm2/multicluster-operators-subscription-rhel8:v<version>
 name: policy-generator-install
 volumeMounts:
 - mountPath: /policy-generator
 name: policy-generator
 volumeMounts:
 - mountPath: /etc/kustomize/plugin/policy.open-cluster-management.io/v1/policygenerator
 name: policy-generator
 volumes:
 - emptyDir: {}
 name: policy-generator

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: openshift-gitops-policy-admin
rules:
 - verbs:
 - get
 - list
 - watch
 - create
 - update
 - patch

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

46

Additionally, create a ClusterRoleBinding object to grant the OpenShift GitOps service account
access to the openshift-gitops-policy-admin ClusterRole. Your ClusterRoleBinding might resemble
the following resource:

2.4.2.5. Policy generator configuration reference table

Note that all the fields in the policyDefaults section except for namespace can be overridden per
policy.

 - delete
 apiGroups:
 - policy.open-cluster-management.io
 resources:
 - policies
 - placementbindings
 - verbs:
 - get
 - list
 - watch
 - create
 - update
 - patch
 - delete
 apiGroups:
 - apps.open-cluster-management.io
 resources:
 - placementrules
 - verbs:
 - get
 - list
 - watch
 - create
 - update
 - patch
 - delete
 apiGroups:
 - cluster.open-cluster-management.io
 resources:
 - placements
 - placements/status
 - placementdecisions
 - placementdecisions/status

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: openshift-gitops-policy-admin
subjects:
 - kind: ServiceAccount
 name: openshift-gitops-argocd-application-controller
 namespace: openshift-gitops
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: openshift-gitops-policy-admin

CHAPTER 2. GOVERNANCE

47

Table 2.6. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to
PolicyGenerator to indicate the
type of policy.

metadata.name Required The name for identifying the
policy resource.

placementBindingDefaults.n
ame

Optional If multiple policies use the same
placement, this name is used to
generate a unique name for the
resulting PlacementBinding,
binding the placement with the
array of policies that reference it.

policyDefaults Required Any default value listed here is
overridden by an entry in the
policies array except for
namespace.

policyDefaults.namespace Required The namespace of all the policies.

policyDefaults.complianceTy
pe

Optional Determines the policy controller
behavior when comparing the
manifest to objects on the cluster.
The values that you can use are
musthave, mustonlyhave, or
mustnothave. The default value
is musthave.

policyDefaults.metadataCom
plianceType

Optional Overrides complianceType
when comparing the manifest
metadata section to objects on
the cluster. The values that you
can use are musthave, and
mustonlyhave. The default
value is empty ({}) to avoid
overriding the complianceType
for metadata.

policyDefaults.categories Optional Array of categories to be used in
the policy.open-cluster-
management.io/categories
annotation. The default value is
CM Configuration
Management.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

48

policyDefaults.controls Optional Array of controls to be used in the
policy.open-cluster-
management.io/controls
annotation. The default value is
CM-2 Baseline Configuration.

policyDefaults.standards Optional An array of standards to be used
in the policy.open-cluster-
management.io/standards
annotation. The default value is
NIST SP 800-53.

policyDefaults.policyAnnotat
ions

Optional Annotations that the policy
includes in the
metadata.annotations section.
It is applied for all policies unless
specified in the policy. The default
value is empty ({}).

policyDefaults.configuration
PolicyAnnotations

Optional Key-value pairs of annotations to
set on generated configuration
policies. For example, you can
disable policy templates by
defining the following parameter:
{"policy.open-cluster-
management.io/disable-
templates": "true"}. The
default value is empty ({}).

policyDefaults.severity Optional The severity of the policy
violation. The default value is low.

policyDefaults.disabled Optional Whether the policy is disabled,
meaning it is not propagated and
no status as a result. The default
value is false to enable the policy.

policyDefaults.remediationA
ction

Optional The remediation mechanism of
your policy. The parameter values
are enforce and inform. The
default value is inform.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

49

policyDefaults.namespaceSe
lector

Required for namespaced objects
that do not have a namespace
specified

Determines namespaces in the
managed cluster that the object
is applied to. The include and
exclude parameters accept file
path expressions to include and
exclude namespaces by name.
The matchExpressions and
matchLabels parameters
specify namespaces to include by
label. See the Kubernetes labels
and selectors documentation.
The resulting list is compiled by
using the intersection of results
from all parameters.

policyDefaults.evaluationInte
rval

Optional Use the parameters compliant
and noncompliant to specify
the frequency for a policy to be
evaluated when in a particular
compliance state. When managed
clusters have low CPU resources,
the evaluation interval can be
increased to reduce CPU usage
on the Kubernetes API. These are
in the format of durations. For
example, "1h25m3s" represents
1 hour, 25 minutes, and 3 seconds.
These can also be set to "never"
to avoid evaluating the policy
after it has become a particular
compliance state.

policyDefaults.consolidateM
anifests

Optional This determines if a single
configuration policy is generated
for all the manifests being
wrapped in the policy. If set to
false, a configuration policy per
manifest is generated. The
default value is true.

policyDefaults.informGateke
eperPolicies

Optional When the policy references a
violated gatekeeper policy
manifest, this determines if an
additional configuration policy is
generated in order to receive
policy violations in Red Hat
Advanced Cluster Management.
The default value is true.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

50

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

policyDefaults.policySets Optional Array of policy sets that the policy
joins. Policy set details can be
defined in the policySets
section. When a policy is part of a
policy set, a placement binding is
not generated for the policy since
one is generated for the set. Set
policies[].generatePlacement
WhenInSet or
policyDefaults.generatePlac
ementWhenInSet to override
policyDefaults.policySets.

policyDefaults.generatePlace
mentWhenInSet

Optional When a policy is part of a policy
set, by default, the generator
does not generate the placement
for this policy since a placement is
generated for the policy set. Set
generatePlacementWhenInS
et to true to deploy the policy
with both policy placement and
policy set placement. The default
value is false.

policyDefaults.placement Optional The placement configuration for
the policies. This defaults to a
placement configuration that
matches all clusters.

policyDefaults.placement.na
me

Optional Specifying a name to consolidate
placement rules that contain the
same cluster selectors.

policyDefaults.placement.pla
cementName

Optional Define this parameter to use a
placement that already exists on
the cluster. A Placement is not
created, but a
PlacementBinding binds the
policy to this Placement.

policyDefaults.placement.pla
cementPath

Optional To reuse an existing placement,
specify the path here relative to
the kustomization.yaml file. If
provided, this placement rule is
used by all policies by default. See
clusterSelectors to generate a
new Placement.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

51

policyDefaults.placement.clu
sterSelectors

Optional Specify a placement by defining a
cluster selector in the following
format, key:value. See
placementPath to specify an
existing file.

policyDefaults.placement.pla
cementRuleName

Optional To use a placement rule that
already exists on the cluster,
specify its name here. A
PlacementRule is not created,
but a PlacementBinding binds
the policy to this
PlacementRule.

policyDefaults.placement.pla
cementRulePath

Optional To reuse an existing placement
rule, specify the path here relative
to the kustomization.yaml file.
If provided, this placement rule is
used by all policies by default. See
labelSelector to generate a new
PlacementRule.

policyDefaults.placement.lab
elSelector

Optional Specify a placement rule by
defining a cluster selector in the
following format, key:value. See
placementRulePath to specify
an existing file.

policies Required. The list of policies to create along
with overrides to either the
default values, or the values that
are set in policyDefaults.

policies[].name Required The name of the policy to create.

policies[].manifests Required The list of Kubernetes object
manifests to include in the policy.

policies[].manifests[].path Required Path to a single file, a flat
directory of files, or a Kustomize
directory relative to the
kustomization.yaml file. If the
directory is a Kustomize directory,
the generator runs Kustomize
against the directory before
generating the policies.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

52

policies[].manifests[].compli
anceType

Optional Determines the policy controller
behavior when comparing the
manifest to objects on the cluster.
The parameter values are
musthave, mustonlyhave, or
mustnothave. The default value
is musthave (or the value set in
policyDefaults.complianceTy
pe).

policies[].manifests[].patche
s

Optional A Kustomize patch to apply to the
manifest at the path. If there are
multiple manifests, the patch
requires the apiVersion, kind,
metadata.name, and
metadata.namespace (if
applicable) fields to be set so
Kustomize can identify the
manifest that the patch applies
to. If there is a single manifest, the
metadata.name and
metadata.namespace fields
can be patched.

policySets Optional The list of policy sets to create. To
include a policy in a policy set, use
policyDefaults.policySets,
policies[].policySets, or
policySets.policies.

policySets[].name Required The name of the policy set to
create.

policySets[].description Optional The description of the policy set
to create.

policySets[].policies Optional The list of policies to be included
in the policy set. If
policyDefaults.policySets or
policies[].policySets is also
specified, the lists are merged.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

53

policySets[].placement Optional The placement configuration for
the policy set. This defaults to a
placement configuration that
matches all clusters. See
policyDefaults.placement for
placement documentation,
however
policyDefaults.placement
settings do not apply to policy
sets.

Field Optional or required Description

Return to the Integrate third-party policy controllers documentation, or refer to the Governance
documentation for more topics.

2.5. SUPPORTED POLICIES

View the supported policies to learn how to define rules, processes, and controls on the hub cluster when
you create and manage policies in Red Hat Advanced Cluster Management for Kubernetes.

2.5.1. Table of sample configuration policies

View the following sample configuration policies:

Table 2.7. Table list of configuration policies

Policy sample Description

Namespace policy Ensure consistent environment isolation and naming
with Namespaces. See the Kubernetes Namespace
documentation.

Pod policy Ensure cluster workload configuration. See the
Kubernetes Pod documentation.

Memory usage policy Limit workload resource usage using Limit Ranges.
See the Limit Range documentation.

Pod security policy (Deprecated) Ensure consistent workload security. See the
Kubernetes Pod security policy documentation.

Role policy
Role binding policy

Manage role permissions and bindings using Roles
and Role Bindings. See the Kubernetes RBAC
documentation.

Security content constraints (SCC) policy Manage workload permissions with Security Context
Constraints. See the Openshift Security Context
Constraints documentation.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

54

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html

ETCD encryption policy Ensure data security with etcd encryption. See the
Openshift etcd encryption documentation.

Compliance operator policy Deploy the Compliance Operator to scan and
enforce the compliance state of clusters leveraging
OpenSCAP. See the Openshift Compliance Operator
documentation.

Compliance operator E8 scan After applying the Compliance operator policy,
deploy an Essential 8 (E8) scan to check for
compliance with E8 security profiles. See the
Openshift Compliance Operator documentation.

Compliance operator CIS scan After applying the Compliance operator policy,
deploy a Center for Internet Security (CIS) scan to
check for compliance with CIS security profiles. See
the Openshift Compliance Operator documentation.

Image vulnerability policy Deploy the Container Security Operator and detect
known image vulnerabilities in pods running on the
cluster. See the Container Security Operator GitHub.

Gatekeeper operator deployment Gatekeeper is an admission webhook that enforces
custom resource definition (CRD)-based policies
executed by the Open Policy Agent (OPA) policy
engine. See the Gatekeeper documentation.

Gatekeeper compliance policy After deploying Gatekeeper to the clusters, deploy
this sample Gatekeeper policy that ensures
namespaces that are created on the cluster are
labeled as specified.

Policy sample Description

2.5.2. Support matrix for out-of-box policies

Table 2.8. Support matrix

Policy Red Hat OpenShift Container
Platform 3.11

Red Hat OpenShift Container
Platform 4

Memory usage policy x x

Namespace policy x x

Image vulnerability policy x x

Pod policy x x

CHAPTER 2. GOVERNANCE

55

https://docs.openshift.com/container-platform/4.10/security/encrypting-etcd.html
https://docs.openshift.com/container-platform/4.11/security/compliance_operator/compliance-operator-understanding.html
https://docs.openshift.com/container-platform/4.11/security/compliance_operator/compliance-operator-understanding.html
https://docs.openshift.com/container-platform/4.11/security/compliance_operator/compliance-operator-understanding.html
https://github.com/quay/container-security-operator#readme
https://open-policy-agent.github.io/gatekeeper/website/docs/

Pod security policy (deprecated)

Role policy x x

Role binding policy x x

Security Context Constraints
policy (SCC)

x x

ETCD encryption policy x

Gatekeeper policy x

Compliance operator policy x

E8 scan policy x

OpenShift CIS scan policy x

Policy set x

Policy Red Hat OpenShift Container
Platform 3.11

Red Hat OpenShift Container
Platform 4

View the following policy samples to view how specific policies are applied:

Image vulnerability policy

Memory usage policy

Namespace policy

Pod policy

Pod security policy

Role policy

Role binding policy

Security context constraints policy

ETCD encryption policy

Compliance operator policy

E8 scan policy

OpenShift CIS scan policy

Policy set controller

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

56

Refer to Governance for more topics.

