OpenShift Dedicated 4

Creating a cluster

Learn to create your OpenShift Dedicated cluster
OpenShift Dedicated 4 Creating a cluster

Learn to create your OpenShift Dedicated cluster
Abstract

After you have an OpenShift Dedicated subscription, you can access your services and create your cluster.
Table of Contents

CHAPTER 1. UNDERSTANDING YOUR CLOUD DEPLOYMENT OPTIONS ... 3
1.1. OVERVIEW OF THE OPENSSHIFT DEDICATED CLOUD DEPLOYMENT OPTIONS ... 3
1.1.1. Deploying clusters using the Customer Cloud Subscription (CCS) model ... 3
1.1.2. Deploying clusters in Red Hat cloud accounts ... 3
1.2. NEXT STEPS .. 3

CHAPTER 2. CREATING A CLUSTER ON AWS .. 4
2.1. PREREQUISITES ... 4
2.2. CREATING A CLUSTER ON AWS WITH CCS .. 4
2.3. CREATING A CLUSTER ON AWS WITH A RED HAT CLOUD ACCOUNT ... 8
2.4. ADDITIONAL RESOURCES ... 10

CHAPTER 3. CREATING A CLUSTER ON GCP .. 11
3.1. PREREQUISITES ... 11
3.2. CREATING A CLUSTER ON GCP WITH CCS ... 11
3.3. CREATING A CLUSTER ON GCP WITH A RED HAT CLOUD ACCOUNT ... 15
3.4. ADDITIONAL RESOURCES ... 17
CHAPTER 1. UNDERSTANDING YOUR CLOUD DEPLOYMENT OPTIONS

You can install OpenShift Dedicated on Amazon Web Services (AWS) or Google Cloud Platform (GCP) using a cloud account that you own or using a cloud account that is owned by Red Hat. This document provides details about the cloud deployment options for OpenShift Dedicated clusters.

1. OVERVIEW OF THE OPENSHIFT DEDICATED CLOUD DEPLOYMENT OPTIONS

OpenShift Dedicated offers OpenShift Container Platform clusters as a managed service on Amazon Web Services (AWS) or Google Cloud Platform (GCP).

Through the Customer Cloud Subscription (CCS) model, you can deploy clusters in an existing AWS or GCP cloud account that you own.

Alternatively, you can install OpenShift Dedicated in a cloud account that is owned by Red Hat.

1.1. Deploying clusters using the Customer Cloud Subscription (CCS) model

The Customer Cloud Subscription (CCS) model enables you to deploy Red Hat managed OpenShift Dedicated clusters in an existing AWS or GCP account that you own. Red Hat requires several prerequisites be met in order to provide this service, and this service is supported by Red Hat Site Reliability Engineers (SRE).

In the CCS model, the customer pays the cloud infrastructure provider directly for cloud costs, and the cloud infrastructure account is part of an organization owned by the customer, with specific access granted to Red Hat. In this model, the customer pays Red Hat for the CCS subscription and pays the cloud provider for the cloud costs.

By using the CCS model, you can use the services that are provided by your cloud provider, in addition to the services provided by Red Hat.

1.2. Deploying clusters in Red Hat cloud accounts

As an alternative to the CCS model, you can deploy OpenShift Dedicated clusters in AWS or GCP cloud accounts that are owned by Red Hat. With this model, Red Hat is responsible for the cloud account and the cloud infrastructure costs are paid directly by Red Hat. The customer only pays the Red Hat subscription costs.

1.2. NEXT STEPS

- Creating a cluster on AWS
- Creating a cluster on GCP
CHAPTER 2. CREATING A CLUSTER ON AWS

You can install OpenShift Dedicated on Amazon Web Services (AWS) by using your own AWS account through the Customer Cloud Subscription (CCS) model or by using an AWS infrastructure account that is owned by Red Hat.

2.1. PREREQUISITES

- You reviewed the introduction to OpenShift Dedicated and the documentation on architecture concepts.
- You reviewed the OpenShift Dedicated cloud deployment options.

