
Red Hat Advanced Cluster Management
for Kubernetes 2.10

Applications

Application management

Last Updated: 2024-04-15

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

Application management

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn how to create applications by using Git repositories, Helm repositories, and
object storage repositories.

. .

Table of Contents

CHAPTER 1. MANAGING APPLICATIONS
1.1. APPLICATION MODEL AND DEFINITIONS

1.1.1. Applications
1.1.2. Subscriptions

1.1.2.1. Channels
1.1.2.1.1. Supported Git repository servers

1.1.3. ApplicationSet
1.1.4. Application documentation

1.2. APPLICATION CONSOLE
1.3. SUBSCRIPTION REPORTS

1.3.1. SubscriptionStatus package-level
1.3.2. SubscriptionReport cluster-level
1.3.3. SubscriptionReport application-level
1.3.4. ManagedClusterView
1.3.5. CLI application-level status
1.3.6. CLI Last Update Time

1.4. MANAGING APPLICATION RESOURCES
1.4.1. Managing apps with Git repositories

1.4.1.1. More examples
1.4.1.2. Keeping deployed resources after deleting subscription with Git

1.4.2. Managing apps with Helm repositories
1.4.2.1. Sample YAML
1.4.2.2. Keeping deployed resources after deleting subscription with Helm

1.4.3. Managing apps with Object storage repositories
1.4.3.1. Sample YAML
1.4.3.2. Creating your Amazon Web Services (AWS) S3 object storage bucket
1.4.3.3. Subscribing to the object in the AWS bucket
1.4.3.4. Sample AWS subscription
1.4.3.5. Keeping deployed resources after deleting subscription with Object storage

1.5. ANSIBLE AUTOMATION PLATFORM INTEGRATION AND INTRODUCTION
1.5.1. Integration and components

1.5.1.1. Prehook
1.5.1.2. Posthook

1.5.2. Setting up Ansible Automation Platform
1.5.2.1. Prerequisites
1.5.2.2. Installing Ansible Automation Platform Resource Operator

1.5.3. Configuring Ansible Automation Platform
1.5.3.1. Setting up Ansible Automation Platform secrets
1.5.3.2. Setting secret reconciliation
1.5.3.3. Using Ansible Automation Platform sample YAML files
1.5.3.4. Launching Workflow
1.5.3.5. Using Ansible Automation Platform sample YAML Workflow

1.6. APPLICATION ADVANCED CONFIGURATION
1.6.1. Subscribing Git resources

1.6.1.1. Creating application resources in Git
1.6.1.2. Application namespace example

1.6.1.2.1. Application to different namespaces
1.6.1.2.2. Application to same namespace

1.6.1.3. Resource overwrite example
1.6.1.3.1. Default merge option
1.6.1.3.2. mergeAndOwn option

4
4
5
6
6
7
7
9
9

10
11

12
13
14
14
15
15
15
16
16
17
17
18
18
19
19
19

20
21
22
22
22
22
23
23
23
24
24
24
25
26
26
27
27
28
28
28
29
29
30
31

Table of Contents

1

1.6.1.3.3. Replace option
1.6.1.4. Subscribing specific Git elements

1.6.1.4.1. Subscribing to a specific branch
1.6.1.4.2. Subscribing to a specific commit
1.6.1.4.3. Subscribing to a specific tag

1.6.2. Granting subscription administrator privilege
1.6.3. Creating an allow and deny list as subscription administrator
1.6.4. Adding reconcile options

1.6.4.1. Reconcile frequency Git channel
1.6.4.2. Reconcile frequency Helm channel

1.6.5. Configuring leader election
1.6.5.1. Editing the controller flag

1.6.6. Configuring application channel and subscription for a secure Git connection
1.6.6.1. Connecting to a private repo with user and access token
1.6.6.2. Making an insecure HTTPS connection to a Git server
1.6.6.3. Using custom CA certificates for a secure HTTPS connection
1.6.6.4. Making an SSH connection to a Git server
1.6.6.5. Updating certificates and SSH keys

1.6.7. Configuring Helm to watch namespace resources
1.6.7.1. Configuring

1.6.8. Scheduling a deployment
1.6.9. Configuring package overrides
1.6.10. Channel samples overview

1.6.10.1. Channel YAML structure
1.6.10.2. Channel YAML table
1.6.10.3. Object storage bucket (ObjectBucket) channel
1.6.10.4. Helm repository (HelmRepo) channel
1.6.10.5. Git (Git) repository channel

1.6.11. Subscription samples overview
1.6.11.1. Subscription YAML structure
1.6.11.2. Subscription YAML table
1.6.11.3. Subscription file samples
1.6.11.4. Secondary channel sample

1.6.11.4.1. Subscription time window example
1.6.11.4.2. Subscription with overrides example
1.6.11.4.3. Helm repository subscription example
1.6.11.4.4. Git repository subscription example

1.6.11.4.4.1. Subscribing specific branch and directory of Git repository
1.6.11.4.4.2. Adding a .kubernetesignore file
1.6.11.4.4.3. Applying Kustomize
1.6.11.4.4.4. Enabling Git WebHook
1.6.11.4.4.4.1. Payload URL
1.6.11.4.4.4.2. Webhook secret
1.6.11.4.4.4.3. Configuring WebHook in Git repository
1.6.11.4.4.4.4. Enable WebHook event notification in channel

1.6.12. Placement rule samples overview (Deprecated)
1.6.12.1. Placement rule YAML structure
1.6.12.2. Placement rule YAML values table
1.6.12.3. Placement rule sample files

1.6.13. Application samples
1.6.13.1. Application YAML structure
1.6.13.2. Application YAML table
1.6.13.3. Application file samples

31
32
32
32
33
33
34
35
36
37
39
39
40
40
41
41

44
45
45
46
46
47
48
49
49
51
51
52
52
53
54
60
60
60
61
61

62
62
63
63
63
64
64
64
64
65
65
66
67
68
69
69
70

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

2

Table of Contents

3

CHAPTER 1. MANAGING APPLICATIONS
Review the following topics to learn more about creating, deploying, and managing your applications.
This guide assumes familiarity with Kubernetes concepts and terminology. Key Kubernetes terms and
components are not defined. For more information about Kubernetes concepts, see Kubernetes
Documentation.

The application management functions provide you with unified and simplified options for constructing
and deploying applications and application updates. With these functions, your developers and DevOps
personnel can create and manage applications across environments through channel and subscription-
based automation.

Important: An application name cannot exceed 37 characters.

See the following topics:

Application model and definitions

Application console

Subscription reports

Managing application resources

Managing apps with Git repositories

Managing apps with Helm repositories

Managing apps with Object storage repositories

Application advanced configuration

Subscribing Git resources

Granting subscription admin privilege

Creating an allow and deny list as subscription administrator

Adding reconcile options

Configuring application channel and subscription for a secure Git connection

Setting up Ansible Automation Platform tasks

Scheduling a deployment

Configuring package overrides

Channel samples

Subscription samples

Application samples

1.1. APPLICATION MODEL AND DEFINITIONS

The application model is based on subscribing to one or more Kubernetes resource repositories (channel

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

4

https://kubernetes.io/docs/home/

resources) that contains resources that are deployed on managed clusters. Both single and multicluster
applications use the same Kubernetes specifications, but multicluster applications involve more
automation of the deployment and application management lifecycle.

See the following image to understand more about the application model:

View the following application resource sections:

Applications

Subscriptions

ApplicationSet

Application documentation

Best practice: Use the GitOps Operator or Argo CD integration instead of the Channel and Subscription
model. Learn more from the GitOps overview.

1.1.1. Applications

Applications (application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are
used for grouping Kubernetes resources that make up an application.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes
applications are defined in YAML file specification sections. When you need to create or update an
application component resource, you need to create or edit the appropriate section to include the labels
for defining your resource.

You can also work with Discovered applications, which are applications that are discovered by the

CHAPTER 1. MANAGING APPLICATIONS

5

../../html-single/gitops#gitops-overview

You can also work with Discovered applications, which are applications that are discovered by the
OpenShift Container Platform GitOps or an Argo CD operator that is installed in your clusters.
Applications that share the same repository are grouped together in this view.

1.1.2. Subscriptions

Subscriptions (subscription.apps.open-cluster-management.io) allow clusters to subscribe to a
source repository (channel) that can be the following types: Git repository, Helm release registry, or
Object storage repository.

Subscriptions can deploy application resources locally to the hub cluster if the hub cluster is self-
managed. You can then view the local-cluster (the self-managed hub cluster) subscription in the
topology. Resource requirements might adversely impact hub cluster performance.

Subscriptions can point to a channel or storage location for identifying new or updated resource
templates. The subscription operator can then download directly from the storage location and deploy
to targeted managed clusters without checking the hub cluster first. With a subscription, the
subscription operator can monitor the channel for new or updated resources instead of the hub cluster.

See the following subscription architecture image:

1.1.2.1. Channels

Channels (channel.apps.open-cluster-management.io) define the source repositories that a cluster
can subscribe to with a subscription, and can be the following types: Git, Helm release, and Object
storage repositories, and resource templates on the hub cluster.

If you have applications that require Kubernetes resources or Helm charts from channels that require
authorization, such as entitled Git repositories, you can use secrets to provide access to these channels.
Your subscriptions can access Kubernetes resources and Helm charts for deployment from these
channels, while maintaining data security.

Channels use a namespace within the hub cluster and point to a physical place where resources are

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

6

Channels use a namespace within the hub cluster and point to a physical place where resources are
stored for deployment. Clusters can subscribe to channels for identifying the resources to deploy to
each cluster.

Notes: It is best practice to create each channel in a unique namespace. However, a Git channel can
share a namespace with another type of channel, including Git, Helm, and Object storage.

Resources within a channel can be accessed by only the clusters that subscribe to that channel.

1.1.2.1.1. Supported Git repository servers

GitHub

GitLab

Bitbucket

Gogs

1.1.3. ApplicationSet

ApplicationSet is a sub-project of Argo CD that is supported by the GitOps Operator. ApplicationSet
adds multicluster support for Argo CD applications. You can create an application set from the Red Hat
Advanced Cluster Management console.

Note: For more details on the prerequisites for deploying ApplicationSet, see Registering managed
clusters to GitOps.

OpenShift Container Platform GitOps uses Argo CD to maintain cluster resources. Argo CD is an open-
source declarative tool for the continuous integration and continuous deployment (CI/CD) of
applications. OpenShift Container Platform GitOps implements Argo CD as a controller (OpenShift
Container Platform GitOps Operator) so that it continuously monitors application definitions and
configurations defined in a Git repository. Then, Argo CD compares the specified state of these
configurations with their live state on the cluster.

The ApplicationSet controller is installed on the cluster through a GitOps operator instance and
supplements it by adding additional features in support of cluster-administrator-focused scenarios. The
ApplicationSet controller provides the following function:

The ability to use a single Kubernetes manifest to target multiple Kubernetes clusters with the
GitOps operator.

The ability to use a single Kubernetes manifest to deploy multiple applications from one or
multiple Git repositories with the GitOps operator.

Improved support for monorepo, which is in the context of Argo CD, multiple Argo CD
Application resources that are defined within a single Git repository.

Within multitenant clusters, improved ability of individual cluster tenants to deploy applications
using Argo CD without needing to involve privileged cluster administrators in enabling the
destination clusters/namespaces.

The ApplicationSet operator leverages the cluster decision generator to interface Kubernetes custom
resources that use custom resource-specific logic to decide which managed clusters to deploy to. A
cluster decision resource generates a list of managed clusters, which are then rendered into the
template fields of the ApplicationSet resource. This is done using duck-typing, which does not require
knowledge of the full shape of the referenced Kubernetes resource.

CHAPTER 1. MANAGING APPLICATIONS

7

../../html-single/gitops#gitops-register

See the following example of a generators.clusterDecisionResource value within an ApplicationSet:

See the following Placement:

If you would like to learn more about ApplicationSets, see Cluster Decision Resource Generator .

apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: sample-application-set
 namespace: sample-gitops-namespace
spec:
 generators:
 - clusterDecisionResource:
 configMapRef: acm-placement
 labelSelector:
 matchLabels:
 cluster.open-cluster-management.io/placement: sample-application-placement
 requeueAfterSeconds: 180
 template:
 metadata:
 name: sample-application-{{name}}
 spec:
 project: default
 sources: [
 {
 repoURL: https://github.com/sampleapp/apprepo.git
 targetRevision: main
 path: sample-application
 }
]
 destination:
 namespace: sample-application
 server: "{{server}}"
 syncPolicy:
 syncOptions:
 - CreateNamespace=true
 - PruneLast=true
 - Replace=true
 - ApplyOutOfSyncOnly=true
 - Validate=false
 automated:
 prune: true
 allowEmpty: true
 selfHeal: true

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: sample-application-placement
 namespace: sample-gitops-namespace
spec:
 clusterSets:
 - sampleclusterset

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

8

https://argocd-applicationset.readthedocs.io/en/stable/Generators-Cluster-Decision-Resource/

1.1.4. Application documentation

Learn more from the following documentation:

Application console

Managing application resources

Managing apps with Git repositories

Managing apps with Helm repositories

Managing apps with Object storage repositories

Application advanced configuration

Subscribing Git resources

Setting up Ansible Automation Platform tasks

Channel samples

Subscription samples

Application samples

1.2. APPLICATION CONSOLE

The console includes a dashboard for managing the application lifecycle. You can use the console
dashboard to create and manage applications and view the status of applications. Enhanced capabilities
help your developers and operations personnel create, deploy, update, manage, and visualize
applications across your clusters.

See some of the console capability in the following list and see the console for guided information about
terms, actions, and how to read the Topology:

Important: Available actions are based on your assigned role. Learn about access requirements from the
Role-based access control documentation.

Visualize deployed applications across your clusters, including any associated resource
repositories, subscriptions, and placement configurations.

Create and edit applications, and subscribe resources. From the Actions menu, you can search,
edit, or delete. Ensure you select YAML:On to view and edit the YAML as you update the fields.

From the main Overview tab, you can click an application name to view details and application
resources, including resource repositories, subscriptions, placements, and deployed resources
such as any optional predeployment and postdeployment hooks that are using Ansible
Automation Platform tasks (for Git repositories). You can also create an application from the
overview.

Create and view applications, such as ApplicationSet, Subscription, OpenShift, Flux, and Argo CD
types. An ApplicationSet represents Argo applications that are generated from the controller.

