Red Hat 3scale 2.2
Developer Portal

For Use with Red Hat 3scale 2.2

Red Hat Customer Content Services

		Copyright © 2018 Red Hat, Inc.
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

				This guide documents the developer portal on Red Hat 3scale 2.2.
			

Chapter 1. Developer Portal Authentication

			Follow these steps to configure access to your developer portal.
		

			This article shows how to enable and disable the different types of authentication that can be made available on your developer portal to allow your developers to sign up or sign in.
		

			At the moment, 3scale supports three different ways of authenticating to the developer portal, which are covered in the following sections:
		
	
					Username/email and password
				
	
					Authentication via GitHub
				
	
					Authentication via Auth0
				
	
					Authentication via Red Hat Single Sign-On
				

			By default, only one type of authentication will be enabled on your developer portal, two if you signed up on 3scale.net:
		
	
					Username/email and password
				
	
					Authentication via GitHub (using the 3scale GitHub application) - only enabled by default if you signed up on 3scale.net
				

[image: GitHub Authentication]

Note

				Older 3scale accounts (created prior to December 14th, 2015) might need to follow an extra step in order to enable GitHub and Auth0 authentication.
			

				If this applies to you, you will need to add the following code snippet to the login and signup templates in order to enable this feature in both forms.
			
 {% include 'login/sso' %}

Enabling and disabling username/email and password

				By default, the username/email and password authentication is enabled on your developer portal. Usually there is no change to be made here, as this is a standard way for your developers to create an account and to login.
			

				However, in some rare cases you might want to remove this authentication type. To do so, edit the Login > New template as in the screenshot below:
			
[image: GitHub Authentication]

				If you need to add back the username/email and password authentication to your developer portal, just remove the liquid comment tags added in the previous step.
			

Enabling and disabling authentication via GitHub

				In order to enable your own GitHub application, first you will need to create one and retrieve the corresponding credentials.
			

				There are two different ways you can configure authentication via GitHub:
			
	
						Using the 3scale GitHub application (enabled by default for hosted 3scale accounts)
					
	
						Using your own GitHub application (for on-premises installations)
					

				To make changes to this default configuration, you can go to your 3scale Admin Portal, in Settings > Developer Portal > SSO Integrations you will see the following screen:
			
[image: SSO integrations]

				Click on GitHub to access the configuration screen:
			
[image: Edit SSO integrations]

				From this screen you can:
			
	
						Make the GitHub authentication available or unavailable on your developer portal – to do so, simply check or uncheck the "Published" box.
					
	
						Choose the 3scale branded GitHub application or add your own GitHub application – the 3scale GitHub application is enabled (published) by default. You can configure your own GitHub application by clicking on Edit and entering the details of the OAuth application created in GitHub ("Client" and "Client secret"). Please note that in order to make the integration work properly with your own GitHub application, you should configure the authorization callback URL of your GitHub application using the "Callback URL" that you should see after switching to the "custom branded" option (e.g. https://yourdomain.3scale.net/auth/github/callback).
					
	
						Test that the configured authentication flow works as expected.
					

Enabling and disabling authentication via Auth0

Note

					This feature is only available on the Enterprise plans.
				

					In order to have your developers authenticate using Auth0, you first need to have a valid Auth0 subscription.
				

					Authentication via Auth0 won’t be enabled by default. If you want to use your Auth0 account in conjunction with 3scale to manage the access to your developer portal, you can follow these steps to configure it:
				

					Go to your 3scale Admin Portal, in Settings > Developer Portal > SSO Integrations click on Auth0.
				
[image: SSO with Auth0]

					On this configuration screen, you’ll need to add the details of your Auth0 account. Once you’ve entered the client ID, client secret, and site, check the "Published" box and click on Create Auth0 to make it available on your developer portal.
				

Enabling and disabling authentication via Red Hat Single Sign-On

Note

					This feature is only available on enterprise plans.
				

				Red Hat Single Sign-On (RH-SSO) is an integrated Sign-On solution (SSO) that, when used in conjunction with 3scale, allows you to authenticate your developers using any of the available Red Hat Single Sign-On identity brokering and user federation options.
			

				Refer to the supported configurations page for information on which versions of Red Hat Single Sign-On are compatible with 3scale.
			
Before You Begin

					Before you can integrate Red Hat Single Sign-On with 3scale, you must have a working Red Hat Single Sign-On instance. Refer to the Red Hat Single Sign-On documentation for installation instructions: Installing RH-SSO 7.2
				

Configuring Red Hat Single Sign-On

					Perform the following steps to configure Red Hat Single Sign-On:
				
	
							Create a realm as described in the Red Hat Single Sign-On documentation.
						
	
							Add a client by going to Clients and clicking on Create. Fill the form as indicated in the image below:
						

[image: SSO with RHSSO]

	
							In the Client ID field, choose a name for your client.
						
	
							The Direct Grants Only field must be disabled.
						
	
							In the Client Protocol field choose openid-connect.
						
	
							In Access Type choose confidential.
						
	
							In the Root URL field, add your 3scale admin portal URL. This should be the URL address that you use to log in into your developer portal, e.g.: https://yourdomain.3scale.net or your custom URL.
						
	
							In the Valid Redirect URLs, add your domain again followed by /* like this: https://yourdomain.3scale.net/*.
						
	
									Get the client secret by going to the Client you just created and then clicking on Credentials. Choose Client Id and Secret.
								

[image: RHSSO]

	
							In order to configure a seamless integration and make the signup on 3scale transparent for the user, you need to configure a couple of mappers. To do so go to Clients > select your client > Mappers. For the fist mapper, verified email, click on Add Builtin.
						

[image: RHSSO]

					+ Then select the email verified option, and click on Add selected to save the changes.
				
[image: RHSSO]

					+ For the second mapper, click on Create and in Mapper Type choose User Attribute. Fill in the form as shown in the screenshot below:
				
[image: RHSSO]

	
							The User Attribute field should be org_name.
						
	
							The Token Claim Name field should be org_name as well.
						
	
							In Claim JSON Type choose String.
						
	
							Turn on the Add to ID token and Add to access token switches.
						

							Finally, click on Save. By doing this we’re adding organization name as an attribute to our users on RH-SSO. If a value is attached, 3scale will be able to create an account automatically. If not, then the user will be asked to indicate one before the account can be created.
						
	
									Add a user so you can test the integration. To do so, go to Users and then click on Add user and provide information for all the fields required. Please, note that when you create an User in RHSSO the Email Verified attribute (email_verified) should be set to ON, otherwise the user will not be activated in 3scale.
								

					Alternatively, you could use RH-SSO as an identity broker or configure it to federate external databases. For more information about how to configure these, please see the RH-SSO documentation for identity brokering and user federation.
				

					If you decide to go this way, and in order for your developers to be able to skip both the RH-SSO and 3scale account creation steps, we recommend the following configuration. In the example provided, we’re using GitHub as our IdP.
				
	
							On RH-SSO, after configuring GitHub in Identity providers, go to the tab called Mappers and click on Create
						

[image: RHSSO]

	
							Give it a name so you can identify it.
						
	
							In Mapper Type select Attribute Importer.
						
	
							In Social Profile JSON Field Path add company, which is the name of the attribute on GitHub.
						
	
							In User Attribute Name add org_name, that is how we called the attribute in RH-SSO.
						
Note

								RH-SSO requires first and last name as well as email as mandatory fields. 3scale requires email address, username, and organization name. So in addition to configuring a mapper for the organization name, and for your users to be able to skip both sign up forms, make sure that:
							

	
									In the IdP account, they have their first name and last name set.
								
	
									In the IdP account, their email address is accessible. E.g. In GitHub, if you set up your email address as private, it won’t be shared.
								

Configuring 3scale

					Authentication via RH-SSO won’t be enabled by default. If you want to use your RH-SSO account in conjunction with 3scale to manage access to your developer portal, you can follow the steps below to configure it.
				

					Go to your 3scale Admin Portal, in Settings > Developer Portal > SSO Integrations click on Red Hat Single Sign-On. (Remember: this is an enterprise only feature so you may have to ask your account manager to enable this for you).
				

					On this configuration screen, you’ll need to add the details of your RH-SSO client that you have configured in the previous step:
				
	
							Client: Name of your client on RH-SSO
						
	
							Client Secret: Client secret on RH-SSO
						
	
							Realm: Realm name and URL address to your RH-SSO
						

					Once you’ve entered those, check the "Published" box and click on Create RH-SSO to make it available on your developer portal.
				
[image: RHSSO]

Chapter 2. Change Built-in Pages

			By the end of this section, you’ll be able to modify and/or hide any elements on the system-generated pages.
		

			There are some elements generated by the system that are not possible to change from the CMS: the Signup, Dashboard, and Account pages. This guide shows how to customize the content on these pages with some simple CSS and JavaScript scripts.
		
Caution

			The 3scale system-generated pages are subject to change (although infrequently). These changes may break any customizations that you implement following this guide. If you can avoid using these hacks, please do so. Before you continue, please be sure that you’ll be able to monitor for any disruptive changes and do the necessary maintenance work to keep your portal functioning correctly.
		

Identify the elements

				The first and most important thing to do is identify what you want to hide. To do that, use Firebug (or any other developer tools such as Chrome Developer tools or Opera Dragonfly). Choose the desired element, and in the console, right click on it and select Copy CSS path. This way you save the exact CSS path to make it easy to manipulate. Remember, if the element is a part of the sidebar navigation widget, you’ll also have to specify which position in the list. For this, you can use either the "+" selector (for example, to choose 3rd li element: ul + li + li + li) or the :nth-child(n) CSS3 pseudoclass.
			
[image: Developer portal modify built-in pages CSS]

Modify or hide the elements

				Now, having identified the elements, you can change their display settings. Depending on the type of element, you can choose from two possible methods: CSS manipulation or jQuery script. CSS manipulation is more lightweight and reliable, but doesn’t work well for some kinds of elements that exist on a number of pages (for example, the 3rd element in the Dashboard’s sidebar also exists in the Account section but has a different value). Some trickier implementations require use of CSS3 which is not supported by old browsers. In the next two steps, you’ll see both of these approaches.
			

Option A: CSS

				As an example, try to hide the latest forum posts box from the Dashboard page. Following the first step, you have identified its CSS path as:
			
#three-scale .dashboard_bubble

				Keep in mind that it’s the second box with the same path, so you’ll use the "+" selector. Your path will now look like this:
			
.main_layout #three-scale .dashboard_bubble + .dashboard_bubble
/* or */
.main_layout #three-scale .dashboard_bubble:nth-child(1)

				Changing display property to none makes that box invisible:
			
.main_layout #three-scale .dashboard_bubble:nth-child(1) {
 display: none;
}

Option B: jQuery

				If you have a trickier element to hide such as a sidebar menu element, it’s better to use some jQuery. The CSS path of these elements is identical on the Dashboard and Account sections, and you don’t want to hide elements in both sections. So choose the element based on the CSS path and the content. In this example, assume you want to hide the messages section from the Dashboard’s sidebar. Your CSS path is:
			
#three-scale #submenu li a

				In order to match the content, you’ll use the .text() function. You’ll also include the code inside the document’s head and inside the ready function so it’s executed after all the content has been generated.
			
[image: Developer portal modify built-in pages]

				The resulting code snippet will look like this:
			
$(function() {
 $('#three-scale #submenu li a').each(function() {
 if ($(this).text() == "Messages")
 $(this).parent().css('display', 'none');
 });
});

				This is not the only solution. It just shows one possible way of doing it. The same example could be done using pure CSS with CSS3 selectors basing on the attributes values. For the complete CSS3 selectors specification, take a look here.
			

Chapter 3. Change CSS

			You can customize the look and feel of the entire Developer Portal to match your own branding. A standard CSS stylesheet is available to provide an easy starting point for your customizations.
		

			In this tutorial, you’ll add your own CSS customizations to your Developer Portal and reload it to put your new styling changes live.
		
Step 1: Create a new CSS file

				There is a default stylesheet, default.css. It is quite large and complex, so rather than extend it, it’s better to create your own stylesheet for any of your own customizations to overwrite the defaults. You create a new stylesheet the same way you create a page (just remember to choose an appropriate MIME content type in the advanced page settings).
			

				It’s important that the selected layout is blank. Otherwise the page layout HTML will obscure the CSS rules.
			

Step 2: Link the stylesheet into your page layout

				Add the link to your custom CSS in each of your layout templates (or in a partial if you have a common HEAD section) after the link to bootstrap.css. For example:
			
<link rel="stylesheet" href="/stylesheets/custom.css">

				Now enjoy the beauty of your own unique branding!
			

Chapter 4. Custom Signup Form Fields

			Learn how to add custom signup fields and the different options around this feature.
		

			By default, 3scale provides commonly used fields at user/account/application signup. You may need to add your own custom fields to these common defaults.
		
Custom fields

				In your Admin Portal, go to Settings > Field Definitions where you can see the default form fields and define new ones.
			
[image: field definitions default fields]

				The new account/user signup page is actually an amalgamation of the first two sections. The account fields appear at the top, followed by the user fields, followed by the password fields which don’t need to be configured.
			
[image: new user sign-up default]

				Try adding 3 extra fields, 2 to the user signup section and 1 to the account section. Click create, add the following new field definition and then create it. The required checkbox will, of course, make it mandatory on the signup form. There are also options to make things hidden and read only. A hidden field may be added, for example, when you want new signups to have fields set that you don’t necessarily want to highlight to them, such as access_restricted_areas which would be empty by default. As an admin, you can update this to true later on a per-user basis. Your page logic could read it in to determine what to display. A read-only field might be, for example, browser location, which you could use JavaScript on page load to set.
			
[image: new last name]

				Now try adding a drop-down to the user signup form. Call it "employment type". Add these comma-separated values into the choices field: full time, part time, contract. The drop-down will be populated with these values.
			
[image: new drop down]

				Now add a pre-defined field to the account. Usually the fields you add have no system functionality – they simply hold data that you can access later. (See restricted content.)
			

