
Red Hat OpenShift Documentation Team

OpenShift Enterprise 3.0
Using Images

OpenShift Enterprise 3 Guide to Using Images

OpenShift Enterprise 3.0 Using Images

OpenShift Enterprise 3 Guide to Using Images

Legal Notice
Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Use these topics to find out what different S2I (Source-to-Image), database and Docker
images are available for OpenShift Enterprise 3.0 users.

. .

. .

. .

. .

. .

. .

Table of Contents
CHAPTER 1. OVERVIEW

CHAPTER 2. SOURCE-TO-IMAGE (S2I)
2.1. OVERVIEW
2.2. NODE.JS
2.3. RUBY
2.4. PERL
2.5. PHP
2.6. PYTHON

CHAPTER 3. DATABASE IMAGES
3.1. OVERVIEW
3.2. MYSQL
3.3. POSTGRESQL
3.4. MONGODB

CHAPTER 4. DOCKER IMAGES
4.1. OVERVIEW

CHAPTER 5. XPAAS MIDDLEWARE IMAGES
5.1. OVERVIEW
5.2. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP) XPAAS IMAGE
5.3. RED HAT JBOSS A-MQ XPAAS IMAGE
5.4. RED HAT JBOSS WEB SERVER XPAAS IMAGES

CHAPTER 6. REVISION HISTORY: USING IMAGES
6.1. TUE MAY 03 2016
6.2. MON FEB 22 2016
6.3. MON FEB 01 2016
6.4. TUE JUN 23 2015

3

4
4
4
5
6
7

10

12
12
12
23
28

39
39

40
40
40
43
48

50
50
50
50
50

Table of Contents

1

OpenShift Enterprise 3.0 Using Images

2

CHAPTER 1. OVERVIEW
Use these topics to discover the different S2I (Source-to-Image), database, and other
Docker images that are available for OpenShift users.

Red Hat’s official container images are provided in the Red Hat Registry at
registry.access.redhat.com. OpenShift’s supported S2I, database, and Jenkins images
are provided in the openshift3 repository in the Red Hat Registry. For example,
registry.access.redhat.com/openshift3/nodejs-010-rhel7 for the Node.js image.

The xPaaS middleware images are provided in their respective product repositories on
the Red Hat Registry, but suffixed with a -openshift. For example,
registry.access.redhat.com/jboss-eap-6/eap64-openshift for the JBoss EAP
image.

CHAPTER 1. OVERVIEW

3

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://registry.access.redhat.com
https://access.redhat.com/search/#/container-images?q=openshift3&p=1&sort=relevant&rows=12&srch=any&documentKind=ImageRepository

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

2.1. OVERVIEW

This topic group includes information on the different S2I (Source-to-Image) supported
images available for OpenShift users.

2.2. NODE.JS

2.2.1. Overview

OpenShift provides S2I enabled Node.js images for building and running Node.js
applications. The Node.js S2I builder image assembles your application source with any
required dependencies to create a new image containing your Node.js application. This
resulting image can be run either by OpenShift or by Docker.

2.2.2. Versions

Currently, OpenShift provides version 0.10 of Node.js.

2.2.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/nodejs-010-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/nodejs-010-centos7

To use these images, you can either access them directly from these image registries,
or push them into your OpenShift Docker registry. Additionally, you can create an image
stream that points to the image, either in your Docker registry or at the external
location. Your OpenShift resources can then reference the ImageStream. You can find
example ImageStream definitions for all the provided OpenShift images.

2.2.4. Configuration

The Node.js image does not offer any environment variable based configuration
settings.

2.3. RUBY

OpenShift Enterprise 3.0 Using Images

4

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://github.com/openshift/sti-nodejs/tree/master/0.10
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-docker-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams

2.3. RUBY

2.3.1. Overview

OpenShift provides S2I enabled Ruby images for building and running Ruby
applications. The Ruby S2I builder image assembles your application source with any
required dependencies to create a new image containing your Ruby application. This
resulting image can be run either by OpenShift or by Docker.

2.3.2. Versions

Currently, OpenShift provides version 2.0 of Ruby.

2.3.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/ruby-20-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/ruby-20-centos7

To use these images, you can either access them directly from these image registries,
or push them into your OpenShift Docker registry. Additionally, you can create an image
stream that points to the image, either in your Docker registry or at the external
location. Your OpenShift resources can then reference the ImageStream. You can find
example ImageStream definitions for all the provided OpenShift images.

2.3.4. Configuration

The Ruby image supports a number of environment variables which can be set to
control the configuration and behavior of the Ruby runtime.

To set these environment variables, you can place them into a .sti/environment file
inside your source code repository, or define them in the environment section of the
BuildConfig Source Strategy definition.

Table 2.1. Ruby Environment Variables

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

5

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://github.com/openshift/sti-ruby/tree/master/2.0
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-docker-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#buildconfig-environment

Variable name Description

RACK_ENV This variable specifies the environment within which
the Ruby application is deployed; for example,
production, development, or test. Each level has
different behavior in terms of logging verbosity, error
pages, and ruby gem installation. The application
assets are only compiled if RACK_ENV is set to
production; the default value is production.

RAILS_ENV This variable specifies the environment within which
the Ruby on Rails application is deployed; for
example, production, development, or test. Each
level has different behavior in terms of logging
verbosity, error pages, and ruby gem installation. The
application assets are only compiled if RAILS_ENV is
set to production. This variable is set to
${RACK_ENV} by default.

DISABLE_ASSET_COMPILATION The presence of this variable disables the process of
asset compilation. Asset compilation only happens
when the application runs in a production
environment. Therefore, you can use this variable
when assets have already been compiled.

2.4. PERL

2.4.1. Overview

OpenShift provides S2I enabled Perl images for building and running Perl applications.
The Perl S2I builder image assembles your application source with any required
dependencies to create a new image containing your Perl application. This resulting
image can be run either by OpenShift or by Docker.

2.4.2. Versions

Currently, OpenShift supports version 5.16 of Perl.

2.4.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

OpenShift Enterprise 3.0 Using Images

6

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://github.com/openshift/sti-perl/tree/master/5.16

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/perl-516-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/perl-516-centos7

To use these images, you can either access them directly from these image registries,
or push them into your OpenShift Docker registry. Additionally, you can create an image
stream that points to the image, either in your Docker registry or at the external
location. Your OpenShift resources can then reference the ImageStream. You can find
example image stream definitions for all the provided OpenShift images.

2.4.4. Configuration

The Perl image supports a number of environment variables which can be set to control
the configuration and behavior of the Perl runtime.

To set these environment variables, you can place them into .sti/environment file
inside your source code repository, or define them in the environment section of the
BuildConfig Source Strategy definition.

Table 2.2. Perl Environment Variables

Variable name Description

ENABLE_CPAN_TEST This variable installs all the cpan modules and runs
their tests. By default, the testing of the modules is
turned off.

CPAN_MIRROR This variable specifies a mirror URL which cpanminus
uses to install dependencies. By default, this URL is
not specified.

2.5. PHP

2.5.1. Overview

OpenShift provides S2I enabled PHP images for building and running PHP applications.
The PHP S2I builder image assembles your application source with any required
dependencies to create a new image containing your PHP application. This resulting
image can be run either by OpenShift or by Docker.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

7

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-docker-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build

2.5.2. Versions

Currently, OpenShift provides version 5.5 of PHP.

2.5.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/php-55-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/php-55-centos7

To use these images, you can either access them directly from these image registries,
or push them into your OpenShift Docker registry. Additionally, you can create an image
stream that points to the image, either in your Docker registry or at the external
location. Your OpenShift resources can then reference the ImageStream. You can find
example ImageStream definitions for all the provided OpenShift images.

2.5.4. Configuration

The PHP image supports a number of environment variables which can be set to control
the configuration and behavior of the PHP runtime.

To set these environment variables, you can place them into .sti/environment file
inside your source code repository, or define them in the environment section of the
BuildConfig Source Strategy definition.

The following environment variables set their equivalent property value in the php.ini
file:

Table 2.3. PHP Environment Variables

Variable name Description Default

ERROR_REPORTING Informs PHP of the errors,
warnings, and notices for which
you would like it to take action.

E_ALL & ~E_NOTICE

OpenShift Enterprise 3.0 Using Images

8

https://github.com/openshift/sti-php/tree/master/5.5
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-docker-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams

DISPLAY_ERRORS Controls if and where PHP
outputs errors, notices, and
warnings.

ON

DISPLAY_STARTUP
_ERRORS

Causes any display errors that
occur during PHP’s startup
sequence to be handled
separately from display errors.

OFF

TRACK_ERRORS Stores the last error/warning
message in $php_errormsg
(boolean).

