OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers release notes

For Red Hat OpenShift
Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license (“CC-BY-SA”). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux is the registered trademark of Linus Torvalds in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

XFS is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The release notes summarize all new features and enhancements, notable technical changes, major corrections from the previous version, and any known bugs upon general availability.
Table of Contents

PREFACE ... 3

CHAPTER 1. OPENSIFT SANDBOXED CONTAINERS 1.5 RELEASE NOTES 4
 1.1. ABOUT THIS RELEASE 4
 1.2. NEW FEATURES AND ENHANCEMENTS 4
 1.2.1. Flexible pod VM instance sizes for AWS and Azure 4
 1.2.2. Automatic pod VM image creation on AWS and Azure 4
 1.2.3. Empowering administrators with greater insight into the kata node install, uninstall and update operations 4
 1.2.4. Peer pods support for OpenShift sandboxed containers on IBM Z and IBM(R) LinuxONE(Technology Preview) 4
 1.3. BUG FIXES 4
 1.4. KNOWN ISSUES 5
 1.5. ASYNCHRONOUS ERRATA UPDATES 8
 1.5.1. RHEA-2023:7493 - OpenShift sandboxed containers 1.5.0 image release, bug fix, and enhancement advisory 8
PREFACE
CHAPTER 1. OPENS nisi SANDBOXED CONxAINERS 1.5
RELEASE NOTES

1.1. ABOUT THIS RELEASE

These release notes track the development of OpnShi$t sandboxed containers 1.5 alongside Red Hat
OpenShi$t 4.14.

Red Hat OpenShift is designed for FIPS. When running Red Hat Enterprise Linux (RHEL) or Red Hat
Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, Red Hat OpenShift core components use the
RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only
the x86_64, ppc64le, and s390x architectures.

For more information about the NIST validation program, see Cryptographic Module Validation
Program. For the latest NIST status for the individual versions of RHEL cryptographic libraries that have
been submitted for validation, see Compliance Activities and Government Standards.

1.2. NEW FEATURES AND ENHANCEMENTS

1.2.1. Flexible pod VM instance sizes for AWS and Azure

From OpenShift sandboxed containers 1.5, you can specify the instance size of a pod VM. You can use
the PODVM_INSTANCE_TYPES field for AWS, or the AZURE_INSTANCE_SIZES for Azure in the
peer-pods-cm ConfigMap CR. For more information, see Creating a peer-pod ConfigMap for AWS
using the web console and Creating a peer-pod ConfigMap for Azure using the web console.

1.2.2. Automatic pod VM image creation on AWS and Azure

From OpenShift sandboxed containers 1.5, the pod VM images are automatically created if the peer-
pods-secret and peer-pods-cm objects exist, and the peer-pods-cm does not contain the
AZURE_IMAGE_ID or PODVM_AMI_ID variables or if the variable’s value is empty. For more
information about the procedure, see Creating the KataConfig custom resource in the web console.

1.2.3. Empowering administrators with greater insight into the kata node install,
uninstall and update operations

A new field named kataNodes has been introduced, presenting users with a more detailed view of the
state of the nodes undergoing kata operations. The existing Is In Progress boolean status field has
been replaced with a more informative InProgress condition.

For more information, see Installation and uninstall transitions.

1.2.4. Peer pods support for OpenShift sandboxed containers on IBM Z and IBM(R)
LinuxONE (Technology Preview)

Users can now deploy OpenShift sandboxed containers workloads using peer pods on IBM Z and IBM®
LinuxONE (390x architecture). This enables users to circumvent the need for nested virtualization. This
feature is in Technology Preview and not fully supported. For more information, see Deploying
OpenShift sandboxed containers workloads using peer pods.

1.3. BUG FIXES
Previously, initiating the deletion of the KataConfig CR during its installation caused the OpenShift sandboxed containers Operator to attempt to delete and install simultaneously, without ever completing either process. With this release, the Operator serializes deletion to happen after the installation is complete. (KATA-1851)

Previously, when QEMU did not detect virtiofsd, QEMU logged errors in the system journal each time a kata workload was deleted. With this release, the kata runtime now stops QEMU before stopping virtiofsd. This fix is available for OpenShift Container Platform 4.13 and 4.14 only. (KATA-2133)

Previously, when you enabled peer pods in the KataConfig CR and then examined the CR after installation, the kata-remote runtime class was not displayed in the status.runtimeClass field. This is fixed in OpenShift sandboxed containers 1.5.0. (KATA-2164)