For an Argo CD ApplicationSet to be created, you need to enable Automatically sync
when cluster state changes from the Sync policy.

For Flux with the kustomization controller, find Kubernetes resources with the label

CHAPTER 1. MANAGING APPLICATIONS

9

../../html-single/access_control#role-based-access-control

For Flux with the kustomization controller, find Kubernetes resources with the label
kustomize.toolkit.fluxcd.io/name=<app_name>.

For Flux with the helm controller, find Kubernetes resources with the label
helm.toolkit.fluxcd.io/name=<app_name>.

From the main Overview, when you click on an application name in the table to view a single
application overview, you can see the following information:

Cluster details, such as resource status

Resource topology

Subscription details

Access to the Editor tab to edit

Click the Topology tab for visual representation of all the applications and resources in your
project. For Helm subscriptions, see Configuring package overrides to define the appropriate
packageName and the packageAlias to get an accurate topology display.

Click the Advanced configuration tab to view terminology and tables of resources for all
applications. You can find resources and you can filter subscriptions, placement, and channels. If
you have access, you can also click multiple Actions, such as Edit, Search, and Delete.

View a successful Ansible Automation Platform deployment if you are using Ansible tasks as
prehook or posthook for the deployed application.

Click Launch resource in Search to search for related resources.

Use Search to find application resources by the component kind for each resource. To search
for resources, use the following values:

Application resource Kind (search parameter)

Subscription Subscription

Channel Channel

Secret Secret

Placement Placement

Application Application

You can also search by other fields, including name, namespace, cluster, label, and more. For more
information about using search, see Searching in the console introduction .

1.3. SUBSCRIPTION REPORTS

Subscription reports are collections of application statuses from all the managed clusters in your fleet.
Specifically, the parent application resource can hold reports from a scalable amount of managed
clusters.

Detailed application status is available on the managed clusters, while the subscriptionReports on the

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

10

../../html-single/observability#searching-in-the-console-intro

Detailed application status is available on the managed clusters, while the subscriptionReports on the
hub cluster are lightweight and more scalable. See the following three types of subsription status
reports:

Package-level SubscriptionStatus: This is the application package status on the managed
cluster with detailed status for all the resources that are deployed by the application in the
appsub namespace.

Cluster-level SubscriptionReport: This is the overall status report on all the applications that
are deployed to a particular cluster.

Application-level SubscriptionReport: This is the overall status report on all the managed
clusters to which a particular application is deployed.

SubscriptionStatus package-level

SubscriptionReport cluster-level

SubscriptionReport application-level

managedClusterView

CLI application-level status

CLI Last Update Time

1.3.1. SubscriptionStatus package-level

The package-level managed cluster status is located in <namespace:<your-appsub-namespace> on
the managed cluster and contains detailed status for all the resources that are deployed by the
application. For every appsub that is deployed to a managed cluster, there is a SubscriptionStatus CR
created in the appsub namespace on the managed cluster. Every resource is reported with detailed
errors if errors exist.

The package status only indicates the status of an individual package. You can view the overall
subscription status by referencing the field, .status.subscription.

See the following SubscriptionStatus sample YAML file:

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: SubscriptionStatus
metadata:
 labels:
 apps.open-cluster-management.io/cluster: <your-managed-cluster>
 apps.open-cluster-management.io/hosting-subscription: <your-appsub-namespace>.<your-
appsub-name>
 name: <your-appsub-name>
 namespace: <your-appsub-namespace>
statuses:
 packages:
 - apiVersion: v1
 kind: Service
 lastUpdateTime: "2021-09-13T20:12:34Z"
 Message: <detailed error. visible only if the package fails>
 name: frontend
 namespace: test-ns-2

CHAPTER 1. MANAGING APPLICATIONS

11

1.3.2. SubscriptionReport cluster-level

The cluster-level status is located in <namespace:<your-managed-cluster-1> on the hub cluster and
only contains the overall status on each application on that managed cluster. The subscriptionReport in
each cluster namespace on the hub cluster reports one of the following statuses:

Deployed

Failed

propagationFailed

See the following SubscriptionStatus sample YAML file:

 phase: Deployed
 - apiVersion: apps/v1
 kind: Deployment
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: frontend
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: v1
 kind: Service
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-master
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: apps/v1
 kind: Deployment
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-master
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: v1
 kind: Service
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-slave
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: apps/v1
 kind: Deployment
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-slave
 namespace: test-ns-2
 phase: Deployed
subscription:
 lastUpdateTime: "2021-09-13T20:12:34Z"
 phase: Deployed

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: subscriptionReport
metadata:
 labels:
 apps.open-cluster-management.io/cluster: "true"
 name: <your-managed-cluster-1>

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

12

1.3.3. SubscriptionReport application-level

One application-level subscriptionReport for each application is located in <namespace:<your-
appsub-namespace> in appsub namespace on the hub cluster and contains the following information:

The overall status of the application for each managed cluster

A list of all resources for the application

A report summary with the total number of total clusters

A report summary with the total number of clusters where the application is in the status:
deployed, failed, propagationFailed, and inProgress.

Note: The inProcess status is the total minus deployed, minus failed `, and minus
`propagationFailed.

See the following SubscriptionStatus sample YAML file:

 namespace: <your-managed-cluster-1>
reportType: Cluster
results:
- result: deployed
 source: appsub-1-ns/appsub-1 // appsub 1 to <your-managed-cluster-1>
 timestamp:
 nanos: 0
 seconds: 1634137362
- result: failed
 source: appsub-2-ns/appsub-2 // appsub 2 to <your-managed-cluster-1>
 timestamp:
 nanos: 0
 seconds: 1634137362
- result: propagationFailed
 source: appsub-3-ns/appsub-3 // appsub 3 to <your-managed-cluster-1>
 timestamp:
 nanos: 0
 seconds: 1634137362

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: subscriptionReport
metadata:
 labels:
 apps.open-cluster-management.io/hosting-subscription: <your-appsub-namespace>.<your-
appsub-name>
 name: <your-appsub-name>
 namespace: <your-appsub-namespace>
reportType: Application
resources:
- apiVersion: v1
 kind: Service
 name: redis-master2
 namespace: playback-ns-2
- apiVersion: apps/v1
 kind: Deployment
 name: redis-master2
 namespace: playback-ns-2

CHAPTER 1. MANAGING APPLICATIONS

13

1.3.4. ManagedClusterView

A ManagedClusterView CR is reported on the first failed cluster. If an application is deployed on
multiple clusters with resource deployment failures, only one managedClusterView CR is created for
the first failed cluster namespace on the hub cluster. The managedClusterView CR retrieves the
detailed subscription status from the failed cluster so that the application owner does not need to
access the failed remote cluster.

See the following command that you can run to get the status:

% oc get managedclusterview -n <failing-clusternamespace> "<app-name>-<app name>"

1.3.5. CLI application-level status

If you cannot access the managed clusters to get a subscription status, you can use the CLI. The cluster-

- apiVersion: v1
 kind: Service
 name: redis-slave2
 namespace: playback-ns-2
- apiVersion: apps/v1
 kind: Deployment
 name: redis-slave2
 namespace: playback-ns-2
- apiVersion: v1
 kind: Service
 name: frontend2
 namespace: playback-ns-2
- apiVersion: apps/v1
 kind: Deployment
 name: frontend2
 namespace: playback-ns-2
results:
- result: deployed
 source: cluster-1 //cluster 1 status
 timestamp:
 nanos: 0
 seconds: 0
- result: failed
 source: cluster-3 //cluster 2 status
 timestamp:
 nanos: 0
 seconds: 0
- result: propagationFailed
 source: cluster-4 //cluster 3 status
 timestamp:
 nanos: 0
 seconds: 0
summary:
 deployed: 8
 failed: 1
 inProgress: 0
 propagationFailed: 1
 clusters: 10

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

14

If you cannot access the managed clusters to get a subscription status, you can use the CLI. The cluster-
level or the application-level subscription report provides the overall status, but not the detailed error
messages for an application.

1. Download the CLI from multicloud-operators-subscription.

2. Run the following command to create a managedClusterView resource to see the managed
cluster application SubscriptionStatus so that you can identify the error:

% getAppSubStatus.sh -c <your-managed-cluster> -s <your-appsub-namespace> -n <your-appsub-
name>

1.3.6. CLI Last Update Time

You can also get the Last Update Time of an AppSub on a given managed cluster when it is not practical
to log in to each managed cluster to retrieve this information. Thus, an utility script was created to
simplify the retrieval of the Last Update Time of an AppSub on a managed cluster. This script is
designed to run on the Hub cluster. It creates a managedClusterView resource to get the AppSub from
the managed cluster, and parses the data to get the Last Update Time.

1. Download the CLI from multicloud-operators-subscription.

2. Run the following command to retriev the Last Update Time of an AppSub on a managed
cluster. This script is designed to run on the hub cluster. It creates a managedClusterView
resource to get the AppSub from the managed cluster, and parses the data to get the Last
Update Time:

% getLastUpdateTime.sh -c <your-managed-cluster> -s <your-appsub-namespace> -n <your-
appsub-name>

1.4. MANAGING APPLICATION RESOURCES

From the console, you can create applications by using Git repositories, Helm repositories, and Object
storage repositories.

Important: Git Channels can share a namespace with all other channel types: Helm, Object storage, and
other Git namespaces.

See the following topics to start managing apps:

Managing apps with Git repositories

Managing apps with Helm repositories

Managing apps with Object storage repositories

1.4.1. Managing apps with Git repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Git repositories in the following procedure. Learn
more about the application model at Application model and definitions .

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Applications to see listed applications and to create

CHAPTER 1. MANAGING APPLICATIONS

15

https://github.com/open-cluster-management-io/multicloud-operators-subscription/blob/main/cmd/scripts/getAppSubStatus.sh
https://github.com/open-cluster-management-io/multicloud-operators-subscription/blob/main/cmd/scripts/getLastUpdateTime.sh
../../html-single/access_control#role-based-access-control

1. From the console navigation menu, click Applications to see listed applications and to create
new applications.

2. Optional: After you choose the kind of application you want to create, you can select YAML: On
to view the YAML in the console as you create and edit your application. See the YAML samples
later in the topic.

3. Choose Git from the list of repositories that you can use and enter the values in the correct
fields. Follow the guidance in the console and see the YAML editor change values based on your
input.
Notes:

If you select an existing Git repository path, you do not need to specify connection
information if this is a private repository. The connection information is pre-set and you do
not need to view these values.

If you enter a new Git repository path, you can optionally enter Git connection information if
this is a private Git repository.

Notice the reconcile option. The merge option is the default selection, which means that
new fields are added and existing fields are updated in the resource. You can choose to
replace. With the replace option, the existing resource is replaced with the Git source.
When the subscription reconcile rate is set to low, it can take up to one hour for the
subscribed application resources to reconcile. On the card on the single application view,
click Sync to reconcile manually. If set to off, it never reconciles.

4. Set any optional pre-deployment and post-deployment tasks. Set the Ansible Automation
Platform secret if you have Ansible Automation Platform jobs that you want to run before or
after the subscription deploys the application resources. The Ansible Automation Platform tasks
that define jobs must be placed within prehook and posthook folders in this repository.

5. You can click Add credential if you need to add a credential using the console. Follow the
directions in the console. See more information at Managing credentials overview.

6. Click Create.

7. You are redirected to the Overview page where you can view the details and topology.

1.4.1.1. More examples

For an example of root-subscription/, see application-subscribe-all.

For examples of subscriptions that point to other folders in the same repository, see subscribe-
all.

See an example of the common-managed folder with application artifacts in the nginx-apps
repository.

See policy examples in Policy collection .

1.4.1.2. Keeping deployed resources after deleting subscription with Git

When creating subscriptions using a Git repository, you can add a do-not-delete annotation to keep
specific deployed resources after you delete the subscription. The do-not-delete annotation only works
with top-level deployment resources. To add the do-not-delete annotation, complete the following
steps:

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

16

../../html-single/clusters#managing-credentials-overview
https://github.com/stolostron/application-samples/tree/main/subscriptions/subscribe-all
https://github.com/stolostron/application-samples/tree/main/subscriptions
https://github.com/stolostron/application-samples/tree/main/subscriptions/nginx
https://github.com/stolostron/policy-collection

1. Create a subscription that deploys at least one resource.

2. Add the following annotation to the resource or resources that you want to keep, even after you
delete the subscription:
apps.open-cluster-management.io/do-not-delete: 'true'

See the following example:

After deleting the subscription, the resources with the do-not-delete annotation still exist, while other
resources are deleted.

Note: The resources that remain deployed by using the do-not-delete annotation bind to the
namespace. As a result, you cannot delete the namespace until you remove the remaining resources.

1.4.2. Managing apps with Helm repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Helm repositories in the following procedure. Learn
more about the application model at Application model and definitions .

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Applications to see listed applications and to create
new applications.

2. Optional: After you choose the kind of application you want to create, you can select YAML: On
to view the YAML in the console as you create and edit your application. See the YAML samples
later in the topic.

3. Choose Helm from the list of repositories that you can use and enter the values in the correct
fields. Follow the guidance in the console and see the YAML editor change values based on your
input.

4. Click Create.

5. You are redirected to the Overview page where you can view the details and topology.

1.4.2.1. Sample YAML

The following example channel definition abstracts a Helm repository as a channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release.
{{ .Release.Name }}` for the application topology to be displayed properly.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 apps.open-cluster-management.io/do-not-delete: 'true'
 apps.open-cluster-management.io/hosting-subscription: sub-ns/subscription-example
 apps.open-cluster-management.io/reconcile-option: merge
 pv.kubernetes.io/bind-completed: "yes"

apiVersion: v1

CHAPTER 1. MANAGING APPLICATIONS

17

../../html-single/access_control#role-based-access-control

The following channel definition shows another example of a Helm repository channel:

Note: To see REST APIs, use the APIs.

1.4.2.2. Keeping deployed resources after deleting subscription with Helm

Helm provides an annotation to keep specific deployed resources after you delete a subscription. See
Tell Helm Not To Uninstall a Resource for more information.

Note: The annotation must be in the Helm chart.

1.4.3. Managing apps with Object storage repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn more about the application model at Application model and definitions :

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Applications to see listed applications and to create
new applications.

2. Optional: After you choose the kind of application you want to create, you can select YAML: On
to view the YAML in the console as you create and edit your application. See the YAML samples
later in the topic.

