Manage applications
Abstract

Manage applications in Red Hat Advanced Cluster Management for Kubernetes
Table of Contents

CHAPTER 1. MANAGING APPLICATIONS ... 4

1. APPLICATION MODEL AND DEFINITIONS ... 4
 1.1. Applications .. 4
 1.2. Channels ... 5
 1.2.1. Supported Git repository servers ... 6
 1.2.3. Subscriptions ... 6
 1.2.4. Placement rules ... 6

2. APPLICATION CONSOLE ... 7
 2.1. Applications overview .. 7
 2.1.1. Single applications overview ... 8
 2.2. Resource topology .. 8
 2.3. Search ... 8
 2.4. Advanced configuration .. 9

3. MANAGING APPLICATION RESOURCES .. 9
 3.1. Managing apps with Git repositories ... 9
 3.1.1. GitOps pattern ... 11
 3.1.1.1. GitOps example .. 11
 3.1.1.2. GitOps flow .. 11
 3.1.1.3. More examples ... 12
 3.1.2. Managing apps with Helm repositories .. 12
 3.1.2.1. Sample YAML .. 13
 3.1.3. Managing apps with Object storage repositories 14
 3.1.3.1. Sample YAML .. 15

4. APPLICATION ADVANCED CONFIGURATION ... 15
 4.1. Subscribing Git resources ... 16
 4.1.1. Granting users and groups subscription admin privilege 16
 4.1.2. Creating application resources in Git .. 16
 4.1.3. Application namespace example ... 17
 4.1.4. Resource overwite example .. 18
 4.1.4.1. Default merge option ... 18
 4.1.4.2. Replace option .. 19
 4.1.4.3. Reconcile option ... 19
 4.1.4.3.1. Reconcile frequency ... 20
 4.2. Configuring application channel and subscription for a secure Git connection 20
 4.2.1. Connecting to a private repo with user and access token 21
 4.2.2. Making an insecure HTTPS connection to a Git server 22
 4.2.3. Using custom CA certificates for a secure HTTPS connection 22
 4.2.4. Making an SSH connection to a Git server 23
 4.2.5. Updating certificates and SSH keys ... 26
 4.3. Setting up Ansible Tower tasks (Technology preview) 27
 4.3.1. Prerequisites ... 27
 4.3.2. Install Ansible Automation Platform Resource Operator: 27
 4.3.3. Obtain the Ansible Tower URL and token 27
 4.3.4. Obtaining a token ... 27
 4.3.5. Ansible integration .. 28
 4.3.6. Ansible operator components .. 28
 4.3.6.1. Prehook .. 28
 4.3.6.2. Posthook ... 28
 4.3.6.3. Ansible placement rules ... 28
 4.3.7. Ansible configuration ... 29
 4.3.7.1. Ansible secrets ... 29
CHAPTER 1. MANAGING APPLICATIONS

Review the following topics to learn more about creating, deploying, and managing your applications. This guide assumes familiarity with Kubernetes concepts and terminology. Key Kubernetes terms and components are not defined. For more information about Kubernetes concepts, see Kubernetes Documentation.

The application management functions provide you with unified and simplified options for constructing and deploying applications and application updates. With these functions, your developers and DevOps personnel can create and manage applications across environments through channel and subscription-based automation.

See the following topics:

- Application model and definitions
- Application console
- Managing application resources
- Managing apps with Git repositories
- Managing apps with Helm repositories
- Managing apps with Object storage repositories
- Application advanced configuration
- Subscribing Git resources
- Configuring application channel and subscription for a secure Git connection
- Setting up Ansible Tower tasks
- Configuring managed clusters for Argo CD
- Scheduling a deployment
- Configuring package overrides
- Channel samples
- Subscription samples
- Placement rule samples
- Application samples

1.1. APPLICATION MODEL AND DEFINITIONS

The application model is based on subscribing to one or more Kubernetes resource repositories (channel resources) that contains resources that are deployed on managed clusters. Both single and multicluster applications use the same Kubernetes specifications, but multicluster applications involve more automation of the deployment and application management lifecycle.

See the following image to understand more about the application model:
View the following application resource sections:

1.1.1. Applications

Applications (application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are used for grouping Kubernetes resources that make up an application.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes applications are defined in YAML file spec sections. When you need to create or update an application component resource, you need to create or edit the appropriate spec section to include the labels for defining your resource.

1.1.2. Channels

Channels (channel.apps.open-cluster-management.io) define the source repositories that a cluster can subscribe to with a subscription, and can be the following types: Git, Helm release, and Object storage repositories, and resource templates on the hub cluster.

If you have applications that require Kubernetes resources or Helm charts from channels that require authorization, such as entitled Git repositories, you can use secrets to provide access to these channels. Your subscriptions can access Kubernetes resources and Helm charts for deployment from these channels, while maintaining data security.

Channels use a namespace within the hub cluster and point to a physical place where resources are stored for deployment. Clusters can subscribe to channels for identifying the resources to deploy to each cluster.

Notes: It is best practice to create each channel in a unique namespace. However, a Git channel can share a namespace with another type of channel, including Git, Helm, and Object storage.
Resources within a channel can be accessed by only the clusters that subscribe to that channel.

1.1.2.1. Supported Git repository servers

- GitHub
- GitLab
- Bitbucket
- Gogs

1.1.3. Subscriptions

Subscriptions (subscription.apps.open-cluster-management.io) allow clusters to subscribe to a source repository (channel) that can be the following types: Git repository, Helm release registry, or Object storage repository.

Note: Self-managing the hub cluster is not recommended because the resources might impact the hub cluster.

Subscriptions can deploy application resources locally to the hub cluster, if the hub cluster is self-managed. You can then view the local-cluster subscription in the topology. Resource requirements might adversely impact hub cluster performance.

Subscriptions can point to a channel or storage location for identifying new or updated resource templates. The subscription operator can then download directly from the storage location and deploy to targeted managed clusters without checking the hub cluster first. With a subscription, the subscription operator can monitor the channel for new or updated resources instead of the hub cluster.

1.1.4. Placement rules

Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where resource templates can be deployed. Use placement rules to help you facilitate the multicluster deployment of your deployables. Placement policies are also used for governance and risk policies.

Learn more from the following documentation:

- Application console
- Managing application resources
- Managing apps with Git repositories
- Managing apps with Helm repositories
- Managing apps with Object storage repositories
- Application advanced configuration
- Subscribing Git resources
- Setting up Ansible Tower tasks
- Channel samples
1.2. APPLICATION CONSOLE

The console includes a dashboard for managing the application lifecycle. You can use the console dashboard to create and manage applications and view the status of applications. Enhanced capabilities help your developers and operations personnel create, deploy, update, manage, and visualize applications across your clusters.

See the following application console capabilities:

Important: Actions are based on your assigned role. Learn about access requirements from the Role-based access control documentation.

- Visualize deployed applications across your clusters, including any associated resource repositories, subscriptions, and placement configurations.
- Create and edit applications, and subscribe resources. By default, the hub cluster can manage itself, and is named the **local cluster**. You can choose to deploy application resources to this local cluster, though deploying applications on the local cluster is not best practice.
- Use Advanced configuration to view or edit channels, subscriptions, and placement rules.
- Access a topology view that encompasses application resources, including resource repositories, subscriptions, placement rules, and deployed resources, including any optional pre and post deployment hooks using Ansible Tower tasks (for Git repositories).
- View individual status in the context of an application, including deployments, updates, and subscriptions.

The console includes tools that each provide different application management capabilities. These capabilities allow you to easily create, find, update, and deploy application resources.

- Applications overview
- Resource topology
- Search
- Advanced configuration

1.2.1. Applications overview

From the main Overview tab, see the following:

- A table that lists all applications
- The Search box to filter the applications that are listed
- The application name and namespace
- The number of remote and local clusters where resources are deployed through a subscription
- The links to repositories where the definitions for the resources that are deployed by the application are located
- An indication of Time window constraints, if any were created
- The date when the application was created
- More actions, such as **Delete application**. Actions are available if the user has permission to take action.

1.2.1. Single applications overview

Click on an application name in the table to view details about a single application. See the following information:

- Cluster details, such as resource status.
- Subscription details
- Resource topology

Click the **Editor** tab to edit your application and related resources.

1.2.2. Resource topology

The topology provides a visual representation of the application that was selected including the resources deployed by this application on target clusters.

- You can select any component from the topology view to view more details.
- View the deployment details for any resource deployed by this application by clicking on the resource node to open the properties view.
- View cluster CPU and memory from the cluster node, on the properties dialog. **Notes:** The cluster CPU and memory percentage that is displayed is the percentage that is currently utilized. This value is rounded down, so a very small value might display as 0.

For Helm subscriptions, see **Configuring package overrides** to define the appropriate **packageName** and the **packageAlias** to get an accurate topology display.

- View a successful Ansible Tower deployment if you are using Ansible tasks as prehook or posthook for the deployed application.
 Click the name of the resource node or select **Actions > View application** to see the details about the Ansible task deployment, including Ansible Tower Job URL and template name. Additionally, you can see errors if your Ansible Tower deployment is not successful.
- **Click Launch resource in Search** to search for related resources.

1.2.3. Search

The console **Search** page supports searching for application resources by the component **kind** for each resource. To search for resources, use the following values:
You can also search by other fields, including name, namespace, cluster, label, and more.

From the search results, you can view identifying details for each resource, including the name, namespace, cluster, labels, and creation date.

If you have access, you can also click Actions in the search results and select to delete that resource.

Click the resource name in the search results to open the YAML editor and make changes. Changes that you save are applied to the resource immediately.

For more information about using search, see Search in the console.

1.2.4. Advanced configuration

Click the Advanced configuration tab to view terminology and tables of resources for all applications. You can find resources and you can filter subscriptions, placement rules, and channels. If you have access, you can also click multiple Actions, such as Edit, Search, and Delete.

Select a resource to view or edit the YAML.

1.3. MANAGING APPLICATION RESOURCES

From the console, you can create applications by using Git repositories, Helm repositories, and Object storage repositories.

