Administering the API Gateway

Red Hat 3scale API Management 2.7

Intermediate to advanced goals to manage your installation.

Red Hat Customer Content Services

Abstract

This guide provides the information regarding configuration tasks, which can be performed after the basic installation.

Preface

This guide helps you to apply intermediate to advanced configuration features to your 3scale installation. For basic details regarding installation, refer to Installing 3scale.

Part I. The API gateway

Chapter 1. Operating APIcast

This section describes the concepts to consider when working with advanced APIcast configurations.

1.1. Public Base URL

The Public Base URL is the URL that your developers use to make requests to your API product, which is exposed publicly with 3scale. This will be the URL of your APIcast instance.

If you are using one of the Self-managed deployment options, you can choose your own Public Base URL for each one of the environments provided (staging and production) on a domain name you are managing. Note that this URL should be different from the one of your API backend, and could be something like https://api.yourdomain.com:443, where yourdomain.com is the domain that belongs to you. After setting the Public Base URL make sure you save the changes and, if necessary, promote the changes in staging to production.

APIcast will only accept calls to the hostname specified in the Public Base URL. As an example for Echo API, if you specify https://echo-api.3scale.net:443 as the Public Base URL, the correct call would be:

curl "https://echo-api.3scale.net:443/hello?user_key=YOUR_USER_KEY"

In case you do not have a public domain for your API, you can use the APIcast IP address in the requests, but you still need to specify a value in the Public Base URL field even if the domain is not real. In this case, make sure you provide the host in the Host header. For example:

curl "http://192.0.2.12:80/hello?user_key=YOUR_USER_KEY" -H "Host: echo-api.3scale.net"

If you are deploying on local machine, you can also just use "localhost" as the domain, so the Public Base URL will look like http://localhost:80, and then you can make requests like this:

curl "http://localhost:80/hello?user_key=YOUR_USER_KEY"

In case you have multiple API products, set this Public Base URL appropriately for each product. APIcast will route the requests based on the hostname.

1.2. Mapping rules

Mapping rules work at the API product and API backend levels. Mapping rules define the metrics or methods that you want to report depending on the requests to your API. The following is an example mapping rule:

Mapping Rules

This rule means that any GET requests that start with / will increment the metric hits by 1. This rule will match any request to your API. But most likely, you will change this rule because it is too generic, and often leads to double counts when more specific rules are added.

The following rules for the Echo API show more specific examples:

Hello World Mapping Rules

1.2.1. Matching of mapping rules

The matching of mapping rules is performed by prefix and can be arbitrarily complex (the notation follows OpenAPI and ActiveDocs specifications):

  • A mapping rule must start with a forward slash (/).
  • You can perform a match on the path over a literal string (for example, /hello).
  • Mapping rules can include parameters on the query string or in the body (for example, /{word}?value={value}). APIcast fetches the parameters in the following ways:

    • GET method: From the query string.
    • POST, DELETE, or PUT method: From the body.
  • Mapping rules can contain named wildcards (for example, /{word}). This rule will match anything in the placeholder {word}, making requests like /morning match the rule. Wildcards can appear between slashes or between slash and dot. Parameters can also include wildcards.
  • By default, all mapping rules are evaluated from first to last, according to the sort you specified. If you add a rule /v1, it will be matched for requests whose paths start with /v1 (for example, /v1/word or /v1/sentence).
  • You can add a dollar sign ($) to the end of a pattern to specify exact matching. For example, /v1/word$ will only match /v1/word requests, and will not match /v1/word/hello requests. For exact matching, you must also ensure that the default mapping rule that matches everything (/) has been disabled.
  • More than one mapping rule can match the request path, but if none matches, the request is discarded with an HTTP 404 status code.

1.2.2. Mapping rules workflow

Mapping rules have the following workflow:

  • You can define a new mapping rule (see Add mapping rules).
  • Mapping rules will be grayed out on the next reload to prevent accidental modifications.
  • To edit an existing mapping rule, you must enable it first by clicking the pencil icon on the right.
  • To delete a rule, click the trash icon.
  • All modifications and deletions are saved when you promote the changes in Integration > Configuration.

Add mapping rules

To add a new mapping rule, perform the following steps:

  1. Click Add Mapping Rule.
  2. Specify the following settings:

    • Verb: The HTTP request verb (GET, POST, DELETE, or PUT).
    • Pattern: The pattern to match (for example, /hello).
    • Metric or method to increment: The metric or method name.
    • Increment by: The metric increment number (for example, 1).
    • Last?: If this mapping rule should be considered as the last one, to stop processing other mapping rules.
    • Position: Number that indicates the position of the execution of the mapping rule, to sort the mapping rules.
  3. Click Create Mapping Rule to apply the changes.

Stop other mapping rules

To stop processing other mapping rules, you can select Last? when creating a new mapping rule. For example, if you have the following mapping rules defined in API Integration Settings and you have different metrics associated with each rule:

(get) /path/to/example/search
(get) /path/to/example/{id}

When calling with (get) /path/to/example/search, APIcast stops processing the remaining mapping rules and incrementing their metrics after the rule is matched.

1.3. Host header

This option is only needed for those API products that reject traffic unless the Host header matches the expected one. In these cases, having a gateway in front of your API product will cause problems since the Host will be the one of the gateway, e.g. xxx-yyy.staging.apicast.io

To avoid this issue you can define the host your API product expects in the Host Header field in the Authentication Settings, and the hosted APIcast instance will rewrite the host.

Host Rewrite

1.4. Protecting your API backend

Once you have APIcast working in production, you might want to restrict direct access to your API product without credentials. The easiest way to do this is by using the Secret Token set by APIcast. Please refer to the Advanced APIcast configuration for information on how to set it up.

1.5. Using APIcast with private APIs

With APIcast it is possible to protect the APIs which are not publicly accessible on the Internet. The requirements that must be met are:

  • Self-managed APIcast must be used as the deployment option.
  • APIcast needs to be accessible from the public internet and be able to make outbound calls to the 3scale Service Management API.
  • The API product should be accessible by APIcast.

In this case you can set your internal domain name or the IP address of your API in the Private Base URL field and follow the rest of the steps as usual. Note, however, that you will not be able to take advantage of the Staging environment, and the test calls will not be successful, as the Staging APIcast instance is hosted by 3scale and will not have access to your private API backend). But once you deploy APIcast in your production environment, if the configuration is correct, APIcast will work as expected.

1.6. Configuring APIcast with OpenTracing

OpenTracing is an API specification and method used to profile and monitor microservices. From version 3.3 onwards, APIcast includes OpenTracing Libraries and the Jaeger Tracer library.

1.6.1. Prerequisites

To add distributed tracing to your APIcast deployment, you need to ensure the following prerequisites:

  • Each external request should have a unique request ID attached, usually via a HTTP header.
  • Each service should forward the request ID to other services.
  • Each service should output the request ID in the logs.
  • Each service should record additional information, like start and end time of the request.
  • Logs need to be aggregated, and provide a way to parse via HTTP request ID.

1.6.2. Procedure

To configure OpenTracing, use the following environment variables:

  • OPENTRACING_TRACER: To define which tracer implementation to use. Currently, only Jaeger is available.
  • OPENTRACING_CONFIG: To specify the default configuration file of your tracer. You can see an example here.
  • OPENTRACING_HEADER_FORWARD: Optional. You can set this environment variable according to your OpenTracing configuration.

For more information about these variables, refer to APIcast environment variables.

To test if the integration is properly working, you need to check if traces are reported in the Jaeger tracing interface.

1.6.3. Additional information

The OpenTracing and Jaeger integration are available in the upstream project: https://github.com/3scale/apicast

1.6.4. Installing Jaeger on your OpenShift instance

This section provides information about the installation of Jaeger on the OpenShift instance you are running.

Warning

Jaeger is a third-party component, which 3scale does not provide support for, with the exception of uses with APIcast. The following instructions are provided as a reference example only, and are not suitable for production use.

  1. Install the Jaeger all-in-one in the current namespace:

    oc process -f https://raw.githubusercontent.com/jaegertracing/jaeger-openshift/master/all-in-one/jaeger-all-in-one-template.yml | oc create -f -
  2. Create a Jaeger configuration file jaeger_config.json and add the following:

    {
        "service_name": "apicast",
        "disabled": false,
        "sampler": {
          "type": "const",
          "param": 1
        },
        "reporter": {
          "queueSize": 100,
          "bufferFlushInterval": 10,
          "logSpans": false,
          "localAgentHostPort": "jaeger-agent:6831"
        },
        "headers": {
          "jaegerDebugHeader": "debug-id",
          "jaegerBaggageHeader": "baggage",
          "TraceContextHeaderName": "uber-trace-id",
          "traceBaggageHeaderPrefix": "testctx-"
        },
        "baggage_restrictions": {
            "denyBaggageOnInitializationFailure": false,
            "hostPort": "127.0.0.1:5778",
            "refreshInterval": 60
        }
     }
    • set a sampler constant of 1 to sample all requests
    • set the location and queue size of the reporter
    • set headers, including TraceContextHeaderName which we will use to track requests
  3. Create a ConfigMap from our Jaeger configuration file and mount it into APIcast:

    oc create configmap jaeger-config --from-file=jaeger_config.json
    oc volume dc/apicast --add -m /tmp/jaeger/ --configmap-name jaeger-config
  4. Enable OpenTracing and Jaeger with the configuration we have just added:

    oc env deploymentConfig/apicast OPENTRACING_TRACER=jaeger OPENTRACING_CONFIG=/tmp/jaeger/jaeger_config.json
  5. Find the URL the Jaeger interface is running on:

    oc get route
    (…) jaeger-query-myproject.127.0.0.1.nip.io
  6. Open the Jaeger interface from the previous step, which shows data being populated from Openshift Health checks.
  7. The final step is to add OpenTracing and Jaeger support to your backend APIs so that you can see the complete request trace. This varies in each back end, depending on the frameworks and languages used. As a reference example, you can see Using OpenTracing with Jaeger to collect Application Metrics in Kubernetes.

For more information on configuring Jaeger, see:

Chapter 2. Operating Docker-containerized environments

2.1. Troubleshooting APIcast on the Docker-containerized environment

This section describes the most common issues that you can find when working with APIcast on a Docker-containerized environment.

2.1.1. Cannot connect to the Docker daemon error

The docker: Cannot connect to the Docker daemon. Is the docker daemon running on this host? error message may be because the Docker service hasn’t started. You can check the status of the Docker daemon by running the sudo systemctl status docker.service command.

Ensure that you are run this command as the root user because the Docker containerized environment requires root permissions in RHEL by default. For more information, see here).

2.1.2. Basic Docker command-line interface commands

If you started the container in the detached mode (-d option) and want to check the logs for the running APIcast instance, you can use the log command: sudo docker logs <container>. Where ,<container> is the container name ("apicast" in the example above) or the container ID. You can get a list of the running containers and their IDs and names by using the sudo docker ps command.

To stop the container, run the sudo docker stop <container> command. You can also remove the container by running the sudo docker rm <container> command.

For more information on available commands, see Docker commands reference.

Chapter 3. Advanced APIcast configuration

This section covers the advanced settings option of 3scale’s API gateway in the staging environment.

3.1. Define a secret token

For security reasons, any request from the 3scale gateway to your API backend contains a header called X-3scale-proxy-secret-token. You can set the value of this header in Authentication Settings on the Integration page.

Proxy secret token

Setting the secret token acts as a shared secret between the proxy and your API so that you can block all API requests that do not come from the gateway if you do not want them to. This adds an extra layer of security to protect your public endpoint while you are in the process of setting up your traffic management policies with the sandbox gateway.

Your API backend must have a public resolvable domain for the gateway to work, so anyone who knows your API backend can bypass the credentials checking. This should not be a problem because the API gateway in the staging environment is not meant for production use, but it is always better to have a fence available.

3.2. Credentials

The API credentials within 3scale are either user_key or app_id/app_key depending on the authentication mode that you are using. OpenID Connect is valid for the API gateway in the staging environment, but it cannot be tested in the Integration page.

However, you might want to use different credential names in your API. In this case, you need to set custom names for the user_key if you are using the API key mode:

Custom user_key

Alternatively, for the app_id and app_key:

Custom app_key/app_id

For instance, you could rename app_id to key if that fits your API better. The gateway will take the name key and convert it to app_id before doing the authorization call to the 3scale backend. Note that the new credential name has to be alphanumeric.

You can decide if your API passes credentials in the query string (or body if not a GET) or in the headers.

Proxy Credentials Location
Note

APIcast normalizes header names when extracting credentials. This means they are case insensitive, and underscores and hyphens are treated equally. For example, if you set the App Key parameter as App_Key, other values such as app-key are also accepted as valid app key headers.

3.3. Configuring error messages

This section describes how to configure APIcast error messages.

As a proxy, 3scale APIcast manages requests in the following ways:

  • If there are no errors, APIcast passes the request from the client to the API back end server, and returns the API response to the client without modifications. In case you want to modify the responses, you can use the Header Modification policy.
  • If the API responds with an error message, such as 404 Not Found or 400 Bad Request, APIcast returns the message to the client. However, if APIcast detects other errors such as Authentication missing, APIcast sends an error message and terminates the request.

Hence, you can configure these error messages to be returned by APIcast:

  • Authentication failed: This error means that the API request does not contain the valid credentials, whether due to fake credentials or because the application is temporarily suspended. Additionally, this error is generated when the metric is disabled, meaning its value is 0.
  • Authentication missing: This error is generated whenever an API request does not contain any credentials. It occurs when users do not add their credentials to an API request.
  • No match: This error means that the request did not match any mapping rule and therefore no metric is updated. This is not necessarily an error, but it means that either the user is trying random paths or that your mapping rules do not cover legitimate cases.
  • Usage limit exceeded: This error means that the client reached its rate limits for the requested endpoint. A client may reach more than one rate limit if the request matches multiple mapping rules.

To configure errors, follow these steps:

  1. Navigate from [Your_API_name] > Integration > edit APIcast configuration > Gateway response.
  2. Choose the error type you want to configure.
  3. Specify values for these fields:

    • Response Code: the three-digit HTTP response code.
    • Content-type: the value of the Content-Type header.
    • Response Body: the value of the response message body.
  4. To save your changes, click Update & test in Staging Environment.

3.4. Configuration history

Every time you click the Update & Test Staging Configuration button, the current configuration is saved in a JSON file. The staging gateway will pull the latest configuration with each new request. For each environment, staging or production, you can see a history of all the previous configuration files.

Note that it is not possible to automatically roll back to previous versions. Instead a history of all your configuration versions with their associated JSON files is provided. Use these files to check what configuration you had deployed at any point of time. If you want to, you can recreate any deployments manually.

3.5. Debugging

Setting up the gateway configuration is easy, but you may still encounter errors. In such cases, the gateway can return useful debug information to track the error.

To get the debugging information from APIcast, you must add the following header to the API request: X-3scale-debug: {SERVICE_TOKEN} with the service token corresponding to the API service that you are reaching to.

When the header is found and the service token is valid, the gateway will add the following information to the response headers:

X-3scale-matched-rules: /v1/word/{word}.json, /v1
X-3scale-credentials: app_key=APP_KEY&app_id=APP_ID
X-3scale-usage: usage%5Bversion_1%5D=1&usage%5Bword%5D=1

X-3scale-matched-rules indicates which mapping rules have been matched for the request in a comma-separated list.

The header X-3scale-credentials returns the credentials that were passed to 3scale backend.

X-3scale-usage indicates the usage that was reported to 3scale backend. usage%5Bversion_1%5D=1&usage%5Bword%5D=1 is a URL-encoded usage[version_1]=1&usage[word]=1 and shows that the API request incremented the methods (metrics) version_1 and word by 1 hit each.

3.6. Path routing

APIcast handles all the API services configured on a 3scale account (or a subset of services, if the APICAST_SERVICES_LIST environment variable is configured). Normally, APIcast routes the API requests to the appropriate API service based on the hostname of the request, by matching it with the Public Base URL. The first service where the match is found is used for the authorization.

The Path routing feature allows using the same Public Base URL on multiple services and routes the requests using the path of the request. To enable the feature, set the APICAST_PATH_ROUTING environment variable to true or 1. When enabled, APIcast will map the incoming requests to the services based on both hostname and path.

