Chapter 1. Backup and restore

The cluster backup and restore operator runs on the hub cluster and provides disaster recovery solutions for Red Hat Advanced Cluster Management for Kubernetes hub cluster failures. When the hub cluster fails, some features like policy configuration-based alerting or cluster updates stop working, even if all managed clusters still work fine. Once the hub cluster is unavailable, you need a recovery plan to decide if recovery is possible, or if the data needs to be recovered from a newly deployed hub cluster.

Learn how to configure an active-passive hub cluster configuration, where the initial hub cluster backs up data and one, or more passive hub clusters are on stand-by to control the managed clusters when the active cluster becomes unavailable.

Also learn more on how the backup and restore component sends alerts using a policy that is configured to let the administrator know when the main hub cluster is unavailable, and a restore operation might be required. The same policy alerts the administrator if the backup solution is not functioning as expected, even if the main hub cluster is active and managing the clusters. It reports any issues with the backup data not being produced, or any other issues that can result in backup data and an unavailable hub cluster.

The cluster backup and restore operator depends on the OADP Operator to install Velero, and to create a connection from the hub cluster to the backup storage location where the data is stored. Velero is the component that runs the backup and restore operations. The cluster backup and restore operator solution provides backup and restore support for all Red Hat Advanced Cluster Management hub cluster resources, including managed clusters, applications, policies, and bare metal assets.

The cluster backup and restore operator supports backups of any third-party resources that extend the hub cluster installation. With this backup solution, you can define cron-based backup schedules which run at specified time intervals. When the hub cluster goes down, a new hub cluster can be deployed and the backed up data is moved to the new hub cluster.

Continue reading the following topics to learn more about the backup and restore operator:

1.1. Active passive configuration

In an active passive configuration, there is one active hub cluster and passive hub clusters. An active hub cluster is also considered the primary hub cluster, which manages clusters and backs up resources at defined time intervals, using the BackupSchedule.cluster.open-cluster-management.io resource.

Passive hub clusters continuously retrieve the latest backups and restore the passive data. The passive hubs use the Restore.cluster.open-cluster-management.io resource to restore passive data from the primary hub cluster when new backup data is available. These hub clusters are on standby to become a primary hub when the primary hub cluster goes down.

Active and passive hub clusters are connected to the same storage location, where the primary hub cluster backs up data for passive hub clusters to access the primary hub cluster backups. For more details on how to set up this automatic restore configuration, see the Restoring passive resources while checking for backups>> section.

In the following diagram, the active hub cluster manages the local clusters and backs up the hub cluster data at regular intervals:

Active passive configration diagram

The passive hub cluster restores this data, except for the managed cluster activation data, which moves the managed clusters to the passive hub cluster. The passive hub clusters can restore the passive data continuously, see the Restoring passive resources while checking for backups section. Passive hub clusters can restore passive data as a one-time operation, see Restoring passive resources section for more details.

1.2. Disaster recovery

When the primary hub cluster fails, the administrator chooses a passive hub cluster to take over the managed clusters. In the following image, the administrator decides to use Hub cluster N as the new primary hub cluster:

Disaster recovery diagram

Hub cluster N restores the managed cluster activation data. At this point, the managed clusters connect with Hub cluster N. The administrator activates a backup on the new primary hub cluster, Hub cluster N, by creating a BackupSchedule.cluster.open-cluster-management.io resource, and storing the backups at the same storage location as the initial primary hub cluster.

All other passive hub clusters now restore passive data using the backup data created by the new primary hub cluster. Hub N is now the primary hub cluster, managing clusters and backing up data.

Notes:

  • Process 1 in the previous diagram is not automated because the administrator must decide if the primary hub cluster has failed and needs to be replaced, or if there is a network communication error between the hub cluster and the managed clusters. The administrator also decides which passive hub cluster becomes the primary hub cluster. The policy integration with Ansible jobs can help you automate this step by making an Ansible job run when the backup policy reports backup errors.
  • Process 2 in the previous diagram is manual. If the administrator does not create backups from the new primary hub cluster, the administrator is notified by using the backups that are actively running as a cron job.

1.3. Backup and restore operator architecture

The operator defines the BackupSchedule.cluster.open-cluster-management.io resource, which is used to set up Red Hat Advanced Cluster Management backup schedules, and restore.cluster.open-cluster-management.io resource, which is used to process and restore these backups. The operator creates corresponding Velero resources, and defines the options needed to backup remote clusters and any other hub cluster resources that need to be restored. View the following diagram:

Backup and restore architecture diagram

1.3.1. Resources that are backed up

The cluster backup and restore operator solution provides backup and restore support for all hub cluster resources like managed clusters, applications, policies, and bare metal assets. You can use the solution to back up any third-party resources extending the basic hub cluster installation. With this backup solution, you can define a cron-based backup schedule, which runs at specified time intervals and continuously backs up the latest version of the hub cluster content.

When the hub cluster needs to be replaced or is in a disaster scenario when the hub cluster fails, a new hub cluster can be deployed and backed up data is moved to the new hub cluster.

