OpenShift Container Platform 4.8

CLI tools

Learning how to use the command-line tools for OpenShift Container Platform
Learning how to use the command-line tools for OpenShift Container Platform
Abstract

This document provides information about installing, configuring, and using the command-line tools for OpenShift Container Platform. It also contains a reference of CLI commands and examples of how to use them.
Table of Contents

CHAPTER 1. OPENSSHIFT CLI (OC) .. 12
 1.1. GETTING STARTED WITH THE OPENSHEET CLI 12
 1.1.1. About the OpenShift CLI .. 12
 1.1.2. Installing the OpenShift CLI ... 12
 1.1.2.1. Installing the OpenShift CLI by downloading the binary .. 12
 1.1.2.2. Installing the OpenShift CLI by using an RPM 13
 1.1.3. Logging in to the OpenShift CLI 13
 1.1.4. Using the OpenShift CLI .. 15
 1.1.4.1. Creating a project .. 15
 1.1.4.2. Creating a new app ... 16
 1.1.4.3. Viewing pods ... 16
 1.1.4.4. Viewing pod logs .. 16
 1.1.4.5. Viewing the current project 16
 1.1.4.6. Viewing the status for the current project 17
 1.1.4.7. Listing supported API resources 17
 1.1.5. Getting help .. 17
 1.1.6. Logging out of the OpenShift CLI 17
 1.2. CONFIGURING THE OPENSHEET CLI ... 19
 1.2.1. Enabling tab completion ... 19
 1.3. EXTENDING THE OPENSHEET CLI WITH PLUG-INS 19
 1.3.1. Writing CLI plug-ins ... 20
 1.3.2. Installing and using CLI plug-ins 21
 1.4. OPENSHEET CLI DEVELOPER COMMAND REFERENCE 22
 1.4.1. OpenShift CLI (oc) developer commands 22
 1.4.1.1. oc annotate ... 22
 1.4.1.2. oc api-resources .. 22
 1.4.1.3. oc api-versions ... 23
 1.4.1.4. oc apply .. 23
 1.4.1.5. oc apply edit-last-applied 23
 1.4.1.6. oc apply set-last-applied 24
 1.4.1.7. oc apply view-last-applied 24
 1.4.1.8. oc attach .. 24
 1.4.1.9. oc auth can-i ... 24
 1.4.1.10. oc auth reconcile .. 25
 1.4.1.11. oc autoscale .. 25
 1.4.1.12. oc cancel-build .. 25
 1.4.1.13. oc cluster-info ... 26
 1.4.1.14. oc cluster-info dump .. 26
 1.4.1.15. oc completion ... 26
 1.4.1.16. oc config current-context 27
 1.4.1.17. oc config delete-cluster 27
 1.4.1.18. oc config delete-context 27
 1.4.1.19. oc config delete-user .. 27
 1.4.1.20. oc config get-clusters 28
 1.4.1.21. oc config get-contexts 28
 1.4.1.22. oc config get-users ... 28
 1.4.1.23. oc config rename-context 28
 1.4.1.24. oc config set .. 28
1.4.1.25. oc config set-cluster
1.4.1.26. oc config set-context
1.4.1.27. oc config set-credentials
1.4.1.28. oc config unset
1.4.1.29. oc config use-context
1.4.1.30. oc config view
1.4.1.31. oc cp
1.4.1.32. oc create
1.4.1.33. oc create build
1.4.1.34. oc create clusterresourcequota
1.4.1.35. oc create clusterrole
1.4.1.36. oc create clusterrolebinding
1.4.1.37. oc create configmap
1.4.1.38. oc create cronjob
1.4.1.39. oc create deployment
1.4.1.40. oc create deploymentconfig
1.4.1.41. oc create identity
1.4.1.42. oc create imagestream
1.4.1.43. oc create imagestreamtag
1.4.1.44. oc create ingress
1.4.1.45. oc create job
1.4.1.46. oc create namespace
1.4.1.47. oc create poddisruptionbudget
1.4.1.48. oc create priorityclass
1.4.1.49. oc create quota
1.4.1.50. oc create role
1.4.1.51. oc create rolebinding
1.4.1.52. oc create route edge
1.4.1.53. oc create route passthrough
1.4.1.54. oc create route reencrypt
1.4.1.55. oc create secret docker-registry
1.4.1.56. oc create secret generic
1.4.1.57. oc create secret tls
1.4.1.58. oc create service clusterip
1.4.1.59. oc create service externalname
1.4.1.60. oc create service loadbalancer
1.4.1.61. oc create service nodeport
1.4.1.62. oc create serviceaccount
1.4.1.63. oc create user
1.4.1.64. oc create useridentitymapping
1.4.1.65. oc debug
1.4.1.66. oc delete
1.4.1.67. oc describe
1.4.1.68. oc diff
1.4.1.69. oc edit
1.4.1.70. oc ex dockergc
1.4.1.71. oc exec
1.4.1.72. oc explain
1.4.1.73. oc expose
1.4.1.74. oc extract
1.4.1.75. oc get
1.4.1.76. oc idle
1.4.1.77. oc image append
1.4.1.131. oc set route-backends
1.4.1.132. oc set selector
1.4.1.133. oc set serviceaccount
1.4.1.134. oc set subject
1.4.1.135. oc set triggers
1.4.1.136. oc set volumes
1.4.1.137. oc start-build
1.4.1.138. oc status
1.4.1.139. oc tag
1.4.1.140. oc version
1.4.1.141. oc wait
1.4.1.142. oc whoami

1.4.2. Additional resources

1.5. OPENSHIFT CLI ADMINISTRATOR COMMAND REFERENCE

1.5.1. OpenShift CLI (oc) administrator commands
1.5.1.11. oc adm build-chain
1.5.1.12. oc adm catalog mirror
1.5.1.13. oc adm completion
1.5.1.14. oc adm config current-context
1.5.1.15. oc adm config delete-cluster
1.5.1.16. oc adm config delete-context
1.5.1.17. oc adm config delete-user
1.5.1.18. oc adm config get-clusters
1.5.1.19. oc adm config get-contexts
1.5.1.20. oc adm config get-users
1.5.1.21. oc adm config rename-context
1.5.1.22. oc adm config set
1.5.1.23. oc adm config set-cluster
1.5.1.24. oc adm config set-credentials
1.5.1.25. oc adm config unset
1.5.1.26. oc adm config use-context
1.5.1.27. oc adm cordon
1.5.1.28. oc adm create-bootstrap-project-template
1.5.1.29. oc adm create-error-template
1.5.1.30. oc adm create-login-template
1.5.1.31. oc adm create-provider-selection-template
1.5.1.32. oc adm drain
1.5.1.33. oc adm groups add-users
1.5.1.34. oc adm groups new
1.5.1.35. oc adm groups prune
1.5.1.36. oc adm groups remove-users
1.5.1.37. oc adm groups sync
1.5.1.38. oc adm inspect
1.5.1.39. oc adm migrate template-instances
1.5.1.40. oc adm must-gather
1.5.1.41. oc adm new-project
1.5.1.42. oc adm node-logs
1.5.1.43. oc adm pod-network isolate-projects
1.5.1.44. oc adm pod-network join-projects
1.5.1.45. oc adm pod-network make-projects-global
1.5.1.46. oc adm policy add-role-to-user
1.5.1.39. oc adm policy add-scc-to-group
1.5.1.40. oc adm policy add-scc-to-user
1.5.1.41. oc adm policy scc-review
1.5.1.42. oc adm policy scc-subject-review
1.5.1.43. oc adm prune builds
1.5.1.44. oc adm prune deployments
1.5.1.45. oc adm prune groups
1.5.1.46. oc adm prune images
1.5.1.47. oc adm release extract
1.5.1.48. oc adm release info
1.5.1.49. oc adm release mirror
1.5.1.50. oc adm release new
1.5.1.51. oc adm taint
1.5.1.52. oc adm top images
1.5.1.53. oc adm top imagestreams
1.5.1.54. oc adm top node
1.5.1.55. oc adm top pod
1.5.1.56. oc adm uncordon
1.5.1.57. oc adm verify-image-signature
1.5.2. Additional resources
1.6. USAGE OF OC AND KUBECTL COMMANDS
1.6.1. The oc binary
1.6.2. The kubectl binary

CHAPTER 2. DEVELOPER CLI (ODO) .. 87
2.1. [ODO-TITLE] RELEASE NOTES 87
2.1.1. Notable changes and improvements in odo 87
2.1.2. Getting support 87
2.1.3. Known issues 87
2.2. UNDERSTANDING ODO 88
2.2.1. Key features 88
2.2.2. Core concepts 89
2.2.2.1. Officially supported languages and corresponding container images 89
2.2.2.1.1. Listing available container images 89
2.2.2.2. Telemetry in odo 90
2.3. INSTALLING ODO 90
2.3.1. Installing odo on Linux 91
2.3.1.1. Binary installation 91
2.3.1.2. Tarball installation 91
2.3.1.3. Installing with yum on Red Hat Enterprise Linux (RHEL) 91
2.3.2. Installing odo on Linux on IBM Power 92
2.3.2.1. Binary installation 92
2.3.2.2. Tarball installation 92
2.3.3. Installing odo on Linux on IBM Z and LinuxONE 92
2.3.3.1. Binary installation 92
2.3.3.2. Tarball installation 93
2.3.4. Installing odo on Windows 93
2.3.4.1. Binary installation 93
2.3.4.1.1. Setting the PATH variable for Windows 7/8 93
2.3.4.1.2. Setting the PATH variable for Windows 10 93
2.3.5. Installing odo on macOS 94
2.3.5.1. Binary installation 94
2.3.5.2. Tarball installation 94
2.3.6. Installing odo on VS Code

2.4. CREATING AND DEPLOYING APPLICATIONS WITH ODO

2.4.1. Working with projects

2.4.1.1. Creating a project

2.4.2. Creating a single-component application with odo

2.4.2.1. Creating a project

2.4.2.2. Creating a Node.js application with odo

2.4.2.3. Modifying your application code

2.4.2.4. Adding storage to the application components

2.4.2.5. Adding a custom builder to specify a build image

2.4.2.6. Connecting your application to multiple services using OpenShift Service Catalog

2.4.2.7. Deleting an application

2.4.3. Creating a multicomponent application with odo

2.4.3.1. Creating a project

2.4.3.2. Deploying the back-end component

2.4.3.3. Deploying the front-end component

2.4.3.4. Linking both components

2.4.3.5. Exposing components to the public

2.4.3.6. Modifying the running application

2.4.3.7. Deleting an application

2.4.4. Creating an application with a database

2.4.4.1. Creating a project

2.4.4.2. Deploying the front-end component

2.4.4.3. Deploying a database in interactive mode

2.4.4.4. Deploying a database manually

2.4.4.5. Connecting the database to the front-end application

2.4.5. Creating a Java application with a database

2.4.5.1. Creating a project

2.4.5.2. Creating a Java MicroServices JPA application

2.4.5.3. Creating a database with odo

2.4.5.4. Connecting a Java application to a database

2.4.6. Using devfiles in odo

2.4.6.1. About the devfile in odo

2.4.6.2. Creating a Java application by using a devfile

2.4.6.2.1. Creating a project

2.4.6.2.2. Listing available devfile components

2.4.6.2.3. Deploying a Java application using a devfile

2.4.6.3. Converting an S2I component into a devfile component

2.4.7. Working with storage

2.4.7.1. Adding storage to the application components

2.4.7.2. Adding storage to a specific container

2.4.7.3. Switching between ephemeral and persistent storage

2.4.8. Deleting applications

2.4.8.1. Deleting an application

2.4.9. Debugging applications in odo

2.4.9.1. Debugging an application

2.4.9.2. Configuring debugging parameters

2.4.10. Sample applications

2.4.10.1. Examples from Git repositories

2.4.10.1.1. httpd

2.4.10.1.2. java

2.4.10.1.3. nodejs

2.4.10.1.4. perl
2.4.10.1.5. php
2.4.10.1.6. python
2.4.10.1.7. ruby
2.4.10.2. Binary examples
2.4.10.2.1. java

2.5. USING ODO IN A RESTRICTED ENVIRONMENT
2.5.1. About odo in a restricted environment
2.5.2. Pushing the odo init image to the restricted cluster registry
2.5.2.1. Prerequisites
2.5.2.2. Pushing the odo init image to a mirror registry
2.5.2.2.1. Pushing the init image to a mirror registry on Linux
2.5.2.2.2. Pushing the init image to a mirror registry on MacOS
2.5.2.2.3. Pushing the init image to a mirror registry on Windows
2.5.2.3. Pushing the odo init image to an internal registry directly
2.5.2.3.1. Pushing the init image directly on Linux
2.5.2.3.2. Pushing the init image directly on MacOS
2.5.2.3.3. Pushing the init image directly on Windows
2.5.3. Creating and deploying a component to the disconnected cluster
2.5.3.1. Prerequisites
2.5.3.2. Mirroring a supported builder image
2.5.3.3. Overwriting the mirror registry
2.5.3.4. Creating a Node.js application with odo
2.5.4. Creating and deploying devfile components to the disconnected cluster
2.5.4.1. Creating a NodeJS application by using a devfile in a disconnected cluster
2.5.4.2. Creating a Java application by using a devfile in a disconnected cluster

2.6. CREATING INSTANCES OF SERVICES MANAGED BY OPERATORS
2.6.1. Prerequisites
2.6.2. Creating a project
2.6.3. Listing available services from the Operators installed on the cluster
2.6.4. Creating a service from an Operator
2.6.5. Creating services from YAML files

2.7. MANAGING ENVIRONMENT VARIABLES
2.7.1. Setting and unsetting environment variables

2.8. CONFIGURING THE ODO CLI
2.8.1. Using command completion
2.8.2. Ignoring files or patterns

2.9. ODO CLI REFERENCE
2.9.1. Basic odo CLI commands
2.9.1.1. app
2.9.1.2. catalog
2.9.1.3. component
2.9.1.4. config
2.9.1.5. create
2.9.1.6. debug
2.9.1.7. delete
2.9.1.8. describe
2.9.1.9. link
2.9.1.10. list
2.9.1.11. log
2.9.1.12. login
2.9.1.13. logout
2.9.1.14. preference
2.9.1.15. project
2.9.1.16. push
2.9.1.17. registry
2.9.1.18. service
2.9.1.19. storage
2.9.1.20. unlink
2.9.1.21. update
2.9.1.22. url
2.9.1.23. utils
2.9.1.24. version
2.9.1.25. watch

2.10. ODO ARCHITECTURE
2.10.1. Developer setup
2.10.2. OpenShift source-to-image
2.10.3. OpenShift cluster objects
 2.10.3.1. Init Containers
 2.10.3.1.1. copy-supervisord
 2.10.3.1.2. copy-files-to-volume
 2.10.3.2. Application container
 2.10.3.3. Persistent volumes and persistent volume claims
 2.10.3.4. emptyDir volume
 2.10.3.5. Service
2.10.4. odo push workflow

CHAPTER 3. HELM CLI
3.1. GETTING STARTED WITH HELM 3 ON OPENSIFT CONTAINER PLATFORM
 3.1.1. Understanding Helm
 3.1.1.1. Key features
 3.1.2. Installing Helm
 3.1.2.1. On Linux
 3.1.2.2. On Windows 7/8
 3.1.2.3. On Windows 10
 3.1.2.4. On MacOS
 3.1.3. Installing a Helm chart on an OpenShift Container Platform cluster
 3.1.4. Creating a custom Helm chart on OpenShift Container Platform
3.2. CONFIGURING CUSTOM HELM CHART REPOSITORIES
 3.2.1. Adding custom Helm chart repositories
 3.2.2. Creating credentials and CA certificates to add Helm chart repositories
 3.2.3. Filtering Helm Charts by their certification level
3.3. DISABLING HELM HART REPOSITORIES
 3.3.1. Disabling Helm Chart repository in the cluster

CHAPTER 4. KNATIVE CLI (KN) FOR USE WITH OPENSIFT SERVERLESS
4.1. KEY FEATURES
4.2. INSTALLING THE KNATIVE CLI

CHAPTER 5. PIPELINES CLI (TKN)
5.1. INSTALLING TKN
 5.1.1. Installing Red Hat OpenShift Pipelines CLI (tkn) on Linux
 5.1.2. Installing Red Hat OpenShift Pipelines CLI (tkn) on Linux using an RPM
 5.1.3. Installing Red Hat OpenShift Pipelines CLI (tkn) on Windows
 5.1.4. Installing Red Hat OpenShift Pipelines CLI (tkn) on macOS
5.2. CONFIGURING THE OPENSIFT PIPELINES TKN CLI
 5.2.1. Enabling tab completion
5.3. OPENSIFT PIPELINES TKN REFERENCE
5.3.1. Basic syntax

5.3.2. Global options

5.3.3. Utility commands
 5.3.3.1. tkn
 5.3.3.2. completion [shell]
 5.3.3.3. version

5.3.4. Pipelines management commands
 5.3.4.1. pipeline
 5.3.4.2. pipeline delete
 5.3.4.3. pipeline describe
 5.3.4.4. pipeline list
 5.3.4.5. pipeline logs
 5.3.4.6. pipeline start

5.3.5. PipelineRun commands
 5.3.5.1. pipelinerun
 5.3.5.2. pipelinerun cancel
 5.3.5.3. pipelinerun delete
 5.3.5.4. pipelinerun describe
 5.3.5.5. pipelinerun list
 5.3.5.6. pipelinerun logs

5.3.6. Task management commands
 5.3.6.1. task
 5.3.6.2. task delete
 5.3.6.3. task describe
 5.3.6.4. task list
 5.3.6.5. task logs
 5.3.6.6. task start

5.3.7. TaskRun commands
 5.3.7.1. taskrun
 5.3.7.2. taskrun cancel
 5.3.7.3. taskrun delete
 5.3.7.4. taskrun describe
 5.3.7.5. taskrun list
 5.3.7.6. taskrun logs

5.3.8. Condition management commands
 5.3.8.1. condition
 5.3.8.2. condition delete
 5.3.8.3. condition describe
 5.3.8.4. condition list

5.3.9. Pipeline Resource management commands
 5.3.9.1. resource
 5.3.9.2. resource create
 5.3.9.3. resource delete
 5.3.9.4. resource describe
 5.3.9.5. resource list

5.3.10. ClusterTask management commands
 5.3.10.1. clustertask
 5.3.10.2. clustertask delete
 5.3.10.3. clustertask describe
 5.3.10.4. clustertask list
 5.3.10.5. clustertask start

5.3.11. Trigger management commands
 5.3.11.1. eventlistener
5.3.11.2. eventlistener delete
5.3.11.3. eventlistener describe
5.3.11.4. eventlistener list
5.3.11.5. eventlistener logs
5.3.11.6. triggerbinding
5.3.11.7. triggerbinding delete
5.3.11.8. triggerbinding describe
5.3.11.9. triggerbinding list
5.3.11.10. triggertemplate
5.3.11.11. triggertemplate delete
5.3.11.12. triggertemplate describe
5.3.11.13. triggertemplate list
5.3.11.14. clustertriggerbinding
5.3.11.15. clustertriggerbinding delete
5.3.11.16. clustertriggerbinding describe
5.3.11.17. clustertriggerbinding list
5.3.12. Hub interaction commands
5.3.12.1. hub
5.3.12.2. hub downgrade
5.3.12.3. hub get
5.3.12.4. hub info
5.3.12.5. hub install
5.3.12.6. hub reinstall
5.3.12.7. hub search
5.3.12.8. hub upgrade

CHAPTER 6. OPM CLI
6.1. ABOUT OPM
6.2. INSTALLING OPM
6.3. ADDITIONAL RESOURCES

CHAPTER 7. OPERATOR SDK
7.1. INSTALLING THE OPERATOR SDK CLI
7.2. OPERATOR SDK CLI REFERENCE
7.2.1. bundle
7.2.1.1. validate
7.2.2. cleanup
7.2.3. completion
7.2.4. create
7.2.4.1. api
7.2.5. generate
7.2.5.1. bundle
7.2.5.2. kustomize
7.2.5.2.1. manifests
7.2.6. init
7.2.7. run
7.2.7.1. bundle
7.2.7.2. bundle-upgrade
7.2.8. scorecard
CHAPTER 1. OPENSHIFT CLI (OC)

1.1. GETTING STARTED WITH THE OPENSHIFT CLI

1.1.1. About the OpenShift CLI

With the OpenShift command-line interface (CLI), the `oc` command, you can create applications and manage OpenShift Container Platform projects from a terminal. The OpenShift CLI is ideal in the following situations:

- Working directly with project source code
- Scripting OpenShift Container Platform operations
- Managing projects while restricted by bandwidth resources and the web console is unavailable

1.1.2. Installing the OpenShift CLI

You can install the OpenShift CLI (`oc`) either by downloading the binary or by using an RPM.

1.1.2.1. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (`oc`) to interact with OpenShift Container Platform from a command-line interface. You can install `oc` on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of `oc`, you cannot use it to complete all of the commands in OpenShift Container Platform 4.8. Download and install the new version of `oc`.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (`oc`) binary on Linux by using the following procedure.

Procedure

1. Navigate to the **Infrastructure Provider** page on the Red Hat OpenShift Cluster Manager site.

2. Select your infrastructure provider, and, if applicable, your installation type.

3. In the **Command line interface** section, select **Linux** from the drop-down menu and click **Download command-line tools**.

4. Unpack the archive:

   ```
   $ tar xzvf <file>
   ```

5. Place the `oc` binary in a directory that is on your **PATH**.

 To check your **PATH**, execute the following command:

   ```
   $ echo $PATH
   ```

After you install the CLI, it is available using the `oc` command:
Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

1. Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
2. Select your infrastructure provider, and, if applicable, your installation type.
3. In the Command line interface section, select Windows from the drop-down menu and click Download command-line tools.
4. Unzip the archive with a ZIP program.
5. Move the oc binary to a directory that is on your PATH.
 To check your PATH, open the command prompt and execute the following command:

   ```
   C:\> path
   ```

 After you install the CLI, it is available using the oc command:

   ```
   C:\> oc <command>
   ```

Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

1. Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
2. Select your infrastructure provider, and, if applicable, your installation type.
3. In the Command line interface section, select MacOS from the drop-down menu and click Download command-line tools.
4. Unpack and unzip the archive.
5. Move the oc binary to a directory on your PATH.
 To check your PATH, open a terminal and execute the following command:

   ```
   $ echo $PATH
   ```

 After you install the CLI, it is available using the oc command:

   ```
   $ oc <command>
   ```

1.1.2.2. Installing the OpenShift CLI by using an RPM

For Red Hat Enterprise Linux (RHEL), you can install the OpenShift CLI (oc) as an RPM if you have an active OpenShift Container Platform subscription on your Red Hat account.
Prerequisites

- Must have root or sudo privileges.

Procedure

1. Register with Red Hat Subscription Manager:
   ```
   # subscription-manager register
   ```

2. Pull the latest subscription data:
   ```
   # subscription-manager refresh
   ```

3. List the available subscriptions:
   ```
   # subscription-manager list --available --matches "OpenShift"
   ```

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach the subscription to the registered system:
   ```
   # subscription-manager attach --pool=<pool_id>
   ```

5. Enable the repositories required by OpenShift Container Platform 4.8.
 - For Red Hat Enterprise Linux 8:
     ```
     # subscription-manager repos --enable="rhocp-4.7-for-rhel-8-x86_64-rpms"
     ```
 - For Red Hat Enterprise Linux 7:
     ```
     # subscription-manager repos --enable="rhel-7-server-ose-4.7-rpms"
     ```

6. Install the `openshift-clients` package:
   ```
   # yum install openshift-clients
   ```

 After you install the CLI, it is available using the `oc` command:
   ```
   $ oc <command>
   ```

1.1.3. Logging in to the OpenShift CLI

You can log in to the OpenShift CLI (oc) to access and manage your cluster.

Prerequisites

- You must have access to an OpenShift Container Platform cluster.
- You must have installed the OpenShift CLI (`oc`).
NOTE

To access a cluster that is accessible only over an HTTP proxy server, you can set the `HTTP_PROXY`, `HTTPS_PROXY` and `NO_PROXY` variables. These environment variables are respected by the oc CLI so that all communication with the cluster goes through the HTTP proxy.

Procedure

1. Enter the `oc login` command and pass in a user name:

 $ oc login -u user1

2. When prompted, enter the required information:

 Example output

 Server [https://localhost:8443]: https://openshift.example.com:6443
 The server uses a certificate signed by an unknown authority.
 You can bypass the certificate check, but any data you send to the server could be intercepted by others.
 Use insecure connections? (y/n): y

 Authentication required for https://openshift.example.com:6443 (openshift)
 Username: user1
 Password:
 Login successful.

 You don't have any projects. You can try to create a new project, by running

 `oc new-project <projectname>`

 Welcome! See 'oc help' to get started.

1. Enter the OpenShift Container Platform server URL.
2. Enter whether to use insecure connections.
3. Enter the user’s password.

You can now create a project or issue other commands for managing your cluster.

1.4. Using the OpenShift CLI

Review the following sections to learn how to complete common tasks using the CLI.

1.4.1. Creating a project

Use the `oc new-project` command to create a new project.

 $ oc new-project my-project

Example output
1.1.4.2. Creating a new app

Use the `oc new-app` command to create a new application.

```bash
$ oc new-app https://github.com/sclorg/cakephp-ex
```

Example output

```bash
--> Found image 40de956 (9 days old) in imagestream "openshift/php" under tag "7.2" for "php"
...
Run 'oc status' to view your app.
```

1.1.4.3. Viewing pods

Use the `oc get pods` command to view the pods for the current project.

```bash
$ oc get pods -o wide
```

Example output

```
NAME                  READY   STATUS      RESTARTS   AGE     IP            NODE
NOMINATED NODE
cakephp-ex-1-build    0/1     Completed   0          5m45s   10.131.0.10   ip-10-0-141-74.ec2.internal
<none>
cakephp-ex-1-deploy   0/1     Completed   0          3m44s   10.129.2.9    ip-10-0-147-65.ec2.internal
<none>
cakephp-ex-1-ktz97    1/1     Running     0          3m33s   10.128.2.11   ip-10-0-168-105.ec2.internal
<none>
```

1.1.4.4. Viewing pod logs

Use the `oc logs` command to view logs for a particular pod.

```bash
$ oc logs cakephp-ex-1-deploy
```

Example output

```bash
--> Scaling cakephp-ex-1 to 1
--> Success
```

1.1.4.5. Viewing the current project

Use the `oc project` command to view the current project.

```bash
$ oc project
```
Example output

Using project “my-project” on server “https://openshift.example.com:6443”.

1.1.4.6. Viewing the status for the current project

Use the `oc status` command to view information about the current project, such as services, deployments, and build configs.

```
$ oc status
```

Example output

```
In project my-project on server https://openshift.example.com:6443
svc/cakephp-ex - 172.30.236.80 ports 8080, 8443
dc/cakephp-ex deploys istag/cakephp-ex:latest <-
  bc/cakephp-ex source builds https://github.com/sclorg/cakephp-ex on openshift/php:7.2
deployment #1 deployed 2 minutes ago - 1 pod
```

3 infos identified, use ‘oc status --suggest’ to see details.

1.1.4.7. Listing supported API resources

Use the `oc api-resources` command to view the list of supported API resources on the server.

```
$ oc api-resources
```

Example output

```
NAME                                  SHORTNAMES       APIGROUP                              NAMESPACED   KIND
  bindings                                                                                     true         Binding
  componentstatuses                     cs                                                     false        ComponentStatus
  configmaps                            cm                                                     true         ConfigMap
  ...
```

1.1.5. Getting help

You can get help with CLI commands and OpenShift Container Platform resources in the following ways.

- Use `oc help` to get a list and description of all available CLI commands:

 Example: Get general help for the CLI

  ```
  $ oc help
  ```

 Example output

 OpenShift Client
This client helps you develop, build, deploy, and run your applications on any OpenShift or Kubernetes compatible platform. It also includes the administrative commands for managing a cluster under the ‘adm’ subcommand.

Usage:
oc [flags]

Basic Commands:
login Log in to a server
new-project Request a new project
new-app Create a new application

...

- Use the `--help` flag to get help about a specific CLI command:

 Example: Get help for the `oc create` command

 $ oc create --help

 Example output

 Create a resource by filename or stdin

 JSON and YAML formats are accepted.

 Usage:
 oc create -f FILENAME [flags]
 ...

- Use the `oc explain` command to view the description and fields for a particular resource:

 Example: View documentation for the Pod resource

 $ oc explain pods

 Example output

 KIND: Pod
 VERSION: v1

 DESCRIPTION:
 Pod is a collection of containers that can run on a host. This resource is created by clients and scheduled onto hosts.

 FIELDS:
 apiVersion <string>
 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info:
1.1.6. Logging out of the OpenShift CLI

You can log out the OpenShift CLI to end your current session.

- Use the `oc logout` command.

```
$ oc logout
```

Example output

```
Logged "user1" out on "https://openshift.example.com"
```

This deletes the saved authentication token from the server and removes it from your configuration file.

1.2. CONFIGURING THE OPENSHIFT CLI

1.2.1. Enabling tab completion

After you install the `oc` CLI tool, you can enable tab completion to automatically complete `oc` commands or suggest options when you press Tab.

Prerequisites

- You must have the `oc` CLI tool installed.
- You must have the package `bash-completion` installed.

Procedure

The following procedure enables tab completion for Bash.

1. Save the Bash completion code to a file.

```
$ oc completion bash > oc_bash_completion
```

2. Copy the file to `/etc/bash_completion.d/`.

```
$ sudo cp oc_bash_completion /etc/bash_completion.d/
```

Tab completion is enabled when you open a new terminal.

1.3. EXTENDING THE OPENSHIFT CLI WITH PLUG-INS

You can write and install plug-ins to build on the default `oc` commands, allowing you to perform new and more complex tasks with the OpenShift Container Platform CLI.
1.3.1. Writing CLI plug-ins

You can write a plug-in for the OpenShift Container Platform CLI in any programming language or script that allows you to write command-line commands. Note that you can not use a plug-in to overwrite an existing `oc` command.

IMPORTANT

OpenShift CLI plug-ins are currently a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

See the Red Hat Technology Preview features support scope for more information.

Procedure

This procedure creates a simple Bash plug-in that prints a message to the terminal when the `oc foo` command is issued.

1. Create a file called `oc-foo`.
 When naming your plug-in file, keep the following in mind:

 - The file must begin with `oc-` or `kubectl-` to be recognized as a plug-in.
 - The file name determines the command that invokes the plug-in. For example, a plug-in with the file name `oc-foo-bar` can be invoked by a command of `oc foo bar`. You can also use underscores if you want the command to contain dashes. For example, a plug-in with the file name `oc-foo_bar` can be invoked by a command of `oc foo-bar`.

2. Add the following contents to the file.

   ```bash
   #!/bin/bash

   # optional argument handling
   if [[ "$1" == "version" ]]
   then
     echo "1.0.0"
     exit 0
   fi

   # optional argument handling
   if [[ "$1" == "config" ]]
   then
     echo $KUBECONFIG
     exit 0
   fi

   echo "I am a plugin named kubectl-foo"
   ```

 After you install this plug-in for the OpenShift Container Platform CLI, it can be invoked using the `oc foo` command.

Additional resources
• Review the Sample plug-in repository for an example of a plug-in written in Go.
• Review the CLI runtime repository for a set of utilities to assist in writing plug-ins in Go.

1.3.2. Installing and using CLI plug-ins

After you write a custom plug-in for the OpenShift Container Platform CLI, you must install it to use the functionality that it provides.

IMPORTANT

OpenShift CLI plug-ins are currently a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

See the Red Hat Technology Preview features support scope for more information.

Prerequisites

• You must have the oc CLI tool installed.
• You must have a CLI plug-in file that begins with oc- or kubectl-

Procedure

1. If necessary, update the plug-in file to be executable.

 $ chmod +x <plugin_file>

2. Place the file anywhere in your PATH, such as /usr/local/bin/.

 $ sudo mv <plugin_file> /usr/local/bin/.