3. Choose Object store from the list of repositories that you can use and enter the values in the
correct fields. Follow the guidance in the console and see the YAML editor change values based
on your input.

4. Click Create.

kind: Namespace
metadata:
 name: hub-repo

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: helm
 namespace: hub-repo
spec:
 pathname: [https://kubernetes-charts.storage.googleapis.com/] # URL points to a valid chart URL.
 type: HelmRepo

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: predev-ch
 namespace: ns-ch
 labels:
 app: nginx-app-details
spec:
 type: HelmRepo
 pathname: https://kubernetes-charts.storage.googleapis.com/

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

18

../../html-single/apis#apis
https://helm.sh/docs/howto/charts_tips_and_tricks/#tell-helm-not-to-uninstall-a-resource
../../html-single/access_control#role-based-access-control

5. You are redirected to the Overview page where you can view the details and topology.

1.4.3.1. Sample YAML

The following example channel definition abstracts an object storage as a channel:

Note: To see REST API, use the APIs.

1.4.3.2. Creating your Amazon Web Services (AWS) S3 object storage bucket

You can set up subscriptions to subscribe resources that are defined in the Amazon Simple Storage
Service (Amazon S3) object storage service. See the following procedure:

1. Log in to the AWS console with your AWS account, user name, and password.

2. Navigate to Amazon S3 > Buckets to the bucket home page.

3. Click Create Bucket to create your bucket.

4. Select the AWS region, which is essential for connecting your AWS S3 object bucket.

5. Create the bucket access token.

6. Navigate to your user name in the navigation bar, then from the drop-down menu, select My
Security Credentials.

7. Navigate to Access keys for CLI, SDK, & API access in the AWS IAM credentials tab and click on
Create access key.

8. Save your Access key ID , Secret access key .

9. Upload your object YAML files to the bucket.

1.4.3.3. Subscribing to the object in the AWS bucket

1. Create an object bucket type channel with a secret to specify the AccessKeyID,
SecretAccessKey, and Region for connecting the AWS bucket. The three fields are created
when the AWS bucket is created.

2. Add the URL. The URL identifies the channel in a AWS S3 bucket if the URL contains s3:// or s3

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: dev
 namespace: ch-obj
spec:
 type: Object storage
 pathname: [http://sample-ip:#####/dev] # URL is appended with the valid bucket name, which
matches the channel name.
 secretRef:
 name: miniosecret
 gates:
 annotations:
 dev-ready: true

CHAPTER 1. MANAGING APPLICATIONS

19

../../html-single/apis#apis
https://s3.console.aws.amazon.com/

2. Add the URL. The URL identifies the channel in a AWS S3 bucket if the URL contains s3:// or s3
and aws keywords. For example, see all of the following bucket URLs have AWS s3 bucket
identifiers:

https://s3.console.aws.amazon.com/s3/buckets/sample-bucket-1
s3://sample-bucket-1/
https://sample-bucket-1.s3.amazonaws.com/

Note: The AWS S3 object bucket URL is not necessary to connect the bucket with the AWS S3
API.

1.4.3.4. Sample AWS subscription

See the following complete AWS S3 object bucket channel sample YAML file:

Deprecated: You can continue to create other AWS subscription and placement rule objects, as you see
in the following sample YAML with kind: PlacementRule and kind: Subscription added:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: object-dev
 namespace: ch-object-dev
spec:
 type: ObjectBucket
 pathname: https://s3.console.aws.amazon.com/s3/buckets/sample-bucket-1
 secretRef:
 name: secret-dev

apiVersion: v1
kind: Secret
metadata:
 name: secret-dev
 namespace: ch-object-dev
stringData:
 AccessKeyID: <your AWS bucket access key id>
 SecretAccessKey: <your AWS bucket secret access key>
 Region: <your AWS bucket region>
type: Opaque

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: towhichcluster
 namespace: obj-sub-ns
spec:
 clusterSelector: {}

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: obj-sub
 namespace: obj-sub-ns
spec:
 channel: ch-object-dev/object-dev

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

20

You can also subscribe to objects within a specific subfolder in the object bucket. Add the subfolder
annotation to the subscription, which forces the object bucket subscription to only apply all the
resources in the subfolder path.

See the annotation with subfolder-1 as the bucket-path:

See the following complete sample for a subfolder:

1.4.3.5. Keeping deployed resources after deleting subscription with Object storage

When creating subscriptions using an Object storage repository, you can add a do-not-delete annotation
to keep specific deployed resources after you delete the subscription. The do-not-delete annotation
only works with top-level deployment resources. To add the do-not-delete annotation, complete the
following steps:

1. Create a subscription that deploys at least one resource.

2. Add the following annotation to the resource or resources that you want to keep, even after you
delete the subscription:
apps.open-cluster-management.io/do-not-delete: 'true'

See the following example:

 placement:
 placementRef:
 kind: PlacementRule
 name: towhichcluster

annotations:
 apps.open-cluster-management.io/bucket-path: <subfolder-1>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 annotations:
 apps.open-cluster-management.io/bucket-path: subfolder1
 name: obj-sub
 namespace: obj-sub-ns
 labels:
 name: obj-sub
spec:
 channel: ch-object-dev/object-dev
 placement:
 placementRef:
 kind: PlacementRule
 name: towhichcluster

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 apps.open-cluster-management.io/do-not-delete: 'true'
 apps.open-cluster-management.io/hosting-subscription: sub-ns/subscription-example
 apps.open-cluster-management.io/reconcile-option: merge
 pv.kubernetes.io/bind-completed: "yes"

CHAPTER 1. MANAGING APPLICATIONS

21

After deleting the subscription, the resources with the do-not-delete annotation still exist, while other
resources are deleted.

Note: The resources that remain deployed by using the do-not-delete annotation bind to the
namespace. As a result, you cannot delete the namespace until you remove the remaining resources.

1.5. ANSIBLE AUTOMATION PLATFORM INTEGRATION AND
INTRODUCTION

Red Hat Advanced Cluster Management is integrated with Red Hat Ansible Automation Platform so
that you can create prehook and posthook AnsibleJob instances for Git subscription application
management. Learn about the components and how to configure Ansible Automation Platform.

Required access: Cluster administrator

1.5.1. Integration and components

You can integrate Ansible Automation Platform jobs into Git subscriptions. For instance, for a database
front end and back end application, the database is required to be instantiated by using Ansible
Automation Platform with an Ansible Automation Platform Job. The application is installed by a Git
subscription. The database is instantiated before you deploy the front end and back end application with
the subscription.

The application subscription operator is enhanced to define two subfolders named prehook and
posthook. Both folders are in the Git repository resource root path and contain all prehook and
posthook Ansible Automation Platform jobs, respectively.

When the Git subscription is created, all of the prehook and posthook AnsibleJob resources are parsed
and stored in memory as an object. The application subscription controller decides when to create the
prehook and posthook AnsibleJob instances.

When you create a subscription custom resource, the Git branch and Git path points to a Git repository
root location. In the Git root location, the two subfolders prehook and posthook should contain at least
one Kind:AnsibleJob resource.

1.5.1.1. Prehook

The application subscription controller searches all the kind:AnsibleJob CRs in the prehook folder as
the prehook AnsibleJob objects, then generates a new prehook AnsibleJob instance. The new instance
name is the prehook AnsibleJob object name and a random suffix string.

See the following example instance name: database-sync-1-2913063.

The application subscription controller queues the reconcile request again in a one minute loop, where it
checks the prehook AnsibleJob status.AnsibleJobResult. When the prehook status is successful, the
application subscription continues to deploy the main subscription.

1.5.1.2. Posthook

When the application subscription status is updated, if the subscription status is subscribed or
propagated to all target clusters in subscribed status, the application subscription controller searches all
of the AnsibleJob kind custom resources in the posthook folder as the posthook AnsibleJob objects.
Then, it generates new posthook AnsibleJob instances. The new instance name is the posthook
AnsibleJob object name and a random suffix string.

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

22

See the following example instance name: service-ticket-1-2913849.

See the following topics to enable {aap_short}:

Setting up Ansible Automation Platform

Configuring Ansible Automation Platform

1.5.2. Setting up Ansible Automation Platform

With Ansible Automation Platform jobs, you can automate tasks and integrate with external services,
such as Slack and PagerDuty services. Your Git repository resource root path will contain prehook and
posthook directories for Ansible Automation Platform jobs that run as part of deploying the application,
updating the application, or removing the application from a cluster.

Required access: Cluster administrator

Prerequisites

Installing Ansible Automation Platform Resource Operator

1.5.2.1. Prerequisites

Install OpenShift Container Platform 4.13 or later.

Install Ansible Automation Platform. See Red Hat Ansible Automation Platform documenation
to install the latest supported version.

Install the Ansible Automation Platform Resource Operator to connect Ansible Automation
Platform jobs to the lifecycle of Git subscriptions. Best practice: The Ansible Automation
Platform job template should be idempotent when it is run.

Check PROMPT ON LAUNCH on the template for both INVENTORY and EXTRA
VARIABLES. See Job templates for more information.

1.5.2.2. Installing Ansible Automation Platform Resource Operator

1. Log in to your OpenShift Container Platform cluster console.

2. Click OperatorHub in the console navigation.

3. Search for and install the Ansible Automation Platform Resource Operator . Note: To submit
prehook and posthook AnsibleJobs, install Red Hat Ansible Automation Platform Resource
Operator with corresponding version available on the following OpenShift Container Platform
versions:

OpenShift Container Platform 4.8 needs (AAP) Resource Operator early-access, stable-2.1,
stable-2.2

OpenShift Container Platform 4.9 needs (AAP) Resource Operator early-access, stable-2.1,
stable-2.2

OpenShift Container Platform 4.10 and later needs (AAP) Resource Operator stable-2.1,
stable-2.2

You can then create the credential from the Credentials page in the console. Click Add credential, or

CHAPTER 1. MANAGING APPLICATIONS

23

https://docs.ansible.com/automation.html
https://docs.ansible.com/ansible-tower/latest/html/userguide/job_templates.html

You can then create the credential from the Credentials page in the console. Click Add credential, or
access the page from the navigation. See Creating a credential for Ansible Automation Platform for
credential information.

1.5.3. Configuring Ansible Automation Platform

With {aap-short} jobs, you can automate tasks and integrate with external services, such as Slack
and PagerDuty services. Your Git repository resource root path will contain `prehook` and `posthook`
directories for {aap-short} jobs that run as part of deploying the application, updating the application,
or removing the application from a cluster.

Required access: Cluster administrator

Setting up Ansible Automation Platform secrets

Setting secret reconciliation

Using Ansible Automation Platform sample YAML files

Launching Workflow

You can configure Ansible Automation Platform configurations with the following tasks:

1.5.3.1. Setting up Ansible Automation Platform secrets

You must create an Ansible Automation Platform secret custom resources in the same subscription
namespace. The Ansible Automation Platform secret is limited to the same subscription namespace.

1. Create the secret from the console by filling in the Ansible Automation Platform secret name
section. To create the secret using terminal, edit and apply the sample yaml file:
Note: The namespace is the same namespace as the subscription namespace. The
stringData:token and host are from the Ansible Automation Platform.

2. Run the following command to add your YAML file:

oc apply -f

When the app subscription controller creates prehook and posthook Ansible jobs, if the secret from
subscription spec.hooksecretref is available, then it is sent to the AnsibleJob custom resources
spec.tower_auth_secret and the AnsibleJob can access the Ansible Automation Platform.

1.5.3.2. Setting secret reconciliation

For a main-sub subscription with prehook and posthook AnsibleJob, the main-sub subscription should

apiVersion: v1
kind: Secret
metadata:
 name: toweraccess
 namespace: same-as-subscription
type: Opaque
stringData:
 token: ansible-tower-api-token
 host: https://ansible-tower-host-url

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

24

../../html-single/clusters

For a main-sub subscription with prehook and posthook AnsibleJob, the main-sub subscription should
be reconciled after all prehook and posthook AnsibleJob or main subscription are updated in the Git
repository.

Prehook AnsibleJob and the main subscription continuously reconcile and relaunch a new pre
AnsibleJob instance.

1. After the pre AnsibleJob is complete, re-run the main subscription.

2. If there is any specification change in the main subscription, redeploy the subscription. The main
subscription status should be updated to align with the redeployment procedure.

3. Reset the hub cluster subscription status to nil. The subscription is refreshed along with the
subscription deployment on target clusters.
When the deployment is finished on the target cluster, the subscription status on the target
cluster is updated to "subscribed" or "failed", and is synced to the hub cluster subscription
status.

4. After the main subscription is complete, relaunch a new post-AnsibleJob instance.

5. Verify that the subscription is updated. See the following output:

subscription.status == "subscribed"

subscription.status == "propagated" with all of the target clusters "subscribed"

When an AnsibleJob custom resources is created, A Kubernetes job custom resources is created to
launch an Ansible Automation Platform job by communicating to the target Ansible Automation
Platform. When the job is complete, the final status for the job is returned to AnsibleJob
status.AnsibleJob Result.

Notes:

The AnsibleJob status.conditions is reserved by the Ansible Automation Platform Job operator for
storing the creation of Kubernetes job result. The status.conditions does not reflect the actual Ansible
Automation Platform job status.

The subscription controller checks the Ansible Automation Platform job status by the
AnsibleJob.status.AnsibleJob.Result instead of AnsibleJob.status.conditions.

As previously mentioned in the prehook and posthook AnsibleJob workflow, when the main subscription
is updated in Git repository, a new prehook and posthook AnsibleJob instance is created. As a result,
one main subscription can link to multiple AnsibleJob instances.

Four fields are defined in subscription.status.ansiblejobs:

lastPrehookJobs: The most recent prehook Ansible jobs

prehookJobsHistory: All the prehook Ansible jobs history

lastPosthookJobs: The most recent posthook Ansible jobs

posthookJobsHistory: All the posthook Ansible jobs history

1.5.3.3. Using Ansible Automation Platform sample YAML files

See the following sample of an AnsibleJob YAML file in a Git prehook and posthook folder:

CHAPTER 1. MANAGING APPLICATIONS

25

1.5.3.4. Launching Workflow

To launch an Ansible Automation Platform Workflow by using the AnsibleJob custom resource, replace
the job_template_name field with the workflow_template_name, which is displayed in the following
example.