OFF

HTML_ERRORS Links errors to documentation
that is related to the error.

ON

INCLUDE_PATH Path for PHP source files.

SESSION_PATH Location for session data files. /tmp/sessions

Variable name Description Default

The following environment variable sets its equivalent property value in the opcache.ini
file:

Table 2.4. Additional PHP settings

Variable name Description Defa
ult

OPCACHE_MEMORY_CONS
UMPTION

The OPcache shared memory storage size. 16M

You can also override the entire directory used to load the PHP configuration by setting:

Table 2.5. Additional PHP settings

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

9

Variable name Description

PHPRC Sets the path to the php.ini file.

PHP_INI_SCAN_DIR Path to scan for additional ini configuration files

2.5.4.1. Apache Configuration

If the DocumentRoot of the application is nested in the source directory
/opt/openshift/src, you can provide your own .htaccess file to override the default
Apache behavior and specify how application requests should be handled. The
.htaccess file must be located at the root of the application source.

2.5.5. Logs

This image logs primarily to standard out and as such the logs can be viewed via the oc
logs command. Access logs are stored in /tmp/access_log which can be viewed using
oc exec to access the container.

2.6. PYTHON

2.6.1. Overview

OpenShift provides S2I enabled Python images for building and running Python
applications. The Python S2I builder image assembles your application source with any
required dependencies to create a new image containing your Python application. This
resulting image can be run either by OpenShift or by Docker.

2.6.2. Versions

Currently, OpenShift provides version 3.3 of Python.

2.6.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/python-33-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

OpenShift Enterprise 3.0 Using Images

10

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-executing-remote-commands
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://github.com/openshift/sti-python/tree/master/3.3

$ docker pull openshift/python-33-centos7

To use these images, you can either access them directly from these image registries,
or push them into your OpenShift Docker registry. Additionally, you can create an image
stream that points to the image, either in your Docker registry or at the external
location. Your OpenShift resources can then reference the ImageStream. You can find
example ImageStream definitions for all the provided OpenShift images.

2.6.4. Configuration

The Python image supports a number of environment variables which can be set to
control the configuration and behavior of the Python runtime.

To set these environment variables, you can place them into a .sti/environment file
inside your source code repository, or define them in the environment section of the
BuildConfig Source Strategy definition.

Table 2.6. Python Environment Variables

Variable name Description

APP_FILE This variable specifies the file name passed to the
python interpreter which is responsible for launching
the application. This variable is set to app.py by
default.

APP_MODULE This variable specifies the WSGI callable. It follows the
pattern $(MODULE_NAME):$(VARIABLE_NAME),
where the module name is a full dotted path and the
variable name refers to a function inside the specified
module. If you use setup.py for installing the
application, then the module name can be read from
that file and the variable defaults to application.
There is an example setup-test-app available.

APP_CONFIG This variable indicates the path to a valid Python file
with a gunicorn configuration.

DISABLE_COLLECTSTATIC Set it to a nonempty value to inhibit the execution of
manage.py collectstatic during the build. Only
affects Django projects.

DISABLE_MIGRATE Set it to a nonempty value to inhibit the execution of
manage.py migrate when the produced image is
run. Only affects Django projects.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

11

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-docker-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#buildconfig-environment
https://github.com/openshift/sti-python/tree/master/3.3/test/setup-test-app
http://docs.gunicorn.org/en/latest/configure.html

CHAPTER 3. DATABASE IMAGES

3.1. OVERVIEW

This topic group includes information on the different database images available for
OpenShift users.

Note

Enabling clustering for database images is currently in Technology Preview and
not intended for production use.

3.2. MYSQL

3.2.1. Overview

OpenShift provides a Docker image for running MySQL. This image can provide
database services based on username, password, and database name settings provided
via configuration.

3.2.2. Versions

Currently, OpenShift provides version 5.5 of MySQL.

3.2.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/mysql-55-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/mysql-55-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Docker registry. Additionally, you can create an ImageStream
that points to the image, either in your Docker registry or at the external location. Your
OpenShift resources can then reference the ImageStream. You can find example
ImageStream definitions for all the provided OpenShift images.

3.2.4. Configuration and Usage

OpenShift Enterprise 3.0 Using Images

12

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#technology-preview
https://github.com/openshift/mysql/tree/master/5.5
https://github.com/openshift/origin/tree/master/examples/image-streams

3.2.4. Configuration and Usage

3.2.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the
database administrator user and the MySQL root user (if you specify the
MYSQL_ROOT_PASSWORD environment variable). Afterwards, the MySQL daemon starts
up. If you are re-attaching the volume to another container, then the database,
database user, and the administrator user are not created, and the MySQL daemon
starts.

The following command creates a new database pod with MySQL running in a container:

$ oc new-app -e \
 MYSQL_USER=<username>,MYSQL_PASSWORD=<password>,MYSQL_DATABASE=
<database_name> \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

3.2.4.2. Running MySQL Commands in Containers

OpenShift uses Software Collections (SCLs) to install and launch MySQL. If you want to
execute a MySQL command inside of a running container (for debugging), you must
invoke it using bash.

To do so, first identify the name of the pod. For example, you can view the list of pods
in your current project:

$ oc get pods

Then, open a remote shell session to the pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run the mysql command from the bash shell to start a MySQL interactive
session and perform normal MySQL operations. For example, to authenticate as the
database user:

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.37 MySQL Community Server (GPL)
...
mysql>

When you are finished, enter quit or exit to leave the MySQL session.

3.2.4.3. Environment Variables

The MySQL user name, password, and database name must be configured with the
following environment variables:

CHAPTER 3. DATABASE IMAGES

13

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#pods
https://www.softwarecollections.org/

Table 3.1. MySQL Environment Variables

Variable Name Description

MYSQL_USER Specifies the user name for the database user that is
created for use by your application.

MYSQL_PASSWORD Password for the MYSQL_USER.

MYSQL_DATABASE Name of the database to which MYSQL_USER has full
rights.

MYSQL_ROOT_PASSWORD Optional password for the root user. If this is not set,
then remote login to the root account is not possible.
Local connections from within the container are
always permitted without a password.

MySQL settings can be configured with the following environment variables:

Table 3.2. Additional MySQL Settings

Variable Name Description Defa
ult

MYSQL_LOWER_CASE_TA
BLE_NAMES

Sets how the table names are stored and compared. 0

MYSQL_MAX_CONNECTIO
NS

The maximum permitted number of simultaneous
client connections.

151

MYSQL_FT_MIN_WORD_L
EN

The minimum length of the word to be included in a
FULLTEXT index.

4

Warning

You must specify the user name, password, and database name. If you do not
specify all three, the pod will fail to start and OpenShift will continuously try
to restart it.

OpenShift Enterprise 3.0 Using Images

14

MYSQL_FT_MAX_WORD_L
EN

The maximum length of the word to be included in a
FULLTEXT index.

20

MYSQL_AIO Controls the innodb_use_native_aio setting value if
the native AIO is broken.

1

Variable Name Description Defa
ult

3.2.4.4. Volume Mount Points

The MySQL image can be run with mounted volumes to enable persistent storage for
the database:

/var/lib/mysql/data - This is the data directory where MySQL stores database files.

3.2.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (MYSQL_USER) and root user is by changing the
environment variables MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in
the web console or by listing the environment variables with the CLI:

$ oc env pod <pod_name> --list

Whenever MYSQL_ROOT_PASSWORD is set, it enables remote access for the root user with
the given password, and whenever it is unset, remote access for the root user is
disabled. This does not affect the regular user MYSQL_USER, who always has remote
access. This also does not affect local access by the root user, who can always log in
without a password in localhost.

Changing database passwords through SQL statements or any way other than through
the environment variables aforementioned causes a mismatch between the values
stored in the variables and the actual passwords. Whenever a database container
starts, it resets the passwords to the values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables
for the related deployment configuration(s) using the oc env command. If multiple
deployment configurations utilize these environment variables, for example in the case
of an application created from a template, you must update the variables on each
deployment configuration so that the passwords are in sync everywhere. This can be
done all in the same command:

$ oc env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

CHAPTER 3. DATABASE IMAGES

15

Important

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the
running MySQL pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME
$MYSQL_DATABASE -te "SELECT * FROM (SELECT database()) db CROSS JOIN
(SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

To verify the root user’s new password:

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME
$MYSQL_DATABASE -te "SELECT * FROM (SELECT database()) db CROSS JOIN
(SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+------------------+
| database() | user() |
+------------+------------------+
| sampledb | root@172.17.42.1 |
+------------+------------------+

3.2.5. Creating a Database Service from a Template

OpenShift provides a template to make creating a new database service easy. The
template provides parameter fields to define all the mandatory environment variables

OpenShift Enterprise 3.0 Using Images

16

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates

(user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The MySQL templates should have been registered in the default openshift project by
your cluster administrator during the First Steps setup process. There are two
templates available:

mysql-ephemeral is for development or testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

mysql-persistent uses a persistent volume store for the database data which
means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift deployment. Cluster
administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database via the service that was defined.