View the following ordered list of the cluster backup and restore process for identifying backup data:

  • Exclude all resources in the MultiClusterHub namespace. This is to avoid backing up installation resources that are linked to the current hub cluster identity and should not be backed up.
  • Backup all CRDs with an API version suffixed by .open-cluster-management.io. This suffix indicates that all Red Hat Advanced Cluster Management resources are backed up.
  • Backup all CRDs from the following API groups: argoproj.io, app.k8s.io, core.observatorium.io, hive.openshift.io.
  • Exclude all CRDs from the following API groups: admission.cluster.open-cluster-management.io, admission.work.open-cluster-management.io, internal.open-cluster-management.io, operator.open-cluster-management.io, work.open-cluster-management.io, search.open-cluster-management.io, admission.hive.openshift.io, velero.io.
  • Exclude the following CRDs that are a part of the included API groups, but are either not needed or are being recreated by owner-resources, which are also backed up: clustermanagementaddon, observabilityaddon, applicationmanager, certpolicycontroller, iampolicycontroller, policycontroller, searchcollector, workmanager, backupschedule, restore, clusterclaim.cluster.open-cluster-management.io.
  • Backup secrets and ConfigMaps with one of the following labels: cluster.open-cluster-management.io/type, hive.openshift.io/secret-type, cluster.open-cluster-management.io/backup.
  • Use the cluster.open-cluster-management.io/backup label for any other resources that you want to be backed up and are not included in the previously mentioned criteria. See the following example:

    apiVersion: my.group/v1alpha1
    kind: MyResource
     metadata:
       labels:
        cluster.open-cluster-management.io/backup: ""

    Note: Secrets used by the hive.openshift.io.ClusterDeployment resource need to be backed up, and are automatically annotated with the cluster.open-cluster-management.io/backup label only when the cluster is created using the console. If the Hive cluster is deployed using GitOps instead, the cluster.open-cluster-management.io/backup label must be manually added to the secrets used by the ClusterDeployment.

  • Exclude specific resources that you do not want backed up. For example, see the following example to exclude Velero resources from the backup process:

    apiVersion: my.group/v1alpha1
    kind: MyResource
     metadata:
      labels:
        velero.io/exclude-from-backup: "true"

1.3.2. Resources restored at managed clusters activation time

When you add the cluster.open-cluster-management.io/backup label to a resource, the resource is automatically backed up in the acm-resources-generic-schedule backup. You must set the label value to cluster-activation if any of the resources need to be restored, only after the managed clusters are moved to the new hub cluster and when the veleroManagedClustersBackupName:latest is used on the restored resource. This ensures the resource is not restored unless the managed cluster activation is called. View the following example:

apiVersion: my.group/v1alpha1
kind: MyResource
 metadata:
  labels:
    cluster.open-cluster-management.io/backup: cluster-activation

Aside from the activation data resources that are identified by using the cluster.open-cluster-management.io/backup: cluster-activation label and stored by the acm-resources-generic-schedule backup, the cluster backup and restore operator includes a few resources in the activation set, by default. The following resources are backed up by the acm-managed-clusters-schedule backup:

  • managedcluster.cluster.open-cluster-management.io
  • managedcluster.clusterview.open-cluster-management.io
  • klusterletaddonconfig.agent.open-cluster-management.io
  • managedclusteraddon.addon.open-cluster-management.io
  • managedclusterset.cluster.open-cluster-management.io
  • managedclusterset.clusterview.open-cluster-management.io
  • managedclustersetbinding.cluster.open-cluster-management.io
  • clusterpool.hive.openshift.io
  • clusterclaim.hive.openshift.io
  • clustercurator.cluster.open-cluster-management.io

1.3.3. Resource requests and limits customization

When Velero is initially installed, Velero pod is set to the default CPU and memory limits as defined in the following sample:

resources:
 limits:
   cpu: "1"
   memory: 256Mi
 requests:
   cpu: 500m
   memory: 128Mi

The limits from the previous sample work well with some scenarios, but might need to be updated when your cluster backs up a large number of resources. For instance, when back up is run on a hub cluster that manages 2000 clusters, then the Velero pod crashes due to the out-of-memory error (OOM). The following configuration allows for the backup to complete for this scenario:

  limits:
    cpu: "2"
    memory: 1Gi
  requests:
    cpu: 500m
    memory: 256Mi

To update the limits and requests for the Velero pod resource, you need to update the DataProtectionApplication resource and insert the resourceAllocation template for the Velero pod. View the following sample:

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: velero
  namespace: open-cluster-management-backup
spec:
...
  configuration:
...
    velero:
      podConfig:
        resourceAllocations:
          limits:
            cpu: "2"
            memory: 1Gi
          requests:
            cpu: 500m
            memory: 256Mi

Refer to the Velero resource requests and limits customization to find out more about the DataProtectionApplication parameters.

1.4. Managed cluster activation data

Managed cluster activation data or other activation data, is a backup resource. When the activation data is restored on a new hub cluster, managed clusters are then being actively managed by the hub cluster where the restore is run. Activation data resources are stored by the managed clusters backup and by the resource-generic backup, when you use the cluster.open-cluster-management.io/backup: cluster-activation label.

See Managing the backup and restore operator to learn how you can use the operator.

1.5. Preparing clusters before restoring activation data

Before restoring activation data on the new hub cluster, complete the following steps to avoid data corruption or cluster loss:

  1. Shut down the primary cluster.

    See Shutting down the primary cluster for more information.

  2. If you want to use an existing managed cluster as the restore hub, set disableHubSelfManagement to true in the MultiClusterHub.

    For more information, see the disableHubSelfManagement topic.

    See the following example where spec.disableHubSelfManagement is set to true:

    apiVersion: operator.open-cluster-management.io/v1
    kind: MultiClusterHub
    metadata:
      name: multiclusterhub
      namespace: <namespace>
    spec:
      disableHubSelfManagement: true

Note: If the self managing option is not disabled on the restore hub cluster before the activation data is moved to the restore hub cluster, the local-cluster klusterlet and the klusterlet in the managed cluster namespace conflict. As a result, the restore hub cluster is managed by itself by using the managed cluster and by using the restored managed cluster. If you detach the managed cluster as part of the detach operation, the managed cluster receives a deprovision request, which results in the restore hub cluster rmeoving itself.