Important: Git Channels can share a namespace with all other channel types: Helm, Object storage, and other Git namespaces.

See the following topics to start managing apps:

- Managing apps with Git repositories
- Managing apps with Helm repositories
- Managing apps with Object storage repositories

1.3.1. Managing apps with Git repositories
When you deploy Kubernetes resources using an application, the resources are located in specific repositories. Learn how to deploy resources from Git repositories in the following procedure. Learn more about the application model at Application model and definitions.

User required access: A user role that can create applications. You can only perform actions that your role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Manage applications.
2. Click Create application
 For the following steps, select YAML: On to view the YAML in the console as you create your application. See the YAML samples later in the topic.
3. Enter the following values in the correct fields:
 - Name: Enter a valid Kubernetes name for the application.
 - Namespace: Select a namespace from the list. You can also create a namespace by using a valid Kubernetes name if you are assigned the correct access role.
4. Choose Git from the list of repositories that you can use.
5. Enter the required URL path or select an existing path.
 If you select an existing Git repository path, you do not need to specify connection information if this is a private repository. The connection information is pre-set and you do not need to view these values.
 If you enter a new Git repository path, you can optionally enter Git connection information if this is a private Git repository.
6. Enter values for the optional fields, such as branch and path.
7. Notice the reconcile option. The merge option is the default selection, which means that new fields are added and existing fields are updated in the resource. You can choose to replace. With the replace option, the existing resource is replaced with the Git source.
8. Set any optional pre-deployment and post-deployment tasks.
 Technology preview: Set the Ansible Tower secret if you have Ansible Tower jobs that you want to run before or after the subscription deploys the application resources. The Ansible Tower tasks that define Ansible jobs must be placed within prehook and posthook folders in this repository.
 You can select an Ansible Tower secret from drop-down menu if a secret was created in the application namespace. In this instance, the connection information is set, and you do not need to view these values.
 If you enter a new Ansible Tower secret name to create a new secret, you need to enter the Ansible Tower host and token.
9. From Select clusters to deploy, you can update the placement rule information for your application. Choose from the following:
 - Deploy on local cluster
 - Deploy to all online clusters and local cluster
 - Deploy application resources only on clusters matching specified labels
You have the option to Select existing placement configuration if you create an application in an existing namespace with placement rules already defined.

10. From Settings, you can specify application behavior. To block or activate changes to your deployment during a specific time window, choose an option for Deployment window and your Time window configuration.

11. You can either choose another repository or Click Save.

12. You are redirected to the Overview page where you can view the details and topology.

1.3.1.1. GitOps pattern

Learn best practices for organizing a Git repository to manage clusters.

1.3.1.1.1. GitOps example

Folders in this example are defined and named, with each folder containing applications or configurations that are run on managed clusters:

- Root folder **managed-subscriptions**: Contains subscriptions that target the **common-managed** folder.

- Subfolder **apps/**: Used to subscribe applications in the **common-managed** folder with placement to **managed-clusters**.

- Subfolder **config/**: Used to subscribe configurations in the **common-managed** folder with placement to **managed-clusters**.

- Subfolder **policies/**: Used to apply policies with placement to **managed-clusters**.

- Folder **root-subscription/**: The initial subscription for the hub cluster that subscribes the **managed-subscriptions** folder.

See the example of a directory:

```
common-managed/
    apps/
        app-name-0/
        app-name-1/
    config/
        config001/
        config002/

managed-subscriptions
    apps/
    config/
    policies/

root-subscription/
```

1.3.1.1.2. GitOps flow

Your directory structure is created for the following subscription flow: **root-subscription > managed-subscriptions > common-managed**.
1. A single subscription in `root-subscription/` is applied from the CLI terminal to the hub cluster.

2. Subscriptions and policies are downloaded and applied to the hub cluster from the `managed-subscription` folder.
 - The subscriptions and policies in the `managed-subscription` folder then perform work on the managed clusters based on the placement.
 - Placement determines which `managed-clusters` each subscription or policy affects.
 - The subscriptions or policies define what is on the clusters that match their placement.

3. Subscriptions apply content from the `common-managed` folder to `managed-clusters` that match the placement rules. This also applies common applications and configurations to all `managed-clusters` that match the placement rules.

1.3.1.1.3. More examples

- For an example of `root-subscription/`, see `application-subscribe-all`.
- For examples of subscriptions that point to other folders in the same repository, see `subscribe-all`.
- See an example of the `common-managed` folder with application artifacts in the `nginx-apps` repository.
- See policy examples in `Policy collection`.

1.3.2. Managing apps with Helm repositories

When you deploy Kubernetes resources using an application, the resources are located in specific repositories. Learn how to deploy resources from Helm repositories in the following procedure. Learn more about the application model at `Application model and definitions`.

User required access: A user role that can create applications. You can only perform actions that your role is assigned. Learn about access requirements from the `Role-based access control` documentation.

1. From the console navigation menu, click `Manage applications`.

2. Click `Create application`.
 - For the following steps, select **YAML: On** to view the YAML in the console as you create your application. See YAML samples later in the topic.

3. Enter the following values in the correct fields:
 - **Name:** Enter a valid Kubernetes name for the application.
 - **Namespace:** Select a namespace from the list. You can also create a namespace by using a valid Kubernetes name if you are assigned the correct access role.

4. Choose **Helm** from the list of repositories that you can use.

5. Enter the required URL path or select an existing path, then enter the package version.
 - If you select an existing Helm repository path, you do not need to specify connection information if this is a private repository. The connection information is pre-set and you do not need to view these values.
If you enter a new Helm repository path, you can optionally enter Helm connection information if this is a private Helm repository.

6. From Select clusters to deploy, you can update the placement rule information for your application. Choose from the following:
 - Deploy on local cluster
 - Deploy to all online clusters and local cluster
 - Deploy application resources only on clusters matching specified labels
 - You have the option to Select existing placement configuration if you create an application in an existing namespace with placement rules already defined.

7. From Settings, you can specify application behavior. To block or activate changes to your deployment during a specific time window, choose an option for Deployment window and your Time window configuration.

8. You can either choose another repository or Click Save.

9. You are redirected to the Overview page where you can view the details and topology.

1.3.2.1. Sample YAML

The following example channel definition abstracts a Helm repository as a channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label `release.{{ .Release.Name }}` for the application topology to be displayed properly.

```yaml
apiVersion: v1
kind: Namespace
metadata:
  name: hub-repo
---
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: helm
namespace: hub-repo
spec:
  pathname: [https://kubernetes-charts.storage.googleapis.com/] # URL points to a valid chart URL.
  type: HelmRepo
```

The following channel definition shows another example of a Helm repository channel:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: predev-ch
namespace: ns-ch
labels:
  app: nginx-app-details
spec:
  type: HelmRepo
  pathname: https://kubernetes-charts.storage.googleapis.com/
```
1.3.3. Managing apps with Object storage repositories

When you deploy Kubernetes resources using an application, the resources are located in specific repositories. Learn how to deploy resources from Object storage repositories in the following procedure. Learn more about the application model at Application model and definitions.

User required access: A user role that can create applications. You can only perform actions that your role is assigned. Learn about access requirements from the Role-based access control documentation.

When you deploy Kubernetes resources using an application, the resources are located in specific repositories. Learn how to deploy resources from Git repositories in the following procedure.

1. From the console navigation menu, click Manage applications.

2. Click Create application.
 For the following steps, select YAML: On to view the YAML in the console as you create your application. See YAML samples later in the topic.

3. Enter the following values in the correct fields:
 - Name: Enter a valid Kubernetes name for the application.
 - Namespace: Select a namespace from the list. You can also create a namespace by using a valid Kubernetes name if you are assigned the correct access role.

4. Choose Object storage from the list of repositories that you can use.

5. Enter the required URL path or select an existing path.
 If you select an existing Object storage repository path, you do not need to specify connection information if this is a private repository. The connection information is pre-set and you do not need to view these values.

 If you enter a new Object storage repository path, you can optionally enter Object storage connection information if this is a private Object storage repository.

6. Enter values for the optional fields.

7. Set any optional pre and post-deployment tasks.

8. From Select clusters to deploy, you can update the placement rule information for your application. Choose from the following:
 - Deploy on local cluster
 - Deploy to all online clusters and local cluster
 - Deploy application resources only on clusters matching specified labels
 - You have the option to Select existing placement configuration if you create an application in an existing namespace with placement rules already defined.

9. From Settings, you can specify application behavior. To block or activate changes to your deployment during a specific time window, choose an option for Deployment window and your Time window configuration.
10. You can either choose another repository or Click **Save**.

11. You are redirected to the **Overview** page where you can view the details and topology.

1.3.3.1. Sample YAML

The following example channel definition abstracts an object storage as a channel:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: dev
  namespace: ch-obj
spec:
  type: Object storage
  pathname: [http://9.28.236.243:31311/dev] # URL is appended with the valid bucket name, which matches the channel name.
  secretRef:
    name: miniosecret
  gates:
    annotations:
      dev-ready: true
```

Note: To see REST API, use the **APIs**.

1.4. APPLICATION ADVANCED CONFIGURATION

Within Red Hat Advanced Cluster Management for Kubernetes, applications are composed of multiple application resources. You can use channel, subscription, and placement rule resources to help you deploy, update, and manage your overall applications.

Both single and multicluster applications use the same Kubernetes specifications, but multicluster applications involve more automation of the deployment and application management lifecycle.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes applications are defined in YAML file spec sections. When you need to create or update an application component resource, you need to create or edit the appropriate spec section to include the labels for defining your resource.

View the following application advanced configuration topics:

- Subscribing Git resources
- Configuring application channel and subscription for a secure Git connection
- Setting up Ansible Tower tasks
- Configuring managed clusters for Argo CD
- Configuring package overrides
- Channel samples
- Subscription samples
- Placement rule samples
1.4.1. Subscribing Git resources

By default, when a subscription deploys subscribed applications to target clusters, the applications are deployed to that subscription namespace, even if the application resources are associated with other namespaces. A subscription administrator can change default behavior, as described in this topic.