				Create a field as normal. Then on the drop-down above "name", choose po_number. With this field, a PO number will appear on 3scale-generated invoices sent to this developer account. System-generated fields can be overridden by your admins at any time. Give the field a name – something like "PO number" – and create it.
			
[image: new pre defined]

				Now take a look at your work. You can see the free text last name and the employment type drop-down have been added to the User section. The PO number system field, also free text, has been added to the Account section.
			
[image: signup with new fields]

				Finally, these custom fields can be set using the 3scale API. For example, "application create" on 3scale API.
			

Chapter 5. Change Email Templates

			By the end of this section, you will have edited and saved a custom email template.
		

			You can completely customize the content of all standard email communication with developers, allowing you to closely match the workflows you’ve set up for your Developer Portal.
		
Step 1: Define your workflows before email configuration

				There are a lot of email template options, only a subset of which will be relevant for your workflows. Save yourself time by making sure you’re happy with your workflows before beginning to edit the email templates. This way, you’ll only edit the templates that you’ll actually use.
			

Step 2: Test your workflow and identify active email templates

				Perform a dry run of your finalized workflows, making sure to test all the possible branches (such as approval and rejection). Then, identify each email notification that your test developer account receives to determine what to edit in the next step.
			

Step 3: Edit and save your custom template

				The first time you edit a template, you’ll actually “create” a custom template. Then in subsequent edits, you’ll save your changes. Warning: there is no version control. We recommend you make a local copy if you want to be able to revert changes.
			

				You can use liquid tags for dynamic content in your email. We especially recommend you make backups when you make changes to the liquid tags.
			
[image: Developer portal email template edit]

Step 4: Repeat for all templates in your workflows

				Complete these same steps until you’ve covered all possible branches for your workflows.
			
More information

	
							Before customizing your email templates, it’s best to have the signup flows fully finalized and tested.
						
	
							If you intend to change any of the liquid tags within the email templates, be sure to read up on the liquid reference documentation.
						

Chapter 6. Liquids: Email Templates

			You’ll probably want to customize the email templates with your organization’s own messaging and terminology. You can also take advantage of liquid drops to display personalized information for each of your customers.
		

			Similar to how liquid drops are used in the CMS, every email template has its own context. This means that liquid drops available in one email template may not necessarily be available for other email templates.
		

			This reference outlines which liquid drops are available where, with email templates grouped together by subject matter and the set of liquid drops that they support.
		
Account management

				The following email templates fall under this category:
			
	
						Buyer Account confirmed
					
	
						Buyer Account approved
					
	
						Buyer account rejected
					

				For these, you can use the following liquid drops:
			
	
						user ⇒ User
					
	
						domain ⇒ String
					
	
						account ⇒ Account
					
	
						provider ⇒ Provider
					
	
						support_email ⇒ String
					

				Additionally, the following template:
			
	
						Password recovery for buyer
					

						have access to the following liquid drops:
					

	
						user ⇒ User
					
	
						provider ⇒ Provider
					
	
						url ⇒ url
					

				The email to invite additional users to an account:
			
	
						Invitation
					

						has access to:
					

	
						account ⇒ Account
					
	
						provider ⇒ Provider
					
	
						url ⇒ url
					

Credit card notifications

	
						Credit card expired notification for provider
					
	
						Credit Card expired notification for buyer
					

				You can use the following liquid drops:
			
	
						user_account ⇒ Account
					
	
						account ⇒ Account
					
	
						provider_account ⇒ Provider
					
	
						provider ⇒ Provider
					

Limit alerts

	
						Alert notification for provider (>= 100%)
					
	
						Alert notification for buyer (>= 100%)
					
	
						Alert notification for provider (< 100%)
					
	
						Alert notification for buyer (< 100%)
					

				have access to:
			
	
						application ⇒ Application
					
	
						account ⇒ Account
					
	
						provider ⇒ Provider
					
	
						service ⇒ Service
					
	
						alert ⇒ Alert
					

Applications

				The following email templates all deal with application and application plan notifications.
			
	
						Application created for provider
					

				They have access to:
			
	
						url ⇒ url
					

				Application plan change request notification email templates:
			
	
						Plan change request for buyer
					
	
						Plan change request for provider
					

				They have access to:
			
	
						application ⇒ Application
					
	
						provider ⇒ Provider
					
	
						account ⇒ Account
					
	
						user ⇒ User
					
	
						plan ⇒ Plan
					
	
						credit_card_url ⇒ credit_card_url
					

				Finally, the following email templates have an increasing number of available liquid drops, starting with the base for…​
			
	
						Application plan changed for buyer
					
	
						Application plan changed for provider
					
	
						Application trial period expired for buyer
					

				They have access to:
			
	
						provider ⇒ Provider
					
	
						account ⇒ Account
					
	
						user ⇒ User
					
	
						plan ⇒ Plan
					

				As well as all of the above liquid drops, the following application plan messages…​
			
	
						Application suspended for buyer
					
	
						Application accepted for buyer
					
	
						Application rejected for buyer
					
	
						Application contract cancelled for provider
					

				have the additional liquid drops listed
			
	
						application ⇒ Application
					
	
						service ⇒ Service
					

				More liquid drops accumulate for the following email templates for application keys:
			
	
						Application key created for buyer
					
	
						Application key deleted for buyer
					
	
						key ⇒ key
					

Invoicing

				The following email template…​
			
	
						Review invoices prior to charging for provider
					

				has access to:
			
	
						provider ⇒ Provider
					
	
						url ⇒ String>
					

				Additionally, the following templates…​
			
	
						Invoice charge failure for provider without retry
					
	
						Invoice upcoming charge for buyer
					
	
						Invoice charge failure for provider with retry
					
	
						Invoice charge failure for buyer without retry
					
	
						Invoice charged successfully for buyer
					
	
						Invoice charge failure for buyer with retry
					

				share the following liquids:
			
	
						account ⇒ Account
					
	
						provider ⇒ Provider
					
	
						cost ⇒ cost
					
	
						invoice_url ⇒ invoice_url
					
	
						payment_url ⇒ payment_url
					

Services

				The following email templates:
			
	
						Service contract cancelled for provider
					
	
						Service trial period expired for buyer
					
	
						Service plan changed for provider
					
	
						Service contract suspended for buyer
					

				have access to:
			
	
						provider ⇒ Provider
					
	
						account ⇒ Account
					
	
						user ⇒ User
					
	
						plan ⇒ Plan
					

				As well as the above liquid drops, the following service templates…​
			
	
						Service created for provider
					
	
						Service accepted for buyer
					
	
						Service rejected for buyer
					

				have the additional liquid drops listed:
			
	
						service ⇒ Service
					
	
						service_contract ⇒ Contract
					
	
						subscription ⇒ Contract
					

Signup

				The following email templates…​
			
	
						Sign-up notification for provider
					
	
						Sign-up notification for buyer
					

				have access to:
			
	
						user ⇒ User
					
	
						provider ⇒ Provider
					
	
						url ⇒ activate_url
					

Chapter 7. Liquid Reference

			The following variables are available in every Liquid template:
		
	
					provider - all your services, plans and settings under one hood
				
	
					urls - routes to built-in pages of the developers portal (login, signup etc.)
				
	
					current_user - username, address and rights of the currently logged-in user
				
	
					current_account - messages, applications and plans of the currently logged-in user
				
	
					today - current date
				

			Builtin pages can also have other variables available (they are mentioned in the CMS editor). For example, an edit user form edit will have a user variable assigned or while displaying an application detail, you can expect to have a variable application accessible.
		

			The type of a variable (an important thing to know to use this reference) can be determined by putting a {% debug:help %} tag into the page which will list all the available variables and it’s types in an HTML comment for you. However, usually they can be guessed quite easily from the method or variable name.
		
Drops

	
						Account drop
					
	
						AccountPlan drop
					
	
						Alert drop
					
	
						Application drop
					
	
						ApplicationKey drop
					
	
						ApplicationPlan drop
					
	
						Base drop
					
	
						Base drop
					
	
						BillingAddressField drop
					
	
						Can drop
					
	
						Can drop
					
	
						Cas drop
					
	
						Contract drop
					
	
						Country drop
					
	
						CountryField drop
					
	
						CurrentUser drop
					
	
						Error drop
					
	
						Errors drop
					
	
						Feature drop
					
	
						Field drop
					
	
						Flash drop
					
	
						Forum drop
					
	
						I18n drop
					
	
						Invitation drop
					
	
						Invoice drop
					
	
						LineItem drop
					
	
						Message drop
					
	
						Message drop
					
	
						Metric drop
					
	
						Page drop
					
	
						Page drop
					
	
						Pagination drop
					
	
						Part drop
					
	
						PaymentGateway drop
					
	
						PaymentTransaction drop
					
	
						PlanFeature drop
					
	
						Post drop
					
	
						Post drop
					
	
						PricingRule drop
					
	
						Provider drop
					
	
						ReferrerFilter drop
					
	
						Request drop
					
	
						Role drop
					
	
						Search drop
					
	
						Service drop
					
	
						ServiceContract drop
					
	
						ServicePlan drop
					
	
						TimeZone drop
					
	
						Today drop
					
	
						Topic drop
					
	
						Topic drop
					
	
						URL drop
					
	
						URLs drop
					
	
						UsageLimit drop
					
	
						User drop
					

Tags

	
						Tag 'braintree_customer_form'
					
	
						Tag 'csrf'
					
	
						Tag 'content'
					
	
						Tag 'content_for'
					
	
						Tag 'debug'
					
	
						Tag 'email'
					
	
						Tag 'flash'
					
	
						Tag 'footer'
					
	
						Tag 'form'
					
	
						Tag 'latest_forum_posts'
					
	
						Tag 'latest_messages'
					
	
						Tag 'logo'
					
	
						Tag 'menu'
					
	
						Tag 'oldfooter'
					
	
						Tag 'plan_widget'
					
	
						Tag 'portlet'
					
	
						Tag 'submenu'
					
	
						Tag '3scale_essentials'
					
	
						Tag 'user_widget'
					

Filters

	
						FormHelpers filters
					
	
						ParamFilter filters
					
	
						Common filters
					

Drops (up)

Account drop (up)

					A developer account. See User drop if you are looking for the email addresses or similar information.
				
<h2>Account organization name {{ current_account.name }}</h2>
Plan {{ current_account.bought_account_plan.name }}
Telephone {{ current_account.telephone_number }}

{{ current_account.fields_plain_text }}
{{ current_account.extra_fields_plain_text }}

{% if current_account.approval_required? %}
 <p>This account requires approval.</p>
{% endif %}

{% if current_account.credit_card_required? %}

 {% if current_account.credit_card_stored? %}
 <p>This account has credit card details stored in database.</p>
 {% else %}
 <p>Please enter your {{ 'credit card details' | link_to: urls.payment_details }}.</p>
 {% endif %}

 {% if current_account.credit_card_missing? %}
 <p>This account has no credit card details stored in database.</p>
 {% endif %}
{% endif %}
Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ account.errors.name | inline_errors }}

id

							Returns the id of the account
						

name

							Returns the organization name of the developer’s account
						

vat_zero_text

							Return a text about a vat zero
						

vat_rate

							Return the vat rate
						

unread_messages

							Unread messages
						

latest_messages

							Return the latest messages
						

bought_account_plan

							Returns the plan the account has contracted
						

bought_account_contract

							Returns the contract account
						

credit_card_display_number

credit_card_expiration_date

credit_card_required?

							Returns whether the account is required to enter credit card details
						

credit_card_stored?

							Returns whether the account has credit card details stored
						

credit_card_missing?

							Returns whether the account has no credit card details stored
						

timezone

							Returns timezone of this account
						

paid?

							Returns whether the account has at least a paid contract
						

on_trial?

							Returns whether the account is on trial period, i.e. all his paid contracts has to be in trial period
						

telephone_number

							Returns the telephone number of the account
						

approval_required?

							Returns whether the account requires approval?
						

created_at

							Returns UNIX timestamp of account creation (signup) Example: Converting timestamp to JavaScript Date
						
<script>
 var data = new Date({{ account.created_at }} * 1000);
</script>

full_address

							Can be composed by legal address, city and state
						

applications

							Returns the applications of the account
						

subscribed_services

							Returns a array with ServiceContract drops
						

admin

							Returns the admin user of this account
						

extra_fields_plain_text

							Returns the extra fields defined for the account as plain text
						

fields_plain_text

							Returns the fields defined for the account as plain text
						

extra_fields

							Returns only extra fields with values of this account Example: Print all extra fields
						
{% for field in account.extra_fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

fields

							Returns all fields with values of this account Example: Print all fields
						
{% for field in account.fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

builtin_fields

multiple_applications_allowed?

billing_address

							Returns the billing address of this account
						

has_billing_address?

							Returns whether this account has a billing address or not
						

can

							Give access to permission methods
						
{% if account.can.be_deleted? %}
 <!-- do something -->
{% endif %}

edit_url

edit_ogone_billing_address_url

edit_payment_express_billing_address_url

edit_braintree_blue_credit_card_details_url

domain

upgraded?

requires_credit_card?

support_email

finance_support_email

AccountPlan drop (up)

					Example: Using account plan drop in liquid
				
<p class="notice">The examples for plan drop apply here</p>
Methods

selected?

							Returns whether the plan is selected
						
{% if plan.selected? %}
 <p>You will signup to {{ plan.name }}</p>
{% endif %}

bought?

							Returns whether the plan is bought
						
{% if plan.bought? %}
 <p>You are on this plan already!</p>
{% endif %}

features

							Returns an array of available features
						

setup_fee

							Returns the setup fee
						

name

							Returns the name of the plan
						
<h2>We offer you a new {{ plan.name }} plan!</h2>

system_name

							Returns the system name of the plan
						
{% for plan in available_plans %}
 {% if plan.system_name == 'my_free_plan' %}

 <p>You will buy our only free plan!</p>
 {% endif %}
{% endfor %}

id

							Returns the plan id
						

free?