2.2. CREATING A CLUSTER ON AWS WITH CCS

By using the Customer Cloud Subscription (CCS) billing model, you can create an OpenShift Dedicated cluster in an existing Amazon Web Services (AWS) account that you own.

You must meet several prerequisites if you use the CCS model to deploy and manage OpenShift Dedicated into your AWS account.

Prerequisites

- You have configured your AWS account for use with OpenShift Dedicated.
- You have not deployed any services in your AWS account.
- You have configured the AWS account quotas and limits that are required to support the desired cluster size.
- You have an osdCcsAdmin AWS Identity and Access Management (IAM) user with the AdministratorAccess policy attached.
- You have set up a service control policy (SCP) in your AWS organization. For more information, see Minimum required service control policy (SCP).
- Consider having Business Support or higher from AWS.

Procedure

1. Log in to OpenShift Cluster Manager and click Create cluster.
2. In the Cloud tab, click Create cluster in the Red Hat OpenShift Dedicated row.
3. Under Billing model, configure the subscription type and infrastructure type:
 a. Select a subscription type. For information about OpenShift Dedicated subscription options, see Managing OpenShift Dedicated cluster subscriptions in the OpenShift Cluster Manager documentation.

NOTE

The subscription types that are available to you depend on your OpenShift Dedicated subscriptions and resource quotas. For more information, contact your sales representative or Red Hat support.
b. Select the **Customer Cloud Subscription** infrastructure type to deploy OpenShift Dedicated in an existing cloud provider account that you own.

c. Click **Next**.

4. Select **Run on Amazon Web Services**

5. Click **Prerequisites** to review the prerequisites for installing OpenShift Dedicated on AWS with CCS.

6. Provide your AWS account details:
 a. Enter your **AWS account ID**.
 b. Enter your **AWS access key ID** and **AWS secret access key** for your AWS IAM user account.

 NOTE

 Revoking these credentials in AWS results in a loss of access to any cluster created with these credentials.

 c. Optional: You can select **Bypass AWS service control policy (SCP) checks** to disable the SCP checks.

 NOTE

 Some AWS SCPs can cause the installation to fail, even if you have the required permissions. Disabling the SCP checks allows an installation to proceed. The SCP is still enforced even if the checks are bypassed.

7. Validate your cloud provider account and then click **Next**.

8. On the **Cluster details** page, provide a name for your cluster and specify the cluster details:
 a. Add a **Cluster name**.
 b. Select a cluster version from the **Version** drop-down menu.
 c. Select a cloud provider region from the **Region** drop-down menu.
 d. Select a **Single zone** or **Multi-zone** configuration.
 e. Leave **Enable user workload monitoring** selected to monitor your own projects in isolation from Red Hat Site Reliability Engineer (SRE) platform metrics. This option is enabled by default.
 f. Optional: Select **Enable additional etcd encryption** if you require etcd key value encryption. With this option, the etcd key values are encrypted, but not the keys. This option is in addition to the control plane storage encryption that encrypts the etcd volumes in OpenShift Dedicated clusters by default.
NOTE

By enabling etcd encryption for the key values in etcd, you will incur a performance overhead of approximately 20%. The overhead is a result of introducing this second layer of encryption, in addition to the default control plane storage encryption that encrypts the etcd volumes. Consider enabling etcd encryption only if you specifically require it for your use case.

g. Optional: Select Encrypt persistent volumes with customer keys if you want to provide your own AWS Key Management Service (KMS) key Amazon Resource Name (ARN). These keys are used for encrypting all control plane, infrastructure, and worker node root volumes.

h. Click Next.

9. On the Default machine pool page, select a Compute node instance type and a Compute node count. The number and types of nodes that are available depend on your OpenShift Dedicated subscription. If you are using multiple availability zones, the compute node count is per zone.