Additionally, if an application resource exists in the cluster and was not created by the subscription, the subscription cannot apply a new resource on that existing resource. See the following processes to change default settings as the subscription administrator:

Required access: Cluster administrator

1.4.1.1. Granting users and groups subscription admin privilege

Learn how to grant subscription administrator access.

1. From the console, log in to your Red Hat OpenShift Container Platform cluster.

2. Create one or more users. See Preparing for users for information about creating users. Users that you create are administrators for the `app.open-cluster-management.io/subscription` application. With OpenShift Container Platform, a subscription administrator can change default behavior. You can group these users to represent a subscription administrative group, which is demonstrated in later examples.

3. From the terminal, log in to your Red Hat Advanced Cluster Management cluster.

4. Add the following subjects into `open-cluster-management:subscription-admin` ClusterRoleBinding with the following command:

   ```bash
   oc edit clusterrolebinding open-cluster-management:subscription-admin
   ```

Note: Initially, `open-cluster-management:subscription-admin` ClusterRoleBinding has no subject.

Your subjects might display as the following example:

```yaml
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: example-name
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: example-group-name
```

1.4.1.2. Creating application resources in Git

You need to specify the full group and version for `apiVersion` in resource YAML when you subscribe. For example, if you subscribe to `apiVersion: v1`, the subscription controller fails to validate the subscription and you receive an error: `Resource /v1, Kind=ImageStream is not supported`.

If the `apiVersion` is changed to `image.openshift.io/v1`, as in the following sample, it passes the validation in the subscription controller and the resource is applied successfully.
1.4.1.3. Application namespace example

In this example, you are logged in as a subscription administrator. Create a subscription to subscribe the sample resource YAML file from a Git repository. The example file contains subscriptions that are located within the following different namespaces:

Applicable channel types: Git

- ConfigMap **test-configmap-1** gets created in **multins** namespace.
- ConfigMap **test-configmap-2** gets created in **default** namespace.
- ConfigMap **test-configmap-3** gets created in the **subscription** namespace.
name: test-configmap-3
data:
 path: resource3

If the subscription was created by other users, all the ConfigMaps get created in the same namespace as the subscription.

1.4.1.4. Resource overwrite example

Applicable channel types: Git, ObjectBucket (Object storage in the console)

In this example, the following ConfigMap already exists in the target cluster.

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: test-configmap-1
  namespace: sub-ns
data:
  name: user1
  age: 19
```

Subscribe the following sample resource YAML file from a Git repository and replace the existing ConfigMap. See the change in the `data` specification:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: test-configmap-1
  namespace: sub-ns
data:
  age: 20
```

1.4.1.4.1. Default merge option

See the following sample resource YAML file from a Git repository with the default `apps.open-cluster-management.io/reconcile-option: merge` annotation. See the following example:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: subscription-example
  namespace: sub-ns
annotations:
  apps.open-cluster-management.io/git-path: sample-resources
  apps.open-cluster-management.io/reconcile-option: merge
spec:
  channel: channel-ns/somechannel
  placement:
    placementRef:
      name: dev-clusters
```

When this subscription is created by a subscription administrator and subscribes the ConfigMap resource, the existing ConfigMap is merged, as you can see in the following example:
When the **merge** option is used, entries from subscribed resource are either created or updated in the existing resource. No entry is removed from the existing resource.

Important: If the existing resource you want to overwrite with a subscription is automatically reconciled by another operator or controller, the resource configuration is updated by both subscription and the controller or operator. Do not use this method in this case.

1.4.1.4.2. Replace option

You log in as a subscription administrator and create a subscription with **apps.open-cluster-management.io/reconcile-option: replace** annotation. See the following example:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: subscription-example
  namespace: sub-ns
annotations:
  apps.open-cluster-management.io/git-path: sample-resources
  apps.open-cluster-management.io/reconcile-option: replace
spec:
  channel: channel-ns/somechannel
  placement:
    placementRef:
      name: dev-clusters
```

When this subscription is created by a subscription administrator and subscribes the ConfigMap resource, the existing ConfigMap is replaced by the following:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: test-configmap-1
  namespace: sub-ns
data:
  name: user1
  age: 20
```

1.4.1.4.3. Reconcile option

You can also use **apps.open-cluster-management.io/reconcile-option** annotation in individual resources to override the subscription-level reconcile option.

For example, if you add **apps.open-cluster-management.io/reconcile-option: replace** annotation in the subscription and add **apps.open-cluster-management.io/reconcile-option: merge** annotation in a resource YAML in the subscribed Git repository, the resource will be merged on the target cluster while
other resources replaced.

1.4.1.4.3.1. Reconcile frequency

You can now select reconcile frequency options: high, medium, low, and off in channel configuration to avoid unnecessary resource reconciliations and therefore prevent overload on subscription operator.

Required access: Administrator and cluster administrator

See the following definitions of the settings:attribute:<value>:

- Off: The deployed resources are not automatically reconciled. A change in the subscription custom resource triggers a reconciliation. You can add or update a label or annotation.

- Low: The deployed resources are automatically reconciled every hour, even if there is no change in the source Git repository.

- Medium: This is the default setting. The subscription operator compares the currently deployed commit ID to the latest commit ID of the source repository every 3 minutes and apply changes to target clusters when there is change. Every 15 minutes, all resources are re-applied from the source Git repository to the target clusters, even if there is no change in the repository.

- High: The deployed resources are automatically reconciled every two minutes, even if there is no change in the source Git repository.

You can set this using `apps.open-cluster-management.io/reconcile-rate` annotation in the channel custom resource that is referenced by subscription.

See the following example:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: git-channel
  namespace: sample
annotations:
  apps.open-cluster-management.io/reconcile-rate: <value from the list>
spec:
  type: GitHub
  pathname: <Git URL>
---
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: git-subscription
annotations:
  apps.open-cluster-management.io/git-path: <application1>
  apps.open-cluster-management.io/git-branch: <branch1>
spec:
  channel: sample/git-channel
  placement:
    local: true
```

In the previous example, all subscriptions that use `sample/git-channel` get low reconciliation frequency.
Regardless of the `reconcile-rate` setting in the channel, a subscription can turn the auto-reconciliation off by specifying `apps.open-cluster-management.io/reconcile-rate: off` annotation in the subscription CR.

See the following sample:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: git-channel
  namespace: sample
annotations:
  apps.open-cluster-management.io/reconcile-rate: high
spec:
  type: GitHub
  pathname: <Git URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: git-subscription
  annotations:
    apps.open-cluster-management.io/git-path: application1
    apps.open-cluster-management.io/git-branch: branch1
    apps.open-cluster-management.io/reconcile-rate: "off"
spec:
  channel: sample/git-channel
  placement:
    local: true
```

See that the resources deployed by `git-subscription` are never automatically reconciled even if the `reconcile-rate` is set to `high` in the channel.

1.4.2. Configuring application channel and subscription for a secure Git connection

Git channels and subscriptions connect to the specified Git repository through HTTPS or SSH. The following application channel configurations can be used for secure Git connections:

- Connecting to a private repo with user and access token
- Making an insecure HTTPS connection to a Git server
- Using custom CA certificates for a secure HTTPS connection
- Making an SSH connection to a Git server
- Updating certificates and SSH keys

1.4.2.1. Connecting to a private repo with user and access token

You can connect to a Git server using channel and subscription. See the following procedures for connecting to a private repository with a user and access token:

1. Create a secret in the same namespace as the channel. Set the `user` field to a Git user ID and the `accessToken` field to a Git personal access token. The values should be base64 encoded. See the following sample with user and accessToken populated:
Configure the channel with a secret. See the following sample with the `secretRef` populated:

```
apiVersion: v1
kind: Secret
metadata:
  name: my-git-secret
namespace: channel-ns
data:
  user: dXNlcgo=
  accessToken: cGFzc3dvcmQK
```

2. Configure the channel with a secret. See the following sample with the `secretRef` populated:

```
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: sample-channel
namespace: channel-ns
spec:
  type: Git
  pathname: <Git HTTPS URL>
  secretRef:
    name: my-git-secret
```

1.4.2.2. Making an insecure HTTPS connection to a Git server

You can use the following connection method in a development environment to connect to a privately-hosted Git server with SSL certificates that are signed by custom or self-signed certificate authority. However, this procedure is not recommended for production:

Specify `insecureSkipVerify: true` in the channel specification. Otherwise, the connection to the Git server fails with an error similar to the following:

```
x509: certificate is valid for localhost.com, not localhost
```

See the following sample with the channel specification addition for this method:

```
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  labels:
    name: sample-channel
    namespace: sample
spec:
  type: GitHub
  pathname: <Git HTTPS URL>
  insecureSkipVerify: true
```

1.4.2.3. Using custom CA certificates for a secure HTTPS connection

You can use this connection method to securely connect to a privately-hosted Git server with SSL certificates that are signed by custom or self-signed certificate authority.

1. Create a ConfigMap to contain the Git server root and intermediate CA certificates in PEM format. The ConfigMap must be in the same namespace as the channel CR. The field name must be `caCerts` and use `|`. From the following sample, notice that `caCerts` can contain multiple
certificates, such as root and intermediate CAs:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: git-ca
  namespace: channel-ns
data:
  caCerts: |
    # Git server root CA
    -----BEGIN CERTIFICATE-----
    MIIF5DCCQA8wCCQDiMDvIExMDEwHgYDVR0PAQH/BAEKADCksELMAkGA1UEBhMC
    LNJdW55L1CyZz1dZXNzaW9uIENlbnRha29yZ1M2MDEwMDM0MDA1MDA1MDAwMB8G
    -----END CERTIFICATE-----
    # Git server intermediate CA 1
    -----BEGIN CERTIFICATE-----
```

BEGIN CERTIFICATE

CHAPTER 1. MANAGING APPLICATIONS
MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFAfDCBszELMAkGA1UEBhMCQ0ExCzAJBgNVBAMGAK9OMRAwDgYDVQQHDAAdUb3JvbnRvMQ8wDQYDVQQKDAZSZWRI