							The plan is free if it is not 'paid' (see the 'paid?' method)
						
{% if plan.free? %}
 <p>This plan is free of charge.</p>
{% else %}

 <p>Plan costs</p>
 Setup fee {{ plan.setup_fee }}
 Flat cost {{ plan.flat_cost }}

{% endif %}

paid?

							The plan is 'paid' when it has non-zero fixed or setup fee or there are some pricing rules present
						
{% if plan.paid? %}
 <p>this plan is a paid one.</p>
{% else %}
 <p>this plan is a free one.</p>
{% endif %}

approval_required?

							Returns whether the plan requires approval?
						
{% if plan.approval_required? %}
 <p>This plan requires approval.</p>
{% endif %}

flat_cost

							Returns the monthly fixed fee of the plan
						

Alert drop (up)

					Example: Using alert drop in liquid
				
<h2>Alert details</h2>
Level {{ alert.level }}
Message {{ alert.message }}
Utilization {{ alert.utilization }}
Methods

level

							The alert level can be one of 50, 80, 90, 100, 120, 150, 200, 300.
						

message

							Text message describing the alert, for example 'hits per minute: 5 of 5'
						

utilization

							Decimal number marking the actual utilization that triggered the alert (1.0 is equal to 100%).
						
Used by {{ alert.utilization | times: 100 }} percent.

Application drop (up)

					Example: Using application drop in liquid
				
<h2>Application {{ application.name }} ({{ application.application_id }})</h2>
<p>{{ application.description }}</p>
Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ application.errors.name | inline_errors }}

id

							Returns the id of the application
						

can_change_plan?

							Returns 'true' if changing of the application is allowed either directly or by request.
						

trial?

							Returns true if the contract is still in the trial period.
						

							Note: If you change the trial period length of a plan, it does not affect the existing contracts.
						

live?

state

							There are three possible states:
						
 - pending
 - live
 - suspended

remaining_trial_period_days

							Number of day still left in the trial period.
						

plan

							Returns a plan drop with the plan of the application
						

plan_change_permission_name

							Returns name of the allowed action
						

plan_change_permission_warning

							Returns a warning messenger of the allowed action
						

contract

admin_url

							Returns the admin_url of the application
						

name

							Returns the name of the application
						

can

oauth

pending?

							Returns 'true' if application state is pending
						

buyer_alerts_enabled?

description

							Returns the description of the application
						

redirect_url

							Returns the redirect url for the OAuth of the application
						

filters_limit

							Returns the amount of referrer filters allowed for this application
						

keys_limit

							Returns the amount of application keys allowed for this application
						

referrer_filters

							Returns the referrer filters associated with this application
						

rejection_reason

							Returns the reason for rejecting an application
						

user_key

							Returns the user_key of application
						

application_id

							Returns the application_id of an application
						

key

							Returns the application id or the user key
						

url

							Returns URL of the builtin detail view for this application.
						

edit_url

							Returns URL of the builtin edit view for this application.
						

update_user_key_url

log_requests_url

alerts_url

application_keys_url

service

							Service to which that application belongs to.
						

keys

							Returns the keys of an application
						
{% case application.keys.size %}
{% when 0 %}
 Generate your application key.
{% when 1 %}
 <h4>Application key for {{ application.name }} {{ application.application_id }}</h4>
 <p>Key is: {{ application.keys.first }}</p>
{% else %}
 <h4>Application keys for {{ application.name }} {{ application.application_id }}</h4>

 {% for key in application.keys %}
 {{ key }}
 {% endfor %}

{% endcase %}

oauth_mode?

user_key_mode?

app_id_mode?

change_plan_url

log_requests?

application_keys

extra_fields

							Returns non-hidden extra fields with values for this application Example: Print all extra fields
						
{% for field in application.extra_fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

fields

							Returns all builtin and extra fields with values for this application Example: Print all fields
						
{% for field in application.fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

builtin_fields

							Returns only builtin fields of the application
						

cinstance

ApplicationKey drop (up)

Methods

id

value

url

application

ApplicationPlan drop (up)

Methods

selected?

							Returns whether the plan is selected
						
{% if plan.selected? %}
 <p>You will signup to {{ plan.name }}</p>
{% endif %}

bought?

							Returns whether the plan is bought
						
{% if plan.bought? %}
 <p>You are on this plan already!</p>
{% endif %}

features

							Returns the visible features of the plan
						
{% if plan == my_free_plan %}
 <p>These plans are the same.</p>
{% else %}
 <p>These plans are not the same.</p>
{% endif %}

setup_fee

							Returns the setup fee of the plan
						

name

							Returns the name of the plan
						
<h2>We offer you a new {{ plan.name }} plan!</h2>

system_name

							Returns the system name of the plan
						
{% for plan in available_plans %}
 {% if plan.system_name == 'my_free_plan' %}

 <p>You will buy our only free plan!</p>
 {% endif %}
{% endfor %}

id

							Returns the plan id
						

free?

							The plan is free if it is not 'paid' (see the 'paid?' method)
						
{% if plan.free? %}
 <p>This plan is free of charge.</p>
{% else %}

 <p>Plan costs</p>
 Setup fee {{ plan.setup_fee }}
 Flat cost {{ plan.flat_cost }}

{% endif %}

paid?

							The plan is 'paid' when it has non-zero fixed or setup fee or there are some pricing rules present
						
{% if plan.paid? %}
 <p>this plan is a paid one.</p>
{% else %}
 <p>this plan is a free one.</p>
{% endif %}

approval_required?

							Returns whether the plan requires approval?
						
{% if plan.approval_required? %}
 <p>This plan requires approval.</p>
{% endif %}

flat_cost

							Returns the monthly fixed fee of the plan
						

metrics

							Returns the metrics of the plan
						

usage_limits

							Returns the usage limits of the plan
						

service

							Returns the service of the plan
						

Base drop (up)

Methods

login_url

user_identified?

Base drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ base.errors.name | inline_errors }}

title

							Returns the title result
						

kind

							Returns the kind of result, can be 'topic' or 'page'
						

url

							Returns the resource url of the result
						

description

							Returns a descriptive string for the result
						

BillingAddressField drop (up)

Methods

input_name

label

choices

errors

html_id

hidden?

visible?

read_only?

name

value

required

Can drop (up)

Methods

be_updated?

add_referrer_filters?

add_application_keys?

regenerate_user_key?

regenerate_oauth_secret?

manage_keys?

delete_key?

Can drop (up)

Methods

change_plan?

Cas drop (up)

Methods

login_url

user_identified?

Contract drop (up)

Plan of the contract {{ contract.plan.name }}
Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ contract.errors.name | inline_errors }}

id

							Returns the id
						

can_change_plan?

							Returns true if any form of change is possible
						

trial?

							Returns true if the contract is still in the trial period.
						

							Note: If you change the trial period length of a plan, it does not affect the existing contracts.
						

live?

state

							There are three possible states:
						
 - pending
 - live
 - suspended

remaining_trial_period_days

							Number of day still left in the trial period.
						

plan

							Returns the plan of the contract
						

plan_change_permission_name

							Returns name of the allowed action
						

plan_change_permission_warning

							Returns a warning messenger of the allowed action
						

contract

Country drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ country.errors.name | inline_errors }}

to_str

code

label

CountryField drop (up)

Methods

value

							Returns ID of the country
						
{{ account.fields.country.value }} => 42

compare with:

{{ account.fields.country }} => 'United States'

name

							Returns system name of the field
						

required

hidden?

hidden

visible?

visible

read_only

errors

input_name

html_id

label

							Returns label of the field
						
{{ account.fields.country.label }}
<!-- => 'Country' -->

to_str

							Returns name of the country
						
{{ account.fields.country }} => 'United States'

choices

CurrentUser drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ current_user.errors.name | inline_errors }}

admin?

							Returns whether the user is an admin.
						
{% if user.admin? %}
 <p>You are an admin of your account.</p>
{% endif %}

username

							Returns the username of the user, html escaped.
						

account

							Returns the account of the user.
						

name

							Returns the first and surname of the user.
						

email

							Returns the email of the user.
						

password_required?

							This method will return true for users using the builtin Developer Portal authentication mechanisms and false for those that are authenticated via Janrain, CAS or other single-sign-on method.
						
{{ if user.password_required? }}

{{ endif }}

sections

							Returns the list of sections the user has access to.
						
{% if user.sections.size > 0 %}
 <p>You can access following sections of our portal:</p>

 {% for section in user.sections %}
 {{ section }}
 {% endfor %}

{% endif %}

role

							Returns the role of the user
						

roles_collection

							Retuns a list of available roles for the user
						
{% for role in user.roles_collection %}

 <label for="user_role_{{ role.key }}">

 {{ role.text }}
 </label>

 {% endfor %}

url

							Return the resource url of the user
						
{{ 'Delete' | delete_button: user.url }}

edit_url

							Return the url to edit the user
						
{{ 'Edit' | link_to: user.edit_url, title: 'Edit', class: 'action edit' }}

can

							Exposes rights of current user which are dependent on your settings and user’s role. You can call these methods on the returned object:
						
	
									invite_user?
								
	
									create_application?
								
	
									see_log_requests?
								

{% if current_user.can.see_log_requests? and application.log_requests? %}
 (App Request Log)
{% endif %}

extra_fields

							Returns non-hidden extra fields with values for this user Example: Print all extra fields
						
{% for field in user.extra_fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

fields

							Returns all fields with values for this user Example: Print all fields
						
{% for field in user.fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

builtin_fields

							Returns all builtin fields with values for this user
						

Error drop (up)

					When a form fails to submit because of invalid data, the errors array will be available on the related model.
				
Methods

attribute

							Returns attribute of the model to this error is related
						
{{ account.errors.org_name.first.attribute }}
<!-- org_name -->

message

							Returns description of the error
						
{{ account.errors.first.message }}
<!-- can't be blank -->

value

							Returns value of the attribute to which the error is related
						
{{ account.errors.org_name.first.value }}
 <!-- => "ACME Co." -->

to_str

							Returns full description of the error (includes the attribute name)
						
{{ model.errors.first }}
<!-- => "Attribute can't be blank" -->

Errors drop (up)

					Example: get all errors
				
{% for error in form.errors %}
 attribute: {{ error.attribute }}
 ...
{% endfor %}
Methods

empty?

							Returns true if there are no errors
						
{% if form.errors == empty %}
 Congratulations! You have no errors!
{% endif %}

present?

							Returns true if there are some errors
						
{% if form.errors == present %}
 Sorry, there were some errors.
{% endif %}

Feature drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ feature.errors.name | inline_errors }}

name

							Returns the name of the feature
						
<h2>Feature {{ feature.name }}</h2>

description

							Returns the description of the feature
						

has_description?

							Returns whether the feature has description
						
{% if feature.has_description? %}
 {{ feature.description }}
{% else %}
 This feature has no description.
{% endif %}

Field drop (up)

Methods

value

							Returns value if the field
						
Name: {{ account.fields.first_name.value }}

name

							Returns system name of the field
						

required

hidden?

hidden

visible?

visible

read_only

errors

input_name

							Returns name for the HTML input that is expected when the form is submitted.
						
<!-- the 'name' attribute will be 'account[country]' -->

html_id

							Returns a unique field identifier that is commonly used as HTML ID attribute.
						
{{ account.fields.country.html_id }}
<!-- => 'account_country' -->

label

							Returns label of the field
						
{{ account.fields.country.label }}
<!-- => 'Country' -->

to_str

							Returns value of the field if used as variable
						
{{ account.fields.first_name }} => 'Tom'

choices

							Returns array of choices available for that field, if any. For example for a field called fruit it may respond with ['apple', 'bannana', 'orange'].
						

							You can define the choices in your /admin/fields_definitions[admin dashboard]. Each of the array elements responds to id and label which are usually just the same unless the field is a special builtin one (like country) It is recommended to use those methods rather that output the choice 'as is' for future compatibility.
						
{% for choice in field.choices %}
 <select name="{{ field.input_name }}" id="{{ field.html_id }}_id"
 class="{{ field.errors | error_class }}">
 <option {% if field.value == choice %} selected {% endif %} value="{{ choice.id }}">
 {{ choice }}
 </option>
{% endfor %}

Flash drop (up)

Methods

messages

							Return an array of messages
						
{% for message in flash.messages %}
 <p id="flash-{{ message.type }}">
 {{ message.text }}
 </p>
{% endfor %}

Forum drop (up)

Methods

enabled?

							Returns true if you have forum functionality enabled.
						
{% if forum.enabled? %}
 Check out our forum!
{% endif %}

latest_posts

I18n drop (up)

Provide useful strings for i18n support.

{{ object.some_date | date: i18n.long_date }}
Methods

short_date

							Alias for %b %d
						
Dec 11

long_date

							Alias for %B %d, %Y
						
December 11, 2013

default_date

							Alias for %Y-%m-%d
						
2013-12-11

Invitation drop (up)

 Email: {{ invitation.email }}

<tr id="invitation_{{ invitation.id }}">
 <td> {{ invitation.email }} </td>
 <td> {{ invitation.sent_at | date: i18n.short_date }} </td>
 <td>
 {% if invitation.accepted? %}
 yes, on {{invitation.accepted_at | format: i18n.short_date }}
 {% else %}
 no
 {% endif %}
 </td>
</tr>
Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ invitation.errors.name | inline_errors }}

email

							Returns email address
						

accepted?

							Returns true if the invitation was accepted
						

accepted_at

							Returns a date if the invitations was accepted
						
{{ invitation.accepted_at | date: i18n.short_date }}

sent_at

							Returns the creation date
						
{{ invitation.sent_at | date: i18n.short_date }}

resend_url

							Returns the url for resend the invitation
						
{{ "Resend" | update_button: invitation.resend_url}}

url

							Returns the resource url
						
{{ "Delete" | delete_button: invitation.url }}

Invoice drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ invoice.errors.name | inline_errors }}

friendly_id

							Returns a friendly id
						
<td> {{ invoice.id }} </td>
<td> {{ invoice.name }} </td>
<td> {{ invoice.state }} </td>
<td> {{ invoice.cost }} {{ invoice.currency }} </td>

name

							String composed by month and year
						

state

cost

							Returns a number with two decimals
						
23.00

currency

cost_without_vat

							Returns cost withot VAT
						

vat_amount

							Returns vat ammount
						

exists_pdf?

