Abstract

Troubleshooting in Red Hat Advanced Cluster Management for Kubernetes
Table of Contents

CHAPTER 1. TROUBLESHOOTING ... 5

1.1. DOCUMENTED TROUBLESHOOTING ... 5

1.2. RUNNING THE MUST-GATHER COMMAND TO TROUBLESHOOT 6
 1.2.1. Must-gather scenarios ... 6
 1.2.2. Must-gather procedure .. 6
 1.2.3. Must-gather in a disconnected environment 7

1.3. TROUBLESHOOTING INSTALLATION STATUS STUCK IN INSTALLING OR PENDING ... 7
 1.3.1. Symptom: Stuck in Pending status .. 7
 1.3.2. Resolving the problem: Adjust worker node sizing 8

1.4. TROUBLESHOOTING REINSTALLATION FAILURE 8
 1.4.1. Symptom: Reinstallation failure .. 8
 1.4.2. Resolving the problem: Reinstallation failure 8

1.5. TROUBLESHOOTING AN OFFLINE CLUSTER 9
 1.5.1. Symptom: Cluster status is offline 9
 1.5.2. Resolving the problem: Cluster status is offline 9

1.6. TROUBLESHOOTING CLUSTER WITH PENDING IMPORT STATUS 9
 1.6.1. Symptom: Cluster with pending import status 9
 1.6.2. Identifying the problem: Cluster with pending import status 9
 1.6.3. Resolving the problem: Cluster with pending import status 10

1.7. TROUBLESHOOTING CLUSTER CREATION ON VMWARE VSPHERE 10
 1.7.1. Managed cluster creation fails with certificate IP SAN error 10
 1.7.1.1. Symptom: Managed cluster creation fails with certificate IP SAN error 10
 1.7.1.2. Identifying the problem: Managed cluster creation fails with certificate IP SAN error 10
 1.7.1.3. Resolving the problem: Managed cluster creation fails with certificate IP SAN error 10
 1.7.2. Managed cluster creation fails with unknown certificate authority 11
 1.7.2.1. Symptom: Managed cluster creation fails with unknown certificate authority 11
 1.7.2.2. Identifying the problem: Managed cluster creation fails with unknown certificate authority 11
 1.7.2.3. Resolving the problem: Managed cluster creation fails with unknown certificate authority 11
 1.7.3. Managed cluster creation fails with expired certificate 11
 1.7.3.1. Symptom: Managed cluster creation fails with expired certificate 11
 1.7.3.2. Identifying the problem: Managed cluster creation fails with expired certificate 11
 1.7.3.3. Resolving the problem: Managed cluster creation fails with expired certificate 11
 1.7.4. Managed cluster creation fails with insufficient privilege for tagging 11
 1.7.4.1. Symptom: Managed cluster creation fails with insufficient privilege for tagging 11
 1.7.4.2. Identifying the problem: Managed cluster creation fails with insufficient privilege for tagging 11
 1.7.4.3. Resolving the problem: Managed cluster creation fails with insufficient privilege for tagging 12
 1.7.5. Managed cluster creation fails with invalid dnsVIP 12
 1.7.5.1. Symptom: Managed cluster creation fails with invalid dnsVIP 12
 1.7.5.2. Identifying the problem: Managed cluster creation fails with invalid dnsVIP 12
 1.7.5.3. Resolving the problem: Managed cluster creation fails with invalid dnsVIP 12
 1.7.6. Managed cluster creation fails with incorrect network type 12
 1.7.6.1. Symptom: Managed cluster creation fails with incorrect network type 12
 1.7.6.2. Identifying the problem: Managed cluster creation fails with incorrect network type 12
 1.7.6.3. Resolving the problem: Managed cluster creation fails with incorrect network type 13
 1.7.7. Managed cluster creation fails with an error processing disk changes 13
 1.7.7.1. Symptom: Adding the VMware vSphere managed cluster fails due to an error processing disk changes 13
 1.7.7.2. Identifying the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes 13
 1.7.7.3. Resolving the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes 13
1.8. TROUBLESHOOTING OPENSHIFT CONTAINER PLATFORM VERSION 3.11 CLUSTER IMPORT FAILURE

1.8.1. Symptom: OpenShift Container Platform version 3.11 cluster import failure
1.8.2. Identifying the problem: OpenShift Container Platform version 3.11 cluster import failure
1.8.3. Resolving the problem: OpenShift Container Platform version 3.11 cluster import failure

1.9. TROUBLESHOOTING IMPORTED CLUSTERS OFFLINE AFTER CERTIFICATE CHANGE

1.9.1. Symptom: Clusters offline after certificate change
1.9.2. Identifying the problem: Clusters offline after certificate change
1.9.3. Resolving the problem: Clusters offline after certificate change

1.10. NAMESPACE REMAINS AFTER DELETING A CLUSTER

1.10.1. Symptom: Namespace remains after deleting a cluster
1.10.2. Resolving the problem: Namespace remains after deleting a cluster

1.11. AUTO-IMPORT-SECRET-EXISTS ERROR WHEN IMPORTING A CLUSTER

1.11.1. Symptom: Auto import secret exists error when importing a cluster
1.11.2. Resolving the problem: Auto-import-secret-exists error when importing a cluster

1.12. TROUBLESHOOTING CLUSTER STATUS CHANGING FROM OFFLINE TO AVAILABLE

1.12.1. Symptom: Cluster status changing from offline to available
1.12.2. Resolving the problem: Cluster status changing from offline to available

1.13. TROUBLESHOOTING CLUSTER IN CONSOLE WITH PENDING OR FAILED STATUS

1.13.1. Symptom: Cluster in console with pending or failed status
1.13.2. Identifying the problem: Cluster in console with pending or failed status
1.13.3. Resolving the problem: Cluster in console with pending or failed status

1.14. TROUBLESHOOTING APPLICATION GIT SERVER CONNECTION

1.14.1. Symptom: Git server connection
1.14.2. Resolving the problem: Git server connection

1.15. TROUBLESHOOTING GRAFANA

1.15.1. Symptom: Grafana explorer gateway timeout
1.15.2. Resolving the problem: Configure the multicloud-console route

1.16. TROUBLESHOOTING LOCAL CLUSTER NOT SELECTED WITH PLACEMENT RULE

1.16.1. Symptom: Troubleshooting local cluster not selected as a managed cluster
1.16.2. Resolving the problem: Troubleshooting local cluster not selected as a managed cluster

1.17. TROUBLESHOOTING APPLICATION KUBERNETES DEPLOYMENT VERSION

1.17.1. Symptom: Application deployment version
1.17.2. Resolving the problem: Application deployment version

1.18. TROUBLESHOOTING STANDALONE SUBSCRIPTION MEMORY

1.18.1. Symptom: Standalone subscription memory
1.18.2. Resolving the problem: Standalone subscription memory

1.19. TROUBLESHOOTING KLUSTERLET WITH DEGRADED CONDITIONS

1.19.1. Symptom: Klusterlet is in the degraded condition
1.19.2. Identifying the problem: Klusterlet is in the degraded condition
1.19.3. Resolving the problem: Klusterlet is in the degraded condition