3.2.6. Using MySQL Replication

Note

Enabling clustering for database images is currently in Technology Preview and
not intended for production use.

Red Hat provides a proof-of-concept template for MySQL master-slave replication
(clustering); you can obtain the example template from GitHub.

To upload the example template into the current project’s template library:

$ oc create -f \

https://raw.githubusercontent.com/openshift/mysql/master/5.5/examples/r
eplica/mysql_replica.json

The following sections detail the objects defined in the example template and describe
how they work together to start a cluster of MySQL servers implementing master-slave
replication. This is the recommended replication strategy for MySQL.

3.2.6.1. Creating the Deployment Configuration for the MySQL Master

To set up MySQL replication, a deployment configuration is defined in the example
template that defines a replication controller. For MySQL master-slave replication, two
deployment configurations are needed. One deployment configuration defines the
MySQL master server and second the MySQL slave servers.

CHAPTER 3. DATABASE IMAGES

17

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-first-steps
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#technology-preview
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-templates
https://github.com/openshift/mysql/tree/master/5.5/examples/replica
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#replication-controllers

To tell a MySQL server to act as the master, the command field in the container’s
definition in the deployment configuration must be set to run-mysqld-master. This
script acts as an alternative entrypoint for the MySQL image and configures the MySQL
server to run as the master in replication.

MySQL replication requires a special user that relays data between the master and
slaves. The following environment variables are defined in the template for this
purpose:

Variable Name Description Defa
ult

MYSQL_MASTER_USER The user name of the replication user mast
er

MYSQL_MASTER_PASSWO
RD

The password for the replication user gene
rated

Example 3.1. MySQL Master Deployment Configuration Object Definition in
the Example Template

{
 "kind":"DeploymentConfig",
 "apiVersion":"v1",
 "metadata":{
 "name":"mysql-master"
 },
 "spec":{
 "strategy":{
 "type":"Recreate"
 },
 "triggers":[
 {
 "type":"ConfigChange"
 }
],
 "replicas":1,
 "selector":{
 "name":"mysql-master"
 },
 "template":{
 "metadata":{
 "labels":{
 "name":"mysql-master"
 }
 },
 "spec":{
 "volumes":[
 {
 "name":"mysql-master-data",

OpenShift Enterprise 3.0 Using Images

18

 "persistentVolumeClaim":{
 "claimName":"mysql-master"
 }
 }
],
 "containers":[
 {
 "name":"server",
 "image":"openshift/mysql-55-centos7",
 "command":[
 "run-mysqld-master"
],
 "ports":[
 {
 "containerPort":3306,
 "protocol":"TCP"
 }
],
 "env":[
 {
 "name":"MYSQL_MASTER_USER",
 "value":"${MYSQL_MASTER_USER}"
 },
 {
 "name":"MYSQL_MASTER_PASSWORD",
 "value":"${MYSQL_MASTER_PASSWORD}"
 },
 {
 "name":"MYSQL_USER",
 "value":"${MYSQL_USER}"
 },
 {
 "name":"MYSQL_PASSWORD",
 "value":"${MYSQL_PASSWORD}"
 },
 {
 "name":"MYSQL_DATABASE",
 "value":"${MYSQL_DATABASE}"
 },
 {
 "name":"MYSQL_ROOT_PASSWORD",
 "value":"${MYSQL_ROOT_PASSWORD}"
 }
],
 "volumeMounts":[
 {
 "name":"mysql-master-data",
 "mountPath":"/var/lib/mysql/data"
 }
],
 "resources":{

 },
 "terminationMessagePath":"/dev/termination-log",
 "imagePullPolicy":"IfNotPresent",
 "securityContext":{

CHAPTER 3. DATABASE IMAGES

19

Since we claimed a persistent volume in this deployment configuration to have all data
persisted for the MySQL master server, you must ask your cluster administrator to
create a persistent volume that you can claim the storage from.

After the deployment configuration is created and the pod with MySQL master server is
started, it will create the database defined by MYSQL_DATABASE and configure the
server to replicate this database to slaves.

The example provided defines only one replica of the MySQL master server. This causes
OpenShift to start only one instance of the server. Multiple instances (multi-master) is
not supported and therefore you can not scale this replication controller.

To replicate the database created by the MySQL master, a deployment configuration is
defined in the template. This deployment configuration creates a replication controller
that launches the MySQL image with the command field set to run-mysqld-slave. This
alternative entrypoints skips the initialization of the database and configures the MySQL
server to connect to the mysql-master service, which is also defined in example
template.

Example 3.2. MySQL Slave Deployment Configuration Object Definition in
the Example Template

 "capabilities":{

 },
 "privileged":false
 }
 }
],
 "restartPolicy":"Always",
 "dnsPolicy":"ClusterFirst"
 }
 }
 }
}

{
 "kind":"DeploymentConfig",
 "apiVersion":"v1",
 "metadata":{
 "name":"mysql-slave"
 },
 "spec":{
 "strategy":{
 "type":"Recreate"
 },
 "triggers":[
 {
 "type":"ConfigChange"
 }
],
 "replicas":1,
 "selector":{
 "name":"mysql-slave"

OpenShift Enterprise 3.0 Using Images

20

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#provisioning

 },
 "template":{
 "metadata":{
 "labels":{
 "name":"mysql-slave"
 }
 },
 "spec":{
 "containers":[
 {
 "name":"server",
 "image":"openshift/mysql-55-centos7",
 "command":[
 "run-mysqld-slave"
],
 "ports":[
 {
 "containerPort":3306,
 "protocol":"TCP"
 }
],
 "env":[
 {
 "name":"MYSQL_MASTER_USER",
 "value":"${MYSQL_MASTER_USER}"
 },
 {
 "name":"MYSQL_MASTER_PASSWORD",
 "value":"${MYSQL_MASTER_PASSWORD}"
 },
 {
 "name":"MYSQL_DATABASE",
 "value":"${MYSQL_DATABASE}"
 }
],
 "resources":{

 },
 "terminationMessagePath":"/dev/termination-log",
 "imagePullPolicy":"IfNotPresent",
 "securityContext":{
 "capabilities":{

 },
 "privileged":false
 }
 }
],
 "restartPolicy":"Always",
 "dnsPolicy":"ClusterFirst"
 }
 }
 }
}

CHAPTER 3. DATABASE IMAGES

21

This example deployment configuration starts the replication controller with the initial
number of replicas set to 1. You can scale this replication controller in both directions,
up to the resources capacity of your account.

3.2.6.2. Creating a Headless Service

The pods created by the MySQL slave replication controller must reach the MySQL
master server in order to register for replication. The example template defines a
headless service named mysql-master for this purpose. This service is not used only
for replication, but the clients can also send the queries to mysql-master:3306 as the
MySQL host.

To have a headless service, the portalIP parameter in the service definition is set to
None. Then you can use a DNS query to get a list of the pod IP addresses that
represents the current endpoints for this service.

Example 3.3. Headless Service Object Definition in the Example Template

3.2.6.3. Scaling the MySQL Slaves

{
 "kind":"Service",
 "apiVersion":"v1",
 "metadata":{
 "name":"mysql-master",
 "labels":{
 "name":"mysql-master"
 }
 },
 "spec":{
 "ports":[
 {
 "protocol":"TCP",
 "port":3306,
 "targetPort":3306,
 "nodePort":0
 }
],
 "selector":{
 "name":"mysql-master"
 },
 "portalIP":"None",
 "type":"ClusterIP",
 "sessionAffinity":"None"
 },
 "status":{
 "loadBalancer":{

 }
 }
}

OpenShift Enterprise 3.0 Using Images

22

To increase the number of members in the cluster:

$ oc scale rc mysql-slave-1 --replicas=<number>

This tells the replication controller to create a new MySQL slave pod. When a new slave
is created, the slave entrypoint first attempts to contact the mysql-master service
and register itself to the replication set. Once that is done, the MySQL master server
sends the slave the replicated database.

When scaling down, the MySQL slave is shut down and, because the slave does not
have any persistent storage defined, all data on the slave is lost. The MySQL master
server then discovers that the slave is not reachable anymore, and it automatically
removes it from the replication.

3.3. POSTGRESQL

3.3.1. Overview

OpenShift provides a Docker image for running PostgreSQL. This image can provide
database services based on username, password, and database name settings provided
via configuration.