NOTE

After your cluster is created, you can change the number of compute nodes in your cluster, but you cannot change the compute node instance type in a machine pool. The number and types of nodes available to you depend on your OpenShift Dedicated subscription.

10. Optional: Expand Edit node labels to add labels to your nodes. Click Add label to add more node labels and select Next.

11. In the Cluster privacy section, select Public or Private to use either public or private API endpoints and application routes for your cluster.

IMPORTANT

If you are using private API endpoints, you cannot access your cluster until you update the network settings in your cloud provider account.

12. Optional: To install the cluster in an existing AWS Virtual Private Cloud (VPC):

 a. Select Install into an existing VPC

 b. If you opted to use private API endpoints and are installing into an existing VPC, you can select Use a PrivateLink to enable connections to the cluster by Red Hat Site Reliability Engineering (SRE) using only AWS PrivateLink endpoints. This option cannot be changed after a cluster is created.

13. Click Next.

14. If you opted to install the cluster in an existing AWS VPC, provide your Virtual Private Cloud (VPC) subnet settings.
NOTE
You must ensure that your VPC is configured with a public and a private subnet for each availability zone that you want the cluster installed into. If you opted to use PrivateLink, only private subnets are required.

15. In the CIDR ranges dialog, configure custom classless inter-domain routing (CIDR) ranges or use the defaults that are provided.

NOTE
If you are installing into a VPC, the Machine CIDR range must match the VPC subnets.

IMPORTANT
CIDR configurations cannot be changed later. Confirm your selections with your network administrator before proceeding.

16. On the Cluster update strategy page, configure your update preferences:

a. Choose a cluster update method:
 - Select Individual updates if you want to schedule each update individually. This is the default option.
 - Select Recurring updates to update your cluster on your preferred day and start time, when updates are available.

 NOTE
 You can review the end-of-life dates in the update life cycle documentation for OpenShift Dedicated. For more information, see OpenShift Dedicated update life cycle .

b. If you opted for recurring updates, select a preferred day of the week and upgrade start time in UTC from the drop-down menus.

c. Optional: You can set a grace period for Node draining during cluster upgrades. A 1 hour grace period is set by default.

d. Click Next.

NOTE
In the event of critical security concerns that significantly impact the security or stability of a cluster, Red Hat Site Reliability Engineering (SRE) might schedule automatic updates to the latest z-stream version that is not impacted. The updates are applied within 48 hours after customer notifications are provided. For a description of the critical impact security rating, see Understanding Red Hat security ratings .

17. Review the summary of your selections and click Create cluster to start the cluster installation. The installation takes approximately 30–40 minutes to complete.
2.3. CREATING A CLUSTER ON AWS WITH A RED HAT CLOUD ACCOUNT

Through OpenShift Cluster Manager, you can create an OpenShift Dedicated cluster on Amazon Web Services (AWS) using a standard cloud provider account owned by Red Hat.

Procedure

1. Log in to OpenShift Cluster Manager and click Create cluster.

2. In the Cloud tab, click Create cluster in the Red Hat OpenShift Dedicated row.

3. Under Billing model, configure the subscription type and infrastructure type:
 a. Select the Annual subscription type. Only the Annual subscription type is available when you deploy a cluster using a Red Hat cloud account.
 For information about OpenShift Dedicated subscription options, see Managing OpenShift Dedicated cluster subscriptions in the OpenShift Cluster Manager documentation.

 NOTE

 You must have the required resource quota for the Annual subscription type to be available. For more information, contact your sales representative or Red Hat support.

 b. Select the Red Hat cloud account infrastructure type to deploy OpenShift Dedicated in a cloud provider account that is owned by Red Hat.

 c. Click Next.