Previously, restarting peerpodconfig-ctrl-caa-daemon pods while peer-pod VMs were running may resulted in creating multiple VMs that represented the same peer pod. The redundant instances existed as long as the original peer pod was still running, unless you manually deleted the instances from the cloud provider console or CLI. With this update, after restarting a peerpodconfig-ctrl-caa-daemon pod, a new peer-pod VM is created and old instances are deleted immediately. (KATA-2519)

1.4. KNOWN ISSUES

You might receive SELinux denials when accessing files or directories mounted from the hostPath volume in a Red Hat OpenShift cluster. These denials can occur even when running privileged sandboxed containers because privileged sandboxed containers do not disable SELinux checks.

Following SELinux policy on the host guarantees full isolation of the host file system from the sandboxed workload by default. This also provides stronger protection against potential security flaws in the virtiofsd daemon or QEMU.

If the mounted files or directories do not have specific SELinux requirements on the host, you can use local persistent volumes as an alternative. Files are automatically relabeled to container_file_t, following the SELinux policy for container runtimes. See Persistent storage using local volumes.

Automatic relabeling is not an option when mounted files or directories are expected to have specific SELinux labels on the host. Instead, you can set custom SELinux rules on the host to allow the virtiofsd daemon to access these specific labels. (KATA-469)

Some OpenShift sandboxed containers Operator pods use container CPU resource limits to increase the number of available CPUs for the pod. These pods might receive fewer CPUs than requested. If the functionality is available inside the container, you can diagnose CPU resource issues by using oc rsh <pod> to access a pod and running the lscpu command:

```
$ lscpu
```

Example output

```
CPU(s): 16
On-line CPU(s) list: 0-12,14,15
Off-line CPU(s) list: 13
```

The list of offline CPUs will likely change unpredictably from run to run.
As a workaround, you can use a pod annotation to request additional CPUs rather than setting a CPU limit. CPU requests that use pod annotation are not affected by this issue, because the processor allocation method is different. Rather than setting a CPU limit, the following annotation must be added to the metadata of the pod:

```
metadata:
  annotations:
    io.katacontainers.config.hypervisor.default_vcpus: "16"
```

(KATA-1376)

- When you set SELinux Multi-Category Security (MCS) labels in the security context of a container, the pod does not start and the following error is displayed in the pod log:

 Error: CreateContainer failed: EACCES: Permission denied: unknown

 The runtime does not have access to the security context of the containers when the sandboxed container is created. This means that `virtiofsd` does not run with the appropriate SELinux label and cannot access host files for the container. As a result, you cannot rely on MCS labels to isolate files in the sandboxed container on a per-container basis. This means that all containers can access all files within the sandboxed container. Currently, there is no workaround for this issue.

 (KATA-1875)

- FIPS compliance for OpenShift sandboxed containers only applies to the `kata` runtime class. The new peer pods runtime class `kata-remote` is not yet fully supported, and has not been tested for FIPS compliance. *(KATA-2166)*

- A pod with an `io.katacontainers.config.hypervisor.virtio_fs_extra_args` annotation that contains either `--announce-submounts` or `--thread-pool-size` does not start. This is a regression of the `virtiofsd` component used by the OpenShift sandboxed containers Operator on Red Hat OpenShift 4.13 and 4.14. Red Hat OpenShift 4.12 and 4.11 are not affected. *(KATA-2146)*

- The `sizeLimit` option for ephemeral memory volumes does not work with OpenShift sandboxed containers. The ephemeral volume size defaults to 50% of the memory assigned to the sandboxed container. It is possible to manually change the size of this volume by remounting the volume. For example, if the memory assigned to the sandboxed container is 6 GB and the ephemeral volume is mounted to `/var/lib/containers`, you can increase the size of this volume beyond the default 50% of the VM memory by using the following command:

  ```
  $ mount -o remount,size=4G /var/lib/containers
  ```

 (KATA-2579)

- The `io.katacontainers.config.hypervisor.default_vcpus` and `io.katacontainers.config.hypervisor.default_memory` annotations follow the semantics for QEMU, which has the following limitations for peer pods:

 - If you set the value of the `io.katacontainers.config.hypervisor.default_memory` annotation to less than 256, you get the following error:

 Failed to create pod sandbox: rpc error: code = Unknown desc = CreateContainer failed: Memory specified in annotation io.katacontainers.config.hypervisor.default_memory is less than minimum required 256, please specify a larger value: unknown
If you use the `io.katacontainers.config.hypervisor.default_memory: 256` and `io.katacontainers.config.hypervisor.default_vcpus: 1` annotations, the smallest instance is launched from the list.