3.3.2. Versions

Currently, OpenShift supports version 9.2 of PostgreSQL.

3.3.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/postgresql-92-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/postgresql-92-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Docker registry. Additionally, you can create an ImageStream
that points to the image, either in your Docker registry or at the external location. Your
OpenShift resources can then reference the ImageStream. You can find example
ImageStream definitions for all the provided OpenShift images.

3.3.4. Configuration and Usage

CHAPTER 3. DATABASE IMAGES

23

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#scaling
https://github.com/openshift/postgresql/tree/master/9.2
https://github.com/openshift/origin/tree/master/examples/image-streams

3.3.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the
database administrator user and the PostgreSQL postgres user (if you specify the
POSTGRESQL_ADMIN_PASSWORD environment variable). Afterwards, the PostgreSQL
daemon starts up. If you are re-attaching the volume to another container, then the
database, the database user, and the administrator user are not created, and the
PostgreSQL daemon starts.

The following command creates a new database pod with PostgreSQL running in a
container:

$ oc new-app -e \
 POSTGRESQL_USER=<username>,POSTGRESQL_PASSWORD=
<password>,POSTGRESQL_DATABASE=<database_name> \
 registry.access.redhat.com/rhscl/postgresql-94-rhel7

3.3.4.2. Running PostgreSQL Commands in Containers

OpenShift uses Software Collections (SCLs) to install and launch PostgreSQL. If you
want to execute a PostgreSQL command inside of a running container (for debugging),
you must invoke it using bash.

To do so, first identify the name of the running PostgreSQL pod. For example, you can
view the list of pods in your current project:

$ oc get pods

Then, open a remote shell session to the desired pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run the psql command from the bash shell to start a PostgreSQL
interactive session and perform normal PostgreSQL operations. For example, to
authenticate as the database user:

bash-4.2$ PGPASSWORD=$POSTGRESQL_PASSWORD psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER
psql (9.2.8)
Type "help" for help.

default=>

When you are finished, enter \q to leave the PostgreSQL session.

3.3.4.3. Environment Variables

The PostgreSQL user name, password, and database name must be configured with the
following environment variables:

Table 3.3. PostgreSQL Environment Variables

OpenShift Enterprise 3.0 Using Images

24

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#pods
https://www.softwarecollections.org/

Variable Name Description

POSTGRESQL_USER User name for the PostgreSQL account to be created.
This user has full rights to the database.

POSTGRESQL_PASSWORD Password for the user account.

POSTGRESQL_DATABASE Database name.

POSTGRESQL_ADMIN_PASSWORD Optional password for the postgres administrator
user. If this is not set, then remote login to the
postgres account is not possible. Local connections
from within the container are always permitted
without a password.

PostgreSQL settings can be configured with the following environment variables:

Table 3.4. Additional PostgreSQL settings

Variable Name Description Defa
ult

POSTGRESQL_MAX_CONN
ECTIONS

The maximum number of client connections allowed.
This also sets the maximum number of prepared
transactions.

100

POSTGRESQL_SHARED_B
UFFERS

Configures how much memory is dedicated to
PostgreSQL for caching data.

32M

3.3.4.4. Volume Mount Points

The PostgreSQL image can be run with mounted volumes to enable persistent storage
for the database:

Warning

You must specify the user name, password, and database name. If you do not
specify all three, the pod will fail to start and OpenShift will continuously try
to restart it.

CHAPTER 3. DATABASE IMAGES

25

/var/lib/pgsql/data - This is the database cluster directory where PostgreSQL stores
database files.

3.3.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (POSTGRESQL_USER) and postgres
administrator user is by changing the environment variables POSTGRESQL_PASSWORD and
POSTGRESQL_ADMIN_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in
the web console or by listing the environment variables with the CLI:

$ oc env pod <pod_name> --list

Changing database passwords through SQL statements or any way other than through
the environment variables aforementioned will cause a mismatch between the values
stored in the variables and the actual passwords. Whenever a database container
starts, it resets the passwords to the values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables
for the related deployment configuration(s) using the oc env command. If multiple
deployment configurations utilize these environment variables, for example in the case
of an application created from a template, you must update the variables on each
deployment configuration so that the passwords are in sync everywhere. This can be
done all in the same command:

$ oc env dc <dc_name> [<dc_name_2> ...] \
 POSTGRESQL_PASSWORD=<new_password> \
 POSTGRESQL_ADMIN_PASSWORD=<new_admin_password>

Important

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the
running PostgreSQL pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

OpenShift Enterprise 3.0 Using Images

26

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#config-change-trigger

bash-4.2$ PGPASSWORD=<new_password> psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER -c "SELECT * FROM (SELECT
current_database()) cdb CROSS JOIN (SELECT current_user) cu"

If the password was changed correctly, you should see a table like this:

 current_database | current_user
------------------+--------------
 default | django
(1 row)

From the bash shell, verify the postgres administrator user’s new password:

bash-4.2$ PGPASSWORD=<new_admin_password> psql -h postgresql
$POSTGRESQL_DATABASE postgres -c "SELECT * FROM (SELECT
current_database()) cdb CROSS JOIN (SELECT current_user) cu"

If the password was changed correctly, you should see a table like this:

 current_database | current_user
------------------+--------------
 default | postgres
(1 row)

3.3.5. Creating a Database Service from a Template

OpenShift provides a template to make creating a new database service easy. The
template provides parameter fields to define all the mandatory environment variables
(user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The PostgreSQL templates should have been registered in the default openshift
project by your cluster administrator during the First Steps setup process. There are
two templates available:

PostgreSQL-ephemeral is for development or testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

PostgreSQL-persistent uses a persistent volume store for the database data
which means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift deployment. Cluster
administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database via the service that was defined.

CHAPTER 3. DATABASE IMAGES

27

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-first-steps
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates

3.4. MONGODB

3.4.1. Overview

OpenShift provides a Docker image for running MongoDB. This image can provide
database services based on username, password, and database name settings provided
via configuration.

3.4.2. Versions

Currently, OpenShift provides version 2.4 of MongoDB.

3.4.3. Images

This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Image

The RHEL 7 image is available through Red Hat’s subscription registry via:

$ docker pull registry.access.redhat.com/openshift3/mongodb-24-rhel7

CentOS 7 Based Image

This image is available on DockerHub. To download it:

$ docker pull openshift/mongodb-24-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Docker registry. Additionally, you can create an ImageStream
that points to the image, either in your Docker registry or at the external location. Your
OpenShift resources can then reference the ImageStream. You can find example
ImageStream definitions for all the provided OpenShift images.

3.4.4. Configuration and Usage

3.4.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the
database administrator user. Afterwards, the MongoDB daemon starts up. If you are re-
attaching the volume to another container, then the database, database user, and the
administrator user are not created, and the MongoDB daemon starts.

The following command creates a new database pod with MongoDB running in a
container:

$ oc new-app -e \
 MONGODB_USER=<username>,MONGODB_PASSWORD=
<password>,MONGODB_DATABASE=<database_name>,MONGODB_ADMIN_PASSWORD=

OpenShift Enterprise 3.0 Using Images

28

https://github.com/openshift/mongodb/tree/master/2.4
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#pods

<admin_password> \
 registry.access.redhat.com/rhscl/mongodb-26-rhel7

3.4.4.2. Running MongoDB Commands in Containers

OpenShift uses Software Collections (SCLs) to install and launch MongoDB. If you want
to execute a MongoDB command inside of a running container (for debugging), you
must invoke it using bash.

To do so, first identify the name of the running MongoDB pod. For example, you can
view the list of pods in your current project:

$ oc get pods

Then, open a remote shell session to the desired pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run mongo commands from the bash shell to start a MongoDB interactive
session and perform normal MongoDB operations. For example, to switch to the
sampledb database and authenticate as the database user:

bash-4.2$ mongo -u $MONGODB_USER -p $MONGODB_PASSWORD $MONGODB_DATABASE
MongoDB shell version: 2.4.9
connecting to: sampledb
>

When you are finished, press CTRL+D to leave the MongoDB session.

3.4.4.3. Environment Variables

The MongoDB user name, password, database name, and admin password must be
configured with the following environment variables:

Table 3.5. MongoDB Environment Variables

Variable Name Description

MONGODB_USER User name for MongoDB account to be created.

MONGODB_PASSWORD Password for the user account.

MONGODB_DATABASE Database name.

CHAPTER 3. DATABASE IMAGES

29

https://www.softwarecollections.org/

MONGODB_ADMIN_PASSWORD Password for the admin user.

Variable Name Description

Note

The administrator user name is set to admin and you must specify its
password by setting the MONGODB_ADMIN_PASSWORD environment variable. This
process is done upon database initialization.