1.5.3.5. Using Ansible Automation Platform sample YAML Workflow

See the following sample of a Workflow AnsibleJob YAML file in a Git prehook and Git posthook folder:

See Workflows to learn more about Ansible Workflow.

apiVersion: tower.ansible.com/v1alpha1
kind: AnsibleJob
metadata:
 name: demo-job-001
 namespace: default
spec:
 tower_auth_secret: toweraccess
 job_template_name: Demo Job Template
 extra_vars:
 cost: 6.88
 ghosts: ["inky","pinky","clyde","sue"]
 is_enable: false
 other_variable: foo
 pacman: mrs
 size: 8
 targets_list:
 - aaa
 - bbb
 - ccc
 version: 1.23.45
 job_tags: "provision,install,configuration"
 skip_tags: "configuration,restart"

apiVersion: tower.ansible.com/v1alpha1
kind: AnsibleJob
metadata:
 name: demo-job-001
 namespace: default
spec:
 tower_auth_secret: toweraccess
 workflow_template_name: Demo Workflow Template
 extra_vars:
 cost: 6.88
 ghosts: ["inky","pinky","clyde","sue"]
 is_enable: false
 other_variable: foo
 pacman: mrs
 size: 8
 targets_list:
 - aaa
 - bbb
 - ccc
 version: 1.23.45

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

26

https://docs.ansible.com/ansible-tower/latest/html/userguide/workflows.html

1.6. APPLICATION ADVANCED CONFIGURATION

Within Red Hat Advanced Cluster Management for Kubernetes, applications are composed of multiple
application resources. You can use channel, subscription, and placements to help you deploy, update,
and manage your overall applications.

Both single and multicluster applications use the same Kubernetes specifications, but multicluster
applications involve more automation of the deployment and application management lifecycle.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes
applications are defined in YAML file specification sections. When you need to create or update an
application component resource, you need to create or edit the appropriate section to include the labels
for defining your resource.

View the following application advanced configuration topics:

Subscribing Git resources

Granting subscription admin privilege

Creating an allow and deny list as subscription administrator

Adding reconcile options

Configuring leader election

Configuring application channel and subscription for a secure Git connection

Setting up Ansible Automation Platform tasks

Configuring Helm to watch namespace resources

Configuring package overrides

Channel samples overview

Subscription samples overview

Application samples overview

1.6.1. Subscribing Git resources

By default, when a subscription deploys subscribed applications to target clusters, the applications are
deployed to that subscription namespace, even if the application resources are associated with other
namespaces. A subscription administrator can change default behavior, as described in Granting
subscription admin privilege.

Additionally, if an application resource exists in the cluster and was not created by the subscription, the
subscription cannot apply a new resource on that existing resource. See the following processes to
change default settings as the subscription administrator:

Required access: Cluster administrator

Creating application resources in Git

Subscribing specific Git elements

CHAPTER 1. MANAGING APPLICATIONS

27

Application namespace example

Resource overwrite example

1.6.1.1. Creating application resources in Git

You need to specify the full group and version for apiVersion in resource YAML when you subscribe.
For example, if you subscribe to apiVersion: v1, the subscription controller fails to validate the
subscription and you receive an error: Resource /v1, Kind=ImageStream is not supported.

If the apiVersion is changed to image.openshift.io/v1, as in the following sample, it passes the
validation in the subscription controller and the resource is applied successfully.

Next, see more useful examples of how a subscription administrator can change default behavior.

1.6.1.2. Application namespace example

In this following examples, you are logged in as a subscription administrator.

1.6.1.2.1. Application to different namespaces

Create a subscription to subscribe the sample resource YAML file from a Git repository. The example
file contains subscriptions that are located within the following different namespaces:

Applicable channel types: Git

ConfigMap test-configmap-1 gets created in multins namespace.

ConfigMap test-configmap-2 gets created in default namespace.

ConfigMap test-configmap-3 gets created in the subscription namespace.

apiVersion: `image.openshift.io/v1`
kind: ImageStream
metadata:
 name: default
 namespace: default
spec:
 lookupPolicy:
 local: true
 tags:
 - name: 'latest'
 from:
 kind: DockerImage
 name: 'quay.io/repository/open-cluster-management/multicluster-operators-
subscription:community-latest'

apiVersion: v1
kind: Namespace
metadata:
 name: multins

apiVersion: v1
kind: ConfigMap

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

28

If the subscription was created by other users, all the ConfigMaps get created in the same namespace
as the subscription.

1.6.1.2.2. Application to same namespace

As a subscription administrator, you might want to deploy all application resources into the same
namespace.

You can deploy all application resources into the subscription namespace by Creating an allow and deny
list as subscription administrator.

Add apps.open-cluster-management.io/current-namespace-scoped: true annotation to the
subscription YAML. For example, when a subscription administrator creates the following subscription,
all three ConfigMaps in the previous example are created in subscription-ns namespace.

1.6.1.3. Resource overwrite example

Applicable channel types: Git, ObjectBucket (Object storage in the console)

metadata:
 name: test-configmap-1
 namespace: multins
data:
 path: resource1

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-2
 namespace: default
data:
 path: resource2

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-3
data:
 path: resource3

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: subscription-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: merge
 apps.open-cluster-management.io/current-namespace-scoped: "true"
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

CHAPTER 1. MANAGING APPLICATIONS

29

Note: The resource overwrite option is not applicable to helm charts from the Git repository because
the helm chart resources are managed by Helm.

In this example, the following ConfigMap already exists in the target cluster.

Subscribe the following sample resource YAML file from a Git repository and replace the existing
ConfigMap. See the change in the data specification:

1.6.1.3.1. Default merge option

See the following sample resource YAML file from a Git repository with the default apps.open-cluster-
management.io/reconcile-option: merge annotation. See the following example:

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is merged, as you can see in the following example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
data:
 name: user1
 age: 19

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
data:
 age: 20

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: merge
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

30

When the merge option is used, entries from subscribed resource are either created or updated in the
existing resource. No entry is removed from the existing resource.

Important: If the existing resource you want to overwrite with a subscription is automatically reconciled
by another operator or controller, the resource configuration is updated by both subscription and the
controller or operator. Do not use this method in this case.

1.6.1.3.2. mergeAndOwn option

With mergeAndOwn, entries from subscribed resource are either created or updated in the existing
resource. Log in as a subscription administrator and create a subscription with apps.open-cluster-
management.io/reconcile-option: mergeAndOwn annotation. See the following example:

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is merged, as you can see in the following example:

As previosly mentioned, when the mergeAndOwn option is used, entries from subscribed resource are
either created or updated in the existing resource. No entry is removed from the existing resource. It
also adds the apps.open-cluster-management.io/hosting-subscription annotation to indicate that
the resource is now owned by the subscription. Deleting the subscription deletes the ConfigMap.

1.6.1.3.3. Replace option

You log in as a subscription administrator and create a subscription with apps.open-cluster-
management.io/reconcile-option: replace annotation. See the following example:

data:
 name: user1
 age: 20

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: mergeAndOwn
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/hosting-subscription: sub-ns/subscription-example
data:
 name: user1
 age: 20

CHAPTER 1. MANAGING APPLICATIONS

31

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is replaced by the following:

1.6.1.4. Subscribing specific Git elements

You can subscribe to a specific Git branch, commit, or tag.

1.6.1.4.1. Subscribing to a specific branch

The subscription operator that is included in the multicloud-operators-subscription repository
subscribes to the default branch of a Git repository. If you want to subscribe to a different branch, you
need to specify the branch name annotation in the subscription.

The following example, the YAML file displays how to specify a different branch with apps.open-
cluster-management.io/git-branch: <branch1>:

1.6.1.4.2. Subscribing to a specific commit

The subscription operator that is included in the multicloud-operators-subscription repository
subscribes to the latest commit of specified branch of a Git repository by default. If you want to
subscribe to a specific commit, you need to specify the desired commit annotation with the commit hash
in the subscription.

The following example, the YAML file displays how to specify a different commit with apps.open-

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: replace
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
data:
 age: 20

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-mongodb-subscription
 annotations:
 apps.open-cluster-management.io/git-path: stable/ibm-mongodb-dev
 apps.open-cluster-management.io/git-branch: <branch1>

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

32

The following example, the YAML file displays how to specify a different commit with apps.open-
cluster-management.io/git-desired-commit: <full commit number>:

The git-clone-depth annotation is optional and set to 20 by default, which means the subscription
controller retrieves the previous 20 commit histories from the Git repository. If you specify a much older
git-desired-commit, you need to specify git-clone-depth accordingly for the desired commit.

1.6.1.4.3. Subscribing to a specific tag

The subscription operator that is included in the multicloud-operators-subscription repository
subscribes to the latest commit of specified branch of a Git repository by default. If you want to
subscribe to a specific tag, you need to specify the tag annotation in the subscription.

The following example, the YAML file displays how to specify a different tag with apps.open-cluster-
management.io/git-tag: <v1.0>:

Note: If both Git desired commit and tag annotations are specified, the tag is ignored.

The git-clone-depth annotation is optional and set to 20 by default, which means the subscription
controller retrieves the previous 20 commit history from the Git repository. If you specify much older
git-tag, you need to specify git-clone-depth accordingly for the desired commit of the tag.

1.6.2. Granting subscription administrator privilege

Learn how to grant subscription administrator access. A subscription administrator can change default
behavior. Learn more in the following process:

1. From the console, log in to your Red Hat OpenShift Container Platform cluster.

2. Create one or more users. See Preparing for users for information about creating users. You can
also prepare groups or service accounts.
Users that you create are administrators for the app.open-cluster-
management.io/subscription application. With OpenShift Container Platform, a subscription
administrator can change default behavior. You can group these users to represent a
subscription administrative group, which is demonstrated in later examples.

3. From the terminal, log in to your Red Hat Advanced Cluster Management cluster.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-mongodb-subscription
 annotations:
 apps.open-cluster-management.io/git-path: stable/ibm-mongodb-dev
 apps.open-cluster-management.io/git-desired-commit: <full commit number>
 apps.open-cluster-management.io/git-clone-depth: 100

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-mongodb-subscription
 annotations:
 apps.open-cluster-management.io/git-path: stable/ibm-mongodb-dev
 apps.open-cluster-management.io/git-tag: <v1.0>
 apps.open-cluster-management.io/git-clone-depth: 100

CHAPTER 1. MANAGING APPLICATIONS

33

https://docs.openshift.com/container-platform/4.13/post_installation_configuration/preparing-for-users.html

4. If open-cluster-management:subscription-admin ClusterRoleBinding does not exist, you
need to create it. See the following example:

5. Add the following subjects into open-cluster-management:subscription-admin
ClusterRoleBinding with the following command:

oc edit clusterrolebinding open-cluster-management:subscription-admin

Note: Initially, open-cluster-management:subscription-admin ClusterRoleBinding has no
subject.

Your subjects might display as the following example:

Service Account can be used as a user subject.

1.6.3. Creating an allow and deny list as subscription administrator

As a subscription administrator, you can create an application from a Git repository application
subscription that contains an allow list to allow deployment of only specified Kubernetes kind
resources. You can also create a deny list in the application subscription to deny deployment of specific
Kubernetes kind resources.

By default, policy.open-cluster-management.io/v1 resources are not deployed by an application
subscription. To avoid this default behavior, application subscription needs deployed by a subscription
administrator.

See the following example of allow and deny specifications:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: open-cluster-management:subscription-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: open-cluster-management:subscription-admin

subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: example-name
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: example-group-name
- kind: ServiceAccount
 name: my-service-account
 namespace: my-service-account-namespace
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: 'system:serviceaccount:my-service-account-namespace:my-service-account'

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

34

The following application subscription YAML specifies that when the application is deployed from the
myapplication directory from the source repository, it deploys only v1/Deployment resources, even if
there are other resources in the source repository:

This example application subscription YAML specifies deployments of all valid resources except
v1/Service and v1/ConfigMap resources. Instead of listing individual resource kinds within an API group,
you can add "*" to allow or deny all resource kinds in the API Group.

1.6.4. Adding reconcile options

You can use the apps.open-cluster-management.io/reconcile-option annotation in individual
resources to override the subscription-level reconcile option.

For example, if you add apps.open-cluster-management.io/reconcile-option: replace annotation in
the subscription and add apps.open-cluster-management.io/reconcile-option: merge annotation in a

 annotations:
 apps.open-cluster-management.io/github-path: sub2
 name: demo-subscription
 namespace: demo-ns
spec:
 channel: demo-ns/somechannel
 allow:
 - apiVersion: policy.open-cluster-management.io/v1
 kinds:
 - Policy
 - apiVersion: v1
 kinds:
 - Deployment
 deny:
 - apiVersion: v1
 kinds:
 - Service
 - ConfigMap
 placement:
 local: true

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 annotations:
 apps.open-cluster-management.io/github-path: myapplication
 name: demo-subscription
 namespace: demo-ns
spec:
 channel: demo-ns/somechannel
 deny:
 - apiVersion: v1
 kinds:
 - Service
 - ConfigMap
 placement:
 placementRef:
 name: demo-placement
 kind: Placement

CHAPTER 1. MANAGING APPLICATIONS

35

resource YAML in the subscribed Git repository, the resource is merged on the target cluster while
other resources are replaced.

1.6.4.1. Reconcile frequency Git channel

You can select reconcile frequency options: high, medium, low, and off in channel configuration to
avoid unnecessary resource reconciliations and therefore prevent overload on subscription operator.

Required access: Administrator and cluster administrator

See the following definitions of the settings:attribute:<value>:

Off: The deployed resources are not automatically reconciled. A change in the Subscription
custom resource initiates a reconciliation. You can add or update a label or annotation.

Low: The deployed resources are automatically reconciled every hour, even if there is no
change in the source Git repository.

Medium: This is the default setting. The subscription operator compares the currently deployed
commit ID to the latest commit ID of the source repository every 3 minutes, and applies
changes to target clusters. Every 15 minutes, all resources are reapplied from the source Git
repository to the target clusters, even if there is no change in the repository.

High: The deployed resources are automatically reconciled every two minutes, even if there is
no change in the source Git repository.

You can set this by using the apps.open-cluster-management.io/reconcile-rate annotation in the
channel custom resource that is referenced by subscription.

See the following name: git-channel example:

In the previous example, all subscriptions that use sample/git-channel are assigned low reconciliation
frequency.

a. When the subscription reconcile rate is set to low, it can take up to one hour for the subscribed

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: git-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: <value from the list>
spec:
 type: GitHub
 pathname: <Git URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-subscription
 annotations:
 apps.open-cluster-management.io/git-path: <application1>
 apps.open-cluster-management.io/git-branch: <branch1>
spec:
 channel: sample/git-channel
 placement:
 local: true

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

36

a. When the subscription reconcile rate is set to low, it can take up to one hour for the subscribed
application resources to reconcile. On the card on the single application view, click Sync to
reconcile manually. If set to off, it never reconciles.