4. Select Run on Amazon Web Services and click Next.

5. On the Cluster details page, provide a name for your cluster and specify the cluster details:
 a. Add a Cluster name.

 b. Select a cluster version from the Version drop-down menu.

 c. Select a cloud provider region from the Region drop-down menu.

 d. Select a Single zone or Multi-zone configuration.

 e. Select a Persistent storage capacity for the cluster. For more information, see the Storage section in the OpenShift Dedicated service definition.

 f. Specify the number of Load balancers that you require for your cluster. For more information, see the Load balancers section in the OpenShift Dedicated service definition.
g. Leave **Enable user workload monitoring** selected to monitor your own projects in isolation from Red Hat Site Reliability Engineer (SRE) platform metrics. This option is enabled by default.

h. Optional: Select **Enable additional etcd encryption** if you require etcd key value encryption. With this option, the etcd key values are encrypted, but not the keys. This option is in addition to the control plane storage encryption that encrypts the etcd volumes in OpenShift Dedicated clusters by default.

NOTE

By enabling etcd encryption for the key values in etcd, you will incur a performance overhead of approximately 20%. The overhead is a result of introducing this second layer of encryption, in addition to the default control plane storage encryption that encrypts the etcd volumes. Consider enabling etcd encryption only if you specifically require it for your use case.

i. Click **Next**.

6. On the **Default machine pool** page, select a **Compute node instance type** and a **Compute node count**. The number and types of nodes that are available depend on your OpenShift Dedicated subscription. If you are using multiple availability zones, the compute node count is per zone.

NOTE

After your cluster is created, you can change the number of compute nodes, but you cannot change the compute node instance type in a machine pool. For clusters that use the CCS model, you can add machine pools after installation that use a different instance type. The number and types of nodes available to you depend on your OpenShift Dedicated subscription.

7. Optional: Expand **Edit node labels** to add labels to your nodes. Click **Add label** to add more node labels and select **Next**.

8. In the **Cluster privacy** dialog, select **Public** or **Private** to use either public or private API endpoints and application routes for your cluster.

9. Click **Next**.

10. In the **CIDR ranges** dialog, configure custom classless inter-domain routing (CIDR) ranges or use the defaults that are provided.

IMPORTANT

CIDR configurations cannot be changed later. Confirm your selections with your network administrator before proceeding.

If the cluster privacy is set to **Private**, you cannot access your cluster until you configure private connections in your cloud provider.

11. On the **Cluster update strategy** page, configure your update preferences:

 a. Choose a cluster update method:
- Select **Individual updates** if you want to schedule each update individually. This is the default option.

- Select **Recurring updates** to update your cluster on your preferred day and start time, when updates are available.

NOTE

You can review the end-of-life dates in the update life cycle documentation for OpenShift Dedicated. For more information, see *OpenShift Dedicated update life cycle*.

b. If you opted for recurring updates, select a preferred day of the week and upgrade start time in UTC from the drop-down menus.

c. Optional: You can set a grace period for **Node draining** during cluster upgrades. A 1 hour grace period is set by default.

d. Click **Next**.

NOTE

In the event of critical security concerns that significantly impact the security or stability of a cluster, Red Hat Site Reliability Engineering (SRE) might schedule automatic updates to the latest z-stream version that is not impacted. The updates are applied within 48 hours after customer notifications are provided. For a description of the critical impact security rating, see *Understanding Red Hat security ratings*.

12. Review the summary of your selections and click **Create cluster** to start the cluster installation. The installation takes approximately 30–40 minutes to complete.

Verification

- You can monitor the progress of the installation in the **Overview** page for your cluster. You can view the installation logs on the same page. Your cluster is ready when the **Status** in the **Details** section of the page is listed as **Ready**.

2.4. ADDITIONAL RESOURCES

- For details about the AWS service control policies required for CCS deployments, see *Minimum required service control policy (SCP)*.

- For information about persistent storage for OpenShift Dedicated, see the **Storage** section in the OpenShift Dedicated service definition.

- For information about load balancers for OpenShift Dedicated, see the **Load balancers** section in the OpenShift Dedicated service definition.

- For more information about etcd encryption, see the **etcd encryption service definition**.