2.5.3. Memory usage policy

The Kubernetes configuration policy controller monitors the status of the memory usage policy. Use the
memory usage policy to limit or restrict your memory and compute usage. For more information, see
Limit Ranges in the Kubernetes documentation.

Learn more details about the memory usage policy structure in the following sections:

Memory usage policy YAML structure

Memory usage policy table

Memory usage policy sample

2.5.3.1. Memory usage policy YAML structure

Your memory usage policy might resemble the following YAML file:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: v1
 kind: LimitRange
 metadata:
 name:
 spec:
 limits:

CHAPTER 2. GOVERNANCE

57

https://kubernetes.io/docs/concepts/policy/limit-range/

2.5.3.2. Memory usage policy table

Table 2.9. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.5.3.3. Memory usage policy sample

See the policy-limitmemory.yaml to view a sample of the policy. See Managing security policies for
more details. Refer to the Policy overview documentation, and to Kubernetes configuration policy
controller to view other configuration policies that are monitored by the controller.

2.5.4. Namespace policy

The Kubernetes configuration policy controller monitors the status of your namespace policy. Apply the
namespace policy to define specific rules for your namespace.

 - default:
 memory:
 defaultRequest:
 memory:
 type:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

58

https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-limitmemory.yaml

Learn more details about the namespace policy structure in the following sections:

Namespace policy YAML structure

Namespace policy table

Namespace policy sample

2.5.4.1. Namespace policy YAML structure

2.5.4.2. Namespace policy YAML table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 object-templates:
 - complianceType:
 objectDefinition:
 kind: Namespace
 apiVersion: v1
 metadata:
 name:
 ...

CHAPTER 2. GOVERNANCE

59

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because it overrides
any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

Field Optional or required Description

2.5.4.3. Namespace policy sample

See policy-namespace.yaml to view the policy sample.

See Managing security policies for more details. Refer to Policy overview documentation, and to the
Kubernetes configuration policy controller to learn about other configuration policies.

2.5.5. Image vulnerability policy

Apply the image vulnerability policy to detect if container images have vulnerabilities by leveraging the
Container Security Operator. The policy installs the Container Security Operator on your managed
cluster if it is not installed.

The image vulnerability policy is checked by the Kubernetes configuration policy controller. For more
information about the Security Operator, see the Container Security Operator from the Quay repository.

Notes:

Image vulnerability policy is not functional during a disconnected installation.

The Image vulnerability policy is not supported on the IBM Power and IBM Z architectures. It
relies on the Quay Container Security Operator . There are no ppc64le or s390x images in the
container-security-operator registry.

View the following sections to learn more:

Image vulnerability policy YAML structure

Image vulnerability policy sample

2.5.5.1. Image vulnerability policy YAML structure

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

60

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-namespace.yaml
https://github.com/quay/container-security-operator
https://github.com/stolostron/policy-collection/blob/main/stable/SI-System-and-Information-Integrity/policy-imagemanifestvuln.yaml
https://operatorhub.io/operator/project-quay-container-security-operator
https://quay.io/repository/quay/container-security-operator

When you create the container security operator policy, it involves the following policies:

A policy that creates the subscription (container-security-operator) to reference the name
and channel. This configuration policy must have spec.remediationAction set to enforce to
create the resources. The subscription pulls the profile, as a container, that the subscription
supports. View the following example:

An inform configuration policy to audit the ClusterServiceVersion to ensure that the container
security operator installation succeeded. View the following example:

An inform configuration policy to audit whether any ImageManifestVuln objects were created
by the image vulnerability scans. View the following example:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-imagemanifestvuln-example-sub
spec:
 remediationAction: enforce # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: container-security-operator
 namespace: openshift-operators
 spec:
 # channel: quay-v3.3 # specify a specific channel if desired
 installPlanApproval: Automatic
 name: container-security-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-imagemanifestvuln-status
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: ClusterServiceVersion
 metadata:
 namespace: openshift-operators
 spec:
 displayName: Red Hat Quay Container Security Operator
 status:
 phase: Succeeded # check the CSV status to determine if operator is running or not

apiVersion: policy.open-cluster-management.io/v1

CHAPTER 2. GOVERNANCE

61

2.5.5.2. Image vulnerability policy sample

See policy-imagemanifestvuln.yaml. See Managing security policies for more information. Refer to
Kubernetes configuration policy controller to view other configuration policies that are monitored by the
configuration controller.

2.5.6. Pod policy

The Kubernetes configuration policy controller monitors the status of your pod policies. Apply the pod
policy to define the container rules for your pods. A pod must exist in your cluster to use this
information.

Learn more details about the pod policy structure in the following sections:

Pod policy YAML structure

Pod policy table

Pod policy sample

2.5.6.1. Pod policy YAML structure

kind: ConfigurationPolicy
metadata:
 name: policy-imagemanifestvuln-example-imv
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["*"]
 object-templates:
 - complianceType: mustnothave # mustnothave any ImageManifestVuln object
 objectDefinition:
 apiVersion: secscan.quay.redhat.com/v1alpha1
 kind: ImageManifestVuln # checking for a Kind

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

62

https://github.com/stolostron/policy-collection/blob/main/stable/SI-System-and-Information-Integrity/policy-imagemanifestvuln.yaml

2.5.6.2. Pod policy table

Table 2.10. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name:
 spec:
 containers:
 - image:
 name:
 ...

CHAPTER 2. GOVERNANCE

63

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

Field Optional or required Description

2.5.6.3. Pod policy sample

See policy-pod.yaml to view the policy sample.

Refer to Kubernetes configuration policy controller to view other configuration policies that are
monitored by the configuration controller, and see the Policy overview documentation to see a full
description of the policy YAML structure and additional fields. Return to Managing configuration policies
documentation to manage other policies.

2.5.7. Pod security policy (Deprecated)

The Kubernetes configuration policy controller monitors the status of the pod security policy. Apply a
pod security policy to secure pods and containers.

Learn more details about the pod security policy structure in the following sections:

Pod security policy YAML structure

Pod security policy table

Pod security policy sample

2.5.7.1. Pod security policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

64

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-pod.yaml

2.5.7.2. Pod security policy table

Table 2.11. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: policy/v1beta1
 kind: PodSecurityPolicy
 metadata:
 name:
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames:
 spec:
 privileged:
 allowPrivilegeEscalation:
 allowedCapabilities:
 volumes:
 hostNetwork:
 hostPorts:
 hostIPC:
 hostPID:
 runAsUser:
 seLinux:
 supplementalGroups:
 fsGroup:
 ...

CHAPTER 2. GOVERNANCE

65

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

Field Optional or required Description

2.5.7.3. Pod security policy sample

The support of pod security policies is removed from OpenShift Container Platform 4.12 and later, and
from Kubernetes v1.25 and later. If you apply a PodSecurityPolicy resource, you might receive the
following non-compliant message:

violation - couldn't find mapping resource with kind PodSecurityPolicy, please check if you have CRD
deployed

For more information including the deprecation notice, see Pod Security Policies in the
Kubernetes documentation.

See policy-psp.yaml to view the sample policy. View Managing configuration policies for more
information.

Refer to the Policy overview documentation for a full description of the policy YAML structure,
and Kubernetes configuration policy controller to view other configuration policies that are
monitored by the controller.

2.5.8. Role policy

The Kubernetes configuration policy controller monitors the status of role policies. Define roles in the
object-template to set rules and permissions for specific roles in your cluster.

Learn more details about the role policy structure in the following sections:

Role policy YAML structure

Role policy table

Role policy sample

2.5.8.1. Role policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

66

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-psp.yaml

 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name:
 rules:
 - apiGroups:
 resources:
 verbs:
 ...

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
 namespace:
placementRef:
 name: placement-policy-role
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-role
 namespace:
spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"

CHAPTER 2. GOVERNANCE

67

2.5.8.2. Role policy table

Table 2.12. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.5.8.3. Role policy sample

Apply a role policy to set rules and permissions for specific roles in your cluster. For more information on
roles, see Role-based access control . View a sample of a role policy, see policy-role.yaml.

To learn how to manage role policies, refer to Managing configuration policies for more information. See
the Kubernetes configuration policy controller to view other configuration policies that are monitored
the controller.

2.5.9. Role binding policy

The Kubernetes configuration policy controller monitors the status of your role binding policy. Apply a

 clusterSelector:
 matchExpressions:
 []

 ...

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

68

../../html-single/access_control#role-based-access-control
https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-role.yaml

The Kubernetes configuration policy controller monitors the status of your role binding policy. Apply a
role binding policy to bind a policy to a namespace in your managed cluster.

Learn more details about the namespace policy structure in the following sections:

Role binding policy YAML structure

Role binding policy table

Role binding policy sample

2.5.9.1. Role binding policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 kind: RoleBinding # role binding must exist
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
 name:
 subjects:
 - kind:
 name:
 apiGroup:
 roleRef:
 kind:
 name:
 apiGroup:
 ...

CHAPTER 2. GOVERNANCE

69

2.5.9.2. Role binding policy table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional since it overrides any
values provided in spec.policy-
templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.5.9.3. Role binding policy sample

See policy-rolebinding.yaml to view the policy sample. For a full description of the policy YAML
structure and additional fields, see the Policy overview documentation . Refer to Kubernetes
configuration policy controller documentation to learn about other configuration policies.

2.5.10. Security Context Constraints policy

The Kubernetes configuration policy controller monitors the status of your Security Context Constraints
(SCC) policy. Apply an Security Context Constraints (SCC) policy to control permissions for pods by
defining conditions in the policy.

Learn more details about SCC policies in the following sections:

SCC policy YAML structure

SCC policy table

SCC policy sample

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

70

https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-rolebinding.yaml

2.5.10.1. SCC policy YAML structure

2.5.10.2. SCC policy table

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: security.openshift.io/v1
 kind: SecurityContextConstraints
 metadata:
 name:
 allowHostDirVolumePlugin:
 allowHostIPC:
 allowHostNetwork:
 allowHostPID:
 allowHostPorts:
 allowPrivilegeEscalation:
 allowPrivilegedContainer:
 fsGroup:
 readOnlyRootFilesystem:
 requiredDropCapabilities:
 runAsUser:
 seLinuxContext:
 supplementalGroups:
 users:
 volumes:
 ...

CHAPTER 2. GOVERNANCE

71

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional since it overrides any
values provided in spec.policy-
templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

For explanations on the contents of a SCC policy, see Managing Security Context Constraints from the
OpenShift Container Platform documentation.

2.5.10.3. SCC policy sample

Apply a Security context constraints (SCC) policy to control permissions for pods by defining conditions
in the policy. For more information see, Managing Security Context Constraints (SCC) .

See policy-scc.yaml to view the policy sample. For a full description of the policy YAML structure and
additional fields, see the Policy overview documentation. Refer to Kubernetes configuration policy
controller documentation to learn about other configuration policies.

2.5.11. ETCD encryption policy

Apply the etcd-encryption policy to detect, or enable encryption of sensitive data in the ETCD data-
store. The Kubernetes configuration policy controller monitors the status of the etcd-encryption policy.
For more information, see Encrypting etcd data in the OpenShift Container Platform documentation.
Note: The ETCD encryption policy only supports Red Hat OpenShift Container Platform 4 and later.

Learn more details about the etcd-encryption policy structure in the following sections:

ETCD encryption policy YAML structure

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

72

https://docs.openshift.com/container-platform/4.11/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.11/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-scc.yaml
https://docs.openshift.com/container-platform/4.11/security/encrypting-etcd.html

ETCD encryption policy table

ETCD encryption policy sample

2.5.11.1. ETCD encryption policy YAML structure

Your etcd-encryption policy might resemble the following YAML file:

2.5.11.2. ETCD encryption policy table

Table 2.13. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: config.openshift.io/v1
 kind: APIServer
 metadata:
 name:
 spec:
 encryption:
 ...

CHAPTER 2. GOVERNANCE

73

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because it overrides
any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

Field Optional or required Description

2.5.11.3. ETCD encryption policy sample

See policy-etcdencryption.yaml for the policy sample. See the Policy overview documentation and the
Kubernetes configuration policy controller to view additional details on policy and configuration policy
fields.

2.5.12. Compliance operator policy

Compliance operator is an operator that runs OpenSCAP and allows you to keep your Red Hat
OpenShift Container Platform cluster compliant with the security benchmark that you need. You can
install the compliance operator on your managed cluster by using the compliance operator policy.

The compliance operator policy is created as a Kubernetes configuration policy in Red Hat Advanced
Cluster Management. OpenShift Container Platform 4.7 and 4.6, support the compliance operator
policy. For more information, see Understanding the Compliance Operator in the OpenShift Container
Platform documentation for more details.

Note: The Compliance operator policy relies on the OpenShift Container Platform Compliance
Operator, which is not supported on the IBM Power or IBM Z architectures. See Understanding the
Compliance Operator in the OpenShift Container Platform documentation for more information about
the Compliance Operator.