1.6. Managing the backup and restore operator

The cluster backup and restore operator is not installed automatically. Enable the backup component by setting the cluster-backup parameter to true, in the MultiClusterHub resource. When enabled, the cluster backup and restore operator is installed in the open-cluster-management-backup namespace. When you install the cluster backup operator, the OADP Operator is also automatically installed in the same namespace as the cluster backup and restore operator.

Notes:

  • The OADP Operator 1.0 no longer supports multi-arch builds and only produces x86_64 builds for official release. As a result, if you are using an architecture other than x86_64, the OADP Operator installed by the backup component must be replaced with the correct version. To replace the version, uninstall the OADP Operator and find the operator matching your architecture, then install it.
  • If you have previously installed and used the OADP Operator on the hub cluster, in a namespace different from the backup component namespace, uninstall this version since the backup component works now with OADP installed in the component namespace. Use the same storage location for the DataProtectionApplication resource owned by the OADP Operator installed with the backup component; it accesses the same backup data as the previous operator. Velero backup resources are now loaded within the new OADP Operator namespace on this hub cluster.

Velero is installed with the OADP Operator on the Red Hat Advanced Cluster Management hub cluster; Velero is used to backup and restore Red Hat Advanced Cluster Management hub cluster resources.

For a list of supported storage providers for Velero, see S3-Compatible object store providers.

1.6.1. Prerequisites

You must meet the following prerequisites to enable and use the backup and restore operator:

  • Be sure to complete the steps to Create credentials secret for the cloud storage where the backups are saved. The secret resource must be created in the OADP operator namespace, which is located in the backup component namespace.
  • For both active and passive hub clusters:

    • From your Red Hat OpenShift Container Platform cluster, install the Red Hat Advanced Cluster Management for Kubernetes operator version 2.6.x. The MultiClusterHub resource is automatically created when you install Red Hat Advanced Cluster Management, and displays the following status: Running.
    • The cluster backup and restore operator must be installed manually. Enable the cluster backup and restore operator (cluster-backup). Edit the MultiClusterHub resource by setting the cluster-backup parameter to true. This installs the OADP operator in the same namespace with the backup component.
  • For passive hub clusters:

    • Before you run the restore operation on the passive hub cluster, you must manually configure the hub cluster and install all operators on the active hub cluster, and in the same namespace as the active hub cluster.
    • Ensure that the Red Hat Advanced Cluster Management operator is installed in the same namespace as the initial hub cluster. Then create the DataProtectionApplication resource and connect to the same storage location where the initial hub cluster backed up data.
  • Use the created secret when you create a DataProtectionApplication resource.

    Complete the following steps to create an instance of the DataProtectionApplication resource:

    1. From the Red Hat OpenShift Container Platform console, select Operators > Installed Operators.
    2. Click Create instance under DataProtectionApplication.
    3. Create the Velero instance by selecting configurations using the {ocp-short) console or by using a YAML file as mentioned in the DataProtectionApplication example.
    4. Set the DataProtectionApplication namespace to open-cluster-management-backup.
    5. Set the specification (spec:) values appropriately for the DataProtectionApplication resource. Then click Create.

      If you intend on using the default backup storage location, set the following value, default: true in the backupStorageLocations section. View the following DataProtectionApplication resource sample:

      apiVersion: oadp.openshift.io/v1alpha1
      kind: DataProtectionApplication
      metadata:
        name: dpa-sample
      spec:
        configuration:
          velero:
            defaultPlugins:
            - openshift
            - aws
          restic:
            enable: true
        backupLocations:
          - name: default
            velero:
              provider: aws
              default: true
              objectStorage:
                bucket: my-bucket
                prefix: my-prefix
              config:
                region: us-east-1
                profile: "default"
              credential:
                name: cloud-credentials
                key: cloud
        snapshotLocations:
          - name: default
            velero:
              provider: aws
              config:
                region: us-west-2
                profile: "default"

      See an example to create the DataProtectionApplication resource.

  • Before you run the restore operation, verify that other operators, such as Ansible Automation Platform, Red Hat OpenShift Container Platform GitOps, or certificate manager are installed. This ensures that the new hub cluster is configured the same way as the initial hub cluster.
  • The passive hub cluster must use the same namespace names as the initial hub cluster when you install the backup and restore operator, and any other operators that are configured on the previous hub cluster.

1.6.2. Enabling the backup and restore operator

The cluster backup and restore operator can be enabled when the MultiClusterHub resource is created for the first time. The cluster-backup parameter is set to true. When the operator is enabled, the operator resources are installed.

If the MultiClusterHub resource is already created, you can install or uninstall the cluster backup operator by editing the MultiClusterHub resource. Set cluster-backup to false, if you want to uninstall the cluster backup operator.

When the backup and restore operator is enabled, your MultiClusterHub resource might resemble the following YAML file:

apiVersion: operator.open-cluster-management.io/v1
  kind: MultiClusterHub
  metadata:
    name: multiclusterhub
    namespace: open-cluster-management
  spec:
    availabilityConfig: High
    enableClusterBackup: false
    imagePullSecret: multiclusterhub-operator-pull-secret
    ingress:
      sslCiphers:
        - ECDHE-ECDSA-AES256-GCM-SHA384
        - ECDHE-RSA-AES256-GCM-SHA384
        - ECDHE-ECDSA-AES128-GCM-SHA256
        - ECDHE-RSA-AES128-GCM-SHA256
    overrides:
      components:
        - enabled: true
          name: multiclusterhub-repo
        - enabled: true
          name: search
        - enabled: true
          name: management-ingress
        - enabled: true
          name: console
        - enabled: true
          name: insights
        - enabled: true
          name: grc
        - enabled: true
          name: cluster-lifecycle
        - enabled: true
          name: volsync
        - enabled: true
          name: multicluster-engine
        - enabled: true <<<<<<<<
          name: cluster-backup
    separateCertificateManagement: false