MongoDB settings can be configured with the following environment variables:

Table 3.6. Additional MongoDB Settings

Variable Name Description Defa
ult

MONGODB_NOPREALLOC Disable data file preallocation. true

MONGODB_SMALLFILES Set MongoDB to use a smaller default data file size. true

MONGODB_QUIET Runs MongoDB in a quiet mode that attempts to limit
the amount of output.

true

3.4.4.4. Volume Mount Points

The MongoDB image can be run with mounted volumes to enable persistent storage for
the database:

/var/lib/mongodb - This is the database directory where MongoDB stores database
files.

3.4.4.5. Changing Passwords

Warning

You must specify the user name, password, database name, and admin
password. If you do not specify all four, the pod will fail to start and
OpenShift will continuously try to restart it.

OpenShift Enterprise 3.0 Using Images

30

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (MONGODB_USER) and admin user is by
changing the environment variables MONGODB_PASSWORD and MONGODB_ADMIN_PASSWORD,
respectively.

You can view the current passwords by viewing the pod or deployment configuration in
the web console or by listing the environment variables with the CLI:

$ oc env pod <pod_name> --list

Changing database passwords directly in MongoDB causes a mismatch between the
values stored in the variables and the actual passwords. Whenever a database
container starts, it resets the passwords to the values stored in the environment
variables.

To change these passwords, update one or both of the desired environment variables
for the related deployment configuration(s) using the oc env command. If multiple
deployment configurations utilize these environment variables, for example in the case
of an application created from a template, you must update the variables on each
deployment configuration so that the passwords are in sync everywhere. This can be
done all in the same command:

$ oc env dc <dc_name> [<dc_name_2> ...] \
 MONGODB_PASSWORD=<new_password> \
 MONGODB_ADMIN_PASSWORD=<new_admin_password>

Important

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the
running MongoDB pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mongo -u $MONGODB_USER -p <new_password> $MONGODB_DATABASE --
eval "db.version()"

If the password was changed correctly, you should see output like this:

CHAPTER 3. DATABASE IMAGES

31

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#config-change-trigger

MongoDB shell version: 2.4.9
connecting to: sampledb
2.4.9

To verify the admin user’s new password:

bash-4.2$ mongo -u admin -p <new_admin_password> admin --eval
"db.version()"

If the password was changed correctly, you should see output like this:

MongoDB shell version: 2.4.9
connecting to: admin
2.4.9

3.4.5. Creating a Database Service from a Template

OpenShift provides a template to make creating a new database service easy. The
template provides parameter fields to define all the mandatory environment variables
(user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The MongoDB templates should have been registered in the default openshift project
by your cluster administrator during the First Steps setup process. There are two
templates available:

mongodb-ephemeral is for development/testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

mongodb-persistent uses a persistent volume store for the database data which
means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift deployment. Cluster
administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database via the service that was defined.

3.4.6. Using MongoDB Replication

Note

Enabling clustering for database images is currently in Technology Preview and
not intended for production use.

OpenShift Enterprise 3.0 Using Images

32

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-first-steps
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#technology-preview

Red Hat provides a proof-of-concept template for MongoDB replication (clustering); you
can obtain the example template from GitHub.

For example, to upload the example template into the current project’s template
library:

$ oc create -f \

https://raw.githubusercontent.com/openshift/mongodb/master/2.4/examples
/replica/mongodb-clustered.json

Important

The example template does not use persistent storage. When you lose all
members of the replication set, your data will be lost.

The following sections detail the objects defined in the example template and describe
how they work together to start a cluster of MongoDB servers implementing master-
slave replication and automated failover. This is the recommended replication strategy
for MongoDB.

3.4.6.1. Creating the Deployment Configuration

To set up MongoDB replication, a deployment configuration is defined in the example
template that defines a replication controller. The replication controller manages the
members of the MongoDB cluster.

To tell a MongoDB server that the member will be part of the cluster, additional
environment variables are provided for the container defined in the replication
controller pod template:

Variable Name Description Defa
ult

MONGODB_REPLICA_NAM
E

Specifies the name of the replication set. rs0

MONGODB_KEYFILE_VAL
UE

See: Generate a Key File gene
rated

Example 3.4. Deployment Configuration Object Definition in the Example
Template

{
 "kind": "DeploymentConfig",
 "apiVersion": "v1",

CHAPTER 3. DATABASE IMAGES

33

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-templates
https://github.com/openshift/mongodb/tree/master/2.4/examples/replica
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#replication-controllers
http://docs.mongodb.org/manual/tutorial/generate-key-file

 "metadata": {
 "name": "${MONGODB_SERVICE_NAME}",
 },
 "spec": {
 "strategy": {
 "type": "Recreate",
 "resources": {}
 },
 "triggers": [
 {
 "type":"ConfigChange"
 }
],
 "replicas": 3,
 "selector": {
 "name": "mongodb-replica"
 },
 "template": {
 "metadata": {
 "labels": {
 "name": "mongodb-replica"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "member",
 "image": "openshift/mongodb-24-centos7",
 "env": [
 {
 "name": "MONGODB_USER",
 "value": "${MONGODB_USER}"
 },
 {
 "name": "MONGODB_PASSWORD",
 "value": "${MONGODB_PASSWORD}"
 },
 {
 "name": "MONGODB_DATABASE",
 "value": "${MONGODB_DATABASE}"
 },
 {
 "name": "MONGODB_ADMIN_PASSWORD",
 "value": "${MONGODB_ADMIN_PASSWORD}"
 },
 {
 "name": "MONGODB_REPLICA_NAME",
 "value": "${MONGODB_REPLICA_NAME}"
 },
 {
 "name": "MONGODB_SERVICE_NAME",
 "value": "${MONGODB_SERVICE_NAME}"
 },
 {
 "name": "MONGODB_KEYFILE_VALUE",
 "value": "${MONGODB_KEYFILE_VALUE}"

OpenShift Enterprise 3.0 Using Images

34

After the deployment configuration is created and the pods with MongoDB cluster
members are started, they will not be initialized. Instead, they start as part of the rs0
replication set, as the value of MONGODB_REPLICA_NAME is set to rs0 by default.

3.4.6.2. Creating the Service Pod

To initialize members created by the deployment configuration, a service pod is defined
in the template. This pod starts MongoDB with the initiate argument, which instructs
the container entrypoint to behave slightly differently than a regular, stand-alone
MongoDB database.

Example 3.5. Service Pod Object Definition in the Example Template

 }
],
 "ports":[
 {
 "containerPort": 27017,
 "protocol": "TCP"
 }
]
 }
]
 }
 },
 "restartPolicy": "Never",
 "dnsPolicy": "ClusterFirst"
 }
 }

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "mongodb-service",
 "creationTimestamp": null,
 "labels": {
 "name": "mongodb-service"
 }
 },
 "spec": {
 "restartPolicy": "Never",
 "dnsPolicy": "ClusterFirst",
 "containers": [
 {
 "name": "initiate",
 "image": "openshift/mongodb-24-centos7",
 "args": ["initiate"],
 "env": [
 {
 "name": "MONGODB_USER",
 "value": "${MONGODB_USER}"
 },

CHAPTER 3. DATABASE IMAGES

35

3.4.6.3. Creating a Headless Service

The initiate argument in the container specification above instructs the container to
first discover all running member pods within the MongoDB cluster. To achieve this, a
headless service is defined named mongodb in the example template.

To have a headless service, the portalIP parameter in the service definition is set to
None. Then you can use a DNS query to get a list of the pod IP addresses that
represents the current endpoints for this service.

Example 3.6. Headless Service Object Definition in the Example Template

 {
 "name": "MONGODB_PASSWORD",
 "value": "${MONGODB_PASSWORD}"
 },
 {
 "name": "MONGODB_DATABASE",
 "value": "${MONGODB_DATABASE}"
 },
 {
 "name": "MONGODB_ADMIN_PASSWORD",
 "value": "${MONGODB_ADMIN_PASSWORD}"
 },
 {
 "name": "MONGODB_REPLICA_NAME",
 "value": "${MONGODB_REPLICA_NAME}"
 },
 {
 "name": "MONGODB_SERVICE_NAME",
 "value": "${MONGODB_SERVICE_NAME}"
 },
 {
 "name": "MONGODB_KEYFILE_VALUE",
 "value": "${MONGODB_KEYFILE_VALUE}"
 }
]
 }
]
 }
}

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "${MONGODB_SERVICE_NAME}",
 "labels": {
 "name": "${MONGODB_SERVICE_NAME}"
 }
 },
 "spec": {
 "ports": [

OpenShift Enterprise 3.0 Using Images

36

3.4.6.4. Creating the Final Replication Set

When the script that runs as the container entrypoint has the IP addresses of all
running MongoDB members, it creates a MongoDB replication set configuration where it
lists all member IP addresses. It then initiates the replication set using
rs.initiate(config). The script waits until MongoDB elects the PRIMARY member of
the cluster.