2.5.12.1. Compliance operator resources

When you create a compliance operator policy, the following resources are created:

A compliance operator namespace (openshift-compliance) for the operator installation:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

74

https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-etcdencryption.yaml
https://docs.openshift.com/container-platform/4.11/security/compliance_operator/compliance-operator-understanding.html
https://github.com/stolostron/grc-ui/blob/main/src-web/components/common/templates/spec-comp-operator.yaml
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/security_and_compliance/compliance-operator#understanding-compliance-operator

An operator group (compliance-operator) to specify the target namespace:

A subscription (comp-operator-subscription) to reference the name and channel. The
subscription pulls the profile, as a container, that it supports:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-ns
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 name: openshift-compliance

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-operator-group
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 targetNamespaces:
 - openshift-compliance

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-subscription
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:

CHAPTER 2. GOVERNANCE

75

After you install the compliance operator policy, the following pods are created: compliance-operator,
ocp4, and rhcos4. See a sample of the policy-compliance-operator-install.yaml.

You can also create and apply the E8 scan policy and OpenShift CIS scan policy, after you have installed
the compliance operator. For more information, see E8 scan policy and OpenShift CIS scan policy .

To learn about managing compliance operator policies, see Managing security policies for more details.
Refer to Kubernetes configuration policy controller for more topics about configuration policies.

2.5.13. E8 scan policy

An Essential 8 (E8) scan policy deploys a scan that checks the master and worker nodes for compliance
with the E8 security profiles. You must install the compliance operator to apply the E8 scan policy.

The E8 scan policy is created as a Kubernetes configuration policy in Red Hat Advanced Cluster
Management. OpenShift Container Platform 4.7 and 4.6, support the E8 scan policy. For more
information, see Understanding the Compliance Operator in the OpenShift Container Platform
documentation for more details.

2.5.13.1. E8 scan policy resources

When you create an E8 scan policy the following resources are created:

A ScanSettingBinding resource (e8) to identify which profiles to scan:

 channel: "4.7"
 installPlanApproval: Automatic
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ScanSettingBinding
 metadata:
 name: e8
 namespace: openshift-compliance
 profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-e8
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: rhcos4-e8
 settingsRef:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

76

https://github.com/stolostron/policy-collection/blob/main/stable/CA-Security-Assessment-and-Authorization/policy-compliance-operator-install.yaml
https://docs.openshift.com/container-platform/4.11/security/compliance_operator/compliance-operator-understanding.html

A ComplianceSuite resource (compliance-suite-e8) to verify if the scan is complete by
checking the status field:

A ComplianceCheckResult resource (compliance-suite-e8-results) which reports the results
of the scan suite by checking the ComplianceCheckResult custom resources (CR):

Note: Automatic remediation is supported. Set the remediation action to enforce to create
ScanSettingBinding resource.

See a sample of the policy-compliance-operator-e8-scan.yaml. See Managing security policies for
more information. Note: After your E8 policy is deleted, it is removed from your target cluster or
clusters.

 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceSuite
 metadata:
 name: e8
 namespace: openshift-compliance
 status:
 phase: DONE

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8-results
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: mustnothave # this template reports the results for scan suite: e8 by
looking at ComplianceCheckResult CRs
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceCheckResult
 metadata:
 namespace: openshift-compliance
 labels:
 compliance.openshift.io/check-status: FAIL
 compliance.openshift.io/suite: e8

CHAPTER 2. GOVERNANCE

77

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-compliance-operator-e8-scan.yaml

2.5.14. OpenShift CIS scan policy

An OpenShift CIS scan policy deploys a scan that checks the master and worker nodes for compliance
with the OpenShift CIS security benchmark. You must install the compliance operator to apply the
OpenShift CIS policy.

The OpenShift CIS scan policy is created as a Kubernetes configuration policy in Red Hat Advanced
Cluster Management. OpenShift Container Platform 4.9, 4.7, and 4.6, support the OpenShift CIS scan
policy. For more information, see Understanding the Compliance Operator in the OpenShift Container
Platform documentation for more details.

2.5.14.1. OpenShift CIS resources

When you create an OpenShift CIS scan policy the following resources are created:

A ScanSettingBinding resource (cis) to identify which profiles to scan:

A ComplianceSuite resource (compliance-suite-cis) to verify if the scan is complete by
checking the status field:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-cis-scan
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template creates ScanSettingBinding:cis
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ScanSettingBinding
 metadata:
 name: cis
 namespace: openshift-compliance
 profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-cis
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-cis-node
 settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-cis
spec:
 remediationAction: inform
 severity: high
 object-templates:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/security_and_compliance/compliance-operator#understanding-compliance-operator

A ComplianceCheckResult resource (compliance-suite-cis-results) which reports the results
of the scan suite by checking the ComplianceCheckResult custom resources (CR):

See a sample of the policy-compliance-operator-cis-scan.yaml file. For more information on creating
policies, see Managing security policies.

 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceSuite
 metadata:
 name: cis
 namespace: openshift-compliance
 status:
 phase: DONE

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-cis-results
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: mustnothave # this template reports the results for scan suite: cis by
looking at ComplianceCheckResult CRs
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceCheckResult
 metadata:
 namespace: openshift-compliance
 labels:
 compliance.openshift.io/check-status: FAIL
 compliance.openshift.io/suite: cis

CHAPTER 2. GOVERNANCE

79

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-compliance-operator-cis-scan.yaml

CHAPTER 3. MANAGE SECURITY POLICIES
Use the Governance dashboard to create, view, and manage your security policies and policy violations.
You can create YAML files for your policies from the CLI and console.

3.1. GOVERNANCE PAGE

The following tabs are displayed on the Governance page:

Overview
View the following summary cards from the Overview tab: Policy set violations , Policy violations ,
Clusters, Categories, Controls, and Standards.

Policy sets
Create and manage hub cluster policy sets.

Policies
Create and manage security policies. The table of policies lists the following details of a policy:
Name, Namespace, Status, Remediation, Policy set, Cluster violations , Source, Automation and
Created.

You can edit, enable or disable, set remediation to inform or enforce, or remove a policy by
selecting the Actions icon. You can view the categories and standards of a specific policy by
selecting the drop-down arrow to expand the row.

Complete bulk actions by selecting multiple policies and clicking the Actions button. You can
also customize your policy table by clicking the Filter button.

When you select a policy in the table list, the following tabs of information are displayed from the
console:

Details: Select the Details tab to view policy details and placement details. In the Placement
table, the Compliance column provides links to view the compliance of the clusters that are
displayed.

Results: Select the Results tab to view a table list of all clusters that are associated to the policy.
From the Message column, click the View details link to view the template details, template
YAML, and related resources. You can also view related resources. Click the View history link to
view the violation message and a time of the last report.

3.2. GOVERNANCE AUTOMATION CONFIGURATION

If there is a configured automation for a specific policy, you can select the automation to view more
details. View the following descriptions of the schedule frequency options for your automation:

Manual run : Manually set this automation to run once. After the automation runs, it is set to
disabled. Note: You can only select Manual run mode when the schedule frequency is disabled.

Run once mode : When a policy is violated, the automation runs one time. After the automation
runs, it is set to disabled. After the automation is set to disabled, you must continue to run the
automation manually. When you run once mode , the extra variable of target_clusters is
automatically supplied with the list of clusters that violated the policy. The {aap-short} Job
template must have PROMPT ON LAUNCH enabled for the EXTRA VARIABLES section (also
known as extra_vars).

Run everyEvent mode : When a policy is violated, the automation runs every time for each unique

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

80

Run everyEvent mode : When a policy is violated, the automation runs every time for each unique
policy violation per managed cluster. Use the DelayAfterRunSeconds parameter to set the
minimum seconds before an automation can be restarted on the same cluster. If the policy is
violated multiple times during the delay period and kept in the violated state, the automation
runs one time after the delay period. The default is 0 seconds and is only applicable for the
everyEvent mode. When you run everyEvent mode, the extra variable of target_clusters and
{aap-short} Job template is the same as once mode .

Disable automation: When the scheduled automation is set to disabled, the automation does
not run until the setting is updated.

Review the following topics to learn more about creating and updating your security policies:

Managing security policies

Managing configuration policies

Managing gatekeeper policies

Configuring Ansible Tower for governance

Refer to Governance for more topics.

3.3. CONFIGURING ANSIBLE TOWER FOR GOVERNANCE

Red Hat Advanced Cluster Management for Kubernetes governance can be integrated with Ansible
Tower automation to create policy violation automations. You can configure the automation from the
Red Hat Advanced Cluster Management console.

Prerequisites

Creating a policy violation automation from the console

Creating a policy violation automation from the CLI

3.3.1. Prerequisites

Red Hat OpenShift Container Platform 4.5 or later

You must have Ansible Tower version 3.7.3 or a later version installed. It is best practice to install
the latest supported version of Ansible Tower. See Red Hat Ansible Tower documentation for
more details.

Install the Ansible Automation Platform Resource Operator on to your hub cluster to connect
Ansible jobs to the governance framework. For best results when using the AnsibleJob to launch
Ansible Tower jobs, the Ansible Tower job template should be idempotent when it is run. If you
do not have Ansible Automation Platform Resource Operator, you can find it from the Red Hat
OpenShift Container Platform OperatorHub page.

For more information about installing and configuring Ansible Tower automation, see Setting up Ansible
tasks

3.3.2. Creating a policy violation automation from the console

After you log into your Red Hat Advanced Cluster Management hub cluster, select Governance from
the navigation menu, and then click on the Policies tab to view the policy tables.

CHAPTER 3. MANAGE SECURITY POLICIES

81

https://docs.ansible.com/ansible-tower/
../../html-single/applications#setting-up-ansible

Configure an automation for a specific policy by clicking Configure in the Automation column. You can
create automation when the policy automation panel appears. From the Ansible credential section, click
the drop-down menu to select an Ansible credential. If you need to add a credential, see Managing
credentials overview.

Note: This credential is copied to the same namespace as the policy. The credential is used by the
AnsibleJob resource that is created to initiate the automation. Changes to the Ansible credential in the
Credentials section of the console is automatically updated.

After a credential is selected, click the Ansible job drop-down list to select a job template. In the Extra
variables section, add the parameter values from the extra_vars section of the PolicyAutomation.
Select the frequency of the automation. You can select Run once mode , Run everyEvent mode , or
Disable automation.

Save your policy violation automation by selecting Submit. When you select the View Job link from the
Ansible job details side panel, the link directs you to the job template on the Search page. After you
successfully create the automation, it is displayed in the Automation column.

Note: When you delete a policy that has an associated policy automation, the policy automation is
automatically deleted as part of clean up.

Your policy violation automation is created from the console.

3.3.3. Creating a policy violation automation from the CLI

Complete the following steps to configure a policy violation automation from the CLI:

1. From your terminal, log in to your Red Hat Advanced Cluster Management hub cluster using the
oc login command.

2. Find or create a policy that you want to add an automation to. Note the policy name and
namespace.

3. Create a PolicyAutomation resource using the following sample as a guide:

4. The Ansible job template name in the previous sample is Policy Compliance Template. Change
that value to match your job template name.

5. In the extra_vars section, add any parameters you need to pass to the Ansible job template.

6. Set the mode to either once, everyEvent, or disabled.

apiVersion: policy.open-cluster-management.io/v1beta1
kind: PolicyAutomation
metadata:
 name: policyname-policy-automation
spec:
 automationDef:
 extra_vars:
 your_var: your_value
 name: Policy Compliance Template
 secret: ansible-tower
 type: AnsibleJob
 mode: disabled
 policyRef: policyname

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

82

../../html-single/multicluster_engine#managing-credentials-overview

7. Set the policyRef to the name of your policy.

8. Create a secret in the same namespace as this PolicyAutomation resource that contains the
Ansible Tower credential. In the previous example, the secret name is ansible-tower. Use the
sample from application lifecycle to see how to create the secret.

9. Create the PolicyAutomation resource.
Notes:

An immediate run of the policy automation can be initiated by adding the following
annotation to the PolicyAutomation resource:

When the policy is in once mode, the automation runs when the policy is non-compliant.
The extra_vars variable, named target_clusters is added and the value is an array of each
managed cluster name where the policy is non-compliant.

When the policy is in everyEvent mode and the DelayAfterRunSeconds exceeds the
defined time value, the policy is non-compliant and the automation runs for every policy
violation.

3.4. DEPLOY POLICIES USING GITOPS

You can deploy a set of policies across a fleet of managed clusters with the governance framework. You
can add to the open source community, policy-collection by contributing to and using the policies in
the repository. For more information, see Contributing a custom policy. Policies in each of the stable
and community folders from the open source community are further organized according to NIST
Special Publication 800-53.

Continue reading to learn best practices to use GitOps to automate and track policy updates and
creation through a Git repository.