1.6.3. Using the backup and restore operator

Complete the following steps to schedule and restore backups:

  1. Use the backup and restore operator, backupschedule.cluster.open-cluster-management.io, to create a backup schedule and use the restore.cluster.open-cluster-management.io resources to restore a backup.
  2. Run the following command to create a backupschedule.cluster.open-cluster-management.io resource:

    kubectl create -f cluster_v1beta1_backupschedule.yaml

    Your cluster_v1beta1_backupschedule.yaml resource might resemble the following file:

    apiVersion: cluster.open-cluster-management.io/v1beta1
    kind: BackupSchedule
    metadata:
      name: schedule-acm
      namespace: open-cluster-management-backup
    spec:
      veleroSchedule: 0 */2 * * * # Create a backup every 2 hours
      veleroTtl: 120h # deletes scheduled backups after 120h; optional, if not specified, the maximum default value set by velero is used - 720h

    View the following descriptions of the backupschedule.cluster.open-cluster-management.io spec properties:

    • veleroSchedule is a required property and defines a cron job for scheduling the backups.
    • veleroTtl is an optional property and defines the expiration time for a scheduled backup resource. If not specified, the maximum default value set by Velero is used, which is 720h.
  3. Check the status of your backupschedule.cluster.open-cluster-management.io resource, which displays the definition for the three schedule.velero.io resources. Run the following command:

    oc get BackupSchedule -n open-cluster-management-backup
  4. As a reminder, the restore operation is run on a different hub cluster for restore scenarios. To initiate a restore operation, create a restore.cluster.open-cluster-management.io resource on the hub cluster where you want to restore backups.

    Note: When you restore a backup on a new hub cluster, make sure that the previous hub cluster, where the backup was created, is shut down. If it is running, the previous hub cluster tries to reimport the managed clusters as soon as the managed cluster reconciliation finds that the managed clusters are no longer available.

    You can use the cluster backup and restore operator, backupschedule.cluster.open-cluster-management.io and restore.cluster.open-cluster-management.io resources, to create a backup or restore resource. See the cluster-backup-operator samples.

  5. Run the following command to create a restore.cluster.open-cluster-management.io resource:

    kubectl create -f cluster_v1beta1_backupschedule.yaml

    Your resource might resemble the following file:

    apiVersion: cluster.open-cluster-management.io/v1beta1
    kind: Restore
    metadata:
      name: restore-acm
      namespace: open-cluster-management-backup
    spec:
      veleroManagedClustersBackupName: latest
      veleroCredentialsBackupName: latest
      veleroResourcesBackupName: latest
  6. View the Velero Restore resource by running the following command:

    oc get restore.velero.io -n open-cluster-management-backup
  7. View the Red Hat Advanced Cluster Management Restore events by running the following command:

    oc describe restore.cluster.open-cluster-management.io -n open-cluster-management-backup

For descriptions of the parameters and samples of Restore YAML resources, see the Restoring a backup section.

1.6.4. Extending backup data

You can backup third-party resources with cluster backup and restore by adding the cluster.open-cluster-management.io/backup label to the resources. The value of the label can be any string, including an empty string. Use a value that can help you identify the component that you are backing up. For example, use the cluster.open-cluster-management.io/backup: idp label if the components are provided by an IDP solution.

Note: Use the cluster-activation value for the cluster.open-cluster-management.io/backup label if you want the resources to be restored when the managed clusters activation resources are restored. Restoring the managed clusters activation resources result in managed clusters being actively managed by the hub cluster, where the restore was started.

1.6.5. Scheduling a cluster backup

A backup schedule is activated when you create the backupschedule.cluster.open-cluster-management.io resource. View the following backupschedule.cluster.open-cluster-management.io sample:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: BackupSchedule
metadata:
  name: schedule-acm
  namespace: open-cluster-management-backup
spec:
  veleroSchedule: 0 */2 * * *
  veleroTtl: 120h

After you create a backupschedule.cluster.open-cluster-management.io resource, run the following command to get the status of the scheduled cluster backups:

oc get BackupSchedule -n open-cluster-management-backup

The <oadp-operator-ns> parameter in the previous command is the namespace where the BackupSchedule is created, which is the same namespace where the OADP Operator is installed. The backupschedule.cluster.open-cluster-management.io resource creates six schedule.velero.io resources, which are used to generate backups. Run the following command to view the list of the backups that are scheduled:

os get schedules -A | grep acm

Resources are separately backed up in the following groups:

  • Credentials backup, which is a backup file that stores Hive credentials, Red Hat Advanced Cluster Management, and user-created credentials and ConfigMaps.
  • Resources backup, which contains one backup for the Red Hat Advanced Cluster Management resources and one for generic resources. These resources use the following label, cluster.open-cluster-management.io/backup.
  • Managed clusters backup, which contains only resources that activate the managed cluster connection to the hub cluster, where the backup is restored.

Note: The resources backup file contains managed cluster-specific resources, but does not contain the subset of resources that connect managed clusters to the hub cluster. The resources that connect managed clusters are called activation resources and are contained in the managed clusters backup. When you restore backups only for the credentials and resources backup on a new hub cluster, the new hub cluster shows all managed clusters created with the Hive API in a detached state. However, the managed clusters that are imported on the primary hub cluster using the import operation appear only when the activation data is restored on the passive hub cluster. At this time, the managed clusters are still connected to the original hub cluster that created the backup files.