YXQxDADAKBgNVBAsMA0FDTTTFMEMGA1UEAw8Z29ncy1zdmMzTGVmYXVsdC5hcHBzLnJqdW5nLWh1YjEzLmRldja2LNJ2C1jaGVzGyZmllbGQuY29tMRkwHQQyJkoZIhvcNAQkBFhBy2tIakBZYmR0YWQuY29tMB4XDT1wMTIwMzE4NTMxMl0oDXTIZMDky

MzE4NTMxMl0wgbMxCzAJBgNVBAYTAKNBMSowCQYDVQQIDAJjMQwGCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCCAgIwDQYJKoZIhvcNAQEBBQADggIPADCCAWggIBAQCBEgM5n4oni69UfK0aBdvhCa7/0rPhcVh8hmUB3H3yGkZ+CSA5yjgatL4g2BE8Wlw9OziZ6+sPChyunNYoY51xW1dzajDlxpwhk8GTSgy1LoOy4Cd5zSi9Iju4PQVQG/svhQqgLv9uZ15g6oZqdUqEimalHrOcEABJ5VcnFurz0QhbT+UySjSD639yJdCenQbKAR9SC4hG13EbMr/RRh0JaFupkmrG7STYUL71+aO+cCjPLQLM6m6qGyEkh9aBB7FLjkgK1TeXvuANiAN4U4EmYe/e+uhNkS9ubNJ3vuRuooECHsha058y1IJC9NkZqP+d4Fhp85sd+xhrqYi6qi7Q3aX2OK3AjaW9hToBHoYU6m783A7WcOiBMcw02UGZxMsRjP6UqB08LsV52BAeEFir34sokJK1de/Sx2J9J/am7yOoqBKPQoaLsUKAx4cTly2ZldUpzrD28t+awf6sD2YqycsaGFww2YD91Y1D6F4Wh8Mc20QaUEGkqQTc2Z9pOHNa5Y7qdmJzwbezJc4qbpBRAF1IafLqyru6m8ZN9z9KFSExlzu+exb16x6Y70mJLMwFmCR1417L74EU/VNwXfmF6ladliUOST3w5t92cBM267t3U6EXMUTCQvnp0ki84PeR1rkRk
-----END CERTIFICATE-----

Git server intermediate CA 2

-----BEGIN CERTIFICATE-----

MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFAfDCBszELMAkGA1UEBhMCQ0ExCzAJBgNVBAMGAK9OMRAwDgYDVQQHDAAdUb3JvbnRvMQ8wDQYDVQQKDAZSZWRI

YXQxDADAKBgNVBAsMA0FDTTTFMEMGA1UEAw8Z29ncy1zdmMzTGVmYXVsdC5hcHBzLnJqdW5nLWh1YjEzLmRldja2LNJ2C1jaGVzGyZmllbGQuY29tMRkwHQQyJkoZIhvcNAQkBFhBy2tIakBZYmR0YWQuY29tMB4XDT1wMTIwMzE4NTMxMl0oDXTIZMDky

MzE4NTMxMl0wgbMxCzAJBgNVBAYTAKNBMSowCQYDVQQIDAJjMQwGCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCCAgIwDQYJKoZIhvcNAQEBBQADggIPADCCAWggIBAQCBEgM5n4oni69UfK0aBdvhCa7/0rPhcVh8hmUB3H3yGkZ+CSA5yjgatL4g2BE8Wlw9OziZ6+sPChyunNYoY51xW1dzajDlxpwhk8GTSgy1LoOy4Cd5zSi9Iju4PQVQG/svhQqgLv9uZ15g6oZqdUqEimalHrOcEABJ5VcnFurz0QhbT+UySjSD639yJdCenQbKAR9SC4hG13EbMr/RRh0JaFupkmrG7STYUL71+aO+cCjPLQLM6m6qGyEkh9aBB7FLjkgK1TeXvuANiAN4U4EmYe/e+uhNkS9ubNJ3vuRuooECHsha058y1IJC9NkZqP+d4Fhp85sd+xhrqYi6qi7Q3aX2OK3AjaW9hToBHoYU6m783A7WcOiBMcw02UGZxMsRjP6UqB08LsV52BAeEFir34sokJK1de/Sx2J9J/am7yOoqBKPQoaLsUKAx4cTly2ZldUpzrD28t+awf6sD2YqycsaGFww2YD91Y1D6F4Wh8Mc20QaUEGkqQTc2Z9pOHNa5Y7qdmJzwbezJc4qbpBRAF1IafLqyru6m8ZN9z9KFSExlzu+exb16x6Y70mJLMwFmCR1417L74EU/VNwXfmF6ladliUOST3w5t92cBM267t3U6EXMUTCQvnp0ki84PeR1rkRk
-----END CERTIFICATE-----
1.4.2.4. Making an SSH connection to a Git server

1. Create a secret to contain your private SSH key in `sshKey` field in `data`. If the key is passphrase-protected, specify the password in `passphrase` field. This secret must be in the same namespace as the channel CR. Create this secret using a `kubectl` command to create a secret generic `git-ssh-key --from-file=sshKey=./.ssh/id_rsa`, then add base64 encoded `passphrase`. See the following sample:

```
apiVersion: v1
category: Secret
metadata:
  name: git-ssh-key
spec:
  configMapRef:
    name: git-ca
  pathname: <Git HTTPS URL>
type: Git
```

2. Configure the channel with this ConfigMap. See the following sample with the `git-ca` name from the previous step:

```
apiVersion: apps.open-cluster-management.io/v1
category: Channel
metadata:
  name: my-channel
  namespace: channel-ns
spec:
  configMapRef:
    name: git-ca
    pathname: <Git HTTPS URL>
    type: Git
```

-----END CERTIFICATE-----
2. Configure the channel with the secret. See the following sample:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: my-channel
  namespace: channel-ns
spec:
  configMapRef:
    name: git-known-hosts
  secretRef:
    name: git-ssh-key
  pathname: <Git SSH URL>
type: Git
insecureSkipVerify: true
```

The subscription controller does an `ssh-keyscan` with the provided Git hostname to build the `known_hosts` list to prevent an Man-in-the-middle (MITM) attack in the SSH connection. If you want to skip this and make insecure connection, use `insecureSkipVerify: true` in the channel configuration. This is not best practice, especially in production environments.

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: my-channel
  namespace: channel-ns
spec:
  secretRef:
    name: git-ssh-key
  pathname: <Git SSH URL>
type: Git
insecureSkipVerify: true
```

1.4.2.5. Updating certificates and SSH keys

If a Git channel connection configuration requires an update, such as CA certificates, credentials, or SSH key, you need to create a new secret and ConfigMap in the same namespace and update the channel to reference that new secret and ConfigMap. For more information, see [Using custom CA certificates for a secure HTTPS connection](#).
1.4.3. Setting up Ansible Tower tasks (Technology preview)

Red Hat Advanced Cluster Management is integrated with Ansible Tower automation so that you can create prehook and posthook AnsibleJob instances for Git subscription application management. With Ansible Tower jobs, you can automate tasks and integrate with external services, such as Slack and PagerDuty services. Your Git repository resource root path will contain **prehook** and **posthook** directories for Ansible Tower jobs that run as part of deploying the app, updating the app, or removing the app from a cluster.

Required access: Cluster administrator

1.4.3.1. Prerequisites

- OpenShift Container Platform 4.5 or later
- You must have Ansible Tower version 3.7.3 or a later version installed. It is best practice to install the latest supported version of Ansible Tower. See [Red Hat AnsibleTower documentation](https://rh-ansible-tower.readthedocs.io/en/latest/) for more details.
- Install the Ansible Automation Platform Resource Operator to connect Ansible jobs to the lifecycle of Git subscriptions. For best results when using the AnsibleJob to launch Ansible Tower jobs, the Ansible Tower job template should be idempotent when it is run.

Check **PROMPT ON LAUNCH** on the template for both INVENTORY and EXTRA VARIABLES. See [Job templates](https://rh-ansible-tower.readthedocs.io/en/latest/) for more information.

1.4.3.2. Install Ansible Automation Platform Resource Operator:

1. Log in to your OpenShift Container Platform cluster console.
2. Click **OperatorHub** in the console navigation.
3. Search for and install the **Ansible Automation Platform Resource Operator**.

1.4.3.3. Obtain the Ansible Tower URL and token

The Ansible Tower URL is the same URL that is used to log in to Tower. This is required by the Application console or the Tower access secret when configuring an application with Ansible prehooks and posthooks.

See the following example URL: https://ansible-tower-web-svc-tower.apps.my-openshift-cluster.com.

1.4.3.4. Obtaining a token

1. Log in to your Ansible Tower console.
2. Click **Users** in the console navigation.
3. Search for the correct user.
4. Click the **Edit user** icon.
5. Click **TOKENS** in the user section.
6. Click the + button to add a token.
7. Leave the **APPLICATION** field blank.

8. In the **DESCRIPTION** field, provide your intended use for this token.

9. Select **Write** in the **SCOPE** drop-down menu.

10. Click **SAVE** and record the **TOKEN** that is provided.

1.4.3.5. Ansible integration

You can integrate Ansible Tower jobs into Git subscriptions. For instance, for a database front-end and back-end application, the database is required to be instantiated using Ansible Tower with an Ansible Job, and the application is installed by a Git subscription. The database is instantiated before you deploy the front-end and back-end application with the subscription.

The application subscription operator is enhanced to define two subfolders: **prehook** and **posthook**. Both folders are in the Git repository resource root path and contain all prehook and posthook Ansible jobs, respectively.

When the Git subscription is created, all of the pre and post AnsibleJob resources are parsed and stored in memory as an object. The application subscription controller decides when to create the pre and post AnsibleJob instances.

1.4.3.6. Ansible operator components

When you create a subscription CR, the Git-branch and Git-path points to a Git repository root location. In the Git root location, the two subfolders **prehook** and **posthook** should contain at least one **Kind:AnsibleJob** resource.