Prerequisite: Before you begin, be sure to fork the policy-collection repository.

Customizing your local repository

Committing to your local repository

Deploying policies to your cluster

Verifying GitOps policy deployments from the console

Verifying GitOps policy deployments from the CLI

3.4.1. Customizing your local repository

Customize your local repository by consolidating the stable and community policies into a single folder.
Remove the policies you do not want to use. Complete the following steps to customize your local
repository:

1. Create a new directory in the repository to hold the policies that you want to deploy. Be sure
that you are in your local policy-collection repository on your main default branch for GitOps.
Run the following command:

metadata:
 annotations:
 policy.open-cluster-management.io/rerun: "true"

CHAPTER 3. MANAGE SECURITY POLICIES

83

../../html-single/applications#ansible-secrets
https://github.com/stolostron/policy-collection
https://github.com/stolostron/policy-collection/blob/main/CONTRIBUTING.md#contributing-a-custom-policy
https://nvd.nist.gov/800-53/Rev4

mkdir my-policies

2. Copy all of the stable and community policies into your my-policies directory. Start with the
community policies first, in case the stable folder contains duplicates of what is available in the
community. Run the following commands:

cp -R community/* my-policies/

cp -R stable/* my-policies/

Now that you have all of the policies in a single parent directory structure, you can edit the
policies in your fork.

Tips:

It is best practice to remove the policies you are not planning to use.

Learn about policies and the definition of the policies from the following list:

Purpose: Understand what the policy does.

Remediation Action: Does the policy only inform you of compliance, or enforce the
policy and make changes? See the spec.remediationAction parameter. If changes are
enforced, make sure you understand the functional expectation. Remember to check
which policies support enforcement. For more information, view the Validate section.
Note: The spec.remediationAction set for the policy overrides any remediation action
that is set in the individual spec.policy-templates.

Placement: What clusters is the policy deployed to? By default, most policies target the
clusters with the environment: dev label. Some policies may target OpenShift
Container Platform clusters or another label. You can update or add additional labels to
include other clusters. When there is no specific value, the policy is applied to all of your
clusters. You can also create multiple copies of a policy and customize each one if you
want to use a policy that is configured one way for one set of clusters and configured
another way for another set of clusters.

3.4.2. Committing to your local repository

After you are satisfied with the changes you have made to your directory, commit and push your
changes to Git so that they can be accessed by your cluster.

Note: This example is used to show the basics of how to use policies with GitOps, so you might have a
different workflow to get changes to your branch.

Complete the following steps:

1. From your terminal, run git status to view your recent changes in your directory that you
previously created. Add your new directory to the list of changes to be committed with the
following command:

git add my-policies/

2. Commit the changes and customize your message. Run the following command:

git commit -m “Policies to deploy to the hub cluster”

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

84

3. Push the changes to the branch of your forked repository that is used for GitOps. Run the
following command:

git push origin <your_default_branch>master

Your changes are committed.

3.4.3. Deploying policies to your cluster

After you push your changes, you can deploy the policies to your Red Hat Advanced Cluster
Management for Kubernetes installation. Post deployment, your hub cluster is connected to your Git
repository. Any further changes to your chosen branch of the Git repository is reflected in your cluster.

Note: By default, policies deployed with GitOps use the merge reconcile option. If you want to use the
replace reconcile option instead, add the apps.open-cluster-management.io/reconcile-option:
replace annotation to the Subscription resource. See Application Lifecycle for more details.

The deploy.sh script creates Channel and Subscription resources in your hub cluster. The channel
connects to the Git repository, and the subscription specifies the data to bring to the cluster through
the channel. As a result, all policies defined in the specified subdirectory are created on your hub. After
the policies are created by the subscription, Red Hat Advanced Cluster Management analyzes the
policies and creates additional policy resources in the namespace associated with each managed cluster
that the policy is applied to, based on the defined placement rule.

The policy is then copied to the managed cluster from its respective managed cluster namespace on the
hub cluster. As a result, the policies in your Git repository are pushed to all managed clusters that have
labels that match the clusterSelector that are defined in the placement rule of your policy.

Complete the following steps:

1. From the policy-collection folder, run the following command to change the directory:

cd deploy

2. Make sure that your command line interface (CLI) is configured to create resources on the
correct cluster with the following command:

oc cluster-info

The output of the command displays the API server details for the cluster, where Red Hat
Advanced Cluster Management is installed. If the correct URL is not displayed, configure your
CLI to point to the correct cluster. See Using the OpenShift CLI for more information.

3. Create a namespace where your policies are created to control access and to organize the
policies. Run the following command:

oc create namespace policy-namespace

4. Run the following command to deploy the policies to your cluster:

./deploy.sh -u https://github.com/<your-repository>/policy-collection -p my-policies -n policy-
namespace

Replace your-repository with your Git user name or repository name.

CHAPTER 3. MANAGE SECURITY POLICIES

85

../../html-single/applications#resource-overwrite-example
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/cli_tools/openshift-cli-oc#cli-getting-started#cli-using-cli_cli-developer-commands

Note: For reference, the full list of arguments for the deploy.sh script uses the following
syntax:

./deploy.sh [-u <url>] [-b <branch>] [-p <path/to/dir>] [-n <namespace>] [-a|--name
<resource-name>]

View the following explanations for each argument:

URL: The URL to the repository that you forked from the main policy-collection repository.
The default URL is https://github.com/stolostron/policy-collection.git.

Branch: Branch of the Git repository to point to. The default branch is main.

Subdirectory Path: The subdirectory path you created to contain the policies you want to
use. In the previous sample, we used the my-policies subdirectory, but you can also specify
which folder you want start with. For example, you can use my-policies/AC-Access-
Control. The default folder is stable.

Namespace: The namespace where the resources and policies are created on the hub
cluster. These instructions use the policy-namespace namespace. The default namespace
is policies.

Name Prefix: Prefix for the Channel and Subscription resources. The default is demo-
stable-policies.

After you run the deploy.sh script, any user with access to the repository can commit changes to the
branch, which pushes changes to existing policies on your clusters.

Note: To deploy policies with subscriptions, complete the following steps:

1. Bind the open-cluster-management:subscription-admin ClusterRole to the user creating the
subscription.

2. If you are using an allow list in the subscription, include the following API entries:

3.4.4. Verifying GitOps policy deployments from the console

Verify that your changes were applied to your policies from the console. You can also make more
changes to your policy from the console, however the changes are reverted when the Subscription is
reconciled with the Git repository. Complete the following steps:

1. Log in to your Red Hat Advanced Cluster Management cluster.

 - apiVersion: policy.open-cluster-management.io/v1
 kinds:
 - "*"
 - apiVersion: policy.open-cluster-management.io/v1beta1
 kinds:
 - "*"
 - apiVersion: apps.open-cluster-management.io/v1
 kinds:
 - PlacementRule
 - apiVersion: cluster.open-cluster-management.io/v1beta1
 kinds:
 - Placement

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

86

https://github.com/stolostron/policy-collection.git

2. From the navigation menu, select Governance.

3. Locate the policies that you deployed in the table. Policies that are deployed using GitOps have
a Git label in the Source column. Click the label to view the details for the Git repository.

3.4.4.1. Verifying GitOps policy deployments from the CLI

Complete the following steps:

1. Check for the following policy details:

Why is a specific policy compliant or non-compliant on the clusters that it was distributed
to?

Are the policies applied to the correct clusters?

If this policy is not distributed to any clusters, why?

2. Identify the GitOps deployed policies that you created or modified. The GitOps deployed
policies can be identified by the annotation that is applied automatically. Annotations for the
GitOps deployed policies resemble the following paths:

apps.open-cluster-management.io/hosting-deployable: policies/deploy-stable-policies-Policy-
policy-role9

apps.open-cluster-management.io/hosting-subscription: policies/demo-policies

apps.open-cluster-management.io/sync-source: subgbk8s-policies/demo-policies

GitOps annotations are valuable to see which subscription created the policy. You can also add
your own labels to your policies so that you can write runtime queries that select policies based
on labels.

For example, you can add a label to a policy with the following command:

oc label policies.policy.open-cluster-management.io <policy-name> -n <policy-namespace>
<key>=<value>

Then, you can query policies that have labels with the following command:

oc get policies.policy.open-cluster-management.io -n <policy-namespace> -l <key>=<value>

Your policies are deployed using GitOps.

3.5. SUPPORT FOR TEMPLATES IN CONFIGURATION POLICIES

Configuration policies support the inclusion of Golang text templates in the object definitions. These
templates are resolved at runtime either on the hub cluster or the target managed cluster using
configurations related to that cluster. This gives you the ability to define configuration policies with
dynamic content, and inform or enforce Kubernetes resources that are customized to the target cluster.

Prerequisite

Template functions

CHAPTER 3. MANAGE SECURITY POLICIES

87

Support for hub cluster templates in configuration policies

Template processing

Special annotation for reprocessing

Bypass template processing

Comparison of hub cluster and managed cluster templates

3.5.1. Prerequisite

The template syntax must be conformed to the Golang template language specification, and
the resource definition generated from the resolved template must be a valid YAML. See the
Golang documentation about Package templates for more information. Any errors in template
validation are recognized as policy violations. When you use a custom template function, the
values are replaced at runtime.

3.5.2. Template functions

Template functions, such as resource-specific and generic lookup template functions, are available for
referencing Kubernetes resources on the hub cluster (using the {{hub … hub}} delimiters), or managed
cluster (using the {{ … }} delimiters). See Support for hub cluster templates in configuration policies for
more details. The resource-specific functions are used for convenience and makes content of the
resources more accessible. If you use the generic function, lookup, which is more advanced, it is best to
be familiar with the YAML structure of the resource that is being looked up. In addition to these
functions, utility functions like base64encode, base64decode, indent, autoindent, toInt, toBool, and
more are also available.

To conform templates with YAML syntax, templates must be set in the policy resource as strings using
quotes or a block character (| or >). This causes the resolved template value to also be a string. To
override this, consider using toInt or toBool as the final function in the template to initiate further
processing that forces the value to be interpreted as an integer or boolean respectively.

Continue reading to view descriptions and examples for some of the custom template functions that are
supported:

fromSecret function

fromConfigmap function

fromClusterClaim function

lookup function

base64enc function

base64dec function

indent function

autoindent function

toInt function

toBool function

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

88

https://golang.org/pkg/text/template/

protect function

toLiteral function

Open source community functions

3.5.2.1. fromSecret function

The fromSecret function returns the value of the given data key in the secret. View the following syntax
for the function:

func fromSecret (ns string, secretName string, datakey string) (dataValue string, err error)

When you use this function, enter the namespace, name, and data key of a Kubernetes Secret resource.
You must use the same namespace that is used for the policy when using the function in a hub cluster
template. See, Support for hub cluster templates in configuration policies for more details.

Note: When you use this function with hub cluster templates, the output is automatically encrypted
using the the protect function.

You receive a policy violation if the Kubernetes Secret resource does not exist on the target cluster. If
the data key does not exist on the target cluster, the value becomes an empty string. View the following
configuration policy that enforces a Secret resource on the target cluster. The value for the
PASSWORD data key is a template that references the secret on the target cluster:

3.5.2.2. fromConfigmap function

The fromConfigmap function returns the value of the given data key in the ConfigMap. View the
following syntax for the function:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 data:
 USER_NAME: YWRtaW4=
 PASSWORD: '{{ fromSecret "default" "localsecret" "PASSWORD" }}'
 kind: Secret
 metadata:
 name: demosecret
 namespace: test
 type: Opaque
 remediationAction: enforce
 severity: low

CHAPTER 3. MANAGE SECURITY POLICIES

89

func fromConfigMap (ns string, configmapName string, datakey string) (dataValue string, err Error)

When you use this function, enter the namespace, name, and data key of a Kubernetes ConfigMap
resource. You must use the same namespace that is used for the policy using the function in a hub
cluster template. See, Support for hub cluster templates in configuration policies for more details. You
receive a policy violation if the Kubernetes ConfigMap resource does not exist on the target cluster. If
the data key does not exist on the target cluster, the value becomes an empty string. View the following
configuration policy that enforces a Kubernetes resource on the target managed cluster. The value for
the log-file data key is a template that retrieves the value of the log-file from the ConfigMap, logs-
config from the default namespace, and the log-level is set to the data key log-level.