This feature can be used if you want to expose multiple backend services hosted on different domains through one gateway using the same Public Base URL. To achieve this you can configure several API services for each API backend (i.e. Private Base URL) and enable the path routing feature.

For example, you have 3 services configured in the following way:

  • Service A Public Base URL: api.example.com Mapping rule: /a
  • Service B Public Base URL: api2.example.com Mapping rule: /b
  • Service C Public Base URL: api.example.com Mapping rule: /c

If path routing is disabled (APICAST_PATH_ROUTING=false), all calls to api.example.com will try to match Service A. So, the calls api.example.com/c and api.example.com/b will fail with a "No Mapping Rule matched" error.

If path routing is enabled (APICAST_PATH_ROUTING=true), the calls will be matched by both host and path. So:

  • api.example.com/a will be routed to Service A
  • api.example.com/c will be routed to Service C
  • api.example.com/b will fail with "No Mapping Rule matched" error, i.e. it will NOT match Service B, as the Public Base URL does not match.

If path routing is used, you must ensure there is no conflict between the mapping rules in different services that use the same Public Base URL, i.e. each combination of method + path pattern is only used in one service.

Chapter 4. APIcast policies

APIcast policies are units of functionality that modify how APIcast operates. Policies can be enabled, disabled, and configured to control how they modify APIcast. Use policies to add functionality that is not available in a default APIcast deployment. You can create your own policies, or use standard policies provided by Red Hat 3scale.

The following topics provide information about the standard APIcast policies, creating your own custom APIcast policies, and creating a policy chain.

Control policies for a service with a policy chain. Policy chains do the following:

  • specify what policies APIcast uses
  • provide configuration information for policies 3scale uses
  • specify the order in which 3scale loads policies
Note

Red Hat 3scale provides a method for adding custom policies, but does not support custom policies.

In order to modify APIcast behavior with custom policies, you must do the following:

  • Add custom policies to APIcast
  • Define a policy chain that configures APIcast policies
  • Add the policy chain to APIcast

4.1. APIcast standard policies

3scale provides the following standard policies:

You can enable and configure standard policies in 3scale.

4.1.1. 3scale Auth Caching policy

The 3scale Auth Caching policy caches authentication calls made to APIcast. You can select an operating mode to configure the cache operations.

3scale Auth Caching is available in the following modes:

1. Strict - Cache only authorized calls.

"Strict" mode only caches authorized calls. If a policy is running under the "strict" mode and if a call fails or is denied, the policy invalidates the cache entry. If the backend becomes unreachable, all cached calls are rejected, regardless of their cached status.

2. Resilient – Authorize according to last request when backend is down.

The "Resilient" mode caches both authorized and denied calls. If the policy is running under the "resilient" mode, failed calls do not invalidate an existing cache entry. If the backend becomes unreachable, calls hitting the cache continue to be authorized or denied based on their cached status.

3. Allow - When backend is down, allow everything unless seen before and denied.

The "Allow" mode caches both authorized and denied calls. If the policy is running under the "allow" mode, cached calls continue to be denied or allowed based on the cached status. However, any new calls are cached as authorized.

Important

Operating in the "allow" mode has security implications. Consider these implications and exercise caution when using the "allow" mode.

4. None - Disable caching.

The "None" mode disables caching. This mode is useful if you want the policy to remain active, but do not want to use caching.

Configuration properties

propertydescriptionvaluesrequired?

caching_type

The caching_type property allows you to define which mode the cache will operate in.

data type: enumerated string [resilient, strict, allow, none]

yes

Policy object example

{
  "name": "caching",
  "version": "builtin",
  "configuration": {
    "caching_type": "allow"
  }
}

For information on how to configure policies, see the Creating a policy chain section of the documentation.

4.1.2. 3scale Batcher policy

The 3scale Batcher policy provides an alternative to the standard APIcast authorization mechanism, in which one call to the 3scale backend (Service Management API) is made for each API request APIcast receives.

The 3scale Batcher policy reduces latency and increases throughput by significantly reducing the number of requests to the 3scale backend. In order to achieve this, this policy caches authorization statuses and batches usage reports.

When the 3scale Batcher policy is enabled, APIcast uses the following authorization flow:

  1. On each request, the policy checks whether the credentials are cached:

    • If the credentials are cached, the policy uses the cached authorization status instead of calling the 3scale backend.
    • If the credentials are not cached, the policy calls the backend and caches the authorization status with a configurable Time to Live (TTL).
  2. Instead of reporting the usage corresponding to the request to the 3scale backend immediately, the policy accumulates their usage counters to report them to the backend in batches. A separate thread reports the accumulated usage counters to the 3scale backend in a single call, with a configurable frequency.

The 3scale Batcher policy improves the throughput, but with reduced accuracy. The usage limits and the current utilization are stored in 3scale, and APIcast can only get the correct authorization status when making calls to the 3scale backend. When the 3scale Batcher policy is enabled, there is a period of time APIcast is not sending calls to 3scale. During this window, applications making calls might go over the defined limits.

Use this policy for high-load APIs if the throughput is more important than the accuracy of the rate limiting. The 3scale Batcher policy gives better results in terms of accuracy when the reporting frequency and authorization TTL are much less than the rate limiting period. For example, if the limits are per day and the reporting frequency and authorization TTL are configured to be several minutes.

The 3scale Batcher policy supports the following configuration settings:

  • auths_ttl: Sets the TTL in seconds when the authorization cache expires.

    When the authorization for the current call is cached, APIcast uses the cached value. After the time set in the auths_ttl parameter, APIcast removes the cache and calls the 3scale backend to retrieve the authorization status.

  • batch_report_seconds: Sets the frequency of batch reports APIcast sends to the 3scale backend. The default value is 10 seconds.
Important

To use this policy, enable both the 3scale APIcast and 3scale Batcher policy in the policy chain.

4.1.3. Anonymous Access policy

The Anonymous Access policy exposes a service without authentication. It can be useful, for example, for legacy applications that cannot be adapted to send the authentication parameters. The Anonymous policy only supports services with API Key and App Id / App Key authentication options. When the policy is enabled for API requests that do not have any credentials provided, APIcast will authorize the calls using the default credentials configured in the policy. For the API calls to be authorized, the application with the configured credentials must exist and be active.

Using the Application Plans, you can configure the rate limits on the application used for the default credentials.

Note

You need to place the Anonymous Access policy before the APIcast Policy, when using these two policies together in the policy chain.

Following are the required configuration properties for the policy:

  • auth_type: Select a value from one of the alternatives below and make sure the property corresponds to the authentication option configured for the API:

    • app_id_and_app_key: For App ID / App Key authentication option.
    • user_key: For API key authentication option.
  • app_id (only for app_id_and_app_key auth type): The App Id of the application that will be used for authorization if no credentials are provided with the API call.
  • app_key (only for app_id_and_app_key auth type): The App Key of the application that will be used for authorization if no credentials are provided with the API call.
  • user_key (only for the user_key auth_type): The API Key of the application that will be used for authorization if no credentials are provided with the API call.

Figure 4.1. Anonymous Access Policy

Anonymous Access Policy

4.1.4. CORS Request Handling policy

The Cross Origin Resource Sharing (CORS) Request Handling policy allows you to control CORS behavior by allowing you to specify:

  • Allowed headers
  • Allowed methods
  • Allowed credentials
  • Allowed origin headers

The CORS request handling policy will block all unspecified CORS requests.

Note

You need to place the CORS Request Handling policy before the APIcast Policy, when using these two policies together in the policy chain.

Configuration properties

propertydescriptionvaluesrequired?

allow_headers

The allow_headers property is an array in which you can specify which CORS headers APIcast will allow.

data type: array of strings, must be a CORS header

no

allow_methods

The allow_methods property is an array in which you can specify which CORS methods APIcast will allow.

data type: array of enumerated strings [GET, HEAD, POST, PUT, DELETE, PATCH, OPTIONS, TRACE, CONNECT]

no

allow_origin

The allow_origin property allows you to specify an origin domain APIcast will allow

data type: string

no

allow_credentials

The allow_credentials property allows you to specify whether APIcast will allow a CORS request with credentials

data type: boolean

no

Policy object example

{
  "name": "cors",
  "version": "builtin",
  "configuration": {
    "allow_headers": [
      "App-Id", "App-Key",
      "Content-Type", "Accept"
    ],
    "allow_credentials": true,
    "allow_methods": [
      "GET", "POST"
    ],
    "allow_origin": "https://example.com"
  }
}

For information on how to configure policies, refer to the Creating a policy chain section of the documentation.

4.1.5. Echo policy

The Echo policy prints an incoming request back to the client, along with an optional HTTP status code.

Configuration properties

propertydescriptionvaluesrequired?

status

The HTTP status code the echo policy will return to the client

data type: integer

no

exit

Specifies which exit mode the echo policy will use. The request exit mode stops the incoming request from being processed. The set exit mode skips the rewrite phase.

data type: enumerated string [request, set]

yes

Policy object example

{
  "name": "echo",
  "version": "builtin",
  "configuration": {
    "status": 404,
    "exit": "request"
  }
}

For information on how to configure policies, refer to the Creating a policy chain section of the documentation.

4.1.6. Edge Limiting policy

The Edge Limiting policy aims to provide flexible rate limiting for the traffic sent to the backend API and can be used with the default 3scale authorization. Some examples of the use cases supported by the policy include:

  • End-user rate limiting: Rate limit by the value of the "sub" (subject) claim of a JWT token passed in the Authorization header of the request (configured as {{ jwt.sub }}).
  • Requests Per Second (RPS) rate limiting.
  • Global rate limits per service: Apply limits per service rather than per application.
  • Concurrent connection limit: Set the number of concurrent connections allowed.

4.1.6.1. Types of limits

The policy supports the following types of limits that are provided by the lua-resty-limit-traffic library:

  • leaky_bucket_limiters: Based on the "leaky_bucket" algorithm that is based on the average number of requests plus a maximum burst size.
  • fixed_window_limiters: Based on a fixed window of time (last X seconds).
  • connection_limiters: Based on the concurrent number of connections.

You can scope any limit by service or globally.

4.1.6.2. Limit definition

The limits have a key that encodes the entities that are used to define the limit (an IP, a service, an endpoint, an ID, the value for a specific header, etc.). The Key is specified in the key parameter of the limiter.

key is an object that is defined by the following properties:

  • name: It is the name of the key. It must be unique in the scope.
  • scope: It defines the scope of the key. The supported scopes are:

    • Per service scope that affects one service (service).
    • Global scope that affects all the services (global).
  • name_type: It defines how the "name" value will be evaluated:

    • As plain text (plain)
    • As Liquid (liquid)

Each limit also has some parameters that vary depending on their types:

  • leaky_bucket_limiters: rate, burst.

    • rate: It defines how many requests can be made per second without a delay.
    • burst: It defines the amount of requests per second that can exceed the allowed rate. An artificial delay is introduced for requests above the allowed rate (specified by rate). After exceeding the rate by more requests per second than defined in burst, the requests get rejected.
  • fixed_window_limiters: count, window. count defines how many requests can be made per number of seconds defined in window.
  • connection_limiters: conn, burst, delay.

    • conn: Defines the maximum number of the concurrent connections allowed. It allows exceeding that number by burst connections per second.
    • delay: It is the number of seconds to delay the connections that exceed the limit.

Examples

  1. Allow 10 requests per minute to service_A:

    {
      "key": { "name": "service_A" },
      "count": 10,
      "window": 60
    }
  2. Allow 100 connections with bursts of 10 with a delay of 1s:

    {
      "key": { "name": "service_A" },
      "conn": 100,
      "burst": 10,
      "delay": 1
    }

You can define several limits for each service. In case multiple limits are defined, the request can be rejected or delayed if at least one limit is reached.

4.1.6.3. Liquid templating

The Edge Limiting policy allows specifying the limits for the dynamic keys by supporting Liquid variables in the keys. For this, the name_type parameter of the key must be set to "liquid" and the name parameter can then use Liquid variables. Example: {{ remote_addr }} for the client IP address or {{ jwt.sub }} for the "sub" claim of the JWT token.

Example:

{
  "key": { "name": "{{ jwt.sub }}", "name_type": "liquid" },
  "count": 10,
  "window": 60
}

For more information about Liquid support, see Section 5.1, “Using variables and filters in policies”.

4.1.6.4. Applying conditions

Each limiter can have an optional condition that defines when the limiter must be applied. The condition is specified in the condition property of the limiter.

condition is defined by the following properties:

  • combine_op. It is the boolean operator applied to the list of operations. The following two values are supported: or and and.
  • operations. It is a list of conditions that need to be evaluated. Each operation is represented by an object with the following properties:

    • left: The left part of the operation.
    • left_type: How the left property is evaluated (plain or liquid).
    • right: The right part of the operation.
    • right_type: How the right property is evaluated (plain or liquid).
    • op: Operator applied between the left and the right parts. The following two values are supported: == (equals) and != (not equals).

Example:

"condition": {
  "combine_op": "and",
  "operations": [
    {
      "op": "==",
      "right": "GET",
      "left_type": "liquid",
      "left": "{{ http_method }}",
      "right_type": "plain"
    }
  ]
}

4.1.6.5. Configuring the store

By default, Edge Limiting policy uses OpenResty shared dictionary for the rate limiting counters. However, an external Redis server can be used instead of the shared dictionary. This can be useful when multiple APIcast instances are used. Redis server can be configured using the redis_url parameter.

4.1.6.6. Error handling

The limiters support the following parameters to configure how the errors are handled:

  • limits_exceeded_error: Allows to configure the error status code and message that will be returned to the client when the configured limits are exceeded. The following parameters should be configured:

    • status_code: The status code of the request when the limits are exceeded. Default: 429.
    • error_handling: Specifies how to handle the error, with following options:

      • exit: Stops processing request and returns an error message.
      • log: Completes processing request and returns output logs.
  • configuration_error: Allows to configure the error status code and message that will be returned to the client in case of incorrect configuration. The following parameters should be configured:

    • status_code : The status code when there is a configuration issue. Default: 500.
    • error_handling: Specifies how to handle the error, with following options:

      • exit: Stops processing request and returns an error message.
      • log: Completes processing request and returns output logs.

4.1.7. Header Modification policy

The Header Modification policy allows you to modify the existing headers or define additional headers to add to or remove from an incoming request or response. You can modify both response and request headers.

The Header Modification policy supports the following configuration parameters:

  • request: List of operations to apply to the request headers
  • response: List of operations to apply to the response headers

Each operation consists of the following parameters:

  • op: Specifies the operation to be applied. The add operation adds a value to an existing header. The set operation creates a header and value, and will overwrite an existing header’s value if one already exists. The push operation creates a header and value, but will not overwrite an existing header’s value if one already exists. Instead, push will add the value to the existing header. The delete operation removes the header.
  • header: Specifies the header to be created or modified and can be any string that can be used as a header name (e.g. Custom-Header).
  • value_type: Defines how the header value will be evaluated and can either be plain for plain text or liquid for evaluation as a Liquid template. For more information, see Section 5.1, “Using variables and filters in policies”.
  • value: Specifies the value that will be used for the header. For value type "liquid" the value should be in the format {{ variable_from_context }}. Not needed when deleting.

Policy object example

{
  "name": "headers",
  "version": "builtin",
  "configuration": {
    "response": [
      {
        "op": "add",
        "header": "Custom-Header",
        "value_type": "plain",
        "value": "any-value"
      }
    ],
    "request": [
      {
        "op": "set",
        "header": "Authorization",
        "value_type": "plain",
        "value": "Basic dXNlcm5hbWU6cGFzc3dvcmQ="
      },
      {
        "op": "set",
        "header": "Service-ID",
        "value_type": "liquid",
        "value": "{{service.id}}"
      }
    ]
  }
}

For information on how to configure policies, see the Creating a policy chain section of the documentation.

4.1.8. IP Check policy

The IP Check policy is used to deny or allow requests based on a list of IPs.