- For information about the end-of-life dates for OpenShift Dedicated versions, see the *OpenShift Dedicated update life cycle*.
CHAPTER 3. CREATING A CLUSTER ON GCP

You can install OpenShift Dedicated on Google Cloud Platform (GCP) by using your own GCP account through the Customer Cloud Subscription (CCS) model or by using a GCP infrastructure account that is owned by Red Hat.

3.1. PREREQUISITES

- You reviewed the introduction to OpenShift Dedicated and the documentation on architecture concepts.
- You reviewed the OpenShift Dedicated cloud deployment options.

3.2. CREATING A CLUSTER ON GCP WITH CCS

By using the Customer Cloud Subscription (CCS) billing model, you can create an OpenShift Dedicated cluster in an existing Google Cloud Platform (GCP) account that you own.

You must meet several prerequisites if you use the CCS model to deploy and manage OpenShift Dedicated into your GCP account.

Prerequisites

- You have configured your GCP account for use with OpenShift Dedicated.
- You have configured the GCP account quotas and limits that are required to support the desired cluster size.
- You have created a GCP project.

NOTE

The project name must be 10 characters or less.

- You have enabled the Google Cloud Resource Manager API in your GCP project. For more information about enabling APIs for your project, see the Google Cloud documentation.
- You have an IAM service account in GCP called osd-ccs-admin with the following roles attached:
 - DNS Administrator
 - Organization Policy Viewer
 - Owner
 - Project IAM Admin
 - Service Management Administrator
 - Service Usage Admin
 - Storage Admin
You have created a key for your osd-ccs-admin GCP service account and exported it to a file named osServiceAccount.json.

NOTE
For more information about creating a key for your GCP service account and exporting it to a JSON file, see Creating service account keys in the Google Cloud documentation.

Consider having Production Support or higher from GCP.

To prevent potential conflicts, consider having no other resources provisioned in the project prior to installing OpenShift Dedicated.

Procedure

1. Log in to OpenShift Cluster Manager and click Create cluster.

2. In the Cloud tab, click Create cluster in the Red Hat OpenShift Dedicated row.

3. Under Billing model, configure the subscription type and infrastructure type:
 a. Select a subscription type. For information about OpenShift Dedicated subscription options, see Managing OpenShift Dedicated cluster subscriptions in the OpenShift Cluster Manager documentation.

 NOTE
 The subscription types that are available to you depend on your OpenShift Dedicated subscriptions and resource quotas. For more information, contact your sales representative or Red Hat support.

 b. Select the Customer Cloud Subscription infrastructure type to deploy OpenShift Dedicated in an existing cloud provider account that you own.

 c. Click Next.

4. Select Run on Google Cloud Platform

5. Click Prerequisites to review the prerequisites for installing OpenShift Dedicated on GCP with CCS.

6. Provide your GCP service account private key in JSON format. You can either click Browse to locate and attach a JSON file or add the details in the Service account JSON field.

7. Validate your cloud provider account and then click Next.

8. On the Cluster details page, provide a name for your cluster and specify the cluster details:
 a. Add a Cluster name.

 b. Select a cluster version from the Version drop-down menu.

 c. Select a cloud provider region from the Region drop-down menu.

 d. Select a Single zone or Multi-zone configuration.
e. Leave **Enable user workload monitoring** selected to monitor your own projects in isolation from Red Hat Site Reliability Engineer (SRE) platform metrics. This option is enabled by default.

f. Optional: Select **Enable additional etcd encryption** if you require etcd key value encryption. With this option, the etcd key values are encrypted, but not the keys. This option is in addition to the control plane storage encryption that encrypts the etcd volumes in OpenShift Dedicated clusters by default.

NOTE

By enabling etcd encryption for the key values in etcd, you will incur a performance overhead of approximately 20%. The overhead is a result of introducing this second layer of encryption, in addition to the default control plane storage encryption that encrypts the etcd volumes. Consider enabling etcd encryption only if you specifically require it for your use case.

g. Optional: Select **Encrypt persistent volumes with customer keys** if you want to provide your own encryption keys through the Google Cloud Key Management Service. These keys are used for encrypting all control plane, infrastructure, and worker node root volumes.

h. Click **Next**.