3.5.2.3. fromClusterClaim function

The fromClusterClaim function returns the value of the Spec.Value in the ClusterClaim resource.
View the following syntax for the function:

func fromClusterClaim (clusterclaimName string) (value map[string]interface{}, err Error)

When you use this function, enter the name of a Kubernetes ClusterClaim resource. You receive a
policy violation if the ClusterClaim resource does not exist. View the following example of the
configuration policy that enforces a Kubernetes resource on the target managed cluster. The value for
the platform data key is a template that retrieves the value of the platform.open-cluster-
management.io cluster claim. Similarly, it retrieves values for product and version from the
ClusterClaim:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromcm-lookup
 namespace: test-templates
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: demo-app-config
 namespace: test
 data:
 app-name: sampleApp
 app-description: "this is a sample app"
 log-file: '{{ fromConfigMap "default" "logs-config" "log-file" }}'
 log-level: '{{ fromConfigMap "default" "logs-config" "log-level" }}'
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

90

3.5.2.4. lookup function

The lookup function returns the Kubernetes resource as a JSON compatible map. If the requested
resource does not exist, an empty map is returned. If the resource does not exist and the value is
provided to another template function, you might get the following error: invalid value; expected
string.

Note: Use the default template function, so the correct type is provided to later template functions.
See the Open source community functions section.

View the following syntax for the function:

func lookup (apiversion string, kind string, namespace string, name string) (value string, err Error)

When you use this function, enter the API version, kind, namespace, and name of the Kubernetes
resource. You must use the same namespace that is used for the policy within the hub cluster template.
See, Support for hub cluster templates in configuration policies for more details. View the following
example of the configuration policy that enforces a Kubernetes resource on the target managed cluster.
The value for the metrics-url data key is a template that retrieves the v1/Service Kubernetes resource
metrics from the default namespace, and is set to the value of the Spec.ClusterIP in the queried
resource:

metadata:
 name: demo-clusterclaims
 namespace: default
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: sample-app-config
 namespace: default
 data:
 # Configuration values can be set as key-value properties
 platform: '{{ fromClusterClaim "platform.open-cluster-management.io" }}'
 product: '{{ fromClusterClaim "product.open-cluster-management.io" }}'
 version: '{{ fromClusterClaim "version.openshift.io" }}'
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-lookup
 namespace: test-templates
spec:
 namespaceSelector:
 exclude:

CHAPTER 3. MANAGE SECURITY POLICIES

91

3.5.2.5. base64enc function

The base64enc function returns a base64 encoded value of the input data string. View the following
syntax for the function:

func base64enc (data string) (enc-data string)

When you use this function, enter a string value. View the following example of the configuration policy
that uses the base64enc function:

3.5.2.6. base64dec function

The base64dec function returns a base64 decoded value of the input enc-data string. View the
following syntax for the function:

func base64dec (enc-data string) (data string)

 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: demo-app-config
 namespace: test
 data:
 # Configuration values can be set as key-value properties
 app-name: sampleApp
 app-description: "this is a sample app"
 metrics-url: |
 http://{{ (lookup "v1" "Service" "default" "metrics").spec.clusterIP }}:8080
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 USER_NAME: '{{ fromConfigMap "default" "myconfigmap" "admin-user" | base64enc }}'

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

92

When you use this function, enter a string value. View the following example of the configuration policy
that uses the base64dec function:

3.5.2.7. indent function

The indent function returns the padded data string. View the following syntax for the function:

func indent (spaces int, data string) (padded-data string)

When you use this function, enter a data string with the specific number of spaces. View the following
example of the configuration policy that uses the indent function:

3.5.2.8. autoindent function

The autoindent function acts like the indent function that automatically determines the number of

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 app-name: |
 "{{ (lookup "v1" "Secret" "testns" "mytestsecret") .data.appname) | base64dec }}"

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 Ca-cert: |
 {{ (index (lookup "v1" "Secret" "default" "mycert-tls").data "ca.pem") | base64dec | indent 4
}}

CHAPTER 3. MANAGE SECURITY POLICIES

93

The autoindent function acts like the indent function that automatically determines the number of
leading spaces based on the number of spaces before the template. View the following example of the
configuration policy that uses the autoindent function:

3.5.2.9. toInt function

The toInt function casts and returns the integer value of the input value. Also, when this is the last
function in the template, there is further processing of the source content. This is to ensure that the
value is interpreted as an integer by the YAML. View the following syntax for the function:

func toInt (input interface{}) (output int)

When you use this function, enter the data that needs to be casted as an integer. View the following
example of the configuration policy that uses the toInt function:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 Ca-cert: |
 {{ (index (lookup "v1" "Secret" "default" "mycert-tls").data "ca.pem") | base64dec |
autoindent }}

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-template-function
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 spec:
 vlanid: |
 {{ (fromConfigMap "site-config" "site1" "vlan") | toInt }}

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

94

3.5.2.10. toBool function

The toBool function converts the input string into a boolean, and returns the boolean. Also, when this is
the last function in the template, there is further processing of the source content. This is to ensure that
the value is interpreted as a boolean by the YAML. View the following syntax for the function:

func toBool (input string) (output bool)

When you use this function, enter the string data that needs to be converted to a boolean. View the
following example of the configuration policy that uses the toBool function:

3.5.2.11. protect function

The protect function enables you to encrypt a string in a hub cluster policy template. It is automatically
decrypted on the managed cluster when the policy is evaluated. View the following example of the
configuration policy that uses the protect function:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-template-function
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 spec:
 enabled: |
 {{ (fromConfigMap "site-config" "site1" "enabled") | toBool }}

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-template-function
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 spec:
 enabled: |
 {{hub "(lookup "v1" "Secret" "default" "my-hub-secret").data.message | protect hub}}

CHAPTER 3. MANAGE SECURITY POLICIES

95

In the previous YAML example, there is an existing hub cluster policy template that is defined to use the
lookup function. On the replicated policy in the managed cluster namespace, the value might resemble
the following syntax: $ocm_encrypted:okrrBqt72oI+3WT/0vxeI3vGa+wpLD7Z0ZxFMLvL204=

Each encryption algorithm used is AES-CBC using 256-bit keys. Each encryption key is unique per
managed cluster and is automatically rotated every 30 days.

This ensures that your decrypted value is to never be stored in the policy on the managed cluster.

To force an immediate rotation, delete the policy.open-cluster-management.io/last-rotated
annotation on the policy-encryption-key Secret in the managed cluster namespace on the hub cluster.
Policies are then reprocessed to use the new encryption key.

3.5.2.12. toLiteral function

The toLiteral function removes any quotation marks around the template string after it is processed.
You can use this function to convert a JSON string from a ConfigMap field to a JSON value in the
manifest. Run the following function to remove quotation marks from the key parameter value:

key: '{{ "[\"10.10.10.10\", \"1.1.1.1\"]" | toLiteral }}'

After using the toLiteral function, the following update is displayed:

key: ["10.10.10.10", "1.1.1.1"]

3.5.2.13. Open source community functions

Additionally, Red Hat Advanced Cluster Management supports the following template functions that are
included from the sprig open source project:

cat

contains

default

empty

fromJson

hasPrefix

hasSuffix

join

list

lower

mustFromJson

quote

replace

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

96

semver

semverCompare

split

splitn

ternary

trim

until

untilStep

upper

See the Sprig Function Documentation for more details.

3.5.3. Support for hub cluster templates in configuration policies

In addition to managed cluster templates that are dynamically customized to the target cluster, Red Hat
Advanced Cluster Management also supports hub cluster templates to define configuration policies
using values from the hub cluster. This combination reduces the need to create separate policies for
each target cluster or hardcode configuration values in the policy definitions.

Hub cluster templates are based on Golang text template specifications, and the {{hub … hub}}
delimiter indicates a hub cluster template in a configuration policy.

For security, both resource-specific and the generic lookup functions in hub cluster templates are
restricted to the namespace of the policy on the hub cluster. View the Comparison of hub and managed
cluster templates for additional details.

Important: If you use hub cluster templates to propagate secrets or other sensitive data, the sensitive
data exists in the managed cluster namespace on the hub cluster and on the managed clusters where
that policy is distributed. The template content is expanded in the policy, and policies are not encrypted
by the OpenShift Container Platform ETCD encryption support. To address this, use fromSecret, which
automatically encrypts the values from the Secret, or protect to encrypt other values.

3.5.3.1. Template processing

A configuration policy definition can contain both hub cluster and managed cluster templates. Hub
cluster templates are processed first on the hub cluster, then the policy definition with resolved hub
cluster templates is propagated to the target clusters. On the managed cluster, the
ConfigurationPolicyController processes any managed cluster templates in the policy definition and
then enforces or verifies the fully resolved object definition.

3.5.3.2. Special annotation for reprocessing

Policies are processed on the hub cluster only upon creation or after an update. Therefore, hub cluster
templates are only resolved to the data in the referenced resources upon policy creation or update. Any
changes to the referenced resources are not automatically synced to the policies.

A special annotation, policy.open-cluster-management.io/trigger-update can be used to indicate
changes to the data referenced by the templates. Any change to the special annotation value initiates

CHAPTER 3. MANAGE SECURITY POLICIES

97

https://masterminds.github.io/sprig/

template processing, and the latest contents of the referenced resource are read and updated in the
policy definition that is the propagator for processing on managed clusters. A typical way to use this
annotation is to increment the value by one each time.

3.5.3.3. Bypass template processing

You might create a policy that contains a template that is not intended to be processed by Red Hat
Advanced Cluster Management. By default, Red Hat Advanced Cluster Management processes all
templates.

To bypass template processing for your hub cluster, you must change {{ template content }} to {{ `{{
template content }}` }}.

Alternatively, you can add the following annotation in the ConfigurationPolicy section of your Policy:
policy.open-cluster-management.io/disable-templates: "true". When this annotation is included, the
previous workaround is not necessary. Template processing is bypassed for the ConfigurationPolicy.

See the following table for a comparison of hub cluster and managed cluster templates:

3.5.3.4. Comparison of hub cluster and managed cluster templates

Table 3.1. Comparison table

Templates Hub cluster Managed cluster

Syntax Golang text template
specification

Golang text template
specification

Delimiter {{hub … hub}} {{ … }}

Context A .ManagedClusterName
variable is available, which at
runtime, resolves to the name of
the target cluster where the policy
is propagated.

No context variables

Access control You can only reference
namespaced Kubernetes objects
that are in the same namespace
as the Policy resource.

You can reference any resource
on the cluster.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

98

Functions A set of template functions that
support dynamic access to
Kubernetes resources and string
manipulation. See Template
functions for more information.
See the Access control row for
lookup restrictions.

The fromSecret template
function on the hub cluster stores
the resulting value as an
encrypted string on the replicated
policy, in the managed cluster
namespace.

The equivalent call might use the
following syntax: {{hub "(lookup
"v1" "Secret" "default" "my-
hub-secret").data.message |
protect hub}}

A set of template functions
support dynamic access to
Kubernetes resources and string
manipulation. See Template
functions for more information.

Function output storage The output of template functions
are stored in Policy resource
objects in each applicable
managed cluster namespace on
the hub cluster, before it is synced
to the managed cluster. This
means that any sensitive results
from template functions are
readable by anyone with read
access to the Policy resource
objects on the hub cluster, and
read access with
ConfigurationPolicy resource
objects on the managed clusters.
Additionally, if etcd encryption is
enabled, the Policy and
ConfigurationPolicy resource
objects are not encrypted. It is
best to carefully consider this
when using template functions
that return sensitive output (e.g.
from a secret).

The output of template functions
are not stored in policy related
resource objects.

Processing Processing occurs at runtime on
the hub cluster during
propagation of replicated policies
to clusters. Policies and the hub
cluster templates within the
policies are processed on the hub
cluster only when templates are
created or updated.

Processing occurs in the
ConfigurationPolicyControll
er on the managed cluster.
Policies are processed
periodically, which automatically
updates the resolved object
definition with data in the
referenced resources.

Templates Hub cluster Managed cluster

CHAPTER 3. MANAGE SECURITY POLICIES

99

https://docs.openshift.com/container-platform/4.11/security/encrypting-etcd.html

Processing errors Errors from the hub cluster
templates are displayed as
violations on the managed
clusters the policy applies to.

Errors from the managed cluster
templates are displayed as
violations on the specific target
cluster where the violation
occurred.

Templates Hub cluster Managed cluster

3.6. GOVERNANCE METRIC

The policy framework exposes metrics that show policy distribution and compliance. Use the
policy_governance_info metric on the hub cluster to view trends and analyze any policy failures.

3.6.1. Metric overview

See the following topics for an overview of metrics.

3.6.1.1. Metric: policy_governance_info

The policy_governance_info is collected by OpenShift Container Platform monitoring, and some
aggregate data is collected by Red Hat Advanced Cluster Management observability, if it is enabled.

Note: If observability is enabled, you can enter a query for the metric from the Grafana Explore page.

When you create a policy, you are creating a root policy. The framework watches for root policies as well
as PlacementRules and PlacementBindings, to determine where to create propagated policies in
order to distribute the policy to managed clusters. For both root and propagated policies, a metric of 0
is recorded if the policy is compliant, and 1 if it is non-compliant.

The policy_governance_info metric uses the following labels:

type: The label values are root or propagated.

policy: The name of the associated root policy.

policy_namespace: The namespace on the hub cluster where the root policy was defined.

cluster_namespace: The namespace for the cluster where the policy is distributed.