If you use the `io.katacontainers.config.hypervisor.default_vcpus: 0` annotation, all annotations are ignored and the default instance is launched.

Instead, it is recommended to use the `io.katacontainers.config.hypervisor.machine_type:<instance type/instance size>` annotation for flexible pod VM sizes. (KATA-2575, KATA-2577, KATA-2578)

- When you request the instance metadata of a peer pod VM running on AWS or Azure, the AWS or Azure Instance Metadata Service returns the metadata of the worker node instead of the pod. There is no workaround for this issue. (KATA-2583)

- During automatic upgrade from OpenShift sandboxed containers Operator 1.4.1 to version 1.5, the upgrade gets stuck in the `pending` state. If your subscription is set to automatic updates, then the upgrade for OpenShift sandboxed containers is installed. However, if a KataConfig CR (custom resource) is installed, then the CSV gets stuck in the `pending` state.

You can check the status of your Subscription object by running the following command:

```
$ oc get sub sandboxed-containers-operator -n openshift-sandboxed-containers-operator -o yaml
```

The following error appears in the status section of the Subscription object, and in the status section of the upgrade InstallPlan object:

```
message: 'error validating existing CRs against new CRD"s schema for "kataconfigs.kataconfiguration.openshift.io":
    error validating custom resource against new schema for KataConfig /example-kataconfig:
        [],status.runtimeClass: Invalid value: "string": status.runtimeClass in body must be of type array: "string"
```

If you receive this error, you must uninstall, and then reinstall the OpenShift sandboxed containers Operator:

1. Delete any workloads (pods, deployments, daemonsets) running in either the kata or kata-remote runtimes. These workloads will need to be recreated after reinstalling. For more information about deleting workloads, see Deleting OpenShift sandboxed containers pods using the CLI.

2. Delete the KataConfig CR. See Deleting the KataConfig custom resource using the CLI.

 IMPORTANT

 Do not delete the KataConfig CR if a workload is running.

You can check the deletion status of the KataConfig CR using the following command:

```
$ oc get kataconfig -n openshift-sandboxed-containers-operator
```
3. Uninstall the Operator. See Deleting the OpenShift sandboxed containers Operator using the CLI.

4. Reinstall the OpenShift sandboxed containers Operator. See Installing the OpenShift sandboxed containers Operator using the CLI. Reinstalling the OpenShift sandboxed containers Operator installs version 1.5.0.

5. Create your KataConfig CR. See Creating the KataConfig custom resource using the CLI.

6. Recreate your workloads. See Deploying a workload in a sandboxed container using the CLI.

NOTE

If you set your subscription to manual updates, do not approve the upgrade until OpenShift sandboxed containers Operator 1.5.1 is available.

(KATA-2593)

1.5. ASYNCHRONOUS ERRATA UPDATES

Security, bug fix, and enhancement updates for OpenShift sandboxed containers 4.14 are released as asynchronous errata through the Red Hat Network. All Red Hat OpenShift 4.14 errata is available on the Red Hat Customer Portal. See the Red Hat OpenShift Life Cycle for more information about asynchronous errata.

Red Hat Customer Portal users can enable errata notifications in the account settings for Red Hat Subscription Management (RHSM). When errata notifications are enabled, users are notified via email whenever new errata relevant to their registered systems are released.

NOTE

Red Hat Customer Portal user accounts must have systems registered and consuming Red Hat OpenShift entitlements for Red Hat OpenShift errata notification emails to generate.

This section will continue to be updated over time to provide notes on enhancements and bug fixes for future asynchronous errata releases of OpenShift sandboxed containers 1.5.

1.5.1. RHEA-2023:7493 - OpenShift sandboxed containers 1.5.0 image release, bug fix, and enhancement advisory

Issued: 2023-11-27

OpenShift sandboxed containers release 1.5.0 is now available. This advisory contains an update for OpenShift sandboxed containers with enhancements and bug fixes.

The list of bug fixes included in the update is documented in the RHEA-2023:7493 advisory.