							Return true if the pdf was generated
						

period_begin

{{ invoice.period_begin | date: i18n.short_date }}

period_end

{{ invoice.period_end | date: i18n.long_date }}

issued_on

{{ invoice.issued_on | date: i18n.long_date }}

due_on

{{ invoice.due_on | date: i18n.long_date }}

paid_on

{{ invoice.paid_on | date: i18n.long_date }}

vat_code

fiscal_code

account

							Return a AccountDrop
						

buyer_account

line_items

							Returns a array of LineItemDrop
						
{% for line_item in invoice.line_items %}
 <tr class="line_item {% cycle 'odd', 'even' %}">
 <th>{{ line_item.name }}</th>
 <td>{{ line_item.description }}</td>
 <td>{{ line_item.quantity }}</td>
 <td>{{ line_item.cost }}</td>
 </tr>
{% endfor %}

payment_transactions

							Returns a array of PaymentTransactionDrop
						
{% for payment_transaction in invoice.payment_transactions %}
 <tr>
 <td> {% if payment_transaction.success? %} Success {% else %} Failure {% endif %} </td>
 <td> {{ payment_transaction.created_at }} </td>
 <td> {{ payment_transaction.reference }} </td>
 <td> {{ payment_transaction.message }} </td>
 <td> {{ payment_transaction.amount }} {{ payment_transaction.currency }} </td>
 </tr>
{% endfor %}

url

							Return the resource url of the invoice
						
{{ "Show" | link_to: invoice.url }}

pdf_url

							Return the resource url of the invoice pdf
						
{{ "PDF" | link_to: invoice.pdf_url }}

Janrain drop (up)

Methods

login_url

user_identified?

session_url

relying_party

LineItem drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ line_item.errors.name | inline_errors }}

name

{% for line_item in invoice.line_items %}
 <tr class="line_item {% cycle 'odd', 'even' %}">
 <th>{{ line_item.name }}</th>
 <td>{{ line_item.description }}</td>
 <td>{{ line_item.quantity }}</td>
 <td>{{ line_item.cost }}</td>
 </tr>
{% endfor %}

description

quantity

cost

Message drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ message.errors.name | inline_errors }}

id

							Returns the id of the message
						

subject

							If subject is not present then either a truncated body or (no subject) string is returned.
						

body

							Body of the message
						

created_at

							Returns the creation date
						
{{ message.created_at | date: i18n.short_date }}

url

							URL of the message detail, points either to inbox or outbox.
						

state

							Either 'read' or 'unread'
						

sender

							Returns the name of the sender
						

to

							Returns the name of the receiver
						

recipients

Message drop (up)

Methods

type

							The possible types of the messages are:
						
	
									success (not used by now)
								
	
									info
								
	
									warning
								
	
									danger
								

text

Metric drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ metric.errors.name | inline_errors }}

unit

							Returns the unit of the metric
						
This metric is measured in {{ metric.unit | pluralize }}

description

							Returns the description of the metric
						

name

							Returns the name of the metric
						
<h4>Metric {{ metric.name }}</h4>
<p>{{ metric.description }}</p>

system_name

							Returns the system name of this metric
						
<h4>Metric {{ metric.name }}</h4>
<p>{{ metric.system_name }}</p>

usage_limits

							Returns the usage limits of the metric
						
{% if metric.usage_limits.size > 0 %}
 <p>Usage limits of the metric</p>

 {% for usage_limit in metric.usage_limits %}
 {{ usage_limit.period }} : {{ usage_limit.value }}
 {% endfor %}

 {% else %}
 <p>This metric has no usage limits</p>
{% endif %}

pricing_rules

							Returns the pricing rules of the metric
						
{% if metric.pricing_rules.size > 0 %}
 <p>Pricing rules of the metric</p>

 {% for pricing_rule in metric.pricing_rules %}
 {{ pricing_rule.cost_per_unit }}
 {% endfor %}

{% else %}
 <p>This metric has no pricing rules</p>
{% endif %}

has_parent

Page drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ page.errors.name | inline_errors }}

title

							Returns the title of the page
						
<title>{{ page.title }}</title>

system_name

							Returns system name of the page
						
{% if page.system_name == 'my_page' %}
 {% include 'custom_header' %}
{% endif %}

Page drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ page.errors.name | inline_errors }}

title

kind

url

description

Pagination drop (up)

Methods

page_size

							Number of items on one full page.
						
 {% for part in pagination.parts %}
 {% if part.is_link %}
 {% case part.rel %}
 {% when 'previous' %}
 {% assign css_class = 'previous_page' %}
 {% when 'next' %}
 {% assign css_class = 'next_page' %}
 {% else %}
 {% assign css_class = '' %}
 {% endcase %}

 {{ part.title }}
 {% else %}
 {% case part.rel %}
 {% when 'current' %}
 <em class="current">{{ part.title }}
 {% when 'gap' %}
 …
 {% else %}
 {{ part.title }}
 {% endcase %}
 {% endif %}
 {% endfor %}

<!-- Outputs:
 ==

 ← Previous
 1
 2
 3
 4
 5
 6
 7
 <em class="current">8
 9
 10
 11
 12
 …
 267
 268
 Next →

=======================================
-->

current_page

							Number of the currently selected page.
						

current_offset

							Items skipped so far.
						

pages

							Total number of pages.
						

items

							Total number of items in all pages together.
						

previous

							Number of the previous page or empty.
						

next

							Number of the next page or empty.
						

parts

							Elements that help to render a user-friendly pagination. See the [[part-drop[part drop] for more information.
						

Part drop (up)

Methods

url

rel

current?

is_link

title

to_s

PaymentGateway drop (up)

Methods

braintree_blue?

							Returns whether current payment gateway is authorize.Net
						

authorize_net?

							Returns whether current payment gateway is authorize.Net
						

type

							Returns the type of this payment gateway.
						

PaymentTransaction drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ payment_transaction.errors.name | inline_errors }}

currency

							Returns the currency
						
{% for payment_transaction in invoice.payment_transactions %}
 <tr>
 <td> {% if payment_transaction.success? %} Success {% else %} Failure {% endif %} </td>
 <td> {{ payment_transaction.created_at }} </td>
 <td> {{ payment_transaction.reference }} </td>
 <td> {{ payment_transaction.message }} </td>
 <td> {{ payment_transaction.amount }} {{ payment_transaction.currency }} </td>
 </tr>
{% endfor %}

amount

							Returns the amount
						

created_at

							Returns the creation date
						

success?

							Returns true if was success
						

message

							Returns the message of the transaction
						

reference

							Returns the reference
						

PlanFeature drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ plan_feature.errors.name | inline_errors }}

name

							Returns the name of the feature
						
<h2>Feature {{ feature.name }}</h2>

description

							Returns the description of the feature
						

has_description?

							Returns whether the feature has description
						
{% if feature.has_description? %}
 {{ feature.description }}
{% else %}
 This feature has no description.
{% endif %}

enabled?

Post drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ post.errors.name | inline_errors }}

body

							Text of the post.
						

topic

							Every post belongs to a [[topic-drop[topic]
						

created_at

							Date when this post created
						
{{ post.created_at | date: i18n.short_date }}

url

							The url of this post within its topic
						

Post drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ post.errors.name | inline_errors }}

title

kind

url

description

PricingRule drop (up)

Methods

cost_per_unit

							Returns the cost per unit of the pricing rule Example: Using pricing rule drop in liquid
						
<h2>Pricing rule</h2>
Min value {{ pricing_rule.min }}
Max value {{ pricing_rule.max }}
Cost per unit {{ pricing_rule.cost_per_unit }}

min

							Returns the minimum value of the pricing rule
						

max

							Returns the maximum value of the pricing rule
						

plan

							Returns plan of pricing rule
						

Provider drop (up)

Methods

name

							Returns the name of your organization.
						
Domain {{ provider.domain }}

{% if provider.multiple_applications_allowed? %}

 <p>Applications</p>

 {% for app in account.applications %}
 {{ app.name }}
 {% endfor %}

{% else %}
 Application {{ account.applications.first.name }}
{% endif %}

For general questions contact us at {{ provider.support_email }},
for invoice or payment related questions contact us at {{ provider.finance_support_email }}

payment_gateway

							Returns the payment gateway associated with your organization
						

domain

							Domain of your developer portal
						

timezone

							Returns timezone that you use. Can be changed in your /p/admin/account/edit[administration dashboard].
						

support_email

							Support email of the account
						

finance_support_email

							Finance support email of the account
						

telephone_number

							Returns the telephone number of the account
						

multiple_applications_allowed?

							True if developers can have more separate applications with their own keys, stats, etc. Depends on your 3scale plan.
						
{% if provider.multiple_applications_allowed? %}

 <p>Applications</p>

 {% for app in account.applications %}
 {{ app.name }}
 {% endfor %}

{% else %}
 Application {{ account.applications.first.name }}
{% endif %}

logo_url

							Return the logo url
						

multiple_services_allowed?

							True if your 3scale plan allows you to manage multiple APIs as separate [service[services.
						
{% if provider.multiple_services_allowed? %}
 {% for service in provider.services %}
 Service {{ service.name }} is available.
 {% endfor %}
{% endif %}

finance_allowed?

multiple_users_allowed?

							True if the developer accounts can have multiple logins associated with them (depends on your 3scale plan) and its visibility has been turned on for your develoeper portal in the /p/admin/cms/switches[settings].
						
{% if provider.multiple_users_allowed? %}
 <ul id="subsubmenu">

 {{ 'Users' | link_to: urls.users }}

 {{ 'Sent invitations' | link_to: urls.invitations }}

{% endif %}

account_plans

							Returns all published account plans.
						
<p>We offer following account plans:</p>

{% for plan in model.account_plans %}
 {{ plan.name }}
{% endfor %}

services

							Returns all defined services.
						
<p>You can signup to any of our services!</p>

{% for service in provider.services %}
 {{ service.name }} Signup!
{% endfor %}

signups_enabled?

							You can enable or disable signups in the Usage rules section of your Admin Portal.
						

account_management_enabled?

							You can enable or disable account management in the Usage rules section.
						

ReferrerFilter drop (up)

Methods

id

value

delete_url

application

Request drop (up)

					Example: Using request drop in liquid
				
<h2>Request details</h2>
URI {{ request.request_uri }}
Host {{ request.host }}
Host and port {{ request.host_with_port }}
Methods

request_uri

							Returns the URI of the request
						

host_with_port

							Returns the host with port of the request
						

host

							Returns the host part of the request URL
						

path

							Returns the path part of the request URL
						
{% if request.path == '/' %}
 Welcome on a landing page!
{% else %}
 This just an ordinary page.
{% endif %}

Role drop (up)

Methods

name

							Return internal name of the role, important for the system
						

description

							Return a descriptiptive text for the role
						

Search drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ search.errors.name | inline_errors }}

query

							Returns the searched string
						
<h3>{{ search.token }}</h3>
<p>found on {{ search.total_found }} {{ search.item | pluralize }} </p>
<dl>
 {% for result in search.results %}
 <dt>
 [{{ result.kind | capitalize}}]
 {{ result.title | link_to: result.url }}
 </dt>
 <dd>
 {{ result.description }}
 </dd>
 {% endfor %}
</dl>

total_found

							Returns the number of matching elements
						

results

							Returs an array of results for que search
						

Service drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ service.errors.name | inline_errors }}

name

							Returns the name of the service
						

system_name

							Returns the system name of the service
						
{% case service.system_name %}
{% when 'api' %}
 API is our newest service!
{% when 'old' %}
 Unfortunately we dont allow more signups to our old service.
{% endcase %}

description

							Returns the description of the service
						

subscribed?

							Returns whether the service is subscribed
						
{% if service.subscribed? %}
 <p>You already subscribed this service.</p>
{% endif %}

subscription

							Returns a subscription(ServiceContract drop) if the currently logged in user is subscribed to this service, Nil otherwise.
						
{% if service.subscription %}
 Your applications for service {{ service.name }} are:
 {% for app in service.subscription.applications %}
 {{ app.name }}

 {% endfor %}
{% else %}
 <p>You are not subscribed to this.</p>
{% endif %}

subscribable?

subscribe_url

application_plans

							Returns the published application plans of the service
						
{% for service in model.services %}
 <h4>{{ service.name }} application plans:</h4>
 <dl>
 {% for application_plan in service.application_plans %}
 <dt>{{ application_plan.name }}</dt>
 <dd>{{ application_plan.system_name }}</dd>
 {% endfor %}
 </dl>
{% endfor %}

service_plans

							Returns the published service plans of the service
						
<p>We offer following service plans:</p>
<dl>
{% for service in model.services %}
 {% for service_plan in service.service_plans %}
 <dt>{{ service_plan.name }}</dt>
 <dd>{{ service_plan.system_name }}</dd>
 {% endfor %}
{% endfor %}
</dl>

plans

							Returns the application plans of the service
						

features

							Returns the visible features of the service
						
{% if service.features.size > 0 %}
 <p>{{ service.name }} has following features:</p>

 {% for feature in service.features %}
 {{ feature.name }}
 {% endfor %}

{% else %}
 <p>Unfortunately, {{ service.name }} currently has no features.</p>
{% endif %}

apps_identifier

							Depending on the authentication mode set, returns either 'ID', 'API key' or 'Client ID' for OAuth authentication.
						
{{ service.application_key_name }}

backend_version

referrer_filters_required?

metrics

							Returns the metrics of the service
						
<p>On {{ service.name }} we measure following metrics:</p>

{% for metric in service.metrics %}
 {{ metric.name }}
{% endfor %}

support_email

							Support email of the service
						

ServiceContract drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ service_contract.errors.name | inline_errors }}

id

can_change_plan?