These labels and values enable queries that can show us many things happening in the cluster that
might be difficult to track.

Note: If the metrics are not needed, and there are any concerns about performance or security, this
feature can be disabled. Set the DISABLE_REPORT_METRICS environment variable to true in the
propagator deployment. You can also add policy_governance_info metric to the observability allowlist
as a custom metric. See Adding custom metrics for more details.

3.6.1.2. Metric: config_policies_evaluation_duration_

The config_policies_evaluation_duration_ histogram tracks the number of seconds it takes to
process all configuration policies that are ready to be evaluated on the cluster. Use the following metrics
to query the histogram:

config_policies_evaluation_duration_seconds_bucket: The buckets are cumulative and

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

100

../../html-single/observability#adding-custom-metrics

config_policies_evaluation_duration_seconds_bucket: The buckets are cumulative and
represent seconds with the following possible entries: 1, 3, 9, 10.5, 15, 30, 60, 90, 120, 180, 300,
450, 600, and greater.

config_policies_evaluation_duration_seconds_count: The count of all events.

config_policies_evaluation_duration_seconds_sum: The sum of all values.

Use config_policies_evaluation_duration_ to determine if the ConfigurationPolicy
evaluationInterval setting needs to be changed for resource intensive policies that do not need
frequent evaluation. You can also increase the concurrency at the cost of higher resource utilization on
the Kubernetes API server. See Configure the configuration policy controller for more details.

To receive information about the time used to evaluate configuration policies, perform a Prometheus
query that resembles the following expression:

rate(config_policies_evaluation_duration_seconds_sum[10m]) / rate
(config_policies_evaluation_duration_seconds_count[10m]

The config-policy-controller pod running on managed clusters in the open-cluster-management-
agent-addon namespace calculates the metric. The config-policy-controller does not send the metric
to Observability by default.

3.7. MANAGING SECURITY POLICIES

Create a security policy to report and validate your cluster compliance based on your specified security
standards, categories, and controls.

View the following sections:

Creating a security policy

Creating a security policy from the command line interface

Viewing your security policy from the CLI

Creating a cluster security policy from the console

Viewing your security policy from the console

Creating policy sets from the CLI

Creating policy sets from the console

Updating security policies

Disabling security policies

Deleting a security policy

Deleting policy sets from the console

Cleaning up resources that are created by policies

3.7.1. Creating a security policy

You can create a security policy from the command line interface (CLI) or from the console.

CHAPTER 3. MANAGE SECURITY POLICIES

101

Required access: Cluster administrator

Important: You must define a placement rule and placement binding to apply your policy to a specific
cluster. Enter a valid value for the Cluster selector field to define a PlacementRule and
PlacementBinding. See Resources that support support set-based requirements in the Kubernetes
documentation for a valid expression. View the definitions of the objects that are required for your Red
Hat Advanced Cluster Management policy:

PlacementRule: Defines a cluster selector where the policy must be deployed.

PlacementBinding: Binds the placement to a placement rule.

View more descriptions of the policy YAML files in the Policy overview .

3.7.1.1. Creating a security policy from the command line interface

Complete the following steps to create a policy from the command line interface (CLI):

1. Create a policy by running the following command:

kubectl create -f policy.yaml -n <policy-namespace>

2. Define the template that the policy uses. Edit your .yaml file by adding a policy-templates field
to define a template. Your policy might resemble the following YAML file:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy1
spec:
 remediationAction: "enforce" # or inform
 disabled: false # or true
 namespaceSelector:
 include:
 - "default"
 - "my-namespace"
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: operator
 # namespace: # will be supplied by the controller via the namespaceSelector
 spec:
 remediationAction: "inform"
 object-templates:
 - complianceType: "musthave" # at this level, it means the role must exist and must
have the following rules
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: example
 objectDefinition:
 rules:
 - complianceType: "musthave" # at this level, it means if the role exists the rule is a
musthave

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

102

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements

3. Define a PlacementRule. Be sure to change the PlacementRule to specify the clusters where
the policies need to be applied by adjusting the clusterSelector. View Placement rule samples
overview
Your PlacementRule might resemble the following content:

4. Define a PlacementBinding to bind your policy to your PlacementRule. Your
PlacementBinding might resemble the following YAML sample:

3.7.1.1.1. Viewing your security policy from the CLI

Complete the following steps to view your security policy from the CLI:

1. View details for a specific security policy by running the following command:

kubectl get policies.policy.open-cluster-management.io <policy-name> -n <policy-
namespace> -o yaml

2. View a description of your security policy by running the following command:

kubectl describe policies.policy.open-cluster-management.io <policy-name> -n <policy-
namespace>

 apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "create", "delete","patch"]

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement1
spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterNames:
 - "cluster1"
 - "cluster2"
- clusterSelector
 matchLabels:
 cloud: IBM

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding1
placementRef:
 name: placement1
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
subjects:
- name: policy1
 apiGroup: policy.open-cluster-management.io
 kind: Policy

CHAPTER 3. MANAGE SECURITY POLICIES

103

../../html-single/applications#placement-rule-samples

3.7.1.2. Creating a cluster security policy from the console

After you log into your Red Hat Advanced Cluster Management, navigate to the Governance page and
click Create policy.

As you create your new policy from the console, a YAML file is also created in the YAML editor. To view
the YAML editor, select the toggle at the beginning of the Create policy form to enable it.

Complete the Create policy form, then select the Submit button.

Your YAML file might resemble the following policy:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-pod
 annotations:
 policy.open-cluster-management.io/categories:
'SystemAndCommunicationsProtections,SystemAndInformationIntegrity'
 policy.open-cluster-management.io/controls: 'control example'
 policy.open-cluster-management.io/standards: 'NIST,HIPAA'
spec:
 complianceType: musthave
 namespaces:
 exclude: ["kube*"]
 include: ["default"]
 pruneObjectBehavior: None
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: pod1
 spec:
 containers:
 - name: pod-name
 image: 'pod-image'
 ports:
 - containerPort: 80
 remediationAction: enforce
 disabled: false

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-pod
placementRef:
 name: placement-pod
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-pod
 kind: Policy
 apiGroup: policy.open-cluster-management.io

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

104

Click Create Policy. A security policy is created from the console.

3.7.1.2.1. Viewing your security policy from the console

View any security policy and its status from the console. Navigate to the Governance page to view a
table list of your policies. Note: You can filter the table list of your policies by selecting the Policies tab
or Cluster violations tab.

Select one of your policies to view more details. The Details, Clusters, and Templates tabs are displayed.
When the cluster or policy status cannot be determined, the following message is displayed: No status.

3.7.1.3. Creating policy sets from the CLI

By default, the policy set is created with no policies or placements. You must create a placement for the
policy set and have at least one policy that exists on your cluster. When you create a policy set, you can
add numerous policies. Run the following command to create a policy set from the CLI:

kubectl apply -f <policyset-filename>

3.7.1.4. Creating policy sets from the console

From the navigation menu, select Governance. Then select the Policy sets tab. Select the Create
policy set button and complete the form. After you add the details for your policy set, select the Submit
button.

View the stable Policyets, which require the policy generator for deployment, PolicySets-- Stable.

3.7.2. Updating security policies

Learn to update security policies by viewing the following section.

3.7.2.1. Adding a policy to a policy set from the CLI

Run the following command to edit your policy set: kubectl edit policysets your-policyset-name

Add the policy name to the list in the policies section of the policy set. Apply your added policy in the
placement section of your policy set with the following command: kubectl apply -f your-added-
policy.yaml. A PlacementBinding and PlacementRule are created. Note: If you delete the placement
binding, the policy is still placed by the policy set.

3.7.2.2. Adding a policy to a policy set from the console

Add a policy to the policy set by selecting the Policy sets tab. Select the Actions icon and select Edit.

apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementRule
 metadata:
 name: placement-pod
spec:
 clusterConditions: []
 clusterSelector:
 matchLabels:
 cloud: "IBM"

CHAPTER 3. MANAGE SECURITY POLICIES

105

https://github.com/stolostron/policy-collection/tree/main/policygenerator/policy-sets/stable

Add a policy to the policy set by selecting the Policy sets tab. Select the Actions icon and select Edit.
The Edit policy set form appears.

Navigate to the Policies section of the form to select a policy to add to the policy set.

3.7.2.3. Disabling security policies

Your policy is enabled by default. Disable your policy from the console.

After you log into your Red Hat Advanced Cluster Management for Kubernetes console, navigate to the
Governance page to view a table list of your policies.

Select the Actions icon > Disable policy. The Disable Policy dialog box appears.

Click Disable policy. Your policy is disabled.

3.7.3. Deleting a security policy

Delete a security policy from the CLI or the console.

Delete a security policy from the CLI:

a. Delete a security policy by running the following command:

kubectl delete policies.policy.open-cluster-management.io <policy-name> -n <policy-
namespace>

After your policy is deleted, it is removed from your target cluster or clusters. Verify that
your policy is removed by running the following command: kubectl get
policies.policy.open-cluster-management.io <policy-name> -n <policy-namespace>

Delete a security policy from the console:
From the navigation menu, click Governance to view a table list of your policies. Click the
Actions icon for the policy you want to delete in the policy violation table.

Click Remove. From the Remove policy dialog box, click Remove policy

3.7.3.1. Deleting policy sets from the console

From the Policy sets tab, select the Actions icon for the policy set. When you click Delete, the
Permanently delete Policyset? dialogue box appears.

Click the Delete button.

To manage other policies, see Managing security policies for more information. Refer to Governance for
more topics about policies.

3.7.4. Cleaning up resources that are created by policies

Use the pruneObjectBehavior parameter in a configuration policy to clean up resources that are
created by the policy. When pruneObjectBehavior is set, the related objects are only cleaned up after
the configuration policy (or parent policy) associated with them is deleted. View the following
descriptions of the values that can be used for the parameter:

DeleteIfCreated: Cleans up any resources created by the policy.

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

106

DeleteAll: Cleans up all resources managed by the policy.

None: This is the default value and maintains the same behavior from previous releases, where
no related resources are deleted.

You can set the value directly in the YAML as you create a policy from the CLI. From the console, you
can select the value in the Prune Object Behavior section of the the Policy templates step.

Note: If a policy that installs an operator uses the pruneObjectBehavior parameter defined, then
additional clean up is needed to complete the operator uninstall. Additional clean up might include
deleting the operator ClusterServiceVersion object.

3.8. MANAGING CONFIGURATION POLICIES

Learn to create, apply, view, and update your configuration policies.

Required access: Administrator or cluster administrator

Creating a configuration policy

Creating a configuration policy from the CLI

Viewing your configuration policy from the CLI

Creating a configuration policy from the console

Viewing your configuration policy from the console

Updating configuration policies

Disabling configuration policies

Deleting a configuration policy

3.8.1. Creating a configuration policy

You can create a YAML file for your configuration policy from the command line interface (CLI) or from
the console.

If you have an existing Kubernetes manifest, consider using the policy generator to automatically include
the manifests in a policy. See the Policy generator documentation. View the following sections to create
a configuration policy:

3.8.1.1. Creating a configuration policy from the CLI

Complete the following steps to create a configuration policy from the (CLI):

1. Create a YAML file for your configuration policy. Run the following command:

kubectl create -f configpolicy-1.yaml

Your configuration policy might resemble the following policy:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:

CHAPTER 3. MANAGE SECURITY POLICIES

107

2. Apply the policy by running the following command:

kubectl apply -f <policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

kubectl get policies.policy.open-cluster-management.io --namespace=<namespace>

Your configuration policy is created.

3.8.1.2. Viewing your configuration policy from the CLI

Complete the following steps to view your configuration policy from the CLI:

1. View details for a specific configuration policy by running the following command:

kubectl get policies.policy.open-cluster-management.io <policy-name> -n <namespace> -o
yaml

2. View a description of your configuration policy by running the following command:

kubectl describe policies.policy.open-cluster-management.io <name> -n <namespace>

3.8.1.3. Creating a configuration policy from the console

As you create a configuration policy from the console, a YAML file is also created in the YAML editor.

Log in to your cluster from the console, and select Governance from the navigation menu.

Click Create policy. Specify the policy you want to create by selecting one of the configuration policies
for the specification parameter.

Continue with configuration policy creation by completing the policy form. Enter or select the
appropriate values for the following fields:

Name

 name: policy-1
 namespace: my-policies
policy-templates:
- apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: mustonlyhave-configuration
 spec:
 namespaceSelector:
 include: ["default"]
 exclude: ["kube-*"]
 remediationAction: inform
 disabled: false
 complianceType: mustonlyhave
 object-templates:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

108

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

Click Create. Your configuration policy is created.

3.8.1.4. Viewing your configuration policy from the console

View any configuration policy and its status from the console.

After you log into your cluster from the console, select Governance to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the All policies tab or Cluster violations tab.