Regardless of the reconcile-rate setting in the channel, a subscription can turn the auto-reconciliation
off by specifying apps.open-cluster-management.io/reconcile-rate: off annotation in the
Subscription custom resource.

See the following git-channel example:

See that the resources deployed by git-subscription are never automatically reconciled even if the
reconcile-rate is set to high in the channel.

1.6.4.2. Reconcile frequency Helm channel

Every 15 minutes, the subscription operator compares currently deployed hash of your Helm chart to the
hash from the source repository. Changes are applied to target clusters. The frequency of resource
reconciliation impacts the performance of other application deployments and updates.

For example, if there are hundreds of application subscriptions and you want to reconcile all
subscriptions more frequently, the response time of reconciliation is slower.

Depending on the Kubernetes resources of the application, appropriate reconciliation frequency can
improve performance.

Off: The deployed resources are not automatically reconciled. A change in the Subscription
custom resource initiates a reconciliation. You can add or update a label or annotation.

Low: The subscription operator compares currently deployed hash to the hash of the source
repository every hour and apply changes to target clusters when there is change.

Medium: This is the default setting. The subscription operator compares currently deployed

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: git-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: high
spec:
 type: GitHub
 pathname: <Git URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-subscription
 annotations:
 apps.open-cluster-management.io/git-path: application1
 apps.open-cluster-management.io/git-branch: branch1
 apps.open-cluster-management.io/reconcile-rate: "off"
spec:
 channel: sample/git-channel
 placement:
 local: true

CHAPTER 1. MANAGING APPLICATIONS

37

Medium: This is the default setting. The subscription operator compares currently deployed
hash to the hash of the source repository every 15 minutes and apply changes to target clusters
when there is change.

High: The subscription operator compares currently deployed hash to the hash of the source
repository every 2 minutes and apply changes to target clusters when there is change.

You can set this using apps.open-cluster-management.io/reconcile-rate annotation in the Channel
custom resource that is referenced by subscription. See the following helm-channel example:

See the following helm-channel example:

In this example, all subscriptions that uses sample/helm-channel are assigned a low reconciliation
frequency.

Regardless of the reconcile-rate setting in the channel, a subscription can turn the auto-reconciliation
off by specifying apps.open-cluster-management.io/reconcile-rate: off annotation in the
Subscription custom resource, as displayed in the following example:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: helm-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: low
spec:
 type: HelmRepo
 pathname: <Helm repo URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: helm-subscription
spec:
 channel: sample/helm-channel
 name: nginx-ingress
 packageOverrides:
 - packageName: nginx-ingress
 packageAlias: nginx-ingress-simple
 packageOverrides:
 - path: spec
 value:
 defaultBackend:
 replicaCount: 3
 placement:
 local: true

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: helm-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: high
spec:

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

38

In this example, the resources deployed by helm-subscription are never automatically reconciled, even
if the reconcile-rate is set to high in the channel.

1.6.5. Configuring leader election

With LeaderElection, you can change how the controllers make requests to choose a new leader in case
of a failure, which ensures only one leader instance handles the reconciliation at a time. You can increase
or decrease the amount of time a controller takes to acquire LeaderElection. With decreased time, a
new leader is chosen quicker during a failure.

Note: Changes to the default values for the controllers might impact system performance during that
task. You can reduce your etcd load by changing the default values for leaseDuration, renewDeadline,
or retryPeriod of controllers.

Required access: Cluster administrator

1.6.5.1. Editing the controller flag

To configure LeaderElection, you change the following default values:

leader-election-lease-duration: 137 seconds

renew-deadline: 107 seconds

retry-period: 26 seconds

See the following steps to change the multicluster-operators-application, multicluster-operators-
channel, multicluster-operators-standalone-subscription, or multicluster-operators-hub-
subscription controllers:

1. Run the following command to pause your multiclusterhub:

 type: HelmRepo
 pathname: <Helm repo URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: helm-subscription
 annotations:
 apps.open-cluster-management.io/reconcile-rate: "off"
spec:
 channel: sample/helm-channel
 name: nginx-ingress
 packageOverrides:
 - packageName: nginx-ingress
 packageAlias: nginx-ingress-simple
 packageOverrides:
 - path: spec
 value:
 defaultBackend:
 replicaCount: 3
 placement:
 local: true

CHAPTER 1. MANAGING APPLICATIONS

39

oc annotate mch -n open-cluster-management multiclusterhub mch-pause=true --
overwrite=true

2. Edit the deployment file by adding the controller name to the oc edit command. See the
following example command:

oc edit deployment -n open-cluster-management multicluster-operators-hub-subscription

3. Locate the controller command flags by searching for - command.

4. From the containers section in the controller, insert a - command flag. For instance, insert
RetryPeriod.

5. Save the file. The controller automatically restarts to apply the flag.

6. Repeat this procedure for each controller that you want to change.

7. Run the following command to resume your multiclusterhub:

oc annotate mch -n open-cluster-management multiclusterhub mch-pause=false --overwrite=true

See the following example output of a successful edit to the -command, where the retryPeriod flag
doubles the previously mentioned default time to 52, which is allotted to retry acquiring leaderElection:

command:
- /usr/local/bin/multicluster-operators-subscription
- --sync-interval=60
- --retry-period=52

1.6.6. Configuring application channel and subscription for a secure Git connection

Git channels and subscriptions connect to the specified Git repository through HTTPS or SSH. The
following application channel configurations can be used for secure Git connections:

Connecting to a private repo with user and access token

Making an insecure HTTPS connection to a Git server

Using custom CA certificates for a secure HTTPS connection

Making an SSH connection to a Git server

Updating certificates and SSH keys

1.6.6.1. Connecting to a private repo with user and access token

You can connect to a Git server using channel and subscription. See the following procedures for
connecting to a private repository with a user and access token:

1. Create a secret in the same namespace as the channel. Set the user field to a Git user ID and
the accessToken field to a Git personal access token. The values should be base64 encoded.
See the following sample with user and accessToken populated:

apiVersion: v1

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

40

2. Configure the channel with a secret. See the following sample with the secretRef populated:

1.6.6.2. Making an insecure HTTPS connection to a Git server

You can use the following connection method in a development environment to connect to a privately-
hosted Git server with SSL certificates that are signed by custom or self-signed certificate authority.
However, this procedure is not recommended for production:

Specify insecureSkipVerify: true in the channel specification. Otherwise, the connection to the Git
server fails with an error similar to the following:

x509: certificate is valid for localhost.com, not localhost

See the following sample with the channel specification addition for this method:

1.6.6.3. Using custom CA certificates for a secure HTTPS connection

You can use this connection method to securely connect to a privately-hosted Git server with SSL
certificates that are signed by custom or self-signed certificate authority.

1. Create a ConfigMap to contain the Git server root and intermediate CA certificates in PEM
format. The ConfigMap must be in the same namespace as the channel CR. The field name
must be caCerts and use |. From the following sample, notice that caCerts can contain multiple
certificates, such as root and intermediate CAs:

kind: Secret
metadata:
 name: my-git-secret
 namespace: channel-ns
data:
 user: dXNlcgo=
 accessToken: cGFzc3dvcmQK

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: sample-channel
 namespace: channel-ns
spec:
 type: Git
 pathname: <Git HTTPS URL>
 secretRef:
 name: my-git-secret

apiVersion: apps.open-cluster-management.io/v1
ind: Channel
metadata:
labels:
 name: sample-channel
 namespace: sample
spec:
 type: GitHub
 pathname: <Git HTTPS URL>
 insecureSkipVerify: true

CHAPTER 1. MANAGING APPLICATIONS

41

apiVersion: v1
kind: ConfigMap
metadata:
 name: git-ca
 namespace: channel-ns
data:
 caCerts: |
 # Git server root CA

 -----BEGIN CERTIFICATE-----
 MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFADCBszELMAkGA1UEBhMC

Q0ExCzAJBgNVBAgMAk9OMRAwDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBAsMA0FDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
 LnJqdW5nLWh1YjEzLmRldjA2LnJlZC1jaGVzdGVyZmllbGQuY29tMR8wHQYJKoZI
 hvcNAQkBFhByb2tlakByZWRoYXQuY29tMB4XDTIwMTIwMzE4NTMxMloXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAkNBMQswCQYDVQQIDAJPTjEQMA4GA1UEBwwH

VG9yb250bzEPMA0GA1UECgwGUmVkSGF0MQwwCgYDVQQLDANBQ00xRTBDBgNVBA
MM
 PGdvZ3Mtc3ZjLWRlZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNi5yZWQtY2hl
 c3RlcmZpZWxkLmNvbTEfMB0GCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCC
 AiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDAo6S3ZJ0Ic3
 U9p/NLodnoTIC+cn0q8qNCAjf13zbGB3bfN9Zxl8Q5fv+wYwHrUOReCp6U/InyQy
 6OS3gj738F635inz1KdyhKtlWW2p9Ye9DUtx1IlfHkDVdXtynjHQbsFNIdRHcpQP
 upM5pwPC3BZXqvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8lU
 xn2y8qhm7MiIUpXuwWhSYgCrEVqmTcB70Pc2YRZdSFolMN9Et70MjQN0TXjoktH8
 PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbqseqUr42+v+Qp2bBj1Sjw
 +SEZfHTvSv8AqX0T6eo6njr578+DgYlwsS1A1zcAdzp8qmDGqvJDzwcnQVFmvaoM
 gGHCdJihfy3vDhxuZRDse0V4Pz6tl6iklM+tHrJL/bdL0NdfJXNCqn2nKrM51fpw
 diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/lBawgxGUslTboFH77a+Kwu4Oug9ibtm5z
 ISs/JY4Kiy4C2XJOltOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
 aD5ijFUopjQEKFrYh3O93DB/URIQ+wHVa6+Kvu3uqE0cg6pQsLpbFVQ/I8xHvt9L
 kYy6z6V/nj9ZYKQbq/kPAgMBAAEwDQYJKoZIhvcNAQELBQADggIBAKZuc+lewYAv
 jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
 g2E8CwIO9ZjZ6l+pHCuqmNYoX1wdjaaDXlpwk8hGTSgy1LsOoYrC5ZysCi9Jilu9
 PQVGs/vehQRqLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurz0qNbT+UySjsD63
 9yJdCeQbeKAR9SC4hG13EbM/RZh0lgFupkmGts7QYULzT+oA0cCJpPLQl6m6qGyE
 kh9aBB7FLykK1TeXVuANlNU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
 NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjqAWo9htoBhOyW3mm783A7WcOiBMQv0
 2UGZxMsRjlP6UqB08LsV5ZBAefElR344sokJR1de/Sx2J9J/am7yOoqbtKpQotIA
 XSUkATuuQw4ctyZLDkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YlD6F4Wh8Mc
 20Qu5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAIqFtyum6/8ZN9nZ9K
 FSEKdlu+xeb6Y6xYt0mJJWF6mCRi4i7IL74EU/VNXwFmfP6IadliUOST3w5t92cB
 M26t73UCExXMXTCQvnp0ki84PeR1kRk4
 -----END CERTIFICATE-----

 # Git server intermediate CA 1

 -----BEGIN CERTIFICATE-----
 MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFADCBszELMAkGA1UEBhMC

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

42

Q0ExCzAJBgNVBAgMAk9OMRAwDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBAsMA0FDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
 LnJqdW5nLWh1YjEzLmRldjA2LnJlZC1jaGVzdGVyZmllbGQuY29tMR8wHQYJKoZI
 hvcNAQkBFhByb2tlakByZWRoYXQuY29tMB4XDTIwMTIwMzE4NTMxMloXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAkNBMQswCQYDVQQIDAJPTjEQMA4GA1UEBwwH

VG9yb250bzEPMA0GA1UECgwGUmVkSGF0MQwwCgYDVQQLDANBQ00xRTBDBgNVBA
MM
 PGdvZ3Mtc3ZjLWRlZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNi5yZWQtY2hl
 c3RlcmZpZWxkLmNvbTEfMB0GCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCC
 AiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDAo6S3ZJ0Ic3
 U9p/NLodnoTIC+cn0q8qNCAjf13zbGB3bfN9Zxl8Q5fv+wYwHrUOReCp6U/InyQy
 6OS3gj738F635inz1KdyhKtlWW2p9Ye9DUtx1IlfHkDVdXtynjHQbsFNIdRHcpQP
 upM5pwPC3BZXqvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8lU
 xn2y8qhm7MiIUpXuwWhSYgCrEVqmTcB70Pc2YRZdSFolMN9Et70MjQN0TXjoktH8
 PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbqseqUr42+v+Qp2bBj1Sjw
 +SEZfHTvSv8AqX0T6eo6njr578+DgYlwsS1A1zcAdzp8qmDGqvJDzwcnQVFmvaoM
 gGHCdJihfy3vDhxuZRDse0V4Pz6tl6iklM+tHrJL/bdL0NdfJXNCqn2nKrM51fpw
 diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/lBawgxGUslTboFH77a+Kwu4Oug9ibtm5z
 ISs/JY4Kiy4C2XJOltOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
 aD5ijFUopjQEKFrYh3O93DB/URIQ+wHVa6+Kvu3uqE0cg6pQsLpbFVQ/I8xHvt9L
 kYy6z6V/nj9ZYKQbq/kPAgMBAAEwDQYJKoZIhvcNAQELBQADggIBAKZuc+lewYAv
 jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
 g2E8CwIO9ZjZ6l+pHCuqmNYoX1wdjaaDXlpwk8hGTSgy1LsOoYrC5ZysCi9Jilu9
 PQVGs/vehQRqLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurz0qNbT+UySjsD63
 9yJdCeQbeKAR9SC4hG13EbM/RZh0lgFupkmGts7QYULzT+oA0cCJpPLQl6m6qGyE
 kh9aBB7FLykK1TeXVuANlNU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
 NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjqAWo9htoBhOyW3mm783A7WcOiBMQv0
 2UGZxMsRjlP6UqB08LsV5ZBAefElR344sokJR1de/Sx2J9J/am7yOoqbtKpQotIA
 XSUkATuuQw4ctyZLDkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YlD6F4Wh8Mc
 20Qu5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAIqFtyum6/8ZN9nZ9K
 FSEKdlu+xeb6Y6xYt0mJJWF6mCRi4i7IL74EU/VNXwFmfP6IadliUOST3w5t92cB
 M26t73UCExXMXTCQvnp0ki84PeR1kRk4
 -----END CERTIFICATE-----