When the activation data is restored, only managed clusters created using the Hive API are automatically connected with the new hub cluster. All other managed clusters appear in a Pending state and must be manually reattached to the new cluster.

1.6.6. Restoring a backup

In a usual restore scenario, the hub cluster where the backups are run becomes unavailable, and the backed up data needs to be moved to a new hub cluster. This is done by running the cluster restore operation on the new hub cluster. In this case, the restore operation runs on a different hub cluster than the one where the backup is created.

There are also cases where you want to restore the data on the same hub cluster where the backup was collected, so the data from a previous snapshot can be recovered. In this case, both restore and backup operations are run on the same hub cluster.

After you create a restore.cluster.open-cluster-management.io resource on the hub cluster, you can run the following command to get the status of the restore operation: oc get restore -n open-cluster-management-backup. You should also be able to verify that the backed up resources that are contained by the backup file are created.

Note: The restore.cluster.open-cluster-management.io resource runs once, unless you use the syncRestoreWithNewBackups option and set it to true, as mentioned in the Restore passive resources section. If you want to run the same restore operation again after the restore operation is complete, you must create a new restore.cluster.open-cluster-management.io resource with the same spec options.

The restore operation is used to restore all three backup types that are created by the backup operation. However, you can choose to install only a certain type of backup (only managed clusters, only user credentials, or only hub cluster resources).

The restore defines the following three required spec properties, where the restore logic is defined for the types of backed up files:

  • veleroManagedClustersBackupName is used to define the restore option for the managed clusters activation resources.
  • veleroCredentialsBackupName is used to define the restore option for the user credentials.
  • veleroResourcesBackupName is used to define the restore option for the hub cluster resources (Applications, Policy, and other hub cluster resources like managed cluster passive data).

    The valid options for the previously mentioned properties are following values:

    • latest - This property restores the last available backup file for this type of backup.
    • skip - This property does not attempt to restore this type of backup with the current restore operation.
    • <backup_name> - This property restores the specified backup pointing to it by name.

The name of the restore.velero.io resources that are created by the restore.cluster.open-cluster-management.io is generated using the following template rule, <restore.cluster.open-cluster-management.io name>-<velero-backup-resource-name>. View the following descriptions:

  • restore.cluster.open-cluster-management.io name is the name of the current restore.cluster.open-cluster-management.io resource, which initiates the restore.
  • velero-backup-resource-name is the name of the Velero backup file that is used for restoring the data. For example, the restore.cluster.open-cluster-management.io resource named restore-acm creates restore.velero.io restore resources. View the following examples for the format:

    • restore-acm-acm-managed-clusters-schedule-20210902205438 is used for restoring managed cluster activation data backups. In this sample, the backup.velero.io backup name used to restore the resource is acm-managed-clusters-schedule-20210902205438.
    • restore-acm-acm-credentials-schedule-20210902206789 is used for restoring credential backups. In this sample, the backup.velero.io backup name used to restore the resource is acm-managed-clusters-schedule-20210902206789.
    • restore-acm-acm-resources-schedule-20210902201234 is used for restoring application, policy, and other hub cluster resources like managed cluster passive data backups. In this sample, the backup.velero.io backup name used to restore the resource is acm-managed-clusters-schedule-20210902201234.

Note: If skip is used for a backup type, restore.velero.io is not created.

View the following YAML sample of the cluster Restore resource. In this sample, all three types of backed up files are being restored, using the latest available backed up files:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Restore
metadata:
  name: restore-acm
  namespace: open-cluster-management-backup
spec:
  veleroManagedClustersBackupName: latest
  veleroCredentialsBackupName: latest
  veleroResourcesBackupName: latest

Note: Only managed clusters created by the Hive API are automatically connected with the new hub cluster when the acm-managed-clusters backup from the managed clusters backup is restored on another hub cluster. All other managed clusters remain in the Pending Import state and must be imported back onto the new hub cluster. For more information, see Restoring imported managed clusters (Technology Preview).

1.6.6.1. Preparing the new hub cluster

Before running the restore operation on a new hub cluster, you need to manually configure the hub cluster and install the same operators as on the initial hub cluster. You must install the Red Hat Advanced Cluster Management operator in the same namespace as the initial hub cluster, create the DataProtectionApplication resource, and then connect to the same storage location where the initial hub cluster previously backed up data.

Use the same configuration as on the initial hub cluster for the MultiClusterHub resource created by the Red Hat Advanced Cluster Management operator, including any changes to the MultiClusterEngine resource.

For example, if the initial hub cluster has any other operators installed, such as Ansible Automation Platform, Red Hat OpenShift GitOps, cert-manager, you have to install them before running the restore operation. This ensures that the new hub cluster is configured in the same way as the initial hub cluster.

1.6.6.2. Cleaning the hub cluster before restore

Velero currently skips existing backed up resources on the hub cluster. This limits the scenarios that can be used when you restore hub cluster data on a new hub cluster. If the new hub cluster is used and the restore is applied more than once, the hub cluster is not recommended to use as a passive configuration unless the data is cleaned before restore is ran. The data on the new hub cluster is not reflective of the data available with the restored resources.

When a restore.cluster.open-cluster-management.io resource is created, the cluster backup and restore operator runs a set of steps to prepare for restore by cleaning up the hub cluster before the Velero restore begins.