1.4.3.6.1. Prehook

The application subscription controller searches all the **Kind:AnsibleJob** CRs in the prehook folder as the prehook AnsibleJob objects, then generates a new prehook AnsibleJob instance. The new instance name is the prehook AnsibleJob object name and a random suffix string.

See an example instance name: **database-sync-1-2913063**.

The application subscription controller queues the reconcile request again in a 1 minute loop, where it checks the prehook AnsibleJob **status.ansibleJobResult**. When the prehook **status.ansibleJobResult.status** is **successful**, the application subscription continues to deploy the main subscription.

1.4.3.6.2. Posthook

When the app subscription status is updated, if the subscription status is subscribed or propagated to all target clusters in subscribed status, the app subscription controller searches all of the **AnsibleJob Kind** CRs in the posthook folder as the posthook AnsibleJob objects. Then, it generates new posthook **AnsibleJob** instances. The new instance name is the posthook **AnsibleJob** object name and a random suffix string.

See an example instance name: **service-ticket-1-2913849**.

1.4.3.6.3. Ansible placement rules

With a valid prehook AnsibleJob, the subscription launches the prehook AnsibleJob regardless of the
decision from the placement rule. For example, you can have a prehook AnsibleJob that failed to propagate a placement rule subscription. When the placement rule decision changes, new prehook and posthook AnsibleJob instances are created.

1.4.3.7. Ansible configuration

You can configure Ansible Tower configurations with the following tasks:

1.4.3.7.1. Ansible secrets

You must create an Ansible Tower secret CR in the same subscription namespace. The Ansible Tower secret is limited to the same subscription namespace.

Create the secret from the console by filling in the **Ansible Tower secret name** section. To create the secret using terminal, edit and apply the following `yaml`:

Run the following command to add your YAML file:

```
oc apply -f
```

See the following YAML sample:

Note: The `namespace` is the same namespace as the subscription namespace. The `stringData:token` and `host` are from the Ansible Tower.

```
apiVersion: v1
kind: Secret
metadata:
  name: toweraccess
  namespace: same-as-subscription
type: Opaque
stringData:
  token: ansible-tower-api-token
  host: https://ansible-tower-host-url
```

When the app subscription controller creates prehook and posthook AnsibleJobs, if the secret from subscription `spec.hooksecretref` is available, then it is sent to the AnsibleJob CR `spec.tower_auth_secret` and the AnsibleJob can access the Ansible Tower.

1.4.3.8. Set secret reconciliation

For a main-sub subscription with prehook and posthook AnsibleJobs, the main-sub subscription should be reconciled after all prehook and posthook AnsibleJobs or main subscription are updated in the Git repository.

Prehook AnsibleJobs and the main subscription continuously reconcile and relaunch a new pre-AnsibleJob instance.

1. After the pre-AnsibleJob is done, re-run the main subscription.

2. If there is any specification change in the main subscription, re-deploy the subscription. The main subscription status should be updated to align with the redeployment procedure.

3. Reset the hub subscription status to **nil**. The subscription is refreshed along with the subscription deployment on target clusters.
When the deployment is finished on the target cluster, the subscription status on the target cluster is updated to "**subscribed**" or "**failed**", and is synced to the hub cluster subscription status.

4. After the main subscription is done, relaunch a new post-AnsibleJob instance.

5. Verify that the DONE subscription is updated. See the following output:

- subscription.status == "**subscribed**"
- subscription.status == "**propagated**" with all of the target clusters "**subscribed**"

When an AnsibleJob CR is created, a Kubernetes job CR is created to launch an Ansible Tower job by communicating to the target Ansible Tower. When the job is complete, the final status for the job is returned to AnsibleJob `status.ansibleJobResult`.

Notes:

The AnsibleJob status.conditions is reserved by the Ansible Job operator for storing the creation of Kubernetes job result. The status.conditions does not reflect the actual Ansible Tower job status.

The subscription controller checks the Ansible Tower job status by the `AnsibleJob.status.ansibleJobResult` instead of `AnsibleJob.status.conditions`.

As previously mentioned in the prehook and posthook AnsibleJob workflow, when the main subscription is updated in Git repository, a new prehook and posthook AnsibleJob instance is created. As a result, one main subscription can link to multiple AnsibleJob instances.

Four fields are defined in subscription.status.ansibleJobs:

- lastPrehookJobs: The most recent prehook AnsibleJobs
- prehookJobsHistory: All the prehook AnsibleJobs history
- lastPosthookJobs: The most recent posthook AnsibleJobs
- posthookJobsHistory: All the posthook AnsibleJobs history

1.4.3.9. Ansible sample YAML

See the following sample of an AnsibleJob `.yaml` file in a Git prehook and posthook folder:

```yaml
apiVersion: tower.ansible.com/v1alpha1
kind: AnsibleJob
metadata:
  generateName: demo-job-001
  namespace: default
spec:
  tower_auth_secret: toweraccess
  job_template_name: Demo Job Template
  extra_vars:
    cost: 6.88
    ghosts: ["inky","pinky","clyde","sue"]
    is_enable: false
    other_variable: foo
  pacman: mrs
  size: 8
```
1.4.4. Configuring managed clusters for Argo CD

You can manually sync any type of supported managed cluster to enable Argo CD cluster collection so that you can deploy applications from Argo CD to your ACM managed cluster.

1.4.4.1. Prerequisites

- You need to install Argo CD on your Red Hat Advanced Cluster Management for Kubernetes.
- You need one or more managed cluster.

1.4.4.2. Configuring Argo CD

You can enable or disable the ArgoCD cluster collection for one or more managed cluster. See the following `KlusterletAddonConfig` sample resource for the `cluster1` managed cluster. The setting in `spec.applicationManager.argocdCluster` is set to true or false:

```yaml
apiVersion: agent.open-cluster-management.io/v1
kind: KlusterletAddonConfig
metadata:
  name: cluster1
  namespace: cluster1
spec:
  applicationManager:
    argocdCluster: <true/false>
```

When you enable the Argo CD cluster collection, the managed cluster secret is auto-created in the hub managed cluster namespace. See the following sample where the cluster secret is in the `cluster1` namespace:

```yaml
apiVersion: v1
kind: Secret
metadata:
  name: cluster1-cluster-secret
  namespace: cluster1
labels:
  apps.open-cluster-management.io/secret-type: acm-cluster
type: Opaque
stringData:
  name: cluster1
  server: https://<url-name-here>
config: |
  { "bearerToken": "<the bear token>", "tlsClientConfig": { "insecure": true } }
```
When the managed cluster secret is synced up to the Argo CD namespace, the cluster secret resembles the following sample where the label is specific to Argo CD `secret-type`, and the namespace is changed to `argocd`:

```
apiVersion: v1
kind: Secret
metadata:
  labels:
    argocd.argoproj.io/secret-type: cluster
    apps.open-cluster-management.io/acm-cluster: "true"
  name: cluster1-cluster-secret
  namespace: argocd
  type: Opaque
stringData:
  name: cluster1
  server: https://<url-name-here>
  config:
    "bearerToken": "<bearer token>",
    "tlsClientConfig": {
      "insecure": true
    }
```

1.4.5. Scheduling a deployment

If you need to deploy new or change Helm charts or other resources during only specific times, you can define subscriptions for those resources to begin deployments during only those specific times. Alternatively, you can restrict deployments.

For instance, you can define time windows between 10:00 PM and 11:00 PM each Friday to serve as scheduled maintenance windows for applying patches or other application updates to your clusters.

You can restrict or block deployments from beginning during specific time windows, such as to avoid unexpected deployments during peak business hours. For instance, to avoid peak hours you can define a time window for a subscription to avoid beginning deployments between 8:00 AM and 8:00 PM.

By defining time windows for your subscriptions, you can coordinate updates for all of your applications and clusters. For instance, you can define subscriptions to deploy only new application resources between 6:01 PM and 11:59 PM and define other subscriptions to deploy only updated versions of existing resources between 12:00 AM to 7:59 AM.

When a time window is defined for a subscription, the time ranges when a subscription is active changes. As part of defining a time window, you can define the subscription to be active or blocked during that window.

The deployment of new or changed resources begins only when the subscription is active. Regardless of whether a subscription is active or blocked, the subscription continues to monitor for any new or changed resource. The active and blocked setting affects only deployments.

When a new or changed resource is detected, the time window definition determines the next action for the subscription.

- For subscriptions to `HelmRepo`, `ObjectBucket`, and `Git` type channels:
If the resource is detected during the time range when the subscription is active, the resource deployment begins.

If the resource is detected outside the time range when the subscription is blocked from running deployments, the request to deploy the resource is cached. When the next time range that the subscription is active occurs, the cached requests are applied and any related deployments begin.

When a time window is blocked, all resources that were previously deployed by the application subscription remain. Any new update is blocked until the time window is active again.

End user may wrongly think when the app sub time window is blocked, all deployed resources will be removed. And they will be back when the app sub time window is active again.

If a deployment begins during a defined time window and is running when the defined end of the time window elapses, the deployment continues to run to completion.

To define a time window for a subscription, you need to add the required fields and values to the subscription resource definition YAML.

- As part of defining a time window, you can define the days and hours for the time window.
- You can also define the time window type, which determines whether the time window when deployments can begin occurs during, or outside, the defined time frame.
- If the time window type is active, deployments can begin only during the defined time frame. You can use this setting when you want deployments to occur within only specific maintenance windows.
- If the time window type is block, deployments cannot begin during the defined time frame, but can begin at any other time. You can use this setting when you have critical updates that are required, but still need to avoid deployments during specific time ranges. For instance, you can use this type to define a time window to allow security-related updates to be applied at any time except between 10:00 AM and 2:00 PM.
- You can define multiple time windows for a subscription, such as to define a time window every Monday and Wednesday.

1.4.6. Configuring package overrides

Configure package overrides for a subscription override value for the Helm chart or Kubernetes resource that is subscribed to by the subscription.

To configure a package override, specify the field within the Kubernetes resource spec to override as the value for the path field. Specify the replacement value as the value for the value field.