1.20. TROUBLESHOOTING KLUSTERLET APPLICATION MANAGER ON MANAGED CLUSTERS

1.20.1. Symptom: Klusterlet application manager on managed cluster
1.20.2. Resolving the problem: Klusterlet application manager on managed cluster

1.21. TROUBLESHOOTING OBJECT STORAGE CHANNEL SECRET

1.21.1. Symptom: Object storage channel secret
1.21.2. Resolving the problem: Object storage channel secret

1.22. TROUBLESHOOTING OBSERVABILITY

1.22.1. Symptom: MultiClusterObservability resource status stuck
1.22.2. Resolving the problem: MultiClusterObservability resource status stuck

1.23. TROUBLESHOOTING OPENSHIFT MONITORING SERVICE

1.23.1. Symptom: OpenShift monitoring service is not ready
1.23.2. Resolving the problem: OpenShift monitoring service is not ready
1.24. TROUBLESHOOTING SEARCH AGGREGATOR POD STATUS
1.24.1. Symptom 1: Search aggregator pod in Not Ready state
1.24.2. Resolving the problem: Search aggregator pod in Not Ready state
1.24.3. Symptom 2: Search redisgraph pod in Pending state
1.24.4. Resolving the problem: Search redisgraph pod in Pending state

1.25. TROUBLESHOOTING METRICS-COLLECTOR
1.25.1. Symptom: metrics-collector cannot verify observability-client-ca-certificate
1.25.2. Resolving the problem: metrics-collector cannot verify observability-client-ca-certificate
CHAPTER 1. TROUBLESHOOTING

Before using the Troubleshooting guide, you can run the `oc adm must-gather` command to gather details, logs, and take steps in debugging issues. For more details, see Running the must-gather command to troubleshoot.

Additionally, check your role-based access. See Role-based access control for details.

1.1. DOCUMENTED TROUBLESHOOTING

View the list of troubleshooting topics for Red Hat Advanced Cluster Management for Kubernetes:

Installation

To get to the original installing tasks, view Installing.

- Troubleshooting installation status stuck in installing or pending
- Troubleshooting reinstallation failure

Cluster management

To get to the original cluster management tasks, view Managing your clusters.

- Troubleshooting an offline cluster
- Troubleshooting cluster with pending import status
- Troubleshooting imported clusters offline after certificate change
- Troubleshooting cluster status changing from offline to available
- Troubleshooting cluster creation on VMware vSphere
- Troubleshooting cluster in console with pending or failed status
- Troubleshooting OpenShift Container Platform version 3.11 cluster import failure
- Troubleshooting Klusterlet with degraded conditions
- Troubleshooting Klusterlet application manager on managed clusters
- Troubleshooting Object storage channel secret
- Namespace remains after deleting a cluster
- Auto-import-secret-exists error when importing a cluster

Application management

To get to the original application management, view Managing applications.

- Troubleshooting application Kubernetes deployment version
- Troubleshooting standalone subscription memory problem
- Troubleshooting application Git server connection
1.2. RUNNING THE MUST-GATHER COMMAND TO TROUBLESHOOT

To get started with troubleshooting, learn about the troubleshooting scenarios for users to run the `must-gather` command to debug the issues, then see the procedures to start using the command.

Required access: Cluster administrator

1.2.1. Must-gather scenarios

- **Scenario one:** Use the Documented troubleshooting section to see if a solution to your problem is documented. The guide is organized by the major functions of the product. With this scenario, you check the guide to see if your solution is in the documentation. For instance, for trouble with creating a cluster, you might find a solution in the Manage cluster section.

- **Scenario two:** If your problem is not documented with steps to resolve, run the `must-gather` command and use the output to debug the issue.

- **Scenario three:** If you cannot debug the issue using your output from the `must-gather` command, then share your output with Red Hat Support.

1.2.2. Must-gather procedure

See the following procedure to start using the `must-gather` command:

1. Learn about the `must-gather` command and install the prerequisites that you need at Gathering data about your cluster in the Red Hat OpenShift Container Platform documentation.

2. Log in to your cluster. For the usual use-case, you should run the `must-gather` while you are logged into your hub cluster.

Note: If you want to check your managed clusters, find the `gather-managed.log` file that is located in the the `cluster-scoped-resources` directory:
Check for managed clusters that are not set `True` for the JOINED and AVAILABLE column. You can run the `must-gather` command on those clusters that are not connected with `True` status.

3. Add the Red Hat Advanced Cluster Management for Kubernetes image that is used for gathering data and the directory. Run the following command, where you insert the image and the directory for the output:

```
oc adm must-gather --image=registry.redhat.io/rhacm2/acm-must-gather-rhel8:v2.2.0 --dest-dir=<directory>
```

4. Go to your specified directory to see your output, which is organized in the following levels:

- Two peer levels: `cluster-scoped-resources` and `namespace` resources.
- Sub-level for each: API group for the custom resource definitions for both cluster-scope and namespace-scoped resources.
- Next level for each: YAML file sorted by `kind`.

1.2.3. Must-gather in a disconnected environment

Complete the following steps to run the `must-gather` command in a disconnected environment:

1. In a disconnected environment, mirror the Red Hat operator catalog images into their mirror registry. For more information, see Install on disconnected networks.

2. Run the following command to extract logs, which reference the image from their mirror registry:

```
REGISTRY=registry.example.com:5000
IMAGE=$REGISTRY/rhacm2/acm-must-gather-rhel8@sha256:ff9f37eb400dc1f7d07a9b6f2da9064992934b69847d17f59e385783c071b9d8
oc adm must-gather --image=$IMAGE --dest-dir=./data
```

1.3. TROUBLESHOOTING INSTALLATION STATUS STUCK IN INSTALLING OR PENDING

When installing Red Hat Advanced Cluster Management, the MultiClusterHub remains in Installing phase, or multiple pods maintain a Pending status.

1.3.1. Symptom: Stuck in Pending status

More than ten minutes passed since you installed MultiClusterHub and one or more components from the `status.components` field of the MultiClusterHub resource report ProgressDeadlineExceeded. Resource constraints on the cluster might be the issue.

Check the pods in the namespace where MultiClusterHub was installed. You might see Pending with a status similar to the following:

```
reason: Unschedulable
```
message: '0/6 nodes are available: 3 Insufficient cpu, 3 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate.'

In this case, the worker nodes resources are not sufficient in the cluster to run the product.

1.3.2. Resolving the problem: Adjust worker node sizing

If you have this problem, then your cluster needs to be updated with either larger or more worker nodes. See **Sizing your cluster** for guidelines on sizing your cluster.

1.4. TROUBLESHOOTING REINSTALLATION FAILURE

When reinstalling Red Hat Advanced Cluster Management for Kubernetes, the pods do not start.

1.4.1. Symptom: Reinstallation failure

If your pods do not start after you install Red Hat Advanced Cluster Management, it is likely that Red Hat Advanced Cluster Management was previously installed, and not all of the pieces were removed before you attempted this installation.