 # Git server intermediate CA 2

 -----BEGIN CERTIFICATE-----
 MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFADCBszELMAkGA1UEBhMC

Q0ExCzAJBgNVBAgMAk9OMRAwDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBAsMA0FDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
 LnJqdW5nLWh1YjEzLmRldjA2LnJlZC1jaGVzdGVyZmllbGQuY29tMR8wHQYJKoZI
 hvcNAQkBFhByb2tlakByZWRoYXQuY29tMB4XDTIwMTIwMzE4NTMxMloXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAkNBMQswCQYDVQQIDAJPTjEQMA4GA1UEBwwH

VG9yb250bzEPMA0GA1UECgwGUmVkSGF0MQwwCgYDVQQLDANBQ00xRTBDBgNVBA
MM

CHAPTER 1. MANAGING APPLICATIONS

43

 PGdvZ3Mtc3ZjLWRlZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNi5yZWQtY2hl
 c3RlcmZpZWxkLmNvbTEfMB0GCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCC
 AiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDAo6S3ZJ0Ic3
 U9p/NLodnoTIC+cn0q8qNCAjf13zbGB3bfN9Zxl8Q5fv+wYwHrUOReCp6U/InyQy
 6OS3gj738F635inz1KdyhKtlWW2p9Ye9DUtx1IlfHkDVdXtynjHQbsFNIdRHcpQP
 upM5pwPC3BZXqvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8lU
 xn2y8qhm7MiIUpXuwWhSYgCrEVqmTcB70Pc2YRZdSFolMN9Et70MjQN0TXjoktH8
 PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbqseqUr42+v+Qp2bBj1Sjw
 +SEZfHTvSv8AqX0T6eo6njr578+DgYlwsS1A1zcAdzp8qmDGqvJDzwcnQVFmvaoM
 gGHCdJihfy3vDhxuZRDse0V4Pz6tl6iklM+tHrJL/bdL0NdfJXNCqn2nKrM51fpw
 diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/lBawgxGUslTboFH77a+Kwu4Oug9ibtm5z
 ISs/JY4Kiy4C2XJOltOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
 aD5ijFUopjQEKFrYh3O93DB/URIQ+wHVa6+Kvu3uqE0cg6pQsLpbFVQ/I8xHvt9L
 kYy6z6V/nj9ZYKQbq/kPAgMBAAEwDQYJKoZIhvcNAQELBQADggIBAKZuc+lewYAv
 jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
 g2E8CwIO9ZjZ6l+pHCuqmNYoX1wdjaaDXlpwk8hGTSgy1LsOoYrC5ZysCi9Jilu9
 PQVGs/vehQRqLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurz0qNbT+UySjsD63
 9yJdCeQbeKAR9SC4hG13EbM/RZh0lgFupkmGts7QYULzT+oA0cCJpPLQl6m6qGyE
 kh9aBB7FLykK1TeXVuANlNU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
 NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjqAWo9htoBhOyW3mm783A7WcOiBMQv0
 2UGZxMsRjlP6UqB08LsV5ZBAefElR344sokJR1de/Sx2J9J/am7yOoqbtKpQotIA
 XSUkATuuQw4ctyZLDkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YlD6F4Wh8Mc
 20Qu5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAIqFtyum6/8ZN9nZ9K
 FSEKdlu+xeb6Y6xYt0mJJWF6mCRi4i7IL74EU/VNXwFmfP6IadliUOST3w5t92cB
 M26t73UCExXMXTCQvnp0ki84PeR1kRk4
 -----END CERTIFICATE-----

2. Configure the channel with this ConfigMap. See the following sample with the git-ca name from
the previous step:

1.6.6.4. Making an SSH connection to a Git server

1. Create a secret to contain your private SSH key in sshKey field in data. If the key is passphrase-
protected, specify the password in passphrase field. This secret must be in the same
namespace as the channel CR. Create this secret using a oc command to create a secret generic
git-ssh-key --from-file=sshKey=./.ssh/id_rsa, then add base64 encoded passphrase. See the
following sample:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: my-channel
 namespace: channel-ns
spec:
 configMapRef:
 name: git-ca
 pathname: <Git HTTPS URL>
 type: Git

apiVersion: v1
kind: Secret
metadata:
 name: git-ssh-key
 namespace: channel-ns
data:

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

44

2. Configure the channel with the secret. See the following sample:

The subscription controller does an ssh-keyscan with the provided Git hostname to build the
known_hosts list to prevent an Man-in-the-middle (MITM) attack in the SSH connection. If you
want to skip this and make insecure connection, use insecureSkipVerify: true in the channel
configuration. This is not best practice, especially in production environments.

1.6.6.5. Updating certificates and SSH keys

If a Git channel connection configuration requires an update, such as CA certificates, credentials, or SSH
key, you need to create a new secret and ConfigMap in the same namespace and update the channel to
reference that new secret and ConfigMap. For more information, see Using custom CA certificates for a
secure HTTPS connection.

1.6.7. Configuring Helm to watch namespace resources

By default, when a subscription deploys subscribed Helm resources to target clusters, the application
resources are watched. You can configure the Helm channel type to watch namespace-scoped

 sshKey:
LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnphQzFyWlhrdG
RqRUFBQUFBQ21GbGN6STFOaTFqZEhJQUFBQUdZbU55ZVhCMEFBQUFHQUFBQUJD
K3YySHhWSIwCm8zejh1endzV3NWODMvSFVkOEtGeVBmWk5OeE5TQUgcFA3Yk1yR2tlRF
FPd3J6MGIKOUlRM0tKVXQzWEE0Zmd6NVlrVFVhcTJsZWxxVk1HcXI2WHF2UVJ5Mkc0NkRl
RVlYUGpabVZMcGVuaGtRYU5HYmpaMmZOdQpWUGpiOVhZRmd4bTNnYUpJU3BNeTFL
WjQ5MzJvOFByaDZEdzRYVUF1a28wZGdBaDdndVpPaE53b0pVYnNmYlZRc0xMS1RrCnQw
blZ1anRvd2NEVGx4TlpIUjcwbGVUSHdGQTYwekM0elpMNkRPc3RMYjV2LzZhMjFHRlMwVm
VXQ3YvMlpMOE1sbjVUZWwKSytoUWtxRnJBL3BUc1ozVXNjSG1GUi9PV25FPQotLS0tLUVO
RCBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0K
 passphrase: cGFzc3cwcmQK
type: Opaque

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: my-channel
 namespace: channel-ns
spec:
 secretRef:
 name: git-ssh-key
 pathname: <Git SSH URL>
 type: Git

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: my-channel
 namespace: channel-ns
spec:
 secretRef:
 name: git-ssh-key
 pathname: <Git SSH URL>
 type: Git
 insecureSkipVerify: true

CHAPTER 1. MANAGING APPLICATIONS

45

resources. When enabled, manual changes to those watched namespace-scoped resources are
reverted.

1.6.7.1. Configuring

Required access: Cluster administrator

To configure the Helm application to watch namespace scoped resources, set the value for the
watchHelmNamespaceScopedResources field in your subscription definition to true. See the
following sample.

1.6.8. Scheduling a deployment

If you need to deploy new or change Helm charts or other resources during only specific times, you can
define subscriptions for those resources to begin deployments during only those specific times.
Alternatively, you can restrict deployments.

For instance, you can define time windows between 10:00 PM and 11:00 PM each Friday to serve as
scheduled maintenance windows for applying patches or other application updates to your clusters.

You can restrict or block deployments from beginning during specific time windows, such as to avoid
unexpected deployments during peak business hours. For instance, to avoid peak hours you can define a
time window for a subscription to avoid beginning deployments between 8:00 AM and 8:00 PM.

By defining time windows for your subscriptions, you can coordinate updates for all of your applications
and clusters. For instance, you can define subscriptions to deploy only new application resources
between 6:01 PM and 11:59 PM and define other subscriptions to deploy only updated versions of
existing resources between 12:00 AM to 7:59 AM.

When a time window is defined for a subscription, the time ranges when a subscription is active changes.
As part of defining a time window, you can define the subscription to be active or blocked during that
window.

The deployment of new or changed resources begins only when the subscription is active. Regardless of
whether a subscription is active or blocked, the subscription continues to monitor for any new or
changed resource. The active and blocked setting affects only deployments.

When a new or changed resource is detected, the time window definition determines the next action for
the subscription.

For subscriptions to HelmRepo, ObjectBucket, and Git type channels:

If the resource is detected during the time range when the subscription is active, the resource

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
spec:
 watchHelmNamespaceScopedResources: true
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

46

If the resource is detected during the time range when the subscription is active, the resource
deployment begins.

If the resource is detected outside the time range when the subscription is blocked from
running deployments, the request to deploy the resource is cached. When the next time range
that the subscription is active occurs, the cached requests are applied and any related
deployments begin.

When a time window is blocked, all resources that were previously deployed by the application
subscription remain. Any new update is blocked until the time window is active again.

End user may wrongly think when the app sub time window is blocked, all deployed resources will be
removed. And they will be back when the app sub time window is active again.

If a deployment begins during a defined time window and is running when the defined end of the time
window elapses, the deployment continues to run to completion.

To define a time window for a subscription, you need to add the required fields and values to the
subscription resource definition YAML.

As part of defining a time window, you can define the days and hours for the time window.

You can also define the time window type, which determines whether the time window when
deployments can begin occurs during, or outside, the defined time frame.

If the time window type is active, deployments can begin only during the defined time frame.
You can use this setting when you want deployments to occur within only specific maintenance
windows.

If the time window type is block, deployments cannot begin during the defined time frame, but
can begin at any other time. You can use this setting when you have critical updates that are
required, but still need to avoid deployments during specific time ranges. For instance, you can
use this type to define a time window to allow security-related updates to be applied at any time
except between 10:00 AM and 2:00 PM.

You can define multiple time windows for a subscription, such as to define a time window every
Monday and Wednesday.

1.6.9. Configuring package overrides

Configure package overrides for a subscription override value for the Helm chart or Kubernetes resource
that is subscribed to by the subscription.

To configure a package override, specify the field within the Kubernetes resource spec to override as
the value for the path field. Specify the replacement value as the value for the value field.

For example, if you need to override the values field within the spec for a Helm release for a subscribed
Helm chart, you need to set the value for the path field in your subscription definition to spec.

The contents for the value field are used to override the values within the spec field of the Helm

packageOverrides:
- packageName: nginx-ingress
 packageOverrides:
 - path: spec
 value: my-override-values 1

CHAPTER 1. MANAGING APPLICATIONS

47

1 The contents for the value field are used to override the values within the spec field of the Helm
spec.

For a Helm release, override values for the spec field are merged into the Helm release
values.yaml file to override the existing values. This file is used to retrieve the
configurable variables for the Helm release.

If you need to override the release name for a Helm release, include the packageOverride
section within your definition. Define the packageAlias for the Helm release by including
the following fields:

packageName to identify the Helm chart.

packageAlias to indicate that you are overriding the release name.

By default, if no Helm release name is specified, the Helm chart name is used to identify
the release. In some cases, such as when there are multiple releases subscribed to the same
chart, conflicts can occur. The release name must be unique among the subscriptions
within a namespace. If the release name for a subscription that you are creating is not
unique, an error occurs. You must set a different release name for your subscription by
defining a packageOverride. If you want to change the name within an existing
subscription, you must first delete that subscription and then recreate the subscription with
the preferred release name.

1.6.10. Channel samples overview

View samples and YAML definitions that you can use to build your files. Channels (channel.apps.open-
cluster-management.io) provide you with improved continuous integration and continuous delivery
capabilities for creating and managing your Red Hat Advanced Cluster Management for Kubernetes
applications.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

oc apply -f filename.yaml

c. Verify that your application resource is created by running the following command:

oc get application.app

Channel YAML structure

Channel YAML table

Object storage bucket (ObjectBucket) channel

Helm repository (HelmRepo) channel

packageOverrides:
- packageName: nginx-ingress
 packageAlias: my-helm-release-name

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

48

Git (Git) repository channel

1.6.10.1. Channel YAML structure

For application samples that you can deploy, see the stolostron repository.

The following YAML structures show the required fields for a channel and some of the common optional
fields. Your YAML structure needs to include some required fields and values. Depending on your
application management requirements, you might need to include other optional fields and values. You
can compose your own YAML content with any tool and in the product console.

1.6.10.2. Channel YAML table

Field Optional or required Description

apiVersion Required Set the value to apps.open-
cluster-management.io/v1.

kind Required Set the value to Channel to
indicate that the resource is a
channel.

metadata.name Required The name of the channel.

metadata.namespace Required The namespace for the channel;
Each channel needs a unique
namespace, except the Git
channel.

spec.sourceNamespaces Optional Identifies the namespace that the
channel controller monitors for
new or updated deployables to
retrieve and promote to the
channel.