For example, if you need to override the values field within the spec for a Helm release for a subscribed Helm chart, you need to set the value for the path field in your subscription definition to spec.

```yaml
packageOverrides:
  - packageName: nginx-ingress
    packageOverrides:
      - path: spec
        value: my-override-values
```

The contents for the value field are used to override the values within the spec field of the Helm spec.
For a Helm release, override values for the **spec** field are merged into the Helm release **values.yaml** file to override the existing values. This file is used to retrieve the configurable variables for the Helm release.

- If you need to override the release name for a Helm release, include the **packageOverride** section within your definition. Define the **packageAlias** for the Helm release by including the following fields:
 - **packageName** to identify the Helm chart.
 - **packageAlias** to indicate that you are overriding the release name.

By default, if no Helm release name is specified, the Helm chart name is used to identify the release. In some cases, such as when there are multiple releases subscribed to the same chart, conflicts can occur. The release name must be unique among the subscriptions within a namespace. If the release name for a subscription that you are creating is not unique, an error occurs. You must set a different release name for your subscription by defining a **packageOverride**. If you want to change the name within an existing subscription, you must first delete that subscription and then recreate the subscription with the preferred release name.

```yaml
+ packageOverrides:
  - packageName: nginx-ingress
    packageAlias: my-helm-release-name
```

1.4.7. Channel samples

View samples and YAML definitions that you can use to build your files. Channels (**channel.apps.open-cluster-management.io**) provide you with improved continuous integration and continuous delivery capabilities for creating and managing your Red Hat Advanced Cluster Management for Kubernetes applications.

To use the Kubernetes CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace **filename** with the name of your file:

   ```bash
   kubectl apply -f filename.yaml
   ```

c. Verify that your application resource is created by running the following command:

   ```bash
   kubectl get Application
   ```

Note: Kubernetes namespace (Namespace) channel is not available this release.

1.4.7.1. Channel YAML structure

The following YAML structures show the required fields for a channel and some of the common optional fields. Your YAML structure needs to include some required fields and values. Depending on your application management requirements, you might need to include other optional fields and values. You can compose your own YAML content with any tool.
1.4.7.2. Channel YAML table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>Required. Set the value to <code>apps.open-cluster-management.io/v1</code>.</td>
</tr>
<tr>
<td>kind</td>
<td>Required. Set the value to <code>Channel</code> to indicate that the resource is a channel.</td>
</tr>
<tr>
<td>metadata.name</td>
<td>Required. The name of the channel.</td>
</tr>
<tr>
<td>metadata.namespace</td>
<td>Required. The namespace for the channel; Each channel needs a unique namespace, except Git channel.</td>
</tr>
<tr>
<td>spec.sourceNamespaces</td>
<td>Optional. Identifies the namespace that the channel controller monitors for new or updated deployables to retrieve and promote to the channel.</td>
</tr>
<tr>
<td>spec.type</td>
<td>Required. The channel type. The supported types are: HelmRepo, Git, and ObjectBucket (Object storage in the console)</td>
</tr>
<tr>
<td>spec.pathname</td>
<td>Required for HelmRepo, Git, ObjectBucket channels. For a HelmRepo channel, set the value to be the URL for the Helm repository. For an ObjectBucket channel, set the value to be the URL for the Object storage. For a Git channel, set the value to be the HTTPS URL for the Git repository.</td>
</tr>
<tr>
<td>spec.secretRef.name</td>
<td>Optional. Identifies a Kubernetes Secret resource to use for authentication, such as for accessing a repository or chart. You can use a secret for authentication with only HelmRepo, ObjectBucket, and Git type channels.</td>
</tr>
</tbody>
</table>
Optional. Defines requirements for promoting a deployable within the channel. If no requirements are set, any deployable that is added to the channel namespace or source is promoted to the channel. **gates** do not apply for **HelmRepo** and **Git** channel types, only for **ObjectBucket** channel types.

Optional. The annotations for the channel. Deployables must have matching annotations to be included in the channel.

Optional. The labels for the channel.

The definition structure for a channel can resemble the following YAML content:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: predev-ch
namespace: ns-ch
labels:
  app: nginx-app-details
spec:
  type: HelmRepo
pathname: https://kubernetes-charts.storage.googleapis.com/
```

1.4.7.3. Object storage bucket (ObjectBucket) channel

The following example channel definition abstracts an Object storage bucket as a channel:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: dev
namespace: ch-obj
spec:
  type: ObjectBucket
pathname: [http://9.28.236.243:31311/dev] # URL is appended with the valid bucket name, which matches the channel name.
secretRef:
  name: miniosecret
gates:
  annotations:
    dev-ready: true
```

1.4.7.4. Helm repository (HelmRepo) channel

The following example channel definition abstracts a Helm repository as a channel:
Deprecation notice: For 2.2, specifying `insecureSkipVerify: "true"` in channel `ConfigMap` reference to skip Helm repo SSL certificate is deprecated, as it is displayed in the following example:

```
apiVersion: v1
data:
insecureSkipVerify: "true" # deprecated
kind: ConfigMap
metadata:
  name: insecure-skip-verify
namespace: hub-repo
```

See the replacement in the following current sample, with `spec.insecureSkipVerify: true` that is used in the channel instead:

```
apiVersion: v1
kkind: Namespace
metadata:
  name: hub-repo
---
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: Helm
  namespace: hub-repo
spec:
  pathname: [https://9.21.107.150:8443/helm-repo/charts] # URL points to a valid chart URL.
insecureSkipVerify: true
type: HelmRepo
```

The following channel definition shows another example of a Helm repository channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label `release.`, e.g. `{{ .Release.Name }}` for the application topology to be displayed properly.

```
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
  name: predev-ch
  namespace: ns-ch
labels:
  app: nginx-app-details
spec:
  type: HelmRepo
  pathname: https://kubernetes-charts.storage.googleapis.com/
```

1.4.7.5. Git (Git) repository channel

The following example channel definition shows an example of a channel for the Git Repository. In the following example, `secretRef` refers to the user identity used to access the Git repo that is specified in the `pathname`. If you have a public repo, you do not need the `secretRef`:

```
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
```
1.4.8. Secret samples

Secrets (Secret) are Kubernetes resources that you can use to store authorization and other sensitive information, such as passwords, OAuth tokens, and SSH keys. By storing this information as secrets, you can separate the information from the application components that require the information to improve your data security.

To use the Kubernetes CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name of your file:

   ```
kubectl apply -f filename.yaml
   ```

c. Verify that your application resource is created by running the following command:

   ```
kubectl get Application
   ```

The definition structure for a secret can resemble the following YAML content:

```
---
apiVersion: v1
kind: Secret
metadata:
  annotations:
    apps.open-cluster-management.io/deployables: "true"
  name: [secret-name]
  namespace: [channel-namespace]
data:
  AccessKeyID: [ABCdeF1=] #Base64 encoded
  SecretAccessKey: [gHIjk2lmnoPQRST3uvw==] #Base64 encoded
```

1.4.8.1. Secret YAML structure

1.4.9. Subscription samples
View samples and YAML definitions that you can use to build your files. As with channels, subscriptions
(subscription.apps.open-cluster-management.io) provide you with improved continuous integration
and continuous delivery capabilities for application management.

To use the Kubernetes CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an apiserver. Replace filename with the name
of your file:

 kubectl apply -f filename.yaml

c. Verify that your application resource is created by running the following command:

 kubectl get Application

1.4.9.1. Subscription YAML structure

The following YAML structure shows the required fields for a subscription and some of the common
optional fields. Your YAML structure needs to include certain required fields and values.