Select one of your policies to view more details. The Details, Clusters, and Templates tabs are displayed.

3.8.2. Updating configuration policies

Learn to update configuration policies by viewing the following section.

3.8.2.1. Disabling configuration policies

Disable your configuration policy. Similar to the instructions mentioned earlier, log in and navigate to the
Governance page.

Select the Actions icon for a configuration policy from the table list, then click Disable. The Disable
Policy dialog box appears.

Click Disable policy.

Your configuration policy is disabled.

3.8.3. Deleting a configuration policy

Delete a configuration policy from the CLI or the console.

Delete a configuration policy from the CLI:

a. Delete a configuration policy by running the following command:

kubectl delete policies.policy.open-cluster-management.io <policy-name> -n
<namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policies.policy.open-cluster-management.io <policy-name> -n <namespace>

CHAPTER 3. MANAGE SECURITY POLICIES

109

Delete a configuration policy from the console:
From the navigation menu, click Governance to view a table list of your policies.

Click the Actions icon for the policy you want to delete in the policy violation table. Then click
Remove. From the Remove policy dialog box, click Remove policy.

Your policy is deleted.

See configuration policy samples that are supported by Red Hat Advanced Cluster Management from
the CM-Configuration-Management folder.

Alternatively, you can refer to the Table of sample configuration policies to view other configuration
policies that are monitored by the controller. For details to manage other policies, refer to Managing
security policies.

3.9. MANAGING GATEKEEPER OPERATOR POLICIES

Use the gatekeeper operator policy to install the gatekeeper operator and gatekeeper on a managed
cluster. Learn to create, view, and update your gatekeeper operator policies in the following sections.

Required access: Cluster administrator

Installing gatekeeper using a gatekeeper operator policy

Creating a gatekeeper policy from the console

Gatekeeper operator CR

Upgrading gatekeeper and the gatekeeper operator

Updating gatekeeper operator policy

Viewing gatekeeper operator policy from the console

Disabling gatekeeper operator policy

Deleting gatekeeper operator policy

Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

3.9.1. Installing gatekeeper using a gatekeeper operator policy (Deprecated)

Use the governance framework to install the gatekeeper operator. Gatekeeper operator is available in
the OpenShift Container Platform catalog. See Adding Operators to a cluster in the OpenShift
Container Platform documentation for more information.

Use the configuration policy controller to install the gatekeeper operator policy. During the install, the
operator group and subscription pull the gatekeeper operator to install it in your managed cluster. Then,
the gatekeeper operator creates a gatekeeper CR to configure gatekeeper. View the Gatekeeper
operator CR sample.

Gatekeeper operator policy is monitored by the Red Hat Advanced Cluster Management configuration
policy controller, where enforce remediation action is supported. Gatekeeper operator policies are
created automatically by the controller when set to enforce.

3.9.2. Creating a gatekeeper policy from the console

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

110

https://github.com/stolostron/policy-collection/tree/main/stable/CM-Configuration-Management
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/operators/administrator-tasks#olm-adding-operators-to-a-cluster

Install the gatekeeper policy by creating a gatekeeper policy from the console. Alternatively, you can
view a sample YAML to deploy policy-gatekeeper-operator.yaml.

After you log into your cluster, navigate to the Governance page.

Select Create policy. As you complete the form, select Gatekeeper Operator from the Specifications
field. The parameter values for your policy are automatically populated and the policy is set to inform by
default. Set your remediation action to enforce to install gatekeeper.

Note: Default values are generated by the operator. See Gatekeeper Helm Chart for an explanation of
the optional parameters that can be used for the gatekeeper operator policy.

3.9.2.1. Gatekeeper operator CR

apiVersion: operator.gatekeeper.sh/v1alpha1
kind: Gatekeeper
metadata:
 name: gatekeeper
spec:
 audit:
 replicas: 1
 logLevel: DEBUG
 auditInterval: 10s
 constraintViolationLimit: 55
 auditFromCache: Enabled
 auditChunkSize: 66
 emitAuditEvents: Enabled
 resources:
 limits:
 cpu: 500m
 memory: 150Mi
 requests:
 cpu: 500m
 memory: 130Mi
 validatingWebhook: Enabled
 webhook:
 replicas: 2
 logLevel: ERROR
 emitAdmissionEvents: Enabled
 failurePolicy: Fail
 resources:
 limits:
 cpu: 480m
 memory: 140Mi
 requests:
 cpu: 400m
 memory: 120Mi
 nodeSelector:
 region: "EMEA"
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 auditKey: "auditValue"
 topologyKey: topology.kubernetes.io/zone

CHAPTER 3. MANAGE SECURITY POLICIES

111

https://github.com/stolostron/policy-collection/blob/main/community/CM-Configuration-Management/policy-gatekeeper-operator.yaml
https://github.com/open-policy-agent/gatekeeper/blob/master/charts/gatekeeper/README.md

3.9.3. Upgrading gatekeeper and the gatekeeper operator

You can upgrade the versions for gatekeeper and the gatekeeper operator. When you install the
gatekeeper operator with the gatekeeper operator policy, notice the value for installPlanApproval.
The operator upgrades automatically when installPlanApproval is set to Automatic.

You must approve the upgrade of the gatekeeper operator manually, for each cluster, when
installPlanApproval is set to Manual.

3.9.4. Updating gatekeeper operator policy

Learn to update the gatekeeper operator policy by viewing the following section.

3.9.4.1. Viewing gatekeeper operator policy from the console

View your gatekeeper operator policy and its status from the console.

After you log into your cluster from the console, click Governance to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster violations tab.

Select the policy-gatekeeper-operator policy to view more details. View the policy violations by
selecting the Clusters tab.

3.9.4.2. Disabling gatekeeper operator policy

Disable your gatekeeper operator policy.

After you log into your Red Hat Advanced Cluster Management for Kubernetes console, navigate to the
Governance page to view a table list of your policies.

Select the Actions icon for the policy-gatekeeper-operator policy, then click Disable. The Disable
Policy dialog box appears.

Click Disable policy. Your policy-gatekeeper-operator policy is disabled.

3.9.5. Deleting gatekeeper operator policy

Delete the gatekeeper operator policy from the CLI or the console.

Delete gatekeeper operator policy from the CLI:

a. Delete gatekeeper operator policy by running the following command:

kubectl delete policies.policy.open-cluster-management.io <policy-gatekeeper-operator-
name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

 tolerations:
 - key: "Example"
 operator: "Exists"
 effect: "NoSchedule"
 podAnnotations:
 some-annotation: "this is a test"
 other-annotation: "another test"

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

112

b. Verify that your policy is removed by running the following command:

kubectl get policies.policy.open-cluster-management.io <policy-gatekeeper-operator-
name> -n <namespace>

Delete gatekeeper operator policy from the console:
Navigate to the Governance page to view a table list of your policies.

Similar to the previous console instructions, click the Actions icon for the policy-gatekeeper-
operator policy. Click Remove to delete the policy. From the Remove policy dialog box, click
Remove policy.

Your gatekeeper operator policy is deleted.

3.9.6. Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

Complete the following steps to uninstall gatekeeper policy, gatekeeper, and gatekeeper operator
policy:

1. Remove the gatekeeper Constraint and ConstraintTemplate that is applied on your managed
cluster:

a. Edit your gatekeeper operator policy. Locate the ConfigurationPolicy template that you
used to create the gatekeeper Constraint and ConstraintTemplate.

b. Change the value for complianceType of the ConfigurationPolicy template to
mustnothave.

c. Save and apply the policy.

2. Remove gatekeeper instance from your managed cluster:

a. Edit your gatekeeper operator policy. Locate the ConfigurationPolicy template that you
used to create the Gatekeeper custom resource (CR).

b. Change the value for complianceType of the ConfigurationPolicy template to
mustnothave.

3. Remove the gatekeeper operator that is on your managed cluster:

a. Edit your gatekeeper operator policy. Locate the ConfigurationPolicy template that you
used to create the Subscription CR.

b. Change the value for complianceType of the ConfigurationPolicy template to
mustnothave.

Gatekeeper policy, gatekeeper, and gatekeeper operator policy are uninstalled.

See Integrating gatekeeper constraints and constraint templates for details about gatekeeper. For a list
of topics to integrate third-party policies with the product, see Integrate third-party policy controllers .

3.10. MANAGING OPERATOR POLICIES IN DISCONNECTED
ENVIRONMENTS

You might need to deploy Red Hat Advanced Cluster Management for Kubernetes policies on Red Hat
OpenShift Container Platform clusters that are not connected to the internet (disconnected). If the

CHAPTER 3. MANAGE SECURITY POLICIES

113

policies you deploy are used to deploy policies that install an Operator Lifecycle Manager operator, you
must follow the procedure for Mirroring an Operator catalog .

Complete the following steps to validate access to the operator images:

1. See Verify required packages are available to validate that packages you require to use with
policies are available. You must validate availability for each image registry used by any
managed cluster that the following policies are deployed to:

container-security-operator

gatekeeper-operator-product

compliance-operator

2. See Configure image content source policies to validate that the sources are available. The
image content source policies must exist on each of the disconnected managed clusters and
can be deployed using a policy to simplify the process. See the following table of image source
locations:

Governance policy type Image source location

Container security registry.redhat.io/quay

Compliance registry.redhat.io/compliance

Gatekeeper registry.redhat.io/rhacm2

3.11. SECURE THE HUB CLUSTER

Secure your Red Hat Advanced Cluster Management for Kubernetes installation by hardening the hub
cluster security. Complete the following steps:

1. Secure Red Hat OpenShift Container Platform. For more information, see OpenShift Container
Platform security and compliance.

2. Setup role-based access control (RBAC). For more information, see Role-based access control .

3. Customize certificates, see Certificates.

4. Define your cluster credentials, see Managing credentials overview

5. Review the policies that are available to help you harden your cluster security. See Supported
policies

3.12. INTEGRITY SHIELD PROTECTION (TECHNOLOGY PREVIEW)

Integrity shield is a tool that helps with integrity control for enforcing signature verification for any
requests to create, or update resources. Integrity shield supports Open Policy Agent (OPA) and
Gatekeeper, verifies if the requests have a signature, and blocks any unauthorized requests according to
the defined constraint.

See the following integrity shield capabilities:

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

114

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/index#olm-mirror-catalog_olm-restricted-networks
../install/install_disconnected#verify-required-package
../install/install_disconnected#disconnect-configure-icsp
https://docs.openshift.com/container-platform/4.11/security/index.html
../../html-single/access_control#role-based-access-control
../../html-single/multicluster_engine#credentials
../../html-single/governance#supported-policies

Support the deployment of authorized Kubernetes manifests only.

Support zero-drift in resource configuration unless the resource is added to the allowlist.

Perform all integrity verification on the cluster such as enforcing the admission controller.

Monitor resources continuously to report if unauthorized Kubernetes resources are deployed on
the cluster.

X509, GPG, and Sigstore signing are supported to sign Kubernetes manifest YAML files.
Kubernetes integrity shield supports Sigstore signing by using the k8s-manifest-sigstore.

3.12.1. Integrity shield architecture

Integrity shield consists of two main components, API and Observer. Integrity shield operator supports
the installation and management of the integrity shield components on your cluster. View the following
description of the components:

Integrity shield API receives a Kubernetes resource from the OPA or gatekeeper, validates the
resource that is included in the admission request, and sends the verification result to the OPA
or gatekeeper. The integrity shield API uses the verify-resource feature of the k8s-manifest-
sigstore internally to verify the Kubernetes manifest YAML file. Integrity shield API validates
resources according to ManifestingIntegrityConstraint, which is a custom resource based on
the constraint framework of OPA or gatekeeper.

Integrity shield Observer continuously verifies Kubernetes resources on clusters according to
ManifestingIntegrityConstraint resources and exports the results to resources called,
ManifestIntegrityState. Integrity shield Observer also uses k8s-manifest-sigstore to verify
signatures.

3.12.2. Supported versions

The following product versions support integrity shield protection:

Red Hat OpenShift Container Platform 4.7.1 and later

Kubernetes v1.19.7 and later

gatekeeper-operator.v-.2.0

gatekeeper v3.5

See Enable integrity shield protection (Technology Preview) for more details.

3.12.3. Enable integrity shield protection (Technology Preview)

Enable integrity shield protection in an Red Hat Advanced Cluster Management for Kubernetes cluster
to protect the integrity of Kubernetes resources.

3.12.3.1. Prerequisites

The following prerequisites are required to enable integrity shield protection on a Red Hat Advanced
Cluster Management managed cluster:

Install an Red Hat Advanced Cluster Management hub cluster that has one or more managed

CHAPTER 3. MANAGE SECURITY POLICIES

115

https://github.com/sigstore/k8s-manifest-sigstore
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://kubernetes.io/
https://github.com/open-policy-agent/gatekeeper
https://github.com/open-policy-agent/gatekeeper

Install an Red Hat Advanced Cluster Management hub cluster that has one or more managed
clusters, along with cluster administrator access to the cluster to use the oc or kubectl
commands.