In this case, the pods do not start after completing the installation process.

1.4.2. Resolving the problem: Reinstallation failure

If you have this problem, complete the following steps:

1. Run the uninstallation process to remove the current components by following the steps in **Uninstalling**.

2. Install the Helm CLI binary version 3.2.0, or later, by following the instructions at **Installing Helm**.

3. Ensure that your Red Hat OpenShift Container Platform CLI is configured to run `oc` commands. See **Getting started with the OpenShift CLI** in the OpenShift Container Platform documentation for more information about how to configure the `oc` commands.

4. Copy the following script into a file:

```bash
#!/bin/bash
ACM_NAMESPACE=<namespace>
oc delete mch --all -n $ACM_NAMESPACE
helm ls --namespace $ACM_NAMESPACE | cut -f 1 | tail -n +2 | xargs -n 1 helm delete --namespace $ACM_NAMESPACE
oc delete apiservice v1beta1.webhook.certmanager.k8s.io v1.admission.cluster.open-cluster-management.io v1.admission.work.open-cluster-management.io
oc delete clusterimageset --all
oc delete consolelink acm-console-link
oc delete crd klusterletaddonconfigs.agent.open-cluster-management.io
placementbindings.policy.open-cluster-management.io policies.policy.open-cluster-management.io
userpreferences.console.open-cluster-management.io
searchservices.search.acm.com
oc delete mutatingwebhookconfiguration cert-manager-webhook cert-manager-webhook v1alpha1 ocm-mutating-webhook managedclustermutators.admission.cluster.open-cluster-
```
management.io
oc delete oauthclient multicloudingress
oc delete rolebinding -n kube-system cert-manager-webhook-webhook-authentication-reader
oc delete scc kui-proxy-scc
oc delete validatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-v1alpha1 channels.apps.open.cluster.management.webhook.validator application-webhook-validator multiclusterhub-operator-validating-webhook ocm-validating-webhook

Replace `<namespace>` in the script with the name of the namespace where Red Hat Advanced Cluster Management was installed. Ensure that you specify the correct namespace, as the namespace is cleaned out and deleted.

5. Run the script to remove the artifacts from the previous installation.
6. Run the installation. See Installing while connected online.

1.5. TROUBLESHOOTING AN OFFLINE CLUSTER

There are a few common causes for a cluster showing an offline status.

1.5.1. Symptom: Cluster status is offline

After you complete the procedure for creating a cluster, you cannot access it from the Red Hat Advanced Cluster Management console, and it shows a status of offline.

1.5.2. Resolving the problem: Cluster status is offline

1. Determine if the managed cluster is available. You can check this in the Clusters area of the Red Hat Advanced Cluster Management console.
 If it is not available, try restarting the managed cluster.

2. If the managed cluster status is still offline, complete the following steps:
 a. Run the `oc get managedcluster <cluster_name> -o yaml` command on the hub cluster.
 Replace `<cluster_name>` with the name of your cluster.
 b. Find the `status.conditions` section.
 c. Check the messages for type: ManagedClusterConditionAvailable and resolve any problems.

1.6. TROUBLESHOOTING CLUSTER WITH PENDING IMPORT STATUS

If you receive Pending import continually on the console of your cluster, follow the procedure to troubleshoot the problem.

1.6.1. Symptom: Cluster with pending import status

After importing a cluster by using the Red Hat Advanced Cluster Management console, the cluster appears in the console with a status of Pending import.

1.6.2. Identifying the problem: Cluster with pending import status
1. Run the following command on the managed cluster to view the Kubernetes pod names that are having the issue:

 kubectl get pod -n open-cluster-management-agent | grep klusterlet-registration-agent

2. Run the following command on the managed cluster to find the log entry for the error:

 kubectl logs <registration_agent_pod> -n open-cluster-management-agent

 Replace `registration_agent_pod` with the pod name that you identified in step 1.

3. Search the returned results for text that indicates there was a networking connectivity problem. Example includes: `no such host`

1.6.3. Resolving the problem: Cluster with pending import status

1. Retrieve the port number that is having the problem by entering the following command on the hub cluster:

 oc get infrastructure cluster -o yaml | grep apiServerURL

2. Ensure that the hostname from the managed cluster can be resolved, and that outbound connectivity to the host and port is occurring.

 If the communication cannot be established by the managed cluster, the cluster import is not complete. The cluster status for the managed cluster is `Pending import`.

1.7. TROUBLESHOOTING CLUSTER CREATION ON VMWARE VSphere

If you experience a problem when creating a Red Hat OpenShift Container Platform cluster on VMware vSphere, see the following troubleshooting information to see if one of them addresses your problem.

Note: Sometimes when the cluster creation process fails on VMware vSphere, the link is not enabled for you to view the logs. If this happens, you can identify the problem by viewing the log of the `hive-controllers` pod. The `hive-controllers` log is in the `hive` namespace.

1.7.1. Managed cluster creation fails with certificate IP SAN error

1.7.1.1. Symptom: Managed cluster creation fails with certificate IP SAN error

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails with an error message that indicates a certificate IP SAN error.

1.7.1.2. Identifying the problem: Managed cluster creation fails with certificate IP SAN error

The deployment of the managed cluster fails and returns the following errors in the deployment log:

| time="2020-08-07T15:27:55Z" level=error msg="Error: error setting up new vSphere SOAP client: Post https://147.1.1.1/sdk: x509: cannot validate certificate for xx.xx.xx.xx because it doesn't contain any IP SANs" |
| time="2020-08-07T15:27:55Z" level=error |

1.7.1.3. Resolving the problem: Managed cluster creation fails with certificate IP SAN error
Use the VMware vCenter server fully-qualified host name instead of the IP address in the credential. You can also update the VMware vCenter CA certificate to contain the IP SAN.

1.7.2. Managed cluster creation fails with unknown certificate authority

1.7.2.1. Symptom: Managed cluster creation fails with unknown certificate authority
After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because the certificate is signed by an unknown authority.

1.7.2.2. Identifying the problem: Managed cluster creation fails with unknown certificate authority
The deployment of the managed cluster fails and returns the following errors in the deployment log:

```
Error: error setting up new vSphere SOAP client: Post https://vspherehost.com/sdk: x509: certificate signed by unknown authority
```

1.7.2.3. Resolving the problem: Managed cluster creation fails with unknown certificate authority
Ensure you entered the correct certificate from the certificate authority when creating the credential.

1.7.3. Managed cluster creation fails with expired certificate

1.7.3.1. Symptom: Managed cluster creation fails with expired certificate
After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because the certificate is expired or is not yet valid.

1.7.3.2. Identifying the problem: Managed cluster creation fails with expired certificate
The deployment of the managed cluster fails and returns the following errors in the deployment log:

```
x509: certificate has expired or is not yet valid
```

1.7.3.3. Resolving the problem: Managed cluster creation fails with expired certificate
Ensure that the time on your ESXi hosts is synchronized.