The cleanup option uses the cleanupBeforeRestore property to identify the subset of objects to clean up. There are three options you can set for this clean up:

  • None: No clean up necessary, just begin Velero restore. This is to be used on a brand new hub cluster.
  • CleanupRestored: Clean up all resources created by a previous Red Hat Advanced Cluster Management restore. It is recommended to use this property because it is less intrusive than the CleanupAll property.
  • CleanupAll: Clean up all resources on the hub cluster, which can be part of an Red Hat Advanced Cluster Management backup, even if the resources are not created as a result of a restore operation. This is to be used when extra content has been created on the hub cluster, which requires clean up. Use this option with caution because this option cleans up resources on the hub cluster created by the user, not by a previous backup. It is strongly recommended to use the CleanupRestored option, and to refrain from manually updating hub cluster content when the hub cluster is designated as a passive cluster for a disaster scenario. Use the CleanupAll option as a last alternative.

Notes:

  • Velero sets the status, PartiallyFailed, for a velero restore resource if the restored backup has no resources. This means that a restore.cluster.open-cluster-management.io resource can be in PartiallyFailed status if any of the created restore.velero.io resources do not restore any resources because the corresponding backup is empty.
  • The restore.cluster.open-cluster-management.io resource is run once, unless you use the syncRestoreWithNewBackups:true to keep restoring passive data when new backups are available. For this case, follow the restore passive with sync sample. See Restoring passive resources while checking for backups. After the restore operation is complete and you want to run another restore operation on the same hub cluster, you have to create a new restore.cluster.open-cluster-management.io resource.
  • Although you can create multiple restore.cluster.open-cluster-management.io resources, only one can be active at any moment in time.

1.6.6.3. Restoring passive resources while checking for backups

Use the restore-passive-sync sample to restore passive data, while continuing to check if new backups are available and restore them automatically. To automatically restore new backups, you must set the syncRestoreWithNewBackups parameter to true. You must also only restore the latest passive data. You can find the sample example at the end of this section.

Set the VeleroResourcesBackupName and VeleroCredentialsBackupName parameters to latest, and the VeleroManagedClustersBackupName parameter to skip. Immediately after the VeleroManagedClustersBackupName is set to latest, the managed clusters are activated on the new hub cluster and is now the primary hub cluster.

When the activated managed cluster becomes the primary hub cluster, the restore resource is set to Finished and the syncRestoreWithNewBackups is ignored, even if set to true.

By default, the controler checks for new backups every 30 minutes when the syncRestoreWithNewBackups is set to true. If new backups are found, it restores the backed up resources. You can change the duration of the check by updating the restoreSyncInterval parameter.

For example, see the following resource that checks for backups every 10 minutes:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Restore
metadata:
  name: restore-acm-passive-sync
  namespace: open-cluster-management-backup
spec:
  syncRestoreWithNewBackups: true # restore again when new backups are available
  restoreSyncInterval: 10m # check for new backups every 10 minutes
  cleanupBeforeRestore: CleanupRestored
  veleroManagedClustersBackupName: skip
  veleroCredentialsBackupName: latest
  veleroResourcesBackupName: latest

1.6.6.4. Restoring passive resources

Use the restore-acm-passive sample to restore hub cluster resources in a passive configuration. Passive data is backup data such as secrets, ConfigMaps, applications, policies, and all the managed cluster custom resources, which do not activate a connection between managed clusters and hub clusters. The backup resources are restored on the hub cluster by the credentials backup and restore resources.

See the following sample:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Restore
metadata:
  name: restore-acm-passive
  namespace: open-cluster-management-backup
spec:
  cleanupBeforeRestore: CleanupRestored
  veleroManagedClustersBackupName: skip
  veleroCredentialsBackupName: latest
  veleroResourcesBackupName: latest

1.6.6.5. Restoring activation resources

Use the restore-acm-passive-activate sample when you want the hub cluster to manage the clusters. In this case it is assumed that the other data has been restored already on the hub cluster that using the passive resource.

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Restore
metadata:
  name: restore-acm-passive-activate
  namespace: open-cluster-management-backup
spec:
  cleanupBeforeRestore: CleanupRestored
  veleroManagedClustersBackupName: latest
  veleroCredentialsBackupName: skip
  veleroResourcesBackupName: skip

You have some options to restore activation resources, depending on how you restored the passive resources:

  • If you used the restore-acm-passive-sync cluster.open-cluster-management.io resource as documented in the Restore passive resources while checking for backups to restore passive data section, update the veleroManagedClustersBackupName value to latest on this resource. As a result, the managed cluster resources and the restore-acm-passive-sync resource are restored.
  • If you restored the passive resources as a one time operation, or did not restore any resources yet, choose to restore all resources as specified in the Restoring all resources section.

1.6.6.6. Restoring all resources

Use the restore-acm sample if you want to restore all data at once and make the hub cluster manage the managed clusters in one step. After you create a restore.cluster.open-cluster-management.io resource on the hub cluster, run the following command to get the status of the restore operation:

oc get restore -n open-cluster-management-backup

Your sample might resemble the following resource:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Restore
metadata:
  name: restore-acm
  namespace: open-cluster-management-backup
spec:
  cleanupBeforeRestore: CleanupRestored
  veleroManagedClustersBackupName: latest
  veleroCredentialsBackupName: latest
  veleroResourcesBackupName: latest

From your hub cluster, verify that the backed up resources contained by the backup file are created.

1.6.6.7. Restoring imported managed clusters

Only managed clusters connected with the primary hub cluster using the Hive API are automatically connected with the new hub cluster, where the activation data is restored. These clusters have been created on the primary hub cluster using the Create cluster button in the Clusters tab. Managed clusters connected with the initial hub cluster using the Import cluster button appear as Pending Import when the activation data is restored, and must be imported back on the new hub cluster.