3. Run oc plugin list to make sure that the plug-in is listed.

 $ oc plugin list

Example output

The following compatible plugins are available:

/usr/local/bin/<plugin_file>

If your plug-in is not listed here, verify that the file begins with oc- or kubectl-, is executable, and is on your PATH.

4. Invoke the new command or option introduced by the plug-in.

 For example, if you built and installed the kubectl-ns plug-in from the Sample plug-in repository, you can use the following command to view the current namespace.

 $ oc ns
Note that the command to invoke the plug-in depends on the plug-in file name. For example, a plug-in with the file name of `oc-foo-bar` is invoked by the `oc foo bar` command.

1.4. OPENSSHIFT CLI DEVELOPER COMMAND REFERENCE

This reference provides descriptions and example commands for OpenShift CLI (oc) developer commands. For administrator commands, see the OpenShift CLI administrator command reference.

Run `oc help` to list all commands or run `oc <command> --help` to get additional details for a specific command.

1.4.1. OpenShift CLI (oc) developer commands

1.4.1.1. oc annotate

Update the annotations on a resource

Example usage

- Update pod 'foo' with the annotation 'description' and the value 'my frontend'.
 - # If the same annotation is set multiple times, only the last value will be applied
 - `oc annotate pods foo description='my frontend'`

- Update a pod identified by type and name in "pod.json"
 - `oc annotate -f pod.json description='my frontend'`

- Update pod 'foo' with the annotation 'description' and the value 'my frontend running nginx', overwriting any existing value.
 - `oc annotate --overwrite pods foo description='my frontend running nginx'`

- Update all pods in the namespace
 - `oc annotate pods --all description='my frontend running nginx'`

- Update pod 'foo' only if the resource is unchanged from version 1.
 - `oc annotate pods foo description='my frontend running nginx' --resource-version=1`

- Update pod 'foo' by removing an annotation named 'description' if it exists.
 - # Does not require the --overwrite flag.
 - `oc annotate pods foo description-`

1.4.1.2. oc api-resources

Print the supported API resources on the server

Example usage

- # Print the supported API Resources
 - `oc api-resources`

- # Print the supported API Resources with more information
 - `oc api-resources -o wide`

- # Print the supported API Resources sorted by a column
 - `oc api-resources --sort-by=name`
1.4.1.3. oc api-versions

Print the supported API versions on the server, in the form of "group/version"

Example usage

```
# Print the supported namespaced resources
oc api-resources --namespaced=true

# Print the supported non-namespaced resources
oc api-resources --namespaced=false

# Print the supported API Resources with specific APIGroup
oc api-resources --api-group=extensions
```

1.4.1.4. oc apply

Apply a configuration to a resource by filename or stdin

Example usage

```
# Apply the configuration in pod.json to a pod.
oc apply -f ./pod.json

# Apply resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml.
oc apply -k dir/

# Apply the JSON passed into stdin to a pod.
cat pod.json | oc apply -f -

# Note: --prune is still in Alpha
# Apply the configuration in manifest.yaml that matches label app=nginx and delete all the other resources that are not in the file and match label app=nginx.
oc apply --prune -f manifest.yaml -l app=nginx

# Apply the configuration in manifest.yaml and delete all the other configmaps that are not in the file.
oc apply --prune -f manifest.yaml --all --prune-whitelist=core/v1/ConfigMap
```

1.4.1.5. oc apply edit-last-applied

Edit latest last-applied-configuration annotations of a resource/object

Example usage

```
# Edit the last-applied-configuration annotations by type/name in YAML.
oc apply edit-last-applied deployment/nginx

# Edit the last-applied-configuration annotations by file in JSON.
oc apply edit-last-applied -f deploy.yaml -o json
```
1.4.1.6. oc apply set-last-applied
Set the last-applied-configuration annotation on a live object to match the contents of a file.

Example usage

```
# Set the last-applied-configuration of a resource to match the contents of a file.
oc apply set-last-applied -f deploy.yaml

# Execute set-last-applied against each configuration file in a directory.
oc apply set-last-applied -f path/

# Set the last-applied-configuration of a resource to match the contents of a file, will create the annotation if it does not already exist.
oc apply set-last-applied -f deploy.yaml --create-annotation=true
```

1.4.1.7. oc apply view-last-applied
View latest last-applied-configuration annotations of a resource/object

Example usage

```
# View the last-applied-configuration annotations by type/name in YAML.
oc apply view-last-applied deployment/nginx

# View the last-applied-configuration annotations by file in JSON
oc apply view-last-applied -f deploy.yaml -o json
```

1.4.1.8. oc attach
Attach to a running container

Example usage

```
# Get output from running pod mypod, use the oc.kubernetes.io/default-container annotation
# for selecting the container to be attached or the first container in the pod will be chosen
oc attach mypod

# Get output from ruby-container from pod mypod
oc attach mypod -c ruby-container

# Switch to raw terminal mode, sends stdin to 'bash' in ruby-container from pod mypod
# and sends stdout/stderr from 'bash' back to the client
oc attach mypod -c ruby-container -i -t

# Get output from the first pod of a ReplicaSet named nginx
oc attach rs/nginx
```

1.4.1.9. oc auth can-i
Check whether an action is allowed

Example usage

-
1.4.1.10. `oc auth reconcile`

Reconciles rules for RBAC Role, RoleBinding, ClusterRole, and ClusterRoleBinding objects

Example usage

```
# Reconcile rbac resources from a file
oc auth reconcile -f my-rbac-rules.yaml
```

1.4.1.11. `oc autoscale`

Autoscale a deployment config, deployment, replica set, stateful set, or replication controller

Example usage

```
# Auto scale a deployment "foo", with the number of pods between 2 and 10, no target CPU utilization specified so a default autoscaling policy will be used:
oc autoscale deployment foo --min=2 --max=10

# Auto scale a replication controller "foo", with the number of pods between 1 and 5, target CPU utilization at 80%:
oc autoscale rc foo --max=5 --cpu-percent=80
```

1.4.1.12. `oc cancel-build`

Cancel running, pending, or new builds

Example usage

```
# Cancel the build with the given name
oc cancel-build ruby-build-2
```
1.4.1.13. oc cluster-info

Display cluster info

Example usage

Print the address of the control plane and cluster services
oc cluster-info

1.4.1.14. oc cluster-info dump

Dump lots of relevant info for debugging and diagnosis

Example usage

Dump current cluster state to stdout
oc cluster-info dump

Dump current cluster state to /path/to/cluster-state
oc cluster-info dump --output-directory=/path/to/cluster-state

Dump all namespaces to stdout
oc cluster-info dump --all-namespaces

Dump a set of namespaces to /path/to/cluster-state
oc cluster-info dump --namespaces default,kube-system --output-directory=/path/to/cluster-state

1.4.1.15. oc completion

Output shell completion code for the specified shell (bash or zsh)

Example usage

Installing bash completion on macOS using homebrew
If running Bash 3.2 included with macOS
brew install bash-completion
or, if running Bash 4.1+
brew install bash-completion@2
If oc is installed via homebrew, this should start working immediately.
If you've installed via other means, you may need add the completion to your completion directory
oc completion bash > $(brew --prefix)/etc/bash_completion.d/oc
1.4.1.16. `oc config current-context`

Displays the current-context

Example usage

```bash
# Display the current-context
oc config current-context
```

1.4.1.17. `oc config delete-cluster`

Delete the specified cluster from the kubeconfig

Example usage

```bash
# Delete the minikube cluster
oc config delete-cluster minikube
```

1.4.1.18. `oc config delete-context`

Delete the specified context from the kubeconfig

Example usage

```bash
# Delete the context for the minikube cluster
oc config delete-context minikube
```

1.4.1.19. `oc config delete-user`

Delete the specified user from the kubeconfig

Example usage

```bash
# Delete the user
oc config delete-user
```
1.4.1.20. oc config get-clusters
Display clusters defined in the kubeconfig

Example usage
```
# List the clusters oc knows about
oc config get-clusters
```

1.4.1.21. oc config get-contexts
Describe one or many contexts

Example usage
```
# List all the contexts in your kubeconfig file
oc config get-contexts

# Describe one context in your kubeconfig file.
oc config get-contexts my-context
```

1.4.1.22. oc config get-users
Display users defined in the kubeconfig

Example usage
```
# List the users oc knows about
oc config get-users
```

1.4.1.23. oc config rename-context
Renames a context from the kubeconfig file.

Example usage
```
# Rename the context 'old-name' to 'new-name' in your kubeconfig file
oc config rename-context old-name new-name
```

1.4.1.24. oc config set
Sets an individual value in a kubeconfig file

Example usage
```
# Set server field on the my-cluster cluster to https://1.2.3.4
oc config set clusters.my-cluster.server https://1.2.3.4

# Set certificate-authority-data field on the my-cluster cluster.
```
oc config set clusters.my-cluster.certificate-authority-data $(echo "cert_data_here" | base64 -i -)

Set cluster field in the my-context context to my-cluster.
oc config set contexts.my-context.cluster my-cluster

Set client-key-data field in the cluster-admin user using --set-raw-bytes option.
oc config set users.cluster-admin.client-key-data cert_data_here --set-raw-bytes=true

1.4.1.25. oc config set-cluster

Sets a cluster entry in kubeconfig

Example usage

Set only the server field on the e2e cluster entry without touching other values.
oc config set-cluster e2e --server=https://1.2.3.4

Embed certificate authority data for the e2e cluster entry
oc config set-cluster e2e --embed-certs --certificate-authority=~/.kube/e2e/kubernetes.ca.crt

Disable cert checking for the dev cluster entry
oc config set-cluster e2e --insecure-skip-tls-verify=true

Set custom TLS server name to use for validation for the e2e cluster entry
oc config set-cluster e2e --tls-server-name=my-cluster-name

1.4.1.26. oc config set-context

Sets a context entry in kubeconfig

Example usage

Set the user field on the gce context entry without touching other values
oc config set-context gce --user=cluster-admin

1.4.1.27. oc config set-credentials

Sets a user entry in kubeconfig

Example usage

Set only the "client-key" field on the "cluster-admin" entry, without touching other values:
oc config set-credentials cluster-admin --client-key=~/.kube/admin.key

Set basic auth for the "cluster-admin" entry
oc config set-credentials cluster-admin --username=admin --password=uXFGweU9I35qCif

Embed client certificate data in the "cluster-admin" entry
oc config set-credentials cluster-admin --client-certificate=~/.kube/admin.crt --embed-certs=true

Enable the Google Compute Platform auth provider for the "cluster-admin" entry
oc config set-credentials cluster-admin --auth-provider=gcp
1.4.1.28. oc config unset

Unsets an individual value in a kubeconfig file

Example usage

```
# Unset the current-context.
oc config unset current-context

# Unset namespace in foo context.
oc config unset contexts.foo.namespace
```

1.4.1.29. oc config use-context

Sets the current-context in a kubeconfig file

Example usage

```
# Use the context for the minikube cluster
oc config use-context minikube
```

1.4.1.30. oc config view

Display merged kubeconfig settings or a specified kubeconfig file

Example usage

```
# Show merged kubeconfig settings.
oc config view

# Show merged kubeconfig settings and raw certificate data.
```
oc config view --raw

Get the password for the e2e user
oc config view -o jsonpath='{.users[?(@.name == "e2e")].user.password}'

1.4.1.31. oc cp
Copy files and directories to and from containers.

Example usage

!!!Important Note!!!
Requires that the 'tar' binary is present in your container
image. If 'tar' is not present, 'oc cp' will fail.
#
For advanced use cases, such as symlinks, wildcard expansion or
file mode preservation consider using 'oc exec'.

Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
tar cf - /tmp/foo | oc exec -i -n <some-namespace> <some-pod> -- tar xf - -C /tmp/bar

Copy /tmp/foo from a remote pod to /tmp/bar locally
oc exec -n <some-namespace> <some-pod> -- tar cf - /tmp/foo | tar xf - -C /tmp/bar

Copy /tmp/foo_dir local directory to /tmp/bar_dir in a remote pod in the default namespace
oc cp /tmp/foo_dir:/some-pod:/tmp/bar_dir

Copy /tmp/foo local file to /tmp/bar in a remote pod in a specific container
oc cp /tmp/foo <some-namespace>:/<some-pod>:/tmp/bar -c <specific-container>

Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
oc cp /tmp/foo <some-namespace>:/<some-pod>:/tmp/bar

Copy /tmp/foo from a remote pod to /tmp/bar locally
oc cp <some-namespace>:/<some-pod>:/tmp/foo /tmp/bar

1.4.1.32. oc create
Create a resource from a file or from stdin.

Example usage

Create a pod using the data in pod.json.
oc create -f ./pod.json

Create a pod based on the JSON passed into stdin.
cat pod.json | oc create -f -

Edit the data in docker-registry.yaml in JSON then create the resource using the edited data.
oc create -f docker-registry.yaml --edit -o json

1.4.1.33. oc create build
Create a new build
Example usage

```
# Create a new build
oc create build myapp
```

1.4.1.34. `oc create clusterresourcequota`
Create a cluster resource quota

Example usage

```
# Create a cluster resource quota limited to 10 pods
oc create clusterresourcequota limit-bob --project-annotation-selector=openshift.io/requester=user-bob --hard=pods=10
```

1.4.1.35. `oc create clusterrole`
Create a ClusterRole.

Example usage

```
# Create a ClusterRole named "pod-reader" that allows user to perform "get", "watch" and "list" on pods
oc create clusterrole pod-reader --verb=get,list,watch --resource=pods

# Create a ClusterRole named "pod-reader" with ResourceName specified
oc create clusterrole pod-reader --verb=get --resource=pods --resource-name=readablepod --resource-name=anotherpod

# Create a ClusterRole named "foo" with API Group specified
oc create clusterrole foo --verb=get,list,watch --resource=rs.extensions

# Create a ClusterRole named "foo" with SubResource specified
oc create clusterrole foo --verb=get,list,watch --resource=pods,pods/status

# Create a ClusterRole name "foo" with NonResourceURL specified
oc create clusterrole "foo" --verb=get --non-resource-url=/logs/*

# Create a ClusterRole name "monitoring" with AggregationRule specified
oc create clusterrole monitoring --aggregation-rule="rbac.example.com/aggregate-to-monitoring=true"
```

1.4.1.36. `oc create clusterrolebinding`
Create a ClusterRoleBinding for a particular ClusterRole

Example usage

```
# Create a ClusterRoleBinding for user1, user2, and group1 using the cluster-admin ClusterRole
oc create clusterrolebinding cluster-admin --clusterrole=cluster-admin --user=user1 --user=user2 --group=group1
```
1.4.1.37. **oc create configmap**

Create a configmap from a local file, directory or literal value.

Example usage

```bash
# Create a new configmap named my-config based on folder bar
oc create configmap my-config --from-file=path/to/bar

# Create a new configmap named my-config with specified keys instead of file basenames on disk
oc create configmap my-config --from-file=key1=/path/to/bar/file1.txt --from-file=key2=/path/to/bar/file2.txt

# Create a new configmap named my-config with key1=config1 and key2=config2
oc create configmap my-config --from-literal=key1=config1 --from-literal=key2=config2

# Create a new configmap named my-config from the key=value pairs in the file
oc create configmap my-config --from-file=path/to/bar

# Create a new configmap named my-config from an env file
oc create configmap my-config --from-env-file=path/to/bar.env
```

1.4.1.38. **oc create cronjob**

Create a cronjob with the specified name.

Example usage

```bash
# Create a cronjob
oc create cronjob my-job --image=busybox --schedule="*/1 * * * *"

# Create a cronjob with command
oc create cronjob my-job --image=busybox --schedule="*/1 * * * *" -- date
```

1.4.1.39. **oc create deployment**

Create a deployment with the specified name.

Example usage

```bash
# Create a deployment named my-dep that runs the busybox image.
oc create deployment my-dep --image=busybox

# Create a deployment named my-dep that runs the nginx image with 3 replicas.
oc create deployment my-dep --image=nginx --replicas=3

# Create a deployment that runs the busybox image and expose port 5701.
oc create deployment my-dep --image=busybox --port=5701
```

1.4.1.40. **oc create deploymentconfig**
Create a deployment config with default options that uses a given image

Example usage

```bash
# Create an nginx deployment config named my-nginx
oc create deploymentconfig my-nginx --image=nginx
```

1.4.1.41. oc create identity
Manually create an identity (only needed if automatic creation is disabled)

Example usage

```bash
# Create an identity with identity provider "acme_ldap" and the identity provider username "adamjones"
oc create identity acme_ldap:adamjones
```

1.4.1.42. oc create imagestream
Create a new empty image stream

Example usage

```bash
# Create a new image stream
oc create imagestream mysql
```

1.4.1.43. oc create imagestreamtag
Create a new image stream tag

Example usage

```bash
# Create a new image stream tag based on an image in a remote registry
oc create imagestreamtag mysql:latest --from-image=myregistry.local/mysql/mysql:5.0
```

1.4.1.44. oc create ingress
Create an ingress with the specified name.

Example usage

```bash
# Create a single ingress called ‘simple’ that directs requests to foo.com/bar to svc
# svc1:8080 with a tls secret “my-cert”
oc create ingress simple --rule="foo.com/bar=svc1:8080,tls=my-cert"

# Create a catch all ingress of ”/path” pointing to service svc:port and Ingress Class as “otheringress”
oc create ingress catch-all --class=otheringress --rule="/path=svc:port"

# Create an ingress with two annotations: ingress.annotation1 and ingress.annotations2
oc create ingress annotated --class=default --rule="foo.com/bar=svc:port" \
--annotation ingress.annotation1=foo \
```
1.4.1.45. oc create job

Create a job with the specified name.

Example usage

```bash
# Create a job
oc create job my-job --image=busybox

# Create a job with command
oc create job my-job --image=busybox -- date

# Create a job from a CronJob named "a-cronjob"
oc create job test-job --from=cronjob/a-cronjob
```

1.4.1.46. oc create namespace

Create a namespace with the specified name.

Example usage

```bash
# Create a new namespace named my-namespace
oc create namespace my-namespace
```

1.4.1.47. oc create poddisruptionbudget

Create a pod disruption budget with the specified name.
OpenShift Container Platform 4.8 CLI tools

Example usage

```
# Create a pod disruption budget named my-pdb that will select all pods with the app=rails label
# and require at least one of them being available at any point in time.
oc create poddisruptionbudget my-pdb --selector=app=rails --min-available=1

# Create a pod disruption budget named my-pdb that will select all pods with the app=nginx label
# and require at least half of the pods selected to be available at any point in time.
oc create pdb my-pdb --selector=app=nginx --min-available=50%
```

1.4.1.48. oc create priorityclass

Create a priorityclass with the specified name.

Example usage

```
# Create a priorityclass named high-priority
oc create priorityclass high-priority --value=1000 --description="high priority"

# Create a priorityclass named default-priority that considered as the global default priority
oc create priorityclass default-priority --value=1000 --global-default=true --description="default priority"

# Create a priorityclass named high-priority that can not preempt pods with lower priority
oc create priorityclass high-priority --value=1000 --description="high priority" --preemption-policy="Never"
```

1.4.1.49. oc create quota

Create a quota with the specified name.

Example usage

```
# Create a new resourcequota named my-quota
oc create quota my-quota --hard=cpu=1,memory=1G,pods=2,services=3,replicationcontrollers=2,resourcequotas=1,secrets=5,persistentvolumeclaims=10

# Create a new resourcequota named best-effort
oc create quota best-effort --hard=pods=100 --scopes=BestEffort
```

1.4.1.50. oc create role

Create a role with single rule.

Example usage

```
# Create a Role named "pod-reader" that allows user to perform "get", "watch" and "list" on pods
oc create role pod-reader --verb=get --verb=list --verb=watch --resource=pods

# Create a Role named "pod-reader" with ResourceName specified
oc create role pod-reader --verb=get --resource=pods --resource-name=readablepod --resource-name=anotherpod
```
1.4.1.51. oc create rolebinding

Create a RoleBinding for a particular Role or ClusterRole

Example usage

Create a RoleBinding for user1, user2, and group1 using the admin ClusterRole
oc create rolebinding admin --clusterrole=admin --user=user1 --user=user2 --group=group1

1.4.1.52. oc create route edge

Create a route that uses edge TLS termination

Example usage

Create an edge route that exposes the frontend service and specify a path
If the route name is omitted, the service name will be used
oc create route edge --service=frontend --path /assets

1.4.1.53. oc create route passthrough

Create a route that uses passthrough TLS termination

Example usage

Create a passthrough route that exposes the frontend service and specify
a host name. If the route name is omitted, the service name will be used
oc create route passthrough --service=frontend --hostname=www.example.com

1.4.1.54. oc create route reencrypt

Create a route that uses reencrypt TLS termination

Example usage

Create a route named “my-route” that exposes the frontend service
oc create route reencrypt my-route --service=frontend --dest-ca-cert cert.cert

Create a reencrypt route that exposes the frontend service, letting the
1.4.1.55. oc create secret docker-registry

Create a secret for use with a Docker registry

Example usage

```
# If you don't already have a .dockerconfig file, you can create a dockerconfig secret directly by using:
oc create secret docker-registry my-secret --docker-server=DOCKER_REGISTRY_SERVER --docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-email=DOCKER_EMAIL

# Create a new secret named my-secret from ~/.docker/config.json
oc create secret docker-registry my-secret --from-file=.dockerconfigjson=path/to/.docker/config.json
```

1.4.1.56. oc create secret generic

Create a secret from a local file, directory or literal value

Example usage

```
# Create a new secret named my-secret with keys for each file in folder bar
oc create secret generic my-secret --from-file=path/to/bar

# Create a new secret named my-secret with specified keys instead of names on disk
oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-file=ssh-publickey=path/to/id_rsa.pub

# Create a new secret named my-secret with key1=supersecret and key2=topsecret
oc create secret generic my-secret --from-literal=key1=supersecret --from-literal=key2=topsecret

# Create a new secret named my-secret using a combination of a file and a literal
oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-literal=passphrase=topsecret

# Create a new secret named my-secret from an env file
oc create secret generic my-secret --from-env-file=path/to/bar.env
```

1.4.1.57. oc create secret tls

Create a TLS secret

Example usage

```
# Create a new TLS secret named tls-secret with the given key pair:
oc create secret tls tls-secret --cert=path/to/tls.cert --key=path/to/tls.key
```
Example usage

```
# Create a new ClusterIP service named my-cs
oc create service clusterip my-cs --tcp=5678:8080

# Create a new ClusterIP service named my-cs (in headless mode)
oc create service clusterip my-cs --clusterip="None"
```

1.4.1.59. oc create service externalname

Create an ExternalName service.

Example usage

```
# Create a new ExternalName service named my-ns
oc create service externalname my-ns --external-name bar.com
```

1.4.1.60. oc create service loadbalancer

Create a LoadBalancer service.

Example usage

```
# Create a new LoadBalancer service named my-lbs
oc create service loadbalancer my-lbs --tcp=5678:8080
```

1.4.1.61. oc create service nodeport

Create a NodePort service.

Example usage

```
# Create a new NodePort service named my-ns
oc create service nodeport my-ns --tcp=5678:8080
```

1.4.1.62. oc create serviceaccount

Create a service account with the specified name

Example usage

```
# Create a new service account named my-service-account
oc create serviceaccount my-service-account
```

1.4.1.63. oc create user

Manually create a user (only needed if automatic creation is disabled)

Example usage
1.4.1.64. oc create useridentitymapping

Manually map an identity to a user

Example usage

```
# Map the identity "acme_ldap:adamjones" to the user "ajones"
oc create useridentitymapping acme_ldap:adamjones ajones
```

1.4.1.65. oc debug

Launch a new instance of a pod for debugging

Example usage

```
# Start a shell session into a pod using the OpenShift tools image
oc debug

# Debug a currently running deployment by creating a new pod
oc debug deploy/test

# Debug a node as an administrator
oc debug node/master-1

# Launch a shell in a pod using the provided image stream tag
oc debug istag/mysql:latest -n openshift

# Test running a job as a non-root user
oc debug job/test --as-user=1000000

# Debug a specific failing container by running the env command in the 'second' container
oc debug daemonset/test -c second -- /bin/env

# See the pod that would be created to debug
oc debug mypod-9xbc -o yaml

# Debug a resource but launch the debug pod in another namespace
# Note: Not all resources can be debugged using --to-namespace without modification. For example,
# volumes and service accounts are namespace-dependent. Add '-o yaml' to output the debug pod definition
# to disk. If necessary, edit the definition then run 'oc debug -f -' or run without --to-namespace
oc debug mypod-9xbc --to-namespace testns
```

1.4.1.66. oc delete

Delete resources by filenames, stdin, resources and names, or by resources and label selector

Example usage
Delete a pod using the type and name specified in pod.json.
oc delete -f ./pod.json

Delete resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml.
oc delete -k dir

Delete a pod based on the type and name in the JSON passed into stdin.
cat pod.json | oc delete -f -

Delete pods and services with same names "baz" and "foo"
oc delete pod,service baz foo

Delete pods and services with label name=myLabel.
oc delete pods,services -l name=myLabel

Delete a pod with minimal delay
oc delete pod foo --now

Force delete a pod on a dead node
oc delete pod foo --force

Delete all pods
oc delete pods --all

1.4.1.67. oc describe

Show details of a specific resource or group of resources

Example usage

Describe a node
oc describe nodes kubernetes-node-emt8.c.myproject.internal

Describe a pod
oc describe pods/nginx

Describe a pod identified by type and name in "pod.json"
oc describe -f pod.json

Describe all pods
oc describe pods

Describe pods by label name=myLabel
oc describe po -l name=myLabel

Describe all pods managed by the 'frontend' replication controller (rc-created pods
get the name of the rc as a prefix in the pod the name).
oc describe pods frontend

1.4.1.68. oc diff

Diff live version against would-be applied version

Example usage
Diff resources included in pod.json.
oc diff -f pod.json

Diff file read from stdin
cat service.yaml | oc diff -f -

1.4.1.69. oc edit

Edit a resource on the server

Example usage

Edit the service named 'docker-registry':
oc edit svc/docker-registry

Use an alternative editor
KUBE_EDITOR="nano" oc edit svc/docker-registry

Edit the job 'myjob' in JSON using the v1 API format:
oc edit job.v1.batch/myjob -o json

Edit the deployment 'mydeployment' in YAML and save the modified config in its annotation:
oc edit deployment/mydeployment -o yaml --save-config

1.4.1.70. oc ex dockergc

Perform garbage collection to free space in docker storage

Example usage

Perform garbage collection with the default settings
oc ex dockergc

1.4.1.71. oc exec

Execute a command in a container

Example usage

Get output from running 'date' command from pod mypod, using the first container by default
oc exec mypod -- date

Get output from running 'date' command in ruby-container from pod mypod
oc exec mypod -c ruby-container -- date

Switch to raw terminal mode, sends stdin to 'bash' in ruby-container from pod mypod
and sends stdout/stderr from 'bash' back to the client
oc exec mypod -c ruby-container -i -t -- bash -il

List contents of /usr from the first container of pod mypod and sort by modification time.
If the command you want to execute in the pod has any flags in common (e.g. -i),
you must use two dashes (--) to separate your command's flags/arguments.
Also note, do not surround your command and its flags/arguments with quotes
unless that is how you would execute it normally (i.e., do ls -t /usr, not "ls -t /usr").
oc exec mypod -i -t -- ls -t /usr

Get output from running 'date' command from the first pod of the deployment mydeployment, using the first container by default
oc exec deploy/mydeployment -- date

Get output from running 'date' command from the first pod of the service myservice, using the first container by default
oc exec svc/myservice -- date

1.4.1.72. oc explain

Documentation of resources

Example usage

```
# Get the documentation of the resource and its fields
oc explain pods

# Get the documentation of a specific field of a resource
oc explain pods.spec.containers
```

1.4.1.73. oc expose

Expose a replicated application as a service or route

Example usage

```
# Create a route based on service nginx. The new route will reuse nginx’s labels
oc expose service nginx

# Create a route and specify your own label and route name
oc expose service nginx -l name=myroute --name=fromdowntown

# Create a route and specify a host name
oc expose service nginx --hostname=www.example.com

# Create a route with a wildcard
oc expose service nginx --hostname=x.example.com --wildcard-policy=Subdomain
# This would be equivalent to *.example.com. NOTE: only hosts are matched by the wildcard; subdomains would not be included

# Expose a deployment configuration as a service and use the specified port
oc expose dc ruby-hello-world --port=8080

# Expose a service as a route in the specified path
oc expose service nginx --path=/nginx

# Expose a service using different generators
oc expose service nginx --name=exposed-svc --port=12201 --protocol="TCP" --generator="service/v2"
oc expose service nginx --name=my-route --port=12201 --generator="route/v1"
```
1.4.1.74. oc extract

Extract secrets or config maps to disk

Example usage

```
# Extract the secret "test" to the current directory
oc extract secret/test

# Extract the config map "nginx" to the /tmp directory
oc extract configmap/nginx --to=/tmp

# Extract the config map "nginx" to STDOUT
oc extract configmap/nginx --to=-

# Extract only the key "nginx.conf" from config map "nginx" to the /tmp directory
oc extract configmap/nginx --to=/tmp --keys=nginx.conf
```

1.4.1.75. oc get

Display one or many resources

Example usage

```
# List all pods in ps output format.
oc get pods

# List all pods in ps output format with more information (such as node name).
oc get pods -o wide

# List a single replication controller with specified NAME in ps output format.
oc get replicationcontroller web

# List deployments in JSON output format, in the "v1" version of the "apps" API group:
oc get deployments.v1.apps -o json

# List a single pod in JSON output format.
oc get -o json pod web-pod-13je7

# List a pod identified by type and name specified in "pod.yaml" in JSON output format.
oc get -f pod.yaml -o json

# List resources from a directory with kustomization.yaml - e.g. dir/kustomization.yaml.
oc get -k dir/

# Return only the phase value of the specified pod.
oc get -o template pod/web-pod-13je7 --template={{.status.phase}}

# List resource information in custom columns.
```
1.4.1.76. oc idle

Idle scalable resources

Example usage

```bash
# Idle the scalable controllers associated with the services listed in to-idle.txt
$ oc idle --resource-names-file to-idle.txt
```

1.4.1.77. oc image append

Add layers to images and push them to a registry

Example usage

```bash
# Remove the entrypoint on the mysql:latest image
oc image append --from mysql:latest --to myregistry.com/myimage:latest --image '{"Entrypoint":null}"

# Add a new layer to the image
oc image append --from mysql:latest --to myregistry.com/myimage:latest layer.tar.gz

# Add a new layer to the image and store the result on disk
# This results in $(pwd)/v2/mysql/blobs,manifests
oc image append --from mysql:latest --to file://mysql.local layer.tar.gz

# Add a new layer to the image and store the result on disk in a designated directory
# This will result in $(pwd)/myregistry.com/mysql-local/v2/mysql/blobs,manifests
oc image append --from mysql:latest --to file://mysql.local --dir mysql-local layer.tar.gz

# Add a new layer to an image that is stored on disk (~/mysql-local/v2/image exists)
oc image append --from-dir ~/mysql-local --to myregistry.com/myimage:latest layer.tar.gz

# Add a new layer to an image that was mirrored to the current directory on disk ($(pwd)/v2/image exists)
oc image append --from-dir v2 --to myregistry.com/myimage:latest layer.tar.gz

# Add a new layer to a multi-architecture image for an os/arch that is different from the system's os/arch
# Note: Wildcard filter is not supported with append. Pass a single os/arch to append
oc image append --from docker.io/library/busybox:latest --filter-by-os=linux/s390x --to myregistry.com/myimage:latest layer.tar.gz
```

1.4.1.78. oc image extract

Copy files from an image to the file system
Example usage

```shell
# Extract the busybox image into the current directory
oc image extract docker.io/library/busybox:latest

# Extract the busybox image into a designated directory (must exist)
oc image extract docker.io/library/busybox:latest --path /:/tmp/busybox

# Extract the busybox image into the current directory for linux/s390x platform
# Note: Wildcard filter is not supported with extract. Pass a single os/arch to extract
oc image extract docker.io/library/busybox:latest --filter-by-os=linux/s390x

# Extract a single file from the image into the current directory
oc image extract docker.io/library/centos:7 --path /bin/bash:.

# Extract all .repo files from the image’s /etc/yum.repos.d/ folder into the current directory
oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:.

# Extract all .repo files from the image’s /etc/yum.repos.d/ folder into a designated directory (must exist)
# This results in /tmp/yum.repos.d/*.repo on local system
oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:/tmp/yum.repos.d

# Extract an image stored on disk into the current directory ($(pwd)/v2/busybox/blobs, manifests exists)
# --confirm is required because the current directory is not empty
oc image extract file://busybox:local --confirm

# Extract an image stored on disk in a directory other than $(pwd)/v2 into the current directory
# --confirm is required because the current directory is not empty ($(pwd)/busybox-mirror-dir/v2/busybox exists)
oc image extract file://busybox:local --dir busybox-mirror-dir --confirm

# Extract an image stored on disk in a directory other than $(pwd)/v2 into a designated directory (must exist)
oc image extract file://busybox:local --dir busybox-mirror-dir --path /:/tmp/busybox

# Extract the last layer in the image
oc image extract docker.io/library/centos:7[-1]

# Extract the first three layers of the image
oc image extract docker.io/library/centos:7[:3]

# Extract the last three layers of the image
oc image extract docker.io/library/centos:7[-3:]
```

1.4.1.79. oc image info

Display information about an image

Example usage

```shell
# Show information about an image
oc image info quay.io/openshift/cli:latest
```
1.4.1.80. oc image mirror

Mirror images from one repository to another

Example usage

- **Copy image to another tag**

 oc image mirror myregistry.com/myimage:latest myregistry.com/myimage:stable

- **Copy image to another registry**

 oc image mirror myregistry.com/myimage:latest docker.io/myrepository/myimage:stable

- **Copy all tags starting with mysql to the destination repository**

 oc image mirror myregistry.com/myimage:mysql* docker.io/myrepository/myimage

- **Copy image to disk, creating a directory structure that can be served as a registry**

 oc image mirror myregistry.com/myimage:latest file://myrepository/myimage:latest

- **Copy image to S3 (pull from <bucket>.s3.amazonaws.com/image:latest)**

- **Copy image to S3 without setting a tag (pull via @<digest>)**

 oc image mirror myregistry.com/myimage:latest s3://s3.amazonaws.com/<region>/<bucket>/image

- **Copy image to multiple locations**

 oc image mirror myregistry.com/myimage:latest myregistry.com/other:test \
 docker.io/myrepository/myimage:stable \
 myregistry.com/myimage:new=myregistry.com/other:target

- **Copy manifest list of a multi-architecture image, even if only a single image is found**

 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 --keep-manifest-list=true

- **Copy specific os/arch manifest of a multi-architecture image**

 # Run 'oc image info myregistry.com/myimage:latest' to see available os/arch for multi-arch images
 # Note that with multi-arch images, this results in a new manifest list digest that includes only
 # the filtered manifests
 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 --filter-by-os=os/arch

- **Copy all os/arch manifests of a multi-architecture image**

 # Run 'oc image info myregistry.com/myimage:latest' to see list of os/arch manifests that will be
1.4.1.81. oc import-image

Import images from a container image registry

Example usage

```
# Import tag latest into a new image stream
oc import-image mystream --from=registry.io/repo/image:latest --confirm

# Update imported data for tag latest in an already existing image stream
oc import-image mystream

# Update imported data for tag stable in an already existing image stream
oc import-image mystream:stable

# Update imported data for all tags in an existing image stream
oc import-image mystream --all

# Import all tags into a new image stream
oc import-image mystream --from=registry.io/repo/image --all --confirm

# Import all tags into a new image stream using a custom timeout
oc --request-timeout=5m import-image mystream --from=registry.io/repo/image --all --confirm
```

1.4.1.82. oc kustomize

Build a kustomization target from a directory or URL.