1.7.4. Managed cluster creation fails with insufficient privilege for tagging

1.7.4.1. Symptom: Managed cluster creation fails with insufficient privilege for tagging
After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is insufficient privilege to use tagging.

1.7.4.2. Identifying the problem: Managed cluster creation fails with insufficient privilege for tagging
The deployment of the managed cluster fails and returns the following errors in the deployment log:
1.7.4.3. Resolving the problem: Managed cluster creation fails with insufficient privilege for tagging

Ensure that your VMware vCenter required account privileges are correct. See Image registry removed during information for more information.

1.7.5. Managed cluster creation fails with invalid dnsVIP

1.7.5.1. Symptom: Managed cluster creation fails with invalid dnsVIP

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is an invalid dnsVIP.

1.7.5.2. Identifying the problem: Managed cluster creation fails with invalid dnsVIP

If you see the following message when trying to deploy a new managed cluster with VMware vSphere, it is because you have an older OpenShift Container Platform release image that does not support VMware Installer Provisioned Infrastructure (IPI):

```
failed to fetch Master Machines: failed to load asset """"Install Config"": invalid """"install-config.yaml"" file: platform.vsphere.dnsVIP: Invalid value: """": """" is not a valid IP
```

1.7.5.3. Resolving the problem: Managed cluster creation fails with invalid dnsVIP

Select a release image from a later version of OpenShift Container Platform that supports VMware Installer Provisioned Infrastructure.

1.7.6. Managed cluster creation fails with incorrect network type

1.7.6.1. Symptom: Managed cluster creation fails with incorrect network type

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is an incorrect network type specified.

1.7.6.2. Identifying the problem: Managed cluster creation fails with incorrect network type

If you see the following message when trying to deploy a new managed cluster with VMware vSphere, it is because you have an older OpenShift Container Platform image that does not support VMware Installer Provisioned Infrastructure (IPI):

```
time="2020-08-11T14:31:38-04:00" level=debug msg="vsphereprivate_import_ova.import: Creating..."
```
1.7.6.3. Resolving the problem: Managed cluster creation fails with incorrect network type

Select a valid VMware vSphere network type for the specified VMware cluster.

1.7.7. Managed cluster creation fails with an error processing disk changes

1.7.7.1. Symptom: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

After creating a new Red Hat OpenShift Container Platform cluster on VMware vSphere, the cluster fails because there is an error when processing disk changes.

1.7.7.2. Identifying the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

A message similar to the following is displayed in the logs:

```
```

1.7.7.3. Resolving the problem: Adding the VMware vSphere managed cluster fails due to an error processing disk changes

Use the VMware vSphere client to give the user **All privileges** for **Profile-driven Storage Privileges**.

1.8. TROUBLESHOOTING OPENSIFT CONTAINER PLATFORM VERSION 3.11 CLUSTER IMPORT FAILURE

1.8.1. Symptom: OpenShift Container Platform version 3.11 cluster import failure

After you attempt to import a Red Hat OpenShift Container Platform version 3.11 cluster, the import fails with a log message that resembles the following content:

```
customresourcedefinition.apiextensions.k8s.io/klusterlets.operator.open-cluster-management.io configured
clusterrole.rbac.authorization.k8s.io/klusterlet configured
clusterrole.rbac.authorization.k8s.io/open-cluster-management:klusterlet-admin-aggregate-clusterrole configured
clusterrolebinding.rbac.authorization.k8s.io/klusterlet configured
namespace/open-cluster-management-agent configured
secret/open-cluster-management-image-pull-credentials unchanged
```
serviceaccount/klusterlet configured
deployment.apps/klusterlet unchanged
klusterlet.operator.open-cluster-management.io/klusterlet configured
Error from server (BadRequest): error when creating "STDIN": Secret in version "v1" cannot be handled as a Secret:
v1.Secret.ObjectMeta:
 v1.ObjectMeta.TypeMeta: Kind: Data: decode base64: illegal base64 data at input byte 1313, error found in #10 byte of ...|dhruy45=","kind":...], bigger context ...
1.8.2. Identifying the problem: OpenShift Container Platform version 3.11 cluster import failure
This often occurs because the installed version of the kubectl command-line tool is 1.11, or earlier. Run the following command to see which version of the kubectl command-line tool you are running:
kubectl version
If the returned data lists version 1.11, or earlier, complete one of the fixes in Resolving the problem: OpenShift Container Platform version 3.11 cluster import failure.

1.8.3. Resolving the problem: OpenShift Container Platform version 3.11 cluster import failure
You can resolve this issue by completing one of the following procedures:

- Install the latest version of the kubectl command-line tool.
 1. Download the latest version of the kubectl tool from: Install and Set Up kubectl in the Kubernetes documentation.
 2. Import the cluster again after upgrading your kubectl tool.

- Run a file that contains the import command.
 1. Start the procedure in Importing a managed cluster with the CLI.
 2. When you create the command to import your cluster, copy that command into a YAML file named import.yaml.
 3. Run the following command to import the cluster again from the file:

 oc apply -f import.yaml

1.9. TROUBLESHOOTING IMPORTED CLUSTERS OFFLINE AFTER CERTIFICATE CHANGE
Installing a custom apiserver certificate is supported, but one or more clusters that were imported before you changed the certificate information can have an offline status.

1.9.1. Symptom: Clusters offline after certificate change
After you complete the procedure for updating a certificate secret, one or more of your clusters that were online are now displaying an offline status in the Red Hat Advanced Cluster Management for Kubernetes console.

1.9.2. Identifying the problem: Clusters offline after certificate change

After updating the information for a custom API server certificate, clusters that were imported and running before the new certificate are now in an offline state.

The errors that indicate that the certificate is the problem are found in the logs for the pods in the open-cluster-management-agent namespace of the offline managed cluster. The following examples are similar to the errors that are displayed in the logs:

Log of work-agent:

E0917 03:04:05.874887 1 base_controller.go:231] "ManifestWorkAgent" controller failed to sync "test-1-klusterlet-addon-workmgr", err: Failed to update work status with err Get "api.aaa-ocp.dev02.location.com:6443/apis/cluster.management.io/v1/namespaces/test-1/manifestworks/test-1-klusterlet-addon-workmgr": x509: certificate signed by unknown authority

Log of registration-agent:

1.9.3. Resolving the problem: Clusters offline after certificate change
To manually restore your clusters after updating your certificate information, complete the following steps for each managed cluster:

1. Manually import the cluster again. Red Hat OpenShift Container Platform clusters that were created from Red Hat Advanced Cluster Management will resynchronize every 2 hours, so you can skip this step for those clusters.
 a. On the hub cluster, display the import command by entering the following command:

   ```bash
   oc get secret -n ${CLUSTER_NAME} ${CLUSTER_NAME}-import -ojsonpath='{.data.import.yaml}' | base64 --decode > import.yaml
   ```
 Replace `CLUSTER_NAME` with the name of the managed cluster that you are importing.
 b. On the managed cluster, apply the `import.yaml` file:

   ```bash
   oc apply -f import.yaml
   ```

1.10. NAMESPACE REMAINS AFTER DELETING A CLUSTER

When you remove a managed cluster, the namespace is normally removed as part of the cluster removal process. In rare cases, the namespace remains with some artifacts in it. In that case, you must manually remove the namespace.