Configuration properties

propertydescriptiondata typerequired?

check_type

The check_type property has two possible values, whitelist or blacklist. blacklist will deny all requests from IPs on the list. whitelist will deny all requests from IPs not on the list.

string, must be either whitelist or blacklist

yes

ips

The ips property allows you to specify a list of IP addresses to whitelist or blacklist. Both single IPs and CIDR ranges can be used.

array of strings, must be valid IP addresses

yes

error_msg

The error_msg property allows you to configure the error message returned when a request is denied.

string

no

client_ip_sources

The client_ip_sources property allows you to configure how to retrieve the client IP. By default, the last caller IP is used. The other options are X-Forwarded-For and X-Real-IP.

array of strings, valid options are one or more of X-Forwarded-For, X-Real-IP, last_caller.

no

Policy object example

{
  "name": "ip_check",
  "configuration": {
    "ips": [ "3.4.5.6", "1.2.3.0/4" ],
    "check_type": "blacklist",
    "client_ip_sources": ["X-Forwarded-For", "X-Real-IP", "last_caller"],
    "error_msg": "A custom error message"
  }
}

For information on how to configure policies, refer to the Creating a policy chain section of the documentation.

4.1.9. JWT Claim Check policy

4.1.9.1. About JWT Claim Check policy

Based on JSON Web Token (JWT) claims, the JWT Claim Check policy allows you to define new rules to block resource targets and methods.

In order to route based on the value of a JWT claim, you need a policy in the chain that validates the JWT and stores the claim in the context that the policies share.

If the JWT Claim Check policy is blocking a resource and a method, the policy also validates the JWT operations. Alternatively, in case that the method resource does not match, the request continues to the backend API.

Example: In case of a GET request, the JWT needs to have the role claim as admin, if not the request will be denied. On the other hand, any non GET request will not validate the JWT operations, so POST resource is allowed without JWT constraint.

{
  "name": "apicast.policy.jwt_claim_check",
  "configuration": {
      "error_message": "Invalid JWT check",
      "rules": [
          {
              "operations": [
                  {"op": "==", "jwt_claim": "role", "jwt_claim_type": "plain", "value": "admin"}
              ],
              "combine_op":"and",
              "methods": ["GET"],
              "resource": "/resource",
              "resource_type": "plain"
          }
      ]
  }
}

4.1.9.2. Configuring JWT Claim Check policy in your policy chain

4.1.9.2.1. Prerequisites:
  • You need to have access to a 3scale installation.
  • You need to wait for all the deployments to finish.
4.1.9.2.2. Configuring the policy
  1. To add the JWT Claim Check policy to your API, follow the steps described in Enabling a standard Policy and choose JWT Claim Check.
  2. Click the JWT Claim Check link.
  3. To enable the policy, select the Enabled checkbox.
  4. To add rules, click the plus + icon.
  5. Specify the resource_type.
  6. Choose the operator.
  7. Indicate the resource controlled by the rule.
  8. To add the allowed methods, click the plus + icon.
  9. Type the error message to show to the user when traffic is blocked.
  10. When you have finished setting up your API with JWT Claim Check, click Update Policy.

Additionally:

  • You can add more resource types and allowed methods by clicking the plus + icon in the corresponding section.

To save your changes, click Update & test in Staging Environment.

4.1.10. Liquid Context Debug policy

Note

The Liquid Context Debug policy is meant only for debugging purposes in the development environment and not in production.

This policy responds to the API request with a JSON, containing the objects and values that are available in the context and can be used for evaluating Liquid templates. When combined with the 3scale APIcast or Upstream policy, Liquid Context Debug must be placed before them in the policy chain in order to work correctly. To avoid circular references, the policy only includes duplicated objects once and replaces them with a stub value.

An example of the value returned by APIcast when the policy is enabled:

{
  "jwt": {
    "azp": "972f7b4f",
    "iat": 1537538097,
    ...
    "exp": 1537574096,
    "typ": "Bearer"
  },
  "credentials": {
    "app_id": "972f7b4f"
  },
  "usage": {
    "deltas": {
      "hits": 1
    },
    "metrics": [
      "hits"
    ]
  },
  "service": {
    "id": "2",
    ...
  }
  ...
}

4.1.11. Logging policy

The Logging policy has two purposes:

  • To enable and disable access log output.
  • To create a custom access log format for each service and be able to set conditions to write custom access log.

You can combine the Logging policy with the global setting for the location of access logs. Set the APICAST_ACCESS_LOG_FILE environment variable to configure the location of APIcast access logs. By default, this variable is set to /dev/stdout, which is the standard output device. For further details about global APIcast parameters, see Chapter 7, APIcast environment variables.

Additionally, the Logging policy has these features:

  • This policy only supports the enable_access_logs configuration parameter.
  • To enable the access logs, select the enable_access_logs parameter or disable the Logging policy.
  • To disable access logging for an API:

    1. Enable the policy.
    2. Clear the enable_access_logs parameter
    3. Click the Submit button.
  • By default, this policy is not enabled in policy chains.

4.1.11.1. Global configuration for all APIs

Logging options help to avoid issues with logs that are not correctly formatted in APIs. A custom APIcast environment variable can be set and all APIs implement the Logging policy. Here is an example of a policy that is loaded in all services: custom_env.lua

local cjson = require('cjson')
local PolicyChain = require('apicast.policy_chain')
local policy_chain = context.policy_chain

local logging_policy_config = cjson.decode([[
{
  "enable_access_logs": false,
  "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}"
}
]])

policy_chain:insert( PolicyChain.load_policy('logging', 'builtin', logging_policy_config), 1)

return {
  policy_chain = policy_chain,
  port = { metrics = 9421 },
}

To run APIcast with this specific environment:

docker run --name apicast --rm -p 8080:8080 \
    -v $(pwd):/config \
    -e APICAST_ENVIRONMENT=/config/custom_env.lua \
    -e THREESCALE_PORTAL_ENDPOINT=https://ACCESS_TOKEN@ADMIN_PORTAL_DOMAIN \
    quay.io/3scale/apicast:master

These are key concepts of the Docker command to consider:

  • Current Lua file must be shared to the container -v $(pwd):/config.
  • APICAST_ENVIRONMENT variable must be set to the Lua file that is stored in the /config directory.

4.1.11.2. Examples

This section describes some examples when working with the Logging policy. These examples consider the following caveats:

  • If custom_logging or enable_json_logs property is enabled, default access log will be disabled.
  • If enable_json_logs is enabled, the custom_logging field will be omitted.

Disabling access log

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false
  }
}

Enabling custom access log

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "[{{time_local}}] {{host}}:{{server_port}} {{remote_addr}}:{{remote_port}} \"{{request}}\" {{status}} {{body_bytes_sent}} ({{request_time}}) {{post_action_impact}}",
  }
}

Enabling custom access log with the service identifier

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}",
  }
}

Configuring access logs in JSON format

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "enable_json_logs": true,
    "json_object_config": [
      {
        "key": "host",
        "value": "{{host}}",
        "value_type": "liquid"
      },
      {
        "key": "time",
        "value": "{{time_local}}",
        "value_type": "liquid"
      },
      {
        "key": "custom",
        "value": "custom_method",
        "value_type": "plain"
      }
    ]
  }
}

Configuring a custom access log only for a successful request

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}",
    "condition": {
      "operations": [
        {"op": "==", "match": "{{status}}", "match_type": "liquid", "value": "200"}
      ],
      "combine_op": "and"
    }
  }
}

Customizing access logs where the response status matches either 200 or 500

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}",
    "condition": {
      "operations": [
        {"op": "==", "match": "{{status}}", "match_type": "liquid", "value": "200"},
        {"op": "==", "match": "{{status}}", "match_type": "liquid", "value": "500"}
      ],
      "combine_op": "or"
    }
  }
}

4.1.11.3. Additional information: custom logging

For custom logging, you can use Liquid templates with exported variables. These variables include:

  • NGINX default log_format directive variables, as example: {{remote_addr}}.
  • Response and request headers using {{req.headers.FOO}} for getting FOO header in the request, or {{res.headers.FOO}} to retrieve FOO header on response.
  • Service information, as {{service.id}} and all service properties as the THREESCALE_CONFIG_FILE or THREESCALE_PORTAL_ENDPOINT parameters provide.

4.1.12. Maintenance Mode policy

The Maintenance Mode policy allows you reject incoming requests with a specified status code and message. It is useful for maintenance periods or to temporarily block an API.

Configuration properties

The following is a list of possible properties and default values.

propertyvaluedefaultdescription

status

integer, optional

503

Response code

message

string, optional

503 Service Unavailable - Maintenance

Response message

Maintenance mode policy example

{
  "policy_chain": [
    {"name": "maintenance-mode", "version": "1.0.0",
    "configuration": {"message": "Be back soon..", "status": 503} },
  ]
}

For information on how to configure the Maintenance Mode policy in 3scale, see the Section 4.5, “Creating a policy chain in 3scale” section of the documentation.

4.1.13. OAuth 2.0 Token Introspection policy

The OAuth 2.0 Token Introspection policy allows validating the JSON Web Token (JWT) token used for services with the OpenID Connect (OIDC) authentication option using the Token Introspection Endpoint of the token issuer (Red Hat Single Sign-On).

APIcast supports the following authentication types in the auth_type field to determine the Token Introspection Endpoint and the credentials APIcast uses when calling this endpoint:

  • use_3scale_oidc_issuer_endpoint: APIcast uses the client credentials, Client ID and Client Secret, as well as the Token Introspection Endpoint from the OIDC Issuer setting configured on the Service Integration page. APIcast discovers the Token Introspection endpoint from the token_introspection_endpoint field. This field is located in the .well-known/openid-configuration endpoint that is returned by the OIDC issuer.

Example 4.1. Authentication type set to use_3scale_oidc_issuer_endpoint

"policy_chain": [
…​
  {
    "name": "apicast.policy.token_introspection",
    "configuration": {
      "auth_type": "use_3scale_oidc_issuer_endpoint"
    }
  }
…​
],
  • client_id+client_secret: This option enables you to specify a different Token Introspection Endpoint, as well as the Client ID and Client Secret APIcast uses to request token information. When using this option, set the following configuration parameters:

    • client_id: Sets the Client ID for the Token Introspection Endpoint.
    • client_secret: Sets the Client Secret for the Token Introspection Endpoint.
    • introspection_url: Sets the Introspection Endpoint URL.

Example 4.2. Authentication type set to client_id+client_secret

"policy_chain": [
…​
  {
    "name": "apicast.policy.token_introspection",
    "configuration": {
      "auth_type": "client_id+client_secret",
      "client_id": "myclient",
      "client_secret": "mysecret",
      "introspection_url": "http://red_hat_single_sign-on/token/introspection"
    }
  }
…​
],

Regardless of the setting in the auth_type field, APIcast uses Basic Authentication to authorize the Token Introspection call (Authorization: Basic <token> header, where <token> is Base64-encoded <client_id>:<client_secret> setting).

OAuth 2.0 Token Introspection Configuration

The response of the Token Introspection Endpoint contains the active attribute. APIcast checks the value of this attribute. Depending on the value of the attribute, APIcast authorizes or rejects the call:

  • true: The call is authorized
  • false: The call is rejected with the Authentication Failed error

The policy allows enabling caching of the tokens to avoid calling the Token Introspection Endpoint on every call for the same JWT token. To enable token caching for the Token Introspection Policy, set the max_cached_tokens field to a value from 0, which disables the feature, and 10000. Additionally, you can set a Time to Live (TTL) value from 1 to 3600 seconds for tokens in the max_ttl_tokens field.

4.1.14. Prometheus metrics policy

Prometheus is a stand-alone, open source systems monitoring and alerting toolkit. You can use Prometheus to visualize metrics and alerts for APIcast-managed API services.

Prometheus metrics availability

Prometheus metrics are only accessible with certain APIcast deployment options:

DeploymentPrometheus supported?Availability?Resources

Hosted APIcast

No

-

-

Embedded APIcast

Yes

Prometheus is supported on OpenShift 3.11+

Refer to the OpenShift Container Platform documentation for guidance on configuration.

Self-managed APIcast

Yes

Prometheus is supported if using OpenShift 3.11+. For Docker environments or other self-managed options, you will need to install and configure Prometheus yourself.

Refer to the OpenShift Container Platform documentation for guidance on configuration.

Prometheus metrics list

The following metrics are always available:

MetricDescriptionTypeLabels

nginx_http_connections

Number of HTTP connections

gauge

state(accepted,active,handled,reading,total,waiting,writing)

nginx_error_log

APIcast errors

counter

level(debug,info,notice,warn,error,crit,alert,emerg)

openresty_shdict_capacity

Capacity of the dictionaries shared between workers

gauge

dict(one for every dictionary)

openresty_shdict_free_space

Free space of the dictionaries shared between workers

gauge

dict(one for every dictionary)

nginx_metric_errors_total

Number of errors of the Lua library that manages the metrics

counter

-

total_response_time_seconds

Time needed to sent a response to the client (in seconds)

Note: To access the service_id and service_system_name labels, you must set the APICAST_EXTENDED_METRICS environment variable to true.

histogram

service_id, service_system_name

upstream_response_time_seconds

Response times from upstream servers (in seconds)

Note: To access the service_id and service_system_name labels, you must set the APICAST_EXTENDED_METRICS environment variable to true.

histogram

service_id, service_system_name

upstream_status

HTTP status from upstream servers

Note: To access the service_id and service_system_name labels, you must set the APICAST_EXTENDED_METRICS environment variable to true.

counter

status, service_id, service_system_name

threescale_backend_calls

Authorize and report requests to the 3scale backend (Apisonator)

counter

endpoint(authrep, auth, report), status(2xx, 4xx, 5xx)

The following metrics are only available when using the 3scale Batcher policy:

MetricDescriptionTypeLabels

batching_policy_auths_cache_hits

Hits in the auths cache of the 3scale batching policy

counter

-

batching_policy_auths_cache_misses

Misses in the auths cache of the 3scale batching policy

counter

-

Metrics with no value

If a metric has no value, the metric is hidden. For example, if nginx_error_log has no errors to report, the nginx_error_log metric is not displayed. It will only be visible once it has a value.

4.1.15. Referrer policy

The Referrer policy enables the Referrer Filtering feature. When the policy is enabled in the service policy chain, APIcast sends the value of the Referer policy of the upcoming request to the Service Management API (AuthRep call) in the referrer parameter. For more information on how Referrer Filtering works, see the Referrer Filtering section in Authentication Patterns.

4.1.16. Retry policy

The Retry policy sets the number of retry requests to the upstream API. The retry policy is configured per service, so users can enable retries for as few or as many of their services as desired, as well as configure different retry values for different services.

Important

As of 3scale 2.7, it is not possible to configure which cases to retry from the policy. This is controlled with the environment variable APICAST_UPSTREAM_RETRY_CASES, which applies retry requests to all services. For more on this, check out APICAST_UPSTREAM_RETRY_CASES.

An example of the retry policy JSON is shown below:

{
  "$schema": "http://apicast.io/policy-v1/schema#manifest#",
  "name": "Retry",
  "summary": "Allows retry requests to the upstream",
  "description": "Allows retry requests to the upstream",
  "version": "builtin",
  "configuration": {
    "type": "object",
    "properties": {
      "retries": {
        "description": "Number of retries",
        "type": "integer",
        "minimum": 1,
        "maximum": 10
      }
    }
  }
}

4.1.17. RH-SSO/Keycloak Role Check policy

This policy adds role check when used with the OpenID Connect authentication option. This policy verifies realm roles and client roles in the access token issued by Red Hat Single Sign-On (RH-SSO). The realm roles are specified when you want to add role check to every client resource of 3scale.

There are the two types of role checks that the type property specifies in the policy configuration:

  • whitelist (default): When whitelist is used, APIcast will check if the specified scopes are present in the JWT token and will reject the call if the JWT doesn’t have the scopes.
  • blacklist: When blacklist is used, APIcast will reject the calls if the JWT token contains the blacklisted scopes.

It is not possible to configure both checks – blacklist and whitelist in the same policy, but you can add more than one instance of the RH-SSO/Keycloak role check policy to the APIcast policy chain.

You can configure a list of scopes via the scopes property of the policy configuration.

Each scope object has the following properties:

  • resource: Resource (endpoint) controlled by the role. This is the same format as Mapping Rules. The pattern matches from the beginning of the string and to make an exact match you must append $ at the end.
  • resource_type: This defines how the resource value is evaluated.