Example usage

```
# Build the current working directory
oc kustomize

# Build some shared configuration directory
oc kustomize /home/config/production

# Build from github
oc kustomize https://github.com/kubernetes-sigs/kustomize.git/examples/helloWorld?ref=v1.0.6
```

1.4.1.83. oc label

Update the labels on a resource

Example usage
Update pod 'foo' with the label 'unhealthy' and the value 'true'.
oc label pods foo unhealthy=true

Update pod 'foo' with the label 'status' and the value 'unhealthy', overwriting any existing value.
oc label --overwrite pods foo status=unhealthy

Update all pods in the namespace
oc label pods --all status=unhealthy

Update a pod identified by the type and name in "pod.json"
oc label -f pod.json status=unhealthy

Update pod 'foo' only if the resource is unchanged from version 1.
oc label pods foo status=unhealthy --resource-version=1

Update pod 'foo' by removing a label named ‘bar’ if it exists.
Does not require the --overwrite flag.
oc label pods foo bar-

1.4.1.84. oc login

Log in to a server

Example usage

Log in interactively
oc login --username=myuser

Log in to the given server with the given certificate authority file
oc login localhost:8443 --certificate-authority=/path/to/cert.crt

Log in to the given server with the given credentials (will not prompt interactively)
oc login localhost:8443 --username=myuser --password=mypass

1.4.1.85. oc logout

End the current server session

Example usage

Log out
oc logout

1.4.1.86. oc logs

Print the logs for a container in a pod

Example usage

Start streaming the logs of the most recent build of the openldap build config
oc logs -f bc/openldap

Start streaming the logs of the latest deployment of the mysql deployment config
1.4.1.87. oc new-app

Create a new application

Example usage

```
# List all local templates and image streams that can be used to create an app
oc new-app --list

# Create an application based on the source code in the current git repository (with a public remote) and a Docker image
oc new-app . --docker-image=registry/repo/langimage

# Create an application myapp with Docker based build strategy expecting binary input
oc new-app --strategy=docker --binary --name myapp

# Create a Ruby application based on the provided [image]~[source code] combination
oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

# Use the public Docker Hub MySQL image to create an app. Generated artifacts will be labeled with db=mysql
oc new-app mysql MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb -l db=mysql

# Use a MySQL image in a private registry to create an app and override application artifacts’ names
oc new-app --docker-image=myregistry.com/mycompany/mysql --name=private

# Create an application from a remote repository using its beta4 branch
oc new-app https://github.com/openshift/ruby-hello-world#beta4

# Create an application based on a stored template, explicitly setting a parameter value
oc new-app --template=ruby-helloworld-sample --param=MYSQL_USER=admin

# Create an application from a remote repository and specify a context directory
oc new-app https://github.com/youruser/yourgitrepo --context-dir=src/build

# Create an application from a remote private repository and specify which existing secret to use
oc new-app https://github.com/youruser/yourgitrepo --source-secret=yoursecret

# Create an application based on a template file, explicitly setting a parameter value
oc new-app --file=./example/myapp/template.json --param=MYSQL_USER=admin
```
1.4.1.88. oc new-build

Create a new build configuration

Example usage

Create a build config based on the source code in the current git repository (with a public # remote) and a Docker image
oc new-build . --docker-image=repo/langimage

Create a NodeJS build config based on the provided [image]~[source code] combination
oc new-build centos/nodejs-8-centos7~https://github.com/sclorg/nodejs-ex.git

Create a build config from a remote repository using its beta2 branch
oc new-build https://github.com/openshift/ruby-hello-world#beta2

Create a build config using a Dockerfile specified as an argument
oc new-build -D $'FROM centos:7
RUN yum install -y httpd'

Create a build config from a remote repository and add custom environment variables
oc new-build https://github.com/youruser/yourgitrepo --source-secret=yoursecret

Create a build config from a remote repository and inject the npmrc into a build
oc new-build https://github.com/openshift/ruby-hello-world --build-secret npmrc:.npmrc

Create a build config from a remote repository and inject environment data into a build

Create a build config that gets its input from a remote repository and another Docker image

1.4.1.89. oc new-project

Request a new project

Example usage

Create a new project with minimal information
oc new-project web-team-dev
1.4.1.90. oc observe

Observe changes to resources and react to them (experimental)

Example usage

```bash
# Create a new project with a display name and description
oc new-project web-team-dev --display-name="Web Team Development" --description="Development project for the web team."
```

```bash
# Observe changes to services
oc observe services
```

```bash
# Observe changes to services, including the clusterIP and invoke a script for each
oc observe services --template '{ .spec.clusterIP }' -- register_dns.sh
```

```bash
# Observe changes to services filtered by a label selector
oc observe namespaces -l regist-dns=true --template '{ .spec.clusterIP }' -- register_dns.sh
```

1.4.1.91. oc patch

Update field(s) of a resource

Example usage

```bash
# Partially update a node using a strategic merge patch. Specify the patch as JSON.
oc patch node k8s-node-1 -p '{"spec":{"unschedulable":true}}'
```

```bash
# Partially update a node using a strategic merge patch. Specify the patch as YAML.
oc patch node k8s-node-1 -p $'spec:\n unschedulable: true'
```

```bash
# Partially update a node identified by the type and name specified in "node.json" using strategic merge patch.
oc patch -f node.json -p '{"spec":{"unschedulable":true}}'
```

```bash
# Update a container's image; spec.containers[*].name is required because it's a merge key.
oc patch pod valid-pod -p '{"spec":{"containers":{{"name":"kubernetes-serve-hostname","image":"new image"}}}}'}
```

```bash
# Update a container's image using a json patch with positional arrays.
oc patch pod valid-pod --type=json -p=[{"op": "replace", "path": "/spec/containers/0/image", "value":"new image"}]
```

1.4.1.92. oc policy add-role-to-user

Add a role to users or service accounts for the current project

Example usage

```bash
# Add the 'view' role to user1 for the current project
oc policy add-role-to-user view user1
```
1.4.1.93. oc policy scc-review

Check which service account can create a pod

Example usage

```
# Check whether service accounts sa1 and sa2 can admit a pod with a template pod spec specified in my_resource.yaml
# Service Account specified in myresource.yaml file is ignored
oc policy scc-review -z sa1,sa2 -f my_resource.yaml

# Check whether service accounts system:serviceaccount:system:serviceaccount:bob:default can admit a pod with a template pod spec specified in my_resource.yaml
oc policy scc-review -z system:serviceaccount:system:serviceaccount:bob:default -f my_resource.yaml

# Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
oc policy scc-review -f my_resource_with_sa.yaml

# Check whether the default service account can admit the pod; default is taken since no service account is defined in myresource_with_no_sa.yaml
oc policy scc-review -f myresource_with_no_sa.yaml
```

1.4.1.94. oc policy scc-subject-review

Check whether a user or a service account can create a pod

Example usage

```
# Check whether user bob can create a pod specified in myresource.yaml
oc policy scc-subject-review -u bob -f myresource.yaml

# Check whether user bob who belongs to projectAdmin group can create a pod specified in myresource.yaml
oc policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

# Check whether a service account specified in the pod template spec in myresourcewithsa.yaml can create the pod
oc policy scc-subject-review -f myresourcewithsa.yaml
```

1.4.1.95. oc port-forward

Forward one or more local ports to a pod

Example usage

```
# Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in the pod
oc port-forward pod/mypod 5000 6000

# Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in a pod selected by the deployment
```
oc port-forward deployment/mydeployment 5000 6000

Listen on port 8443 locally, forwarding to the targetPort of the service’s port named "https" in a pod selected by the service
oc port-forward service/myservice 8443:https

Listen on port 8888 locally, forwarding to 5000 in the pod
oc port-forward pod/mypod 8888:5000

Listen on port 8888 on all addresses, forwarding to 5000 in the pod
oc port-forward --address 0.0.0.0 pod/mypod 8888:5000

Listen on port 8888 on localhost and selected IP, forwarding to 5000 in the pod
oc port-forward --address localhost,10.19.21.23 pod/mypod 8888:5000

Listen on a random port locally, forwarding to 5000 in the pod
oc port-forward pod/mypod :5000

1.4.1.96. oc process

Process a template into list of resources

Example usage

Convert the template.json file into a resource list and pass to create
oc process -f template.json | oc create -f -

Process a file locally instead of contacting the server
oc process -f template.json --local -o yaml

Process template while passing a user-defined label
oc process -f template.json -l name=mytemplate

Convert a stored template into a resource list
oc process foo

Convert a stored template into a resource list by setting/overriding parameter values
oc process foo PARM1=VALUE1 PARM2=VALUE2

Convert a template stored in different namespace into a resource list
oc process openshift//foo

Convert template.json into a resource list
cat template.json | oc process -f -

1.4.1.97. oc project

Switch to another project

Example usage

Switch to the ‘myapp’ project
oc project myapp
Display the project currently in use
oc project

1.4.1.98. oc projects
Display existing projects

Example usage

List all projects
oc projects

1.4.1.99. oc proxy
Run a proxy to the Kubernetes API server

Example usage

To proxy all of the kubernetes api and nothing else.
oc proxy --api-prefix=/

To proxy only part of the kubernetes api and also some static files.
You can get pods info with `curl localhost:8001/api/v1/pods`
oc proxy --www=/my/files --www-prefix=/static/ --api-prefix=/api/

To proxy the entire kubernetes api at a different root.
You can get pods info with `curl localhost:8001/custom/api/v1/pods`
oc proxy --api-prefix=custom/

Run a proxy to kubernetes apiserver on port 8011, serving static content from ./local/www/
oc proxy --port=8011 --www=./local/www/

Run a proxy to kubernetes apiserver on an arbitrary local port.
The chosen port for the server will be output to stdout.
oc proxy --port=0

Run a proxy to kubernetes apiserver, changing the api prefix to k8s-api
This makes e.g. the pods api available at localhost:8001/k8s-api/v1/pods/
oc proxy --api-prefix=k8s-api

1.4.1.100. oc registry info
Print information about the integrated registry

Example usage

Display information about the integrated registry
oc registry info

1.4.1.101. oc registry login
Log in to the integrated registry
Example usage

Log in to the integrated registry
oc registry login

Log in as the default service account in the current namespace
oc registry login -z default

Log in to different registry using BASIC auth credentials
oc registry login --registry quay.io/myregistry --auth-basic=USER:PASS

1.4.1.102. oc replace

Replace a resource by filename or stdin

Example usage

Replace a pod using the data in pod.json.
oc replace -f ./pod.json

Replace a pod based on the JSON passed into stdin.
cat pod.json | oc replace -f -

Update a single-container pod's image version (tag) to v4
oc get pod mypod -o yaml | sed 's/(image: myimage):.*$/\1:v4/' | oc replace -f -

Force replace, delete and then re-create the resource
oc replace --force -f ./pod.json

1.4.1.103. oc rollback

Revert part of an application back to a previous deployment

Example usage

Perform a rollback to the last successfully completed deployment for a deployment config
oc rollback frontend

See what a rollback to version 3 will look like, but do not perform the rollback
oc rollback frontend --to-version=3 --dry-run

Perform a rollback to a specific deployment
oc rollback frontend-2

Perform the rollback manually by piping the JSON of the new config back to oc
oc rollback frontend -o json | oc replace dc/frontend -f -

Print the updated deployment configuration in JSON format instead of performing the rollback
oc rollback frontend -o json

1.4.1.104. oc rollout cancel

Cancel the in-progress deployment
Example usage

```bash
# Cancel the in-progress deployment based on 'nginx'
oc rollout cancel dc/nginx
```

1.4.1.105. oc rollout history

View rollout history

Example usage

```bash
# View the rollout history of a deployment
oc rollout history dc/nginx

# View the details of deployment revision 3
oc rollout history dc/nginx --revision=3
```

1.4.1.106. oc rollout latest

Start a new rollout for a deployment config with the latest state from its triggers

Example usage

```bash
# Start a new rollout based on the latest images defined in the image change triggers
oc rollout latest dc/nginx

# Print the rolled out deployment config
oc rollout latest dc/nginx -o json
```

1.4.1.107. oc rollout pause

Mark the provided resource as paused

Example usage

```bash
# Mark the nginx deployment as paused. Any current state of
# the deployment will continue its function, new updates to the deployment will not
# have an effect as long as the deployment is paused
oc rollout pause dc/nginx
```

1.4.1.108. oc rollout restart

Restart a resource

Example usage

```bash
# Restart a deployment
oc rollout restart deployment/nginx

# Restart a daemonset
oc rollout restart daemonset/abc
```
1.4.1.109. `oc rollout resume`
Resume a paused resource

Example usage

```
# Resume an already paused deployment
oc rollout resume dc/nginx
```

1.4.1.110. `oc rollout retry`
Retry the latest failed rollout

Example usage

```
# Retry the latest failed deployment based on 'frontend'
# The deployer pod and any hook pods are deleted for the latest failed deployment
oc rollout retry dc/frontend
```

1.4.1.111. `oc rollout status`
Show the status of the rollout

Example usage

```
# Watch the status of the latest rollout
oc rollout status dc/nginx
```

1.4.1.112. `oc rollout undo`
Undo a previous rollout

Example usage

```
# Roll back to the previous deployment
oc rollout undo dc/nginx

# Roll back to deployment revision 3. The replication controller for that version must exist
oc rollout undo dc/nginx --to-revision=3
```

1.4.1.113. `oc rsh`
Start a shell session in a container

Example usage

```
# Open a shell session on the first container in pod 'foo'
oc rsh foo

# Open a shell session on the first container in pod 'foo' and namespace 'bar'
# (Note that oc client specific arguments must come before the resource name and its arguments)
oc rsh -n bar foo
```
1.4.114. oc rsync

Copy files between a local file system and a pod

Example usage

- To run the command `cat /etc/resolv.conf` inside pod `foo`:
  ```bash
  oc rsh foo cat /etc/resolv.conf
  ```

- To see the configuration of your internal registry:
  ```bash
  oc rsh dc/docker-registry cat config.yml
  ```

- To open a shell session on the container named `index` inside a pod of your job:
  ```bash
  oc rsh -c index job/sheduled
  ```

- To synchronize a local directory with a pod directory:
  ```bash
  oc rsync ./local/dir/ POD:/remote/dir
  ```

- To synchronize a pod directory with a local directory:
  ```bash
  oc rsync POD:/remote/dir/ ./local/dir
  ```

1.4.115. oc run

Run a particular image on the cluster

Example usage

- To start a `nginx` pod:
  ```bash
  oc run nginx --image=nginx
  ```

- To start a `hazelcast` pod and let the container expose port 5701:
  ```bash
  oc run hazelcast --image=hazelcast/hazelcast --port=5701
  ```

- To start a `hazelcast` pod and set environment variables `DNS_DOMAIN=cluster` and `POD_NAMESPACE=default` in the container:
  ```bash
  oc run hazelcast --image=hazelcast/hazelcast --env="DNS_DOMAIN=cluster" --env="POD_NAMESPACE=default"
  ```

- To start a `hazelcast` pod and set labels `app=hazelcast` and `env=prod` in the container:
  ```bash
  oc run hazelcast --image=hazelcast/hazelcast --labels="app=hazelcast,env=prod"
  ```

- To run the `nginx` pod using the default command, but use custom arguments (arg1 .. argN) for that command:
  ```bash
  oc run nginx --image=nginx -- <arg1> <arg2> ... <argN>
  ```
1.4.1.116. oc scale

Set a new size for a Deployment, ReplicaSet or Replication Controller

Example usage

Scale a replicaset named 'foo' to 3.
oc scale --replicas=3 rs/foo

Scale a resource identified by type and name specified in "foo.yaml" to 3.
oc scale --replicas=3 -f foo.yaml

If the deployment named mysql's current size is 2, scale mysql to 3.
oc scale --current-replicas=2 --replicas=3 deployment/mysql

Scale multiple replication controllers.
oc scale --replicas=5 rc/foo rc/bar rc/baz

Scale statefulset named 'web' to 3.
oc scale --replicas=3 statefulset/web

1.4.1.117. oc secrets link

Link secrets to a service account

Example usage

Add an image pull secret to a service account to automatically use it for pulling pod images
oc secrets link serviceaccount-name pull-secret --for=pull

Add an image pull secret to a service account to automatically use it for both pulling and pushing build images
oc secrets link builder builder-image-secret --for=pull,mount

If the cluster's serviceAccountConfig is operating with limitSecretReferences: True, secrets must be added to the pod's service account whitelist in order to be available to the pod
oc secrets link pod-sa pod-secret

1.4.1.118. oc secrets unlink

Detach secrets from a service account

Example usage

Unlink a secret currently associated with a service account
oc secrets unlink serviceaccount-name secret-name another-secret-name ...

1.4.1.119. oc serviceaccounts create-kubeconfig

Start the nginx pod using a different command and custom arguments.
oc run nginx --image=nginx --command -- <cmd> <arg1> ... <argN>
Generate a kubeconfig file for a service account

Example usage

```bash
# Create a kubeconfig file for service account 'default'
oc serviceaccounts create-kubeconfig 'default' > default.kubeconfig
```

1.4.1.120. oc serviceaccounts get-token

Get a token assigned to a service account

Example usage

```bash
# Get the service account token from service account 'default'
oc serviceaccounts get-token 'default'
```

1.4.1.121. oc serviceaccounts new-token

Generate a new token for a service account

Example usage

```bash
# Generate a new token for service account 'default'
oc serviceaccounts new-token 'default'

# Generate a new token for service account 'default' and apply
# labels 'foo' and 'bar' to the new token for identification
oc serviceaccounts new-token 'default' --labels foo=foo-value,bar=bar-value
```

1.4.1.122. oc set build-hook

Update a build hook on a build config

Example usage

```bash
# Clear post-commit hook on a build config
oc set build-hook bc/mybuild --post-commit --remove

# Set the post-commit hook to execute a test suite using a new entrypoint
oc set build-hook bc/mybuild --post-commit --command -- /bin/bash -c /var/lib/test-image.sh

# Set the post-commit hook to execute a shell script
oc set build-hook bc/mybuild --post-commit --script="/var/lib/test-image.sh param1 param2 & & /var/lib/done.sh"
```

1.4.1.123. oc set build-secret

Update a build secret on a build config

Example usage

```bash
# Clear the push secret on a build config
```
1.4.124. oc set data

Update the data within a config map or secret

Example usage

```
# Set the 'password' key of a secret
oc set data secret/foo password=this_is_secret

# Remove the 'password' key from a secret
oc set data secret/foo password-  

# Update the 'haproxy.conf' key of a config map from a file on disk
oc set data configmap/bar --from-file=../haproxy.conf

# Update a secret with the contents of a directory, one key per file
oc set data secret/foo --from-file=secret-dir
```

1.4.125. oc set deployment-hook

Update a deployment hook on a deployment config

Example usage

```
# Clear pre and post hooks on a deployment config
oc set deployment-hook dc/myapp --remove --pre --post

# Set the pre deployment hook to execute a db migration command for an application
# using the data volume from the application
oc set deployment-hook dc/myapp --pre --volumes=data -- /var/lib/migrate-db.sh

# Set a mid deployment hook along with additional environment variables
oc set deployment-hook dc/myapp --mid --volumes=data -e VAR1=value1 -e VAR2=value2 -- /var/lib/prepare-deploy.sh
```

1.4.126. oc set env

Update environment variables on a pod template

Example usage

```
# Update deployment config 'myapp' with a new environment variable
```
1.4.127. oc set image

Update image of a pod template

Example usage

Set a deployment config's nginx container image to 'nginx:1.9.1', and its busybox container image to 'busybox'.
oc set image dc/nginx busybox=busybox nginx=nginx:1.9.1

Set a deployment config's app container image to the image referenced by the imagestream tag 'openshift/ruby:2.3'.
oc set image dc/myapp app=openshift/ruby:2.3 --source=imagestreamtag

Update all deployments' and rc's nginx container's image to 'nginx:1.9.1'
oc set image deployments,rc nginx=nginx:1.9.1 --all

Update image of all containers of daemonset abc to 'nginx:1.9.1'
oc set image daemonset abc *=nginx:1.9.1

Print result (in yaml format) of updating nginx container image from local file, without hitting the server
oc set image -f path/to/file.yaml nginx=nginx:1.9.1 --local -o yaml
1.4.1.128. oc set image-lookup
Change how images are resolved when deploying applications

Example usage

Print all of the image streams and whether they resolve local names
oc set image-lookup

Use local name lookup on image stream mysql
oc set image-lookup mysql

Force a deployment to use local name lookup
oc set image-lookup deploy/mysql

Show the current status of the deployment lookup
oc set image-lookup deploy/mysql --list

Disable local name lookup on image stream mysql
oc set image-lookup mysql --enabled=false

Set local name lookup on all image streams
oc set image-lookup --all

1.4.1.129. oc set probe
Update a probe on a pod template

Example usage

Clear both readiness and liveness probes off all containers
oc set probe dc/myapp --remove --readiness --liveness

Set an exec action as a liveness probe to run 'echo ok'
oc set probe dc/myapp --liveness --echo ok

Set a readiness probe to try to open a TCP socket on 3306
oc set probe rc/mysql --readiness --open-tcp=3306

Set an HTTP startup probe for port 8080 and path /healthz over HTTP on the pod IP
oc probe dc/webapp --startup --get-url=http://:8080/healthz

Set an HTTP readiness probe for port 8080 and path /healthz over HTTP on the pod IP
oc probe dc/webapp --readiness --get-url=http://:8080/healthz

Set an HTTP readiness probe over HTTPS on 127.0.0.1 for a hostNetwork pod
oc set probe dc/router --readiness --get-url=https://127.0.0.1:1936/stats

Set only the initial-delay-seconds field on all deployments
oc set probe dc --all --readiness --initial-delay-seconds=30

1.4.1.130. oc set resources
Update resource requests/limits on objects with pod templates
Example usage

```bash
# Set a deployments nginx container CPU limits to "200m and memory to 512Mi"
oc set resources deployment nginx -c=nginx --limits=cpu=200m,memory=512Mi

# Set the resource request and limits for all containers in nginx
oc set resources deployment nginx --limits=cpu=200m,memory=512Mi --requests=cpu=100m,memory=256Mi

# Remove the resource requests for resources on containers in nginx
oc set resources deployment nginx --limits=cpu=0,memory=0 --requests=cpu=0,memory=0

# Print the result (in YAML format) of updating nginx container limits locally, without hitting the server
oc set resources -f path/to/file.yaml --limits=cpu=200m,memory=512Mi --local -o yaml
```

1.4.1.131. oc set route-backends

Update the backends for a route

Example usage

```bash
# Print the backends on the route 'web'
oc set route-backends web

# Set two backend services on route 'web' with 2/3rds of traffic going to 'a'
oc set route-backends web a=2 b=1

# Increase the traffic percentage going to b by 10%%% relative to a
oc set route-backends web --adjust b=+10%%

# Set traffic percentage going to b to 10%%% of the traffic going to a
oc set route-backends web --adjust b=10%%

# Set weight of b to 10
oc set route-backends web --adjust b=10

# Set the weight to all backends to zero
oc set route-backends web --zero
```

1.4.1.132. oc set selector

Set the selector on a resource

Example usage

```bash
# Set the labels and selector before creating a deployment/service pair.
oc create service clusterip my-svc --clusterip="None" -o yaml --dry-run | oc set selector --local -f -
  'environment=qa' -o yaml | oc create -f -
oc create deployment my-dep -o yaml --dry-run | oc label --local -f - environment=qa -o yaml | oc create -f -
```

1.4.1.133. oc set serviceaccount
Update ServiceAccount of a resource

Example usage

```
# Set deployment nginx-deployment's service account to serviceaccount1
oc set serviceaccount deployment nginx-deployment serviceaccount1

# Print the result (in YAML format) of updated nginx deployment with service account from a local file, without hitting the API server
oc set sa -f nginx-deployment.yaml serviceaccount1 --local --dry-run -o yaml
```

1.4.134. oc set subject

Update User, Group or ServiceAccount in a RoleBinding/ClusterRoleBinding

Example usage

```
# Update a cluster role binding for serviceaccount1
oc set subject clusterrolebinding admin --serviceaccount=namespace:serviceaccount1

# Update a role binding for user1, user2, and group1
oc set subject rolebinding admin --user=user1 --user=user2 --group=group1

# Print the result (in YAML format) of updating role binding subjects locally, without hitting the server
oc create rolebinding admin --role=admin --user=admin -o yaml --dry-run | oc set subject --local -f --user=foo -o yaml
```

1.4.135. oc set triggers

Update the triggers on one or more objects

Example usage

```
# Print the triggers on the deployment config 'myapp'
oc set triggers dc/myapp

# Set all triggers to manual
oc set triggers dc/myapp --manual

# Enable all automatic triggers
oc set triggers dc/myapp --auto

# Reset the GitHub webhook on a build to a new, generated secret
oc set triggers bc/webapp --from-github
oc set triggers bc/webapp --from-webhook

# Remove all triggers
oc set triggers bc/webapp --remove-all

# Stop triggering on config change
oc set triggers dc/myapp --from-config --remove

# Add an image trigger to a build config
oc set triggers bc/webapp --from-image=namespace1/image:latest
```
1.4.1.136. oc set volumes

Update volumes on a pod template

Example usage

```bash
# Add an image trigger to a stateful set on the main container
oc set triggers statefulset/db --from-image=namespaces/image:latest -c main

# List volumes defined on all deployment configs in the current project
oc set volume dc --all

# Add a new empty dir volume to deployment config (dc) 'myapp' mounted under
# /var/lib/myapp
oc set volume dc/myapp --add --mount-path=/var/lib/myapp

# Use an existing persistent volume claim (pvc) to overwrite an existing volume 'v1'
oc set volume dc/myapp --add --name=v1 -t pvc --claim-name=pvc1 --overwrite

# Remove volume 'v1' from deployment config 'myapp'
oc set volume dc/myapp --remove --name=v1

# Create a new persistent volume claim that overwrites an existing volume 'v1'
oc set volume dc/myapp --add --name=v1 -t pvc --claim-size=1G --overwrite

# Change the mount point for volume 'v1' to /data
oc set volume dc/myapp --add --name=v1 -m /data --overwrite

# Modify the deployment config by removing volume mount "v1" from container "c1"
# (and by removing the volume "v1" if no other containers have volume mounts that reference it)
oc set volume dc/myapp --remove --name=v1 --containers=c1

# Add new volume based on a more complex volume source (AWS EBS, GCE PD,
# Ceph, Gluster, NFS, ISCSI, ...)
oc set volume dc/myapp --add -m /data --source=<json-string>
```

1.4.1.137. oc start-build

Start a new build

Example usage

```bash
# Starts build from build config "hello-world"
oc start-build hello-world

# Starts build from a previous build "hello-world-1"
oc start-build --from-build=hello-world-1

# Use the contents of a directory as build input
oc start-build hello-world --from-dir=src/

# Send the contents of a Git repository to the server from tag 'v2'
oc start-build hello-world --from-repo=../hello-world --commit=v2
```
1.4.1.138. oc status

Show an overview of the current project

Example usage

See an overview of the current project
oc status

Export the overview of the current project in an svg file
oc status -o dot | dot -T svg -o project.svg

See an overview of the current project including details for any identified issues
oc status --suggest

1.4.1.139. oc tag

Tag existing images into image streams

Example usage

Tag the current image for the image stream 'openshift/ruby' and tag '2.0' into the image stream 'yourproject/ruby with tag 'tip'
oc tag openshift/ruby:2.0 yourproject/ruby:tip

Tag a specific image
oc tag openshift/ruby@sha256:6b646fa6bf5e5e4c7fa41056c27910e679c03ebe7f93e361e6515a9da7e258cc yourproject/ruby:tip

Tag an external container image
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip

Tag an external container image and request pullthrough for it
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip --reference-policy=local

Remove the specified spec tag from an image stream
oc tag openshift/origin-control-plane:latest -d

1.4.1.140. oc version

Print the client and server version information

Example usage

Start a new build for build config "hello-world" and watch the logs until the build completes or fails
oc start-build hello-world --follow

Start a new build for build config "hello-world" and wait until the build completes. It exits with a non-zero return code if the build fails
oc start-build hello-world --wait
Print the OpenShift client, kube-apiserver, and openshift-apiserver version information for the current context
`oc version`

Print the OpenShift client, kube-apiserver, and openshift-apiserver version numbers for the current context
`oc version --short`

Print the OpenShift client version information for the current context
`oc version --client`

1.4.141. oc wait

Experimental: Wait for a specific condition on one or many resources.