							Returns true if any form of change is possible
						

trial?

							Returns true if the contract is still in the trial period.
						

							Note: If you change the trial period length of a plan, it does not affect the existing contracts.
						

live?

state

							There are three possible states:
						
 - pending
 - live
 - suspended

remaining_trial_period_days

							Number of day still left in the trial period.
						

plan

							Returns the plan of the contract
						

plan_change_permission_name

							Returns name of the allowed action
						

plan_change_permission_warning

							Returns a warning messenger of the allowed action
						

contract

name

system_name

change_plan_url

service

applications

can

							Exposes specific rights of the current user for that subscription.
						
{% if subscription.can.change_plan? %}
 ...
{% endif %}

ServicePlan drop (up)

Methods

selected?

							Returns whether the plan is selected
						
{% if plan.selected? %}
 <p>You will signup to {{ plan.name }}</p>
{% endif %}

bought?

							Returns whether the plan is bought
						
{% if plan.bought? %}
 <p>You are on this plan already!</p>
{% endif %}

features

							Returns the visible features of the plan
						
{% if plan == my_free_plan %}
 <p>These plans are the same.</p>
{% else %}
 <p>These plans are not the same.</p>
{% endif %}

setup_fee

							Returns the setup fee of the plan
						

name

							Returns the name of the plan
						
<h2>We offer you a new {{ plan.name }} plan!</h2>

system_name

							Returns the system name of the plan
						
{% for plan in available_plans %}
 {% if plan.system_name == 'my_free_plan' %}

 <p>You will buy our only free plan!</p>
 {% endif %}
{% endfor %}

id

							Returns the plan id
						

free?

							The plan is free if it is not 'paid' (see the 'paid?' method)
						
{% if plan.free? %}
 <p>This plan is free of charge.</p>
{% else %}

 <p>Plan costs</p>
 Setup fee {{ plan.setup_fee }}
 Flat cost {{ plan.flat_cost }}

{% endif %}

paid?

							The plan is 'paid' when it has non-zero fixed or setup fee or there are some pricing rules present
						
{% if plan.paid? %}
 <p>this plan is a paid one.</p>
{% else %}
 <p>this plan is a free one.</p>
{% endif %}

approval_required?

							Returns whether the plan requires approval?
						
{% if plan.approval_required? %}
 <p>This plan requires approval.</p>
{% endif %}

flat_cost

							Returns the monthly fixed fee of the plan
						

service

							Example: Using service plan drop in liquid
						
<p class="notice">The examples for plan drop apply here</p>
Service of this plan {{ plan.service.name }}

TimeZone drop (up)

Methods

full_name

to_str

Today drop (up)

Methods

month

							Returns current month (1-12)
						

day

							Returns current day of the month (1-31)
						

year

							Returns current year Example: Create dynamic copyright
						
©{{ today.year }}

beginning_of_month

							Returns date of beginning of current month
						
This month began on {{ today.beginning_of_month | date: '%A' }}

Topic drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ topic.errors.name | inline_errors }}

title

kind

url

description

Topic drop (up)

Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ topic.errors.name | inline_errors }}

title

							Name of the topic. Submitted when first post to the thread is posted.
						

url

Url drop (up)

Methods

to_s

to_str

title

current_or_subpath?

							True if the path of the current page is the same as this one or it’s a 'direct subpath' of it (i.e. extended by ID). For example with {{ urls.outbox }} these will return true:
						
	
									/admin/sent/messages/received
								
	
									/admin/sent/messages/received/42
								

							But not these:
						
	
									/admin/sent/messsages/new
								
	
									/admin/sent/messsages/longer/subpath
								

							See also '#active?', '#current?'.
						

current?

							True if the URL’s path is the the same as of the current. Parameters and other components are not taken into account. See also '#active?'.
						
{% assign url = urls.messages_inbox %}
<!-- => http://awesome.3scale.net/admin/messages/sent -->

<!-- Current page: http://awesome.3scale.net/admin/messages/sent?unread=1 -->
{{ url.current? }} => true

<!-- Current page: http://awesome.3scale.net/admin/messages -->
{{ url.current? }} => false

active?

							True if the current page is in the same menu structure as this URL. See also '#current?'.
						
{% assign url = urls.messages_inbox %}
<!-- => http://awesome.3scale.net/admin/messages/sent -->

<!-- Current page: http://awesome.3scale.net/admin/messages -->
{{ url.active? }} => true

<!-- Current page: http://awesome.3scale.net/admin/messages/trash -->
{{ url.active? }} => true

<!-- Current page: http://awesome.3scale.net/admin/stats -->
{{ url.active? }} => false

Urls drop (up)

Methods

provider

cas_login

signup here
subscribe to a service here

new_application

signup

							URL of a signup page. Accessible for all.
						
Signup Now!

search

							URL to which all the search requests should be sent
						
<form action="{{ urls.search }}" method="get">

</form>

login

logout

forgot_password

service_subscription

							URL to a service subscription page. Only for logged in users.
						

 Subscribe to service {{ service.name }}

compose_message

							URL to a page that allows the developer contact provider via the internal messaging system.
						

messages_outbox

							URL to the list of messages sent by a developer.
						

messages_trash

empty_messages_trash

credit_card_terms

credit_card_privacy

credit_card_refunds

users

personal_details

							URL or Nil if user account management is disabled (check your Usage rules).
						

access_details

							A page with API key(s) and other authentication info. Differs depending on the authentication strategy.
						

payment_details

new_invitation

							Page to invite new users
						

invitations

							List of all the sent invitations
						

dashboard

applications

api_access_details

services

messages_inbox

							URL to the list of received messages.
						

stats

account_overview

account_plans

invoices

UsageLimit drop (up)

					Example: Using usage limit drop in liquid
				
You cannot do more than {{ limit.value }} {{ limit.metric.unit }}s per {{ limit.period }}
Methods

period

							Returns the period of the usage limit
						

metric

							Usually hits but can be any custom method.
						

value

							Returns the value of the usage limit
						

User drop (up)

<h2>User {{ user.display_name }}</h2>
Account {{ user.account.name }}
Username {{ user.username }}
Email {{ user.email }}
Website {{ user.website }}
Methods

errors

							If a form of this model is rendered after unsuccesfull submit, this returns" errors that occured.
						
{{ user.errors.name | inline_errors }}

admin?

							Returns whether the user is an admin.
						
{% if user.admin? %}
 <p>You are an admin of your account.</p>
{% endif %}

username

							Returns the username of the user, html escaped.
						

account

							Returns the account of the user.
						

name

							Returns the first and surname of the user.
						

email

							Returns the email of the user.
						

password_required?

							This method will return true for users using the builtin Developer Portal authentication mechanisms and false for those that are authenticated via Janrain, CAS or other single-sign-on method.
						
{% if user.password_required? %}

{% endif %}

sections

							Returns the list of sections the user has access to.
						
{% if user.sections.size > 0 %}
 <p>You can access following sections of our portal:</p>

 {% for section in user.sections %}
 {{ section }}
 {% endfor %}

{% endif %}

role

							Returns the role of the user
						

roles_collection

							Retuns a list of available roles for the user
						
{% for role in user.roles_collection %}

 <label for="user_role_{{ role.key }}">

 {{ role.text }}
 </label>

 {% endfor %}

url

							Return the resource url of the user
						
{{ 'Delete' | delete_button: user.url }}

edit_url

							Return the url to edit the user
						
{{ 'Edit' | link_to: user.edit_url, title: 'Edit', class: 'action edit' }}

can

							Give access to permission methods
						
{% if user.can.be_managed? %}
 <!-- do something -->
{% endif %}

extra_fields

							Returns non-hidden extra fields with values for this user Example: Print all extra fields
						
{% for field in user.extra_fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

fields

							Returns all fields with values for this user Example: Print all fields
						
{% for field in user.fields %}
 {{ field.label }}: {{ field.value }}
{% endfor %}

builtin_fields

							Returns all builtin fields with values for this user
						

Tags (up)

Tag 'braintree_customer_form' (up)

					Renders a form to enter data required for Braintree Blue payment gateway
				

Tag 'csrf' (up)

					Renders the cross site request forgery meta tags.
				

					Example: Using csrf tag in liquid
				
 <head>
 {% csrf %}
 </head>

Tag 'content' (up)

					Renders body of a page. Use this only inside a layout.
				

Tag 'content_for' (up)

Tag 'debug' (up)

					Prints all liquid variables available in a template into an HTML comment.' We recommend to remove this tag from public templates.
				
``{% debug:help %}``

Tag 'email' (up)

					The email tag allows you to customize headers of your outgoing emails and is available only inside the email templates.
				

					There are several convenience subtags such as cc or subject (see the table below) that simplify the job but you can also use a header subtag to set an arbitrary SMTP header for the message.
				
	
									Subtag
								

								 	
									Description
								

								 	
									Example
								

								
	
									subject
								

								 	
									dynamic subject
								

								 	
									{% subject = 'Greetings from Example company!' %}
								

								
	
									cc
								

								 	
									carbon copy
								

								 	
									{% cc = 'boss@example.com' %}
								

								
	
									bcc
								

								 	
									blind carbon copy
								

								 	
									{% bcc = 'all@example.com' %}
								

								
	
									from
								

								 	
									the actual sender
								

								 	
									{% from = 'system@example.com' %}
								

								
	
									reply-to
								

								 	 	
									{% reply-to = 'support@example.com' %}
								

								
	
									header
								

								 	
									custom SMTP header
								

								 	
									{% header 'X-SMTP-Group' = 'Important' %}
								

								
	
									do_not_send
								

								 	
									discard the email
								

								 	
									{% do_not_send %}
								

								

					Example: Conditional blind carbon copy
				
{% email %}
 {% if plan.system_name == 'enterprise' %}
 {% bcc 'marketing@world-domination.org' %}
 {% endif%}
{% endemail %}

					Example: Disabling emails at all
				
{% email %}
 {% do_not_send %}
{% endemail %}

					Example: Signup email filter
				
{% email %}
 {% if plan.system == 'enterprise' %}
 {% subject = 'Greetings from Example company!' %}
 {% reply-to = 'support@example.com' %}
 {% else %}
 {% do_not_send %}
 {% endif %}
{% endemail %}

Tag 'flash' (up)

					Renders informational or error messages of the system.
				

					DEPRECATED: This tag is deprecated, use FlashDrop instead.
				

					Example: Using flash tag in liquid
				
 {% flash %}

Tag 'footer' (up)

					Renders a footer html snippet.
				

					DEPRECATED: This tag is deprecated, use a CMS partial instead
				

Tag 'form' (up)

					Renders a form tag with an action and class attribute specified, depending on the name of the form. The supported forms are:
				
	
									Form
								

								 	
									Allowed Field Names
								

								 	
									Spam Protection
								

								 	
									Notes
								

								
	
									 application[name] application[description] application[<any-extra-field>]
								

								 	
									No
								

								 	 	
									 application[name] application[description] application[<any-extra-field>]
								

								
	
									No
								

								 	 	
									 account[org_name] account[org_legaladdress] account[org_legaladdress_cont] account[city] account[state] account[zip] account[telephone_number] account[country_id] account[<any-extra-field>] account[user][username] account[user][email] account[user][first_name] account[user][last_name] account[user][password] account[user][password_confirmation] account[user][title] account[user][<any-extra-field>]
								

								 	
									Yes
								

								

					Example: A form to create an application
				
{% form 'application.create', application %}

 {{ application.errors.name | inline_errors }}

{% endform %}

Tag 'latest_forum_posts' (up)

					An HTML table with latest forum posts.
				

					DEPRECATED: Use forum drop instead.
				

					Example: Using latest_forum_posts tag liquid
				
{% latest_forum_posts %}

Tag 'latest_messages' (up)

					Renders a html snippet with the latest messages for the user.
				

					Example: Using latest_messages tag liquid
				
{% latest_messages %}

Tag 'logo' (up)

					Renders the logo.
				

					DEPRECATED: This tag is deprecated, use {{ provider.logo_url }} instead.
				

					Example: Using menu tag in liquid
				
 {% logo %}

Tag 'menu' (up)

					DEPRECATED: This tag is deprecated, use '{% include "menu" %}' instead.
				

Tag 'oldfooter' (up)

					Renders a footer html snippet.
				

					DEPRECATED: This tag is deprecated, use a CMS partial instead
				

Tag 'plan_widget' (up)

					Includes a widget to review or change application plan
				
{% if application.can_change_plan? %}
 <a href="#choose-plan-{{ application.id }}"
 id="choose-plan-{{application.id}}">
 Review/Change

 {% plan_widget application %}
{% endif %}

Tag 'portlet' (up)

					This tag includes portlet by system name.
				

Tag 'submenu' (up)

					Renders a submenu html snippet for a logged in user.
				

					DEPRECATED: This tag is deprecated, use a 'submenu' partial instead
				

					Example: Using submenu tag in liquid
				
 {% submenu %}

Tag '3scale_essentials' (up)

Tag 'user_widget' (up)

					Renders a user widget html snippet.
				

					DEPRECATED: This tag is deprecated, use a CMS partial instead
				

					Example: Using user_widget tag in liquid
				
 {% user_widget %}
 <p class="notice">If you are logged in you see profile related links above.</p>
 <p class="notice">If you are not login you are invited to login or signup.</p>

Filters (up)

FormHelpers filters (up)

error_class filter

						Outputs error class if argument is not empty Example: Using error_class to show output an error class
					

inline_errors filter

						Outputs error fields inline in paragraph Example: Using inline_errors to show errors inline
					
{{ form.errors.description | inline_errors }}

ParamFilter filters (up)

to_param filter

						Converts a supplied drop to URL parameter if possible. Example: Using to_param filter in liquid
					
<h2>Signup to a service</h2>
Signup to {{ service.name }}

Common filters (up)

group_by filter

						Group collection by some key Example: Group applications by service
					
{% assign grouped = applications | group_by: 'service' %}
{% for group in grouped %}
 Service: {{ group[0 }}
 {% for app in group[1] %}
 Application: {{ app.name }}
 {% endfor %}
{% endfor %}

any filter

						True if any string in the collection equals to the parameter Example: Are there any pending apps of the current account?
					