    • As plain text (plain): Evaluates the resource value as plain text. Example: /api/v1/products$.
    • As Liquid text (liquid): Allows using Liquid in the resource value. Example: /resource_{{ jwt.aud }} manages access to the resource containing the Client ID.
  • methods: Use this parameter to list the allowed HTTP methods in APIcast, based on the user roles in RH-SSO. As examples, you can allow methods that have:

    • The role1 realm role to access /resource1. For those methods that do not have this realm role, you need to specify the blacklist.
    • The client1 role called role1 to access /resource1.
    • The role1 and role2 realm roles to access /resource1. Specify the roles in realm_roles. You can also indicate the scope for each role.
    • The client role called role1 of the application client, which is the recipient of the access token, to access /resource1. Use liquid client type to specify the JSON Web Token (JWT) information to the client.
    • The client role including the client ID of the application client, the recipient of the access token, to access /resource1. Use liquid client type to specify the JWT information to the name of the client role.
    • The client role called role1 to access the resource including the application client ID. Use liquid client type to specify the JWT information to the resource.
  • realm_roles: Use it to check the realm role (see the Realm Roles in Red Hat Single Sign-On documentation).

    The realm roles are present in the JWT issued by Red Hat Single Sign-On.

      "realm_access": {
        "roles": [
          "<realm_role_A>", "<realm_role_B>"
        ]
      }

    The real roles must be specified in the policy.

    "realm_roles": [
      { "name": "<realm_role_A>" }, { "name": "<realm_role_B>" }
    ]

    Following are the available properties of each object in the realm_roles array:

  • name: Specifies the name of the role.
  • name_type: Defines how the name must be evaluated; it can be plain or liquid (works the same way as for the resource_type).
  • client_roles: Use client_roles to check for the particular access roles in the client namespace (see the Client Roles in Red Hat Single Sign-On documentation).

    The client roles are present in the JWT under the resource_access claim.

      "resource_access": {
        "<client_A>": {
          "roles": [
            "<client_role_A>", "<client_role_B>"
          ]
        },
        "<client_B>": {
          "roles": [
            "<client_role_A>", "<client_role_B>"
          ]
        }
      }

    Specify the client roles in the policy.

    "client_roles": [
      { "name": "<client_role_A>", "client": "<client_A>" },
      { "name": "<client_role_B>", "client": "<client_A>" },
      { "name": "<client_role_A>", "client": "<client_B>" },
      { "name": "<client_role_B>", "client": "<client_B>" }
    ]

    Following are the available properties of each object in the client_roles array:

  • name: Specifies the name of the role.
  • name_type: Defines how the name value must be evaluated; it can be plain or liquid (works the same way as for the resource_type).
  • client: Specifies the client of the role. When it is not defined, this policy uses the aud claim as the client.
  • client_type: Defines how the client value must be evaluated; it can be plain or liquid (works the same way as for the resource_type).

4.1.18. Routing policy

The Routing policy allows you to route requests to different target endpoints. You can define target endpoints and then you will be able to route incoming requests from the UI to those using regular expressions.

When combined with the APIcast policy, the Routing policy should be placed before the APIcast one in the chain, as the two policies that comes first will output content to the response. When the second gets a change to run its content phase, the request will already be sent to the client, so it will not output anything to the response.

4.1.18.1. Routing rules

  • If multiple rules exist, the Routing policy applies the first match. You can sort these rules.
  • If no rules match, the policy will not change the upstream and will use the defined Private Base URL defined in the service configuration.

4.1.18.2. Request path rule

This is a configuration that routes to http://example.com when the path is /accounts:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/accounts"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.3. Header rule

This is a configuration that routes to http://example.com when the value of the header Test-Header is 123:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "operations": [
             {
               "match": "header",
               "header_name": "Test-Header",
               "op": "==",
               "value": "123"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.4. Query argument rule

This is a configuration that routes to http://example.com when the value of the query argument test_query_arg is 123:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "operations": [
             {
               "match": "query_arg",
               "query_arg_name": "test_query_arg",
               "op": "==",
               "value": "123"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.5. JWT claim rule

To route based on the value of a JWT claim, there needs to be a policy in the chain that validates the JWT and stores it in the context that the policies share.

This is a configuration that routes to http://example.com when the value of the JWT claim test_claim is 123:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "operations": [
             {
               "match": "jwt_claim",
               "jwt_claim_name": "test_claim",
               "op": "==",
               "value": "123"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.6. Multiple operations rule

Rules can have multiple operations and route to the given upstream only when all of them evaluate to true (using the 'and' combine_op), or when at least one of them evaluates to true (using the 'or' combine_op). The default value of combine_op is 'and'.

This is a configuration that routes to http://example.com when the path of the request is /accounts and when the value of the header Test-Header is 123:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "combine_op": "and",
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/accounts"
             },
             {
               "match": "header",
               "header_name": "Test-Header",
               "op": "==",
               "value": "123"
             }
           ]
         }
       }
     ]
   }
 }

This is a configuration that routes to http://example.com when the path of the request is /accounts or when the value of the header Test-Header is 123:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "combine_op": "or",
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/accounts"
             },
             {
               "match": "header",
               "header_name": "Test-Header",
               "op": "==",
               "value": "123"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.7. Combining rules

Rules can be combined. When there are several rules, the upstream selected is one of the first rules that evaluates to true.

This is a configuration with several rules:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://some_upstream.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/accounts"
             }
           ]
         }
       },
       {
         "url": "http://another_upstream.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/users"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.8. Catch-all rules

A rule without operations always matches. This can be useful to define catch-all rules.

This configuration routes the request to http://some_upstream.com if the path is /abc, routes the request to http://another_upstream.com if the path is /def, and finally, routes the request to http://default_upstream.com if none of the previous rules evaluated to true:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://some_upstream.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/abc"
             }
           ]
         }
       },
       {
         "url": "http://another_upstream.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/def"
             }
           ]
         }
       },
       {
         "url": "http://default_upstream.com",
         "condition": {
           "operations": []
         }
       }
     ]
   }
 }

4.1.18.9. Supported operations

The supported operations are ==, !=, and matches. The latter matches a string with a regular expression and it is implemented using ngx.re.match

This is a configuration that uses !=. It routes to http://example.com when the path is not /accounts:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "!=",
               "value": "/accounts"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.10. Liquid templating

It is possible to use liquid templating for the values of the configuration. This allows you to define rules with dynamic values if a policy in the chain stores the key my_var in the context.

This is a configuration that uses that value to route the request:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "condition": {
           "operations": [
             {
               "match": "header",
               "header_name": "Test-Header",
               "op": "==",
               "value": "{{ my_var }}",
               "value_type": "liquid"
             }
           ]
         }
       }
     ]
   }
 }

4.1.18.11. Set the host used in the Host header

By default, when a request is routed, the policy sets the Host header using the host of the URL of the rule that matched. It is possible to specify a different host with the host_header attribute.

This is a configuration that specifies some_host.com as the host of the Host header:

{
   "name": "routing",
   "version": "builtin",
   "configuration": {
     "rules": [
       {
         "url": "http://example.com",
         "host_header": "some_host.com",
         "condition": {
           "operations": [
             {
               "match": "path",
               "op": "==",
               "value": "/"
             }
           ]
         }
       }
     ]
   }
 }

4.1.19. SOAP policy

The SOAP policy matches SOAP action URIs provided in the SOAPAction or Content-Type header of an HTTP request with mapping rules specified in the policy.

Configuration properties

propertydescriptionvaluesrequired?

pattern

The pattern property allows you to specify a string that APIcast will seek matches for in the SOAPAction URI.

data type: string

yes

metric_system_name

The metric_system_name property allows you to specify the 3scale backend metric with which your matched pattern will register a hit.

data type: string, must be a valid metric

yes

Policy object example

{
  "name": "soap",
  "version": "builtin",
  "configuration": {
    "mapping_rules": [
      {
        "pattern": "http://example.com/soap#request",
        "metric_system_name": "soap",
        "delta": 1
      }
    ]
  }
}

For information on how to configure policies, refer to the Creating a policy chain section of the documentation.

4.1.20. TLS Client Certificate Validation policy

4.1.20.1. About TLS Client Certificate Validation policy

With the TLS Client Certificate Validation policy, APIcast implements a TLS handshake and validates the client certificate against a whitelist. A whitelist contains certificates signed by the Certified Authority (CA) or just plain client certificates. In case of an expired or invalid certificate, the request is rejected and no other policies will be processed.

The client connects to APIcast to send a request and provides a Client Certificate. APIcast verifies the authenticity of the provided certificate in the incoming request according to the policy configuration. APIcast can also be configured to use a client certificate of its own to use it when connecting to the upstream.

4.1.20.2. Setting up APIcast to work with TLS Client Certificate Validation

APIcast needs to be configured to terminate TLS. Follow the steps below to configure the validation of client certificates provided by users on APIcast with the Client Certificate Validation policy.

4.1.20.2.1. Prerequisites:
  • You need to have access to a 3scale installation.
  • You need to wait for all the deployments to finish.
4.1.20.2.2. Setting up APIcast to work with the policy

To set up APIcast and configure it to terminate TLS, follow these steps:

  1. You need to get the access token and deploy APIcast self-managed, as indicated in Deploying APIcast using the OpenShift template.

    Note

    APIcast self-managed deployment is required as the APIcast instance needs to be reconfigured to use some certificates for the whole gateway.

  2. For testing purposes only, you can use the lazy loader with no cache and staging environment and --param flags for the ease of testing

    oc new-app -f https://raw.githubusercontent.com/3scale/3scale-amp-openshift-templates/master/apicast-gateway/apicast.yml --param CONFIGURATION_LOADER=lazy --param DEPLOYMENT_ENVIRONMENT=staging --param CONFIGURATION_CACHE=0
  3. Generate certificates for testing purposes. Alternatively, for production deployment, you can use the certificates provided by a Certificate Authority.
  4. Create a Secret with TLS certificates

    oc create secret tls apicast-tls
    --cert=ca/certs/server.crt
    --key=ca/keys/server.key
  5. Mount the Secret inside the APIcast deployment

    oc set volume dc/apicast --add --name=certificates --mount-path=/var/run/secrets/apicast --secret-name=apicast-tls
  6. Configure APIcast to start listening on port 8443 for HTTPS

    oc set env dc/apicast APICAST_HTTPS_PORT=8443 APICAST_HTTPS_CERTIFICATE=/var/run/secrets/apicast/tls.crt APICAST_HTTPS_CERTIFICATE_KEY=/var/run/secrets/apicast/tls.key
  7. Expose 8443 on the Service

    oc patch service apicast -p '{"spec":{"ports":[{"name":"https","port":8443,"protocol":"TCP"}]}}'
  8. Delete the default route

    oc delete route api-apicast-staging
  9. Expose the apicast service as a route

    oc create route passthrough --service=apicast --port=https --hostname=api-3scale-apicast-staging.$WILDCARD_DOMAIN
    Note

    This step is needed for every API you are going to use and the domain changes for every API.

  10. Verify that the previously deployed gateway works and the configuration was saved, by specifying [Your_user_key] in the placeholder.

    curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN?user_key=[Your_user_key] -v --cacert ca/certs/ca.crt

4.1.20.3. Configuring TLS Client Certificate Validation in your policy chain

4.1.20.3.1. Prerequisites
4.1.20.3.2. Configuring the policy
  1. To add the TLS Client Certificate Validation policy to your API, follow the steps described in Enabling a standard Policy and choose TLS Client Certificate Validation.
  2. Click the TLS Client Certificate Validation link.
  3. To enable the policy, select the Enabled checkbox.
  4. To add certificates to the whitelist, click the plus + icon.
  5. Specify the certificate including -----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----.
  6. When you have finished setting up your API with TLS Client Certificate Validation, click Update Policy.

Additionally:

  • You can add more certificates by clicking the plus + icon.
  • You can also reorganize the certificates by clicking the up and down arrows.

To save your changes, click Update & test in Staging Environment.

4.1.20.4. Verifying functionality of the TLS Client Certificate Validation policy

4.1.20.4.1. Prerequisites:
4.1.20.4.2. Verifying policy functionality

You can verify the applied policy by specifying [Your_user_key] in the placeholder.

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --cacert ca/certs/ca.crt --cert ca/certs/client.crt --key ca/keys/client.key

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --cacert ca/certs/ca.crt --cert ca/certs/server.crt --key ca/keys/server.key

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --cacert ca/certs/ca.crt

4.1.20.5. Removing a certificate from the whitelist

4.1.20.5.1. Prerequisites
4.1.20.5.2. Removing a certificate
  1. Click the TLS Client Certificate Validation link.
  2. To remove certificates from the whitelist, click the x icon.
  3. When you have finished removing the certificates, click Update Policy.

To save your changes, click Update & test in Staging Environment.

4.1.20.6. Reference material

For more information about working with certificates, you can refer to Red Hat Certificate System.

4.1.21. TLS Termination policy

This section provides information about the Transport Layer Security (TLS) Termination policy: concepts, configuration, verification and file removal from the policy.

4.1.21.1. About TLS Termination policy

With the TLS Termination policy, you can configure APIcast to finish TLS requests for each API without using a single certificate for all APIs. APIcast pulls the configuration setting before establishing a connection to the client; in this way, APIcast uses the certificates from the policy and makes the TLS terminate. This policy works with these sources:

  • Stored in the policy configuration.
  • Stored on the file system.

By default, this policy is not enabled in policy chains.

4.1.21.2. Configuring TLS Termination in your policy chain

This section describes the prerequisites and steps to configure the TLS Termination in your policy chain, with Privacy Enhanced Mail (PEM) formatted certificates.

4.1.21.2.1. Prerequisites
  • Certificate issued by user
  • A PEM-formatted server certificate
  • A PEM-formatted certificate private key
4.1.21.2.2. Configuring the policy
  1. To add the TLS Termination policy to your API, follow the steps described in Enabling a standard Policy and choose TLS Termination.
  2. Click the TLS Termination link.
  3. To enable the policy, select the Enabled checkbox.
  4. To add TLS certificates to the policy, click the plus + icon.
  5. Choose the source of your certificates:

    • Embedded certificate: Specify the path to the server certificate, and the path to the certificate private key.
    • Certificate from local file system: Browse the files for the certificate private key, and the server certificate.
  6. When you have finished setting up your API with TLS Termination, click Update Policy.

Additionally:

  • You can add more certificates by clicking the plus + icon.
  • You can also reorganize the certificates by clicking the up and down arrows.

To save your changes, click Update Policy Chain.

4.1.21.3. Verifying functionality of the TLS Termination policy

4.1.21.3.1. Prerequisites:
4.1.21.3.2. Verifying policy functionality

You can test in the command line if the policy works with the following command:

curl “${public_URL}:${port}/?user_key=${user_key}" --cacert ${path_to_certificate}/ca.pem -v

where:

  • public_URL= The staging public base URL
  • port= The port number
  • user_key= The user key you want to authenticate with
  • path_to_certificate= The path to the CA certificate in your local file system

4.1.21.4. Removing files from TLS Termination

This section describes the steps to remove the certificate and key files from the TLS Termination policy.

4.1.21.4.1. Prerequisites
4.1.21.4.2. Removing a certificate
  1. Click the TLS Termination link.
  2. To remove certificates and keys, click the x icon.
  3. When you have finished removing the certificates, click Update Policy.

To save your changes, click Update Policy Chain.

4.1.22. Upstream policy

The Upstream policy allows you to parse the Host request header using regular expressions and replace the upstream URL defined in the Private Base URL with a different URL.

For Example:

A policy with a regex /foo, and URL field newexample.com would replace the URL https://www.example.com/foo/123/ with newexample.com

Policy chain reference:

propertydescriptionvaluesrequired?

regex

The regex property allows you to specify the regular expression that the Upstream policy will use when searching for a match with the request path.

data type: string, Must be a valid regular expression syntax

yes

url

Using the url property, you can specify the replacement URL in the event of a match. Note that the upstream policy does not check whether or not this URL is valid.

data type: string, ensure this is a valid URL

yes

Policy object example

{
  "name": "upstream",
  "version": "builtin",
  "configuration": {
    "rules": [
      {
        "regex": "^/v1/.*",
        "url": "https://api-v1.example.com",

      }
    ]
  }
}

For information on how to configure policies, refer to the Creating a policy chain section of the documentation.