The Hive managed clusters can be connected with the new hub cluster because Hive stores the managed cluster kubeconfig in the managed cluster namespace on the hub cluster. This is backed up and restored on the new hub cluster. The import controller then updates the bootstrap kubeconfig on the managed cluster using the restored configuration, which is only available for managed clusters created using the Hive API. It is not available for imported clusters.

To reconnect imported clusters on the new hub cluster, manually create the auto-import-secret resource after your start the restore operation. See Importing the cluster with the auto import secret for more details.

Create the auto-import-secret resource in the managed cluster namespace for each cluster in Pending Import state. Use a kubeconfig or token with enough permissions for the import component to start the automatic import on the new hub cluster. You must have access for each managed cluster by using a token to connect with the managed cluster. The token must have a klusterlet role binding or a role with the same permissions.

1.6.6.8. Using other restore samples

View the following Restore section to view the YAML examples to restore different types of backed up files.

  • Restore all three types of backed up resources:

    apiVersion: cluster.open-cluster-management.io/v1beta1
    kind: Restore
    metadata:
      name: restore-acm
      namespace: open-cluster-management-backup
    spec:
      veleroManagedClustersBackupSchedule: latest
      veleroCredentialsBackupSchedule: latest
      veleroResourcesBackupSchedule: latest
  • Restore only managed cluster resources:

    apiVersion: cluster.open-cluster-management.io/v1beta1
    kind: Restore
    metadata:
      name: restore-acm
      namespace: open-cluster-management-backup
    spec:
      veleroManagedClustersBackupName: latest
      veleroCredentialsBackupName: skip
      veleroResourcesBackupName: skip
  • Restore the resources for managed clusters only, using the acm-managed-clusters-schedule-20210902205438 backup:

    apiVersion: cluster.open-cluster-management.io/v1beta1
    kind: Restore
    metadata:
      name: restore-acm
      namespace: open-cluster-management-backup
    spec:
      veleroManagedClustersBackupName: acm-managed-clusters-schedule-20210902205438
      veleroCredentialsBackupName: skip
      veleroResourcesBackupName: skip

    Notes:

    • The restore.cluster.open-cluster-management.io resource is run once. After the restore operation is completed, you can optionally run another restore operation on the same hub cluster. You must create a new restore.cluster.open-cluster-management.io resource to run a new restore operation.
    • You can create multiple restore.cluster.open-cluster-management.io, however only one can be run at any moment.

1.6.6.9. Viewing restore events

Use the following command to get information about restore events:

oc describe -n <oadp-n> <restore-name>

Your list of events might resemble the following sample:

Spec:
  Cleanup Before Restore:               CleanupRestored
  Restore Sync Interval:                4m
  Sync Restore With New Backups:        true
  Velero Credentials Backup Name:       latest
  Velero Managed Clusters Backup Name:  skip
  Velero Resources Backup Name:         latest
Status:
  Last Message:                     Velero restores have run to completion, restore will continue to sync with new backups
  Phase:                            Enabled
  Velero Credentials Restore Name:  example-acm-credentials-schedule-20220406171919
  Velero Resources Restore Name:    example-acm-resources-schedule-20220406171920
Events:
  Type    Reason                   Age   From                Message
  ----    ------                   ----  ----                -------
  Normal  Prepare to restore:      76m   Restore controller  Cleaning up resources for backup acm-credentials-hive-schedule-20220406155817
  Normal  Prepare to restore:      76m   Restore controller  Cleaning up resources for backup acm-credentials-cluster-schedule-20220406155817
  Normal  Prepare to restore:      76m   Restore controller  Cleaning up resources for backup acm-credentials-schedule-20220406155817
  Normal  Prepare to restore:      76m   Restore controller  Cleaning up resources for backup acm-resources-generic-schedule-20220406155817
  Normal  Prepare to restore:      76m   Restore controller  Cleaning up resources for backup acm-resources-schedule-20220406155817
  Normal  Velero restore created:  74m   Restore controller  example-acm-credentials-schedule-20220406155817
  Normal  Velero restore created:  74m   Restore controller  example-acm-resources-generic-schedule-20220406155817
  Normal  Velero restore created:  74m   Restore controller  example-acm-resources-schedule-20220406155817
  Normal  Velero restore created:  74m   Restore controller  example-acm-credentials-cluster-schedule-20220406155817
  Normal  Velero restore created:  74m   Restore controller  example-acm-credentials-hive-schedule-20220406155817
  Normal  Prepare to restore:      64m   Restore controller  Cleaning up resources for backup acm-resources-schedule-20220406165328
  Normal  Prepare to restore:      62m   Restore controller  Cleaning up resources for backup acm-credentials-hive-schedule-20220406165328
  Normal  Prepare to restore:      62m   Restore controller  Cleaning up resources for backup acm-credentials-cluster-schedule-20220406165328
  Normal  Prepare to restore:      62m   Restore controller  Cleaning up resources for backup acm-credentials-schedule-20220406165328
  Normal  Prepare to restore:      62m   Restore controller  Cleaning up resources for backup acm-resources-generic-schedule-20220406165328
  Normal  Velero restore created:  61m   Restore controller  example-acm-credentials-cluster-schedule-20220406165328
  Normal  Velero restore created:  61m   Restore controller  example-acm-credentials-schedule-20220406165328
  Normal  Velero restore created:  61m   Restore controller  example-acm-resources-generic-schedule-20220406165328
  Normal  Velero restore created:  61m   Restore controller  example-acm-resources-schedule-20220406165328
  Normal  Velero restore created:  61m   Restore controller  example-acm-credentials-hive-schedule-20220406165328
  Normal  Prepare to restore:      38m   Restore controller  Cleaning up resources for backup acm-resources-generic-schedule-20220406171920
  Normal  Prepare to restore:      38m   Restore controller  Cleaning up resources for backup acm-resources-schedule-20220406171920
  Normal  Prepare to restore:      36m   Restore controller  Cleaning up resources for backup acm-credentials-hive-schedule-20220406171919
  Normal  Prepare to restore:      36m   Restore controller  Cleaning up resources for backup acm-credentials-cluster-schedule-20220406171919
  Normal  Prepare to restore:      36m   Restore controller  Cleaning up resources for backup acm-credentials-schedule-20220406171919
  Normal  Velero restore created:  36m   Restore controller  example-acm-credentials-cluster-schedule-20220406171919
  Normal  Velero restore created:  36m   Restore controller  example-acm-credentials-schedule-20220406171919
  Normal  Velero restore created:  36m   Restore controller  example-acm-resources-generic-schedule-20220406171920
  Normal  Velero restore created:  36m   Restore controller  example-acm-resources-schedule-20220406171920
  Normal  Velero restore created:  36m   Restore controller  example-acm-credentials-hive-schedule-20220406171919