{% assign has_pending_apps = current_account.applications | map: 'state' | any: 'live' %}

stylesheet_link_tag filter

						Stylesheet link
					

javascript_include_tag filter

						Javascript include tag
					

image_tag filter

						Outputs an tag using the parameters as its src attribute.
					
{{ 'http://example.com/cool.gif' | image_tag }}
=>

mail_to filter

						Converts email address to a 'mailto' link.
					
{{ 'me@there.is' | mail_to }}
=> me@there.is

html_safe filter

						Marks content as HTML safe so that it is not escaped.
					

pluralize filter

						Convert word to plural form
					

delete_button filter

						Generates a button to delete a resource present on the URL. First parameter is a URL, second is a title. You can also add more HTML tag attributes as a third parameter.
					
{{ 'Delete Message' | delete_button: message.url, class: 'my-button' }}

delete_button_ajax filter

						Generates a button to delete a resource present on the URL using AJAX. First parameter is a URL, second is a title.
					
{{ 'Delete Message' | delete_button_ajax: message.url }}

update_button filter

						Generates a button to 'update' (HTTP PUT request) a resource present on the URL. First parameter is a URL, second is a title. You can also add more HTML tag attributes as a third parameter.
					
{{ 'Resend' | update_button: message.url, class: 'my-button' }}

create_button filter

						Generates a button to create a resource present on the URL. First parameter is a URL, second is a title.
					
{{ 'Create Message' | create_button: message.url }}

create_button_ajax filter

regenerate_oauth_secret_button filter

link_to filter

						Create link from given text
					
{{ "See your App keys" | link_to:'/my-app-keys' }}

Chapter 8. Liquids: Developer Portal

			Learn what liquid formatting tags are and how they work in the 3scale system, including the different elements of the markup, the connections between them, and short examples of how to use them in your Developer Portal. Find the complete list of liquid tags, drops, and filters available here
		
What are liquids?

				Liquid is a simple programming language used for displaying and processing most of the data from the 3scale system available for API providers. Liquid was originally developed by Shopify and is used in many other CMS engines throughout the web. In the 3scale platform, it is used to expose server-side data to your API developers, greatly extending the usefulness of the CMS while maintaining a high level of security.
			
Pros and cons

					Liquids are mainly used to fetch and display server-side data on your Developer Portal pages. However there is much more power in liquids than just this. They serve very well for:
				
	
							Altering the DOM and content of a page based on server-side data
						
	
							Adding logic to pages, layouts, and partials
						
	
							Manipulating the email templates sent to developers
						

					There are some use cases where liquids don’t provide the best solution to the problem, mostly situations where you need to use dynamic data such as input from the user or the page URL.
				

					Some general advice is to use them as the primary way to add logic to the page, but then if you find it impossible or overly complicated, switch to JavaScript (or add them to it, as liquids also work well with JS).
				

How to use liquids

				Liquid markup is divided into two types: logic tags and output tags. The logic tags, marked as MISSING, are conditional liquid statements that include standard programming language elements such as the "if" clause, loops, etc.
			
{% if current_user %} <!-- if the user is logged in -->
 Logout <!-- show the logout link -->
{% else %} <!-- if the user is not logged in -->
 Login <!-- display the login link -->
{% endif %}

				Output tags, marked as '{{ }}', are used to display the value of the tag between the curly braces.
			
{{ current_user.username }} <!-- display the logged-in user's username value -->

				For documentation on logic tags, please refer to the Shopify tutorial. The full reference of the 3scale liquid output tags can be found both on this page as well as in your Admin Portal under Help > Liquid Reference.
			
Liquid drops, tags, and their meanings

					In the 3scale CMS, you will have access to three types of liquid markup:
				
	
							liquid drops (e.g. {{ current_account.name }})
						
	
							liquid tags (e.g. {% content %})
						
	
							filters (e.g. {{ form.errors.description | error_class }})
						

					You can find a complete list of liquid tags, drops, and filters available here
				

					As you can see, they’re almost the same as the logic and output tags, and they work very similarly. Liquid drops are the most basic structure, and you will be using them most of the time. They give access to certain values stored in the system such as the name of the user and the ID of the application. They’re handled by the interpreter in the same way as any other output tags.
				

					On the other hand, liquid tags are a type of logic tag that renders or accesses certain parts of the system for further customization – for example, to render content in the layout or customize email templates.
				

					Filters, as the name suggests, enable the option of filtering results from the drops, converting values, grouping by some key, etc. There is a group of standard liquids filters, which you can find on the Shopify website) and a group of special 3scale internal filters, which are listed on the reference page.
				

The context

					The context describes which variables (drops) are available to use on the current page. The basic set includes the following variables:
				
	
							provider
						
	
							urls
						
	
							current_user
						
	
							current_account
						
	
							today
						

					These variables are available on every page throughout the CMS (except for email templates). However, most of the built-in pages will have some additional variables available. For example, the edit user form will have a user variable exposed (instead of current user – on edit user page, the identity of the user is already known). To check which variables are available on the current page, there is a special tag: {% debug:help %}. It adds the list of all the top-level variables available to use as a comment in the source of the page.
				

Hierarchy

					The direct consequence of the context is that the liquid drops are organized in a hierarchical structure. The available set of variables only gives you the list of the top level drops that are available. Using them, you can get access to elements much deeper inside the hierarchy. For example, if you would like to show the username of the logged-in user, you would write {{ current_user.username }}.
				

					Displaying lower level drops is a little bit more complicated. Assume that you would like to display the name of the only application for a user. Looking at the reference guide, you can see that the method "applications" is a part of the account drop. This means that applications is an array of single-application tags. If your users are allowed to have more than one application, then you would have to iterate through them using the logic tags. Otherwise, you can refer to the first (and only) application on the account. The code to display this would look like this: {{ current_account.applications.first.name }}.
				

Usage of liquids in the CMS

Enabling Liquids

					Liquid markup processing is enabled by default for all partials and email templates. Enabling them on layouts is done by simply checking the checkbox right under the system_name input field. However, to enable them on pages, you’ll have to go to the advanced options section of the page.
				
[image: developer portal configuration liquids enable]

					Just expand the Advanced options section and mark the Liquid enabled checkbox. From now on, all the liquid markup will be processed by the internal engine, and the CMS built-in editor will also add code highlighting for liquid.
				

Different use on pages, partials, and layouts

					The use of liquids usually differs slightly between pages, which are single-use elements and partials/layouts, which are the reusable elements of your portal. This means that instead of using multiple layouts or partials with small changes for use on different pages, you can add some logic liquid tags inside and alter the layout depending on the page the user is on.
				
<!-- if we are inside '/documentation' URL -->
<li class="{% if request.request_uri contains "/documentation" %}active{% endif %}"><!-- add the active class to the menu item -->
 Documentation

Use with CSS/JS

					Liquid markup doesn’t just work with HTML, you can easily combine it with CSS and/or JavaScript code for even more control. To enable liquid in a stylesheet or JS, create them as a page and follow the same steps as if you were enabling it for a normal page. Having done that, you’ll be able to add some conditional markup in CSS or use the server-side data in JavaScript. Just remember to set the content type of the page as CSS or JS.
				

Usage of liquids in email templates

Differences from CMS

					As previously mentioned, liquid tags can also be used to customize the email templates sent to your users. All the general rules for writing liquid mentioned before also apply to the email templates, with some exceptions:
				
	
							There is no commonly shared list of variables that are available on every template. Instead, you’ll have to do some testing using the previously mentioned {% debug:help %} tag.
						
	
							Since emails are by nature different from web pages, you will have limited or no access to some tags. For example, {{ request.request_uri }} will not make sense anymore, as an email does not have a URL.
						
<!--samples-->

Troubleshooting

Debugging

					If something is not working as intended (but saved correctly) check that:
				
	
							All the tags are closed correctly
						
	
							You’re referring to variables available on the current page
						
	
							You’re not trying to access an array – for example current_account.applications is an array of applications
						
	
							The logic is correct
						

Typical errors and ways to solve them

	
							If the document cannot be saved due to a liquid error, it’s usually because some tags or drops were not closed correctly. Check that all your {% %} and {{ }} tags were properly closed and that the logic expressions (if, for, etc.) are terminated correctly (with endif, enfor, etc.) Normally if this is the case, an error will be displayed at the top of the page above the editor with a descriptive error message.
						
	
							If everything saved correctly and you don’t see any effect, check that you’re not referring to an empty element and you’re not using a logic tag to display content. ({% %} will never render any content, besides usage in tags which is already an alias of a more complex set of tags and drops.)
						
	
							If instead of what you wanted to see only a # is displayed, it means that you’ve tried to display an element that is an array. Check the section on the liquid hierarchy in this article (link).
						

Answers on the forum

					If you still have a problem, try looking for an answer on our forum or ask a question yourself.
				

Chapter 9. Multi-Service Signup

			By the end of this section, you’ll be familiar with the procedure to create and customize a multiple-service signup page.
		

			If you’re using the multiple services functionality, you’re able to customize the signup procedure to allow customers to subscribe to different services.
		
Prequisites

				You should be familiar with layout and page creation procedures as well as with the basics of Liquid formatting tags. You can check our Liquid tags reference here. "Multiple Service" functionality must also be enabled on your account (available for Pro plan and up).
			

				It’s strongly recommend that you read about signup workflows, so you’ll have the whole setup prepared and know how it works.
			

Introduction

				Start the process by creating a new layout, which will serve as the template for your multi-service signup page. Go into the Layouts section of the CMS system, and create the new layout. You can call it multipleservicesignup to be able to easily distinguish it from the other layouts. In the editor, paste the general structure of your standard layout (such as home or main layout). Now delete everything you don’t need – all the containers, sidebars, additional boxes, etc.
			
[image: developer portal introduction]

				Having created the backbone of your layout, proceed to customizing the code for signup.
			

Step 1:The loop

				In order to retrieve all the information about the services that you need to construct the proper signup link, you have to loop through the service objects. Services are a part of the model object.
			
{% for service in provider.services %}
 .
 .
 .
{% endfor %}

Step 2: Signup columns

				You already have your layout and loop accessing the service objects. Now decide how you want to display information about the service and the signup link. For example, divide them into columns with a service description and a signup link at the bottom. Every column will be a div box with a service-column class to contain all the necessary information.
			
{% for service in provider.services %}
 <div class="service-column">
 <p>{{ service.name }}</p>
 <p>{{ service.description }}</p>
 .
 .
 .
 </div>
{% endfor %}

				The container inside serves as a custom description field. service.name is the service name, which in this case will be the container’s name.
			

Step 3: Subscribe and links

				Now the main part of your custom service signup – to create the signup link, extract the signup URL and the service ID. Take the signup URL from URL’s object and the service ID from your service object on which you iterate in the loop. The final link code will look like this:
			
Signup to {{ service.name }}

				You also have to take into account that the user may already have signed up for some of your services. Create a conditional block to check.
			
{% unless service.subscribed? %}
 Signup to {{ service.name }}
{% endunless %}

				With this, you can generate the final code:
			
{% for service in provider.services %}
 <div class="service-column">
 <p>{{ service.name }}</p>
 <p>{{ service.description }}</p>
 {% unless service.subscribed? %}
 Signup to {{ service.name }}
 {% endunless %}
 </div>
{% endfor %}

Step 4: Styling

				Add some final touches to the generated markup, depending on the number of services you have. In the case of this example it’s two, so the CSS code for the service-column div will be:
			
.service-column {
 float: left;
 margin-left: 10%;
 width: 45%;
}
.service-column:first-child {
 margin-left: 0;
}

				In the example, we’ve used the percentage-based layout to dynamicaly assign the width of the column basic on the containing div’s dimensions.
			

				Now you should have a properly working and good-looking multiple services subscripition page. Congratulations!
			

				If you’d like to display the columns in a specific order, try using conditional expressions (if/else/case) conditioning the service name or another value you know.
			

Chapter 10. Developer Portal Overview

			By the end of this section you should be familiar with the Developer Portal CMS, including its structure, use, and functionality.
		

			You can customize the look and feel of the entire Developer Portal to match your own branding. You have complete control over every element of the portal, so you can make it as easy as possible for developers to learn how to use your API. A successful API Developer Portal will help your developers turn concepts into working apps in no time at all.
		
CMS overview

				The CMS consists of a few elements:
			
	
						Horizontal menu in the Admin Portal with access to content, redirects, and changes
					
	
						The main area containing details of the sections above
					
	
						CMS mode, accessible through the preview option
					

[image: Developer portal page overview]

Content

				This is the most important part of your view of the CMS system. The content section shows the site structure and hierarchy and provides editing functionality within the same page. This means you can manage the site structure, the pages, and other assets stored in it. The portal’s hierarchy is displayed in the form of a directory tree.
			
[image: Developer portal content page]

				The image above shows a sample view of one of the pages inside the contents section. As you can see, it displays all the files (pages, images, stylesheets, JavaScript, etc.) preserving the site’s path hierarchy. As before, sections are functionally equal to directories.
			

				On the right-hand side, you can see the edit page view. Here you can see the page name (which also indicates whether it’s a standard or built-in page) and a button to add a new element to the content (page, layout, partial, section, file, or portlet). Below, you can choose which layout the page will use and toggle the liquid tags functionality. The following part is the text editor, which supports code highlighting, tabulations, line numeration, and much more. The tab buttons Draft and Published switch between the draft and published versions of the edited document. The following two icons list the document’s versions and open a pop-up edit window, respectively.
			

				To edit page content, simply choose the desired layout, set a few additional options such as content type and URL path, and then input the code in HTML, Markdown, or Textile.
			