4.1.23. Upstream Connection policy

4.1.23.1. About Upstream Connection policy

The Upstream Connection policy allows you to change the default values of the following directives, for each API, depending on how you have configured the API back end server in your 3scale installation:

  • proxy_connect_timeout
  • proxy_send_timeout
  • proxy_read_timeout

4.1.23.2. Configuring Upstream Connection in your policy chain

4.1.23.2.1. Prerequisites:
  • You need to have access to a 3scale installation.
  • You need to wait for all the deployments to finish.
4.1.23.2.2. Configuring the policy
  1. To add the Upstream Connection policy to your API, follow the steps described in Enabling a standard Policy and choose Upstream connection.
  2. Click the Upstream connection link.
  3. To enable the policy, select the Enabled checkbox.
  4. Configure the options for the connections to the upstream:

    • send_timeout
    • connect_timeout
    • read_timeout
  5. When you have finished setting up your API with Upstream connection, click Update Policy.

To save your changes, click Update & test in Staging Environment.

4.1.24. URL Rewriting policy

The URL Rewriting policy allows you to modify the path of a request and the query string.

When combined with the 3scale APIcast policy, if the URL rewriting policy is placed before the 3scale APIcast policy in the policy chain, the APIcast mapping rules will apply to the modified path. If the URL rewriting policy is placed after APIcast in the policy chain, then the mapping rules will apply to the original path.

The policy supports the following two sets of operations:

  • commands: List of commands to be applied to rewrite the path of the request.
  • query_args_commands: List of commands to be applied to rewrite the query string of the request.

4.1.24.1. Commands for rewriting the path

Following are the configuration parameters that each command in the commands list consists of:

  • op: Operation to be applied. The options available are: sub and gsub. The sub operation replaces only the first occurrence of a match with your specified regular expression. The gsub operation replaces all occurrences of a match with your specified regular expression. See the documentation for the sub and gsub operations.
  • regex: Perl-compatible regular expression to be matched.
  • replace: Replacement string that is used in the event of a match.
  • options (optional): Options that define how the regex matching is performed. For information on available options, see the ngx.re.match section of the OpenResty Lua module project documentation.
  • break (optional): When set to true (checkbox enabled), if the command rewrote the URL, it will be the last one applied (all posterior commands in the list will be discarded).

4.1.24.2. Commands for rewriting the query string

Following are configuration parameters that each command in the query_args_commands list consists of:

  • op: Operation to be applied to the query arguments. The following options are available:

    • add: Add a value to an existing argument.
    • set: Create the arg when not set and replace its value when set.
    • push: Create the arg when not set and add the value when set.
    • delete: Delete an arg.
  • arg: The query argument name that the operation is applied on.
  • value: Specifies the value that is used for the query argument. For value type "liquid" the value should be in the format {{ variable_from_context }}. For the delete operation the value is not taken into account.
  • value_type (optional): Defines how the query argument value is evaluated and can either be plain for plain text or liquid for evaluation as a Liquid template. For more information, see Section 5.1, “Using variables and filters in policies”. If not specified, the type "plain" is used by default.

Example

The URL Rewriting policy is configured as follows:

{
  "name": "url_rewriting",
  "version": "builtin",
  "configuration": {
    "query_args_commands": [
      {
        "op": "add",
        "arg": "addarg",
        "value_type": "plain",
        "value": "addvalue"
      },
      {
        "op": "delete",
        "arg": "user_key",
        "value_type": "plain",
        "value": "any"
      },
      {
        "op": "push",
        "arg": "pusharg",
        "value_type": "plain",
        "value": "pushvalue"
      },
      {
        "op": "set",
        "arg": "setarg",
        "value_type": "plain",
        "value": "setvalue"
      }
    ],
    "commands": [
      {
        "op": "sub",
        "regex": "^/api/v\\d+/",
        "replace": "/internal/",
        "options": "i"
      }
    ]
  }

The original request URI that is sent to the APIcast:

https://api.example.com/api/v1/products/123/details?user_key=abc123secret&pusharg=first&setarg=original

The URI that APIcast sends to the API backend after applying the URL rewriting:

https://api-backend.example.com/internal/products/123/details?pusharg=first&pusharg=pushvalue&setarg=setvalue

The following transformations are applied:

  1. The substring /api/v1/ matches the only path rewriting command and it is replaced by /internal/.
  2. user_key query argument is deleted.
  3. The value pushvalue is added as an additional value to the pusharg query argument.
  4. The value original of the query argument setarg is replaced with the configured value setvalue.
  5. The command add was not applied because the query argument addarg is not present in the original URL.

For information on how to configure policies, see the Creating a policy chain section of the documentation.

4.1.25. URL Rewriting with Captures policy

The URL Rewriting with Captures policy is an alternative to the Section 4.1.24, “URL Rewriting policy” policy and allows rewriting the URL of the API request before passing it to the API backend.

The URL Rewriting with Captures policy retrieves arguments in the URL and uses their values in the rewritten URL.

The policy supports the transformations configuration parameter. It is a list of objects that describe which transformations are applied to the request URL. Each tranformation object consist of two properties:

  • match_rule: This rule is matched to the incoming request URL. It can contain named arguments in the {nameOfArgument} format; these arguments can be used in the rewritten URL. The URL is compared to match_rule as a regular expression. The value that matches named arguments must contain only the following characters (in PCRE regex notation): [\w-.~%!$&'()*,;=@:]. Other regex tokens can be used in the match_rule expression, such as ^ for the beginning of the string and $ for the end of the string.
  • template: The template for the URL that the original URL is rewritten with; it can use named arguments from the match_rule.

The query parameters of the original URL are merged with the query parameters specified in the template.

Example

The URL Rewriting with Captures is configured as follows:

{
  "name": "rewrite_url_captures",
  "version": "builtin",
  "configuration": {
    "transformations": [
      {
        "match_rule": "/api/v1/products/{productId}/details",
        "template": "/internal/products/details?id={productId}&extraparam=anyvalue"
      }
    ]
  }
}

The original request URI that is sent to the APIcast:

https://api.example.com/api/v1/products/123/details?user_key=abc123secret

The URI that APIcast sends to the API backend after applying the URL rewriting:

https://api-backend.example.com/internal/products/details?user_key=abc123secret&extraparam=anyvalue&id=123

4.2. Enabling a standard policy

Perform the following steps to enable policies in the Admin Portal:

  1. Log in to 3scale.
  2. Navigate to the API service.
  3. From [your_API_name] > Integration > Configuration, select edit APIcast configuration.
  4. Under the POLICIES section, click add policy.
  5. Select the policy you want to add and fill out the required fields.
  6. Click the Update and test in Staging Environment button to save the policy chain.

4.3. Creating custom APIcast policies

You can create custom APIcast policies entirely or modify the standard policies.

In order to create custom policies, you must understand the following:

  • Policies are written in Lua.
  • Policies must adhere to and be placed in the proper file directory.
  • Policy behavior is affected by how they are placed in a policy chain.
  • The interface to add custom policies is fully supported, but not the custom policies themselves.

4.4. Adding custom policies to APIcast

If you have created custom policies, you must add them to APIcast. How you do this depends on where APIcast is deployed.

You can add custom policies to the following APIcast self-managed deployments:

  • APIcast built-in gateways as part of a 3scale on-premises deployment on OpenShift
  • APIcast on OpenShift and the Docker containerized environment

You cannot add custom policies to APIcast hosted.

Warning

Never make policy changes directly onto a production gateway. Always test your changes.

4.4.1. Adding custom policies to the built-in APIcast

To add custom APIcast policies to an on-premises deployment, you must build an OpenShift image containing your custom policies and add it to your deployment. Red Hat 3scale provides a sample repository you can use as a framework to create and add custom policies to an on-premises deployment.

This sample repository contains the correct directory structure for a custom policy, as well as a template which creates an image stream and BuildConfigs for building a new APIcast OpenShift image containing any custom policies you create.

Warning

When you build apicast-custom-policies, the build process "pushes" a new image to the amp-apicast:latest tag. When there is an image change on this image stream tag (:latest), both the apicast-staging and the apicast-production tags, by default, are configured to automatically start new deployment. To avoid any disruptions to your production service (or staging, if you prefer) it is recommended to disable automatic deployment ("Automatically start a new deployment when the image changes" checkbox), or configure a different image stream tag for production (e.g. amp-apicast:production).

Follow these steps to add a custom policy to an on-premises deployment:

  1. Fork the https://github.com/3scale/apicast-example-policy [public repository with the policy example] or create a private repository with its content. You need to have the code of your custom policy available in a Git repository for OpenShift to build the image. Note that in order to use a private Git repository, you must set up the secrets in OpenShift.
  2. Clone the repository locally, add the implementation for your policy, and push the changes to your Git repository.
  3. Update the openshift.yml template. Specifically, change the following parameters:

    1. spec.source.git.uri: https://github.com/3scale/apicast-example-policy.git in the policy BuildConfig – change it to your Git repository location.
    2. spec.source.images[0].paths.sourcePath: /opt/app-root/policies/example in the custom policies BuildConfig - change example to the name of the custom policy that you have added under the policies directory in the repository.
    3. Optionally, update the OpenShift object names and image tags. However, you must ensure that the changes are coherent (example: apicast-example-policy BuildConfig builds and pushes the apicast-policy:example image that is then used as a source by the apicast-custom-policies BuildConfig. So, the tag should be the same).
  4. Create the OpenShift objects by running the command:

    oc new-app -f openshift.yml --param AMP_RELEASE=2.6.0
  5. In case the builds do not start automatically, run the following two commands. In case you changed it, replace apicast-example-policy with your own BuildConfig name (e.g. apicast-<name>-policy). Wait for the first command to complete before you execute the second one.

    oc start-build apicast-example-policy
    oc start-build apicast-custom-policies

If the build-in APIcast images have a trigger on them tracking the changes in the amp-apicast:latest image stream, the new deployment for APIcast will start. After apicast-staging has restarted, go to the Integration page on the admin portal, and click the Add Policy button to see your custom policy listed. After selecting and configuring it, click Update & test in Staging Environment to make your custom policy work in the staging APIcast.

4.4.2. Adding custom policies to APIcast on another OpenShift Container Platform

You can add custom policies to APIcast on OpenShift Container Platform (OCP) by fetching APIcast images containing your custom policies from the Integrated OpenShift Container Platform registry.

Add custom policies to APIcast on another OpenShift Container Platform

  1. Add policies to APIcast built-in
  2. If you are not deploying your APIcast gateway on your primary OpenShift cluster, establish access to the internal registry on your primary OpenShift cluster.
  3. Download the 3scale 2.7 APIcast OpenShift template.
  4. To modify the template, replace the default image directory with the full image name in your internal registry.

    image: <registry>/<project>/amp-apicast:latest
  5. Deploying APIcast using the OpenShift template, specifying your customized image:

    oc new-app -f customizedApicast.yml
Note

When custom policies are added to APIcast and a new image is built, those policies are automatically displayed as available in the Admin Portal when APIcast is deployed with the image. Existing services can see this new policy in the list of available policies, so it can be used in any policy chain.

When a custom policy is removed from an image and APIcast is restarted, the policy will no longer be available in the list, so you can no longer add it to a policy chain.

4.5. Creating a policy chain in 3scale

Create a policy chain in 3scale as part of your APIcast gateway configuration. Follow these steps to modify the policy chain in the UI:

  1. Log in to your AMP
  2. Navigate to the API service

    navigate to APIcast integrations page
  3. From [your_API_name] > Integration > Configuration, select edit APIcast configuration

    navigate to APIcast configuration page
  4. Under the POLICIES section, use the arrow icons to reorder policies in the policy chain. Always place the APIcast policy last in the policy chain.

    policyChainOverview
  5. Click the Update and test in Staging Environment button to save the policy chain

4.6. Creating a policy chain JSON configuration file

If you are using a native deployment of APIcast, you can create a JSON configuration file to control your policy chain outside of the AMP.

A JSON configuration file policy chain contains a JSON array composed of the following information:

  • the services object with an id value that specifies which service the policy chain applies to by number
  • the proxy object, which contains the policy_chain and subsequent objects
  • the policy_chain object, which contains the values that define the policy chain
  • individual policy objects which specify both name and configuration data necessary to identify the policy and configure policy behavior

The following is an example policy chain for a custom policy sample_policy_1 and the API introspection standard policy token_introspection:

{
  "services":[
    {
      "id":1,
      "proxy":{
        "policy_chain":[
          {
            "name":"sample_policy_1", "version": "1.0",
            "configuration":{
              "sample_config_param_1":["value_1"],
              "sample_config_param_2":["value_2"]
            }
          },
          {
            "name": "token_introspection", "version": "builtin",
            "configuration": {
              introspection_url:["https://tokenauthorityexample.com"],
              client_id:["exampleName"],
              client_secret:["secretexamplekey123"]
          },
          {
             "name": "apicast", "version": "builtin",
          }
        ]
      }
    }
  ]
}

All policy chains must include the built-in policy apicast. Where you place APIcast in the policy chain will affect policy behavior.

Chapter 5. Integrating a policy chain with APIcast native deployments

For native APIcast deployments, you can integrate a custom policy chain by specifying a configuration file using the THREESCALE_CONFIG_FILE environment variable. The following example specifies the config file example.json:

THREESCALE_CONFIG_FILE=example.json bin/apicast

5.1. Using variables and filters in policies

Some Section 4.1, “APIcast standard policies” support Liquid templating that allows using not only plain string values, but also variables that are present in the context of the request.

To use a context variable, wrap its name in {{ and }}, example: {{ uri }}. If the variable is an object, you can also access its attributes, for example: {{ somevar.attr }}.

Following are the standard variables that are available in all the policies:

  • uri: The path of the request with query parameters excluded from this path. The value of the embedded NGINX variable $uri.
  • host: The host of the request (the value of the embedded NGINX variable $host).
  • remote_addr: The IP address of the client (the value of the embedded NGINX variable $remote_addr).
  • headers: The object containing the request headers. Use {{headers['Some-Header']}} to get a specific header value.
  • http_method: The request method: GET, POST, etc.

These standard variables are used in the context of the request, but policies can add more variables to the context. A phase refers to all the execution steps that APIcast has. Variables can be used by all the policies in the policy chain, provided these cases:

  • Within the same phase, if the variable is added in the policy and then used in the following policy after the addition.
  • If a variable is added in a phase, this variable can be used in the next phases.

Following are some examples of variables that the standard 3scale APIcast policy adds to the context:

  • jwt: A parsed JSON payload of the JWT token (for OpenID Connect authentication).
  • credentials: An object that holds the application credentials. Example: "app_id": "972f7b4f", "user_key": "13b668c4d1e10eaebaa5144b4749713f".
  • service: An object that holds the configuration for the service that the current request is handled by. Example: the service ID would be available as {{ service.id }}.

For a full list of objects and values available in the context, see the Section 4.1.10, “Liquid Context Debug policy”).

The variables are used with the help of Liquid templates. Example: {{ remote_addr }}, {{ headers['Some-Header'] }}, {{ jwt.aud }}. The policies that support variables for the values have a special parameter, usually with the _type suffix (example: value_type, name_type, etc.) that accepts two values: "plain" for plain text and "liquid" for liquid template.

APIcast also supports Liquid filters that can be applied to the variables' values. The filters apply NGINX functions to the value of the Liquid variable.

The filters are placed within the variable output tag {{ }}, following the name of the variable or the literal value by a pipe character | and the name of the filter. Examples:

  • {{ 'username:password' | encode_base64 }}, where username:password is a variable.
  • {{ uri | escape_uri }}.

Some filters do not require parameters, so you can use an empty string instead of the variable. Example: {{ '' | utctime }} will return the current time in UTC time zone.

Filters can be chained as follows: {{ variable | function1 | function2 }}. Example: {{ '' | utctime | escape_uri }}.