1.10.1. Symptom: Namespace remains after deleting a cluster

After removing a managed cluster, the namespace is not removed.

1.10.2. Resolving the problem: Namespace remains after deleting a cluster

Complete the following steps to remove the namespace manually:

1. Run the following command to produce a list of the resources that remain in the `<cluster_name>` namespace:

   ```bash
   oc api-resources --verbs=list --namespaced -o name | grep -E '
   ^secrets|^serviceaccounts|^managedclusteraddons|^roles|^rolebindings|^manifestworks|^lease:
   |^managedclusterinfo|^appliedmanifestworks' | xargs -n 1 oc get --show-kind --ignore-not-found -n <cluster_name>
   ```
 Replace `cluster_name` with the name of the namespace for the cluster that you attempted to remove.

2. Delete each identified resource on the list that does not have a status of `Delete` by entering the following command to edit the list:

   ```bash
   oc edit <resource_kind> <resource_name> -n <namespace>
   ```
 Replace `resource_kind` with the kind of the resource. Replace `resource_name` with the name of the resource. Replace `namespace` with the name of the namespace of the resource.

3. Locate the `finalizer` attribute in the in the metadata.

4. Delete the non-Kubernetes finalizers by using the vi editor `dd` command.
5. Save the list and exit the vi editor by entering the :wq command.

6. Delete the namespace by entering the following command:

```
oc delete ns <cluster-name>
```

Replace `cluster-name` with the name of the namespace that you are trying to delete.

1.11. AUTO-IMPORT-SECRET-EXISTS ERROR WHEN IMPORTING A CLUSTER

Your cluster import fails with an error message that reads: auto import secret exists.

1.11.1. Symptom: Auto import secret exists error when importing a cluster

When importing a hive cluster for management, an `auto-import-secret already exists` error is displayed.

1.11.2. Resolving the problem: Auto-import-secret-exists error when importing a cluster

This problem occurs when you attempt to import a cluster that was previously managed by Red Hat Advanced Cluster Management. When this happens, the secrets conflict when you try to reimport the cluster.

To work around this problem, complete the following steps:

1. To manually delete the existing `auto-import-secret`, run the following command on the hub cluster:

```
oc delete secret auto-import-secret -n <cluster-namespace>
```

Replace `cluster-namespace` with the namespace of your cluster.

2. Import your cluster again using the procedure in Importing a target managed cluster to a hub cluster.

Your cluster is imported.

1.12. TROUBLESHOOTING CLUSTER STATUS CHANGING FROM OFFLINE TO AVAILABLE

The status of the managed cluster alternates between `offline` and `available` without any manual change to the environment or cluster.

1.12.1. Symptom: Cluster status changing from offline to available

When the network that connects the managed cluster to the hub cluster is unstable, the status of the managed cluster that is reported by the hub cluster cycles between `offline` and `available`.

1.12.2. Resolving the problem: Cluster status changing from offline to available
To attempt to resolve this issue, complete the following steps:

1. Edit your ManagedCluster specification on the hub cluster by entering the following command:

 \[oc edit managedcluster <cluster-name> \]

 Replace `cluster-name` with the name of your managed cluster.

2. Increase the value of `leaseDurationSeconds` in your ManagedCluster specification. The default value is 5 minutes, but that might not be enough time to maintain the connection with the network issues. Specify a greater amount of time for the lease. For example, you can raise the setting to 20 minutes.

1.13. TROUBLESHOOTING CLUSTER IN CONSOLE WITH PENDING OR FAILED STATUS

If you observe Pending status or Failed status in the console for a cluster you created, follow the procedure to troubleshoot the problem.

1.13.1. Symptom: Cluster in console with pending or failed status

After creating a new cluster by using the Red Hat Advanced Cluster Management for Kubernetes console, the cluster does not progress beyond the status of Pending or displays Failed status.

1.13.2. Identifying the problem: Cluster in console with pending or failed status

If the cluster displays Failed status, navigate to the details page for the cluster and follow the link to the logs provided. If no logs are found or the cluster displays Pending status, continue with the following procedure to check for logs:

- **Procedure 1**
 1. Run the following command on the hub cluster to view the names of the Kubernetes pods that were created in the namespace for the new cluster:

 \[oc get pod -n <new_cluster_name> \]

 Replace `new_cluster_name` with the name of the cluster that you created.

 2. If no pod that contains the string `provision` in the name is listed, continue with Procedure 2. If there is a pod with `provision` in the title, run the following command on the hub cluster to view the logs of that pod:

 \[oc logs <new_cluster_name_provision_pod_name> -n <new_cluster_name> -c hive \]

 Replace `new_cluster_name_provision_pod_name` with the name of the cluster that you created, followed by the pod name that contains `provision`.

 3. Search for errors in the logs that might explain the cause of the problem.

- **Procedure 2**
 If there is not a pod with `provision` in its name, the problem occurred earlier in the process. Complete the following procedure to view the logs:
1. Run the following command on the hub cluster:

   ```bash
   oc describe clusterdeployments -n <new_cluster_name>
   ```

 Replace `new_cluster_name` with the name of the cluster that you created. For more information about cluster installation logs, see Gathering installation logs in the Red Hat OpenShift documentation.

1.13.3. Resolving the problem: Cluster in console with pending or failed status

After you identify the errors in the logs, determine how to resolve the errors before you destroy the cluster and create it again.

The following example provides a possible log error of selecting an unsupported zone, and the actions that are required to resolve it:

No subnets provided for zones

When you created your cluster, you selected one or more zones within a region that are not supported. Complete one of the following actions when you recreate your cluster to resolve the issue:

- Select a different zone within the region.
- Omit the zone that does not provide the support, if you have other zones listed.
- Select a different region for your cluster.

After determining the issues from the log, destroy the cluster and recreate it.

See Creating a cluster for more information about creating a cluster.

1.14. TROUBLESHOOTING APPLICATION GIT SERVER CONNECTION

Logs from the `open-cluster-management` namespace display failure to clone the Git repository.

1.14.1. Symptom: Git server connection

The logs from the subscription controller pod `multicluster-operators-hub-subscription-<random-characters>` in the `open-cluster-management` namespace indicates that it fails to clone the Git repository. You receive a `x509: certificate signed by unknown authority` error, or `BadGateway` error.

1.14.2. Resolving the problem: Git server connection

Important: Upgrade if you are on a previous version.