Example usage

```bash
# Wait for the pod "busybox1" to contain the status condition of type "Ready".
oc wait --for=condition=Ready pod/busybox1

# The default value of status condition is true, you can set false.
oc wait --for=condition=Ready=false pod/busybox1

# Wait for the pod "busybox1" to be deleted, with a timeout of 60s, after having issued the "delete" command.
oc delete pod/busybox1
oc wait --for=delete pod/busybox1 --timeout=60s
```

1.4.142. oc whoami

Return information about the current session

Example usage

```
# Display the currently authenticated user
oc whoami
```

1.4.2. Additional resources

- [OpenShift CLI administrator command reference](#)

1.5. OPENSHIFT CLI ADMINISTRATOR COMMAND REFERENCE

This reference provides descriptions and example commands for OpenShift CLI (oc) administrator commands. For developer commands, see the [OpenShift CLI developer command reference](#).

Run `oc adm help` to list all administrator commands or run `oc <command> --help` to get additional details for a specific command.

1.5.1. OpenShift CLI (oc) administrator commands

1.5.1.1. oc adm build-chain
Output the inputs and dependencies of your builds

Example usage

```
# Build the dependency tree for the 'latest' tag in <image-stream>
oc adm build-chain <image-stream>

# Build the dependency tree for the 'v2' tag in dot format and visualize it via the dot utility
oc adm build-chain <image-stream>:v2 -o dot | dot -T svg -o deps.svg

# Build the dependency tree across all namespaces for the specified image stream tag found in the 'test' namespace
oc adm build-chain <image-stream> -n test --all
```

1.5.1.2. oc adm catalog mirror

Mirror an operator-registry catalog

Example usage

```
# Mirror an operator-registry image and its contents to a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com

# Mirror an operator-registry image and its contents to a particular namespace in a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com/my-namespace

# Mirror to an airgapped registry by first mirroring to files
oc adm catalog mirror quay.io/my/image:latest file:///local/index
oc adm catalog mirror file:///local/index/my/image:latest my-airgapped-registry.com

# Configure a cluster to use a mirrored registry
oc apply -f manifests/imageContentSourcePolicy.yaml

# Edit the mirroring mappings and mirror with "oc image mirror" manually
oc adm catalog mirror --manifests-only quay.io/my/image:latest myregistry.com
oc image mirror -f manifests/mapping.txt

# Delete all ImageContentSourcePolicies generated by oc adm catalog mirror
oc delete imagecontentsourcepolicy -l operators.openshift.org/catalog=true
```

1.5.1.3. oc adm completion

Output shell completion code for the specified shell (bash or zsh)

Example usage

```
# Installing bash completion on macOS using homebrew
## If running Bash 3.2 included with macOS
brew install bash-completion
## or, if running Bash 4.1+
brew install bash-completion@2
## If oc is installed via homebrew, this should start working immediately.
## If you’ve installed via other means, you may need add the completion to your completion directory
oc completion bash > $(brew --prefix)/etc/bash_completion.d/oc
```
1.5.1.4. oc adm config current-context
Displays the current-context

Example usage
```
# Display the current-context
oc config current-context
```

1.5.1.5. oc adm config delete-cluster
Delete the specified cluster from the kubeconfig

Example usage
```
# Delete the minikube cluster
oc config delete-cluster minikube
```

1.5.1.6. oc adm config delete-context
Delete the specified context from the kubeconfig

Example usage
```
# Delete the context for the minikube cluster
oc config delete-context minikube
```

1.5.1.7. oc adm config delete-user
Delete the specified user from the kubeconfig

Example usage
1.5.1.8. oc adm config get-clusters
Display clusters defined in the kubeconfig

Example usage

```
# List the clusters oc knows about
oc config get-clusters
```

1.5.1.9. oc adm config get-contexts
Describe one or many contexts

Example usage

```
# List all the contexts in your kubeconfig file
oc config get-contexts

# Describe one context in your kubeconfig file.
oc config get-contexts my-context
```

1.5.1.10. oc adm config get-users
Display users defined in the kubeconfig

Example usage

```
# List the users oc knows about
oc config get-users
```

1.5.1.11. oc adm config rename-context
Renames a context from the kubeconfig file.

Example usage

```
# Rename the context 'old-name' to 'new-name' in your kubeconfig file
oc config rename-context old-name new-name
```

1.5.1.12. oc adm config set
Sets an individual value in a kubeconfig file

Example usage

```
# Set server field on the my-cluster cluster to https://1.2.3.4
oc config set clusters.my-cluster.server https://1.2.3.4

# Set certificate-authority-data field on the my-cluster cluster.
```
1.5.1.13. oc adm config set-cluster

Sets a cluster entry in kubeconfig

Example usage

```
# Set the user field on the e2e context entry without touching other values
oc config set-context e2e --user=cluster-admin
```

1.5.1.14. oc adm config set-context

Sets a context entry in kubeconfig

Example usage

```
# Set only the server field on the e2e cluster entry without touching other values.
oc config set-cluster e2e --server=https://1.2.3.4

# Embed certificate authority data for the e2e cluster entry
oc config set-cluster e2e --embed-certs --certificate-authority=~/.kube/e2e/kubernetes.ca.crt

# Disable cert checking for the dev cluster entry
oc config set-cluster e2e --insecure-skip-tls-verify=true

# Set custom TLS server name to use for validation for the e2e cluster entry
oc config set-cluster e2e --tls-server-name=my-cluster-name
```

1.5.1.15. oc adm config set-credentials

Sets a user entry in kubeconfig

Example usage

```
# Set the "client-key" field on the "cluster-admin" entry, without touching other values:
oc config set-credentials cluster-admin --client-key=~/.kube/admin.key

# Set basic auth for the "cluster-admin" entry
oc config set-credentials cluster-admin --username=admin --password=uXFGweU9i35qcf

# Embed client certificate data in the "cluster-admin" entry
oc config set-credentials cluster-admin --client-certificate=~/.kube/admin.crt --embed-certs=true

# Enable the Google Compute Platform auth provider for the "cluster-admin" entry
oc config set-credentials cluster-admin --auth-provider=gcp
```
1.5.16. oc adm config unset

Unsets an individual value in a kubeconfig file

Example usage

```bash
# Unset the current-context.
oc config unset current-context

# Unset namespace in foo context.
oc config unset contexts.foo.namespace
```

1.5.17. oc adm config use-context

Sets the current-context in a kubeconfig file

Example usage

```bash
# Use the context for the minikube cluster
occ config use-context minikube
```

1.5.18. oc adm config view

Display merged kubeconfig settings or a specified kubeconfig file

Example usage

```bash
# Show merged kubeconfig settings.
oc config view

# Show merged kubeconfig settings and raw certificate data.
```
1.5.1.19. oc adm cordon

Mark node as unschedulable

Example usage

```
# Mark node "foo" as unschedulable.
oc adm cordon foo
```

1.5.1.20. oc adm create-bootstrap-project-template

Create a bootstrap project template

Example usage

```
# Output a bootstrap project template in YAML format to stdout
oc adm create-bootstrap-project-template -o yaml
```

1.5.1.21. oc adm create-error-template

Create an error page template

Example usage

```
# Output a template for the error page to stdout
oc adm create-error-template
```

1.5.1.22. oc adm create-login-template

Create a login template

Example usage

```
# Output a template for the login page to stdout
oc adm create-login-template
```

1.5.1.23. oc adm create-provider-selection-template

Create a provider selection template

Example usage

```
# Output a template for the provider selection page to stdout
oc adm create-provider-selection-template
```

1.5.1.24. oc adm drain

```
oc config view --raw
# Get the password for the e2e user
oc config view -o jsonpath='{.users[?(@.name == "e2e")]}.user.password'}
```
Drain node in preparation for maintenance

Example usage

```
# Drain node "foo", even if there are pods not managed by a ReplicationController, ReplicaSet, Job, DaemonSet or StatefulSet on it.
$ oc adm drain foo --force

# As above, but abort if there are pods not managed by a ReplicationController, ReplicaSet, Job, DaemonSet or StatefulSet, and use a grace period of 15 minutes.
$ oc adm drain foo --grace-period=900
```

1.5.1.25. oc adm groups add-users

Add users to a group

Example usage

```
# Add user1 and user2 to my-group
oc adm groups add-users my-group user1 user2
```

1.5.1.26. oc adm groups new

Create a new group

Example usage

```
# Add a group with no users
oc adm groups new my-group

# Add a group with two users
oc adm groups new my-group user1 user2

# Add a group with one user and shorter output
oc adm groups new my-group user1 -o name
```

1.5.1.27. oc adm groups prune

Remove old OpenShift groups referencing missing records from an external provider

Example usage

```
# Prune all orphaned groups
oc adm groups prune --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups except the ones from the blacklist file
oc adm groups prune --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups from a list of specific groups specified in a whitelist file
oc adm groups prune --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm
```
1.5.1.28. oc adm groups remove-users
Remove users from a group

Example usage

Remove user1 and user2 from my-group
oc adm groups remove-users my-group user1 user2

1.5.1.29. oc adm groups sync
Sync OpenShift groups with records from an external provider

Example usage

Sync all groups with an LDAP server
oc adm groups sync --sync-config=/path/to/ldap-sync-config.yaml --confirm

Sync all groups except the ones from the blacklist file with an LDAP server
oc adm groups sync --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

Sync specific groups specified in a whitelist file with an LDAP server
oc adm groups sync --whitelist=/path/to/whitelist.txt --sync-config=/path/to/sync-config.yaml --confirm

Sync all OpenShift groups that have been synced previously with an LDAP server
oc adm groups sync --type=openshift --sync-config=/path/to/ldap-sync-config.yaml --confirm

Sync specific OpenShift groups if they have been synced previously with an LDAP server
oc adm groups sync groups/group1 groups/group2 groups/group3 --sync-config=/path/to/sync-config.yaml --confirm

1.5.1.30. oc adm inspect
Collect debugging data for a given resource

Example usage

Collect debugging data for the "openshift-apiserver" clusteroperator
oc adm inspect clusteroperator/openshift-apiserver

Collect debugging data for the "openshift-apiserver" and "kube-apiserver" clusteroperators
oc adm inspect clusteroperator/openshift-apiserver clusteroperator/kube-apiserver

Collect debugging data for all clusteroperators
oc adm inspect clusteroperator
Collect debugging data for all clusteroperators and clusterversions
oc adm inspect clusteroperators,clusterversions

1.5.1.31. oc adm migrate template-instances
Update template instances to point to the latest group-version-kinds

Example usage

Perform a dry-run of updating all objects
oc adm migrate template-instances

To actually perform the update, the confirm flag must be appended
oc adm migrate template-instances --confirm

1.5.1.32. oc adm must-gather
Launch a new instance of a pod for gathering debug information

Example usage

Gather information using the default plug-in image and command, writing into ./must-gather.local.
<rand>
oc adm must-gather

Gather information with a specific local folder to copy to
oc adm must-gather --dest-dir=/local/directory

Gather audit information
oc adm must-gather -- /usr/bin/gather_audit_logs

Gather information using multiple plug-in images
oc adm must-gather --image=quay.io/kubevirt/must-gather --image=quay.io/openshift/origin-must-gather

Gather information using a specific image stream plug-in
oc adm must-gather --image-stream=openshift/must-gather:latest

Gather information using a specific image, command, and pod-dir
oc adm must-gather --image=my/image:tag --source-dir=/pod/directory -- myspecial-command.sh

1.5.1.33. oc adm new-project
Create a new project

Example usage

Create a new project using a node selector
oc adm new-project myproject --node-selector="type=user-node,region=east"

1.5.1.34. oc adm node-logs

OpenShift Container Platform 4.8 CLI tools

78
Display and filter node logs

Example usage

```bash
# Show kubelet logs from all masters
oc adm node-logs --role master -u kubelet

# See what logs are available in masters in /var/logs
oc adm node-logs --role master --path=/

# Display cron log file from all masters
oc adm node-logs --role master --path=cron
```

1.5.1.35. oc adm pod-network isolate-projects

Isolate project network

Example usage

```bash
# Provide isolation for project p1
oc adm pod-network isolate-projects <p1>

# Allow all projects with label name=top-secret to have their own isolated project network
oc adm pod-network isolate-projects --selector='name=top-secret'
```

1.5.1.36. oc adm pod-network join-projects

Join project network

Example usage

```bash
# Allow project p2 to use project p1 network
oc adm pod-network join-projects --to=<p1> <p2>

# Allow all projects with label name=top-secret to use project p1 network
oc adm pod-network join-projects --to=<p1> --selector='name=top-secret'
```

1.5.1.37. oc adm pod-network make-projects-global

Make project network global

Example usage

```bash
# Allow project p1 to access all pods in the cluster and vice versa
oc adm pod-network make-projects-global <p1>

# Allow all projects with label name=share to access all pods in the cluster and vice versa
oc adm pod-network make-projects-global --selector='name=share'
```

1.5.1.38. oc adm policy add-role-to-user

Add a role to users or service accounts for the current project
Example usage

```
# Add the 'view' role to user1 for the current project
oc policy add-role-to-user view user1

# Add the 'edit' role to serviceaccount1 for the current project
oc policy add-role-to-user edit -z serviceaccount1
```

1.5.1.39. oc adm policy add-scc-to-group

Add a security context constraint to groups

Example usage

```
# Add the 'restricted' security context constraint to group1 and group2
oc adm policy add-scc-to-group restricted group1 group2
```

1.5.1.40. oc adm policy add-scc-to-user

Add a security context constraint to users or a service account

Example usage

```
# Add the 'restricted' security context constraint to user1 and user2
oc adm policy add-scc-to-user restricted user1 user2

# Add the 'privileged' security context constraint to serviceaccount1 in the current namespace
oc adm policy add-scc-to-user privileged -z serviceaccount1
```

1.5.1.41. oc adm policy scc-review

Check which service account can create a pod

Example usage

```
# Check whether service accounts sa1 and sa2 can admit a pod with a template pod spec specified in my_resource.yaml
# Service Account specified in myresource.yaml file is ignored
oc policy scc-review -z sa1,sa2 -f my_resource.yaml

# Check whether service accounts system:serviceaccount:bob:default can admit a pod with a template pod spec specified in my_resource.yaml
oc policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml

# Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
oc policy scc-review -f my_resource_with_sa.yaml

# Check whether the default service account can admit the pod; default is taken since no service account is defined in myresource_with_no_sa.yaml
oc policy scc-review -f myresource_with_no_sa.yaml
```

1.5.1.42. oc adm policy scc-subject-review
Check whether a user or a service account can create a pod

Example usage

```
# Check whether user bob can create a pod specified in myresource.yaml
oc policy scc-subject-review -u bob -f myresource.yaml

# Check whether user bob who belongs to projectAdmin group can create a pod specified in
# myresource.yaml
oc policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

# Check whether a service account specified in the pod template spec in myresourcewithsa.yaml can
# create the pod
oc policy scc-subject-review -f myresourcewithsa.yaml
```

1.5.1.43. oc adm prune builds

Remove old completed and failed builds

Example usage

```
# Dry run deleting older completed and failed builds and also including
# all builds whose associated build config no longer exists
oc adm prune builds --orphans

# To actually perform the prune operation, the confirm flag must be appended
oc adm prune builds --orphans --confirm
```

1.5.1.44. oc adm prune deployments

Remove old completed and failed deployment configs

Example usage

```
# Dry run deleting all but the last complete deployment for every deployment config
oc adm prune deployments --keep-complete=1

# To actually perform the prune operation, the confirm flag must be appended
oc adm prune deployments --keep-complete=1 --confirm
```

1.5.1.45. oc adm prune groups

Remove old OpenShift groups referencing missing records from an external provider

Example usage

```
# Prune all orphaned groups
oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups except the ones from the blacklist file
oc adm prune groups --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm
```
1.5.1.46. oc adm prune images

Remove unreferenced images

Example usage

```
# Prune all orphaned groups from a list of specific groups specified in a whitelist file
oc adm prune groups --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups from a list of specific groups specified in a whitelist
oc adm prune groups groups/group_name groups/other_name --sync-config=/path/to/ldap-sync-config.yaml --confirm
```

```
# See what the prune command would delete if only images and their referrers were more than an hour old
# and obsoleted by 3 newer revisions under the same tag were considered
oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

# To actually perform the prune operation, the confirm flag must be appended
oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

# See what the prune command would delete if we are interested in removing images
# exceeding currently set limit ranges ('openshift.io/Image')
oc adm prune images --prune-over-size-limit

# To actually perform the prune operation, the confirm flag must be appended
oc adm prune images --prune-over-size-limit --confirm

# Force the insecure http protocol with the particular registry host name
oc adm prune images --registry-url=http://registry.example.org --confirm

# Force a secure connection with a custom certificate authority to the particular registry host name
oc adm prune images --registry-url=registry.example.org --certificate-authority=/path/to/custom/ca.crt --confirm
```

1.5.1.47. oc adm release extract

Extract the contents of an update payload to disk

Example usage

```
# Use git to check out the source code for the current cluster release to DIR
oc adm release extract --git=DIR

# Extract cloud credential requests for AWS
oc adm release extract --credentials-requests --cloud=aws
```

1.5.1.48. oc adm release info

Display information about a release

Example usage
Show information about the cluster's current release
oc adm release info

Show the source code that comprises a release
oc adm release info 4.2.2 --commit-urls

Show the source code difference between two releases
oc adm release info 4.2.0 4.2.2 --commits

Show where the images referenced by the release are located
oc adm release info quay.io/openshift-release-dev/ocp-release:4.2.2 --pullspecs

1.5.49. oc adm release mirror

Mirror a release to a different image registry location

Example usage

Perform a dry run showing what would be mirrored, including the mirror objects
oc adm release mirror 4.3.0 --to myregistry.local/openshift/release \
--release-image-signature-to-dir /tmp/releases --dry-run

Mirror a release into the current directory
oc adm release mirror 4.3.0 --to file://openshift/release \
--release-image-signature-to-dir /tmp/releases

Mirror a release to another directory in the default location
oc adm release mirror 4.3.0 --to-dir /tmp/releases

Upload a release from the current directory to another server
oc adm release mirror --from file://openshift/release --to myregistry.com/openshift/release \
--release-image-signature-to-dir /tmp/releases

Mirror the 4.3.0 release to repository registry.example.com and apply signatures to connected cluster
oc adm release mirror --from=quay.io/openshift-release-dev/ocp-release:4.3.0-x86_64 \
--to=registry.example.com/your/repository --apply-release-image-signature

1.5.50. oc adm release new

Create a new OpenShift release

Example usage

Create a release from the latest origin images and push to a DockerHub repo
oc adm release new --from-image-stream=4.1 -n origin --to-image docker.io/mycompany/myrepo:latest

Create a new release with updated metadata from a previous release
oc adm release new --from-release registry.svc.ci.openshift.org/origin/release:v4.1 --name 4.1.1 \
--previous 4.1.0 --metadata ... --to-image docker.io/mycompany/myrepo:latest

Create a new release and override a single image
oc adm release new --from-release registry.svc.ci.openshift.org/origin/release:v4.1 \
1.5.1.51. oc adm taint
Update the taints on one or more nodes

Example usage

```bash
# Run a verification pass to ensure the release can be reproduced
oc adm release new --from-release registry.svc.ci.openshift.org/origin/release:v4.1

# Update node 'foo' with a taint with key 'dedicated' and value 'special-user' and effect 'NoSchedule'.
# If a taint with that key and effect already exists, its value is replaced as specified.
oc adm taint nodes foo dedicated=special-user:NoSchedule

# Remove from node 'foo' the taint with key 'dedicated' and effect 'NoSchedule' if one exists.
oc adm taint nodes foo dedicated:NoSchedule-

# Remove from node 'foo' all the taints with key 'dedicated'
oc adm taint nodes foo dedicated-

# Add a taint with key 'dedicated' on nodes having label mylabel=X
oc adm taint node -l myLabel=X dedicated=foo:PreferNoSchedule

# Add to node 'foo' a taint with key 'bar' and no value
oc adm taint nodes foo bar:NoSchedule
```

1.5.1.52. oc adm top images
Show usage statistics for images

Example usage

```bash
# Show usage statistics for images
oc adm top images
```

1.5.1.53. oc adm top imagestreams
Show usage statistics for image streams

Example usage

```bash
# Show usage statistics for image streams
oc adm top imagestreams
```

1.5.1.54. oc adm top node
Display Resource (CPU/Memory) usage of nodes

Example usage

```bash
# Show metrics for all nodes
```
1.5.1.55. **oc adm top pod**

Display Resource (CPU/Memory) usage of pods

Example usage

- # Show metrics for all pods in the default namespace
 - `oc adm top pod`

- # Show metrics for all pods in the given namespace
 - `oc adm top pod --namespace=NAMESPACE`

- # Show metrics for a given pod and its containers
 - `oc adm top pod POD_NAME --containers`

- # Show metrics for the pods defined by label name=myLabel
 - `oc adm top pod -l name=myLabel`

1.5.1.56. **oc adm uncordon**

Mark node as schedulable

Example usage

- # Mark node "foo" as schedulable.
 - `$ oc adm uncordon foo`

1.5.1.57. **oc adm verify-image-signature**

Verify the image identity contained in the image signature

Example usage

- # Verify the image signature and identity using the local GPG keychain
 - `oc adm verify-image-signature sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebbb8b613e4935228c4 --expected-identity=registry.local:5000/foo/bar:v1`

- # Verify the image signature and identity using the local GPG keychain and save the status
 - `oc adm verify-image-signature sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebbb8b613e4935228c4 --expected-identity=registry.local:5000/foo/bar:v1 --save`

- # Verify the image signature and identity via exposed registry route
 - `oc adm verify-image-signature sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebbb8b613e4935228c4 --expected-identity=registry.local:5000/foo/bar:v1 --registry-url=docker-registry.foo.com`
1.5.2. Additional resources

- OpenShift CLI developer command reference

1.6. USAGE OF OC AND KUBECTL COMMANDS

The Kubernetes command-line interface (CLI), `kubectl`, can be used to run commands against a Kubernetes cluster. Because OpenShift Container Platform is a certified Kubernetes distribution, you can use the supported `kubectl` binaries that ship with OpenShift Container Platform, or you can gain extended functionality by using the `oc` binary.

1.6.1. The oc binary

The `oc` binary offers the same capabilities as the `kubectl` binary, but it extends to natively support additional OpenShift Container Platform features, including:

- **Full support for OpenShift Container Platform resources**
 Resources such as `DeploymentConfig`, `BuildConfig`, `Route`, `ImageStream`, and `ImageStreamTag` objects are specific to OpenShift Container Platform distributions, and build upon standard Kubernetes primitives.

- **Authentication**
 The `oc` binary offers a built-in `login` command that allows authentication and enables you to work with OpenShift Container Platform projects, which map Kubernetes namespaces to authenticated users. See [Understanding authentication](#) for more information.

- **Additional commands**
 The additional command `oc new-app`, for example, makes it easier to get new applications started using existing source code or pre-built images. Similarly, the additional command `oc new-project` makes it easier to start a project that you can switch to as your default.

1.6.2. The kubectl binary

The `kubectl` binary is provided as a means to support existing workflows and scripts for new OpenShift Container Platform users coming from a standard Kubernetes environment, or for those who prefer to use the `kubectl` CLI. Existing users of `kubectl` can continue to use the binary to interact with Kubernetes primitives, with no changes required to the OpenShift Container Platform cluster.

You can install the supported `kubectl` binary by following the steps to [Install the OpenShift CLI](#). The `kubectl` binary is included in the archive if you download the binary, or is installed when you install the CLI by using an RPM.

For more information, see the `kubectl` documentation.

```
# Remove all signature verifications from the image
oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bdd7c36e1c257110fd2404beb8b613e4935228c4 --remove-all
```
CHAPTER 2. DEVELOPER CLI (ODO)

2.1. {ODO-TITLE} RELEASE NOTES

2.1.1. Notable changes and improvements in odo

- **odo** now supports Devfile v2.

- **odo create -s2i** now converts an S2I component into a devfile component. When running, **odo create --s2i <component-type> odo** now creates a converted Devfile component based on the S2I images of the specified component type. Note that this feature introduces many breaking changes, see Known Issues to learn more.

- Operator based service is now created on the cluster only after you run **odo push** and not after **odo service create** anymore.

- You can now use the **--container** flag to specify the container you want to attach storage to when running **odo storage create** command. See Adding storage to a specific container to learn the details.

- **odo catalog component describe** now returns correct JSON if the same name is used for a component in multiple registries.

- Commands that implement changes directly on a cluster now display a message informing a user that **odo push** is not required.

- When creating a component from a devfile, **odo create** now uses a default component name if the name is not specified.

- **odo** now has Telemetry. See Telemetry section to learn how to modify your Telemetry consent preferences.

- With **odo service**, you can now add or remove custom resource definitions and ServiceInstance information in your devfile.

2.1.2. Getting support

For Documentation

If you find an error or have suggestions for improving the documentation, file an issue in Bugzilla. Choose the OpenShift Container Platform product type and the Documentation component type.

For Product

If you find an error, encounter a bug, or have suggestions for improving the functionality of **odo**, file an issue in Bugzilla. Choose OpenShift Developer Tools and Services as a product type and **odo** as a component.

Provide as many details in the issue description as possible.

2.1.3. Known issues

- **Bug 1760574** A deleted namespace is listed in the **odo project get** command.
- **Bug 1760586** The `odo delete` command starts an infinite loop after a project is deleted and a component name is set.

- **Bug 1760588** The `odo service create` command crashes when run in Cygwin.

- **Bug 1760590** In Git BASH for Windows, the `odo login -u developer` command does not hide a typed password when requested.

- **Bug 1783188** In a disconnected cluster, the `odo component create` command throws an error `tag not found...` despite the component being listed in the catalog list.

- **Bug 1761440** It is not possible to create two Services of the same type in one project.

- **Bug 1821643** `odo push` does not work on the .NET component tag 2.1+.
 Workaround: specify your .NET project file by running:

  ```
  $ odo config set --env DOTNET_STARTUP_PROJECT=<path_to_your_project>
  ```

- When running `odo url create` after `odo create --s2i`, the command fails. `odo` creates a URL now directly without asking.

- Wildfly and dotnet S2I components cannot be created with `odo create`.

- `odo env set DebugPort` does not work with converted devfile components. Workaround: use `odo config set --env DEBUG_PORT`.

- `odo delete --wait` does not wait for the resources to be terminated for devfile components.

2.2. UNDERSTANDING ODO

`odo` is a CLI tool for creating applications on OpenShift Container Platform and Kubernetes. With `odo`, you can write, build, and debug applications on a cluster without the need to administer the cluster itself. Creating deployment configurations, build configurations, service routes and other OpenShift Container Platform or Kubernetes elements are all automated by `odo`.

Existing tools such as `oc` are operations-focused and require a deep understanding of Kubernetes and OpenShift Container Platform concepts. `odo` abstracts away complex Kubernetes and OpenShift Container Platform concepts allowing developers to focus on what is most important to them: code.

2.2.1. Key features

`odo` is designed to be simple and concise with the following key features:

- Simple syntax and design centered around concepts familiar to developers, such as projects, applications, and components.

- Completely client based. No additional server other than OpenShift Container Platform is required for deployment.

- Official support for Node.js and Java components.

- Partial compatibility with languages and frameworks such as Ruby, Perl, PHP, and Python.

- Detects changes to local code and deploys it to the cluster automatically, giving instant feedback to validate changes in real time.
• Lists all the available components and services from the cluster.

2.2.2. Core concepts

Project
A project is your source code, tests, and libraries organized in a separate single unit.

Application
An application is a program designed for end users. An application consists of multiple microservices or components that work individually to build the entire application. Examples of applications: a video game, a media player, a web browser.

Component
A component is a set of Kubernetes resources which host code or data. Each component can be run and deployed separately. Examples of components: Node.js, Perl, PHP, Python, Ruby.

Service
A service is software that your component links to or depends on. Examples of services: MariaDB, Jenkins, MySQL. In odo, services are provisioned from the OpenShift Service Catalog and must be enabled within your cluster.

2.2.2.1. Officially supported languages and corresponding container images

Table 2.1. Supported languages, container images, package managers, and platforms

<table>
<thead>
<tr>
<th>Language</th>
<th>Container image</th>
<th>Package manager</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node.js</td>
<td>rhsc1/nodejs-10-rhel7</td>
<td>NPM</td>
<td>amd64, s390x, ppc64le</td>
</tr>
<tr>
<td>Java</td>
<td>redhat-openjdk-18/openjdk18-openshift</td>
<td>Maven, Gradle</td>
<td>amd64, s390x, ppc64le</td>
</tr>
<tr>
<td></td>
<td>openjdk/openjdk-11-rhel8</td>
<td>Maven, Gradle</td>
<td>amd64, s390x, ppc64le</td>
</tr>
<tr>
<td></td>
<td>openjdk/openjdk-11-rhel7</td>
<td>Maven, Gradle</td>
<td>amd64, s390x, ppc64le</td>
</tr>
</tbody>
</table>

2.2.2.1.1. Listing available container images

NOTE
The list of available container images is sourced from the cluster’s internal container registry and external registries associated with the cluster.

To list the available components and associated container images for your cluster:

1. Log in to the cluster with odo:

 $ odo login -u developer -p developer
2. List the available odo supported and unsupported components and corresponding container images:

```
$ odo catalog list components
```

Example output

<table>
<thead>
<tr>
<th>Odo Devfile Components:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>java-maven</td>
</tr>
<tr>
<td>java-openliberty</td>
</tr>
<tr>
<td>java-quarkus</td>
</tr>
<tr>
<td>java-springboot</td>
</tr>
<tr>
<td>nodejs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odo OpenShift Components:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>java</td>
</tr>
<tr>
<td>dotnet</td>
</tr>
<tr>
<td>golang</td>
</tr>
<tr>
<td>httpd</td>
</tr>
<tr>
<td>nginx</td>
</tr>
<tr>
<td>nodejs</td>
</tr>
<tr>
<td>perl</td>
</tr>
<tr>
<td>php</td>
</tr>
<tr>
<td>python</td>
</tr>
<tr>
<td>ruby</td>
</tr>
<tr>
<td>wildfly</td>
</tr>
</tbody>
</table>

The TAGS column represents the available image versions, for example, 10 represents the rhoar-nodejs/nodejs-10 container image. To learn more about CLI commands, go to odo CLI reference.

2.2.2.2. Telemetry in odo

odo collects information about how odo is used: operating system, RAM, CPU size, number of cores, version of odo, errors, success/failure, and time it took for a command to complete.

You can modify your Telemetry consent by using odo preference:

- odo preference set ConsentTelemetry true to consent to Telemetry.
- odo preference unset ConsentTelemetry to disable Telemetry.
- odo preference view to verify the current preferences.

2.3. INSTALLING ODO

The following section describes how to install odo on different platforms using the CLI or the Visual Studio Code (VS Code) IDE.
NOTE

Currently, **odo** does not support installation in a restricted network environment.