9. On the **Default machine pool** page, select a **Compute node instance type** and a **Compute node count**. The number and types of nodes that are available depend on your OpenShift Dedicated subscription. If you are using multiple availability zones, the compute node count is per zone.

NOTE

After your cluster is created, you can change the number of compute nodes in your cluster, but you cannot change the compute node instance type in a machine pool. The number and types of nodes available to you depend on your OpenShift Dedicated subscription.

10. Optional: Expand **Edit node labels** to add labels to your nodes. Click **Add label** to add more node labels and select **Next**.

11. In the **Cluster privacy** section, select **Public** or **Private** to use either public or private API endpoints and application routes for your cluster.

IMPORTANT

If you are using private API endpoints, you cannot access your cluster until you update the network settings in your cloud provider account.

12. Optional: Select **Install into an existing VPC** to install the cluster in an existing GCP Virtual Private Cloud (VPC).

13. Click **Next**.

14. If you opted to install the cluster in an existing GCP VPC, provide your **Virtual Private Cloud (VPC) subnet settings**.
15. In the CIDR ranges dialog, configure custom classless inter-domain routing (CIDR) ranges or use the defaults that are provided.

NOTE

If you are installing into a VPC, the Machine CIDR range must match the VPC subnets.

IMPORTANT

CIDR configurations cannot be changed later. Confirm your selections with your network administrator before proceeding.

16. On the Cluster update strategy page, configure your update preferences:

 a. Choose a cluster update method:

 - Select Individual updates if you want to schedule each update individually. This is the default option.
 - Select Recurring updates to update your cluster on your preferred day and start time, when updates are available.

 NOTE

 You can review the end-of-life dates in the update life cycle documentation for OpenShift Dedicated. For more information, see OpenShift Dedicated update life cycle.

 b. If you opted for recurring updates, select a preferred day of the week and upgrade start time in UTC from the drop-down menus.

 c. Optional: You can set a grace period for Node draining during cluster upgrades. A 1 hour grace period is set by default.

 d. Click Next.

 NOTE

 In the event of critical security concerns that significantly impact the security or stability of a cluster, Red Hat Site Reliability Engineering (SRE) might schedule automatic updates to the latest z-stream version that is not impacted. The updates are applied within 48 hours after customer notifications are provided. For a description of the critical impact security rating, see Understanding Red Hat security ratings.

17. Review the summary of your selections and click Create cluster to start the cluster installation. The installation takes approximately 30–40 minutes to complete.

Verification

- You can monitor the progress of the installation in the Overview page for your cluster. You can view the installation logs on the same page. Your cluster is ready when the Status in the Details section of the page is listed as Ready.
3.3. CREATING A CLUSTER ON GCP WITH A RED HAT CLOUD ACCOUNT

Through OpenShift Cluster Manager, you can create an OpenShift Dedicated cluster on Google Cloud Platform (GCP) using a standard cloud provider account owned by Red Hat.

Procedure

1. Log in to OpenShift Cluster Manager and click Create cluster.

2. In the Cloud tab, click Create cluster in the Red Hat OpenShift Dedicated row.

3. Under Billing model, configure the subscription type and infrastructure type:
 a. Select the Annual subscription type. Only the Annual subscription type is available when you deploy a cluster using a Red Hat cloud account. For information about OpenShift Dedicated subscription options, see Managing OpenShift Dedicated cluster subscriptions in the OpenShift Cluster Manager documentation.
 b. Select the Red Hat cloud account infrastructure type to deploy OpenShift Dedicated in a cloud provider account that is owned by Red Hat.
 c. Click Next.