Install integrity shield. Before you install the integrity shield, you must install an Open Policy
Agent or gatekeeper on your cluster. Complete the following steps to install the integrity shield
operator:

a. Install the integrity shield operator in a namespace for integrity shield by running the
following command:

kubectl create -f https://raw.githubusercontent.com/open-cluster-management/integrity-
shield/master/integrity-shield-operator/deploy/integrity-shield-operator-latest.yaml

b. Install the integrity shield custom resource with the following command:

kubectl create -f https://raw.githubusercontent.com/open-cluster-management/integrity-
shield/master/integrity-shield-operator/config/samples/apis_v1_integrityshield.yaml -n
integrity-shield-operator-system

c. Integrity shield requires a pair of keys for signing and verifying signatures of resources that
need to be protected in a cluster. Set up signing and verification key pair:

Generate a new GPG key with the following command:

gpg --full-generate-key

Export your new GPG public key to a file with the following command:

gpg --export signer@enterprise.com > /tmp/pubring.gpg

Install yq to run the script for signing a Red Hat Advanced Cluster Management policy.

Enabling integrity shield protection and signing Red Hat Advanced Cluster Management include
retrieving and committing sources from the integrity-shield repository. You must install Git.

3.12.3.2. Enabling integrity shield protection

Enable the integrity shield on your Red Hat Advanced Cluster Management managed cluster by
completing the following steps:

1. Create a namespace on your hub cluster for the integrity shield. Run the following command:

oc create ns your-integrity-shield-ns

2. Deploy a verification key to a Red Hat Advanced Cluster Management managed cluster. As a
reminder, you must create signing and verification keys. Run the acm-verification-key-setup.sh
on your hub cluster to setup a verification key. Run the following command:

curl -s https://raw.githubusercontent.com/stolostron/integrity-shield/master/scripts/ACM/acm-
verification-key-setup.sh | bash -s \
 --namespace integrity-shield-operator-system \

Red Hat Advanced Cluster Management for Kubernetes 2.6 Governance

116

https://github.com/mikefarah/yq
https://github.com/git-guides/install-git
https://raw.githubusercontent.com/stolostron/integrity-shield/master/scripts/ACM/acm-verification-key-setup.sh

 --secret keyring-secret \
 --path /tmp/pubring.gpg \
 --label environment=dev | oc apply -f -

To remove the verification key, run the following command:

curl -s https://raw.githubusercontent.com/stolostron/integrity-shield/master/scripts/ACM/acm-
verification-key-setup.sh | bash -s - \
 --namespace integrity-shield-operator-system \
 --secret keyring-secret \
 --path /tmp/pubring.gpg \
 --label environment=dev | oc delete -f -

3. Create a Red Hat Advanced Cluster Management policy named policy-integrity-shield on your
hub cluster.

a. Retrieve the policy-integrity-shield policy from the policy-collection repository. Be sure
to fork the repository.

b. Configure the namespace to deploy the integrity shield on a Red Hat Advanced Cluster
Management managed cluster by updating the remediationAction parameter value, from
inform to enforce.

c. Configure a email for the signer and verification key by updating the signerConfig section.

d. Configure the PlacementRule which determines what Red Hat Advanced Cluster
Management managed clusters that integrity shield should be deployed to.

e. Sign policy-integrity-shield.yaml by running the following command:

curl -s https://raw.githubusercontent.com/stolostron/integrity-shield/master/scripts/gpg-
annotation-sign.sh | bash -s \
 signer@enterprise.com \
 policy-integrity-shield.yaml

Note: You must create a new signature whenever you change the policy and apply to other
clusters. Otherwise, the change is blocked and not applied.

See policy-integrity-shield policy for an example.

CHAPTER 3. MANAGE SECURITY POLICIES

117

https://github.com/stolostron/policy-collection/blob/main/community/CM-Configuration-Management/policy-integrity-shield.yaml
https://github.com/stolostron/policy-collection/blob/main/community/CM-Configuration-Management/policy-integrity-shield.yaml

	Table of Contents
	CHAPTER 1. RISK AND COMPLIANCE
	1.1. CERTIFICATES
	1.1.1. Red Hat Advanced Cluster Management hub cluster certificates
	1.1.1.1. Observability certificates
	1.1.1.2. Bring Your Own (BYO) observability certificate authority (CA) certificates

	1.1.2. Red Hat Advanced Cluster Management component certificates
	1.1.2.1. List hub cluster managed certificates
	1.1.2.2. Refresh hub cluster managed certificates
	1.1.2.3. Refresh a Red Hat Advanced Cluster Management webhook certificate

	1.1.3. Red Hat Advanced Cluster Management managed certificates
	1.1.3.1. Channel certificates
	1.1.3.2. Managed cluster certificates

	1.1.4. Third-party certificates
	1.1.4.1. Rotating the gatekeeper webhook certificate
	1.1.4.2. Rotating the integrity shield webhook certificate (Technology Preview)

	1.2. REPLACING THE MANAGEMENT INGRESS CERTIFICATES
	1.2.1. Prerequisites to replace management ingress certificate
	1.2.1.1. Example configuration file for generating a certificate
	1.2.1.2. OpenSSL commands for generating a certificate

	1.2.2. Replace the Bring Your Own (BYO) ingress certificate
	1.2.3. Restore the default self-signed certificate for management ingress

	CHAPTER 2. GOVERNANCE
	2.1. GOVERNANCE ARCHITECTURE
	2.2. POLICY OVERVIEW
	2.2.1. Policy YAML structure
	2.2.2. Policy YAML table
	2.2.3. Policy sample file
	2.2.4. Placement YAML sample file

	2.3. POLICY CONTROLLERS
	2.3.1. Kubernetes configuration policy controller
	2.3.1.1. Configuration policy sample
	2.3.1.2. Configuration policy YAML table
	2.3.1.3. Configure the configuration policy controller

	2.3.2. Certificate policy controller
	2.3.2.1. Certificate policy controller YAML structure
	2.3.2.2. Certificate policy sample

	2.3.3. IAM policy controller
	2.3.3.1. IAM policy YAML structure
	2.3.3.2. IAM policy YAML table
	2.3.3.3. IAM policy sample

	2.3.4. Policy set controller
	2.3.4.1. Policy set YAML structure
	2.3.4.2. Policy set table
	2.3.4.3. Policy set sample

	2.4. INTEGRATE THIRD-PARTY POLICY CONTROLLERS
	2.4.1. Integrating gatekeeper constraints and constraint templates
	2.4.2. Policy generator
	2.4.2.1. Policy generator capabilities
	2.4.2.2. Policy generator configuration structure
	2.4.2.3. Generating a policy to install an Operator
	2.4.2.4. Install the policy generator on OpenShift GitOps (ArgoCD)
	2.4.2.5. Policy generator configuration reference table

	2.5. SUPPORTED POLICIES
	2.5.1. Table of sample configuration policies
	2.5.2. Support matrix for out-of-box policies
	2.5.3. Memory usage policy
	2.5.3.1. Memory usage policy YAML structure
	2.5.3.2. Memory usage policy table
	2.5.3.3. Memory usage policy sample

	2.5.4. Namespace policy
	2.5.4.1. Namespace policy YAML structure
	2.5.4.2. Namespace policy YAML table
	2.5.4.3. Namespace policy sample

	2.5.5. Image vulnerability policy
	2.5.5.1. Image vulnerability policy YAML structure
	2.5.5.2. Image vulnerability policy sample

	2.5.6. Pod policy
	2.5.6.1. Pod policy YAML structure
	2.5.6.2. Pod policy table
	2.5.6.3. Pod policy sample

	2.5.7. Pod security policy (Deprecated)
	2.5.7.1. Pod security policy YAML structure
	2.5.7.2. Pod security policy table
	2.5.7.3. Pod security policy sample

	2.5.8. Role policy
	2.5.8.1. Role policy YAML structure
	2.5.8.2. Role policy table
	2.5.8.3. Role policy sample

	2.5.9. Role binding policy
	2.5.9.1. Role binding policy YAML structure
	2.5.9.2. Role binding policy table
	2.5.9.3. Role binding policy sample

	2.5.10. Security Context Constraints policy
	2.5.10.1. SCC policy YAML structure
	2.5.10.2. SCC policy table
	2.5.10.3. SCC policy sample

	2.5.11. ETCD encryption policy
	2.5.11.1. ETCD encryption policy YAML structure
	2.5.11.2. ETCD encryption policy table
	2.5.11.3. ETCD encryption policy sample

	2.5.12. Compliance operator policy
	2.5.12.1. Compliance operator resources

	2.5.13. E8 scan policy
	2.5.13.1. E8 scan policy resources

	2.5.14. OpenShift CIS scan policy
	2.5.14.1. OpenShift CIS resources

	CHAPTER 3. MANAGE SECURITY POLICIES
	3.1. GOVERNANCE PAGE
	3.2. GOVERNANCE AUTOMATION CONFIGURATION
	3.3. CONFIGURING ANSIBLE TOWER FOR GOVERNANCE
	3.3.1. Prerequisites
	3.3.2. Creating a policy violation automation from the console
	3.3.3. Creating a policy violation automation from the CLI

	3.4. DEPLOY POLICIES USING GITOPS
	3.4.1. Customizing your local repository
	3.4.2. Committing to your local repository
	3.4.3. Deploying policies to your cluster
	3.4.4. Verifying GitOps policy deployments from the console
	3.4.4.1. Verifying GitOps policy deployments from the CLI

	3.5. SUPPORT FOR TEMPLATES IN CONFIGURATION POLICIES
	3.5.1. Prerequisite
	3.5.2. Template functions
	3.5.2.1. fromSecret function
	3.5.2.2. fromConfigmap function
	3.5.2.3. fromClusterClaim function
	3.5.2.4. lookup function
	3.5.2.5. base64enc function
	3.5.2.6. base64dec function
	3.5.2.7. indent function
	3.5.2.8. autoindent function
	3.5.2.9. toInt function
	3.5.2.10. toBool function
	3.5.2.11. protect function
	3.5.2.12. toLiteral function
	3.5.2.13. Open source community functions

	3.5.3. Support for hub cluster templates in configuration policies
	3.5.3.1. Template processing
	3.5.3.2. Special annotation for reprocessing
	3.5.3.3. Bypass template processing
	3.5.3.4. Comparison of hub cluster and managed cluster templates

	3.6. GOVERNANCE METRIC
	3.6.1. Metric overview
	3.6.1.1. Metric: policy_governance_info
	3.6.1.2. Metric: config_policies_evaluation_duration_

	3.7. MANAGING SECURITY POLICIES
	3.7.1. Creating a security policy
	3.7.1.1. Creating a security policy from the command line interface
	3.7.1.2. Creating a cluster security policy from the console
	3.7.1.3. Creating policy sets from the CLI
	3.7.1.4. Creating policy sets from the console

	3.7.2. Updating security policies
	3.7.2.1. Adding a policy to a policy set from the CLI
	3.7.2.2. Adding a policy to a policy set from the console
	3.7.2.3. Disabling security policies

	3.7.3. Deleting a security policy
	3.7.3.1. Deleting policy sets from the console

	3.7.4. Cleaning up resources that are created by policies

	3.8. MANAGING CONFIGURATION POLICIES
	3.8.1. Creating a configuration policy
	3.8.1.1. Creating a configuration policy from the CLI
	3.8.1.2. Viewing your configuration policy from the CLI
	3.8.1.3. Creating a configuration policy from the console
	3.8.1.4. Viewing your configuration policy from the console

	3.8.2. Updating configuration policies
	3.8.2.1. Disabling configuration policies

	3.8.3. Deleting a configuration policy

	3.9. MANAGING GATEKEEPER OPERATOR POLICIES
	3.9.1. Installing gatekeeper using a gatekeeper operator policy (Deprecated)
	3.9.2. Creating a gatekeeper policy from the console
	3.9.2.1. Gatekeeper operator CR

	3.9.3. Upgrading gatekeeper and the gatekeeper operator
	3.9.4. Updating gatekeeper operator policy
	3.9.4.1. Viewing gatekeeper operator policy from the console
	3.9.4.2. Disabling gatekeeper operator policy

	3.9.5. Deleting gatekeeper operator policy
	3.9.6. Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

	3.10. MANAGING OPERATOR POLICIES IN DISCONNECTED ENVIRONMENTS
	3.11. SECURE THE HUB CLUSTER
	3.12. INTEGRITY SHIELD PROTECTION (TECHNOLOGY PREVIEW)
	3.12.1. Integrity shield architecture
	3.12.2. Supported versions
	3.12.3. Enable integrity shield protection (Technology Preview)
	3.12.3.1. Prerequisites
	3.12.3.2. Enabling integrity shield protection