1. Save `apps.open-cluster-management.io_channels_crd.yaml` as the same file name.

2. On the Red Hat Advanced Cluster Management cluster, run the following command to apply the file:

   ```bash
   oc apply -f apps.open-cluster-management.io_channels_crd.yaml
   ```
3. In the `open-cluster-management` namespace, edit the `advanced-cluster-management.v2.2.0` CSV, run the following command and edit:

```
oc edit csv advanced-cluster-management.v2.2.0 -n open-cluster-management
```

Find the following containers:

- `multicluster-operators-standalone-subscription`
- `multicluster-operators-hub-subscription`

Replace the container images with the following:

```
quay.io/open-cluster-management/multicluster-operators-subscription:2.2-PR337-91af6cb37d427d22160b2c055589a4418dada4eb
```

The update recreates the following pods in the `open-cluster-management` namespace:

- `multicluster-operators-standalone-subscription-<random-characters>`
- `multicluster-operators-hub-subscription-<random-characters>`

4. Check that the new pods are running with the new docker image. Run the following command, then find the new docker image:

```
oc get pod multicluster-operators-standalone-subscription-<random-characters> -n open-cluster-management -o yaml
coc get pod multicluster-operators-hub-subscription-<random-characters> -n open-cluster-management -o yaml
```

1. Update the images on managed clusters.
 On the hub cluster, run the following command by replacing `CLUSTER_NAME` with the actual managed cluster name:

```
oc annotate klusterletaddonconfig -n CLUSTER_NAME CLUSTER_NAME
klusterletaddonconfig-pause=true --overwrite=true
```

2. Run the following command, replacing `CLUSTER_NAME` with the actual managed cluster name:

```
oc edit manifestwork -n CLUSTER_NAME CLUSTER_NAME-klusterlet-addon-appmgr
```

3. Find `spec.global.imageOverrides.multicluster_operators_subscription` and set the value to:

```
quay.io/open-cluster-management/multicluster-operators-subscription:2.2-PR337-91af6cb37d427d22160b2c055589a4418dada4eb
```

This recreates the `klusterlet-addon-appmgr-<random-characters>` pod in `open-cluster-management-agent-addon` namespace on the managed cluster.

4. Check that the new pod is running with the new docker image.

5. When you create an application through the console or the CLI, add `insecureSkipVerify: true` in the channel spec manually. See the following example:
1.15. TROUBLESHOOTING GRAFANA

When you query some time-consuming metrics in the Grafana explorer, you might encounter a **Gateway Time-out** error.

1.15.1. Symptom: Grafana explorer gateway timeout

If you hit the **Gateway Time-out** error when you query some time-consuming metrics in the Grafana explorer, it is possible that the timeout is caused by the **multicloud-console** route in the **open-cluster-management** namespace.

1.15.2. Resolving the problem: Configure the **multicloud-console** route

If you have this problem, complete the following steps:

1. Verify that the default configuration of Grafana has expected timeout settings:
 a. To verify that the default timeout setting of Grafana, run the following command:

   ```bash
   oc get secret grafana-config -n open-cluster-management-observability -o jsonpath="{.data.grafana.ini}" | base64 -d | grep dataproxy -A 4
   ```

 The following timeout settings should be displayed:

   ```yaml
   [dataproxy]
   timeout = 300
   dial_timeout = 30
   keep_alive_seconds = 300
   ```

 b. To verify the default data source query timeout for Grafana, run the following command:

   ```bash
   oc get secret/grafana-datasources -n open-cluster-management-observability -o jsonpath="{.data.datasources.yaml}" | base64 -d | grep queryTimeout
   ```

 The following timeout settings should be displayed:

   ```yaml
   queryTimeout: 300s
   ```

2. If you verified the default configuration of Grafana has expected timeout settings, then you can configure the **multicloud-console** route in the **open-cluster-management** namespace by running the following command:
oc annotate route multicloud-console -n open-cluster-management --overwrite haproxy.router.openshift.io/timeout=300s

Refresh the Grafana page and try to query the metrics again. The Gateway Time-out error is no longer displayed.

1.16. TROUBLESHOOTING LOCAL CLUSTER NOT SELECTED WITH PLACEMENT RULE

The managed clusters are selected with a placement rule, but the local-cluster, which is a hub cluster that is also managed, is not selected. The placement rule user is not granted permission to get the managedcluster resources in the local-cluster namespace.

1.16.1. Symptom: Troubleshooting local cluster not selected as a managed cluster

All managed clusters are selected with a placement rule, but the local-cluster is not. The placement rule user is not granted permission to get the managedcluster resources in the local-cluster namespace.

1.16.2. Resolving the problem: Troubleshooting local cluster not selected as a managed cluster

To resolve this issue, you need to grant the managedcluster administrative permission in the local-cluster namespace. Complete the following steps:

1. Confirm that the list of managed clusters does include local-cluster, and that the placement rule decisions list does not display the local-cluster. Run the following command and view the results:

 % oc get managedclusters

See in the sample output that local-cluster is joined, but it is not in the YAML for PlacementRule:

<table>
<thead>
<tr>
<th>NAME</th>
<th>HUB ACCEPTED</th>
<th>MANAGED CLUSTER URLS</th>
<th>JOINED</th>
<th>AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-cluster</td>
<td>true</td>
<td>True True True</td>
<td>56d</td>
<td></td>
</tr>
<tr>
<td>cluster1</td>
<td>true</td>
<td>True True</td>
<td>16h</td>
<td></td>
</tr>
</tbody>
</table>

```
apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
  name: all-ready-clusters
  namespace: default
spec:
  clusterSelector: {}
status:
  decisions:
  - clusterName: cluster1
    clusterNamespace: cluster1
```

2. Create a Role in your YAML file to grant the managedcluster administrative permission in the local-cluster namespace. See the following example:

-
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: managedcluster-admin-user-zisis
 namespace: local-cluster
rules:
 - apiGroups:
 - cluster.open-cluster-management.io
 resources:
 - managedclusters
 verbs:
 - get

3. Create a `RoleBinding` resource to grant the placement rule user access to the `local-cluster` namespace. See the following example:

 apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 name: managedcluster-admin-user-zisis
 namespace: local-cluster
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: managedcluster-admin-user-zisis
 namespace: local-cluster
 subjects:
 - kind: User
 name: zisis
 apiGroup: rbac.authorization.k8s.io

1.17. TROUBLESHOOTING APPLICATION KUBERNETES DEPLOYMENT VERSION

A managed cluster with a deprecated Kubernetes `apiVersion` might not be supported. See the Kubernetes issue for more details about the deprecated API version.

1.17.1. Symptom: Application deployment version

If one or more of your application resources in the Subscription YAML file uses the deprecated API, you might receive an error similar to the following error:

```
failed to install release: unable to build kubernetes objects from release manifest: unable to recognize "": no matches for
kind "Deployment" in version "extensions/v1beta1"
```

Or with new Kubernetes API version in your YAML file named `old.yaml` for instance, you might receive the following error:

```
error: unable to recognize "old.yaml": no matches for kind "Deployment" in version "deployment/v1beta1"
```
1.17.2. Resolving the problem: Application deployment version

1. Update the `apiVersion` in the resource. For example, if the error displays for `Deployment` kind in the subscription YAML file, you need to update the `apiVersion` from `extensions/v1beta1` to `apps/v1`.