Following is the list of the available functions:

Chapter 6. Transforming 3scale message content using policy extensions in Fuse

You can create highly flexible policy extensions for Red Hat 3scale API Management using Red Hat Fuse. You can do this by creating policy extensions in Fuse on OpenShift and configuring them in the 3scale Admin Portal. This enables you to use an APIcast proxy policy to perform complex transformations to request/response message content (for example, XML to JSON) that are implemented in the Apache Camel integration framework.

This also enables you to add or modify custom policy extensions dynamically in Camel, instead of rebuilding and redeploying the static APIcast container image. You can use any Camel Enterprise Integration Pattern (EIP) available using Camel Domain Specific Language (DSL) to implement an APIcast policy extension. This enables you to write policy extensions using a familiar programming language such as Java or XML. The example in this topic uses the Camel Netty4 HTTP component to implement the HTTP proxy in Java.

Important

The custom policy extension in Fuse on OpenShift is a Technology Preview feature only. However, the generic APIcast proxy policy is a fully supported feature in 3scale.

Required software components

You must have the following Red Hat Integration components deployed on the same OpenShift cluster:

  • Fuse on OpenShift 7.5
  • 3scale On-premises
  • APIcast self-managed or built-in
Note

You should install these components on the same OpenShift cluster, but not necessarily in the same namespace or project. There is no direct communication between Fuse and 3scale. All communication occurs through OpenShift only.

Architecturally, it is best to have Fuse custom code running in a different project than 3scale. However, you must ensure that communication between both projects is possible. For details, see Configuring network policy with OpenShift SDN.

6.1. Integrating APIcast with Apache Camel transformations in Fuse

You can integrate APIcast with a transformation written as an Apache Camel application in Fuse on OpenShift. When the policy extension transformation is configured and deployed in 3scale, the 3scale traffic goes through the Camel policy extension, which transforms the message content. In this case, Camel works as a reverse HTTP proxy, where APIcast sends the 3scale traffic to Camel, and Camel then sends the traffic on to the API backend.

The example in this topic creates the HTTP proxy using the Camel Netty4 HTTP component:

  • The request received over the HTTP proxy protocol is forwarded to the target service with the HTTP body converted to uppercase.
  • The response from the target service is processed by converting it to uppercase and then returned to the client.
Important

The custom policy extension in Fuse on OpenShift is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production.

These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview.

Prerequisites

  • You must have Fuse on OpenShift 7.5 and 3scale 2.7 deployed on the same OpenShift cluster. For installation details, see:

  • You will need cluster administrator privileges to install Fuse on OpenShift and 3scale and to create projects. However, you can create deployment configurations, deploy pods, or create services with edit access per project.

Procedure

  1. Write an Apache Camel application in Java using the Camel netty4-http component to implement the HTTP proxy. You can then use any Camel component to transform the message.

    The following simple example performs an uppercase transformation of the request and the response from the service:

    import java.util.Locale;
    import org.apache.camel.Exchange;
    import org.apache.camel.Message;
    import org.apache.camel.builder.RouteBuilder;
    
    public class ProxyRoute extends RouteBuilder {
    
        @Override
        public void configure() throws Exception {
            from("netty4-http:proxy://0.0.0.0:8080")
                .process(ProxyRoute::uppercase)
                .toD("netty4-http:"
                    + "${headers." + Exchange.HTTP_SCHEME + "}://"
                    + "${headers." + Exchange.HTTP_HOST + "}:"
                    + "${headers." + Exchange.HTTP_PORT + "}"
                    + "${headers." + Exchange.HTTP_PATH + "}")
                .process(ProxyRoute::uppercase);
        }
    
        public static void uppercase(final Exchange exchange) {
            final Message message = exchange.getIn();
            final String body = message.getBody(String.class);
            message.setBody(body.toUpperCase(Locale.US));
        }
    }
  2. Deploy your Camel application as described in Creating and Deploying Applications on Fuse on OpenShift.
Note

The HTTP over TLS (HTTPS) protocol is not supported in this example.

6.2. Configuring an APIcast policy extension created using Apache Camel in Fuse on OpenShift

After you have created the Apache Camel transformation, you can configure it as a policy extension in the policy chain in the 3scale Admin Portal.

The policy extension enables you to configure a 3scale service to use an HTTP proxy. This service is used to send the 3scale traffic over the HTTP proxy to perform request/response modifications in a third-party proxy. In this case, the third-party proxy is Apache Camel implemented in Fuse on OpenShift.

Note

The policy extension code is created in an Apache Camel application in Fuse on OpenShift and cannot be modified or deleted from 3scale.

Prerequisites

Procedure

  1. Select Integration > Configuration > edit APIcast configuration in the 3scale Admin Portal.
  2. Select POLICIES > Add Policy > Proxy service.
  3. Enter the route for the Camel proxy service in the appropriate field:

    • https_proxy: Connects to an HTTPS proxy service.
    • http_proxy: Connects to an HTTP proxy service.
    • all_proxy: Connects to services when the protocol is not specified.

      For example, the following shows the route for an HTTP proxy service:

      http://camel-proxy.my-3scale-management-project.svc
  4. Click Update & test in staging environment to apply the new proxy policy.
  5. Test the HTTP proxy using curl: For example:

    curl "https://testapi-3scale-apicast-staging.myuser.app.dev.3sca.net:443/?user_key=MY_USER_KEY" -k
  6. Confirm that the message content has been transformed, which in this example means converted to uppercase.

Chapter 7. APIcast environment variables

APIcast environment variables allow you to modify behavior for APIcast. The following values are supported environment variables:

Note
  • Unsupported or deprecated environment variables are not listed
  • Some environment variable functionality may have moved to APIcast policies

all_proxy, ALL_PROXY

Default: no value Value: string Example: http://forward-proxy:80

Defines a HTTP proxy to be used for connecting to services if a protocol-specific proxy is not specified. Authentication is not supported.

APICAST_ACCESS_LOG_FILE

Default: stdout

Defines the file that will store the access logs.

APICAST_BACKEND_CACHE_HANDLER

Values: strict | resilient

Default: strict

Deprecated: Use the Caching policy instead.

Defines how the authorization cache behaves when backend is unavailable. Strict will remove cached application when backend is unavailable. Resilient will do so only on getting authorization denied from backend.

APICAST_CONFIGURATION_CACHE

Values: a number

Default: 0

Specifies the interval (in seconds) that the configuration will be stored for. The value should be set to 0 (not compatible with boot value of APICAST_CONFIGURATION_LOADER) or more than 60. For example, if APICAST_CONFIGURATION_CACHE is set to 120, the gateway will reload the configuration from the API manager every 2 minutes (120 seconds). A value < 0 disables reloading.

APICAST_CONFIGURATION_LOADER

Values: boot | lazy

Default: lazy

Defines how to load the configuration. Boot will request the configuration to the API manager when the gateway starts. Lazy will load it on demand for each incoming request (to guarantee a complete refresh on each request APICAST_CONFIGURATION_CACHE should be 0).

APICAST_CUSTOM_CONFIG

Deprecated: Use policies instead.

Defines the name of the Lua module that implements custom logic overriding the existing APIcast logic.

APICAST_ENVIRONMENT

Default:

Value: string[:]

Example: production:cloud-hosted

Double colon (:) separated list of environments (or paths) APIcast should load. It can be used instead of -e or --environment parameter on the CLI and for example stored in the container image as default environment. Any value passed on the CLI overrides this variable.

APICAST_EXTENDED_METRICS

Default: false

Value: boolean

Example: "true"

Enables additional information on Prometheus metrics. The following metrics have the service_id and service_system_name labels which provide more in-depth details about APIcast:

  • total_response_time_seconds
  • upstream_response_time_seconds
  • upstream_status

APICAST_HTTPS_CERTIFICATE

Default: no value

Path to a file with X.509 certificate in the PEM format for HTTPS.

APICAST_HTTPS_CERTIFICATE_KEY

Default: no value

Path to a file with the X.509 certificate secret key in the PEM format.

APICAST_HTTPS_PORT

Default: no value

Controls on which port APIcast should start listening for HTTPS connections. If this clashes with HTTP port it will be used only for HTTPS.

APICAST_HTTPS_VERIFY_DEPTH

Default: 1

Values: positive integers.

Defines the maximum length of the client certificate chain. If this parameter has 1 as its value, it implies that this length might include one additional certificate, for example intermediate CA.

APICAST_LOAD_SERVICES_WHEN_NEEDED

Values:

  • true or 1 for true
  • false, 0 or empty for false

Default: false

This option can be used when there are many services configured. However, its performance depends on additional factors, for example, the number of services, the latency between APIcast and the 3scale Admin Portal, and the Time To Live (TTL) of the configuration.

By default, APIcast loads all the services each time it downloads its configuration from the Admin Portal. When this option is enabled, the configurations uses lazy loading. APIcast will only load the ones configured for the host specified in the host header of the request.

Note

APICAST_LOG_FILE

Default: stderr

Defines the file that will store the OpenResty error log. It is used by bin/apicast in the error_log directive. Refer to NGINX documentation for more information. The file path can be either absolute, or relative to the prefix directory (apicast by default).

APICAST_LOG_LEVEL

Values: debug | info | notice | warn | error | crit | alert | emerg

Default: warn

Specifies the log level for the OpenResty logs.

APICAST_MANAGEMENT_API

Values:

  • disabled: completely disabled, just listens on the port
  • status: only the /status/ endpoints enabled for health checks
  • debug: full API is open

The Management API is powerful and can control the APIcast configuration. You should enable the debug level only for debugging.

APICAST_MODULE

Default: apicast

Deprecated: Use policies instead.

Specifies the name of the main Lua module that implements the API gateway logic. Custom modules can override the functionality of the default apicast.lua module. See an example of how to use modules.

APICAST_OIDC_LOG_LEVEL

Values: debug | info | notice | warn | error | crit | alert | emerg

Default: err

Allows to set the log level for the logs related to OpenID Connect integration.

APICAST_PATH_ROUTING

Values:

  • true or 1 for true
  • false, 0 or empty for false

When this parameter is set to true, the gateway will use path-based routing in addition to the default host-based routing. The API request will be routed to the first service that has a matching mapping rule, from the list of services for which the value of the Host header of the request matches the Public Base URL.

APICAST_POLICY_LOAD_PATH

Default: APICAST_DIR/policies

Value: string[:]

Example: ~/apicast/policies:$PWD/policies

Double colon (:) separated list of paths where APIcast should look for policies. It can be used to first load policies from a development directory or to load examples.

APICAST_PROXY_HTTPS_CERTIFICATE

Default:

Value: string

Example: /home/apicast/my_certificate.crt

The path to the client SSL certificate that APIcast will use when connecting with the upstream. Notice that this certificate will be used for all the services in the configuration.

APICAST_PROXY_HTTPS_CERTIFICATE_KEY

Default:

Value: string

Example: /home/apicast/my_certificate.key

The path to the key of the client SSL certificate.

APICAST_PROXY_HTTPS_PASSWORD_FILE

Default:

Value: string

Example: /home/apicast/passwords.txt

Path to a file with passphrases for the SSL cert keys specified with APICAST_PROXY_HTTPS_CERTIFICATE_KEY.

APICAST_PROXY_HTTPS_SESSION_REUSE

Default: on

Values:

  • on: reuses SSL sessions.
  • off: does not reuse SSL sessions.

APICAST_REPORTING_THREADS

Default: 0

Value: integer >= 0

Experimental: Under extreme load might have unpredictable performance and lose reports.

Value greater than 0 is going to enable out-of-band reporting to backend. This is a new experimental feature for increasing performance. Client won’t see the backend latency and everything will be processed asynchronously. This value determines how many asynchronous reports can be running simultaneously before the client is throttled by adding latency.

APICAST_RESPONSE_CODES

Values:

  • true or 1 for true
  • false, 0 or empty for false

Default: <empty> (false)

When set to true, APIcast will log the response code of the response returned by the API backend in 3scale. In some plans this information can later be consulted from the 3scale Admin Portal. For more information, see Response Code Tracking.

APICAST_SERVICE_${ID}_CONFIGURATION_VERSION

Replace ${ID} with the actual Service ID. The value should be the configuration version you can see in the configuration history on the Admin Portal. Setting it to a particular version will prevent it from auto-updating and will always use that version.

APICAST_SERVICES_LIST

Value: a comma-separated list of service IDs

Used to filter the services configured in the 3scale API Manager, and only use the configuration for specific services in the gateway, discarding those service IDs that are not specified in the list. You can find the service IDs in the the Admin Portal: Dashboard > [Your_API_name], tagged as ID for API calls.

APICAST_SERVICES_LIST_URL

Value: a PCRE (Perl Compatible Regular Expression) such as .*.example.com.

Filters the services configured in the 3scale API Manager.

This filter matches with the public base URL. Services that do not match the filter are discarded. If the regular expression cannot be compiled, no services are loaded.

Note

If a service does not match but is included in APICAST_SERVICES_LIST, the service will not be discarded.

Example 7.1. example

The Regexp filter http://.*.foo.dev is applied to the following backend endpoints:

In this case, 1 and 3 are configured in the embedded APIcast and 2 and 4 are discarded.

APICAST_UPSTREAM_RETRY_CASES

Values: error | timeout | invalid_header | http_500 | http_502 | http_503 | http_504 | http_403 | http_404 | http_429 | non_idempotent | off

Note

This is only used when the retry policy is configured and specifies when a request to the upstream API should be retried. It accepts the same values as Nginx’s PROXY_NEXT_UPSTREAM Module.

APICAST_WORKERS

Default: auto

Values: number | auto

This is the value that will be used in the nginx worker_processes directive. By default, APIcast uses auto, except for the development environment where 1 is used.

BACKEND_ENDPOINT_OVERRIDE

URI that overrides backend endpoint from the configuration. Useful when deploying outside OpenShift deployed AMP. Example: https://backend.example.com.

HTTP_KEEPALIVE_TIMEOUT

Default: 75 Value: positive integers Example: 1

This parameter sets a timeout during which a keep-alive client connection will stay open on the server side. The zero value disables keep-alive client connections.

By default gateway does not enable it, and the keepalive timeout on nginx is set to 75 seconds.

http_proxy, HTTP_PROXY

Default: no value Value: string Example: http://forward-proxy:80

Defines a HTTP proxy to be used for connecting to HTTP services. Authentication is not supported.

https_proxy, HTTPS_PROXY

Default: no value Value: string Example: https://forward-proxy:443

Defines a HTTP proxy to be used for connecting to HTTPS services. Authentication is not supported.

no_proxy, NO_PROXY

Default: no value Value: string\[,<string>\]; *Example: foo,bar.com,.extra.dot.com

Defines a comma-separated list of hostnames and domain names for which the requests should not be proxied. Setting to a single * character, which matches all hosts, effectively disables the proxy.

OPENSSL_VERIFY

Values:

  • 0, false: disable peer verification
  • 1, true: enable peer verification

Controls the OpenSSL Peer Verification. It is off by default, because OpenSSL can’t use system certificate store. It requires custom certificate bundle and adding it to trusted certificates.

It is recommended to use https://github.com/openresty/lua-nginx-module#lua_ssl_trusted_certificate and point to to certificate bundle generated by export-builtin-trusted-certs.

OPENTRACING_CONFIG

This environment variable is used to determine the config file for the opentracing tracer, if OPENTRACING_TRACER is not set, this variable will be ignored.

Each tracer has a default configuration file: * jaeger: conf.d/opentracing/jaeger.example.json

You can choose to mount a different configuration than the provided by default by setting the file path using this variable.

Example: /tmp/jaeger/jaeger.json

OPENTRACING_HEADER_FORWARD

Default: uber-trace-id

This environment variable controls the HTTP header used for forwarding opentracing information, this HTTP header will be forwarded to upstream servers.

OPENTRACING_TRACER

Example: jaeger

This environment variable controls which tracing library will be loaded, right now, there’s only one opentracing tracer available, jaeger.

If empty, opentracing support will be disabled.

RESOLVER

Allows to specify a custom DNS resolver that will be used by OpenResty. If the RESOLVER parameter is empty, the DNS resolver will be autodiscovered.

THREESCALE_CONFIG_FILE

Path to the JSON file with the configuration for the gateway. You can download the configuration from the Admin Portal using the URL: <schema>://<admin-portal-domain>/admin/api/nginx/spec.json (Example: https://account-admin.3scale.net/admin/api/nginx/spec.json).