1.6.6.10. Shutting down the primary cluster

When you restore a backup on a new hub cluster, make sure that the previous hub cluster, where the backup was created, is shut down. If that cluster is running, the previous hub cluster tries to reimport the managed clusters when the managed cluster reconciliation finds that the managed clusters are no longer available.

1.6.7. Validating your backup or restore configurations

The cluster backup and restore operator Helm chart (cluster-backup-chart) installs the backup-restore-enabled policy on your hub cluster, which is used to inform you about issues with the backup and restore component. The backup-restore-enabled policy includes a set of templates that check for the following constraints:

  • Pod validation

    The following templates check the pod status for the backup component and dependencies:

    • acm-backup-pod-running template checks if the backup and restore operator pod is running.
    • oadp-pod-running template checks if the OADP operator pod is running.
    • velero-pod-running template checks if the Velero pod is running.
  • Data Protection Application validation

    • data-protection-application-available template checks if a DataProtectioApplicatio.oadp.openshift.io resource is created. This OADP resource sets up Velero configurations.
  • Backup storage validation

    • backup-storage-location-available template checks if a BackupStorageLocation.velero.io resource is created and if the status value is Available. This implies that the connection to the backup storage is valid.
  • BackupSchedule collision validation

    • acm-backup-clusters-collision-report template verifies that the status is not BackupCollision, if a BackupSchedule.cluster.open-cluster-management.io exists on the current hub cluster. This verifies that the current hub cluster is not in collision with any other hub cluster when you write backup data to the storage location.

      For a definition of the BackupCollision state read the Backup Collisions section.

  • BackupSchedule and restore status validation

    • acm-backup-phase-validation template checks that the status is not in Failed, or Empty state, if a BackupSchedule.cluster.open-cluster-management.io exists on the current cluster. This ensures that if this cluster is the primary hub cluster and is generating backups, the BackupSchedule.cluster.open-cluster-management.io status is healthy.
    • The same template checks that the status is not in a Failed, or Empty state, if a Restore.cluster.open-cluster-management.io exists on the current cluster. This ensures that if this cluster is the secondary hub cluster and is restoring backups, the Restore.cluster.open-cluster-management.io status is healthy.
  • Backups exist validation

    • acm-managed-clusters-schedule-backups-available template checks if Backup.velero.io resources are available at the location specified by the BackupStorageLocation.velero.io, and if the backups are created by a BackupSchedule.cluster.open-cluster-management.io resource. This validates that the backups have been run at least once, using the backup and restore operator.
  • Backups for completion

    • An acm-backup-in-progress-report template checks if Backup.velero.io resources are stuck in the InProgress state. This validation is added because with a large number of resources, the velero pod restarts as the backup runs, and the backup stays in progress without proceeding to completion. During a normal backup, the backup resources are in progress at some point when it is run, but are not stuck and run to completion. It is normal to see the acm-backup-in-progress-report template report a warning during the time the schedule is running and backups are in progress.
  • Backups that actively run as a cron job

    • A BackupSchedule.cluster.open-cluster-management.io actively runs and saves new backups at the storage location. This validation is done by the backup-schedule-cron-enabled policy template. The template checks that there is a Backup.velero.io with velero.io/schedule-name: acm-validation-policy-schedule label at the storage location.

      The acm-validation-policy-schedule backups are set to expire after the time is set for the backups cron schedule. If no cron job is running to create backups, the old acm-validation-policy-schedule backup is deleted because it expired and a new one is not created. As a result, if no acm-validation-policy-schedule backups exist at any moment, it means that there are no active cron jobs generating backups.

      This policy is intended to help notify the hub cluster administrator of any backup issues when the hub cluster is active and produces or restore backups.

1.6.8. Protecting data using server-side encryption

Server-side encryption is data encryption for the application or service that receives the data at the storage location. The backup mechanism itself does not encrypt data while in-transit (as it travels to and from backup storage location), or at rest (while it is stored on disks at backup storage location). Instead it relies on the native mechanisms in the object and snapshot systems.

Best practice: Encrypt the data at the destination using the available backup storage server-side encryption. The backup contains resources, such as credentials and configuration files that need to be encrypted when stored outside of the hub cluster.

You can use serverSideEncryption and kmsKeyId parameters to enable encryption for the backups stored in Amazon S3. For more details, see the Backup Storage Location YAML. The following sample specifies an AWS KMS key ID when setting up the DataProtectionApplication resource:

spec:
  backupLocations:
    - velero:
        config:
          kmsKeyId: 502b409c-4da1-419f-a16e-eif453b3i49f
          profile: default
          region: us-east-1

Refer to Velero supported storage providers to find out about all of the configurable parameters of other storage providers.