 See the following example:

   ```yaml
   apiVersion: apps/v1
   kind: Deployment
   ```

2. Verify the available versions by running the following command on the managed cluster:

   ```bash
   kubectl explain <resource>
   ```

3. Check for `VERSION`.

1.18. TROUBLESHOOTING STANDALONE SUBSCRIPTION MEMORY

The `multicluster-operators-standalone-subscription` pod restarts regularly because of a memory issue.

1.18.1. Symptom: Standalone subscription memory

When Operator Lifecycle Manager (OLM) deploys all operators, not only the multicluster-subscription-operator, the `multicluster-operators-standalone-subscription` pod restarts because not enough memory is allocated to the standalone subscription container.

The memory limit of the `multicluster-operators-standalone-subscription` pod was increased to 2GB in the multicluster subscription community operator CSV, but this resource limit setting is ignored by OLM.

1.18.2. Resolving the problem: Standalone subscription memory

1. After installation, find the operator subscription CR that subscribes the multicluster subscription community operator. Run the following command:

   ```bash
   % oc get sub -n open-cluster-management acm-operator-subscription
   ```

2. Edit the operator subscription custom resource by appending the `spec.config.resources.yaml` file to define resource limits.

 Note: Do not create a new operator subscription custom resource that subscribes the same multicluster subscription community operator. Because two operator subscriptions are linked to one operator, the operator pods are "killed" and restarted by the two operator subscription custom resources.

 See the following updated `.yaml` file example:

   ```yaml
   apiVersion: operators.coreos.com/v1alpha1
   kind: Subscription
   metadata:
     name: multicluster-operators-subscription-alpha-community-operators-openshift-marketplace
     namespace: open-cluster-management
   ```
spec:
 channel: release-2.2
config:
 resources:
 limits:
 cpu: 750m
 memory: 2Gi
 requests:
 cpu: 150m
 memory: 128Mi
installPlanApproval: Automatic
name: multicluster-operators-subscription
source: community-operators
sourceNamespace: openshift-marketplace

3. After the resource is saved, ensure that the standalone subscription pod is restarted with 2GB memory limit. Run the following command:

```
% oc get pods -n open-cluster-management multicluster-operators-standalone-subscription-7c8cbf885f-c94kz -o yaml
```

```
apiVersion: v1
kind: Pod
...
spec:
  containers:
    - image: quay.io/open-cluster-management/multicluster-operators-subscription:community-2.2
      ...
      resources:
        limits:
          cpu: 750m
          memory: 2Gi
        requests:
          cpu: 150m
          memory: 128Mi
      ...
  status:
    qosClass: Burstable
```

1.19. TROUBLESHOOTING KLUSTERLET WITH DEGRADED CONDITIONS

The Klusterlet degraded conditions can help to diagnose the status of Klusterlet agents on managed cluster. If a Klusterlet is in the degraded condition, the Klusterlet agents on managed cluster might have errors that need to be troubleshooted. See the following information for Klusterlet degraded conditions that are set to `True`.

1.19.1. Symptom: Klusterlet is in the degraded condition

After deploying a Klusterlet on managed cluster, the `KlusterletRegistrationDegraded` or `KlusterletWorkDegraded` condition displays a status of `True`.
1.19.2. Identifying the problem: Klusterlet is in the degraded condition

1. Run the following command on the managed cluster to view the Klusterlet status:

 kubectl get klusterlets klusterlet -oyaml

2. Check KlusterletRegistrationDegraded or KlusterletWorkDegraded to see if the condition is set to True. Proceed to Resolving the problem for any degraded conditions that are listed.

1.19.3. Resolving the problem: Klusterlet is in the degraded condition

See the following list of degraded statuses and how you can attempt to resolve those issues:

- If the KlusterletRegistrationDegraded condition with a status of True and the condition reason is: BootStrapSecretMissing, you need create a bootstrap secret on open-cluster-management-agent namespace.

- If the KlusterletRegistrationDegraded condition displays True and the condition reason is a BootstrapSecretError, or BootstrapSecretUnauthorized, then the current bootstrap secret is invalid. Delete the current bootstrap secret and recreate a valid bootstrap secret on open-cluster-management-agent namespace.

- If the KlusterletRegistrationDegraded and KlusterletWorkDegraded displays True and the condition reason is HubKubeConfigSecretMissing, delete the Klusterlet and recreate it.

- If the KlusterletRegistrationDegraded and KlusterletWorkDegraded displays True and the condition reason is: ClusterNameMissing, KubeConfigMissing, HubConfigSecretError, or HubConfigSecretUnauthorized, delete the hub cluster kubeconfig secret from open-cluster-management-agent namespace. The registration agent will bootstrap again to get a new hub cluster kubeconfig secret.

- If the KlusterletRegistrationDegraded displays True and the condition reason is GetRegistrationDeploymentFailed, or UnavailableRegistrationPod, you can check the condition message to get the problem details and attempt to resolve.

- If the KlusterletWorkDegraded displays True and the condition reason is GetWorkDeploymentFailed, or UnavailableWorkPod, you can check the condition message to get the problem details and attempt to resolve.

1.20. TROUBLESHOOTING KLUSTERLET APPLICATION MANAGER ON MANAGED CLUSTERS

When you upgrade from Red Hat Advanced Cluster Management for Kubernetes, the klusterlet-addon-appmgr pod on Red Hat OpenShift Container Platform managed clusters version 4.5 and 4.6 are OOMKilled.

1.20.1. Symptom: Klusterlet application manager on managed cluster

You receive an error for the klusterlet-addon-appmgr pod on Red Hat OpenShift Container Platform managed clusters version 4.5 and 4.6: OOMKilled.

1.20.2. Resolving the problem: Klusterlet application manager on managed cluster
For Red Hat Advanced Cluster Management for Kubernetes 2.1.x and 2.2, you need to manually increase the memory limit of the pod to **8Gb**. See the following steps.

1. On your hub cluster, annotate the `klusterletaddonconfig` to pause replication. See the following command:

   ```bash
   oc annotate klusterletaddonconfig -n ${CLUSTER_NAME} ${CLUSTER_NAME} klusterletaddonconfig-pause=true -- overwrite=true
   ```

2. On your hub cluster, scale down the `klusterlet-addon-operator`. See the following command:

   ```bash
   oc edit manifestwork ${CLUSTER_NAME}-klusterlet-addon-operator -n ${CLUSTER_NAME}
   ```

3. Find the `klusterlet-addon-operator` Deployment and add `replicas: 0` to the spec to scale down.

   ```yaml
   - apiVersion: apps/v1
     kind: Deployment
     metadata:
       labels:
         app: cluster1
         name: klusterlet-addon-operator
       namespace: open-cluster-management-agent-addon
     spec:
       replicas: 0
   ```

 On the managed cluster, the `open-cluster-management-agent-addon/klusterlet-addon-operator` pod will be terminated.

4. Log in to the managed cluster to manually increase the memory limit in the `appmgr` pod. Run the following command:

   ```bash
   % oc edit deployments -n open-cluster-management-agent-addon klusterlet-addon-appmgr
   ```

 For example, if the limit is 5G, increase the limit to 8G.