When the gateway is deployed using Docker, the file has to be injected to the docker image as a read only volume, and the path should indicate where the volume is mounted, i.e. path local to the docker container.

You can find sample configuration files in examples folder.

It is required to provide either THREESCALE_PORTAL_ENDPOINT or THREESCALE_CONFIG_FILE (takes precedence) for the gateway to run successfully.

THREESCALE_DEPLOYMENT_ENV

Values: staging | production

Default: production

The value of the environment variable defines the environment for a particular configuration. The configuration will be downloaded for that environment from 3scale (Staging or Production) when using new APIcast.

The value will also be used in the header X-3scale-User-Agent in the authorize and report requests made to 3scale Service Management API. It is used by 3scale for statistics.

THREESCALE_PORTAL_ENDPOINT

URI that includes your password and portal endpoint in the following format: <schema>://<password>@<admin-portal-domain>. The <password> can be either the provider key or an access token for the 3scale Account Management API. <admin-portal-domain> is the URL to log in to the Admin Portal.

Example: https://access-token@account-admin.3scale.net.

When THREESCALE_PORTAL_ENDPOINT environment variable is provided, the gateway downloads the configuration from 3scale on initializing. The configuration includes all the settings provided on the Integration page of the API(s).

You can also use this environment variable to create a single gateway with the Master Admin Portal.

It is required to provide either THREESCALE_PORTAL_ENDPOINT or THREESCALE_CONFIG_FILE (takes precedence) for the gateway to run successfully.

Chapter 8. Configuring APIcast for better performance

This document provides general guidelines to debug performance issues in APIcast. It also introduces the available caching modes and explains how they can help in increasing performance, as well as details about profiling modes. The content is structured in the following sections:

8.1. General guidelines

In a typical APIcast deployment, there are three components to consider:

  • APIcast
  • The 3scale back-end server that authorizes requests and keeps track of the usage
  • The upstream API

When experiencing performance issues in APIcast:

  • Identify the component that is responsible for the issues.
  • Measure the latency of the upstream API, to determine the latency that APIcast plus the 3scale back-end server introduce.
  • With the same tool you are using to run the benchmark, perform a new measurement but pointing to APIcast instead of pointing to the upstream API directly.

Comparing these results will give you an idea of the latency introduced by APIcast and the 3scale back-end server.

In a Hosted (SaaS) installation with self-managed APIcast, if the latency introduced by APIcast and the 3scale back-end server is high:

  1. Make a request to the 3scale back-end server from the same machine where APIcast is deployed
  2. Measure the latency.

The 3scale back-end server exposes an endpoint that returns the version: https://su1.3scale.net/status. In comparison, an authorization call requires more resources because it verifies keys, limits, and queue background jobs. Although the 3scale back-end server performs these tasks in a few milliseconds, it requires more work than checking the version like the /status endpoint does. As an example, if a request to /status takes around 300 ms from your APIcast environment, an authorization is going to take more time for every request that is not cached.

8.2. Default caching

For requests that are not cached, these are the events:

  1. APIcast extracts the usage metrics from matching mapping rules.
  2. APIcast sends the metrics plus the application credentials to the 3scale back-end server.
  3. The 3scale back-end server performs the following:

    1. Checks the application keys, and that the reported usage of metrics is within the defined limits.
    2. Queues a background job to increase the usage of the metrics reported.
    3. Responds to APIcast whether the request should be authorized or not.
  4. If the request is authorized, it goes to the upstream.

In this case, the request does not arrive to the upstream until the 3scale back-end server responds.

On the other hand, with the caching mechanism that comes enabled by default:

  • APIcast stores in a cache the result of the authorization call to the 3scale back-end server if it was authorized.
  • The next request with the same credentials and metrics will use that cached authorization instead of going to the 3scale back-end server.
  • If the request was not authorized, or if it is the first time that APIcast receives the credentials, APIcast will call the 3scale back-end server synchronously as explained above.

When the authentication is cached, APIcast first calls the upstream and then, in a phase called post action, it calls the 3scale back-end server and stores the authorization in the cache to have it ready for the next request. Notice that the call to the 3scale back-end server does not introduce any latency because it does not happen in request time. However, requests sent in the same connection will need to wait until the post action phase finishes.

Imagine a scenario where a client is using keep-alive and sends a request every second. If the upstream response time is 100 ms and the latency to the 3scale back-end server is 500 ms, the client will get the response every time in 100 ms. The total of upstream response and the reporting would take 600 ms. That gives extra 400 ms before the next request comes.

The diagram below illustrates the default caching behavior explained.The behavior of the caching mechanism can be changed using the caching policy.

Default caching behavior

8.3. Asynchronous reporting threads

APIcast has a feature to enable a pool of threads that authorize against the 3scale back-end server. With this feature enabled, APIcast first synchronously calls the 3scale back-end server to verify the application and metrics matched by mapping rules. This is similar to when it uses the caching mechanism enabled by default. The difference is that subsequent calls to the 3scale back-end server are reported fully asynchronously as long as there are free reporting threads in the pool.

Reporting threads are global for the whole gateway and shared between all the services. When a second TCP connection is made, it will also be fully asynchronous as long as the authorization is already cached. When there are no free reporting threads, the synchronous mode falls back to the standard asynchronous mode and does the reporting in the post action phase.

You can enable this feature using the APICAST_REPORTING_THREADS environment variable.

The diagram below illustrates how the asynchronous reporting thread pool works.

Asynchronous reporting thread pool behavior

8.4. 3scale Batcher policy

By default, APIcast performs one call to the 3scale back-end server for each request that it receives. The goal of the 3scale Batcher policy is to reduce latency and increase throughput by significantly reducing the number of requests made to the 3scale back-end server. In order to achieve that, this policy caches authorization statuses and batches reports.

This document provides details about the 3scale Batcher policy. The diagram below illustrates how the policy works.

3scale Batcher policy behavior

Part II. API versioning

Chapter 9. API Versioning

The 3scale API Management Platform allows API versioning. You have three ways to version your API correctly when you manage your API with 3scale. The following methods are examples of how you could version your API within the 3scale Gateway, which provides extra features due to 3scale’s architecture.

9.1. Goal

This guide is designed to give you enough information to implement an API versioning system within 3scale.

Suppose you have an API for finding songs. Users can search for their favorite songs by different keywords: artist, songwriter, song title, album title, and so on. Assume you had an initial version (v1) of the API and now you have developed a new, improved version (v2).

The following sections describe the three most typical ways of implementing an APR versioning system using 3scale:

  • URL versioning
  • Endpoint versioning
  • Custom header versioning

9.2. Prerequisites

Complete the basics of connecting your API to 3scale before using this quick start guide.

9.3. URL versioning

If you have different endpoints for searching songs (by artist, by song title, and so on), with URL versioning you would include the API version as part of the URI, for example:

  1. api.songs.com/v1/songwriter
  2. api.songs.com/v2/songwriter
  3. api.songs.com/v1/song
  4. api.songs.com/v2/song
  5. and so on
Note

When you use this method, you should have planned since v1 that you were going to version your API.

The 3scale Gateway would then extract the endpoint and the version from the URI. This approach allows you to set up application plans for any version/endpoint combination. You can then associate metrics with those plans and endpoints, and you can chart the usage for each endpoint on each version.

The following screen capture shows 3scale’s flexibility.

Figure 9.1. Versioning Plan Feature

Versioning Plan Feature

The only thing left to do is go to [your_API_name] > Integration > Configuration in your 3scale Admin Portal and map your URIs to your metrics, as shown in the following diagram.

Figure 9.2. Mapping URIs to metrics

Mapping URIs to metrics

You now have two different versions of your API, each with different features enabled. You also have full control and visibility on their usage.

If you want to communicate to all of your users that they should move to the API v2, you can send an internal note asking them to do so. You can monitor who makes the move and see how the activity on v1 decreases while the activity on v2 increases. By adding the metric in your authorization calls to 3scale, you can see how much overall traffic is hitting v1 vs. v2 endpoints and get an idea of when it is safe to deprecate v1.

Figure 9.3. Versioning

Versioning

If some users continue to use v1, you can filter out only those users to send another internal note about switching to v2.

3scale provides a three-step method for sending deprecation notices.

  1. Navigate to Audience > Applications > Listing and filter the list by the application plan that you want to send the deprecation note and click Search.
  2. Click the multiselector to select all of the users for that particular version. New options display and allow you to perform bulk operations, such as Send email, Change Application Plan, and Change State.
  3. Click Send email and follow the steps to send a deprecation notice to those customers who are still under the obsolete version.

The following image provides a visual reference.

Figure 9.4. Sending deprecation note

Sending deprecation note

For each authrep call that is made to an endpoint, you authenticate only once but report twice: once for the endpoint and once for the API version. There is no double-billing because the call can be authenticated only one time. For each call you make to any endpoint of a specific API version, you aggregate the hits on a convenient metric named after the version number (v1, v2, and so on), which you can use to compare full version traffic with each other.

9.4. Endpoint versioning

You have the endpoint change for each version (api.cons.com/author_v1) with endpoint versioning. The gateway extracts the endpoint and the version from the endpoint itself. This method , as well as the previous method, allows the API provider to map external URLs to internal ones.

The endpoint versioning method can only be performed with the on-premise deployment method as it requires a URL rewrite using the LUA scripts that are provided as part of the on-premise configuration.

EXTERNAL

 

INTERNAL

api.songs.com/songwriter_v1

could be rewritten to

internal.songs.com/search_by_songwriter

api.songs.com/songwriter_v2

could be rewritten to

internal.songs.com/songwriter

Almost everything (mapping, application plans features, and so on.) works exactly the same as in the previous method.

9.5. Custom header versioning

With custom header versioning, you use a header (that is, "x-api-version") instead of the URI to specify the version.

The gateway then extracts the endpoint from the path and the version from the header. Just as before, you can analyze and visualize any combination of path/version that you want. This approach has several inconveniences, regardless of the API management system you use. See API versioning methods, a brief reference for more information. Here are a few pointers on how 3scale works.

  • Just like the previous method, custom header versioning can only be applied to on-premise hosted APIs because it requires some parsing/processing of the request headers to correctly route the authrep calls. This type of custom processing can only be done using Lua scripting.
  • With this method, the fine-grained feature separation of the previous methods is much harder to achieve.
  • One of the biggest advantages of using this methodology, and the main reason some API providers choose it, is because the URL and endpoints of your customers will never change. When a developer wants to switch from one API version to another, they only have to change the header. Everything else works the same.

Part III. API authentication

Chapter 10. Authentication patterns

By the end of this tutorial you will know how to set the authentication pattern on your API and the effect that this has on applications communicating with your API.

Depending on your API, you may need to use different authentication patterns to issue credentials for access to your API. These can range from API keys to openAuth tokens and custom configurations. This tutorial covers how to select from the available standard Authentication Patterns.

10.1. Supported authentication patterns

3scale supports the following authentication patterns out of the box:

  • Standard API Keys: Single randomized strings or hashes acting as an identifier and a secret token.
  • Application Identifier and Key pairs: Immutable identifier and mutable secret key strings.
  • OpenID Connect

10.2. Setting up authentication patterns

10.2.1. Select the authentication mode for your service

Navigate to the API service you want to work on (there may be only one service named API in which case select this). Go to the Integration section.

Select Authentication Mode Step 1

Each service that you operate can use a different authentication pattern, but only one pattern can be used per service.

Important

You must not change the authentication pattern after the credentials have been registered because the behavior of the service may then become unpredictable. To change authentication patterns we recommend creating a new service and migrating customers.

10.2.2. Select the Authentication mode you want to use

To select an authentication mode, scroll to the AUTHENTICATION section. Here, you can choose one of the following options:

  • API Key (user_key)
  • App_ID and App_Key Pair
  • OpenID Connect

10.2.3. Ensure your API accepts the correct types of credentials

Depending on the credential type chosen, you may need to accept different parameters in your API calls (key fields, IDs etc.). The names of these parameters may not be the same as those used internally at 3scale. The 3scale authentication will function correctly if the correct parameter names are used in calls to the 3scale backend.

10.2.4. Create an application to test credentials

To ensure that the credential sets are working, you can create a new application to issue credentials to use the API. Navigate to the Accounts area of your Admin Portal’s dashboard, click the account you want to use and click new application.

Filling out the form and clicking save will create a new application with credentials to use the API. You can now use these credentials to make calls to your API and records will be checked against the 3scale list of registered applications.

10.3. Standard authentication patterns

3scale supports the authentication patterns detailed in the following sections.

10.3.1. API key

The simplest form of credential supported is the single API model. Here, each application with permissions on the API has a single (unique) long character string; example:

API-key = 853a76f7c8d5f4a1ee8bf10a4e0d1f13

By default, the name of the key parameter is user_key. You can use this label or choose another, such as API-key. If choosing another label, you need to map the value before you make the authorization calls to 3scale. The string acts as both, an identifier and a secret token, for use of the API. It is recommended that you use such patterns only in environments with low security requirements or with SSL security on API calls. Following are the operations that can be carried out on the token and application:

  • Application Suspend: This suspends the applications access to the API and, in effect, all calls to the API with the relevant key will be suspended.
  • Application Resume: Undoes the effect of an application suspend action.
  • Key Regenerate: This action generates a new random string key for the application and associates it with the application. Immediately after this action is taken, calls with the previous token will cease to be accepted.

The latter action can be triggered from the API Administration in the Admin Portal and (if permitted) from the API Developers User console.

10.3.2. App_ID and App_Key pair

The API Key Pattern combines the identity of the application and the secret usage token in one token; however, this pattern separates the two. Each application using the API, issues an immutable initial identifier known as the Application ID (App ID). The App ID is constant and may or may not be secret. In addition, each application may have 1-n Application Keys (App_Keys). Each Key is associated directly with the App_ID and should be treated as secret.

app_id = 80a4e03 app_key = a1ee8bf10a4e0d1f13853a76f7c8d5f4

In the default setting, developers can create up to five keys per application. This allows a developer to create a new key, add it to their code, redeploy their application, and then disable old keys. This does not cause any application downtime the way an API Key Regeneration would.

Statistics and rate limits are always kept at the application ID level of granularity and not per API Key. If a developer wants to track two sets of statistics, they should create two applications rather than two keys.

It is also possible to change the mode in the system and allow applications to be created in the absence of application keys. In this case the 3scale system will authenticate access based on the App ID only (and no key checks are made). This mode is useful for widget type scenarios or where rate limits are applied to users rather than applications. In most cases you will want your API to enforce the presence of at least one application key per application present. This setting is available in [your_API_name] > Integration > Settings.

10.3.3. OpenID Connect

For information on OpenID Connect authentication, see the OpenID Connect integration chapter.

10.4. Referrer filtering

3scale supports the Referrer Filtering feature that can be used to whitelist IP addresses or domain names from where an application can access the API. The API clients specify the referrer value in the Referer header. The purpose and the usage of the Referer header are described in the RFC 7231, section 5.5.2: Referer.

To enable the Referrer Filtering feature go to [your_API_name] > Integration > Settings, click the Require referrer filtering checkbox and click Update Service.

Enable Referrer Filtering

The developers with access to your API must configure allowed domain/IP referrers from the developer portal.

Configure Referrers in the Developer Portal

In the Admin Portal on the application details page for all applications that belong to this service a new Referrer Filters section displays. Here, the admin can also configure a whitelist of the allowed Referrer header values for this application.

Configure Referrers in the Developer Portal

You can set a maximum of five referrer values per application.

The value can only consist of Latin letters, numbers, and special characters *, ., and -. * can be used for wildcard values. If the value is set to *, any referrer value will be allowed, so the referrer check will be bypassed.

For the Referrer Filtering feature to work, the APIcast Referrer policy must be enabled in the service policy chain.