Once the PRIMARY member has been elected, the entrypoint script starts creating
MongoDB users and databases. The service pod runs MongoDB without the --auth
argument, so it can bootstrap the PRIMARY member without providing any
authentication.

When the user accounts and databases are created and the data are replicated to
other members, the service pod then gives up its PRIMARY role and shuts down.

Note

It is important that the restartPolicy field in the service pod is set to Never
to prevent the service pod from restarting when the container exits.

As soon as the service pod shuts down, other members start a new election and the
new PRIMARY member is elected from the running members.

Clients can then start using the MongoDB instance by sending the queries to the
mongodb service. As this service is a headless service, they do not need to provide the
IP address. Clients can use mongodb:27017 for connections. The service then sends
the query to one of the members in the replication set.

3.4.6.5. Scaling the MongoDB Replication Set

To increase the number of members in the cluster:

$ oc scale rc mongodb-1 --replicas=<number>

 {
 "protocol": "TCP",
 "port": 27017,
 "targetPort": 27017,
 "nodePort": 0
 }
],
 "selector": {
 "name": "mongodb-replica"
 },
 "portalIP": "None",
 "type": "ClusterIP",
 "sessionAffinity": "None"
 },
 "status": {
 "loadBalancer": {}
 }
}

CHAPTER 3. DATABASE IMAGES

37

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#scaling

This tells the replication controller to create a new MongoDB member pod. When a new
member is created, the member entrypoint first attempts to discover other running
members in the cluster. It then chooses one and adds itself to the list of members.
Once the replication configuration is updated, the other members replicate the data to
a new pod and start a new election.

OpenShift Enterprise 3.0 Using Images

38

CHAPTER 4. DOCKER IMAGES

4.1. OVERVIEW

You can use arbitrary Docker images in your OpenShift instance, for example those
found on the Docker Hub. For instructions on how to enable images to run with USER in
the Dockerfile, see Managing Security Context Constraints.

CHAPTER 4. DOCKER IMAGES

39

https://registry.hub.docker.com/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#how-do-i

CHAPTER 5. XPAAS MIDDLEWARE IMAGES

5.1. OVERVIEW

This topic group includes information on the different xPaaS middleware images
available for OpenShift users.

5.2. RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM (JBOSS EAP) XPAAS IMAGE

5.2.1. Overview

Red Hat JBoss Enterprise Application Platform (JBoss EAP) is available as a containerized
xPaaS image that is designed for use with OpenShift. Developers can quickly build,
scale, and test applications deployed across hybrid environments.

Important

There are significant differences in supported configurations and functionality
in the JBoss EAP xPaaS image compared to the regular release of JBoss EAP.

This topic details the differences between the JBoss EAP xPaaS image and the regular
release of JBoss EAP, and provides instructions specific to running and configuring the
JBoss EAP xPaaS image. Documentation for other JBoss EAP functionality not specific to
the JBoss EAP xPaaS image can be found in the JBoss EAP documentation on the Red
Hat Customer Portal.

EAP_HOME in this documentation, as in the JBoss EAP documentation, is used refer to
the JBoss EAP installation directory. The location of EAP_HOME inside a JBoss EAP xPaaS
image is /opt/eap/, which the JBOSS_HOME environment variable is set to by default.

5.2.2. Comparing the JBoss EAP xPaaS Image to the Regular
Release of JBoss EAP

5.2.2.1. Functionality Differences for OpenShift JBoss EAP xPaaS
Images

There are several major functionality differences in the OpenShift JBoss EAP xPaaS
image:

The JBoss EAP Management Console is not available to manage OpenShift JBoss EAP
xPaaS images.

The JBoss EAP Management CLI is only bound locally. This means that you can only
access the Management CLI of a container from within the pod.

Domain mode is not supported. OpenShift controls the creation and distribution of
applications in the containers.

The default root page is disabled. You may want to deploy your own application to
the root context (as ROOT.war).

OpenShift Enterprise 3.0 Using Images

40

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/

A-MQ is supported for inter-pod and remote messaging. HornetQ is only supported
for intra-Pod messaging and only enabled in the absence of A-MQ.

5.2.2.2. Managing OpenShift JBoss EAP xPaaS Images

A major difference in managing an OpenShift JBoss EAP xPaaS image is that there is no
Management Console exposed for the JBoss EAP installation inside the image. Because
images are intended to be immutable, with modifications being written to a non-
persistent file system, the Management Console is not exposed.

However, the JBoss EAP Management CLI (EAP_HOME/bin/jboss-cli.sh) is still
accessible from within the container for troubleshooting purposes. First open a remote
shell session to the running pod:

$ oc rsh <pod_name>

Then run the following from the remote shell session to launch the JBoss EAP
Management CLI:

$ /opt/eap/bin/jboss-cli.sh

Making configuration changes to the JBoss EAP instance inside the JBoss EAP xPaaS
image is different from the process you may be used to for a regular release of JBoss
EAP.

5.2.2.3. Unsupported Configurations

The following is a list of unsupported configurations specific to the JBoss EAP xPaaS
image:

Using MySQL in a scaled environment with XA distributed transactions is not
recommended. For applications that support both scaling and XA distributed
transactions, PostgreSQL is recommended instead.

5.2.3. Installing the JBoss EAP xPaaS Image Streams and
Application Templates

To use the Red Hat xPaaS middleware images in your OpenShift project, you must first
install the image streams and Source-to-Image (S2I) application templates.

5.2.4. Running and Configuring the JBoss EAP xPaaS Image

You can make changes to the JBoss EAP configuration in the xPaaS image using either
the S2I templates, or by using a modified JBoss EAP xPaaS image.

Warning

Any configuration changes made using the JBoss EAP Management CLI on a
running container will be lost when the container restarts.

CHAPTER 5. XPAAS MIDDLEWARE IMAGES

41

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-image-streams-for-xpaas-middleware-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-instantapp-templates

5.2.4.1. Using the JBoss EAP xPaaS Image Source-to-Image (S2I)
Process

The recommended method to run and configure the OpenShift JBoss EAP xPaaS image
is to use the OpenShift S2I process together with the application template parameters
and environment variables.

The S2I process for the JBoss EAP xPaaS image works as follows:

1. If there is a pom.xml file in the source repository, a Maven build is triggered
with the contents of $MAVEN_ARGS environment variable.

By default the package goal is used with the openshift profile, including the
system properties for skipping tests (-DskipTests) and enabling the Red Hat
GA repository (-Dcom.redhat.xpaas.repo.redhatga).

The results of a successful Maven build are copied to
EAP_HOME/standalone/deployments. This includes all JAR, WAR, and EAR
files from the directory within the source repository specified by $ARTIFACT_DIR
environment variable. The default value of $ARTIFACT_DIR is the target
directory.

2. Any JAR, WAR, and EAR in the deployments source repository directory are
copied to the EAP_HOME/standalone/deployments directory.

3. All files in the configuration source repository directory are copied to
EAP_HOME/standalone/configuration.

Note

If you want to use a custom JBoss EAP configuration file, it should be
named standalone-openshift.xml.

4. All files in the modules source repository directory are copied to
EAP_HOME/modules.

5.2.4.1.1. Using a Different JDK Version in the JBoss EAP xPaaS Image

The JBoss EAP xPaaS image may come with multiple versions of OpenJDK installed, but
only one is the default. For example, the JBoss EAP 6.4 xPaaS image comes with
OpenJDK 1.7 and 1.8 installed, but OpenJDK 1.8 is the default.

If you want the JBoss EAP xPaaS image to use a different JDK version than the default,
you must:

Ensure that your pom.xml specifies to build your code using the intended JDK
version.

In the S2I application template, configure the image’s JAVA_HOME environment
variable to point to the intended JDK version. For example:

{
 "name": "JAVA_HOME",
 "value": "/usr/lib/jvm/java-1.7.0"
}

OpenShift Enterprise 3.0 Using Images

42

5.2.4.2. Using a Modified JBoss EAP xPaaS Image

An alternative method is to make changes to the image, and then use that modified
image in OpenShift.

The JBoss EAP configuration file that OpenShift uses inside the JBoss EAP xPaaS image
is EAP_HOME/standalone/configuration/standalone-openshift.xml, and the JBoss
EAP startup script is EAP_HOME/bin/openshift-launch.sh.

You can run the JBoss EAP xPaaS image in Docker, make the required configuration
changes using the JBoss EAP Management CLI (EAP_HOME/bin/jboss-cli.sh), and
then commit the changed container as a new image. You can then use that modified
image in OpenShift.