   ```yaml
   resources:
     limits:
       memory: 2Gi -> 8Gi
     requests:
       memory: 128Mi -> 256Mi
   ```

1.21. TROUBLESHOOTING OBJECT STORAGE CHANNEL SECRET

If you change the `SecretAccessKey`, the subscription of an Object storage channel cannot pick up the updated secret automatically and you receive an error.

1.21.1. Symptom: Object storage channel secret

The subscription of an Object storage channel cannot pick up the updated secret automatically. This prevents the subscription operator from reconciliation and deploys resources from Object storage to the managed cluster.

1.21.2. Resolving the problem: Object storage channel secret
You need to manually input the credentials to create a secret, then refer to the secret within a channel.

1. Annotate the subscription CR in order to generate a reconcile single to subscription operator. See the following data specification:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: deva
namespace: ch-obj
labels:
  name: obj-sub
spec:
  type: ObjectBucket
sourceNamespaces:
  - default
secretRef:
  name: dev
---
apiVersion: v1
kind: Secret
metadata:
  name: dev
namespace: ch-obj
labels:
  name: obj-sub
data:
  AccessKeyID: YWRtaW4=
  SecretAccessKey: cGFzc3dvcmRhZG1pbw==
```

2. Run `oc annotate` to test:

```bash
oc annotate appsub -n <subscription-namespace> <subscription-name> test=true
```

After you run the command, you can go to the Application console to verify that the resource is deployed to the managed cluster. Or you can log in to the managed cluster to see if the application resource is created at the given namespace.

1.22. Troubleshooting Observability

After you install the observability component, the component might be stuck and an **Installing** status is displayed.

1.22.1. Symptom: MultiClusterObservability resource status stuck

If the observability status is stuck in an **Installing** status after you install and create the Observability custom resource definition (CRD), it is possible that there is no value defined for the `spec:storageConfig:storageClass` parameter. Alternatively, the observability component automatically finds the default `storageClass`, but if there is no value for the storage, the component remains stuck with the **Installing** status.

1.22.2. Resolving the problem: MultiClusterObservability resource status stuck
If you have this problem, complete the following steps:

1. Verify that the observability components are installed:
 a. To verify that the `multicluster-observability-operator`, run the following command:
      ```shell
      kubectl get pods -n open-cluster-management|grep observability
      ```
 b. To verify that the appropriate CRDs are present, run the following command:
      ```shell
      kubectl get crd|grep observ
      ```
 The following CRDs must be displayed before you enable the component:
      ```plaintext
      multiclusterobservabilities.observability.open-cluster-management.io
      observabilityaddons.observability.open-cluster-management.io
      observatoria.core.observatorium.io
      ```

2. If you create your own storageClass for a Bare Metal cluster, see How to create an NFS provisioner in the cluster or out of the cluster.

3. To ensure that the observability component can find the default storageClass, update the `storageClass` parameter in the `multicluster-observability-operator` CRD. Your parameter might resemble the following value:
   ```plaintext
   storageclass.kubernetes.io/is-default-class: "true"
   ```
 The observability component status is updated to a Ready status when the installation is complete. If the installation fails to complete, the Fail status is displayed.

1.23. TROUBLESHOOTING OPENSHIFT MONITORING SERVICE

Observability service in a managed cluster needs to scrape metrics from the OpenShift Container Platform monitoring stack. The `metrics-collector` is not installed if the OpenShift Container Platform monitoring stack is not ready.

1.23.1. Symptom: OpenShift monitoring service is not ready

The `endpoint-observability-operator-x` pod checks if the `prometheus-k8s` service is available in the `openshift-monitoring` namespace. If the service is not present in the `openshift-monitoring` namespace, then the `metrics-collector` is not deployed. You might receive the following error message: Failed to get prometheus resource.

1.23.2. Resolving the problem: OpenShift monitoring service is not ready

If you have this problem, complete the following steps:

1. Log in to your OpenShift Container Platform cluster.

2. Access the `openshift-monitoring` namespace to verify that the `prometheus-k8s` service is available.

1.24. TROUBLESHOOTING SEARCH AGGREGATOR POD STATUS

The **search-aggregator** fail to run.

1.24.1. Symptom 1: Search aggregator pod in Not Ready state

Search aggregator pods are in a **Not Ready** state if the **redisgraph-user-secret** is updated. You might receive the following error:

```
W0113 15:04:42.428100       1 healthProbes.go:36] Unable to reach Redis.
W0113 15:04:44.266003       1 healthProbes.go:36] Unable to reach Redis.
W0113 15:04:46.317029       1 healthProbes.go:36] Unable to reach Redis.
```

1.24.2. Resolving the problem: Search aggregator pod in Not Ready state

If you have this problem, delete the **search-aggregator** and **search-api** pods to restart the pods. Run the following commands to delete the previously mentioned pods.

```
oc delete pod -n open-cluster-management <search-aggregator>
oc delete pod -n open-cluster-management <search-api>
```

1.24.3. Symptom 2: Search redisgraph pod in Pending state

The **search-redisgraph** pod fail to run when it is in **Pending** state.

1.24.4. Resolving the problem: Search redisgraph pod in Pending state

If you have this problem complete the following steps:

1. Check the pod events on the hub cluster namespace with the following command:

```
oc describe pod search-redisgraph-0
```

2. If you have created a **searchcustomization** CR, check if the storage class and storage size is valid, and check if a PVC can be created. List the PVC by running the following command:

```
oc get pvc <storageclassname>-search-redisgraph-0
```

3. Make sure the PVC can be bound to the **search-redisgraph-0** pod. If the problem is still not resolved, delete the StatefulSet **search-redisgraph**. The search operator recreates the StatefulSet. Run the following command:

```
oc delete statefulset -n open-cluster-management search-redisgraph
```
1.25. TROUBLESHOOTING METRICS-COLLECTOR

When the observability-client-ca-certificate secret is not refreshed in the managed cluster, you might receive an internal server error.

1.25.1. Symptom: metrics-collector cannot verify observability-client-ca-certificate

There might be a managed cluster, where the metrics are unavailable. If this is the case, you might receive the following error from the metrics-collector deployment:

```
error: response status code is 500 Internal Server Error, response body is x509: certificate signed by unknown authority (possibly because of "crypto/rsa: verification error" while trying to verify candidate authority certificate "observability-client-ca-certificate")
```

1.25.2. Resolving the problem: metrics-collector cannot verify observability-client-ca-certificate

If you have this problem, complete the following steps:

1. Log in to your managed cluster.

2. Delete the secret named, observability-controller-open-cluster-management.io-observability-signer-client-cert that is in the open-cluster-management-addon-observability namespace. Run the following command:

```
oc delete observability-controller-open-cluster-management.io-observability-signer-client-cert -n open-cluster-management-addon-observability
```

Note: The observability-controller-open-cluster-management.io-observability-signer-client-cert is automatically recreated with new certificates.

The metrics-collector deployment is recreated and the observability-controller-open-cluster-management.io-observability-signer-client-cert secret is updated.