When the Require referrer filtering feature and the 3scale Referrer policy are enabled, the authorization works as follows:

  1. The applications that do not have Referrer Filters specified are authorized normally only using the provided credentials.
  2. For the applications that have Referrer Filters values set, APIcast extracts the referrer value from the Referer header of the request and sends it as referrer param in the AuthRep (authorize and report) request to the Service Management API. The following table shows the AuthRep responses for different combination of the referrer filtering parameters.
referrer parameter passed?Referrer Filters configured for the app?Referrer parameter valueHTTP ResponseResponse body

Yes

Yes

matches referrer filter

200 OK

<status><authorized>true</authorized></status>

Yes

No

matches referrer filter

200 OK

<status><authorized>true</authorized></status>

Yes

Yes

does not match referrer filter

409 Conflict

<status><authorized>false</authorized><reason>referrer "test.example.com" is not allowed</reason> (test.example.com is an example)

Yes

No

does not match referrer filter

200 OK

<status><authorized>true</authorized></status>

Yes

Yes

*

200 OK

<status><authorized>true</authorized></status>

Yes

No

*

200 OK

<status><authorized>true</authorized></status>

No

Yes

 — 

409 Conflict

<status><authorized>false</authorized><reason>referrer is missing</reason>

No

No

 — 

200 OK

<status><authorized>true</authorized></status>

The calls that are not authorized by AuthRep are rejected by APIcast with an "Authorization Failed" error. You can configure the exact status code and the error message on the service Integration page.

Chapter 11. OpenID Connect integration

3scale integrates with the 3rd-party Identity Providers (IdP) for authenticating the API requests using the OpenID Connect specification. OpenID Connect is built on top of OAuth 2.0 that complements the OAuth 2.0 Authorization framework with an authentication mechanism. When OpenID Connect authentication option is used, the API requests are authenticated using the access tokens in the JSON Web Token (JWT) format (RFC 7519).

The integration consists of the following two parts:

Red Hat 3scale API Management fully supports both integration points with Red Hat Single Sign-On (RH-SSO) acting as the OpenID Provider. See the supported version of RH-SSO on the Supported Configurations page. APIcast integration is also tested with ForgeRock.

In both cases, you can configure the integration by specifying the OpenID Connect Issuer field in the APIcast Configuration on the Integration page of the service using OpenID Connect authentication option. For instructions, see Section 11.3, “Configure Red Hat Single Sign-On integration”.

11.1. JWT verification and parsing by APIcast

The API requests to the service using the OpenID Connect authentication mode should provide the access token in the JWT format, issued by the OpenID Provider, in the Authorization header using Bearer schema. The header should look like the following example:

Authorization: Bearer <JWK>

Example:

Authorization: Bearer: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2lkcC5leGFtcGxlLmNvbSIsInN1YiI6ImFiYzEyMyIsIm5iZiI6MTUzNzg5MjQ5NCwiZXhwIjoxNTM3ODk2MDk0LCJpYXQiOjE1Mzc4OTI0OTQsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiQmVhcmVyIn0.LM2PSmQ0k8mR7eDS_Z8iRdGta-Ea-pJRrf4C6bAiKz-Nzhxpm7fF7oV3BOipFmimwkQ_-mw3kN--oOc3vU1RE4FTCQGbzO1SAWHOZqG5ZUx5ugaASY-hUHIohy6PC7dQl0e2NlAeqqg4MuZtEwrpESJW-VnGdljrAS0HsXzd6nENM0Z_ofo4ZdTKvIKsk2KrdyVBOcjgVjYongtppR0cw30FwnpqfeCkuATeINN5OKHXOibRA24pQyIF1s81nnmxLnjnVbu24SFE34aMGRXYzs4icMI8sK65eKxbvwV3PIG3mM0C4ilZPO26doP0YrLfVwFcqEirmENUAcHXz7NuvA

The JWT token contains a signature that the token’s receiver can verify and ensure that the token was signed by a known issuer and that its content has not been changed. 3scale supports RSA signature based on the public/private key pair. Here, the issuer signs the JWT token using a private key. APIcast verifies this token using a public key.

APIcast uses OpenID Connect Discovery for getting the JSON Web Keys (JWK) that can be used for verifying the JWT signature.

On each request, APIcast does the following:

  1. Verifies the JWT token using the public key.
  2. Validates the claims nbf and exp.
  3. Verifies that the issuer specified in the claim iss (Issuer) is the same as the one configured in the OpenID Connect Issuer field.
  4. Extracts the value of the azp or aud claim and uses it as the Client ID (that identifies the application in 3scale) to authorize the call through the Service Management API.

If any of the JWT validation or the authorization checks fail, APIcast returns an "Authenication failed" error. Otherwise, APIcast proxies the request to the API backend. The Authorization header remains in the request, so the API backend can also use the JWT token to check the user and client identity.

11.2. Client credentials synchronization by Zync

Using the Zync component, 3scale syncronizes the client (application) credentials between 3scale and the Red Hat Single Sign-On server configured through the OpenID Connect Issuer setting. Whenever a new application is created, updated, or deleted for a service configured to use OpenID Connect, Zync receives the corresponding event and communicates the change to the Red Hat Single Sign-On instance using RH-SSO API. The Section 11.3, “Configure Red Hat Single Sign-On integration” section provides the steps required to ensure that Zync has the correct credentials to use the RH-SSO API.

11.3. Configure Red Hat Single Sign-On integration

11.3.1. Configure Zync to use custom CA certificates

You must establish an SSL connection between Zync and Red Hat Single Sign-On. 3scale 2.2 and above supports custom CA certificates for Red Hat Single Sign-On with the SSL_CERT_FILE environment variable. This variable points to the local path of the certificates bundle. Configure it as follows:

  1. Validate the new certificate with the following cURL command. The expected response is a JSON configuration of the realm. If validation fails it is an indicator that your certificate may not be correct.

    curl -v https://<secure-sso-host>/auth/realms/master --cacert customCA.pem
  2. Add the certificate bundle to the Zync pod:

    1. Gather the existing content of the /etc/pki/tls/cert.pem file on the Zync pod. Run:

      oc exec <zync-pod-id> cat /etc/pki/tls/cert.pem > zync.pem
    2. Append the contents of the custom CA certificate file to zync.pem:

      cat customCA.pem >> zync.pem
    3. Attach the new file to the Zync pod as ConfigMap:

      oc create configmap zync-ca-bundle --from-file=./zync.pem
      oc set volume dc/zync --add --name=zync-ca-bundle --mount-path /etc/pki/tls/zync/zync.pem --sub-path zync.pem --source='{"configMap":{"name":"zync-ca-bundle","items":[{"key":"zync.pem","path":"zync.pem"}]}}'
      oc patch dc/zync --type=json -p '[{"op": "add", "path": "/spec/template/spec/containers/0/volumeMounts/0/subPath", "value":"zync.pem"}]'
  3. After deployment, verify that the certificate is attached and the content is correct:

    oc exec <zync-pod-id> cat /etc/pki/tls/zync/zync.pem
  4. Configure the SSL_CERT_FILE environment variable on Zync to point to the new CA certificate bundle:

    oc set env dc/zync SSL_CERT_FILE=/etc/pki/tls/zync/zync.pem

11.3.2. Configure Red Hat Single Sign-On

To configure Red Hat Single Sign-On, take the following steps:

  1. Create a realm (<REALM_NAME>).
  2. Create a client:

    1. Specify a client ID.
    2. In the Client Protocol field, select openid-connect.
  3. To configure the client permissions, set the following values:

    1. Access Type to confidential.
    2. Standard Flow Enabled to OFF.
    3. Direct Access Grants Enabled to OFF.
    4. Service Accounts Enabled to ON.
  4. Set the service account roles for the client:

    1. Navigate to the Service Account Roles tab of the client.
    2. In the Client Roles dropdown list, click realm-management.
    3. In the Available Roles pane, select the manage-clients list item and assign the role by clicking Add selected >>.
  5. Note the client credentials:

    1. Make a note of the client ID (<CLIENT_ID>).
    2. Navigate to the Credentials tab of the client and make a note of the Secret field (<CLIENT_SECRET>).
  6. Add a user to the realm:

    1. Click the Users menu on the left side of the window.
    2. Click Add user.
    3. Type the username, set the Email Verified switch to ON, and click Save.
    4. On the Credentials tab, set the password. Enter the password in both the fields, set the Temporary switch to OFF to avoid the password reset at the next login, and click Reset Password.
    5. When the pop-up window displays, click Change password.

11.3.3. Configure 3scale

After you have created and configured the client in Red Hat Single Sign-On, you must configure 3scale to work with Red Hat Single Sign-On.

To configure 3scale, take the following steps:

  1. Enable OpenID Connect.

    1. Select the service on which you want to enable the OpenID Connect authentication, navigate to [your_API_name] > Integration > Configuration.
    2. Select edit integration settings.
    3. Under the Authentication deployment options, select OpenID Connect.
    4. Click Update Service to save the settings.
  2. Edit the APIcast Configuration:

    1. Navigate to [your_API_name] > Integration > Configuration.
    2. Select edit APIcast configuration.
    3. Under the Authentication Settings heading, in the OpenID Connect Issuer field, enter the previously noted client credentials with the URL of your Red Hat Single Sign-On server (located at host <RHSSO_HOST> and port <RHSSO_PORT>).

      https://<CLIENT_ID>:<CLIENT_SECRET>@<RHSSO_HOST>:<RHSSO_PORT>/auth/realms/<REALM_NAME>
    4. To save the configuration, click Update the Staging Environment.

11.4. Configure HTTP integration with third-party Identity Providers

You can configure HTTP integration of OpenID Connect (OIDC) to facilitate syncing credentials with third-party identity providers (IdPs). This means that it is possible to integrate different IdPs other than Red Hat Single Sign-On (RH-SSO), by implementing the OpenAPI specifications we provide.

11.4.1. Pre-requisites

  • Enable OIDC as authentication mode, as indicated in Configure 3scale
  • Zync
  • Integration with Zync for client synchronization between chosen IdP and 3scale

11.4.2. Procedure

To configure HTTP integration of OIDC with third-party identity providers, follow these steps in the Admin Portal:

  1. Navigate to [Your_API_name] > Integration > edit APIcast configuration > Authentication Settings.
  2. Under OpenID Connect Issuer Type, select REST API.
  3. In OpenID Connect Issuer. specify the location of your OpenID Provider.
  4. To save your changes, click Update the Staging Environment.

11.4.3. Zync REST API example

This example project implements Zync REST API protocol to synchronize OAuth2.0 clients. When a 3scale application is created, updated or deleted Zync tries to replay that change to http://example.com/api.

11.4.3.1. Prerequisites

3scale must be configured to use:

11.4.3.2. Creating, updating and deleting clients

Zync makes the following requests to create, update or delete clients:

  • Create and update → PUT /clients/:client_id
  • Delete → DELETE /clients/:client_id

All endpoints must reply with a 2xx status code. Otherwise, the request will be retried.

11.4.3.3. Payload

The request payload in case of create and update is application/json:

{
  "client_id": "ee305610",
  "client_secret": "ac0e42db426b4377096c6590e2b06aed",
  "client_name": "oidc-app",
  "redirect_uris": ["http://example.com"],
  "grant_types": ["client_credentials", "password"]
}

The request to delete a client has no payload.

11.4.3.4. Using OAuth2 authentication

Zync sends GET requests to the /.well-known/openid-configuration endpoint and expects an application/json response. The response payload should contain the following:

{
  "token_endpoint": "http://idp.example.com/auth/realm/token"
}

Zync uses token_endpoint to exchange the client_id and client_secret provided in the OpenID Connect Issuer address for an access token using the OAuth2 protocol. If the API responds with an unsuccessful response, Zync will fallback to HTTP Basic/Digest authentication using the provided credentials.

11.5. OAuth 2.0 supported flows

The API clients must get access tokens from the OpenID Connect issuer configured in 3scale, using any OAuth 2.0 flow that is supported by this OpenID provider. In case of Red Hat Signle Sign-On, the following flows are supported (the terms used in RH-SSO clients are specified in parenthesis):

  • Authorization Code (Standard Flow)
  • Resource Owner Password Credentials (Direct Access Grants Flow)
  • Implicit (Implicit Flow)
  • Client Credentials (Service Accounts Flow)

When clients under OpenID Connect (OIDC) are created in 3scale, the corresponding clients created by Zync in Red Hat Single Sign-On (RH SSO) have only the Authorization Code flow enabled. This flow is recommended as the most secure and suitable for most cases. However, it is possible to enable other flows.

11.5.1. How OAuth 2.0 supported flows work

The client gets the access token using the authorization request, or the token request, or both. The URLs that receive these requests can be discovered using the .well-known/openid-configuration endpoint of the OpenID provider, in the "authorization_endpoint" and "token_endpoint", accordingly. Example: https://<RHSSO_HOST>:<RHSSO_PORT>/auth/realms/<REALM_NAME>/.well-known/openid-configuration.

11.5.2. Configuring OAuth 2.0 supported flows

You can configure allowed OAuth 2.0 flows for the 3scale API in the Admin Portal. When you create a new application, the basic integration is finished, including the OpenId Connect (OIDC) configuration.

To configure OAuth 2.0 supported flows, perform these steps:

  1. Navigate to the Authentication Settings section: [Your_API_name] > Integration > edit integration settings > Authentication
  2. Choose OpenId Connect.
  3. The corresponding flows are enabled on the client on RH SSO side. You can view them by navigating through [Your_API_name] > Integration > Edit APIcast configuration > Authentication Settings

    • standardFlowEnabled (Authorization Code flow) [selected by default]
    • implicitFlowEnabled (Implicit flow)
    • serviceAccountsEnabled (Service Accounts Flow)
    • directAccessGrantsEnabled (Direct Access Grant Flow)
  4. Choose one or multiple flows.
  5. To save your changes, click Update the Staging Environment.

11.6. Test the integration

To test the integration, you must perform the steps listed in the following sections.

11.6.1. Test the client synchronization

To test the client synchronization, take the following steps:

  1. Create an application for the service where you configured the OpenID Connect integration.
  2. Note the client ID and the client Secret of the generated application.
  3. Verify that the client with the same client ID and client secret is now present in the configured Red Hat Single Sign-On realm.
  4. Update the Redirect URL of the application in the 3scale admin portal. Redirect URLs should be as specific as possible.
  5. Verify that the Valid Redirect URIs field of the client in Red Hat Single Sign-On has been updated accordingly.

11.6.2. Test the API authorization flow

To test the APT authorization flow, take the following steps:

  1. Get the access token from the Red Hat Single Sign-On server using an OAuth 2.0 flow that is enabled on the corresponding RH-SSO client.
  2. Use the value of the access_token retrieved from RH-SSO in the Authorization header as follows: Authorization: Bearer <access_token>

If the token is correct and the corresponding application in 3scale is authorized, APIcast gateway returns a response from the API backend.

11.7. Example of the integration

The service "API" in 3scale is configured to use the OpenID Connect authentication. The Public Base URL on the service "API" is configured to be https://api.example.com and the Private Base URL is configured to be https://internal-api.example.com.

The OpenID Connect Issuer field is set to https://zync:41dbb98b-e4e9-4a89-84a3-91d1d19c4207@idp.example.com/auth/realms/myrealm in the API integration and the client zync in the realm myrealm has the correct Service Account roles.

In 3scale, there is an application having the myclientid client ID, myclientsecret client secret, and a https://myapp.example.com Redirect URL. In Red Hat Single Sign-On, in the myrealm realm, there also exists a client having a myclientid client ID, myclientsecret secret, and https://myapp.example.com Valid Redirect URIs. Standard Flow is enabled on this client. There is a user configured in the myrealm realm having the myuser username and mypassword password.

The flow is as follows:

  1. Using the endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/auth, the application sends an Authorization request to RH-SSO. The application should provide the client ID myclientsecret and Redirect URL https://myapp.example.com with the request.
  2. RH-SSO shows the login window, where the user must provide the user’s credentials: Username myuser and password mypassword.
  3. Depending on the configuration, and if it is the first time that the user is authenticating in this specific application, the consent window displays.
  4. After the user is authenticated, the applciation sends a Token request to RH-SSO using the endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token and providing the client ID myclientid, client secret myclientsecret and Redirect URL https://myapp.example.com.
  5. RH-SSO returns a JSON with an "access_token" field eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk…​xBArNhqF-A.
  6. The application sends an API request to https://api.example.com with the header Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk…​xBArNhqF-A.
  7. The application should receive a successful response from https://internal-api.example.com.

Legal Notice

Copyright © 2019 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.