Important

It is recommended that you do not replace the OpenShift placeholders in the
JBoss EAP xPaaS configuration file, as they are used to automatically configure
services (such as messaging, datastores, HTTPS) during a container’s
deployment. These configuration values are intended to be set using
environment variables.

Note

Ensure that you follow the guidelines for creating images.

5.2.5. Troubleshooting

In addition to viewing the OpenShift logs, you can troubleshoot a running JBoss EAP
container by viewing the JBoss EAP logs that are outputted to the container’s console:

$ oc logs -f <pod_name> <container_name>

Note

By default, the OpenShift JBoss EAP xPaaS image does not have a file log
handler configured. Logs are only sent to the console.

5.3. RED HAT JBOSS A-MQ XPAAS IMAGE

5.3.1. Overview

Red Hat JBoss A-MQ (JBoss A-MQ) is available as a containerized xPaaS image that is
designed for use with OpenShift. It allows developers to quickly deploy an A-MQ
message broker in a hybrid cloud environment.

CHAPTER 5. XPAAS MIDDLEWARE IMAGES

43

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/creating_images/#creating-images-guidelines

Important

There are significant differences in supported configurations and functionality
in the JBoss A-MQ image compared to the regular release of JBoss A-MQ.

This topic details the differences between the JBoss A-MQ xPaaS image and the regular
release of JBoss A-MQ, and provides instructions specific to running and configuring the
JBoss A-MQ xPaaS image. Documentation for other JBoss A-MQ functionality not specific
to the JBoss A-MQ xPaaS image can be found in the JBoss A-MQ documentation on the
Red Hat Customer Portal.

5.3.2. Differences Between the JBoss A-MQ xPaaS Image and the
Regular Release of JBoss A-MQ

There are several major functionality differences in the OpenShift JBoss A-MQ xPaaS
image:

The Karaf shell is not available.

The Fuse Management Console (Hawtio) is not available.

Configuration of the broker can be performed:

using parameters specified in the A-MQ application template, as described in
Application Template Parameters.

using the S2I (Source-to-image) tool, as described in Configuration Using S2I.

5.3.3. Installing the JBoss A-MQ xPaaS Image Streams and
Application Templates

To use the Red Hat xPaaS middleware images in your OpenShift project, you must first
install the image streams and Source-to-Image (S2I) application templates.

5.3.4. Configuring the JBoss A-MQ Image

5.3.4.1. Application Template Parameters

Basic configuration of the JBoss A-MQ xPaaS image is performed by specifying values of
application template parameters. The following parameters can be configured:

AMQ_RELEASE
The JBoss A-MQ release version. This determines which JBoss A-MQ image will be
used as a basis for the application. At the moment, only version 6.2 is available.

APPLICATION_NAME
The name of the application used internally in OpenShift. It is used in names of
services, pods, and other objects within the application.

MQ_USERNAME

OpenShift Enterprise 3.0 Using Images

44

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-image-streams-for-xpaas-middleware-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-instantapp-templates

The user name used for authentication to the broker. In a standard non-
containerized JBoss A-MQ, you would specify the user name in the
AMQ_HOME/opt/user.properties file. If no value is specified, a random user
name is generated.

MQ_PASSWORD
The password used for authentication to the broker. In a standard non-
containerized JBoss A-MQ, you would specify the password in the
AMQ_HOME/opt/user.properties file. If no value is specified, a random
password is generated.

AMQ_ADMIN_USERNAME
The user name used as an admin authentication to the broker. If no value is
specified, a random user name is generated.

AMQ_ADMIN_PASSWORD
The password used for authentication to the broker. If no value is specified, a
random password is generated.

MQ_PROTOCOL
Comma-separated list of the messaging protocols used by the broker. Available
options are amqp, mqtt, openwire, and stomp. If left empty, all available
protocols will be available. Please note that for integration of the image with
Red Hat JBoss Enterprise Application Platform, the openwire protocol must be
specified, while other protocols can be optionally specified as well.

MQ_QUEUES
Comma-separated list of queues available by default on the broker on its
startup.

MQ_TOPICS
Comma-separated list of topics available by default on the broker on its startup.

AMQ_SECRET
The name of a secret containing SSL related files. If no value is specified, a
random password is generated.

AMQ_TRUSTSTORE
The SSL trust store filename. If no value is specified, a random password is
generated.

AMQ_KEYSTORE
The SSL key store filename. If no value is specified, a random password is
generated.

5.3.4.2. Configuration Using S2I

Configuration of the JBoss A-MQ image can also be modified using the Source-to-image
feature, described in full detail at S2I Requirements.

Custom A-MQ broker configuration can be specified by creating an openshift-
activemq.xml file inside the git directory of your application’s Git project root. On

CHAPTER 5. XPAAS MIDDLEWARE IMAGES

45

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/creating_images/#creating-images-s2i

each commit, the file will be copied to the conf directory in the A-MQ root and its
contents used to configure the broker.

5.3.5. Configuring the JBoss A-MQ Persistent Image

5.3.5.1. Application Template Parameters

Basic configuration of the JBoss A-MQ Persistent xPaaS image is performed by
specifying values of application template parameters. The following parameters can be
configured:

AMQ_RELEASE
The JBoss A-MQ release version. This determines which JBoss A-MQ image will be
used as a basis for the application. At the moment, only version 6.2 is available.

APPLICATION_NAME
The name of the application used internally in OpenShift. It is used in names of
services, pods, and other objects within the application.

MQ_PROTOCOL
Comma-separated list of the messaging protocols used by the broker. Available
options are amqp, mqtt, openwire, and stomp. If left empty, all available
protocols will be available. Please note that for integration of the image with
Red Hat JBoss Enterprise Application Platform, the openwire protocol must be
specified, while other protocols can be optionally specified as well.

MQ_QUEUES
Comma-separated list of queues available by default on the broker on its
startup.

MQ_TOPICS
Comma-separated list of topics available by default on the broker on its startup.

VOLUME_CAPACITY
The size of the persistent storage for database volumes.

MQ_USERNAME
The user name used for authentication to the broker. In a standard non-
containerized JBoss A-MQ, you would specify the user name in the
AMQ_HOME/opt/user.properties file. If no value is specified, a random user
name is generated.

MQ_PASSWORD
The password used for authentication to the broker. In a standard non-
containerized JBoss A-MQ, you would specify the password in the
AMQ_HOME/opt/user.properties file. If no value is specified, a random
password is generated.

AMQ_ADMIN_USERNAME

OpenShift Enterprise 3.0 Using Images

46

The user name used as an admin authentication to the broker. If no value is
specified, a random user name is generated.

AMQ_ADMIN_PASSWORD
The password used for authentication to the broker. If no value is specified, a
random password is generated.

AMQ_SECRET
The name of a secret containing SSL related files. If no value is specified, a
random password is generated.

AMQ_TRUSTSTORE
The SSL trust store filename. If no value is specified, a random password is
generated.

AMQ_KEYSTORE
The SSL key store filename. If no value is specified, a random password is
generated.

For more information, see Using Persistent Volumes.

5.3.6. Security

Only SSL connections can connect from outside of the OpenShift instance, regardless of
the protocol specified in the MQ_PROTOCOL property of the A-MQ application templates.
The non-SSL version of the protocols can only be used inside the OpenShift instance.

For security reasons, using the default KeyStore and TrustStore generated by the
system is discouraged. It is recommended to generate your own KeyStore and
TrustStore and supply them to the image using the OpenShift secrets mechanism or
S2I.

5.3.7. High-Availability and Scalability

The JBoss xPaaS A-MQ image is supported in two modes:

1. A single A-MQ pod mapped to a Persistent Volume for message persistence. This
mode provides message High Availability and guaranteed messaging but does
not provide scalability.

2. Multiple A-MQ pods using local message persistence (i.e. no mapped Persistent
Volume). This mode provides scalability but does not provide message High
Availability or guaranteed messaging.

5.3.8. Logging

In addition to viewing the OpenShift logs, you can troubleshoot a running JBoss A-MQ
image by viewing the JBoss A-MQ logs that are outputted to the container’s console:

$ oc logs -f <pod_name> <container_name>

CHAPTER 5. XPAAS MIDDLEWARE IMAGES

47

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-persistent-volumes

Note

By default, the OpenShift JBoss A-MQ xPaaS image does not have a file log
handler configured. Logs are only sent to the console.

5.4. RED HAT JBOSS WEB SERVER XPAAS IMAGES

5.4.1. Overview

The Apache Tomcat 7 and Apache Tomcat 8 components of Red Hat JBoss Web Server 3
are available as containerized xPaaS images that are designed for use with OpenShift.
Developers can use these images to quickly build, scale, and test Java web applications
deployed across hybrid environments.