				Another important feature in this view is the Preview button. You can choose whether you want to preview the published or draft version of the page. Clicking the button redirects you to CMS mode, where you can see the live (or draft) rendered version of the page with a dark grey vertical bar on the right-hand side. This bar contains links to the page, layout, and partials edit views of the CMS. It allows you to swtich between draft and published views.
			
[image: CMS preview mode]

				There’s also a filter feature, which serves not only as a search field but allows you to limit the elements shown to only stylesheets, JavaScript, or any other types specified.
			
[image: Find content in CMS]

Layouts and partials

				The layouts and partials sections manage the templates and the reusable parts of the page. Their functionality is similar to that of the content section.
			

				The layouts section consists of definitions of the templates used by pages. Layout is the main structure of the page, and the contents of this template will be rendered on every page that uses it. The partials, portlets, and the actual content of the pages reside inside.
			

				Partials are the reusable parts of code, which repeat in many places on different pages – for example, the footer is the same on every layout, and the sidebar is the same on a few pages with different layouts. To include a partial in a layout, partial, or email template or portlet, type: {% include "partial_name" %}. For full reference of liquid tags, check here.
			

				As with the other parts of the portal, layouts and partials also have draft and published states and offer a full version history.
			
[image: Developer portal layout highlight]

	
						Text editor for the layout template.
					
	
						Save draft, publish current version, and revert to the last published state.
					
	
						Switch the text editor between the draft and published versions, list the version history, and launch the pop-up editor.
					

Portlets

				The last subsection of the content are the portlets. They give you some more advanced functionality without needing any advanced coding. Our CMS provides three different portlets:
			
	
						External RSS feed - fetches the RSS feed from a given source
					
	
						Table of contents - generates the links list for the pages in a given section
					
	
						Latest forum posts - generates the list of the n latest forum posts
					

				While creating your desired portlet, you have to input the requested data in the setup page such as title, system name, and the URL feed for the external RSS feed portlet.
			
Note

					The editor will come pre-filled with standard portlet code using some custom liquid tags. You can try editing the generated structure, but be careful. When in doubt, just leave the code as it is or refer to the portal formatting tags reference.
				

Redirects and changes

				The last elements of the CMS are the redirects and changes sections. They are much less complicated than the content section but are still important and provide some custom functionality.
			

				Redirects help you set up redirects from one portal URL to another. This is useful, for example, when you deprecate an old page and don’t want to change all the links. Redirects cannot be used for built-in CMS pages – they are only for pages created by you.
			

				Last but not least is the changes section. It contains a list of all the newly edited and unpublished pages and gives you the choice to publish them individually or all at once.
			

Chapter 11. Restricted Content

			Here you’ll learn how to have content in your Developer Portal that is only visible for some users.
		

			You may need to have some pages of your Developer Portal that are only accessible for a specific group of developers, either part of a page or items in a certain menu. Both goals are achievable through the two techniques introduced below.
		
Restricted pages

				When creating restricted sections, it’s useful to do it so that each section maps to a logical group of users. For this example, assume that there is a group of developers called "partners".
			

				Create a new section in the CMS for every page or group of pages that you want to restrict access to. Uncheck the "public" status field. Then drag and drop any pages you want inside this section.
			
[image: New private secton]

				Create a group and give it access to the section you created.
			
[image: New group]

				Now every time you have to grant one of your users access to this section, all you have to do is assign them to this group. To do this, go into the corresponding account detail page, then to "Group Permissions." Once there, check the boxes for the sections you want to allow.
			
[image: Group permissions]

Restricted blocks of content

				Liquid tags are a very powerful way to customize your Developer Portal. Use them here to hide or display parts of a page based on a condition. 3scale allows you to create custom fields for accounts, applications, and users. You can leverage this to store information that is useful for you as the API provider. Here you’ll create an custom field attached to all accounts and use it to indicate whether a given account is a partner or not. You can create this field by going to Settings > Field Definitions. Add a field to the Account section, and mark it as hidden so it will not be displayed on the signup page or anywhere else on the portal.
			
[image: Group permissions]

				With the custom field in place, you are now able to show special content to partners by wrapping it in a conditional like in the following snippet:
			
{{ if current_account.extra_fields.partner == 'true' }}
 // content only accessible to partners
{{ endif }}

				Or use the inverse logic if it suits your case better:
			
{{ unless current_account.extra_fields.partner == 'true' }}
 // content forbidden for partners
{{ endunless }}

				From here on, whenever you want to show these pieces of hidden content to a user, all you need to do is type in 'true' in the partner field of their account detail page.
			
Pro tip: How to automate setting extra fields

					In some cases, you’ll want to provide access to restricted content to developers based on a change in state. For instance, when they upgrade application plan.
				

					You can streamline the process by using webhooks together with the Account Management API. Find the Account Management API in the 3scale ActiveDocs, available in your Admin Portal, under the Documentation → 3scale API Docs section. Based on the developer’s new plan – which you can know from the message sent by the webhook request – you can grant access to the private content by calling the API to update the "partner" field.
				

Requiring user login

				In addition to the two ways to restrict access to content described above, there is another technique that can be useful: requiring a logged-in user.
			

				This is very easy to achieve using Liquid tags. All you have to do is wrap the content that will be available only for logged-in users inside the following conditional:
			
{{ if current_user }}
 // only visible if the user is logged in
{{ endif }}

Chapter 12. Configure Signup Flows

			In this section, you’ll see which settings to configure to adjust signup workflows.
		

			Signup workflows are a critical aspect of the developer experience you provide through your Developer Portal. The process can range from being completely automatic and self-service to the other extreme of requiring total control over who gains access to what, with various levels of granularity.
		

			The 3scale platform allows you to model your API with a combination of account (optional), service (optional), and application plans. For each of these plans, you can control whether there is an approval gate that you operate. For each one, you also determine whether there is a default, or the developer is required to take the next step and make a choice.
		

			For the extreme of maximum automation and self-service, remove all approval steps and enable all possible default plans. This way, a key can be issued to provide access to your API immediately after signup.
		
Step 1: Remove all approval steps

				To remove approvals, go to Settings > General and in the Signup section, make sure the option of Developers are allowed to sign up themselves is checked.
			
[image: Developer signup flow signup]

				Optionally, if you have account and service plans enabled, scroll down the page and make sure the option Change plan directly is enabled in both cases:
			
[image: Developer signup flow remove approvals]

Step 2: Enable all possible default plans

				Application plans
			
[image: Developer signup flow app plan]

				Optionally, if you have account and service plans enabled, choose default plans for those too
			

				Account plans (optional)
			
[image: Developer signup flow account plan defaults]

				Service plans (optional)
			
[image: Developer signup flow service plan]

Step 3: Test the workflow

				Once you’ve made your desired settings changes, test out the results by going to your Developer Portal and attempting to sign up as a new developer. Experiment and make any necessary adjustments to get exactly the right workflow for your API. When you’re happy with the workflow, it’s a good time to check your email notifications to make sure they provide the right information for your developers.
			
[image: Developer signup flow email templates]

Chapter 13. SSO For Developer Portal

			Single sign-on (SSO) allows you to manage access control of multiple independent systems. By following this guide, you’ll be able to allow users that are logged in to your system to log in automatically to your 3scale-powered Developer Portal without being prompted to log in again.
		

			This article shows how existing user credentials of your website can be used to automatically log in to your 3scale-powered Developer Portal.
		

			This feature is meant for API providers that already own the identity of their API consumers (username and password) – such as when the API provider is also the identity provider.
		
Step 1: Create your users in the 3scale platform

				First of all, the API consumer must have an account in your Developer portal. You can import your users to 3scale using the Account Management API or create them manually. Find the Account Management API in the 3scale ActiveDocs, available in your Admin Portal, under the Documentation → 3scale API Docs section.
			

Step 2: Request a login link

				Once the user exists, you can use an API request call to generate a URL with a built-in SSO token:
			
curl -X POST -d "provider_key=YOUR_PROVIDER_KEY&username=USERNAME&expires_in=60" https://YOUR_ADMIN_PORTAL.3scale.net/admin/api/sso_tokens.xml

				There are 2 parameters in this call: username to specify who you are requesting the token for and expires_in which is the number of seconds that the token will be valid for (it defaults to 10 minutes).
			

				You can also pass an additional parameter redirect_url with a location to redirect the user after a successful login. This parameter should be percent encoded. The XML response will contain a URL with a secret token included:
			
<?xml version="1.0" encoding="UTF-8"?>
<sso_url>
https://YOUR_DEVELOPER_PORTAL/session/create?expires_at=1365087501&token=Q0dNWGtjL2h2MnloR11yWmNwazVZY0NhenlabnBoRUNaNUlyWjZaVG8wMnBGdVNhT0VGN1NUb3FRc1pwSnRrclBZSTIwOUFwRkVTc3NuK1JTbjUrMEE9PS0tY1ZrOGFldzFJNkxna1hrQzQyZ0NGQT09--712f2990ac9248ab4b8962be6467fb149b346000
</sso_url>
Note

					You can pass either user_id or username to identify the 3scale user. Typically, the username will be the same for your system and 3scale portal. In that case, using the username should be easy since it does not require any additional information to be stored on your side. However, if you need to do some pairing and machine processes to the URLs anyway, you might be better off with user_id.
				

Step 3: Redirect user with automatic login

				The response contains an SSO login URL with a token:
			
https://YOUR_DEVELOPER_PORTAL/session/create?expires_at=1365087501&token=Q0dNWGtjL2h2MnloR11yWmNwazVZY0NhenlabnBoRUNaNUlyWjZaVG8wMnBGdVNhT0VGN1NUb3FRc1pwSnRrclBZSTIwOUFwRkVTc3NuK1JTbjUrMEE9PS0tY1ZrOGFldzFJNkxna1hrQzQyZ0NGQT09--712f2990ac9248ab4b8962be6467fb149b346000

				The URL contains all the required information for the 3scale Developer Portal SSO to log you in. You can embed it directly into web. However bear in mind that the URL can expire before the user clicks it, so it’s recommended to have a generic link on your page that will dynamically request a fresh SSO URL and redirect to it. This way, the user will be seamlessly logged in to your 3scale-powered Developer Portal.
			
Note

					The URL needs to be unescaped. If you want to try it by hand in a browser or cut and paste, remember to replace the "&" for "&" in your browser. Also any "%" encodings in the token need to be replaced by their unescaped character.
				

Chapter 14. Setting Terms And Conditions

			When you allow developers to sign up for your API, you will probably want to get them to agree to your Terms and Conditions to make some of your policies clear before you grant them access.
		

			There may be different versions of your Terms and Conditions you want developers to abide by. These are easy to set up at different points throughout the registration process. For example:
		
	
					Signup Terms and Conditionss
				
	
					Application Terms and Conditions
				
	
					Service/subscription Terms and Conditions (only available when you have multiple services)
				

			Additionally, if you are charging for use of your API, you may want to make your credit card policies explicit. 3scale provides an easy way to set up the following kinds of credit card policy URLs:
		
	
					Legal Terms
				
	
					Privacy
				
	
					Refunds
				

Terms and Conditions

				This part of the workflow is easy to set up in the Admin Portal by following the steps below.
			

				Go to Settings > Legal Terms, where you will be presented with a blank page to populate with your signup legal terms. You can use any combination of HTML, JavaScript, and CSS. There is also some toggling code provided by clicking Insert toggling code. The content you write in this box will appear just above the Sign Up button on the Signup page of your Developer Portal.
			
[image: Developer legal terms]

				Once you’ve filled out your Terms and Conditions, save them by clicking Update.
			

				If you’ve used the toggling code, it will display "By signing up you agree to the following Legal Terms and Conditions" followed by a link that toggles between showing and hiding the Terms and Conditions you specified.
			
[image: Developer accept terms]

				This is placed on the Signup page by default, but it’s a partial (signup_licence) that can be included anywhere on your CMS. To remove this from the Signup page, simply remove the {% include 'signup_licence' %} line from the page. Similarly, if you want to include it somewhere else, you can use the same partial by means of the snippet, which can be placed anywhere on your Developer Portal.
			

				You might also want your users to accept another set of Terms and Conditions when they create a new application (new_application_licence partial) and/or when they subscribe to a new service (service_subscription_licence partial). To set these up, you can follow the same procedure outlined above.
			

Credit Card Policies

				You can also define other URLs where different policies reside. Set them up by going to Dashboard > Settings > Policies and setting the path where your policy pages will be located.
			
[image: Developer policy urls]

				In order for these links to work, you will then need to create new pages in the CMS.
			
[image: Developer portal policy and terms]

				Once that is done, you can reference them using the URL’s liquid drop. For example:
			
Legal Terms
Privacy
Refunds

				And that’s it!
			

OEBPS/images/topics/images/developer-portal-field-definitions-new-user-sign-up-default.png
&SIGN UP

ORGANIZATION/GROUP NAME ‘\

USERNAME

EMAIL

PASSWORD

PASSWORD CONFIRMATION

By signing up you agree to the following Legal Terms and Conditions (show)

OEBPS/images/topics/images/developer-portal-rhsso-org-name.png
Create Protocol Mapper

Protocol © openic-connect
Name © org_name
Consent Required & : oFF
Mapper Type © | User Attrbute
User Attribute © org_name
Token Claim Name © org_name

Claim JSON Type ©
Add toID token ©

Add to access token ©

LL1

Multivalued © oFF

Cancel

OEBPS/images/topics/images/developer-portal-github-authentication-snippet.png
<div class="ron">
<div class="col-nd-9">
<div class="panel panel-default">
<div class="panel-heading">
fa fa-user"></i>

Zdiv class="panel-body">
£ include "login/sso' %}

£ forn 'login , class: 'form-horizontal' %}
{nclude 'L s*
include T

<fieldset>
<div class="form-gr id=" i _input">
<label for=" ess;ﬁn - X abel col-md-4">Username or Email</label>

<diy class="form-group" id="sessidn_password_input'>
<label for="session password® class="control-abel col-nd-4'>Password</Label>

<div cl)1-md-
e T Ceston_password non (D D G000 Thoso comment tags

e="password"
class="form-control">
</div>
</div>

<input name="remenber_me" typesfhidden” value="1">
</Fieldset>
<Fieldset>
<div_class="form-group">
<div class="col-md-10"
<input name="comni#ftype="submit" value="Sign in" class="btn btn-success btn-lg pull-

</div>
</div>

</Fieldset>

£ endforn %}

</div>.
<div class="panel-footer">

Forgot password?

i provider. signups_enabled?
- ;’n’(h;;f— {{ urls.signup b oss-"1nk">Sign up</e>
endi
</div>
</div>
</div>
</div>

OEBPS/images/topics/images/developer-portal-rhsso-add-builtin.png
Clients 3scale-dev-portal

Master

3scale-dev-portal

Configure
X Settings Roles Mappers Scope Revocation Sessions Offline Access Installation
Realm Settings g pp P
@ Clients

Client Templates Q Create || Add Builtin

Roles Name Category Type Actions

Identity Providers full name Token mapper User's full name Edit Delete
given name Token mapper User Property Edit Delete

User Federation
email Token mapper User Property Edit Delete
username Token mapper User Property Edit Delete

family name Token mapper User Property Edit Delete

OEBPS/images/topics/images/developer-portal-field-definitions-new-predefined.png
New Field definition for Account

Here you can add a field to store information about your partners, make it Hidden for them, Rej
entering their data.