Depending on your application management requirements, you might need to include other optional
fields and values. You can compose your own YAML content with any tool:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name:
  namespace:
  labels:
spec:
  sourceNamespace:
  source:
  channel:
  name:
  packageFilter:
    version:
    labelSelector:
      matchLabels:
        package:
        component:
        annotations:
        packageOverrides:
          - packageName:
          packageAlias:
            - path:
            value:
        placement:
          local:
        clusters:
          name:
        clusterSelector:
        placementRef:
  name:
```
1.4.9.2. Subscription YAML table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>Required. Set the value to <code>apps.open-cluster-management.io/v1</code>.</td>
</tr>
<tr>
<td>kind</td>
<td>Required. Set the value to <code>Subscription</code> to indicate that the resource is a subscription.</td>
</tr>
<tr>
<td>metadata.name</td>
<td>Required. The name for identifying the subscription.</td>
</tr>
<tr>
<td>metadata.namespace</td>
<td>Required. The namespace resource to use for the subscription.</td>
</tr>
<tr>
<td>metadata.labels</td>
<td>Optional. The labels for the subscription.</td>
</tr>
<tr>
<td>spec.channel</td>
<td>Optional. The namespace name (“Namespace/Name”) that defines the channel for the subscription. Define either the <code>channel</code>, or the <code>source</code>, or the <code>sourceNamespace</code> field. In general, use the <code>channel</code> field to point to the channel instead of using the <code>source</code> or <code>sourceNamespace</code> fields. If more than one field is defined, the first field that is defined is used.</td>
</tr>
<tr>
<td>spec.sourceNamespace</td>
<td>Optional. The source namespace where deployables are stored on the hub cluster. Use this field only for namespace channels. Define either the <code>channel</code>, or the <code>source</code>, or the <code>sourceNamespace</code> field. In general, use the <code>channel</code> field to point to the channel instead of using the <code>source</code> or <code>sourceNamespace</code> fields.</td>
</tr>
<tr>
<td>spec.source</td>
<td>Optional. The path name (“URL”) to the Helm repository where deployables are stored. Use this field for only Helm repository channels. Define either the <code>channel</code>, or the <code>source</code>, or the <code>sourceNamespace</code> field. In general, use the <code>channel</code> field to point to the channel instead of using the <code>source</code> or <code>sourceNamespace</code> fields.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>spec.name</td>
<td>Required for HelmRepo type channels, but optional for ObjectBucket type channels. The specific name for the target Helm chart or deployable within the channel. If neither the name or packageFilter are defined for channel types where the field is optional, all deployables are found and the latest version of each deployable is retrieved.</td>
</tr>
<tr>
<td>spec.packageFilter</td>
<td>Optional. Defines the parameters to use to find target deployables or a subset of a deployables. If multiple filter conditions are defined, a deployable must meet all filter conditions.</td>
</tr>
<tr>
<td>spec.packageFilter.version</td>
<td>Optional. The version or versions for the deployable. You can use a range of versions in the form >1.0, or <3.0. By default, the version with the most recent "creationTimestamp" value is used.</td>
</tr>
<tr>
<td>spec.packageFilter.annotations</td>
<td>Optional. The annotations for the deployable.</td>
</tr>
<tr>
<td>spec.packageOverrides</td>
<td>Optional. Section for defining overrides for the Kubernetes resource that is subscribed to by the subscription, such as a Helm chart, deployable, or other Kubernetes resource within a channel.</td>
</tr>
<tr>
<td>spec.packageOverrides.packageName</td>
<td>Optional, but required for setting an override. Identifies the Kubernetes resource that is being overwritten.</td>
</tr>
<tr>
<td>spec.packageOverrides.packageAlias</td>
<td>Optional. Gives an alias to the Kubernetes resource that is being overwritten.</td>
</tr>
<tr>
<td>spec.packageOverrides.packageOverrides</td>
<td>Optional. The configuration of parameters and replacement values to use to override the Kubernetes resource.</td>
</tr>
<tr>
<td>spec.placement</td>
<td>Required. Identifies the subscribing clusters where deployables need to be placed, or the placement rule that defines the clusters. Use the placement configuration to define values for multicluster deployments.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>spec.placement.local</td>
<td>Optional, but required for a stand-alone cluster or cluster that you want to manage directly. Defines whether the subscription must be deployed locally. Set the value to <code>true</code> to have the subscription synchronize with the specified channel. Set the value to <code>false</code> to prevent the subscription from subscribing to any resources from the specified channel. Use this field when your cluster is a stand-alone cluster or you are managing this cluster directly. If your cluster is part of a multicluster and you do not want to manage the cluster directly, use only one of <code>clusters</code>, <code>clusterSelector</code>, or <code>placementRef</code> to define where your subscription is to be placed. If your cluster is the Hub of a multicluster and you want to manage the cluster directly, you must register the Hub as a managed cluster before the subscription operator can subscribe to resources locally.</td>
</tr>
<tr>
<td>spec.placement.clusters</td>
<td>Optional. Defines the clusters where the subscription is to be placed. Only one of <code>clusters</code>, <code>clusterSelector</code>, or <code>placementRef</code> is used to define where your subscription is to be placed for a multicluster. If your cluster is a stand-alone cluster that is not your hub cluster, you can also use <code>local cluster</code>.</td>
</tr>
<tr>
<td>spec.placement.clusters.name</td>
<td>Optional, but required for defining the subscribing clusters. The name or names of the subscribing clusters.</td>
</tr>
<tr>
<td>spec.placement.clusterSelector</td>
<td>Optional. Defines the label selector to use to identify the clusters where the subscription is to be placed. Use only one of <code>clusters</code>, <code>clusterSelector</code>, or <code>placementRef</code> to define where your subscription is to be placed for a multicluster. If your cluster is a stand-alone cluster that is not your hub cluster, you can also use <code>local cluster</code>.</td>
</tr>
<tr>
<td>spec.placement.placementRef</td>
<td>Optional. Defines the placement rule to use for the subscription. Use only one of <code>clusters</code>, <code>clusterSelector</code>, or <code>placementRef</code> to define where your subscription is to be placed for a multicluster. If your cluster is a stand-alone cluster that is not your Hub cluster, you can also use <code>local cluster</code>.</td>
</tr>
<tr>
<td>spec.placement.placementRef.name</td>
<td>Optional, but required for using a placement rule. The name of the placement rule for the subscription.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>spec.placement.placementRef.kind</td>
<td>Optional, but required for using a placement rule. Set the value to PlacementRule to indicate that a placement rule is used for deployments with the subscription.</td>
</tr>
<tr>
<td>spec.overrides</td>
<td>Optional. Any parameters and values that need to be overridden, such as cluster-specific settings.</td>
</tr>
<tr>
<td>spec.overrides.clusterName</td>
<td>Optional. The name of the cluster or clusters where parameters and values are being overridden.</td>
</tr>
<tr>
<td>spec.overrides.clusterOverrides</td>
<td>Optional. The configuration of parameters and values to override.</td>
</tr>
<tr>
<td>spec.timeWindow</td>
<td>Optional. Defines the settings for configuring a time window when the subscription is active or blocked.</td>
</tr>
<tr>
<td>spec.timeWindow.type</td>
<td>Optional, but required for configuring a time window. Indicates whether the subscription is active or blocked during the configured time window. Deployments for the subscription occur only when the subscription is active.</td>
</tr>
<tr>
<td>spec.timeWindow.location</td>
<td>Optional, but required for configuring a time window. The time zone of the configured time range for the time window. All time zones must use the Time Zone (tz) database name format. For more information, see Time Zone Database.</td>
</tr>
<tr>
<td>spec.timeWindow.daysofweek</td>
<td>Optional, but required for configuring a time window. Indicates the days of the week when the time range is applied to create a time window. The list of days must be defined as an array, such as <code>daysofweek: ["Monday", "Wednesday", "Friday"]</code>.</td>
</tr>
<tr>
<td>spec.timeWindow.hours</td>
<td>Optional, but required for configuring a time window. Defined the time range for the time window. A start time and end time for the hour range must be defined for each time window. You can define multiple time window ranges for a subscription.</td>
</tr>
<tr>
<td>spec.timeWindow.hours.start</td>
<td>Optional, but required for configuring a time window. The timestamp that defines the beginning of the time window. The timestamp must use the Go programming language Kitchen format "hh:mm". For more information, see Constants.</td>
</tr>
</tbody>
</table>
Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spec.timeWindow.hours.end</td>
<td>Optional, but required for configuring a time window. The timestamp that defines the ending of the time window. The timestamp must use the Go programming language Kitchen format "hh:mm". For more information, see Constants.</td>
</tr>
</tbody>
</table>

Notes:

- When you are defining your YAML, a subscription can use **packageFilters** to point to multiple Helm charts, deployables, or other Kubernetes resources. The subscription, however, only deploys the latest version of one chart, or deployable, or other resource.

- For time windows, when you are defining the time range for a window, the start time must be set to occur before the end time. If you are defining multiple time windows for a subscription, the time ranges for the windows cannot overlap. The actual time ranges are based on the **subscription-controller** container time, which can be set to a different time and location than the time and location that you are working within.

- Within your subscription spec, you can also define the placement of a Helm release as part of the subscription definition. Each subscription can reference an existing placement rule, or define a placement rule directly within the subscription definition.

- When you are defining where to place your subscription in the **spec.placement** section, use only one of **clusters**, **clusterSelector**, or **placementRef** for a multicluster environment.

- If you include more than one placement setting, one setting is used and others are ignored. The following priority is used to determine which setting the subscription operator uses:

 a. placementRef
 b. clusters
 c. clusterSelector

Your subscription can resemble the following YAML content:

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: nginx
  namespace: ns-sub-1
  labels:
    app: nginx-app-details
spec:
  channel: ns-ch/predev-ch
  name: nginx-ingress
  packageFilter:
    version: "1.36.x"
  placement:
    placementRef:
      kind: PlacementRule
      name: towhichcluster
  overrides:
```
1.4.9.3. Subscription file samples

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: nginx
  namespace: ns-sub-1
labels:
  app: nginx-app-details
spec:
  channel: ns-ch/predev-ch
  name: nginx-ingress
```

1.4.9.3.1. Subscription time window example

The following example subscription includes multiple configured time windows. A time window occurs between 10:20 AM and 10:30 AM occurs every Monday, Wednesday, and Friday. A time window also occurs between 12:40 PM and 1:40 PM every Monday, Wednesday, and Friday. The subscription is active only during these six weekly time windows for deployments to begin.

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: nginx
  namespace: ns-sub-1
labels:
  app: nginx-app-details
spec:
  channel: ns-ch/predev-ch
  name: nginx-ingress
  packageFilter:
    version: "1.36.x"
  placement:
    placementRef:
      kind: PlacementRule
      name: towhichcluster
  timewindow:
    windowtype: "active" #Enter active or blocked depending on the purpose of the type.
    location: "America/Los_Angeles"
    daysofweek: ["Monday", "Wednesday", "Friday"]
    hours:
      - start: "10:20AM"
        end: "10:30AM"
      - start: "12:40PM"
        end: "1:40PM"
```

1.4.9.3.2. Subscription with overrides example

```yaml
- clusterName: "/"
  clusterOverrides:
    - path: "metadata.namespace"
      value: default
```

CHAPTER 1. MANAGING APPLICATIONS

45
The following example includes package overrides to define a different release name of the Helm release for Helm chart. A package override setting is used to set the name `my-nginx-ingress-releaseName` as the different release name for the `nginx-ingress` Helm release.