You can also find the URL to the latest binaries from the OpenShift Container Platform web console by clicking the ? icon in the upper-right corner and selecting **Command Line Tools**

2.3.1. Installing odo on Linux

2.3.1.1. Binary installation

Procedure

1. Obtain the binary:
   ```bash
   ```

2. Change the permissions on the file:
   ```bash
   # chmod +x /usr/local/bin/odo
   ```

2.3.1.2. Tarball installation

Procedure

1. Obtain the tarball:
   ```bash
   # sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-amd64.tar.gz | gzip -d > /usr/local/bin/odo'
   ```

2. Change the permissions on the file:
   ```bash
   # chmod +x /usr/local/bin/odo
   ```

2.3.1.3. Installing with yum on Red Hat Enterprise Linux (RHEL)

Procedure

1. Register with Red Hat Subscription Manager:
   ```bash
   # subscription-manager register
   ```

2. Pull the latest subscription data:
   ```bash
   # subscription-manager refresh
   ```

3. List the available subscriptions:
   ```bash
   # subscription-manager list --available --matches "*OpenShift Developer Tools and Services*"
   ```
4. In the output of the previous command, find the **Pool ID** field for your OpenShift Container Platform subscription and attach the subscription to the registered system:

```
# subscription-manager attach --pool=<pool_id>
```

5. Enable the repositories required by **odo**:

```
# subscription-manager repos --enable="ocp-tools-4.8-for-rhel-8-x86_64-rpms"
```

6. Install the **odo** package:

```
# yum install odo
```

7. Verify that **odo** is now available on your system:

```
$ odo version
```

2.3.2. Installing odo on Linux on IBM Power

2.3.2.1. Binary installation

Procedure

1. Obtain the binary:

```
# curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-ppc64le -o /usr/local/bin/odo
```

2. Change the permissions on the file:

```
# chmod +x /usr/local/bin/odo
```

2.3.2.2. Tarball installation

Procedure

1. Obtain the tarball:

```
# sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux- ppc64le.tar.gz | gzip -d > /usr/local/bin/odo'
```

2. Change the permissions on the file:

```
# chmod +x /usr/local/bin/odo
```

2.3.3. Installing odo on Linux on IBM Z and LinuxONE

2.3.3.1. Binary installation
Procedure

1. Obtain the binary:

2. Change the permissions on the file:

 # chmod +x /usr/local/bin/odo

2.3.3.2. Tarball installation

Procedure

1. Obtain the tarball:

 # sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-s390x.tar.gz | gzip -d > /usr/local/bin/odo'

2. Change the permissions on the file:

 # chmod +x /usr/local/bin/odo

2.3.4. Installing odo on Windows

2.3.4.1. Binary installation

1. Download the latest odo.exe file.

2. Add the location of your odo.exe to your GOPATH/bin directory.

Setting the PATH variable for Windows 7/8
The following example demonstrates how to set up a path variable. Your binaries can be located in any location, but this example uses C:\go-bin as the location.

1. Create a folder at C:\go-bin.

2. Right click Start and click Control Panel.

3. Select System and Security and then click System.

4. From the menu on the left, select the Advanced systems settings and click the Environment Variables button at the bottom.

5. Select Path from the Variable section and click Edit.

6. Click New and type C:\go-bin into the field or click Browse and select the directory, and click OK.

Setting the PATH variable for Windows 10
Edit Environment Variables using search:

1. Click Search and type env or environment.
2. Select **Edit environment variables for your account**

3. Select **Path** from the **Variable** section and click **Edit**.

4. Click **New** and type `C:\go-bin` into the field or click **Browse** and select the directory, and click **OK**.

2.3.5. Installing odo on macOS

2.3.5.1. Binary installation

Procedure

1. Obtain the binary:
   ```bash
   ```

2. Change the permissions on the file:
   ```bash
   # chmod +x /usr/local/bin/odo
   ```

2.3.5.2. Tarball installation

Procedure

1. Obtain the tarball:
   ```bash
   ```

2. Change the permissions on the file:
   ```bash
   # chmod +x /usr/local/bin/odo
   ```

2.3.6. Installing odo on VS Code

The **OpenShift VS Code extension** uses both **odo** and the **oc** binary to interact with your OpenShift Container Platform cluster. To work with these features, install the OpenShift VS Code extension on VS Code.

Prerequisites

- You have installed VS Code.

Procedure

1. Open VS Code.

2. Launch VS Code Quick Open with **Ctrl+P**.

3. Enter the following command:
2.4. CREATING AND DEPLOYING APPLICATIONS WITH ODO

2.4.1. Working with projects

Project keeps your source code, tests, and libraries organized in a separate single unit.

2.4.1.1. Creating a project

Create a project to keep your source code, tests, and libraries organized in a separate single unit.

Procedure

1. Log in to an OpenShift Container Platform cluster:

 $ odo login -u developer -p developer

2. Create a project:

 $ odo project create myproject

Example output

✓ Project 'myproject' is ready for use
✓ New project created and now using project : myproject

2.4.2. Creating a single-component application with odo

With odo, you can create and deploy applications on clusters.

Prerequisites

- odo is installed.
- You have a running cluster. You can use CodeReady Containers (CRC) to deploy a local cluster quickly.

2.4.2.1. Creating a project

Create a project to keep your source code, tests, and libraries organized in a separate single unit.

Procedure

1. Log in to an OpenShift Container Platform cluster:

 $ odo login -u developer -p developer

2. Create a project:

 $ odo project create myproject
2.4.2.2. Creating a Node.js application with odo

To create a Node.js component, download the Node.js application and push the source code to your cluster with odo.

Procedure

1. Create a directory for your components:

   ```bash
   mkdir my_components && cd my_components
   ```

2. Download the example Node.js application:

   ```bash
   git clone https://github.com/openshift/nodejs-ex
   ```

3. Change the current directory to the directory with your application:

   ```bash
   cd <directory_name>
   ```

4. Add a component of the type Node.js to your application:

   ```bash
   odo create nodejs
   ```

 NOTE

 By default, the latest image is used. You can also explicitly specify an image version by using `odo create openshift/nodejs:8`.

5. Push the initial source code to the component:

   ```bash
   odo push
   ```

 Your component is now deployed to OpenShift Container Platform.

6. Create a URL and add an entry in the local configuration file as follows:

   ```bash
   odo url create --port 8080
   ```

7. Push the changes. This creates a URL on the cluster:

   ```bash
   odo push
   ```

8. List the URLs to check the desired URL for the component:

   ```bash
   odo url list
   ```

Example output

- ✔ Project 'myproject' is ready for use
- ✔ New project created and now using project: myproject

Example output

- ✔ Project 'myproject' is ready for use
- ✔ New project created and now using project: myproject
9. View your deployed application using the generated URL.

 $ curl <url>

2.4.2.3. Modifying your application code

You can modify your application code and have the changes applied to your application on OpenShift Container Platform.

1. Edit one of the layout files within the Node.js directory with your preferred text editor.
2. Update your component:

 $ odo push
3. Refresh your application in the browser to see the changes.

2.4.2.4. Adding storage to the application components

Use the `odo storage` command to add persistent data to your application. Examples of data that must persist include database files, dependencies, and build artifacts, such as a `.m2` Maven directory.

Procedure

1. Add the storage to your component:

 $ odo storage create <storage_name> --path=<path_to_the_directory> --size=<size>
2. Push the storage to the cluster:

 $ odo push
3. Verify that the storage is now attached to your component by listing all storage in the component:

 $ odo storage list

Example output

```
The component 'nodejs' has the following storage attached:
NAME   SIZE  PATH     STATE
mystorage  1Gi   /data  Pushed
```

4. Delete the storage from your component:

 $ odo storage delete <storage_name>
5. List all storage to verify that the storage state is **Locally Deleted**:

 $ odo storage list

Example output

```
```
2.4.2.5. Adding a custom builder to specify a build image

With OpenShift Container Platform, you can add a custom image to bridge the gap between the creation of custom images.

The following example demonstrates the successful import and use of the `redhat-openjdk-18` image:

Prerequisites

- The OpenShift CLI (oc) is installed.

Procedure

1. Import the image into OpenShift Container Platform:

   ```
   $ oc import-image openjdk18 \
   --from=registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift \ 
   --confirm
   ```

2. Tag the image to make it accessible to odo:

   ```
   $ oc annotate istag/openjdk18:latest tags=builder
   ```

3. Deploy the image with odo:

   ```
   $ odo create openjdk18 --git \n   https://github.com/openshift-evangelists/Wild-West-Backend
   ```

2.4.2.6. Connecting your application to multiple services using OpenShift Service Catalog

The OpenShift service catalog is an implementation of the Open Service Broker API (OSB API) for Kubernetes. You can use it to connect applications deployed in OpenShift Container Platform to a variety of services.

Prerequisites

- You have a running OpenShift Container Platform cluster.
- The service catalog is installed and enabled on your cluster.

Procedure

- To list the services:
To use service catalog-related operations:

2.4.2.7. Deleting an application

Use the odo app delete command to delete your application.

Procedure

1. List the applications in the current project:

 $ odo app list

 Example output

 The project '<project_name>' has the following applications:
 NAME
 app

2. List the components associated with the applications. These components will be deleted with
 the application:

 $ odo component list

 Example output

 APP NAME TYPE SOURCE STATE
 app nodejs-nodejs-ex-elyf nodejs file://./ Pushed

3. Delete the application:

 $ odo app delete <application_name>

 Example output

 ? Are you sure you want to delete the application: <application_name> from project: <project_name>

4. Confirm the deletion with Y. You can suppress the confirmation prompt using the -f flag.

2.4.3. Creating a multicomponent application with odo

odo allows you to create a multicomponent application, modify it, and link its components in an easy and
automated way.

This example describes how to deploy a multicomponent application - a shooter game. The application
consists of a front-end Node.js component and a back-end Java component.
Prerequisites

- odo is installed.
- You have a running cluster. Developers can use CodeReady Containers (CRC) to deploy a local cluster quickly.
- Maven is installed.

2.4.3.1. Creating a project
Create a project to keep your source code, tests, and libraries organized in a separate single unit.

Procedure

1. Log in to an OpenShift Container Platform cluster:
   ```
   $ odo login -u developer -p developer
   ```

2. Create a project:
   ```
   $ odo project create myproject
   ```

Example output

✓ Project 'myproject' is ready for use
✓ New project created and now using project : myproject

2.4.3.2. Deploying the back-end component
To create a Java component, import the Java builder image, download the Java application and push the source code to your cluster with odo.

Procedure

1. Import openjdk18 into the cluster:
   ```
   $ oc import-image openjdk18 \
   --from=registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift --confirm
   ```

2. Tag the image as builder to make it accessible for odo:
   ```
   $ oc annotate istag/openjdk18:latest tags=builder
   ```

3. Run odo catalog list components to see the created image:
   ```
   $ odo catalog list components
   ```

Example output

```
Odo Devfile Components:
NAME        DESCRIPTION REGISTRY
----------  --------------  --------
```


4. Create a directory for your components:

 $ mkdir my_components && cd my_components

5. Download the example back-end application:

 $ git clone https://github.com/openshift-evangelists/Wild-West-Backend backend

6. Change to the back-end source directory:

 $ cd backend

7. Check that you have the correct files in the directory:

 $ ls

 Example output

 debug.sh pom.xml src

8. Build the back-end source files with Maven to create a JAR file:

 $ mvn package

 Example output

 ...
 [INFO] -----------------------------
 [INFO] BUILD SUCCESS
 [INFO] -----------------------------
 [INFO] Total time: 2.635 s
9. Create a component configuration of Java component-type named **backend**:

```
$ odo create --s2i openjdk18 backend --binary target/wildwest-1.0.jar
```

Example output

- ✓ Validating component [1ms]

 Please use `odo push` command to create the component with source deployed

Now the configuration file **config.yaml** is in the local directory of the back-end component that contains information about the component for deployment.

10. Check the configuration settings of the back-end component in the **config.yaml** file using:

```
$ odo config view
```

Example output

COMPONENT SETTINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CURRENT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>openjdk18</td>
</tr>
<tr>
<td>Application</td>
<td>app</td>
</tr>
<tr>
<td>Project</td>
<td>myproject</td>
</tr>
<tr>
<td>SourceType</td>
<td>binary</td>
</tr>
<tr>
<td>SourceLocation</td>
<td>target/wildwest-1.0.jar</td>
</tr>
<tr>
<td>Ports</td>
<td>8080/TCP,8443/TCP,8778/TCP</td>
</tr>
<tr>
<td>Name</td>
<td>backend</td>
</tr>
<tr>
<td>MinMemory</td>
<td></td>
</tr>
<tr>
<td>MaxMemory</td>
<td></td>
</tr>
<tr>
<td>DebugPort</td>
<td></td>
</tr>
<tr>
<td>Ignore</td>
<td></td>
</tr>
<tr>
<td>MinCPU</td>
<td></td>
</tr>
<tr>
<td>MaxCPU</td>
<td></td>
</tr>
</tbody>
</table>

11. Push the component to the OpenShift Container Platform cluster.

```
$ odo push
```

Example output

- ✓ Validation [6ms]

 - Configuration changes
 - ✓ Initializing component
 - ✓ Creating component [124ms]
Using **odo push**, OpenShift Container Platform creates a container to host the back-end component, deploys the container into a pod running on the OpenShift Container Platform cluster, and starts the **backend** component.

12. **Validate:**

- The status of the action in odo:

  ```
  $ odo log -f
  ```

 Example output

  ```
  : Starting WildWestApplication v1.0 on backend-app-1-9tnhc with PID 444
   (/deployments/wildwest-1.0.jar started by jboss in /deployments)
  ```

- The status of the back-end component:

  ```
  $ odo list
  ```

 Example output

  ```
  app backend openjdk18 file://target/wildwest-1.0.jar Pushed
  ```

2.4.3.3. **Deploying the front-end component**

To create and deploy a front-end component, download the Node.js application and push the source code to your cluster with **odo**.

Procedure

1. Download the example front-end application:

  ```
  $ git clone https://github.com/openshift/nodejs-ex frontend
  ```

2. Change the current directory to the front-end directory:

  ```
  $ cd frontend
  ```

3. List the contents of the directory to see that the front end is a Node.js application.

  ```
  $ ls
  ```

 Example output
NOTE

The front-end component is written in an interpreted language (Node.js); it does not need to be built.

4. Create a component configuration of Node.js component-type named `frontend`:

   ```bash
   $ odo create --s2i nodejs frontend
   
   Example output
   
   ✓ Validating component [5ms]
      Please use `odo push` command to create the component with source deployed
   
   5. Push the component to a running container.

   ```bash
 $ odo push

 Example output

 Validation
 ✓ Checking component [8ms]

 Configuration changes
 ✓ Initializing component
 ✓ Creating component [83ms]

 Pushing to component frontend of type local
 ✓ Checking files for pushing [2ms]
 ✓ Waiting for component to start [45s]
 ✓ Syncing files to the component [3s]
 ✓ Building component [18s]
 ✓ Changes successfully pushed to component

2.4.3.4. Linking both components

Components running on the cluster need to be connected to interact. OpenShift Container Platform provides linking mechanisms to publish communication bindings from a program to its clients.

Procedure

1. List all the components that are running on the cluster:

   ```bash
   $ odo list
   
   Example output
   
   OpenShift Components:
2. Link the current front-end component to the back end:

```
$ odo link backend --port 8080
```

**Example output**

✓ Component backend has been successfully linked from the component frontend

Following environment variables were added to frontend component:

- COMPONENT_BACKEND_HOST
- COMPONENT_BACKEND_PORT

The configuration information of the back-end component is added to the front-end component and the front-end component restarts.

2.4.3.5. Exposing components to the public

**Procedure**

1. Navigate to the **frontend** directory:

   ```
 $ cd frontend
   ```

2. Create an external URL for the application:

   ```
 $ odo url create frontend --port 8080
   ```

**Example output**

✓ URL frontend created for component: frontend

To create URL on the OpenShift cluster, use `odo push`

3. Apply the changes:

   ```
 $ odo push
   ```

**Example output**

Validation

✓ Checking component [21ms]

Configuration changes

✓ Retrieving component data [35ms]
✓ Applying configuration [29ms]

Applying URL changes

✓ URL frontend: http://frontend-app-myproject.192.168.42.79.nip.io created
NOTE

If an application requires permissions to the active service account to access the OpenShift Container Platform namespace and delete active pods, the following error may occur when looking at `odo log` from the back-end component:

**Message:** Forbidden! Configured service account doesn’t have access. Service account may have been revoked

To resolve this error, add permissions for the service account role:

```bash
$ oc policy add-role-to-group view system:serviceaccounts -n <project>
$ oc policy add-role-to-group edit system:serviceaccounts -n <project>
```

Do not do this on a production cluster.

2.4.3.6. Modifying the running application

**Procedure**

1. Change the local directory to the front-end directory:

   ```bash
 $ cd frontend
   ```

2. Monitor the changes on the file system using:

   ```bash
 $ odo watch
   ```

3. Edit the `index.html` file to change the displayed name for the game.

   **NOTE**

   A slight delay is possible before odo recognizes the change.

   odo pushes the changes to the front-end component and prints its status to the terminal:

   ```bash
 File /root/frontend/index.html changed
 File changed
 Pushing files...
 ✓ Waiting for component to start
 ✓ Copying files to component
 ✓ Building component
   ```

4. Refresh the application page in the web browser. The new name is now displayed.
2.4.3.7. Deleting an application

Use the `odo app delete` command to delete your application.

**Procedure**

1. List the applications in the current project:
   ```
 $ odo app list

 Example output

 The project '<project_name>' has the following applications:
 NAME
 app
   ```

2. List the components associated with the applications. These components will be deleted with the application:
   ```
 $ odo component list

 Example output

<table>
<thead>
<tr>
<th>APP</th>
<th>NAME</th>
<th>TYPE</th>
<th>SOURCE</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>app</td>
<td>nodejs-nodejs-ex-elyf</td>
<td>nodejs</td>
<td>file://./</td>
<td>Pushed</td>
</tr>
</tbody>
</table>
   ```

3. Delete the application:
   ```
 $ odo app delete <application_name>

 Example output

 ? Are you sure you want to delete the application: <application_name> from project: <project_name>
   ```

4. Confirm the deletion with Y. You can suppress the confirmation prompt using the `-f` flag.

2.4.4. Creating an application with a database

This example describes how to deploy and connect a database to a front-end application.

**Prerequisites**

- `odo` is installed.
- `oc` client is installed.
- You have a running cluster. Developers can use CodeReady Containers (CRC) to deploy a local cluster quickly.
- The Service Catalog is installed and enabled on your cluster.
NOTE
Service Catalog is deprecated on OpenShift Container Platform 4 and later.

2.4.4.1. Creating a project
Create a project to keep your source code, tests, and libraries organized in a separate single unit.

Procedure
1. Log in to an OpenShift Container Platform cluster:
   $ odo login -u developer -p developer
2. Create a project:
   $ odo project create myproject

Example output
✓ Project 'myproject' is ready for use
✓ New project created and now using project : myproject

2.4.4.2. Deploying the front-end component
To create and deploy a front-end component, download the Node.js application and push the source code to your cluster with odo.

Procedure
1. Download the example front-end application:
   $ git clone https://github.com/openshift/nodejs-ex frontend
2. Change the current directory to the front-end directory:
   $ cd frontend
3. List the contents of the directory to see that the front end is a Node.js application.
   $ ls

Example output
README.md  openshift  server.js  views
helm  package.json  tests

NOTE
The front-end component is written in an interpreted language (Node.js); it does not need to be built.
4. Create a component configuration of Node.js component-type named **frontend**: 

   $ odo create --s2i nodejs frontend  

**Example output** 

   ✓ Validating component [5ms]  
   Please use `odo push` command to create the component with source deployed 

5. Create a URL to access the frontend interface. 

   $ odo url create myurl  

**Example output** 

   ✓ URL myurl created for component: nodejs-nodejs-ex-pmdp  

6. Push the component to the OpenShift Container Platform cluster.  

   $ odo push  

**Example output** 

   Validation  
   ✓ Checking component [7ms]  

   Configuration changes  
   ✓ Initializing component  
   ✓ Creating component [134ms]  

   Applying URL changes  
   ✓ URL myurl: http://myurl-app-myproject.192.168.42.79.nip.io created  

   Pushing to component nodejs-nodejs-ex-mhbb of type local  
   ✓ Checking files for pushing [657850ns]  
   ✓ Waiting for component to start [6s]  
   ✓ Syncing files to the component [408ms]  
   ✓ Building component [7s]  
   ✓ Changes successfully pushed to component 

2.4.4.3. Deploying a database in interactive mode

odo provides a command-line interactive mode which simplifies deployment. 

**Procedure** 

- Run the interactive mode and answer the prompts: 

  $ odo service create  

**Example output**
? Which kind of service do you wish to create database
? Which database service class should we use mongodb-persistent
? Enter a value for string property DATABASE_SERVICE_NAME (Database Service Name): mongodb
? Enter a value for string property MEMORY_LIMIT (Memory Limit): 512Mi
? Enter a value for string property MONGODB_DATABASE (MongoDB Database Name): sampledb
? Enter a value for string property MONGODB_VERSION (Version of MongoDB Image): 3.2
? Enter a value for string property VOLUME_CAPACITY (Volume Capacity): 1Gi
? Provide values for non-required properties No
? How should we name your service mongodb-persistent
? Output the non-interactive version of the selected options No
? Wait for the service to be ready No
 ✓ Creating service [32ms]
 ✓ Service 'mongodb-persistent' was created
Progress of the provisioning will not be reported and might take a long time.
You can see the current status by executing 'odo service list'

NOTE

Your password or username will be passed to the front-end application as environment variables.

2.4.4.4. Deploying a database manually

1. List the available services:

   $ odo catalog list services

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>PLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>django-psql-persistent</td>
<td>default</td>
</tr>
<tr>
<td>jenkins-ephemeral</td>
<td>default</td>
</tr>
<tr>
<td>jenkins-pipeline-example</td>
<td>default</td>
</tr>
<tr>
<td>mariadb-persistent</td>
<td>default</td>
</tr>
<tr>
<td>mongodb-persistent</td>
<td>default</td>
</tr>
<tr>
<td>mysql-persistent</td>
<td>default</td>
</tr>
<tr>
<td>nodejs-mongo-persistent</td>
<td>default</td>
</tr>
<tr>
<td>postgresql-persistent</td>
<td>default</td>
</tr>
<tr>
<td>rails-psql-persistent</td>
<td>default</td>
</tr>
</tbody>
</table>

2. Choose the **mongodb-persistent** type of service and see the required parameters:

   $ odo catalog describe service mongodb-persistent

Example output

<table>
<thead>
<tr>
<th>Name</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Name</td>
<td></td>
</tr>
</tbody>
</table>
3. Pass the required parameters as flags and wait for the deployment of the database:

```
$ odo service create mongodb-persistent --plan default --wait -p DATABASE_SERVICE_NAME=mongodb -p MEMORY_LIMIT=512Mi -p MONGODB_DATABASE=sampledb -p VOLUME_CAPACITY=1Gi
```

### 2.4.4.5. Connecting the database to the front-end application

1. Link the database to the front-end service:

```
$ odo link mongodb-persistent
```

**Example output**

✓ Service mongodb-persistent has been successfully linked from the component nodejs-nodejs-ex-mhbb

Following environment variables were added to nodejs-nodejs-ex-mhbb component:
- database_name
- password
- uri
- username
- admin_password

2. See the environment variables of the application and the database in the pod:

a. Get the pod name:

```
$ oc get pods
```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mongodb-1-gsznc</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>28m</td>
</tr>
<tr>
<td>nodejs-nodejs-ex-mhbb-app-4-vkn9l</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
</tbody>
</table>
2.4.5. Creating a Java application with a database

This example describes how to deploy a Java application by using devfile and connect it to a database service.

Prerequisites

- A running cluster.

- `odo` is installed.

- A Service Binding Operator is installed in your cluster. To learn how to install Operators, contact your cluster administrator or see https://docs.openshift.com/container-platform/4.8/operator-devfile/installing_operators.html.

- A Dev4Devs PostgreSQL Operator Operator is installed in your cluster. To learn how to install Operators, contact your cluster administrator or see https://docs.openshift.com/container-platform/4.8/operator-devfile/installing_operators.html.

2.4.5.1. Creating a project

Create a project to keep your source code, tests, and libraries organized in a separate single unit.

Procedure

1. Log in to an OpenShift Container Platform cluster:
2. Create a project:

```
$ odo project create myproject
```

**Example output**

- ✔ Project 'myproject' is ready for use
- ✔ New project created and now using project : myproject

### 2.4.5.2. Creating a Java MicroServices JPA application

With `odo`, you can create and manage a sample Java MicroServices JPA application.

**Procedure**

1. Clone the sample application:

```
$ git clone -b jpa-sample https://github.com/redhat-developer/application-stack-samples.git
```

2. Navigate to the application directory:

```
$ cd ./application-stack-samples/jpa
```

3. Initialize the project:

```
$ odo create java-openliberty java-application
```

4. Push the application to the cluster:

```
$ odo push
```

The application is now deployed to the cluster.

5. View the status of the cluster by streaming the OpenShift logs to the terminal:

```
$ odo log
```

Notice the test failures and **UnknownHostException** error. This is because your application does not have a database yet:

```
[INFO] [err] java.net.UnknownHostException: ${DATABASE_CLUSTERIP}
[INFO] [err] at java.base/java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:220)
[INFO] [err] at java.base/java.net.SocksSocketImpl.connect(SocksSocketImpl.java:403)
[INFO] [err] at java.base/java.net.Socket.connect(Socket.java:609)
[INFO] [err] at org.postgresql.core.PGStream.<init>(PGStream.java:68)
[INFO] [err] at org.postgresql.core.v3.ConnectionFactoryImpl.openConnectionImpl(ConnectionFactoryImpl.java:144)
[INFO] [err] ... 86 more
```
6. Create an ingress URL to access the application:
   
   ```
 $ odo url create --port 8080
   ```

7. Push the changes to your cluster:
   
   ```
 $ odo push
   ```

8. Display the created URL:
   
   ```
 $ odo url list
   ```

**Example output**

```
Found the following URLs for component mysboproj

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>URL</th>
<th>PORT</th>
<th>SECURE</th>
<th>KIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>java-application-8080</td>
<td>Pushed</td>
<td>http://java-application-8080.apps-crc.testing</td>
<td>8080</td>
<td>false</td>
<td>ingress</td>
</tr>
</tbody>
</table>
```

The application is now deployed to the cluster and you can access it by using the URL that is created.

9. Use the URL to navigate to the `CreatePerson.xhtml` data entry page and enter a username and age by using the form. Click **Save**.

   Note that you cannot see the data by clicking the **View Persons Record List** link since your application does not have a database connected yet.

2.4.5.3. Creating a database with `odo`
To create a database, you must have an access to the database Operator. For this example, Dev4Devs PostgreSQL Operator is used.

Procedure

1. View the list of the services in your project:

   $ odo catalog list services

Example output

<table>
<thead>
<tr>
<th>Operators available in the cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>postgresql-operator.v0.1.1</td>
</tr>
<tr>
<td>CRDs</td>
</tr>
<tr>
<td>Backup, Database</td>
</tr>
</tbody>
</table>

2. Store the YAML of the service in a file:

   $ odo service create postgresql-operator.v0.1.1/Database --dry-run > db.yaml

3. Add the following values under the `metadata:` section in the `db.yaml` file:

   ```yaml
 name: sampledatabase
 annotations:
 service.binding/db.name: 'path={.spec.databaseName}'
 service.binding/db.password: 'path={.spec.databasePassword}'
 service.binding/db.user: 'path={.spec.databaseUser}'
   ```

   This configuration ensures that when a database service is started, appropriate annotations are added to it. Annotations help the Service Binding Operator in injecting the values for `databaseName`, `databasePassword`, and `databaseUser` into the application.

4. Change the following values under the `spec:` section of the YAML file:

   ```yaml
 databaseName: "sampledb"
 databasePassword: "samplepwd"
 databaseUser: "sampleuser"
   ```

5. Create a database from the YAML file:

   $ odo service create --from-file db.yaml

   A database instance is now present in your project.

2.4.5.4. Connecting a Java application to a database

To connect your Java application to the database, use the `odo link` command.

Procedure

1. Display the list of services:

   $ odo service list
Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database/sampledatabase</td>
<td>6m31s</td>
</tr>
</tbody>
</table>

2. Connect the database to your application:

```bash
$ odo link Database/sampledatabase
```

3. Push the changes to your cluster:

```bash
$ odo push
```

After the link has been created and pushed, a secret that contains the database connection data is created.

4. Check the component for values injected from the database service:

```bash
$ odo exec -- bash -c 'env | grep DATABASE'
```

```
declare -x DATABASE_CLUSTERIP="10.106.182.173"
declare -x DATABASE_DB_NAME="sampledb"
declare -x DATABASE_DB_PASSWORD="samplepwd"
declare -x DATABASE_DB_USER="sampleuser"
```

5. Open the URL of your Java application and navigate to the `CreatePerson.xhtml` data entry page. Enter a username and age by using the form. Click **Save**. Note that now you can see the data in the database by clicking the **View Persons Record List** link.

You can also use a CLI tool such as `psql` to manipulate the database.

### 2.4.6. Using devfiles in odo

#### 2.4.6.1. About the devfile in odo

The devfile is a portable file that describes your development environment. With the devfile, you can define a portable developmental environment without the need for reconfiguration.

With the devfile, you can describe your development environment, such as the source code, IDE tools, application runtimes, and predefined commands. To learn more about the devfile, see the [devfile documentation](#).

With `odo`, you can create components from the devfiles. When creating a component by using a devfile, `odo` transforms the devfile into a workspace consisting of multiple containers that run on OpenShift Container Platform, Kubernetes, or Docker. `odo` automatically uses the default devfile registry but users can add their own registries.

#### 2.4.6.2. Creating a Java application by using a devfile

**Prerequisites**

- You have installed `odo`. 


You must know your ingress domain cluster name. Contact your cluster administrator if you do not know it. For example, `apps-crc.testing` is the cluster domain name for Red Hat CodeReady Containers.

**NOTE**
Currently odo does not support creating devfile components with `--git` or `--binary` flags. You can only create S2I components when using these flags.

### 2.4.6.2.1. Creating a project

Create a project to keep your source code, tests, and libraries organized in a separate single unit.

**Procedure**

1. Log in to an OpenShift Container Platform cluster:
   ```
 $ odo login -u developer -p developer
   ```
2. Create a project:
   ```
 $ odo project create myproject
   ```

**Example output**

- Project 'myproject' is ready for use
- ✓ New project created and now using project : myproject

### 2.4.6.2.2. Listing available devfile components

With odo, you can display all the components that are available for you on the cluster. Components that are available depend on the configuration of your cluster.

**Procedure**

1. To list available devfile components on your cluster, run:
   ```
 $ odo catalog list components
   ```

The output lists the available odo components:

<table>
<thead>
<tr>
<th>Odo Devfile Components:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>java-maven</td>
<td>Upstream Maven and OpenJDK 11</td>
</tr>
<tr>
<td>java-openliberty</td>
<td>Open Liberty microservice in Java</td>
</tr>
<tr>
<td>java-quarkus</td>
<td>Upstream Quarkus with Java+GraalVM</td>
</tr>
<tr>
<td>java-springboot</td>
<td>Spring Boot® using Java</td>
</tr>
<tr>
<td>nodejs</td>
<td>Stack with NodeJS 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odo OpenShift Components:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>PROJECT</td>
</tr>
<tr>
<td>java</td>
<td>openshift</td>
</tr>
<tr>
<td>dotnet</td>
<td>openshift</td>
</tr>
</tbody>
</table>
2.4.6.2.3. Deploying a Java application using a devfile

In this section, you will learn how to deploy a sample Java project that uses Maven and Java 8 JDK using a devfile.

Procedure

1. Create a directory to store the source code of your component:

   ```
 $ mkdir <directory-name>
   ```

2. Create a component configuration of Spring Boot component type named `myspring` and download its sample project:

   ```
 $ odo create java-springboot myspring --starter
   ```

   The previous command produces the following output:

   Validation
   ✓ Checking devfile compatibility [195728ns]
   ✓ Creating a devfile component from registry: DefaultDevfileRegistry [170275ns]
   ✓ Validating devfile component [281940ns]

   Please use `odo push` command to create the component with source deployed

   The `odo create` command downloads the associated `devfile.yaml` file from the recorded devfile registries.

3. List the contents of the directory to confirm that the devfile and the sample Java application were downloaded:

   ```
 $ ls
   ```

   The previous command produces the following output:

   ```
 README.md devfile.yaml pom.xml src
   ```

4. Create a URL to access the deployed component:

   ```
 $ odo url create --host apps-crc.testing
   ```
The previous command produces the following output:

- URL myspring-8080.apps-crc.testing created for component: myspring

To apply the URL configuration changes, please use odo push

### NOTE
You must use your cluster host domain name when creating the URL.

5. Push the component to the cluster:

```
$ odo push
```

The previous command produces the following output:

- Validation
  - Validating the devfile [81808ns]

- Creating Kubernetes resources for component myspring
  - Waiting for component to start [5s]

- Applying URL changes
  - URL myspring-8080: http://myspring-8080.apps-crc.testing created

- Syncing to component myspring
  - Checking files for pushing [2ms]
  - Syncing files to the component [1s]

- Executing devfile commands for component myspring
  - Executing devbuild command "/artifacts/bin/build-container-full.sh" [1m]
  - Executing devrun command "/artifacts/bin/start-server.sh" [2s]

- Pushing devfile component myspring
  - Changes successfully pushed to component

6. List the URLs of the component to verify that the component was pushed successfully:

```
$ odo url list
```

The previous command produces the following output:

```
Found the following URLs for component myspring
NAME URL PORT SECURE
myspring-8080 http://myspring-8080.apps-crc.testing 8080 false
```

7. View your deployed application by using the generated URL:

```
$ curl http://myspring-8080.apps-crc.testing
```

### 2.4.6.3. Converting an S2I component into a devfile component
With **odo**, you can create both Source-to-Image (S2I) and devfile components. If you have an existing S2I component, you can convert it into a devfile component using the **odo utils** command.

**Procedure**

Run all the commands from the S2I component directory.

1. Run the **odo utils convert-to-devfile** command, which creates **devfile.yaml** and **env.yaml** based on your component:

   ```
 $ odo utils convert-to-devfile
   ```

2. Push the component to your cluster:

   ```
 $ odo push
   ```

   **NOTE**

   If the devfile component deployment failed, delete it by running: **odo delete -a**

3. Verify that the devfile component deployed successfully:

   ```
 $ odo list
   ```

4. Delete the S2I component:

   ```
 $ odo delete --s2i
   ```

**2.4.7. Working with storage**

Persistent storage keeps data available between restarts of **odo**.

**2.4.7.1. Adding storage to the application components**

Use the **odo storage** command to add persistent data to your application. Examples of data that must persist include database files, dependencies, and build artifacts, such as a **.m2** Maven directory.

**Procedure**

1. Add the storage to your component:

   ```
 $ odo storage create <storage_name> --path=<path_to_the_directory> --size=<size>
   ```

2. Push the storage to the cluster:

   ```
 $ odo push
   ```

3. Verify that the storage is now attached to your component by listing all storage in the component:

   ```
 $ odo storage list
   ```
4. Delete the storage from your component:

   $ odo storage delete <storage_name>

5. List all storage to verify that the storage state is **Locally Deleted**:

   $ odo storage list

   **Example output**

   The component 'nodejs' has the following storage attached:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>PATH</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mystorage</td>
<td>1Gi</td>
<td>/data</td>
<td>Pushed</td>
</tr>
</tbody>
</table>

   **Example output**

   The component 'nodejs' has the following storage attached:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>PATH</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mystorage</td>
<td>1Gi</td>
<td>/data</td>
<td>Locally Deleted</td>
</tr>
</tbody>
</table>

6. Push the changes to the cluster:

   $ odo push

### 2.4.7.2. Adding storage to a specific container

If your devfile has multiple containers, you can use the **--container** flag to specify the container you want to attach storage to.

**Procedure**

1. Create a devfile with multiple containers:

   ```yaml
 components:
 - name: runtime
 container:
 image: registry.access.redhat.com/ubi8/nodejs:12-1-36
 memoryLimit: 1024Mi
 endpoints:
 - name: "3000-tcp"
 targetPort: 3000
 mountSources: true
 - name: funtime
 container:
 image: registry.access.redhat.com/ubi8/nodejs:12-1-36
 memoryLimit: 1024Mi
   ```

   **1** The *runtime* container.

   **2** The *funtime* container.

2. To create storage for the *runtime* container:
$ odo storage create store --path /data --size 1Gi --container runtime

Output of the command:

✓ Added storage store to nodejs-testing-xnfg
Please use `odo push` command to make the storage accessible to the component

3. Verify that the storage is now attached to your component by listing all storage in the component:

$ odo storage list

Example output

The component 'nodejs-testing-xnfg' has the following storage attached:

```
NAME SIZE PATH CONTAINER STATE
store 1Gi /data runtime Not Pushed
```

4. Push the changes to the cluster:

$ odo push

2.4.7.3. Switching between ephemeral and persistent storage

You can switch between ephemeral and persistent storage in your project by using the odo preference command. odo preference modifies the global preference in your cluster.

When persistent storage is enabled, the cluster stores the information between the restarts.

When ephemeral storage is enabled, the cluster does not store the information between the restarts.

Ephemeral storage is enabled by default.

Procedure

1. See the preference currently set in your project:

$ odo preference view

Example output

```
PARAMETER CURRENT_VALUE
UpdateNotification
NamePrefix
Timeout
BuildTimeout
PushTimeout
Experimental
PushTarget
Ephemeral true
```

2. To unset the ephemeral storage and set the persistent storage:
To set the ephemeral storage again:

```bash
$ odo preference set Ephemeral false
```

3. To set the ephemeral storage again:

```bash
$ odo preference set Ephemeral true
```

The `odo preference` command changes the global settings of all your currently deployed components as well as ones you will deploy in future.

4. Run `odo push` to make `odo` create a specified storage for your component:

```bash
$ odo push
```

Additional resources

- Understanding ephemeral storage
- Understanding persistent storage

### 2.4.8. Deleting applications

You can delete applications and all components associated with the application in your project.

#### 2.4.8.1. Deleting an application

Use the `odo app delete` command to delete your application.

**Procedure**

1. List the applications in the current project:

   ```bash
 $ odo app list
   ```

   **Example output**

   ```
 The project '<project_name>' has the following applications:
 NAME
 app
   ```

2. List the components associated with the applications. These components will be deleted with the application:

   ```bash
 $ odo component list
   ```

   **Example output**

   ```
 APP NAME TYPE SOURCE STATE
 app nodejs-nodejs-ex-elyf nodejs file://./ Pushed
   ```

3. Delete the application:

   ```bash
 $ odo app delete <application_name>
   ```
Example output

? Are you sure you want to delete the application: <application_name> from project: <project_name>

4. Confirm the deletion with Y. You can suppress the confirmation prompt using the -f flag.

2.4.9. Debugging applications in odo

With odo, you can attach a debugger to remotely debug your application. This feature is only supported for NodeJS and Java components.

Components created with odo run in the debug mode by default. A debugger agent runs on the component, on a specific port. To start debugging your application, you must start port forwarding and attach the local debugger bundled in your Integrated development environment (IDE).

2.4.9.1. Debugging an application

You can debug your application in odo with the odo debug command.

Procedure

1. Download the sample application that contains the necessary debugrun step within its devfile:

   $ odo create nodejs --starter

   Example output

   Validation
   ✓ Checking devfile existence [11498ns]
   ✓ Checking devfile compatibility [15714ns]
   ✓ Creating a devfile component from registry: DefaultDevfileRegistry [17565ns]
   ✓ Validating devfile component [113876ns]

   Starter Project
   ✓ Downloading starter project nodejs-starter from https://github.com/odo-devfiles/nodejs-ex.git [428ms]

   Please use `odo push` command to create the component with source deployed

2. Push the application with the --debug flag, which is required for all debugging deployments:

   $ odo push --debug

   Example output

   Validation
   ✓ Validating the devfile [29916ns]

   Creating Kubernetes resources for component nodejs
   ✓ Waiting for component to start [38ms]
2.4.9.2 Configuring debugging parameters

You can specify a remote port with `odo config` command and a local port with the `odo debug` command.

**Procedure**

- To set a remote port on which the debugging agent should run, run:
$ odo config set DebugPort 9292

NOTE
You must redeploy your component for this value to be reflected on the component.

- To set a local port to port forward, run:

$ odo debug port-forward --local-port 9292

NOTE
The local port value does not persist. You must provide it every time you need to change the port.

2.4.10. Sample applications

odo offers partial compatibility with any language or runtime listed within the OpenShift catalog of component types. For example:

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROJECT</th>
<th>TAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dotnet</td>
<td>openshift</td>
<td>3.1,latest</td>
</tr>
<tr>
<td>httpd</td>
<td>openshift</td>
<td>2.4,latest</td>
</tr>
<tr>
<td>java</td>
<td>openshift</td>
<td>8,latest</td>
</tr>
<tr>
<td>nginx</td>
<td>openshift</td>
<td>1.10,1.12,1.8,latest</td>
</tr>
<tr>
<td>nodejs</td>
<td>openshift</td>
<td>0.10,4,6,8,latest</td>
</tr>
<tr>
<td>perl</td>
<td>openshift</td>
<td>5.16,5.20,5.24,latest</td>
</tr>
<tr>
<td>php</td>
<td>openshift</td>
<td>5.5,5.6,7.0,7.1,latest</td>
</tr>
<tr>
<td>python</td>
<td>openshift</td>
<td>2.7,3,3.3,3.4,3.5,3.6,latest</td>
</tr>
<tr>
<td>ruby</td>
<td>openshift</td>
<td>2.0,2.2,2.3,2.4,latest</td>
</tr>
<tr>
<td>wildfly</td>
<td>openshift</td>
<td>10.0,10.1,8.1,9.0,latest</td>
</tr>
</tbody>
</table>

NOTE
For odo Java and Node.js are the officially supported component types. Run odo catalog list components to verify the officially supported component types.

To access the component over the web, create a URL using odo url create.

2.4.10.1. Examples from Git repositories

2.4.10.1.1. httpd

This example helps build and serve static content using httpd on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the Apache HTTP Server container image repository.

$ odo create httpd --git https://github.com/openshift/httpd-ex.git
2.4.10.1.2. java

This example helps build and run fat JAR Java applications on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the Java S2I Builder image.

```bash
$ odo create java --git https://github.com/spring-projects/spring-petclinic.git
```

2.4.10.1.3. nodejs

Build and run Node.js applications on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the Node.js 8 container image.

```bash
$ odo create nodejs --git https://github.com/openshift/nodejs-ex.git
```

2.4.10.1.4. perl

This example helps build and run Perl applications on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the Perl 5.26 container image.

```bash
$ odo create perl --git https://github.com/openshift/dancer-ex.git
```

2.4.10.1.5. php

This example helps build and run PHP applications on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the PHP 7.1 Docker image.

```bash
$ odo create php --git https://github.com/openshift/cakephp-ex.git
```

2.4.10.1.6. python

This example helps build and run Python applications on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the Python 3.6 container image.

```bash
$ odo create python --git https://github.com/openshift/django-ex.git
```

2.4.10.1.7. ruby

This example helps build and run Ruby applications on CentOS 7. For more information about using this builder image, including OpenShift Container Platform considerations, see the Ruby 2.5 container image.

```bash
$ odo create ruby --git https://github.com/openshift/ruby-ex.git
```

2.4.10.2. Binary examples

2.4.10.2.1. java

Java can be used to deploy a binary artifact as follows:
2.5. USING ODO IN A RESTRICTED ENVIRONMENT

2.5.1. About odo in a restricted environment

To run odo in a disconnected cluster or a cluster provisioned in a restricted environment, you must ensure that a cluster administrator has created a cluster with a mirrored registry.

To start working in a disconnected cluster, you must first push the odo init image to the registry of the cluster and then overwrite the odo init image path using the ODO_BOOTSTRAPPER_IMAGE environment variable.

After you push the odo init image, you must mirror a supported builder image from the registry, overwrite a mirror registry and then create your application. A builder image is necessary to configure a runtime environment for your application and also contains the build tool needed to build your application, for example npm for Node.js or Maven for Java. A mirror registry contains all the necessary dependencies for your application.

Additional resources

- Mirroring images for a disconnected installation
- Accessing the registry

2.5.2. Pushing the odo init image to the restricted cluster registry

Depending on the configuration of your cluster and your operating system you can either push the odo init image to a mirror registry or directly to an internal registry.

2.5.2.1. Prerequisites

- Install oc on the client operating system.
- Install odo on the client operating system.
- Access to a restricted cluster with a configured internal registry or a mirror registry.

2.5.2.2. Pushing the odo init image to a mirror registry

Depending on your operating system, you can push the odo init image to a cluster with a mirror registry as follows:

2.5.2.2.1. Pushing the init image to a mirror registry on Linux

Procedure

1. Use base64 to encode the root certification authority (CA) content of your mirror registry:

   $ git clone https://github.com/spring-projects/spring-petclinic.git
   $ cd spring-petclinic
   $ mvn package
   $ odo create java test3 --binary target/*.jar
   $ odo push
2.5.2.2.2. Pushing the init image to a mirror registry on MacOS

Procedure

1. Use **base64** to encode the root certification authority (CA) content of your mirror registry:

   ```bash
 $ echo <content_of_additional_ca> | base64 --decode > disconnect-ca.crt
   ```

2. Copy the encoded root CA certificate to the appropriate location:

   ```bash
 $ sudo cp ./disconnect-ca.crt /etc/pki/ca-trust/source/anchors/<mirror-registry>.crt
   ```

3. Trust a CA in your client platform and log into the OpenShift Container Platform mirror registry:

   ```bash
 $ sudo update-ca-trust enable && sudo systemctl daemon-reload && sudo systemctl restart /docker && docker login <mirror-registry>:5000 -u <username> -p <password>
   ```

4. Mirror the **odo** init image:

   ```bash
 $ oc image mirror registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 <mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>
   ```

5. Override the default **odo** init image path by setting the **ODO_BOOTSTRAPPER_IMAGE** environment variable:

   ```bash
 $ export ODO_BOOTSTRAPPER_IMAGE=<mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>
   ```

2.5.2.2.3. Pushing the init image to a mirror registry on Windows

```bash
$ echo <content_of_additional_ca> | base64 --decode > disconnect-ca.crt

$ docker login <mirror-registry>:5000 -u <username> -p <password>

$ oc image mirror registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
<mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>

$ export ODO_BOOTSTRAPPER_IMAGE=<mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>
```
Procedure

1. Use `base64` to encode the root certification authority (CA) content of your mirror registry:

   ```
 PS C:\> echo <content_of_additional_ca> | base64 --decode > disconnect-ca.crt
   ```

2. As an administrator, copy the encoded root CA certificate to the appropriate location by executing the following command:

   ```
 PS C:\\WINDOWS\system32> certutil -addstore -f "ROOT" disconnect-ca.crt
   ```

3. Trust a CA in your client platform and log into the OpenShift Container Platform mirror registry:
   a. Restart Docker using the Docker UI.
   b. Run the following command:

   ```
 PS C:\\WINDOWS\system32> docker login <mirror-registry>:5000 -u <username> -p <password>
   ```

4. Mirror the `odo` init image:

   ```
 PS C:\> oc image mirror registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag> <mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>
   ```

5. Override the default `odo` init image path by setting the `ODO_BOOTSTRAPPER_IMAGE` environment variable:

   ```
 PS C:\> $env:ODO_BOOTSTRAPPER_IMAGE="<mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>"
   ```

2.5.2.3. Pushing the `odo` init image to an internal registry directly

If your cluster allows images to be pushed to the internal registry directly, push the `odo` init image to the registry as follows:

2.5.2.3.1. Pushing the init image directly on Linux

Procedure

1. Enable the default route:

   ```
 $ oc patch configs.imageregistry.operator.openshift.io cluster -p "{"spec": {"defaultRoute":true}}" --type=merge -n openshift-image-registry
   ```

2. Get a wildcard route CA:

   ```
 $ oc get secret router-certs-default -n openshift-ingress -o yaml
   ```

   Example output

   ```yaml
 apiVersion: v1
   ```
3. Use `base64` to encode the root certification authority (CA) content of your mirror registry:

   ```bash
 $ echo < tls.crt > | base64 --decode > ca.crt
   ```

4. Trust a CA in your client platform:

   ```bash
 $ sudo cp ca.crt /etc/pki/ca-trust/source/anchors/externalroute.crt && sudo update-ca-trust enable && sudo systemctl daemon-reload && sudo systemctl restart docker
   ```

5. Log into the internal registry:

   ```bash
 $ oc get route -n openshift-image-registry
 NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
 default-route <registry_path> image-registry <all> reencrypt None
 $ docker login <registry_path> -u kubeadmin -p $(oc whoami -t)
 $ docker pull registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 $ docker tag registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
 $ docker push <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
 $ export ODO_BOOTSTRAPPER_IMAGE=<registry_path>/openshiftdo/odo-init-image-rhel7:1.0.1
   ```

6. Push the `odo` init image:

   ```bash
 $ docker pull registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 $ docker tag registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
 $ docker push <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
   ```

7. Override the default `odo` init image path by setting the `ODO_BOOTSTRAPPER_IMAGE` environment variable:

   ```bash
 $ export ODO_BOOTSTRAPPER_IMAGE=<registry_path>/openshiftdo/odo-init-image-rhel7:1.0.1
   ```

2.5.2.3.2. Pushing the init image directly on MacOS

**Procedure**

1. Enable the default route:

   ```bash
 $ oc patch configs.imageregistry.operator.openshift.io cluster -p '{"spec":
 {"defaultRoute":true}}' --type=merge -n openshift-image-registry
   ```

2. Get a wildcard route CA:

   ```bash
 $ oc get secret router-certs-default -n openshift-ingress -o yaml
   ```
Example output

```yaml
apiVersion: v1
data:
tls.crt: """"
tls.key: """
kind: Secret
metadata:
[...]
type: kubernetes.io/tls
```

3. Use `base64` to encode the root certification authority (CA) content of your mirror registry:

   ```bash
 $ echo <tls.crt> | base64 --decode > ca.crt
   ```

4. Trust a CA in your client platform:

   ```bash
 $ sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain ca.crt
   ```

5. Log into the internal registry:

   ```bash
 $ oc get route -n openshift-image-registry
 NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
 default-route <registry_path> image-registry <all> reencrypt None
 $ docker login <registry_path> -u kubeadmin -p $(oc whoami -t)
   ```

6. Push the `odo` init image:

   ```bash
 $ docker pull registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 $ docker tag registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
 <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
 $ docker push <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
   ```

7. Override the default `odo` init image path by setting the `ODO_BOOTSTRAPPER_IMAGE` environment variable:

   ```bash
 $ export ODO_BOOTSTRAPPER_IMAGE=<registry_path>/openshiftdo/odo-init-image-rhel7:1.0.1
   ```

2.5.2.3.3. Pushing the init image directly on Windows

Procedure

1. Enable the default route:

   ```bash
 PS C:\> oc patch configs.imageregistry.operator.openshift.io cluster -p '{"spec":
 {"defaultRoute":true}}' --type=merge -n openshift-image-registry
   ```

2. Get a wildcard route CA:
Example output

```yaml
apiVersion: v1
data:
tls.crt: "Crowd ***
tls.key: "Crowd**
kind: Secret
metadata:
[...]
type: kubernetes.io/tls
```

3. Use `base64` to encode the root certification authority (CA) content of your mirror registry:

```powershell
PS C:\> echo <tls.crt> | base64 --decode > ca.crt
```

4. As an administrator, trust a CA in your client platform by executing the following command:

```powershell
PS C:\WINDOWS\system32> certutil -addstore -f "ROOT" ca.crt
```

5. Log into the internal registry:

```powershell
PS C:\> oc get route -n openshift-image-registry
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
default-route <registry_path> image-registry <all> reencrypt None

PS C:\> docker login <registry_path> -u kubeadmin -p $(oc whoami -t)
```

6. Push the `odo` init image:

```powershell
PS C:\> docker pull registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
PS C:\> docker tag registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
<registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
PS C:\> docker push <registry_path>/openshiftdo/odo-init-image-rhel7:<tag>
```

7. Override the default `odo` init image path by setting the `ODO_BOOTSTRAPPER_IMAGE` environment variable:

```powershell
PS C:\> $env:ODO_BOOTSTRAPPER_IMAGE="<registry_path>/openshiftdo/odo-init-image-rhel7:<tag>"
```

### 2.5.3. Creating and deploying a component to the disconnected cluster

After you push the `init` image to a cluster with a mirrored registry, you must mirror a supported builder image for your application with the `oc` tool, overwrite the mirror registry using the environment variable, and then create your component.

#### 2.5.3.1. Prerequisites
• Install **oc** on the client operating system.
• Install **odo** on the client operating system.
• Access to an restricted cluster with a configured internal registry or a mirror registry.
• Push the **odo** init image to your cluster registry.

### 2.5.3.2. Mirroring a supported builder image

To use npm packages for Node.js dependencies and Maven packages for Java dependencies and configure a runtime environment for your application, you must mirror a respective builder image from the mirror registry.

**Procedure**

1. Verify that the required images tag is not imported:

   ```bash
 $ oc describe is nodejs -n openshift
   ```

**Example output**

```
Name: nodejs
Namespace: openshift
[...]

10
tagged from <mirror-registry>:<port>/rhoar-nodejs/nodejs-10
 prefer registry pullthrough when referencing this tag

Build and run Node.js 10 applications on RHEL 7. For more information about using this builder image, including OpenShift considerations, see https://github.com/nodeshift/centos7-s2i-nodejs.
Tags: builder, nodejs, hidden
Example Repo: https://github.com/sclorg/nodejs-ex.git

! error: Import failed (NotFound): dockerimage.image.openshift.io "<mirror-registry>:<port>/rhoar-nodejs/nodejs-10:latest" not found
 About an hour ago

10-SCL (latest)
tagged from <mirror-registry>:<port>/rhscl/nodejs-10-rhel7
 prefer registry pullthrough when referencing this tag

Build and run Node.js 10 applications on RHEL 7. For more information about using this builder image, including OpenShift considerations, see https://github.com/nodeshift/centos7-s2i-nodejs.
Tags: builder, nodejs
Example Repo: https://github.com/sclorg/nodejs-ex.git

! error: Import failed (NotFound): dockerimage.image.openshift.io "<mirror-registry>:<port>/rhscl/nodejs-10-rhel7:latest" not found
 About an hour ago
```

[...]
2. Mirror the supported image tag to the private registry:

   $ oc image mirror registry.access.redhat.com/rhscl/nodejs-10-rhel7:<tag>
   <private_registry>/rhscl/nodejs-10-rhel7:<tag>

3. Import the image:

   $ oc tag <mirror-registry>:<port>/rhscl/nodejs-10-rhel7:<tag> nodejs-10-rhel7:latest --scheduled

   You must periodically re-import the image. The --scheduled flag enables automatic re-import of the image.

4. Verify that the images with the given tag have been imported:

   $ oc describe is nodejs -n openshift

   **Example output**

   ```
 Name: nodejs
 [...]
 10-SCL (latest)
 `tagged from <mirror-registry>:<port>/rhscl/nodejs-10-rhel7
 `prefer registry pullthrough when referencing this tag

 Build and run Node.js 10 applications on RHEL 7. For more information about using this builder image, including OpenShift considerations, see https://github.com/nodeshift/centos7-s2i-nodejs.
 Tags: builder, nodejs
 Example Repo: https://github.com/sclorg/nodejs-ex.git

 * <mirror-registry>:<port>/rhscl/nodejs-10-rhel7@sha256:d669ecbc11ac88293de50219dae8619832c6a0f5b04883b480e073590fab7c54

 3 minutes ago
   ```

2.5.3.3. Overwriting the mirror registry

   To download npm packages for Node.js dependencies and Maven packages for Java dependencies from a private mirror registry, you must create and configure a mirror npm or Maven registry on the cluster. You can then overwrite the mirror registry on an existing component or when you create a new component.

   **Procedure**

   - To overwrite the mirror registry on an existing component:

     $ odo config set --env NPM_MIRROR=<npm_mirror_registry>

   - To overwrite the mirror registry when creating a component:
2.5.3.4. Creating a Node.js application with odo

To create a Node.js component, download the Node.js application and push the source code to your cluster with `odo`.

Procedure

1. Change the current directory to the directory with your application:

   ```bash
 $ cd <directory_name>
   ```

2. Add a component of the type Node.js to your application:

   ```bash
 $ odo create nodejs
   ```

   **NOTE**
   By default, the latest image is used. You can also explicitly specify an image version by using `odo create openshift/nodejs:8`.

3. Push the initial source code to the component:

   ```bash
 $ odo push
   ```

   Your component is now deployed to OpenShift Container Platform.

4. Create a URL and add an entry in the local configuration file as follows:

   ```bash
 $ odo url create --port 8080
   ```

5. Push the changes. This creates a URL on the cluster.

   ```bash
 $ odo push
   ```

6. List the URLs to check the desired URL for the component.

   ```bash
 $ odo url list
   ```

7. View your deployed application using the generated URL.

   ```bash
 $ curl <url>
   ```

2.5.4. Creating and deploying devfile components to the disconnected cluster

2.5.4.1. Creating a NodeJS application by using a devfile in a disconnected cluster
Prerequisites

- You have created and logged into a disconnected cluster.
- You have added raw.githubusercontent.com, registry.access.redhat.com, and registry.npmjs.org URLs in your proxy.

Procedure

1. Define your NodeJS application in a devfile:

Example of a devfile

```yaml
schemaVersion: 2.0.0
metadata:
 name: nodejs
starterProjects:
 - name: nodejs-starter
git:
 remotes:
 origin: "https://github.com/odo-devfiles/nodejs-ex.git"
components:
 - name: runtime
 container:
 image: registry.access.redhat.com/ubi8/nodejs:12-1-36
 memoryLimit: 1024Mi
 endpoints:
 - name: "3000/tcp"
 targetPort: 3000
 env:
 - name: HTTP_PROXY
 value: http://<proxy-host>:<proxy-port>
 - name: HTTPS_PROXY
 value: http://<proxy-host>:<proxy-port>
 mountSources: true
commands:
 - id: devbuild
 exec:
 component: runtime
 commandLine: npm install
 workingDir: ${PROJECTS_ROOT}
 group:
 kind: build
 isDefault: true
 - id: build
```
exec:
  component: runtime
  commandLine: npm install
  workingDir: ${PROJECTS_ROOT}
  group:
    kind: build
- id: devrun
  exec:
    component: runtime
    commandLine: npm start
    workingDir: ${PROJECTS_ROOT}
    group:
      kind: run
    isDefault: true
- id: run
  exec:
    component: runtime
    commandLine: npm start
    workingDir: ${PROJECTS_ROOT}
    group:
      kind: run

2. Create the application and push the changes to the cluster:

```bash
$ odo create nodejs --devfile <path-to-your-devfile> --starter $$ odo push
```

Example output

```bash
[...]
Pushing devfile component nodejs
✓ Changes successfully pushed to component
```

3. Create a URL to access your application and push it to the cluster:

```bash
$ odo url create url1 --port 3000 --host example.com --ingress && odo push
```

Example output

```
Validation
✓ Validating the devfile [145374ns]

Creating Kubernetes resources for component nodejs
✓ Waiting for component to start [14s]

Applying URL changes
✓ URL url1: http://url1.abcdr.com/ created

Syncing to component nodejs
✓ Checking file changes for pushing [2ms]
✓ Syncing files to the component [3s]

Executing devfile commands for component nodejs
✓ Executing devbuild command "npm install" [4s]
✓ Executing devrun command "npm start" [3s]
```
4. Add the storage to your application

   $ odo storage create <storage-name> --path /data --size 5Gi

   **Example output**

   ✓ Added storage abcde to nodejs

   Please use `odo push` command to make the storage accessible to the component

5. Push the changes to the cluster:

   $ odo push

2.5.4.2. Creating a Java application by using a devfile in a disconnected cluster

**WARNING**

This procedure is using external dependencies such as `quay.io/eclipse/che-java11-maven:nightly` or an example application `springboot-ex` that are not maintained by Red Hat. These dependencies are not maintained with the documentation and their functionality cannot be guaranteed.

**Prerequisites**

- You have created and logged into a disconnected cluster.
- You have added `quay.io, registry.access.redhat.com, apache.org, quayio-production-s3.s3.amazonaws.com` URLs in your proxy configuration.

**Procedure**

1. Define your Java application in a devfile:

   **Example of a devfile**

   ```json
 schemaVersion: 2.0.0
 metadata:
 name: java-maven
 version: 1.1.0
 starterProjects:
 - name: springbootproject
 git:
 remotes:
   ```
2. Create a Java application:

```
$ odo create java-maven --devfile <path-to-your-devfile> --starter
```

**Example output**

**Validation**
- ✓ Checking devfile existence [87716ns]
- ✓ Creating a devfile component from registry: DefaultDevfileRegistry [107247ns]
- ✓ Validating devfile component [396971ns]

**Starter Project**
- ✓ Downloading starter project springbootproject from https://github.com/odo-
3. Push the changes to the cluster:

   $ odo push

Example output

```
[...]
```

Downloaded from central:
https://repo.maven.apache.org/maven2/org/codehaus/plexus/plexus-utils/3.2.1/plexus-utils-3.2.1.jar (262 kB at 813 kB/s)

[INFO] Replacing main artifact with repackaged archive

[INFO] ASSESSED SUCCESS

[INFO] Total time: 19.638 s

[INFO] Finished at: 2021-02-24T08:59:30Z

[INFO] ASSESSED SUCCESS

✓ Executing mvn-package command "mvn -Dmaven.repo.local=/home/user/.m2/repository -Dhttp.proxyHost=<proxy-host> -Dhttp.proxyPort=<proxy-port> -Dhttps.proxyHost=<proxy-host> -Dhttps.proxyPort=<proxy-port> package" [23s]

• Executing run command "java -jar target/*.jar" ...

I0224 14:29:30.557676   34426 exec.go:27] Executing command "/opt/odo/bin/supervisord ctl start devrun" for pod: java-maven-5b8f999fcd-9dnk6 in container: tools
devrun: started

✓ Changes successfully pushed to component

4. Display the logs to verify that the application has started:

   $ odo log

Example output