+ Inew field]
org_legaladdress
org_legaladdress_cont
telephone_number
vat_code
vat_rate
fiscal_code
state_region sers will see.
city
country
2p [for develovers.
primary_business
busine:

able to see this field.

() Read only
The developers won't be able to change this field.

Choices

Predefined options for this field, enter them separated by commas.

OEBPS/images/topics/images/developer-portal-sso-auth0-authentication.png
3scale

General Developer Portal

Domains & Access
Spam Protection

Forum

S50 Integrations

Legal Terms ~ Billing

Policies

Dashboard Developers

Fields Definitions ~ Web Hooks ~ Emails

New AuthO Authentication Provider

Client*

Client secret*

site®

Ex: https:/ /X00(X.auth0.com

) Published Display on Developer Portal

Applications

Analytics

APIs

Developer Portal

Settings

OEBPS/images/topics/images/developer-portal-rhsso-add-client.png
Clients » 3scale-dev portal
Master

3scale-dev-portal &

Settings Roles Mappers @ Scope @ Revocation Sessions @ Offline Access @ Installation @

Realm Settings

Clients .
Client ID © 3scale-dev-portal
Client Templates
Name ©
Roles
Identity Providers Description @
User Federation Enabled © m
Authentication
Consent Required ® OFF
Client Protocol ® openid-connect v
Groups
Client Template ©® :
Users
Sessions Access Type © confidential 4
Events Standard Flow Enabled m
Import °
Implicit Flow Enabled @ OFF
Direct Access Grants OFF
Enabled ©
Root URL © Your 3scale admin portal URL http://yourdomain.3scale.net or custom domain
Valid Redirect URIs @ Your 3scale admin portal URL followed by / W
Base URL ©
Admin URL ©
Web Origins ©® +

Save || Cancel

OEBPS/images/topics/images/developer-portal-configuration-liquids-enable.png
Page 'Home'

Titler

Home
Section® [(Root]
Path® ,

Does not depend on a selected section.
Layout [(Main layout ¢ |

~ Advanced options

System name

Content type text/ntml

Can be an HTML, CSS, Javascript or an arbitrary MIME type.

 Liquid enabled Process Liquid tags and drops?

Handler*

Do you use any markup language?

Tag list

OEBPS/images/topics/images/developer-portal-overview.png
QA &My

All [

B & Root
I Documentation
I indexchtml
 show
 show
@ Edic
8 & Account
Empty.
8 & Account Plans
& Index
8 & Application Alerts
& Index
8 &4
 show
© Choose service
o Edic
& Index
© New
B&cs
I bootstrap.css
I default.css
B plans_widget_overrides.css
8 & Documentation
I Interactive Docs
8 & Errors
© Forbidden
© Internal server error
© Not found
8 & Forum
 show
8 & Categories
& Index
 show
© New
o Edic
8 & Posts
& Index
© New

Dashboard Developers ~ Applications Billing ~ Analytics APIs

#35(3\2
Quick Links Snippets
M e—

© You can switch between

content o filter by a

@ Follow the Quickstart quide and the How-to quides
W Write pages using Markdown, Textile or plain HTML. Use Jayouts and partials.
& Liquid reference is here to help you out covering all the drops, tags and filters that you can use.

% Upload files of any type (i.e. images, documents or MP3s.

b——— Content Sub-sections

Recent Items

Page ‘index.htm"
Built-in Partial ‘Shared pagination’

Email Template ‘Application key created for buyer'
Built-in Page ‘Show’

Built-in Page 'Edit’

Built-in Page ‘Applications - Show’

Layout ‘Main layout'

Developer Portal ~ Settings.

OEBPS/images/topics/images/developer-portal-cms-preview-mode.png
HOTROX DOCUMENTATON PLANS

More hello

1 can't. As much as | care about you, my first duty
is to the ship. | think you've let your personal
feelings cloud your judgement. Some days you get
the bear. Some days you get the bear, and some
days the bear gets you. In all trust, there is the

for betrayal. Your head is not an

Pick your plan
BIG DATA BUNDLE

Limits

il Hits - 100 hit
il Hit

SIGNIN

[Switchlbetween]mades}

Hello World API

Better world

Some days you get the bear, and some days the
bear gets you. Maybe if we felt any human loss as
keenly as we feel one of those close to us, human

history would be far less bloody. About four years.

1 got tired of hearing how young I looked. Wait a
minute - you've been declared dead.

Signup to plan Big Data Bundle

[Quick{accessltcledi]
felementsonlthe]

Happy people

1 got tired of hearing how young I looked. Wouldn't
that bring about chaos? You enjoyed that. We
could cause a diplomatic crisis. Take the ship into
the Neutral Zone Travel time to the nearest
starbase? Ensign Babyface! Congratulations - you
just destroyed the Enterprise.

Draft | Published

TEMPLATES USED ON THIS PAGE
Page index.htm| &7

Layout Main layout
Partial Submenu 7
Partial analytics &7

SGNIN
Testdrive a developer account with
Username: john

Password: 123456

[iidelorfcloseltheltcolbarg

OEBPS/images/topics/images/developer-portal-modfiy-3scale-system-pages-css.png
3SCALE

Dashboard

Mot Capy e

OEBPS/images/topics/images/developer-portal-rhsso-secret.png
Account &

Settings Credentials Roles ~ Mappers® Scope® Revocation Sessions@ Offline Access ©

Client Authenticator © Client Id and Secret

Secret. 2 Regenerate Secret

st e

OEBPS/images/topics/images/developer-portal-field-definitions-signup-with-new-fields.png
&SIGN P,

ORGANIZATION/GROUP NAME

PO NUMBER

USERNAME
EMAIL

LASTNAME

EMPLOYMENT TYPE _J

Full Time
Part Time
Contract
PASSWORD T

PASSWORD CONFIRMATION

By signing up you agree to the following Legal Terms and Conditions (show)

OEBPS/content.opf
 2.2_idm139695348952816 Developer Portal 2018-09-20 This guide documents the developer portal on Red Hat 3scale 2.2. en

OEBPS/images/topics/images/developer-portal-modify-3scale-system-pages.png
:3scale

Dashbosrd Developers Applications Biling Anaytis AP [Davoper rortal | Setings

maleJavout Layout "Main layout
emsis © Pr—

Legal Terms ©

Fortits © - - o [JRb] © &

{ page. bitte 11

ale_essentials 1)

OEBPS/images/topics/images/developer-portal-field-definitions-new-last-name.png
New Field definition for User

Here you can add a field to store information about your partners, mak
entering their data.

Hidden for them, Read only,

((Inew field)

Name* last_name
Alow level system name.

Label* Last Name

Afield title your developers will see.

 Required
Makes the field required for develovers.

Hidden
The developers won't be able to see this field.

Read only.
The developers won't be able to change this field.

Choices.

Predefined options for this field, enter them separated by commas.

OEBPS/images/topics/images/developer-portal-rhsso-email-verified.png
Master

Configure

Realm Settings

© Clients

Client Templates
Roles

Identity Providers
User Federation

entication

Clients 3scale-dev-portal

Mappers

Add Builtin Protocol Mappers

Add Builtin Protocol Mapper

Name

email verified
locale
address

gss delegation credential

Add selected

Q

Category

Token mapper
Token mapper
Token mapper

Token mapper

Type Add
User Property
User Attribute

User Address

User Session Note

OEBPS/images/topics/images/developer-portal-sso-integration-screen.png
3scale

General Developer Portal

Domains & Access
Spam Protection

Forum

S50 Integrations

Legal Terms Billing Policies Fields Definitions

Single Sign On Integrations
Integration

O GitHub

* Autho

Dashboard Developers

Web Hooks ~ Emails

Branding

3scale branded

Applications

Billing

Analytics APIs

State

Published

Hidden

Developer Portal

Settings

OEBPS/images/topics/images/developer-portal-email-templates-edits.png
3scale

Dashboard Developers Applications Billing ~ Analytics APls Developer Portal [| Settings
General Developer Portal Legal Terms Billing Policies Fields Definitions ~ Web Hooks Emails

Support Emails . .
Override email "Buyer Account approved"

Templates You can use Liquid tags to set the email headers or disable sending. Read more in the liquid documentation.

Subject
Bec
e
Reply to

From

Dear {{ user. display.
{{ provider.name }} has approved your signup for the {{ provider.name }} API.

You may now view and manage your app/API key at https://{{ provider.domain }}/admin/

If you have problems logging into the account please contact {{ provider.support_email }}.

) Sincerely,
The {{ provider.name }} API Team

OEBPS/images/topics/images/developer-portal-github-authentication-tutorial-shot.png
&SIGNIN

USERNAME OR EMAIL

PASSWORD

Forgot password? | Sign up

| © Authenticate with your GitHub account

OEBPS/images/topics/images/developer-portal-field-definitions-default-fields.png
3scale

Dashboard ~ Developers Applications ing Analytics AP Developer Portal Settings

General Developer Portal Legal Terms Policies Fields Definitions ~ Web Hooks ~ Em:

Listing fields definitions

Here you can manage all the information you gather from your partners. You can add new fields, and change the existing ones, e.g. make them Hidden, Read only, or
Required. You can change the text your partners will see when viewing or entering data (shown here between quotes). Drag and drop the fields to set the order in which they
will be shown.

User ©cCreate
1 username “Username' Required # Edit
* email “Email’ Required # Edit

Account ©Create
% org_name “Organization/Group Name' Required # Edit

Appl ication ©Create
1 name “Name' Required # Edit

4 description “Description” Required ¢ Edit

OEBPS/images/topics/images/developer-portal-contents.png
3scale

Content Redirects ~ Changes

Qi
Al b Y &

8 B Root
[Documentation
i index.html
& Show
@ Show
& Edic
8 B Account
Empty.
8 B Account Plans
& Index
8 B Application Alerts
& Index
8 B Applications
@ Show
@ Choose service
& Edic
& Index
& New
B
i bootstrap.css
i default.css
i plans_widget_overrides.css
8 B Documentation
i Interactive Docs
8 & Errors
@ Forbidden
& Internal server error
@ Not found
8 & Forum
@ Show
8 B Categories
& Index
& Show
& New
& Edit
8 B Posts
& Index
& New
& Show

Dashboard Developers Applications

Groups Feature Visibility Visit Developer Portal (7

£ 35cale

<o [} £ 4

Page 'Documentation’

Title® Documentation

. Rost
Jdos Documetation)

Path Jdocs

Does not depend on a selected section.

~ Advanced options

System name
Content type text/html
Can be HTML, CSS, Javascript or an arbitrary MIME type.
Liquid enabled Process Liquid tags and drops?

Handler:
Do you use any markup language?

Tag list

Pul

hed " versions (' Popup
Documentation:
Use our live documentation to learn about Hello World API.

version: %

B e

Analytics APIs Developer Portal ~ Settings.

OEBPS/images/topics/images/developer-portal-field-definitions-new-drop-down.png
[Inew field]
Name* employment_type

Alow level system name.

Label* Employment Type

A field title your developers will see.

() Required
Makes the field required for develovers.

() Hidden
The developers won't be able to see this field.

() Read only.
The developers won't be able to change this field.

Choices

Full Time, Part Time, Contract

OEBPS/images/topics/images/developer-portal-sso-edit-integration-screen.png
3scale

General Developer Portal

Domains & Access
Spam Protection

Forum

S50 Integrations

Legal Terms ~ Billing

© GitHub
Edit

Published:
8randing:

Authentication Flow

Policies Fields Definitions

3scale branded

Test

Dashboard

Web Hooks

Emails

Developers

Applications

Analytics

APIs

Developer Portal

Settings

OEBPS/images/topics/images/developer-portal-rhsso-org-name-idp.png
Organization Name &

0
Name* 0 organization name
MapperType® | Auribute Importer
Social Profile JSON Field Path © | company
User Attribute Name © | org_name

save || Cancel

OEBPS/images/topics/images/developer-portal-find-content-in-cms.png

OEBPS/images/topics/images/developer-portal-introduction.png
Dashboard Developers Applications Billing Analytics API Settings.

@u &v Boes New layou

s koo e [IEe—
Layouts

L f U et oo i g
Partials

s 0

rh P

IS ot torain-contant® rolecintn's

i 5 et by

T fre

- g b SR

e "oty e contat

[T ot R

e ""“,:;'

4 -l

e

& s

Portets i

OEBPS/images/topics/images/developer-portal-rhsso-3scale-settings.png
General Developer Portal
Domains & Access

Spam Protection

Forum

550 Integrations

Legal Terms ~ Billing

Fields Definitions

Customize -Red Hat

ingle Sign-On

Client*
Client secret®

Realm*

Web Hooks

Emails