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name:
 namespace: # Each channel needs a unique namespace, except Git channel.
spec:
 sourceNamespaces:
 type:
 pathname:
 secretRef:
 name:
 gates:
 annotations:
 labels:

CHAPTER 1. MANAGING APPLICATIONS

49

https://github.com/stolostron/application-samples

spec.type Required The channel type. The supported
types are: HelmRepo, Git, and
ObjectBucket (Object storage
in the console)

spec.pathname Required for HelmRepo, Git,
ObjectBucket channels

For a HelmRepo channel, set the
value to be the URL for the Helm
repository. For an ObjectBucket
channel, set the value to be the
URL for the Object storage. For a
Git channel, set the value to be
the HTTPS URL for the Git
repository.

spec.secretRef.name Optional Identifies a Kubernetes Secret
resource to use for
authentication, such as for
accessing a repository or chart.
You can use a secret for
authentication with only
HelmRepo, ObjectBucket, and
Git type channels.

spec.gates Optional Defines requirements for
promoting a deployable within the
channel. If no requirements are
set, any deployable that is added
to the channel namespace or
source is promoted to the
channel. The gates value is only
for ObjectBucket channel types
and does not apply to HelmRepo
and Git channel types, .

spec.gates.annotations Optional The annotations for the channel.
Deployables must have matching
annotations to be included in the
channel.

metadata.labels Optional The labels for the channel.

spec.insecureSkipVerify Optional Default value is false, if set true,
the channel connection is built by
skipping the authentication

Field Optional or required Description

The definition structure for a channel can resemble the following YAML content:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

50

1.6.10.3. Object storage bucket (ObjectBucket) channel

The following example channel definition abstracts an Object storage bucket as a channel:

1.6.10.4. Helm repository (HelmRepo) channel

The following example channel definition abstracts a Helm repository as a channel:

Deprecation notice: For 2.10, specifying insecureSkipVerify: "true" in channel ConfigMap reference
to skip Helm repo SSL certificate is deprecated. See the replacement in the following current sample,
with spec.insecureSkipVerify: true that is used in the channel instead:

The following channel definition shows another example of a Helm repository channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release {{

metadata:
 name: predev-ch
 namespace: ns-ch
 labels:
 app: nginx-app-details
spec:
 type: HelmRepo
 pathname: https://kubernetes-charts.storage.googleapis.com/

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: dev
 namespace: ch-obj
spec:
 type: ObjectBucket
 pathname: [http://9.28.236.243:xxxx/dev] # URL is appended with the valid bucket name, which
matches the channel name.
 secretRef:
 name: miniosecret
 gates:
 annotations:
 dev-ready: true

apiVersion: v1
kind: Namespace
metadata:
 name: hub-repo

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: Helm
 namespace: hub-repo
spec:
 pathname: [https://9.21.107.150:8443/helm-repo/charts] # URL points to a valid chart URL.
 insecureSkipVerify: true
 type: HelmRepo

CHAPTER 1. MANAGING APPLICATIONS

51

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release {{
.Release.Name }} for the application topology to display properly.

1.6.10.5. Git (Git) repository channel

The following example channel definition displays an example of a channel for the Git Repository. In the
following example, secretRef refers to the user identity that is used to access the Git repo that is
specified in the pathname. If you have a public repo, you do not need the secretRef label and value:

1.6.11. Subscription samples overview

View samples and YAML definitions that you can use to build your files. As with channels, subscriptions
(subscription.apps.open-cluster-management.io) provide you with improved continuous integration
and continuous delivery capabilities for application management.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an api server. Replace filename with the name
of your file:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: predev-ch
 namespace: ns-ch
 labels:
 app: nginx-app-details
spec:
 type: HelmRepo
 pathname: https://kubernetes-charts.storage.googleapis.com/

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: hive-cluster-gitrepo
 namespace: gitops-cluster-lifecycle
spec:
 type: Git
 pathname: https://github.com/open-cluster-management/gitops-clusters.git
 secretRef:
 name: github-gitops-clusters

apiVersion: v1
kind: Secret
metadata:
 name: github-gitops-clusters
 namespace: gitops-cluster-lifecycle
data:
 user: dXNlcgo= # Value of user and accessToken is Base 64 coded.
 accessToken: cGFzc3dvcmQ

oc apply -f filename.yaml

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

52

c. Verify that your application resource is created by running the following command:

Subscription YAML structure

Subscription YAML table

Subscription file samples

Subscription time window example

Subscription with overrides example

Helm repository subscription example

Git repository subscription example

1.6.11.1. Subscription YAML structure

The following YAML structure shows the required fields for a subscription and some of the common
optional fields. Your YAML structure needs to include certain required fields and values.

Depending on your application management requirements, you might need to include other optional
fields and values. You can compose your own YAML content with any tool:

oc get application.app

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name:
 namespace:
 labels:
spec:
 sourceNamespace:
 source:
 channel:
 name:
 packageFilter:
 version:
 labelSelector:
 matchLabels:
 package:
 component:
 annotations:
 packageOverrides:
 - packageName:
 packageAlias:
 - path:
 value:
 placement:
 local:
 clusters:
 name:
 clusterSelector:
 placementRef:
 name:

CHAPTER 1. MANAGING APPLICATIONS

53

1.6.11.2. Subscription YAML table

Field Required or Optional Description

apiVersion Required Set the value to apps.open-
cluster-management.io/v1.

kind Required Set the value to Subscription to
indicate that the resource is a
subscription.

metadata.name Required The name for identifying the
subscription.

metadata.namespace Required The namespace resource to use
for the subscription.

metadata.labels Optional The labels for the subscription.

spec.channel Optional The namespace name
("Namespace/Name") that
defines the channel for the
subscription. Define either the
channel, or the source, or the
sourceNamespace field. In
general, use the channel field to
point to the channel instead of
using the source or
sourceNamespace fields. If
more than one field is defined, the
first field that is defined is used.

spec.sourceNamespace Optional The source namespace where
deployables are stored on the hub
cluster. Use this field only for
namespace channels. Define
either the channel, or the
source, or the
sourceNamespace field. In
general, use the channel field to
point to the channel instead of
using the source or
sourceNamespace fields.

 kind: Placement
 overrides:
 clusterName:
 clusterOverrides:
 path:
 value:

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

54

spec.source Optional The path name ("URL") to the
Helm repository where
deployables are stored. Use this
field for only Helm repository
channels. Define either the
channel, or the source, or the
sourceNamespace field. In
general, use the channel field to
point to the channel instead of
using the source or
sourceNamespace fields.

spec.name Required for HelmRepo type
channels, optional for
ObjectBucket type channels

The specific name for the target
Helm chart or deployable within
the channel. If neither the name
or packageFilter are defined for
channel types where the field is
optional, all deployables are
found and the latest version of
each deployable is retrieved.

spec.packageFilter Optional Defines the parameters to use to
find target deployables or a
subset of a deployables. If
multiple filter conditions are
defined, a deployable must meet
all filter conditions.

spec.packageFilter.version Optional The version or versions for the
deployable. You can use a range
of versions in the form >1.0, or
<3.0. By default, the version with
the most recent
"creationTimestamp" value is
used.

spec.packageFilter.annotations Optional The annotations for the
deployable.

spec.packageOverrides Optional Section for defining overrides for
the Kubernetes resource that is
subscribed to by the subscription,
such as a Helm chart, deployable,
or other Kubernetes resource
within a channel.

spec.packageOverrides.packageN
ame

Optional, but required for setting
override

Identifies the Kubernetes
resource that is being overwritten.

Field Required or Optional Description

CHAPTER 1. MANAGING APPLICATIONS

55

spec.packageOverrides.packageAl
ias

Optional Gives an alias to the Kubernetes
resource that is being overwritten.

spec.packageOverrides.packageO
verrides

Optional The configuration of parameters
and replacement values to use to
override the Kubernetes resource.

spec.placement Required Identifies the subscribing clusters
where deployables need to be
placed, or the placement rule that
defines the clusters. Use the
placement configuration to define
values for multicluster
deployments.

spec.placement.local Optional, but required for a
stand-alone cluster or cluster that
you want to manage directly

Defines whether the subscription
must be deployed locally.

Set the value to true to have the
subscription synchronize with the
specified channel.

Set the value to false to prevent
the subscription from subscribing
to any resources from the
specified channel.

Use this field when your cluster is
a stand-alone cluster or you are
managing this cluster directly. If
your cluster is part of a
multicluster and you do not want
to manage the cluster directly,
use only one of clusters,
clusterSelector, or
placementRef to define where
your subscription is to be placed.
If your cluster is the Hub of a
multicluster and you want to
manage the cluster directly, you
must register the Hub as a
managed cluster before the
subscription operator can
subscribe to resources locally.

Field Required or Optional Description

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

56

spec.placement.clusters Optional Defines the clusters where the
subscription is to be placed. Only
one of clusters,
clusterSelector, or
placementRef is used to define
where your subscription is to be
placed for a multicluster. If your
cluster is a stand-alone cluster
that is not your hub cluster, you
can also use local cluster.

spec.placement.clusters.name Optional, but required for defining
the subscribing clusters

The name or names of the
subscribing clusters.

spec.placement.clusterSelector Optional Defines the label selector to use
to identify the clusters where the
subscription is to be placed. Use
only one of clusters,
clusterSelector, or
placementRef to define where
your subscription is to be placed
for a multicluster. If your cluster is
a stand-alone cluster that is not
your hub cluster, you can also use
local cluster.

spec.placement.placementRef Optional Defines the placement rule to use
for the subscription. Use only one
of clusters, clusterSelector ,
or placementRef to define
where your subscription is to be
placed for a multicluster. If your
cluster is a stand-alone cluster
that is not your Hub cluster, you
can also use local cluster.

spec.placement.placementRef.na
me

Optional, but required for using a
placement rule

The name of the placement rule
for the subscription.

spec.placement.placementRef.kin
d

Optional, but required for using a
placement rule.

Set the value to Placement to
indicate that a placement rule is
used for deployments with the
subscription.

spec.overrides Optional Any parameters and values that
need to be overridden, such as
cluster-specific settings.

Field Required or Optional Description

CHAPTER 1. MANAGING APPLICATIONS

57

spec.overrides.clusterName Optional The name of the cluster or
clusters where parameters and
values are being overridden.

spec.overrides.clusterOverrides Optional The configuration of parameters
and values to override.

spec.timeWindow Optional Defines the settings for
configuring a time window when
the subscription is active or
blocked.

spec.timeWindow.type Optional, but required for
configuring a time window

Indicates whether the
subscription is active or blocked
during the configured time
window. Deployments for the
subscription occur only when the
subscription is active.

spec.timeWindow.location Optional, but required for
configuring a time window

The time zone of the configured
time range for the time window.
All time zones must use the Time
Zone (tz) database name format.
For more information, see Time
Zone Database.

spec.timeWindow.daysofweek Optional, but required for
configuring a time window

Indicates the days of the week
when the time range is applied to
create a time window. The list of
days must be defined as an array,
such as daysofweek:
["Monday", "Wednesday",
"Friday"].

spec.timeWindow.hours Optional, but required for
configuring a time window

Defined the time range for the
time window. A start time and end
time for the hour range must be
defined for each time window.
You can define multiple time
window ranges for a subscription.

spec.timeWindow.hours.start Optional, but required for
configuring a time window

The timestamp that defines the
beginning of the time window.
The timestamp must use the Go
programming language Kitchen
format "hh:mmpm". For more
information, see Constants.

Field Required or Optional Description

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

58

https://www.iana.org/time-zones
https://godoc.org/time#pkg-constants

spec.timeWindow.hours.end Optional, but required for
configuring a time window

The timestamp that defines the
ending of the time window. The
timestamp must use the Go
programming language Kitchen
format "hh:mmpm". For more
information, see Constants.

Field Required or Optional Description

Notes:

When you are defining your YAML, a subscription can use packageFilters to point to multiple
Helm charts, deployables, or other Kubernetes resources. The subscription, however, only
deploys the latest version of one chart, or deployable, or other resource.

For time windows, when you are defining the time range for a window, the start time must be set
to occur before the end time. If you are defining multiple time windows for a subscription, the
time ranges for the windows cannot overlap. The actual time ranges are based on the
subscription-controller container time, which can be set to a different time and location than
the time and location that you are working within.

Within your subscription specification, you can also define the placement of a Helm release as
part of the subscription definition. Each subscription can reference an existing placement rule,
or define a placement rule directly within the subscription definition.

When you are defining where to place your subscription in the spec.placement section, use only
one of clusters, clusterSelector, or placementRef for a multicluster environment.

If you include more than one placement setting, one setting is used and others are ignored. The
following priority is used to determine which setting the subscription operator uses:

a. placementRef

b. clusters

c. clusterSelector

Your subscription can resemble the following YAML content:

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"
 placement:
 placementRef:
 kind: Placement
 name: towhichcluster

CHAPTER 1. MANAGING APPLICATIONS

59

https://godoc.org/time#pkg-constants

1.6.11.3. Subscription file samples

For application samples that you can deploy, see the stolostron repository.

1.6.11.4. Secondary channel sample

If there is a mirrored channel (application source repository), you can specify a secondaryChannel in
the subscription YAML. When an application subscription fails to connect to the repository server using
the primary channel, it connects to the repository server using the secondary channel. Ensure that the
application manifests stored in the secondary channel are in sync with the primary channel. See the
following sample subscription YAML with the secondaryChannel.

1.6.11.4.1. Subscription time window example

The following example subscription includes multiple configured time windows. A time window occurs
between 10:20 AM and 10:30 AM every Monday, Wednesday, and Friday. A time window also occurs
between 12:40 PM and 1:40 PM every Monday, Wednesday, and Friday. The subscription is active only
during these six weekly time windows for deployments to begin.

 overrides:
 - clusterName: "/"
 clusterOverrides:
 - path: "metadata.namespace"
 value: default

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 secondaryChannel: ns-ch-2/predev-ch-2
 name: nginx-ingress

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

60

https://github.com/stolostron/application-samples

For timewindow, enter active or blocked, depending on the purpose of the type.

1.6.11.4.2. Subscription with overrides example

The following example includes package overrides to define a different release name of the Helm
release for Helm chart. A package override setting is used to set the name my-nginx-ingress-
releaseName as the different release name for the nginx-ingress Helm release.

1.6.11.4.3. Helm repository subscription example

The following subscription automatically pulls the latest nginx Helm release for the version 1.36.x. The
Helm release deployable is placed on the my-development-cluster-1 cluster when a new version is
available in the source Helm repository.

The spec.packageOverrides section shows optional parameters for overriding values for the Helm

 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"
 placement:
 placementRef:
 kind: Placement
 name: towhichcluster
 timewindow:
 windowtype: "active"
 location: "America/Los_Angeles"
 daysofweek: ["Monday", "Wednesday", "Friday"]
 hours:
 - start: "10:20AM"
 end: "10:30AM"
 - start: "12:40PM"
 end: "1:40PM"

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: simple
 namespace: default
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageOverrides:
 - packageName: nginx-ingress
 packageAlias: my-nginx-ingress-releaseName
 packageOverrides:
 - path: spec
 value:
 defaultBackend:
 replicaCount: 3
 placement:
 local: false

CHAPTER 1. MANAGING APPLICATIONS

61

The spec.packageOverrides section shows optional parameters for overriding values for the Helm
release. The override values are merged into the Helm release values.yaml file, which is used to retrieve
the configurable variables for the Helm release.