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: simple
  namespace: default
spec:
  channel: ns-ch/predev-ch
  name: nginx-ingress
  packageOverrides:
    - packageName: nginx-ingress
      packageAlias: my-nginx-ingress-releaseName
      packageOverrides:
        - path: spec
          value:
            defaultBackend: true
            replicaCount: 3
          placement:
            local: false
```

1.4.9.3.3. Helm repository subscription example

The following subscription automatically pulls the latest `nginx` Helm release for the version `1.36.x`. The Helm release deployable is placed on the `my-development-cluster-1` cluster when a new version is available in the source Helm repository.

The `spec.packageOverrides` section shows optional parameters for overriding values for the Helm release. The override values are merged into the Helm release `values.yaml` file, which is used to retrieve the configurable variables for the Helm release.

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: nginx
  namespace: ns-sub-1
labels:
  app: nginx-app-details
spec:
  channel: ns-ch/predev-ch
  name: nginx-ingress
  packageFilter:
    version: "1.36.x"
placement:
  clusters:
    - name: my-development-cluster-1
  packageOverrides:
    - packageName: my-server-integration-prod
      packageOverrides:
        - path: spec
          value:
            persistence:
              enabled: false
```
1.4.9.3.4. Git repository subscription example

1.4.9.3.4.1. Subscribing specific branch and directory of Git repository

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: sample-subscription
  namespace: default
annotations:
  apps.open-cluster-management.io/git-path: sample_app_1/dir1
  apps.open-cluster-management.io/git-branch: branch1
spec:
  channel: default/sample-channel
  placement:
    placementRef:
      kind: PlacementRule
      name: dev-clusters
```

In this example subscription, the annotation `apps.open-cluster-management.io/git-path` indicates that the subscription subscribes to all Helm charts and Kubernetes resources within the `sample_app_1/dir1` directory of the Git repository that is specified in the channel. The subscription subscribes to `master` branch by default. In this example subscription, the annotation `apps.open-cluster-management.io/git-branch: branch1` is specified to subscribe to `branch1` branch of the repository.

1.4.9.3.4.2. Adding a `.kubernetesignore` file

You can include a `.kubernetesignore` file within your Git repository root directory, or within the `apps.open-cluster-management.io/git-path` directory that is specified in subscription’s annotations.

You can use this `.kubernetesignore` file to specify patterns of files or subdirectories, or both, to ignore when the subscription deploys Kubernetes resources or Helm charts from the repository.

You can also use the `.kubernetesignore` file for fine-grain filtering to selectively apply Kubernetes resources. The pattern format of the `.kubernetesignore` file is the same as a `.gitignore` file.

If the `apps.open-cluster-management.io/git-path` annotation is not defined, the subscription looks for a `.kubernetesignore` file in the repository root directory. If the `apps.open-cluster-management.io/git-path` field is defined, the subscription looks for the `.kubernetesignore` file in the `apps.open-cluster-management.io/git-path` directory. Subscriptions do not search in any other directory for a `.kubernetesignore` file.

1.4.9.3.4.3. Applying Kustomize

If there is `kustomization.yaml` or `kustomization.yml` file in a subscribed Git folder, kustomize is applied.
You can use `spec.packageOverrides` to override `kustomization` at the subscription deployment time.

```yaml
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
  name: example-subscription
  namespace: default
spec:
  channel: some/channel
  packageOverrides:
    - packageName: kustomization
      packageOverrides:
        - value:
          - patch.yaml
```

In order to override `kustomization.yaml` file, `packageName: kustomization` is required in `packageOverrides`. The override either adds new entries or updates existing entries. It does not remove existing entries.

1.4.9.3.4.4. Enabling Git WebHook

By default, a Git channel subscription clones the Git repository specified in the channel every minute and applies changes when the commit ID has changed. Alternatively, you can configure your subscription to apply changes only when the Git repository sends repo PUSH and PULL webhook event notifications.

In order to configure webhook in a Git repository, you need a target webhook payload URL and optionally a secret.

1.4.9.3.4.4.1. Payload URL

Create a route (ingress) in the hub cluster to expose the subscription operator’s webhook event listener service.

```bash
oc create route passthrough --service=multicluster-operators-subscription -n open-cluster-management
```

Then, use `oc get route multicluster-operators-subscription -n open-cluster-management` command to find the externally-reachable hostname. The webhook payload URL is `https://<externally-reachable hostname>/webhook`.

1.4.9.3.4.4.2. Webhook secret

Webhook secret is optional. Create a Kubernetes secret in the channel namespace. The secret must contain `data.secret`. See the following example:

```yaml
apiVersion: v1
kind: Secret
metadata:
  name: my-github-webhook-secret
data:
  secret: BASE64_ENCODED_SECRET
```

The value of `data.secret` is the base-64 encoded WebHook secret you are going to use.
Best practice: Use a unique secret for each Git repository.

1.4.9.3.4.3. Configuring WebHook in Git repository

Use the payload URL and webhook secret to configure WebHook in your Git repository.

1.4.9.3.4.4. Enable WebHook event notification in channel

Annotate the subscription channel. See the following example:

```
oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-management.io/webhook-enabled="true"
oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-management.io/webhook-secret="<the_secret_name>"
```

If you used a secret to configure WebHook, annotate the channel with this as well where `<the_secret_name>` is the kubernetes secret name containing webhook secret.

1.4.9.3.4.5. Subscriptions of webhook-enabled channel

No webhook specific configuration is needed in subscriptions.

1.4.10. Placement rule samples

Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where deployables can be deployed. Use placement rules to help you facilitate the multicluster deployment of your deployables.

To use the Kubernetes CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace `filename` with the name of your file:

```
kubectl apply -f filename.yaml
```

c. Verify that your application resource is created by running the following command:

```
kubectl get Application
```

1.4.10.1. Placement rule YAML structure

The following YAML structure shows the required fields for a placement rule and some of the common optional fields. Your YAML structure needs to include some required fields and values. Depending on your application management requirements, you might need to include other optional fields and values. You can compose your own YAML content with any tool.

```
apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
  name:
  namespace:
```
1.4.10.2. Placement rule YAML values table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>Required. Set the value to <code>apps.open-cluster-management.io/v1</code>.</td>
</tr>
<tr>
<td>kind</td>
<td>Required. Set the value to <code>PlacementRule</code> to indicate that the resource is a placement rule.</td>
</tr>
<tr>
<td>metadata.name</td>
<td>Required. The name for identifying the placement rule.</td>
</tr>
<tr>
<td>metadata.namespace</td>
<td>Required. The namespace resource to use for the placement rule.</td>
</tr>
<tr>
<td>metadata.resourceVersion</td>
<td>Optional. The version of the placement rule resource.</td>
</tr>
<tr>
<td>metadata.labels</td>
<td>Optional. The labels for the placement rule.</td>
</tr>
<tr>
<td>spec.clusterSelector</td>
<td>Optional. The labels for identifying the target clusters</td>
</tr>
<tr>
<td>spec.clusterSelector.matchLabels</td>
<td>Optional. The labels that must exist for the target clusters.</td>
</tr>
<tr>
<td>status.decisions</td>
<td>Optional. Defines the target clusters where deployables are placed.</td>
</tr>
<tr>
<td>status.decisions.clusterName</td>
<td>Optional. The name of a target cluster.</td>
</tr>
</tbody>
</table>
Status

The status section is appended after the `spec` section in the YAML structure for a rule.

#### Field	Description
`status.decisions.clusterNamespace` | Optional. The namespace for a target cluster.
`spec.clusterReplicas` | Optional. The number of replicas to create.
`spec.clusterConditions` | Optional. Define any conditions for the cluster.
`spec.ResourceHint` | Optional. If more than one cluster matches the labels and values that you provided in the previous fields, you can specify a resource specific criteria to select the clusters. For example, you can select the cluster with the most available CPU cores.
`spec.ResourceHint.type` | Optional. Set the value to either `cpu` to select clusters based on available CPU cores or `memory` to select clusters based on available memory resources.
`spec.ResourceHint.order` | Optional. Set the value to either `asc` for ascending order, or `desc` for descending order.
`spec.Policies` | Optional. The policy filters for the placement rule.

1.4.10.3. Placement rule sample files

Existing placement rules can include the following fields that indicate the status for the placement rule. This status section is appended after the `spec` section in the YAML structure for a rule.

```yaml
status:
  decisions:
    clusterName: 
    clusterNamespace:
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>status</code></td>
<td>The status information for the placement rule.</td>
</tr>
<tr>
<td><code>status.decisions</code></td>
<td>Defines the target clusters where deployables are placed.</td>
</tr>
<tr>
<td><code>status.decisions.clusterName</code></td>
<td>The name of a target cluster</td>
</tr>
<tr>
<td><code>status.decisions.clusterNamespace</code></td>
<td>The namespace for a target cluster.</td>
</tr>
</tbody>
</table>

- Example 1

```yaml
apiVersion: apps.open-cluster-management.io/v1
```
1.4.11. Application samples

View samples and YAML definitions that you can use to build your files. Applications (Application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are used for viewing the application components.

To use the Kubernetes CLI tool, see the following procedure:

- Compose and save your application YAML file with your preferred editing tool.
- Run the following command to apply your file to an API server. Replace `filename` with the name of your file:

```bash
kubectl apply -f filename.yaml
```
- Verify that your application resource is created by running the following command:

```bash
kubectl get Application
```
1.4.11.1. Application YAML structure

To compose the application definition YAML content for creating or updating an application resource, your YAML structure needs to include some required fields and values. Depending on your application requirements or application management requirements, you might need to include other optional fields and values.

The following YAML structure shows the required fields for an application and some of the common optional fields.

```yaml
apiVersion: app.k8s.io/v1beta1
kind: Application
metadata:
  name: The name for identifying the application resource.
  namespace: The namespace resource to use for the application.
spec:
  selector:
    matchLabels:
      label_name: label_value
```

1.4.11.2. Application YAML table

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>app.k8s.io/v1beta1</td>
<td>Required</td>
</tr>
<tr>
<td>kind</td>
<td>Application</td>
<td>Required</td>
</tr>
<tr>
<td>metadata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name:</td>
<td>The name for identifying the application resource.</td>
</tr>
<tr>
<td></td>
<td>namespace:</td>
<td>The namespace resource to use for the application.</td>
</tr>
<tr>
<td>spec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>selector.matchLabels</td>
<td>key:value pair that are a</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>Kubernetes label and value found on the subscription or subscriptions this application will be associated with. The label allows the application resource to find the related subscriptions by performing a label name and value match.</td>
<td></td>
</tr>
</tbody>
</table>
The spec for defining these applications is based on the Application metadata descriptor custom resource definition that is provided by the Kubernetes Special Interest Group (SIG). Only the values shown in the table are required.

You can use this definition to help you compose your own application YAML content. For more information about this definition, see Kubernetes SIG Application CRD community specification.

1.4.11.3. Application file samples

The definition structure for an application can resemble the following example YAML content:

```yaml
apiVersion: app.k8s.io/v1beta1
kind: Application
metadata:
  name: my-application
  namespace: my-namespace
spec:
  selector:
    matchLabels:
      my-label: my-label-value
```