Important

There are significant differences in the functionality between the JBoss Web
Server xPaaS images and the regular release of JBoss Web Server.

This topic details the differences between the JBoss Web Server xPaaS images and the
regular release of JBoss Web Server, and provides instructions specific to running and
configuring the JBoss Web Server xPaaS images. Documentation for other JBoss Web
Server functionality not specific to the JBoss Web Server xPaaS images can be found in
the JBoss Web Server documentation on the Red Hat Customer Portal.

The location of JWS_HOME/tomcat<version>/ inside a JBoss Web Server xPaaS image is:
/opt/webserver/.

5.4.2. Functionality Differences in the OpenShift JBoss Web
Server xPaaS Images

A major functionality difference compared to the regular release of JBoss Web Server is
that there is no Apache HTTP Server in the OpenShift JBoss Web Server xPaaS images.
All load balancing in OpenShift is handled by the OpenShift router, so there is no need
for a load-balancing Apache HTTP Server with mod_cluster or mod_jk connectors.

5.4.3. Installing the JBoss Web Server xPaaS Image Streams and
Application Templates

To use the Red Hat xPaaS middleware images in your OpenShift project, you must first
install the image streams and Source-to-Image (S2I) application templates.

Note

The JBoss Web Server xPaaS application templates are distributed as two sets:
one set for Tomcat 7, and another for Tomcat 8.

OpenShift Enterprise 3.0 Using Images

48

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Web_Server/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-image-streams-for-xpaas-middleware-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-instantapp-templates

5.4.4. Using the JBoss Web Server xPaaS Image Source-to-Image
(S2I) Process

To run and configure the OpenShift JBoss Web Server xPaaS images, use the OpenShift
S2I process with the application template parameters and environment variables.

The S2I process for the JBoss Web Server xPaaS images works as follows:

1. If there is a pom.xml file in the source repository, a Maven build is triggered
with the contents of $MAVEN_ARGS environment variable.

By default the package goal is used with the openshift profile, including the
system properties for skipping tests (-DskipTests) and enabling the Red Hat
GA repository (-Dcom.redhat.xpaas.repo.redhatga).

The results of a successful Maven build are copied to
/opt/webserver/webapps. This includes all WAR files from the source
repository directory specified by the $ARTIFACT_DIR environment variable. The
default value of $ARTIFACT_DIR is the target directory.

2. All WAR files from the deployment source repository directory are copied to
/opt/webserver/webapps.

3. All files in the configuration source repository directory are copied to
/opt/webserver/conf.

Note

If you want to use custom Tomcat configuration files, the file names
should be the same as for a normal Tomcat installation. For example,
context.xml and server.xml.

5.4.5. Troubleshooting

In addition to viewing the OpenShift logs, you can troubleshoot a running JBoss Web
Server container by viewing the logs that are outputted to the container’s console:

$ oc logs -f <pod_name> <container_name>

Additionally, access logs are written to /opt/webserver/logs/.

CHAPTER 5. XPAAS MIDDLEWARE IMAGES

49

CHAPTER 6. REVISION HISTORY: USING IMAGES

6.1. TUE MAY 03 2016

Affected Topic Description of Change

Database Images →
MySQL

Updated to use the current MySQL script names.

6.2. MON FEB 22 2016

Affected Topic Description of Change

Database Images Updated the commands for creating new databases for MySQL,
PostgreSQL, and MongoDB.

6.3. MON FEB 01 2016

Affected Topic Description of Change

Overview Added details on which images are supported and their location.

6.4. TUE JUN 23 2015

OpenShift Enterprise 3.0 release.

OpenShift Enterprise 3.0 Using Images

50

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. SOURCE-TO-IMAGE (S2I)
	2.1. OVERVIEW
	2.2. NODE.JS
	2.2.1. Overview
	2.2.2. Versions
	2.2.3. Images
	2.2.4. Configuration

	2.3. RUBY
	2.3.1. Overview
	2.3.2. Versions
	2.3.3. Images
	2.3.4. Configuration

	2.4. PERL
	2.4.1. Overview
	2.4.2. Versions
	2.4.3. Images
	2.4.4. Configuration

	2.5. PHP
	2.5.1. Overview
	2.5.2. Versions
	2.5.3. Images
	2.5.4. Configuration
	2.5.4.1. Apache Configuration

	2.5.5. Logs

	2.6. PYTHON
	2.6.1. Overview
	2.6.2. Versions
	2.6.3. Images
	2.6.4. Configuration

	CHAPTER 3. DATABASE IMAGES
	3.1. OVERVIEW
	3.2. MYSQL
	3.2.1. Overview
	3.2.2. Versions
	3.2.3. Images
	3.2.4. Configuration and Usage
	3.2.4.1. Initializing the Database
	3.2.4.2. Running MySQL Commands in Containers
	3.2.4.3. Environment Variables
	3.2.4.4. Volume Mount Points
	3.2.4.5. Changing Passwords

	3.2.5. Creating a Database Service from a Template
	3.2.6. Using MySQL Replication
	3.2.6.1. Creating the Deployment Configuration for the MySQL Master
	3.2.6.2. Creating a Headless Service
	3.2.6.3. Scaling the MySQL Slaves

	3.3. POSTGRESQL
	3.3.1. Overview
	3.3.2. Versions
	3.3.3. Images
	3.3.4. Configuration and Usage
	3.3.4.1. Initializing the Database
	3.3.4.2. Running PostgreSQL Commands in Containers
	3.3.4.3. Environment Variables
	3.3.4.4. Volume Mount Points
	3.3.4.5. Changing Passwords

	3.3.5. Creating a Database Service from a Template

	3.4. MONGODB
	3.4.1. Overview
	3.4.2. Versions
	3.4.3. Images
	3.4.4. Configuration and Usage
	3.4.4.1. Initializing the Database
	3.4.4.2. Running MongoDB Commands in Containers
	3.4.4.3. Environment Variables
	3.4.4.4. Volume Mount Points
	3.4.4.5. Changing Passwords

	3.4.5. Creating a Database Service from a Template
	3.4.6. Using MongoDB Replication
	3.4.6.1. Creating the Deployment Configuration
	3.4.6.2. Creating the Service Pod
	3.4.6.3. Creating a Headless Service
	3.4.6.4. Creating the Final Replication Set
	3.4.6.5. Scaling the MongoDB Replication Set

	CHAPTER 4. DOCKER IMAGES
	4.1. OVERVIEW

	CHAPTER 5. XPAAS MIDDLEWARE IMAGES
	5.1. OVERVIEW
	5.2. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP) XPAAS IMAGE
	5.2.1. Overview
	5.2.2. Comparing the JBoss EAP xPaaS Image to the Regular Release of JBoss EAP
	5.2.2.1. Functionality Differences for OpenShift JBoss EAP xPaaS Images
	5.2.2.2. Managing OpenShift JBoss EAP xPaaS Images
	5.2.2.3. Unsupported Configurations

	5.2.3. Installing the JBoss EAP xPaaS Image Streams and Application Templates
	5.2.4. Running and Configuring the JBoss EAP xPaaS Image
	5.2.4.1. Using the JBoss EAP xPaaS Image Source-to-Image (S2I) Process
	5.2.4.2. Using a Modified JBoss EAP xPaaS Image

	5.2.5. Troubleshooting

	5.3. RED HAT JBOSS A-MQ XPAAS IMAGE
	5.3.1. Overview
	5.3.2. Differences Between the JBoss A-MQ xPaaS Image and the Regular Release of JBoss A-MQ
	5.3.3. Installing the JBoss A-MQ xPaaS Image Streams and Application Templates
	5.3.4. Configuring the JBoss A-MQ Image
	5.3.4.1. Application Template Parameters
	5.3.4.2. Configuration Using S2I

	5.3.5. Configuring the JBoss A-MQ Persistent Image
	5.3.5.1. Application Template Parameters

	5.3.6. Security
	5.3.7. High-Availability and Scalability
	5.3.8. Logging

	5.4. RED HAT JBOSS WEB SERVER XPAAS IMAGES
	5.4.1. Overview
	5.4.2. Functionality Differences in the OpenShift JBoss Web Server xPaaS Images
	5.4.3. Installing the JBoss Web Server xPaaS Image Streams and Application Templates
	5.4.4. Using the JBoss Web Server xPaaS Image Source-to-Image (S2I) Process
	5.4.5. Troubleshooting

	CHAPTER 6. REVISION HISTORY: USING IMAGES
	6.1. TUE MAY 03 2016
	6.2. MON FEB 22 2016
	6.3. MON FEB 01 2016
	6.4. TUE JUN 23 2015