```
time="2021-02-24T08:58:58Z" level=info msg="create process:devrun"
time="2021-02-24T08:58:58Z" level=info msg="create process:debugrun"
time="2021-02-24T08:59:32Z" level=debug msg="no auth required"
time="2021-02-24T08:59:32Z" level=debug msg="succeed to find process:devrun"
time="2021-02-24T08:59:32Z" level=info msg="try to start program" program=devrun
O DO_COMMAND_RUN is java -jar target/*.jar
```

Executing command java -jar target/*.jar

[...]
$ odo storage create storage-name --path /data --size 5Gi

Example output

✓ Added storage storage-name to java-maven

Please use `odo push` command to make the storage accessible to the component

6. Push the changes to the cluster:

$ odo push

Output

✓ Waiting for component to start [310ms]

Validation
✓ Validating the devfile [100798ns]

Creating Kubernetes resources for component java-maven
✓ Waiting for component to start [30s]
✓ Waiting for component to start [303ms]

Applying URL changes
✓ URLs are synced with the cluster, no changes are required.

Syncing to component java-maven
✓ Checking file changes for pushing [5ms]
✓ Syncing files to the component [4s]

Executing devfile commands for component java-maven
✓ Waiting for component to start [526ms]
✓ Executing mvn-package command "mvn -Dmaven.repo.local=/home/user/.m2/repository -Dhttp.proxyHost=<proxy-host> -Dhttp.proxyPort=<proxy-port> -Dhttps.proxyHost=<proxy-host> -Dhttps.proxyPort=<proxy-port> package" [10s]
✓ Executing run command "java -jar target/*.jar" [3s]

Pushing devfile component java-maven
✓ Changes successfully pushed to component

2.6. CREATING INSTANCES OF SERVICES MANAGED BY OPERATORS

Operators are a method of packaging, deploying, and managing Kubernetes services. With odo, you can create instances of services from the custom resource definitions (CRDs) provided by the Operators. You can then use these instances in your projects and link them to your components.

To create services from an Operator, you must ensure that the Operator has valid values defined in its metadata to start the requested service. odo uses the metadata.annotations.alm-examples YAML file of an Operator to start the service. If this YAML has placeholder values or sample values, a service cannot start. You can modify the YAML file and start the service with the modified values. To learn how to modify YAML files and start services from it, see Creating services from YAML files.

2.6.1. Prerequisites
· Install the **oc** CLI and log into the cluster.

  · Note that the configuration of the cluster determines the services available to you. To access the Operator services, a cluster administrator must install the respective Operator on the cluster first. To learn more, see Adding Operators to the cluster.

· Install the **odo** CLI.

2.6.2. Creating a project

Create a project to keep your source code, tests, and libraries organized in a separate single unit.

Procedure

1. Log in to an OpenShift Container Platform cluster:

   $ odo login -u developer -p developer

2. Create a project:

   $ odo project create myproject

   **Example output**

   ✓ Project 'myproject' is ready for use
   ✓ New project created and now using project : myproject

2.6.3. Listing available services from the Operators installed on the cluster

With **odo**, you can display the list of the Operators installed on your cluster, and the services they provide.

· To list the Operators installed in current project, run:

   $ odo catalog list services

   The command lists Operators and the CRDs. The output of the command shows the Operators installed on your cluster. For example:

   Operators available in the cluster
   NAME                  CRDs
   etcdoperator.v0.9.4   EtcdCluster, EtcdBackup, EtcdRestore
   mongodb-enterprise.v1.4.5 MongoDB, MongoDBUser, MongoDBOpsManager

   **etcdoperator.v0.9.4** is the Operator, **EtcdCluster**, **EtcdBackup** and **EtcdRestore** are the CRDs provided by the Operator.

2.6.4. Creating a service from an Operator

If an Operator has valid values defined in its **metadata** to start the requested service, you can use the service with **odo service create**.

1. Print the YAML of the service as a file on your local drive:
2. Verify that the values of the service are valid:

   ```yaml
 apiVersion: etcd.database.coreos.com/v1beta2
 kind: EtcdCluster
 metadata:
 name: example
 spec:
 size: 3
 version: 3.2.13
   ```

3. Start an **EtcdCluster** service from the **etcdoperator.v0.9.4** Operator:

   ```bash
 $ odo service create etcdoperator.v0.9.4 EtcdCluster
   ```

4. Verify that a service has started:

   ```bash
 $ oc get EtcdCluster
   ```

### 2.6.5. Creating services from YAML files

If the YAML definition of the service or custom resource (CR) has invalid or placeholder data, you can use the `--dry-run` flag to get the YAML definition, specify the correct values, and start the service using the corrected YAML definition. Printing and modifying the YAML used to start a service **odo** provides the feature to print the YAML definition of the service or CR provided by the Operator before starting a service.

1. To display the YAML of the service, run:

   ```bash
 $ odo service create <operator-name> --dry-run
   ```

   For example, to print YAML definition of **EtcdCluster** provided by the **etcdoperator.v0.9.4** Operator, run:

   ```bash
 $ odo service create etcdoperator.v0.9.4 --dry-run
   ```

   The YAML is saved as the **etcd.yaml** file.

2. Modify the **etcd.yaml** file:

   ```yaml
 apiVersion: etcd.database.coreos.com/v1beta2
 kind: EtcdCluster
 metadata:
 name: my-etcd-cluster
 spec:
 size: 1
 version: 3.2.13
   ```

   1. Change the name from **example** to **my-etcd-cluster**

   2. Reduce the size from **3** to **1**
3. Start a service from the YAML file:

```bash
$ odo service create --from-file etcd.yaml
```

4. Verify that the EtcdCluster service has started with one pod instead of the pre-configured three pods:

```bash
$ oc get pods | grep my-etcd-cluster
```

### 2.7. MANAGING ENVIRONMENT VARIABLES

odo stores component-specific configurations and environment variables in the config file. You can use the odo config command to set, unset, and list environment variables for components without the need to modify the config file.

#### 2.7.1. Setting and unsetting environment variables

**Procedure**

- To set an environment variable in a component:
  ```bash
 $ odo config set --env <variable>=<value>
  ```

- To unset an environment variable in a component:
  ```bash
 $ odo config unset --env <variable>
  ```

- To list all environment variables in a component:
  ```bash
 $ odo config view
  ```

### 2.8. CONFIGURING THE ODO CLI

#### 2.8.1. Using command completion

**NOTE**

Currently command completion is only supported for bash, zsh, and fish shells.

odo provides a smart completion of command parameters based on user input. For this to work, odo needs to integrate with the executing shell.

**Procedure**

- To install command completion automatically:
  
  1. Run:
     ```bash
 $ odo --complete
     ```
2. Press `y` when prompted to install the completion hook.

- To install the completion hook manually, add `complete -o nospace -C <full_path_to_your_odo_binary> odo` to your shell configuration file. After any modification to your shell configuration file, restart your shell.

- To disable completion:
  1. Run:
     ```bash
 $ odo --uncomplete
     ```
  2. Press `y` when prompted to uninstall the completion hook.

**NOTE**
Re-enable command completion if you either rename the odo executable or move it to a different directory.

2.8.2. Ignoring files or patterns

You can configure a list of files or patterns to ignore by modifying the `.odoignore` file in the root directory of your application. This applies to both `odo push` and `odo watch`.

If the `.odoignore` file does not exist, the `.gitignore` file is used instead for ignoring specific files and folders.

To ignore `.git` files, any files with the `.js` extension, and the folder `tests`, add the following to either the `.odoignore` or the `.gitignore` file:

```
.git
*.js
tests/
```

The `.odoignore` file allows any glob expressions.

2.9. ODO CLI REFERENCE

2.9.1. Basic odo CLI commands

2.9.1.1. app

Perform application operations related to your OpenShift Container Platform project.

Example using app

```
Delete the application
odo app delete myapp

Describe 'webapp' application,
odo app describe webapp

List all applications in the current project
```
odo app list
# List all applications in the specified project
odo app list --project myproject

2.9.1.2. catalog
Perform catalog-related operations.

Example using catalog

# Get the supported components
odo catalog list components

# Get the supported services from service catalog
odo catalog list services

# Search for a component
odo catalog search component python

# Search for a service
odo catalog search service mysql

# Describe a service
odo catalog describe service mysql-persistent

2.9.1.3. component
Manage components of an application.

Example using component

# Create a new component
odo component create

# Create a local configuration and create all objects on the cluster
odo component create --now

2.9.1.4. config
Modify odo specific settings within the config file.

Example using config

# For viewing the current local configuration
odo config view

# Set a configuration value in the local configuration
odo config set Type java
odo config set Name test
odo config set MinMemory 50M
odo config set MaxMemory 500M
odo config set Memory 250M
odo config set Ignore false
odo config set MinCPU 0.5
odo config set MaxCPU 2
odo config set CPU 1

# Set an environment variable in the local configuration
odo config set --env KAFKA_HOST=kafka --env KAFKA_PORT=6639

# Create a local configuration and apply the changes to the cluster immediately
odo config set --now

# Unset a configuration value in the local config
odo config unset Type
odo config unset Name
odo config unset MinMemory
odo config unset MaxMemory
odo config unset Memory
odo config unset Ignore
odo config unset MinCPU
odo config unset MaxCPU
odo config unset CPU

# Unset an env variable in the local config
odo config unset --env KAFKA_HOST --env KAFKA_PORT

<table>
<thead>
<tr>
<th>Application</th>
<th>Application is the name of application the component needs to be part of</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>The minimum and maximum CPU a component can consume</td>
</tr>
<tr>
<td>Ignore</td>
<td>Consider the .odoignore file for push and watch</td>
</tr>
</tbody>
</table>

**Table 2.2. Available Local Parameters:**

<table>
<thead>
<tr>
<th>Application</th>
<th>The name of application that the component needs to be part of</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>The minimum and maximum CPU a component can consume</td>
</tr>
<tr>
<td>Ignore</td>
<td>Whether to consider the .odoignore file for push and watch</td>
</tr>
<tr>
<td>MaxCPU</td>
<td>The maximum CPU a component can consume</td>
</tr>
<tr>
<td>MaxMemory</td>
<td>The maximum memory a component can consume</td>
</tr>
<tr>
<td>Memory</td>
<td>The minimum and maximum memory a component can consume</td>
</tr>
</tbody>
</table>
### 2.9.1.5. create

Create a configuration describing a component to be deployed on OpenShift Container Platform. If a component name is not provided, it is autogenerated.

By default, builder images are used from the current namespace. To explicitly supply a namespace, use: `odo create namespace/name:version`. If a version is not specified, the version defaults to `latest`.

Use `odo catalog list` to see a full list of component types that can be deployed.

**Example using create**

```bash
Create new Node.js component with the source in current directory.
odo create nodejs

Create new Node.js component and push it to the cluster immediately.
odo create nodejs --now

A specific image version may also be specified
odo create nodejs:latest

Create new Node.js component named 'frontend' with the source in '.frontend' directory
odo create nodejs frontend --context .frontend

Create a new Node.js component of version 6 from the 'openshift' namespace
odo create openshift/nodejs:6 --context /nodejs-ex
```
# Create new Wildfly component with binary named sample.war in './downloads' directory
odo create wildfly wildfly --binary ./downloads/sample.war

# Create new Node.js component with source from remote git repository
odo create nodejs --git https://github.com/openshift/nodejs-ex.git

# Create new Node.js git component while specifying a branch, tag or commit ref
odo create nodejs --git https://github.com/openshift/nodejs-ex.git --ref master

# Create new Node.js git component while specifying a tag
odo create nodejs --git https://github.com/openshift/nodejs-ex.git --ref v1.0.1

# Create new Node.js component with the source in current directory and ports 8080-tcp,8100-tcp and 9100-udp exposed
odo create nodejs --port 8080,8100/tcp,9100/udp

# Create new Node.js component with the source in current directory and env variables key=value and key1=value1 exposed
odo create nodejs --env key=value,key1=value1

# Create a new Python component with the source in a Git repository
odo create python --git https://github.com/openshift/django-ex.git

# Passing memory limits
odo create nodejs --memory 150Mi
odo create nodejs --min-memory 150Mi --max-memory 300 Mi

# Passing cpu limits
odo create nodejs --cpu 2
odo create nodejs --min-cpu 200m --max-cpu 2

2.9.1.6. debug

Debug a component.

Example using debug

# Displaying information about the state of debugging
odo debug info

# Starting the port forwarding for a component to debug the application
odo debug port-forward

# Setting a local port to port forward
odo debug port-forward --local-port 9292

2.9.1.7. delete

Delete an existing component.

Example using delete
2.9.1.8. describe

Describe the given component.

Example using describe

```
Describe nodejs component
odo describe nodejs
```

2.9.1.9. link

Link a component to a service or component.

Example using link

```
Link the current component to the 'my-postgresql' service
odo link my-postgresql

Link component 'nodejs' to the 'my-postgresql' service
odo link my-postgresql --component nodejs

Link current component to the 'backend' component (backend must have a single exposed port)
odo link backend

Link component 'nodejs' to the 'backend' component
odo link backend --component nodejs

Link current component to port 8080 of the 'backend' component (backend must have port 8080 exposed)
odo link backend --port 8080
```

Link adds the appropriate secret to the environment of the source component. The source component can then consume the entries of the secret as environment variables. If the source component is not provided, the current active component is assumed.

2.9.1.10. list

List all the components in the current application and the states of the components.

The states of the components

**Pushed**
- A component is pushed to the cluster.

**Not Pushed**
- A component is not pushed to the cluster.

**Unknown**
- **odo** is disconnected from the cluster.
Example using list

```
List all components in the application
odo list

List all the components in a given path
odo list --path <path_to_your_component>
```

2.9.1.11. log

Retrieve the log for the given component.

Example using log

```
Get the logs for the nodejs component
odo log nodejs
```

2.9.1.12. login

Log in to the cluster.

Example using login

```
Log in interactively
odo login

Log in to the given server with the given certificate authority file
odo login localhost:8443 --certificate-authority=/path/to/cert.crt

Log in to the given server with the given credentials (basic auth)
odo login localhost:8443 --username=myuser --password=mypass

Log in to the given server with the given credentials (token)
odo login localhost:8443 --token=xxxxxxxxxxxxxxxxxxxxxxx
```

2.9.1.13. logout

Log out of the current OpenShift Container Platform session.

Example using logout

```
Log out
odo logout
```

2.9.1.14. preference

Modify odo specific configuration settings within the global preference file.

Example using preference

```
For viewing the current preferences
odo preference view
```
NOTE

By default, the path to the global preference file is `~/.odo/preferece.yaml` and it is stored in the environment variable `GLOBALODOCONFIG`. You can set up a custom path by setting the value of the environment variable to a new preference path, for example `GLOBALODOCONFIG="new_path/preference.yaml"`

Table 2.3. Available Parameters:

<table>
<thead>
<tr>
<th>NamePrefix</th>
<th>The default prefix is the current directory name. Use this value to set a default name prefix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>The timeout (in seconds) for OpenShift Container Platform server connection checks.</td>
</tr>
<tr>
<td>UpdateNotification</td>
<td>Controls whether an update notification is shown.</td>
</tr>
</tbody>
</table>

2.9.1.15. project

Perform project operations.

Example using project

```bash
Set the active project
odo project set

Create a new project
odo project create myproject

List all the projects
odo project list

Delete a project
```
2.9.1.16. push

Push source code to a component.

Example using push

```bash
Push source code to the current component
odo push

Push data to the current component from the original source.
odo push

Push source code in ~/mycode to component called my-component
odo push my-component --context ~/mycode

Push source code and display event notifications in JSON format.
odo push -o json
```

2.9.1.17. registry

Create and modify custom registries.

Example using registry

```bash
Add a registry to the registry list
odo registry add <registry name> <registry URL>

List a registry in the registry list
odo registry list

Delete a registry from the registry list
odo registry delete <registry name>

Update a registry in the registry list
odo registry update <registry name> <registry URL>

List a component with a corresponding registry
odo catalog list components

Create a component that is hosted by a specific registry
odo create <component type> --registry <registry name>
```

2.9.1.18. service

Perform service catalog operations.

Example using service
2.9.1.19. storage

Perform storage operations.

Example using storage

```bash
Create storage of size 1Gb to a component
odo storage create mystorage --path=/opt/app-root/src/storage/ --size=1Gi

Delete storage mystorage from the currently active component
odo storage delete mystorage

List all storage attached or mounted to the current component and
all unattached or unmounted storage in the current application
odo storage list

Set the `-o json` flag to get a JSON formatted output
odo storage list -o json
```

2.9.1.20. unlink

Unlink component or a service.

For this command to be successful, the service or component must have been linked prior to the invocation using odo link.

Example using unlink

```bash
Unlink the 'my-postgresql' service from the current component
odo unlink my-postgresql

Unlink the 'my-postgresql' service from the 'nodejs' component
odo unlink my-postgresql --component nodejs

Unlink the 'backend' component from the current component (backend must have a single exposed port)
odo unlink backend

Unlink the 'backend' service from the 'nodejs' component
odo unlink backend --component nodejs

Unlink the backend's 8080 port from the current component
odo unlink backend --port 8080
```
2.9.1.21. update

Update the source code path of a component

Example using update

```sh
Change the source code path of a currently active component to local (use the current directory as a source)
odo update --local

Change the source code path of the frontend component to local with source in ./frontend directory
odo update frontend --local ./frontend

Change the source code path of a currently active component to git
odo update --git https://github.com/openshift/nodejs-ex.git

Change the source code path of the component named node-ex to git
odo update node-ex --git https://github.com/openshift/nodejs-ex.git

Change the source code path of the component named wildfly to a binary named sample.war in ./downloads directory
odo update wildfly --binary ./downloads/sample.war
```

2.9.1.22. url

Expose a component to the outside world.

Example using url

```sh
Create a URL for the current component with a specific port
odo url create --port 8080

Create a URL with a specific name and port
odo url create example --port 8080

Create a URL with a specific name by automatic detection of port (only for components which expose only one service port)
odo url create example

Create a URL with a specific name and port for component frontend
odo url create example --port 8080 --component frontend

Delete a URL to a component
odo url delete myurl

List the available URLs
odo url list

Create a URL in the configuration and apply the changes to the cluster
odo url create --now

Create an HTTPS URL
odo url create --secure
```
The URLs that are generated using this command can be used to access the deployed components from outside the cluster.

### 2.9.1.23. utils

Utilities for terminal commands and modifying odo configurations.

**Example using utils**

```bash
Bash terminal PS1 support
source <(odo utils terminal bash)

Zsh terminal PS1 support
source <(odo utils terminal zsh)
```

### 2.9.1.24. version

Print the client version information.

**Example using version**

```bash
Print the client version of odo
odo version
```

### 2.9.1.25. watch

odo starts watching for changes and updates the component upon a change automatically.

**Example using watch**

```bash
Watch for changes in directory for current component
odo watch

Watch for changes in directory for component called frontend
odo watch frontend
```

### 2.10. ODO ARCHITECTURE

This section describes odo architecture and how odo manages resources on a cluster.

#### 2.10.1. Developer setup

With odo you can create and deploy application on OpenShift Container Platform clusters from a terminal. Code editor plug-ins use odo which allows users to interact with OpenShift Container Platform clusters from their IDE terminals. Examples of plug-ins that use odo: VS Code OpenShift Connector, OpenShift Connector for IntelliJ, Codewind for Eclipse Che.

odo works on Windows, macOS, and Linux operating systems and from any terminal. odo provides autocompletion for bash and zsh command line shells.

odo supports Node.js and Java components.
2.10.2. OpenShift source-to-image

OpenShift Source-to-Image (S2I) is an open-source project which helps in building artifacts from source code and injecting these into container images. S2I produces ready-to-run images by building source code without the need of a Dockerfile. odo uses S2I builder image for executing developer source code inside a container.

2.10.3. OpenShift cluster objects

2.10.3.1. Init Containers

Init containers are specialized containers that run before the application container starts and configure the necessary environment for the application containers to run. Init containers can have files that application images do not have, for example setup scripts. Init containers always run to completion and the application container does not start if any of the init containers fails.

The pod created by odo executes two Init Containers:

- The copy-supervisord init container.
- The copy-files-to-volume init container.

2.10.3.1.1. copy-supervisord

The copy-supervisord init container copies necessary files onto an emptyDir volume. The main application container utilizes these files from the emptyDir volume.

Files that are copied onto the emptyDir volume:

- Binaries:
  - go-init is a minimal init system. It runs as the first process (PID 1) inside the application container. go-init starts the SupervisorD daemon which runs the developer code. go-init is required to handle orphaned processes.
  - SupervisorD is a process control system. It watches over configured processes and ensures that they are running. It also restarts services when necessary. For odo, SupervisorD executes and monitors the developer code.

- Configuration files:
  - supervisor.conf is the configuration file necessary for the SupervisorD daemon to start.

- Scripts:
  - assemble-and-restart is an OpenShift S2I concept to build and deploy user-source code. The assemble-and-restart script first assembles the user source code inside the application container and then restarts SupervisorD for user changes to take effect.
  - Run is an OpenShift S2I concept of executing the assembled source code. The run script executes the assembled code created by the assemble-and-restart script.
  - s2i-setup is a script that creates files and directories which are necessary for the assemble-and-restart and run scripts to execute successfully. The script is executed whenever the application container starts.
Directories:
- **language-scripts**: OpenShift S2I allows custom assemble and run scripts. A few language specific custom scripts are present in the language-scripts directory. The custom scripts provide additional configuration to make odo debug work.

The `emptyDir` volume is mounted at the `/opt/odo` mount point for both the Init container and the application container.

2.10.3.1.2. copy-files-to-volume

The **copy-files-to-volume** Init container copies files that are in `/opt/app-root` in the S2I builder image onto the persistent volume. The volume is then mounted at the same location (`/opt/app-root`) in an application container.

Without the persistent volume on `/opt/app-root` the data in this directory is lost when the persistent volume claim is mounted at the same location.

The PVC is mounted at the `/mnt` mount point inside the Init container.

2.10.3.2. Application container

Application container is the main container inside of which the user-source code executes.

Application container is mounted with two volumes:

- `emptyDir` volume mounted at `/opt/odo`
- The persistent volume mounted at `/opt/app-root`

`go-init` is executed as the first process inside the application container. The `go-init` process then starts the SupervisorD daemon.

SupervisorD executes and monitors the user assembled source code. If the user process crashes, SupervisorD restarts it.

2.10.3.3. Persistent volumes and persistent volume claims

A persistent volume claim (PVC) is a volume type in Kubernetes which provisions a persistent volume. The life of a persistent volume is independent of a pod lifecycle. The data on the persistent volume persists across pod restarts.

The **copy-files-to-volume** Init container copies necessary files onto the persistent volume. The main application container utilizes these files at runtime for execution.

The naming convention of the persistent volume is `<component_name>-s2idata`.

<table>
<thead>
<tr>
<th>Container</th>
<th>PVC mounted at</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy-files-to-volume</td>
<td>/mnt</td>
</tr>
<tr>
<td>Application container</td>
<td>/opt/app-root</td>
</tr>
</tbody>
</table>

2.10.3.4. emptyDir volume
An emptyDir volume is created when a pod is assigned to a node, and exists as long as that pod is running on the node. If the container is restarted or moved, the content of the emptyDir is removed. Init container restores the data back to the emptyDir. emptyDir is initially empty.

The copy-supervisord Init container copies necessary files onto the emptyDir volume. These files are then utilized by the main application container at runtime for execution.

<table>
<thead>
<tr>
<th>Container</th>
<th>emptyDir volume mounted at</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy-supervisord</td>
<td>/opt/odo</td>
</tr>
<tr>
<td>Application container</td>
<td>/opt/odo</td>
</tr>
</tbody>
</table>

2.10.3.5. Service

A service is a Kubernetes concept of abstracting the way of communicating with a set of pods.

odo creates a service for every application pod to make it accessible for communication.

2.10.4. odo push workflow

This section describes odo push workflow. odo push deploys user code on an OpenShift Container Platform cluster with all the necessary OpenShift Container Platform resources.

1. Creating resources
   If not already created, odo push creates the following OpenShift Container Platform resources:
   - **DeploymentConfig** object:
     - Two init containers are executed: copy-supervisord and copy-files-to-volume. The init containers copy files onto the emptyDir and the PersistentVolume type of volumes respectively.
     - The application container starts. The first process in the application container is the go-init process with PID=1.
     - go-init process starts the SupervisorD daemon.
   
   **NOTE**
   The user application code has not been copied into the application container yet, so the SupervisorD daemon does not execute the run script.

   - **Service** object
   - **Secret** objects
   - **PersistentVolumeClaim** object

2. Indexing files
   - A file indexer indexes the files in the source code directory. The indexer traverses through the source code directories recursively and finds files which have been created, deleted, or...
renamed.

- A file indexer maintains the indexed information in an odo index file inside the .odo directory.

- If the odo index file is not present, it means that the file indexer is being executed for the first time, and creates a new odo index JSON file. The odo index JSON file contains a file map - the relative file paths of the traversed files and the absolute paths of the changed and deleted files.

3. Pushing code
   Local code is copied into the application container, usually under /tmp/src.

4. Executing assemble-and-restart
   On a successful copy of the source code, the assemble-and-restart script is executed inside the running application container.
CHAPTER 3. HELM CLI

3.1. GETTING STARTED WITH HELM 3 ON OPENSSHIFT CONTAINER PLATFORM

3.1.1. Understanding Helm

Helm is a software package manager that simplifies deployment of applications and services to OpenShift Container Platform clusters.

Helm uses a packaging format called *charts*. A Helm chart is a collection of files that describes the OpenShift Container Platform resources.

A running instance of the chart in a cluster is called a *release*. A new release is created every time a chart is installed on the cluster.

Each time a chart is installed, or a release is upgraded or rolled back, an incremental revision is created.

3.1.1.1. Key features

Helm provides the ability to:

- Search through a large collection of charts stored in the chart repository.
- Modify existing charts.
- Create your own charts with OpenShift Container Platform or Kubernetes resources.
- Package and share your applications as charts.

3.1.2. Installing Helm

The following section describes how to install Helm on different platforms using the CLI.

You can also find the URL to the latest binaries from the OpenShift Container Platform web console by clicking the ? icon in the upper-right corner and selecting *Command Line Tools*.

Prerequisites

- You have installed Go, version 1.13 or higher.

3.1.2.1. On Linux

1. Download the Helm binary and add it to your path:

   ```bash
 # chmod +x /usr/local/bin/helm

 # curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-arm64 -o /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-mips64el -o /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-ppc64le -o /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm

 # chmod +x /usr/local/bin/helm
 # curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-darwin-arm64 -o /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm

 # chmod +x /usr/local/bin/helm
 # curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-win64.zip -o /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm
 # chmod +x /usr/local/bin/helm

 # chmod +x /usr/local/bin/helm-launcher

 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher

 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher

 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
 # chmod +x /usr/local/bin/helm-launcher
   ```

2. Make the binary file executable:

   ```bash
 # chmod +x /usr/local/bin/helm
   ```

3. Check the installed version:

   ```bash
 # helm version
   ```
3.1.2.2. On Windows 7/8

1. Download the latest .exe file and put in a directory of your preference.

2. Right click Start and click Control Panel.

3. Select System and Security and then click System.

4. From the menu on the left, select Advanced systems settings and click Environment Variables at the bottom.

5. Select Path from the Variable section and click Edit.

6. Click New and type the path to the folder with the .exe file into the field or click Browse and select the directory, and click OK.

3.1.2.3. On Windows 10

1. Download the latest .exe file and put in a directory of your preference.

2. Click Search and type env or environment.

3. Select Edit environment variables for your account

4. Select Path from the Variable section and click Edit.

5. Click New and type the path to the directory with the exe file into the field or click Browse and select the directory, and click OK.

3.1.2.4. On MacOS

1. Download the Helm binary and add it to your path:


2. Make the binary file executable:

   # chmod +x /usr/local/bin/helm

3. Check the installed version:

   $ helm version

Example output

version.BuildInfo{Version:"v3.0",
   GitCommit:"b31719aab7963ac4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
   GoVersion:"go1.13.4"}
3.1.3. Installing a Helm chart on an OpenShift Container Platform cluster

Prerequisites
- You have a running OpenShift Container Platform cluster and you have logged into it.
- You have installed Helm.

Procedure
1. Create a new project:
   ```
 $ oc new-project mysql
   ```
2. Add a repository of Helm charts to your local Helm client:
   ```
 $ helm repo add stable https://kubernetes-charts.storage.googleapis.com/
   ```
   Example output
   ```
 "stable" has been added to your repositories
   ```
3. Update the repository:
   ```
 $ helm repo update
   ```
4. Install an example MySQL chart:
   ```
 $ helm install example-mysql stable/mysql
   ```
5. Verify that the chart has installed successfully:
   ```
 $ helm list
   ```
   Example output
   ```
 NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
 example-mysql mysql 1 2019-12-05 15:06:51.379134163 -0500 EST deployed mysql-1.5.0 5.7.27
   ```

3.1.4. Creating a custom Helm chart on OpenShift Container Platform

Procedure
1. Create a new project:
$ oc new-project nodejs-ex-k

2. Download an example Node.js chart that contains OpenShift Container Platform objects:

   $ git clone https://github.com/redhat-developer/redhat-helm-charts

3. Go to the directory with the sample chart:

   $ cd redhat-helm-charts/alpha/nodejs-ex-k/

4. Edit the `Chart.yaml` file and add a description of your chart:

   ```yaml
 apiVersion: v2 1
 name: nodejs-ex-k 2
 description: A Helm chart for OpenShift 3
 icon: https://static.redhat.com/libs/redhat/brand-assets/latest/corp/logo.svg 4
   ```

   1 The chart API version. It should be v2 for Helm charts that require at least Helm 3.
   2 The name of your chart.
   3 The description of your chart.
   4 The URL to an image to be used as an icon.

5. Verify that the chart is formatted properly:

   $ helm lint

   **Example output**

   [INFO] Chart.yaml: icon is recommended
   1 chart(s) linted, 0 chart(s) failed

6. Navigate to the previous directory level:

   $ cd ..

7. Install the chart:

   $ helm install nodejs-chart nodejs-ex-k

8. Verify that the chart has installed successfully:

   $ helm list

   **Example output**
3.2. CONFIGURING CUSTOM HELM CHART REPOSITORIES

The Developer Catalog, in the Developer perspective of the web console, displays the Helm charts available in the cluster. By default, it lists the Helm charts from the Red Hat Helm chart repository. For a list of the charts see the Red Hat Helm index file.

As a cluster administrator, you can add multiple Helm chart repositories, apart from the default one, and display the Helm charts from these repositories in the Developer Catalog.

3.2.1. Adding custom Helm chart repositories

As a cluster administrator, you can add custom Helm chart repositories to your cluster and enable access to the Helm charts from these repositories in the Developer Catalog.

Procedure

1. To add a new Helm Chart Repository, you must add the Helm Chart Repository custom resource (CR) to your cluster.

Sample Helm Chart Repository CR

```yaml
apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: <name>
spec:
 # optional name that might be used by console
 # name: <chart-display-name>
 connectionConfig:
 url: <helm-chart-repository-url>
```

For example, to add an Azure sample chart repository, run:

```
$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: azure-sample-repo
spec:
 name: azure-sample-repo
 connectionConfig:
 url: https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs
EOF
```

2. Navigate to the Developer Catalog in the web console to verify that the Helm charts from the chart repository are displayed.

For example, use the Chart repositories filter to search for a Helm chart from the repository.
NOTE

If a cluster administrator removes all of the chart repositories, then you cannot view the Helm option in the +Add view, Developer Catalog, and left navigation panel.

3.2.2. Creating credentials and CA certificates to add Helm chart repositories

Some Helm chart repositories need credentials and custom certificate authority (CA) certificates to connect to it. You can use the web console as well as the CLI to add credentials and certificates.

Procedure

To configure the credentials and certificates, and then add a Helm chart repository using the CLI:

1. In the openshift-config namespace, create a ConfigMap object with a custom CA certificate in PEM encoded format, and store it under the ca-bundle.crt key within the config map:

   ```bash
 $ oc create configmap helm-ca-cert
 --from-file=ca-bundle.crt=/path/to/certs/ca.crt
 -n openshift-config
   ```

2. In the openshift-config namespace, create a Secret object to add the client TLS configurations:

   ```bash
 $ oc create secret generic helm-tls-configs
 --from-file=tls.crt=/path/to/certs/client.crt
 --from-file=tls.key=/path/to/certs/client.key
 -n openshift-config
   ```

   Note that the client certificate and key must be in PEM encoded format and stored under the keys tls.crt and tls.key, respectively.

3. Add the Helm repository as follows:

   ```bash
 $ cat <<EOF | oc apply -f -
 apiVersion: helm.openshift.io/v1beta1
 kind: HelmChartRepository
 metadata:
 name: <helm-repository>
   ```
The **ConfigMap** and **Secret** are consumed in the HelmChartRepository CR using the **tlsConfig** and **ca** fields. These certificates are used to connect to the Helm repository URL.

4. By default, all authenticated users have access to all configured charts. However, for chart repositories where certificates are needed, you must provide users with read access to the **helm-ca-cert** config map and **helm-tls-configs** secret in the **openshift-config** namespace, as follows:

```bash
$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: openshift-config
 name: helm-chartrepos-tls-conf-viewer
rules:
- apiGroups: [""
 resources: ["configmaps"]
 resourceNames: ["helm-ca-cert"]
 verbs: ["get"]
- apiGroups: [""
 resources: ["secrets"]
 resourceNames: ["helm-tls-configs"]
 verbs: ["get"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: openshift-config
 name: helm-chartrepos-tls-conf-viewer
subjects:
- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: 'system:authenticated'
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: helm-chartrepos-tls-conf-viewer
EOF
```

### 3.2.3. Filtering Helm Charts by their certification level

You can filter Helm charts based on their certification level in the **Developer Catalog**.

**Procedure**
1. In the Developer perspective, navigate to the +Add view and select a project.

2. From the Developer Catalog tile, select the Helm Chart option to see all the Helm charts in the Developer Catalog.

3. Use the filters to the left of the list of Helm charts to filter the required charts:
   - Use the Chart Repositories filter to filter charts provided by Red Hat Certification Charts or OpenShift Helm Charts.
   - Use the Source filter to filter charts sourced from Partners, Community, or Red Hat. Certified charts are indicated with the (.certified) icon.

   **NOTE**
   The Source filter will not be visible when there is only one provider type.

You can now select the required chart and install it.

### 3.3. DISABLING HELM HART REPOSITORIES

As a cluster administrator, you can remove Helm chart repositories in your cluster so they are no longer visible in the Developer Catalog.

#### 3.3.1. Disabling Helm Chart repository in the cluster

You can disable Helm Charts in the catalog by adding the `disabled` property in the HelmChartRepository custom resource.

**Procedure**

- To disable a Helm Chart repository by using CLI, add the `disabled: true` flag to the custom resource. For example, to remove an Azure sample chart repository, run:

```bash
$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: azure-sample-repo
spec:
 connectionConfig:
 url: https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs
 disabled: true
EOF
```

- To disable a recently added Helm Chart repository by using Web Console:
  1. Go to Custom Resource Definitions and search for the HelmChartRepository custom resource.
  2. Go to Instances, find the repository you want to disable, and click its name.
  3. Go to the YAML tab, add the `disabled: true` flag in the spec section, and click Save.
Example

```yaml
spec:
 connectionConfig:
 url: <url-of-the-repositoru-to-be-disabled>
 disabled: true
```

The repository is now disabled and will not appear in the catalog.
CHAPTER 4. KNATIVE CLI (KN) FOR USE WITH OPENSHIFT SERVERLESS

The Knative `kn` CLI enables simple interaction with Knative components on OpenShift Container Platform.

You can enable Knative on OpenShift Container Platform by installing OpenShift Serverless. For more information, see Getting started with OpenShift Serverless.

NOTE

OpenShift Serverless cannot be installed using the `kn` CLI. A cluster administrator must install the OpenShift Serverless Operator and set up the Knative components, as described in the Serverless applications documentation for OpenShift Container Platform.

4.1. KEY FEATURES

The `kn` CLI is designed to make serverless computing tasks simple and concise. Key features of the `kn` CLI include:

- Deploy serverless applications from the command line.
- Manage features of Knative Serving, such as services, revisions, and traffic-splitting.
- Create and manage Knative Eventing components, such as event sources and triggers.
- Create sink bindings to connect existing Kubernetes applications and Knative services.
- Extend the `kn` CLI with flexible plug-in architecture, similar to the `kubectl` CLI.
- Configure autoscaling parameters for Knative services.
- Scripted usage, such as waiting for the results of an operation, or deploying custom rollout and rollback strategies.

4.2. INSTALLING THE KNATIVE CLI

See Installing the Knative CLI.
CHAPTER 5. PIPELINES CLI (TKN)

5.1. INSTALLING TKN

Use the tkn CLI to manage Red Hat OpenShift Pipelines from a terminal. The following section describes how to install tkn on different platforms.

You can also find the URL to the latest binaries from the OpenShift Container Platform web console by clicking the ? icon in the upper-right corner and selecting Command Line Tools.

5.1.1. Installing Red Hat OpenShift Pipelines CLI (tkn) on Linux

For Linux distributions, you can download the CLI directly as a tar.gz archive.

Procedure

1. Download the relevant CLI.
   - Linux (x86_64, amd64)
   - Linux on IBM Z and LinuxONE (s390x)
   - Linux on IBM Power Systems (ppc64le)

2. Unpack the archive:

   $ tar xvzf <file>

3. Place the tkn binary in a directory that is on your PATH.

4. To check your PATH, run:

   $ echo $PATH

5.1.2. Installing Red Hat OpenShift Pipelines CLI (tkn) on Linux using an RPM

For Red Hat Enterprise Linux (RHEL) version 8, you can install the Red Hat OpenShift Pipelines CLI (tkn) as an RPM.

Prerequisites

- You have an active OpenShift Container Platform subscription on your Red Hat account.
- You have root or sudo privileges on your local system.

Procedure

1. Register with Red Hat Subscription Manager:

   # subscription-manager register

2. Pull the latest subscription data:
3. List the available subscriptions:

   # subscription-manager list --available --matches "pipelines"

4. In the output for the previous command, find the pool ID for your OpenShift Container Platform subscription and attach the subscription to the registered system:

   # subscription-manager attach --pool=<pool_id>

5. Enable the repositories required by Red Hat OpenShift Pipelines:

   - Linux (x86_64, amd64)
     
     # subscription-manager repos --enable="pipelines-1.5-for-rhel-8-x86_64-rpms"
   
   - Linux on IBM Z and LinuxONE (s390x)
     
     # subscription-manager repos --enable="pipelines-1.5-for-rhel-8-s390x-rpms"
   
   - Linux on IBM Power Systems (ppc64le)
     
     # subscription-manager repos --enable="pipelines-1.5-for-rhel-8-ppc64le-rpms"

6. Install the openshift-pipelines-client package:

   # yum install openshift-pipelines-client

After you install the CLI, it is available using the tkn command:

$ tkn version

5.1.3. Installing Red Hat OpenShift Pipelines CLI (tkn) on Windows

For Windows, the tkn CLI is provided as a zip archive.

**Procedure**

1. Download the CLI.

2. Unzip the archive with a ZIP program.

3. Add the location of your tkn.exe file to your PATH environment variable.

4. To check your PATH, open the command prompt and run the command:

   C:\> path

5.1.4. Installing Red Hat OpenShift Pipelines CLI (tkn) on macOS
For macOS, the tkn CLI is provided as a tar.gz archive.

Procedure

1. Download the CLI.
2. Unpack and unzip the archive.
3. Move the tkn binary to a directory on your PATH.
4. To check your PATH, open a terminal window and run:

   ```bash
 $ echo $PATH
   ```

5.2. CONFIGURING THE OPENSHIFT PIPELINES TKN CLI

Configure the Red Hat OpenShift Pipelines tkn CLI to enable tab completion.

5.2.1. Enabling tab completion

After you install the tkn CLI, you can enable tab completion to automatically complete tkn commands or suggest options when you press Tab.

Prerequisites

- You must have the tkn CLI tool installed.
- You must have bash-completion installed on your local system.

Procedure

The following procedure enables tab completion for Bash.

1. Save the Bash completion code to a file:

   ```bash
 $ tkn completion bash > tkn_bash_completion
   ```

2. Copy the file to /etc/bash_completion.d/:

   ```bash
 $ sudo cp tkn_bash_completion /etc/bash_completion.d/
   ```

   Alternatively, you can save the file to a local directory and source it from your .bashrc file instead.

Tab completion is enabled when you open a new terminal.

5.3. OPENSHIFT PIPELINES TKN REFERENCE

This section lists the basic tkn CLI commands.

5.3.1. Basic syntax

   tkn [command or options] [arguments...]
5.3.2. Global options
--help, -h

5.3.3. Utility commands

5.3.3.1. tkn
Parent command for tkn CLI.

Example: Display all options

$ tkn

5.3.3.2. completion [shell]
Print shell completion code which must be evaluated to provide interactive completion. Supported shells are bash and zsh.

Example: Completion code for bash shell

$ tkn completion bash

5.3.3.3. version
Print version information of the tkn CLI.

Example: Check the tkn version

$ tkn version

5.3.4. Pipelines management commands

5.3.4.1. pipeline
Manage Pipelines.

Example: Display help

$ tkn pipeline --help

5.3.4.2. pipeline delete
Delete a Pipeline.

Example: Delete the mypipeline Pipeline from a namespace

$ tkn pipeline delete mypipeline -n myspace

5.3.4.3. pipeline describe
Describe a Pipeline.

**Example: Describe mypipeline Pipeline**

```
$ tkn pipeline describe mypipeline
```

5.3.4.4. pipeline list

List Pipelines.

**Example: Display a list of Pipelines**

```
$ tkn pipeline list
```

5.3.4.5. pipeline logs

Display Pipeline logs for a specific Pipeline.

**Example: Stream live logs for the mypipeline Pipeline**

```
$ tkn pipeline logs -f mypipeline
```

5.3.4.6. pipeline start

Start a Pipeline.

**Example: Start mypipeline Pipeline**

```
$ tkn pipeline start mypipeline
```

5.3.5. PipelineRun commands

5.3.5.1. pipelinerun

Manage PipelineRuns.

**Example: Display help**

```
$ tkn pipelinerun -h
```

5.3.5.2. pipelinerun cancel

Cancel a PipelineRun.

**Example: Cancel the mypipelinerun PipelineRun from a namespace**

```
$ tkn pipelinerun cancel mypipelinerun -n myspace
```

5.3.5.3. pipelinerun delete
Delete a PipelineRun.

**Example: Delete PipelineRuns from a namespace**

```
$ tkn pipelinerun delete mypipelinerun1 mypipelinerun2 -n myspace
```

5.3.5.4. pipelinerun describe

Describe a PipelineRun.

**Example: Describe the mypipelinerun PipelineRun in a namespace**

```
$ tkn pipelinerun describe mypipelinerun -n myspace
```

5.3.5.5. pipelinerun list

List PipelineRuns.

**Example: Display a list of PipelineRuns in a namespace**

```
$ tkn pipelinerun list -n myspace
```

5.3.5.6. pipelinerun logs

Display the logs of a PipelineRun.

**Example: Display the logs of the mypipelinerun PipelineRun with all tasks and steps in a namespace**

```
$ tkn pipelinerun logs mypipelinerun -a -n myspace
```

5.3.6. Task management commands

5.3.6.1. task

Manage Tasks.

**Example: Display help**

```
$ tkn task -h
```

5.3.6.2. task delete

Delete a Task.

**Example: Delete mytask1 and mytask2 Tasks from a namespace**

```
$ tkn task delete mytask1 mytask2 -n myspace
```
5.3.6.3. task describe
Describe a Task.

Example: Describe the mytask Task in a namespace

```bash
$ tkn task describe mytask -n myspace
```

5.3.6.4. task list
List Tasks.

Example: List all the Tasks in a namespace

```bash
$ tkn task list -n myspace
```

5.3.6.5. task logs
Display Task logs.

Example: Display logs for the mytaskrun TaskRun of the mytask Task

```bash
$ tkn task logs mytask mytaskrun -n myspace
```

5.3.6.6. task start
Start a Task.

Example: Start the mytask Task in a namespace

```bash
$ tkn task start mytask -s <ServiceAccountName> -n myspace
```

5.3.7. TaskRun commands

5.3.7.1. taskrun
Manage TaskRuns.

Example: Display help

```bash
$ tkn taskrun -h
```

5.3.7.2. taskrun cancel
Cancel a TaskRun.

Example: Cancel the mytaskrun TaskRun from a namespace

```bash
$ tkn taskrun cancel mytaskrun -n myspace
```
5.3.7.3. taskrun delete
Delete a TaskRun.

Example: Delete mytaskrun1 and mytaskrun2 TaskRuns from a namespace

$ tkn taskrun delete mytaskrun1 mytaskrun2 -n myspace

5.3.7.4. taskrun describe
Describe a TaskRun.

Example: Describe the mytaskrun TaskRun in a namespace

$ tkn taskrun describe mytaskrun -n myspace

5.3.7.5. taskrun list
List TaskRuns.

Example: List all TaskRuns in a namespace

$ tkn taskrun list -n myspace

5.3.7.6. taskrun logs
Display TaskRun logs.

Example: Display live logs for the mytaskrun TaskRun in a namespace

$ tkn taskrun logs -f mytaskrun -n myspace

5.3.8. Condition management commands

5.3.8.1. condition
Manage Conditions.

Example: Display help

$ tkn condition --help

5.3.8.2. condition delete
Delete a Condition.

Example: Delete the mycondition1 Condition from a namespace

$ tkn condition delete mycondition1 -n myspace
5.3.8.3. condition describe
Describe a Condition.

Example: Describe the mycondition1 Condition in a namespace
$ tkn condition describe mycondition1 -n myspace

5.3.8.4. condition list
List Conditions.

Example: List Conditions in a namespace
$ tkn condition list -n myspace

5.3.9. Pipeline Resource management commands

5.3.9.1. resource
Manage Pipeline Resources.

Example: Display help
$ tkn resource -h

5.3.9.2. resource create
Create a Pipeline Resource.

Example: Create a Pipeline Resource in a namespace
$ tkn resource create -n myspace

This is an interactive command that asks for input on the name of the Resource, type of the Resource, and the values based on the type of the Resource.

5.3.9.3. resource delete
Delete a Pipeline Resource.

Example: Delete the myresource Pipeline Resource from a namespace
$ tkn resource delete myresource -n myspace

5.3.9.4. resource describe
Describe a Pipeline Resource.

Example: Describe the myresource Pipeline Resource
5.3.9.5. resource list

List Pipeline Resources.

Example: List all Pipeline Resources in a namespace

$ tkn resource list -n myspace

5.3.10. ClusterTask management commands

5.3.10.1. clustertask

Manage ClusterTasks.

Example: Display help

$ tkn clustertask --help

5.3.10.2. clustertask delete

Delete a ClusterTask resource in a cluster.

Example: Delete mytask1 and mytask2 ClusterTasks

$ tkn clustertask delete mytask1 mytask2

5.3.10.3. clustertask describe

Describe a ClusterTask.

Example: Describe the mytask ClusterTask

$ tkn clustertask describe mytask1

5.3.10.4. clustertask list

List ClusterTasks.

Example: List ClusterTasks

$ tkn clustertask list

5.3.10.5. clustertask start

Start ClusterTasks.

Example: Start the mytask ClusterTask

$ tkn clustertask start mytask1
5.3.11. Trigger management commands

5.3.11.1. eventlistener
Manage EventListeners.

Example: Display help

$ tkn eventlistener -h

5.3.11.2. eventlistener delete
Delete an EventListener.

Example: Delete mylistener1 and mylistener2 EventListeners in a namespace

$ tkn eventlistener delete mylistener1 mylistener2 -n myspace

5.3.11.3. eventlistener describe
Describe an EventListener.

Example: Describe the mylistener EventListener in a namespace

$ tkn eventlistener describe mylistener -n myspace

5.3.11.4. eventlistener list
List EventListeners.

Example: List all the EventListeners in a namespace

$ tkn eventlistener list -n myspace

5.3.11.5. eventlistener logs
Display logs of an EventListener.

Example: Display the logs of the mylistener EventListener in a namespace

$ tkn eventlistener logs mylistener -n myspace

5.3.11.6. triggerbinding
Manage TriggerBindings.

Example: Display TriggerBindings help

$ tkn clustertask start mytask
$ tkn eventlistener -h
$ tkn eventlistener delete mylistener1 mylistener2 -n myspace
$ tkn eventlistener describe mylistener -n myspace
$ tkn eventlistener list -n myspace
$ tkn eventlistener logs mylistener -n myspace
5.3.11.7. triggerbinding delete
Delete a TriggerBinding.

Example: Delete mybinding1 and mybinding2 TriggerBindings in a namespace

$ tkn triggerbinding delete mybinding1 mybinding2 -n myspace

5.3.11.8. triggerbinding describe
Describe a TriggerBinding.

Example: Describe the mybinding TriggerBinding in a namespace

$ tkn triggerbinding describe mybinding -n myspace

5.3.11.9. triggerbinding list
List TriggerBindings.

Example: List all the TriggerBindings in a namespace

$ tkn triggerbinding list -n myspace

5.3.11.10. triggertemplate
Manage TriggerTemplates.

Example: Display TriggerTemplate help

$ tkn triggertemplate -h

5.3.11.11. triggertemplate delete
Delete a TriggerTemplate.

Example: Delete mytemplate1 and mytemplate2 TriggerTemplates in a namespace

$ tkn triggertemplate delete mytemplate1 mytemplate2 -n `myspace`

5.3.11.12. triggertemplate describe
Describe a TriggerTemplate.

Example: Describe the mytemplate TriggerTemplate in a namespace

$ tkn triggertemplate describe mytemplate -n `myspace`
5.3.11.13. triggertemplate list
List TriggerTemplates.

Example: List all the TriggerTemplates in a namespace

$ tkn triggertemplate list -n myspace

5.3.11.14. clustertriggerbinding
Manage ClusterTriggerBindings.

Example: Display ClusterTriggerBindings help

$ tkn clustertriggerbinding -h

5.3.11.15. clustertriggerbinding delete
Delete a ClusterTriggerBinding.

Example: Delete myclusterbinding1 and myclusterbinding2 ClusterTriggerBindings

$ tkn clustertriggerbinding delete myclusterbinding1 myclusterbinding2

5.3.11.16. clustertriggerbinding describe
Describe a ClusterTriggerBinding.

Example: Describe the myclusterbinding ClusterTriggerBinding

$ tkn clustertriggerbinding describe myclusterbinding

5.3.11.17. clustertriggerbinding list
List ClusterTriggerBindings.

Example: List all ClusterTriggerBindings

$ tkn clustertriggerbinding list

5.3.12. Hub interaction commands
Interact with Tekton Hub for resources such as tasks and pipelines.

5.3.12.1. hub
Interact with hub.

Example: Display help

$ tkn hub -h
Example: Interact with a hub API server

$ tkn hub --api-server https://api.hub.tekton.dev

NOTE
For each example, to get the corresponding sub-commands and flags, run tkn hub
<command> --help.

5.3.12.2. hub downgrade
Downgrade an installed resource.

Example: Downgrade the mytask task in the mynamespace namespace to it’s older version

$ tkn hub downgrade task mytask --to version -n mynamespace

5.3.12.3. hub get
Get a resource manifest by its name, kind, catalog, and version.

Example: Get the manifest for a specific version of the myresource pipeline or task from the tekton catalog

$ tkn hub get [pipeline | task] myresource --from tekton --version version

5.3.12.4. hub info
Display information about a resource by its name, kind, catalog, and version.

Example: Display information about a specific version of the mytask task from the tekton catalog

$ tkn hub info task mytask --from tekton --version version

5.3.12.5. hub install
Install a resource from a catalog by its kind, name, and version.

Example: Install a specific version of the mytask task from the tekton catalog in the mynamespace namespace

$ tkn hub install task mytask --from tekton --version version -n mynamespace

5.3.12.6. hub reinstall
Reinstall a resource by its kind and name.

Example: Reinstall a specific version of the mytask task from the tekton catalog in the mynamespace namespace
$ tkn hub reinstall task mytask --from tekton --version version -n mynamespace

5.3.12.7. hub search

Search a resource by a combination of name, kind, and tags.

Example: Search a resource with a tag cli

$ tkn hub search --tags cli

5.3.12.8. hub upgrade

Upgrade an installed resource.

Example: Upgrade the installed mytask task in the mynamespace namespace to a new version

$ tkn hub upgrade task mytask --to version -n mynamespace
CHAPTER 6. OPM CLI

6.1. ABOUT OPM

The opm CLI tool is provided by the Operator Framework for use with the Operator bundle format. This tool allows you to create and maintain catalogs of Operators from a list of bundles, called an index, that are similar to software repositories. The result is a container image, called an index image, which can be stored in a container registry and then installed on a cluster.

An index contains a database of pointers to Operator manifest content that can be queried through an included API that is served when the container image is run. On OpenShift Container Platform, Operator Lifecycle Manager (OLM) can use the index image as a catalog by referencing it in a CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed Operators on the cluster.

Additional resources

- See Operator Framework packaging formats for more information about the bundle format.
- To create a bundle image using the Operator SDK, see Working with bundle images.

6.2. INSTALLING OPM

You can install the opm CLI tool on your Linux, macOS, or Windows workstation.

Prerequisites

- For Linux, you must provide the following packages:
  - podman version 1.9.3+ (version 2.0+ recommended)
  - glibc version 2.28+

Procedure

1. Navigate to the OpenShift mirror site and download the latest version of the tarball that matches your operating system.

2. Unpack the archive.

   - For Linux or macOS:
     ```
 $ tar xvf <file>
     ```
   
   - For Windows, unzip the archive with a ZIP program.

3. Place the file anywhere in your PATH.

   - For Linux or macOS:
     a. Check your PATH:
     ```
 $ echo $PATH
     ```
b. Move the file. For example:

```
$ sudo mv ./opm /usr/local/bin/
```

- For Windows:
  a. Check your PATH:

```
C:\> path
```
  b. Move the file:

```
C:\> move opm.exe <directory>
```

**Verification**

- After you install the **opm** CLI, verify that it is available:

```
$ opm version
```

**Example output**

```
Version: version.Version{OpmVersion:"v1.15.4-2-g6183dbb3", GitCommit:"6183dbb3567397e759f25752011834f86f47a3ea", BuildDate:"2021-02-13T04:16:08Z", GoOs:"linux", GoArch:"amd64"}
```

### 6.3. ADDITIONAL RESOURCES

- See [Managing custom catalogs](#) for **opm** procedures including creating, updating, and pruning index images.
CHAPTER 7. OPERATOR SDK

7.1. INSTALLING THE OPERATOR SDK CLI

The Operator SDK provides a command-line interface (CLI) tool that Operator developers can use to build, test, and deploy an Operator. You can install the Operator SDK CLI on your workstation so that you are prepared to start authoring your own Operators.

See Developing Operators for full documentation on the Operator SDK.

NOTE
OpenShift Container Platform 4.8 and later supports Operator SDK v1.8.0.

7.1.1. Installing the Operator SDK CLI

You can install the OpenShift SDK CLI tool on Linux.

Prerequisites

- Go v1.16+
- docker v17.03+, podman v1.9.3+, or buildah v1.7+

Procedure

1. Navigate to the OpenShift mirror site.
2. From the latest directory, download the latest version of the tarball for Linux.
3. Unpack the archive:
   
   $ tar xvf operator-sdk-v1.8.0-ocp-linux-x86_64.tar.gz

4. Make the file executable:
   
   $ chmod +x operator-sdk

5. Move the extracted operator-sdk binary to a directory that is on your PATH.

   TIP
   
   To check your PATH:
   
   $ echo $PATH

   $ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

Verification

- After you install the Operator SDK CLI, verify that it is available:
7.2. OPERATOR SDK CLI REFERENCE

The Operator SDK command-line interface (CLI) is a development kit designed to make writing Operators easier.

Operator SDK CLI syntax

```
$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]
```

Operator authors with cluster administrator access to a Kubernetes-based cluster (such as OpenShift Container Platform) can use the Operator SDK CLI to develop their own Operators based on Go, Ansible, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK and continue to work.

See Developing Operators for full documentation on the Operator SDK.

7.2.1. bundle

The `operator-sdk bundle` command manages Operator bundle metadata.

7.2.1.1. validate

The `bundle validate` subcommand validates an Operator bundle.

Table 7.1. bundle validate flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h, --help</td>
<td>Help output for the <code>bundle validate</code> subcommand.</td>
</tr>
<tr>
<td>--index-builder</td>
<td>Tool to pull and unpack bundle images. Only used when validating a bundle image. Available options are docker, which is the default, podman, or none.</td>
</tr>
<tr>
<td>(string)</td>
<td></td>
</tr>
<tr>
<td>--list-optional</td>
<td>List all optional validators available. When set, no validators are run.</td>
</tr>
<tr>
<td>--select-optional</td>
<td>Label selector to select optional validators to run. When run with the <code>--list-optional</code> flag, lists available optional validators.</td>
</tr>
<tr>
<td>(string)</td>
<td></td>
</tr>
</tbody>
</table>

7.2.2. cleanup

The `operator-sdk cleanup` command destroys and removes resources that were created for an Operator that was deployed with the `run` command.

Table 7.2. cleanup flags
### 7.2.3. completion

The `operator-sdk completion` command generates shell completions to make issuing CLI commands quicker and easier.

**Table 7.3. completion subcommands**

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bash</code></td>
<td>Generate bash completions.</td>
</tr>
<tr>
<td><code>zsh</code></td>
<td>Generate zsh completions.</td>
</tr>
</tbody>
</table>

**Table 7.4. completion flags**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-h, --help</code></td>
<td>Usage help output.</td>
</tr>
</tbody>
</table>

For example:

```
$ operator-sdk completion bash
```

**Example output**

```
bash completion for operator-sdk
 -sh shell-script
...
ex: ts=4 sw=4 et filetype=sh
```

### 7.2.4. create

The `operator-sdk create` command is used to create, or `scaffold`, a Kubernetes API.

#### 7.2.4.1. api
The `create api` subcommand scaffolds a Kubernetes API. The subcommand must be run in a project that was initialized with the `init` command.

Table 7.5. `create api` flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h, --help</td>
<td>Help output for the <code>run bundle</code> subcommand.</td>
</tr>
</tbody>
</table>

7.2.5. generate

The `operator-sdk generate` command invokes a specific generator to generate code or manifests.

7.2.5.1. bundle

The `generate bundle` subcommand generates a set of bundle manifests, metadata, and a `bundle.Dockerfile` file for your Operator project.

**NOTE**

Typically, you run the `generate kustomize manifests` subcommand first to generate the input Kustomize bases that are used by the `generate bundle` subcommand. However, you can use the `make bundle` command in an initialized project to automate running these commands in sequence.

Table 7.6. `generate bundle` flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--channels (string)</td>
<td>Comma-separated list of channels to which the bundle belongs. The default value is <code>alpha</code>.</td>
</tr>
<tr>
<td>--crds-dir (string)</td>
<td>Root directory for <code>CustomResoureDefinition</code> manifests.</td>
</tr>
<tr>
<td>--default-channel (string)</td>
<td>The default channel for the bundle.</td>
</tr>
<tr>
<td>--deploy-dir (string)</td>
<td>Root directory for Operator manifests, such as deployments and RBAC. This directory is different from the directory passed to the <code>--input-dir</code> flag.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help for <code>generate bundle</code></td>
</tr>
<tr>
<td>--input-dir (string)</td>
<td>Directory from which to read an existing bundle. This directory is the parent of your bundle <code>manifests</code> directory and is different from the <code>--deploy-dir</code> directory.</td>
</tr>
<tr>
<td>--kustomize-dir (string)</td>
<td>Directory containing Kustomize bases and a <code>kustomization.yaml</code> file for bundle manifests. The default path is <code>config/manifests</code>.</td>
</tr>
<tr>
<td>--manifests</td>
<td>Generate bundle manifests.</td>
</tr>
</tbody>
</table>
## 7.2.5.2. kustomize

The **generate kustomize** subcommand contains subcommands that generate Kustomize data for the Operator.

### 7.2.5.2.1. manifests

The **generate kustomize manifests** subcommand generates or regenerates Kustomize bases and a *kustomization.yaml* file in the `config/manifests` directory, which are used to build bundle manifests by other Operator SDK commands. This command interactively asks for UI metadata, an important component of manifest bases, by default unless a base already exists or you set the `--interactive=false` flag.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>--apis-dir</strong> (string)</td>
<td>Root directory for API type definitions.</td>
</tr>
<tr>
<td><strong>-h, --help</strong></td>
<td>Help for <strong>generate kustomize manifests</strong>.</td>
</tr>
<tr>
<td><strong>--input-dir</strong> (string)</td>
<td>Directory containing existing Kustomize files.</td>
</tr>
<tr>
<td><strong>--interactive</strong></td>
<td>When set to false, if no Kustomize base exists, an interactive command prompt is presented to accept custom metadata.</td>
</tr>
</tbody>
</table>
### 7.2.6. init

The `operator-sdk init` command initializes a Operator project and generates, or scaffolds, a default project directory layout for the given plug-in.

This command writes the following files:

- Boilerplate license file
- `PROJECT` file with the domain and repository
- `Makefile` to build the project
- `go.mod` file with project dependencies
- `kustomization.yaml` file for customizing manifests
- Patch file for customizing images for manager manifests
- Patch file for enabling Prometheus metrics
- `main.go` file to run

#### Table 7.8. init flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--help, -h</code></td>
<td>Help output for the <code>init</code> command.</td>
</tr>
<tr>
<td><code>--plugins</code> (string)</td>
<td>Name and optionally version of the plug-in to initialize the project with. Available plug-ins are <code>ansible.sdk.operatorframework.io/v1</code>, <code>go.kubebuilder.io/v2</code>, <code>go.kubebuilder.io/v3</code>, and <code>helm.sdk.operatorframework.io/v1</code>.</td>
</tr>
<tr>
<td><code>--project-version</code></td>
<td>Project version. Available values are <code>2</code> and <code>3-alpha</code>, which is the default.</td>
</tr>
</tbody>
</table>

### 7.2.7. run

The `operator-sdk run` command provides options that can launch the Operator in various environments.

#### 7.2.7.1. bundle
The **run bundle** subcommand deploys an Operator in the bundle format with Operator Lifecycle Manager (OLM).

### Table 7.9. run bundle flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--index-image (string)</td>
<td>Index image in which to inject a bundle. The default image is <code>quay.io/operator-framework/upstream-opm-builder:latest</code>.</td>
</tr>
<tr>
<td>--install-mode &lt;install_mode_value&gt;</td>
<td>Install mode supported by the cluster service version (CSV) of the Operator, for example <strong>AllNamespaces</strong> or <strong>SingleNamespace</strong>.</td>
</tr>
<tr>
<td>--timeout &lt;duration&gt;</td>
<td>Install timeout. The default value is <strong>2m0s</strong>.</td>
</tr>
<tr>
<td>--kubeconfig (string)</td>
<td>Path to the kubeconfig file to use for CLI requests.</td>
</tr>
<tr>
<td>--namespace (string)</td>
<td>If present, namespace in which to run the CLI request.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help output for the <strong>run bundle</strong> subcommand.</td>
</tr>
</tbody>
</table>

**Additional resources**

- See [Operator group membership](#) for details on possible install modes.

#### 7.2.7.2. bundle-upgrade

The **run bundle-upgrade** subcommand upgrades an Operator that was previously installed in the bundle format with Operator Lifecycle Manager (OLM).

### Table 7.10. run bundle-upgrade flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--timeout &lt;duration&gt;</td>
<td>Upgrade timeout. The default value is <strong>2m0s</strong>.</td>
</tr>
<tr>
<td>--kubeconfig (string)</td>
<td>Path to the kubeconfig file to use for CLI requests.</td>
</tr>
<tr>
<td>--namespace (string)</td>
<td>If present, namespace in which to run the CLI request.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help output for the <strong>run bundle</strong> subcommand.</td>
</tr>
</tbody>
</table>

#### 7.2.8. scorecard

The **operator-sdk scorecard** command runs the scorecard tool to validate an Operator bundle and provide suggestions for improvements. The command takes one argument, either a bundle image or directory containing manifests and metadata. If the argument holds an image tag, the image must be
present remotely.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c, --config (string)</td>
<td>Path to scorecard configuration file. The default path is <code>bundle/tests/scorecard/config.yaml</code>.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help output for the <code>scorecard</code> command.</td>
</tr>
<tr>
<td>--kubeconfig (string)</td>
<td>Path to <code>kubeconfig</code> file.</td>
</tr>
<tr>
<td>-L, --list</td>
<td>List which tests are available to run.</td>
</tr>
<tr>
<td>-n, --namespace (string)</td>
<td>Namespace in which to run the test images.</td>
</tr>
<tr>
<td>-o, --output (string)</td>
<td>Output format for results. Available values are <code>text</code>, which is the default, and <code>json</code>.</td>
</tr>
<tr>
<td>-l, --selector (string)</td>
<td>Label selector to determine which tests are run.</td>
</tr>
<tr>
<td>-s, --service-account (string)</td>
<td>Service account to use for tests. The default value is <code>default</code>.</td>
</tr>
<tr>
<td>-x, --skip-cleanup</td>
<td>Disable resource cleanup after tests are run.</td>
</tr>
<tr>
<td>-w, --wait-time &lt;duration&gt;</td>
<td>Seconds to wait for tests to complete, for example <code>35s</code>. The default value is <code>30s</code>.</td>
</tr>
</tbody>
</table>

### Additional resources

- See [Validating Operators using the scorecard tool](#) for details about running the scorecard tool.