1.6.11.4.4. Git repository subscription example

1.6.11.4.4.1. Subscribing specific branch and directory of Git repository

In this example subscription, the annotation apps.open-cluster-management.io/git-path indicates that
the subscription subscribes to all Helm charts and Kubernetes resources within the sample_app_1/dir1

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"
 placement:
 clusters:
 - name: my-development-cluster-1
 packageOverrides:
 - packageName: my-server-integration-prod
 packageOverrides:
 - path: spec
 value:
 persistence:
 enabled: false
 useDynamicProvisioning: false
 license: accept
 tls:
 hostname: my-mcm-cluster.icp
 sso:
 registrationImage:
 pullSecret: hub-repo-docker-secret

 apiVersion: apps.open-cluster-management.io/v1
 kind: Subscription
 metadata:
 name: sample-subscription
 namespace: default
 annotations:
 apps.open-cluster-management.io/git-path: sample_app_1/dir1
 apps.open-cluster-management.io/git-branch: branch1
 spec:
 channel: default/sample-channel
 placement:
 placementRef:
 kind: Placement
 name: dev-clusters

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

62

directory of the Git repository that is specified in the channel. The subscription subscribes to master
branch by default. In this example subscription, the annotation apps.open-cluster-management.io/git-
branch: branch1 is specified to subscribe to branch1 branch of the repository.

Note: When you are using a Git channel subscription that subscribes to Helm charts, the resource
topology view might show an additional Helmrelease resource. This resource is an internal application
management resource and can be safely ignored.

1.6.11.4.4.2. Adding a .kubernetesignore file

You can include a .kubernetesignore file within your Git repository root directory, or within the
apps.open-cluster-management.io/git-path directory that is specified in subscription’s annotations.

You can use this .kubernetesignore file to specify patterns of files or subdirectories, or both, to ignore
when the subscription deploys Kubernetes resources or Helm charts from the repository.

You can also use the .kubernetesignore file for fine-grain filtering to selectively apply Kubernetes
resources. The pattern format of the .kubernetesignore file is the same as a .gitignore file.

If the apps.open-cluster-management.io/git-path annotation is not defined, the subscription looks for
a .kubernetesignore file in the repository root directory. If the apps.open-cluster-management.io/git-
path field is defined, the subscription looks for the .kubernetesignore file in the apps.open-cluster-
management.io/git-path directory. Subscriptions do not search in any other directory for a
.kubernetesignore file.

1.6.11.4.4.3. Applying Kustomize

If there is kustomization.yaml or kustomization.yml file in a subscribed Git folder, kustomize is
applied. You can use spec.packageOverrides to override kustomization at the subscription
deployment time.

In order to override kustomization.yaml file, packageName: kustomization is required in
packageOverrides. The override either adds new entries or updates existing entries. It does not remove
existing entries.

1.6.11.4.4.4. Enabling Git WebHook

By default, a Git channel subscription clones the Git repository specified in the channel every minute
and applies changes when the commit ID has changed. Alternatively, you can configure your subscription
to apply changes only when the Git repository sends repo PUSH and PULL webhook event notifications.

In order to configure webhook in a Git repository, you need a target webhook payload URL and

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: example-subscription
 namespace: default
spec:
 channel: some/channel
 packageOverrides:
 - packageName: kustomization
 packageOverrides:
 - value: |
patchesStrategicMerge:
- patch.yaml

CHAPTER 1. MANAGING APPLICATIONS

63

In order to configure webhook in a Git repository, you need a target webhook payload URL and
optionally a secret.

1.6.11.4.4.4.1. Payload URL

Create a route (ingress) in the hub cluster to expose the subscription operator’s webhook event listener
service.

Then, use oc get route multicluster-operators-subscription -n open-cluster-management command
to find the externally-reachable hostname.

The webhook payload URL is https://<externally-reachable hostname>/webhook.

1.6.11.4.4.4.2. Webhook secret

Webhook secret is optional. Create a Kubernetes secret in the channel namespace. The secret must
contain data.secret.

See the following example:

The value of data.secret is the base-64 encoded WebHook secret you are going to use.

Best practice: Use a unique secret for each Git repository.

1.6.11.4.4.4.3. Configuring WebHook in Git repository

Use the payload URL and webhook secret to configure WebHook in your Git repository.

1.6.11.4.4.4.4. Enable WebHook event notification in channel

Annotate the subscription channel. See the following example:

If you used a secret to configure WebHook, annotate the channel with this as well where
<the_secret_name> is the kubernetes secret name containing webhook secret.

No webhook specific configuration is needed in subscriptions.

oc create route passthrough --service=multicluster-operators-subscription -n open-cluster-
management

apiVersion: v1
kind: Secret
metadata:
 name: my-github-webhook-secret
data:
 secret: BASE64_ENCODED_SECRET

oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-
management.io/webhook-enabled="true"

oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-
management.io/webhook-secret="<the_secret_name>"

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

64

https:

1.6.12. Placement rule samples overview (Deprecated)

Deprecated: PlacementRules is deprecated. Use Placement instead.

Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where
deployables can be deployed. Use placement rules to help you facilitate the multicluster deployment of
your deployables.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

c. Verify that your application resource is created by running the following command:

Placement rule YAML structure

Placement rule YAML values table

Placement rule sample files

1.6.12.1. Placement rule YAML structure

The following YAML structure shows the required fields for a placement rule and some of the common
optional fields. Your YAML structure needs to include some required fields and values. Depending on
your application management requirements, you might need to include other optional fields and values.
You can compose your own YAML content with any tool and in the product console

oc apply -f filename.yaml

oc get application.app

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name:
 namespace:
 resourceVersion:
 labels:
 app:
 chart:
 release:
 heritage:
 selfLink:
 uid:
spec:
 clusterSelector:
 matchLabels:
 datacenter:
 environment:
 clusterReplicas:
 clusterConditions:
 ResourceHint:

CHAPTER 1. MANAGING APPLICATIONS

65

1.6.12.2. Placement rule YAML values table

Field Required or Optional Description

apiVersion Required Set the value to apps.open-
cluster-management.io/v1.

kind Required Set the value to PlacementRule
to indicate that the resource is a
placement rule.

metadata.name Required The name for identifying the
placement rule.

metadata.namespace Required The namespace resource to use
for the placement rule.

metadata.resourceVersion Optional The version of the placement rule
resource.

metadata.labels Optional The labels for the placement rule.

spec.clusterSelector Optional The labels for identifying the
target clusters

spec.clusterSelector.matchLabels Optional The labels that must exist for the
target clusters.

spec.clusterSelector.matchExpres
sions

Optional The labels that must exist for the
target clusters.

status.decisions Optional Defines the target clusters where
deployables are placed.

status.decisions.clusterName Optional The name of a target cluster

status.decisions.clusterNamespac
e

Optional The namespace for a target
cluster.

spec.clusterReplicas Optional The number of replicas to create.

spec.clusterConditions Optional Define any conditions for the
cluster.

 type:
 order:
 Policies:

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

66

spec.ResourceHint Optional If more than one cluster matches
the labels and values that you
provided in the previous fields,
you can specify a resource
specific criteria to select the
clusters. For example, you can
select the cluster with the most
available CPU cores.

spec.ResourceHint.type Optional Set the value to either cpu to
select clusters based on available
CPU cores or memory to select
clusters based on available
memory resources.

spec.ResourceHint.order Optional Set the value to either asc for
ascending order, or desc for
descending order.

spec.Policies Optional The policy filters for the
placement rule.

Field Required or Optional Description

1.6.12.3. Placement rule sample files

For application samples that you can deploy, see the stolostron repository.

Existing placement rules can include the following fields that indicate the status for the placement rule.
This status section is appended after the spec section in the YAML structure for a rule.

Field Description

status The status information for the placement rule.

status.decisions Defines the target clusters where deployables are
placed.

status.decisions.clusterName The name of a target cluster

status.decisions.clusterNamespace The namespace for a target cluster.

status:
 decisions:
 clusterName:
 clusterNamespace:

CHAPTER 1. MANAGING APPLICATIONS

67

https://github.com/stolostron/application-samples

Example 1

Example 2

1.6.13. Application samples

View samples and YAML definitions that you can use to build your files. Applications
(Application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are used for
viewing the application components.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: gbapp-gbapp
 namespace: development
 labels:
 app: gbapp
spec:
 clusterSelector:
 matchLabels:
 environment: Dev
 clusterReplicas: 1
status:
 decisions:
 - clusterName: local-cluster
 clusterNamespace: local-cluster

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: towhichcluster
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 clusterReplicas: 1
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterSelector:
 matchExpressions:
 - key: environment
 operator: In
 values:
 - dev

oc apply -f filename.yaml

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

68

c. Verify that your application resource is created by running the following command:

Application YAML structure

Application YAML table

Application file samples

1.6.13.1. Application YAML structure

To compose the application definition YAML content for creating or updating an application resource,
your YAML structure needs to include some required fields and values. Depending on your application
requirements or application management requirements, you might need to include other optional fields
and values.

The following YAML structure shows the required fields for an application and some of the common
optional fields.

1.6.13.2. Application YAML table

Field Value Description

apiVersion app.k8s.io/v1beta1 Required

kind Application Required

metadata

 name: The name for identifying
the application resource.

Required

 namespace: The namespace
resource to use for the
application.

spec

oc get application.app

apiVersion: app.k8s.io/v1beta1
kind: Application
metadata:
 name:
 namespace:
spec:
 selector:
 matchLabels:
 label_name: label_value

CHAPTER 1. MANAGING APPLICATIONS

69

selector.matchLabels key:value pair that are a
Kubernetes label and value found
on the subscription or
subscriptions this application will
be associated with. The label
allows the application resource to
find the related subscriptions by
performing a label name and
value match.

Required

Field Value Description

The spec for defining these applications is based on the Application metadata descriptor custom
resource definition that is provided by the Kubernetes Special Interest Group (SIG). Only the values
shown in the table are required.

You can use this definition to help you compose your own application YAML content. For more
information about this definition, see Kubernetes SIG Application CRD community specification .

1.6.13.3. Application file samples

For application samples that you can deploy, see the stolostron repository.

The definition structure for an application can resemble the following example YAML content:

apiVersion: app.k8s.io/v1beta1
kind: Application
metadata:
 name: my-application
 namespace: my-namespace
spec:
 selector:
 matchLabels:
 my-label: my-label-value

Red Hat Advanced Cluster Management for Kubernetes 2.10 Applications

70

https://github.com/kubernetes-sigs/application
https://github.com/stolostron/application-samples

	Table of Contents
	CHAPTER 1. MANAGING APPLICATIONS
	1.1. APPLICATION MODEL AND DEFINITIONS
	1.1.1. Applications
	1.1.2. Subscriptions
	1.1.2.1. Channels

	1.1.3. ApplicationSet
	1.1.4. Application documentation

	1.2. APPLICATION CONSOLE
	1.3. SUBSCRIPTION REPORTS
	1.3.1. SubscriptionStatus package-level
	1.3.2. SubscriptionReport cluster-level
	1.3.3. SubscriptionReport application-level
	1.3.4. ManagedClusterView
	1.3.5. CLI application-level status
	1.3.6. CLI Last Update Time

	1.4. MANAGING APPLICATION RESOURCES
	1.4.1. Managing apps with Git repositories
	1.4.1.1. More examples
	1.4.1.2. Keeping deployed resources after deleting subscription with Git

	1.4.2. Managing apps with Helm repositories
	1.4.2.1. Sample YAML
	1.4.2.2. Keeping deployed resources after deleting subscription with Helm

	1.4.3. Managing apps with Object storage repositories
	1.4.3.1. Sample YAML
	1.4.3.2. Creating your Amazon Web Services (AWS) S3 object storage bucket
	1.4.3.3. Subscribing to the object in the AWS bucket
	1.4.3.4. Sample AWS subscription
	1.4.3.5. Keeping deployed resources after deleting subscription with Object storage

	1.5. ANSIBLE AUTOMATION PLATFORM INTEGRATION AND INTRODUCTION
	1.5.1. Integration and components
	1.5.1.1. Prehook
	1.5.1.2. Posthook

	1.5.2. Setting up Ansible Automation Platform
	1.5.2.1. Prerequisites
	1.5.2.2. Installing Ansible Automation Platform Resource Operator

	1.5.3. Configuring Ansible Automation Platform
	1.5.3.1. Setting up Ansible Automation Platform secrets
	1.5.3.2. Setting secret reconciliation
	1.5.3.3. Using Ansible Automation Platform sample YAML files
	1.5.3.4. Launching Workflow
	1.5.3.5. Using Ansible Automation Platform sample YAML Workflow

	1.6. APPLICATION ADVANCED CONFIGURATION
	1.6.1. Subscribing Git resources
	1.6.1.1. Creating application resources in Git
	1.6.1.2. Application namespace example
	1.6.1.3. Resource overwrite example
	1.6.1.4. Subscribing specific Git elements

	1.6.2. Granting subscription administrator privilege
	1.6.3. Creating an allow and deny list as subscription administrator
	1.6.4. Adding reconcile options
	1.6.4.1. Reconcile frequency Git channel
	1.6.4.2. Reconcile frequency Helm channel

	1.6.5. Configuring leader election
	1.6.5.1. Editing the controller flag

	1.6.6. Configuring application channel and subscription for a secure Git connection
	1.6.6.1. Connecting to a private repo with user and access token
	1.6.6.2. Making an insecure HTTPS connection to a Git server
	1.6.6.3. Using custom CA certificates for a secure HTTPS connection
	1.6.6.4. Making an SSH connection to a Git server
	1.6.6.5. Updating certificates and SSH keys

	1.6.7. Configuring Helm to watch namespace resources
	1.6.7.1. Configuring

	1.6.8. Scheduling a deployment
	1.6.9. Configuring package overrides
	1.6.10. Channel samples overview
	1.6.10.1. Channel YAML structure
	1.6.10.2. Channel YAML table
	1.6.10.3. Object storage bucket (ObjectBucket) channel
	1.6.10.4. Helm repository (HelmRepo) channel
	1.6.10.5. Git (Git) repository channel

	1.6.11. Subscription samples overview
	1.6.11.1. Subscription YAML structure
	1.6.11.2. Subscription YAML table
	1.6.11.3. Subscription file samples
	1.6.11.4. Secondary channel sample

	1.6.12. Placement rule samples overview (Deprecated)
	1.6.12.1. Placement rule YAML structure
	1.6.12.2. Placement rule YAML values table
	1.6.12.3. Placement rule sample files

	1.6.13. Application samples
	1.6.13.1. Application YAML structure
	1.6.13.2. Application YAML table
	1.6.13.3. Application file samples