4. Select Run on Google Cloud Platform and click Next.

5. On the Cluster details page, provide a name for your cluster and specify the cluster details:
 a. Add a Cluster name.
 b. Select a cluster version from the Version drop-down menu.
 c. Select a cloud provider region from the Region drop-down menu.
 d. Select a Single zone or Multi-zone configuration.
 e. Select a Persistent storage capacity for the cluster. For more information, see the Storage section in the OpenShift Dedicated service definition.
 f. Specify the number of Load balancers that you require for your cluster. For more information, see the Load balancers section in the OpenShift Dedicated service definition.
 g. Leave Enable user workload monitoring selected to monitor your own projects in isolation from Red Hat Site Reliability Engineer (SRE) platform metrics. This option is enabled by default.
 h. Optional: Select Enable additional etcd encryption if you require etcd key value encryption. With this option, the etcd key values are encrypted, but not the keys. This option is in addition to the control plane storage encryption that encrypts the etcd volumes in OpenShift Dedicated clusters by default.
By enabling etcd encryption for the key values in etcd, you will incur a performance overhead of approximately 20%. The overhead is a result of introducing this second layer of encryption, in addition to the default control plane storage encryption that encrypts the etcd volumes. Consider enabling etcd encryption only if you specifically require it for your use case.

i. Click Next.

6. On the Default machine pool page, select a Compute node instance type and a Compute node count. The number and types of nodes that are available depend on your OpenShift Dedicated subscription. If you are using multiple availability zones, the compute node count is per zone.

NOTE

After your cluster is created, you can change the number of compute nodes, but you cannot change the compute node instance type in a machine pool. For clusters that use the CCS model, you can add machine pools after installation that use a different instance type. The number and types of nodes available to you depend on your OpenShift Dedicated subscription.

7. Optional: Expand Edit node labels to add labels to your nodes. Click Add label to add more node labels and select Next.

8. In the Cluster privacy dialog, select Public or Private to use either public or private API endpoints and application routes for your cluster.

9. Click Next.

10. In the CIDR ranges dialog, configure custom classless inter-domain routing (CIDR) ranges or use the defaults that are provided.

IMPORTANT

CIDR configurations cannot be changed later. Confirm your selections with your network administrator before proceeding.

If the cluster privacy is set to Private, you cannot access your cluster until you configure private connections in your cloud provider.

11. On the Cluster update strategy page, configure your update preferences:

a. Choose a cluster update method:

 • Select Individual updates if you want to schedule each update individually. This is the default option.

 • Select Recurring updates to update your cluster on your preferred day and start time, when updates are available.
NOTE

You can review the end-of-life dates in the update life cycle documentation for OpenShift Dedicated. For more information, see OpenShift Dedicated update life cycle.

b. If you opted for recurring updates, select a preferred day of the week and upgrade start time in UTC from the drop-down menus.

c. Optional: You can set a grace period for Node draining during cluster upgrades. A 1 hour grace period is set by default.

d. Click Next.

NOTE

In the event of critical security concerns that significantly impact the security or stability of a cluster, Red Hat Site Reliability Engineering (SRE) might schedule automatic updates to the latest z-stream version that is not impacted. The updates are applied within 48 hours after customer notifications are provided. For a description of the critical impact security rating, see Understanding Red Hat security ratings.

12. Review the summary of your selections and click Create cluster to start the cluster installation. The installation takes approximately 30–40 minutes to complete.

Verification

- You can monitor the progress of the installation in the Overview page for your cluster. You can view the installation logs on the same page. Your cluster is ready when the Status in the Details section of the page is listed as Ready.

3.4. ADDITIONAL RESOURCES

- For information about persistent storage for OpenShift Dedicated, see the Storage section in the OpenShift Dedicated service definition.

- For information about load balancers for OpenShift Dedicated, see the Load balancers section in the OpenShift Dedicated service definition.

- For more information about etcd encryption, see the etcd encryption service definition.

- For information about the end-of-life dates for OpenShift Dedicated versions, see the OpenShift Dedicated update life cycle.