OpenShift Container Platform 4.6

Release notes

Highlights of what is new and what has changed with this OpenShift Container Platform release

Last Updated: 2022-04-22
OpenShift Container Platform 4.6 Release notes

Highlights of what is new and what has changed with this OpenShift Container Platform release
Abstract

The release notes for OpenShift Container Platform summarize all new features and enhancements, notable technical changes, major corrections from the previous version, and any known bugs upon general availability.
Table of Contents

CHAPTER 1. OPENSSHIFT CONTAINER PLATFORM 4.6 RELEASE NOTES ... 8
1.1. ABOUT THIS RELEASE .. 8
1.2. NEW FEATURES AND ENHANCEMENTS ... 8
 1.2.1. Red Hat Enterprise Linux CoreOS (RHCOS) ... 8
 1.2.1.1. RHCOS PXE and ISO now live environment ... 8
 1.2.1.2. coreos-installer has been rewritten ... 9
 1.2.1.3. Ignition Spec updated to v3 .. 9
 1.2.1.4. Additional steps to add nodes to existing clusters .. 9
 1.2.1.5. Extensions now supported for RHCOS and MCO ... 9
 1.2.1.6. 4Kn disks now supported .. 10
 1.2.1.7. /var partitions now supported .. 10
 1.2.1.8. Static IP configuration for vSphere using OVA .. 10
 1.2.2. Installation and upgrade ... 10
 1.2.2.1. Installing a cluster into an AWS GovCloud region ... 10
 1.2.2.2. Defining custom AWS API endpoints .. 10
 1.2.2.3. Installing a cluster into a Microsoft Azure Government region 11
 1.2.2.4. User-defined outbound routing for clusters running on Azure 11
 1.2.2.5. Installing a cluster to vSphere version 7.0 ... 11
 1.2.2.6. Installing a cluster on bare metal using installer-provisioned infrastructure 11
 1.2.2.7. Handling credential requests for cloud API access on AWS, Azure, and GCP 11
 1.2.2.8. Specifying disk type and size for control plane and compute nodes 11
 1.2.2.9. Minimum disk size for control plane nodes has increased for Azure installations 12
 1.2.2.10. Latest version of Operators required before cluster upgrade 12
 1.2.2.11. Deployment without a provisioning network .. 12
 1.2.2.12. Deployment now supports root device hints ... 12
 1.2.2.13. Installer improvements .. 12
 1.2.2.14. RHOSP availability zones selection at installation ... 13
 1.2.2.15. Floating IP addresses are no longer required for installation on RHOSP 13
 1.2.2.16. Select disk for RHCOS installation .. 13
 1.2.2.17. AWS clusters now default to use M5 instances .. 13
 1.2.2.18. IBM Z and LinuxONE ... 13
 Restrictions ... 13
 Supported features .. 14
 1.2.2.19. IBM Power Systems ... 14
 Restrictions ... 14
 Supported Features .. 15
 1.2.2.20. Enhancements to Red Hat Virtualization (RHV) full-stack installer 16
 1.2.2.21. Improvements to the remediation of failed nodes for bare metal deployments using installer-provisioned infrastructure ... 16
 1.2.3. Security and compliance .. 17
 1.2.3.1. Compliance Operator ... 17
 1.2.3.2. Configure OAuth token inactivity timeout ... 17
 1.2.3.3. Secure OAuth token storage format .. 17
 1.2.3.4. File Integrity Operator is now available .. 17
 1.2.3.5. Cluster scripts updated for cluster restore failures .. 17
 1.2.4. Machine API .. 17
 1.2.4.1. Support for multiple block device mappings ... 17
 1.2.4.2. Defaults and validation for the Machine API providerSpec 18
 1.2.4.3. Machine sets running on Azure support Spot VMs .. 18
 1.2.4.4. Machine sets running on GCP support preemptible VM instances 18
 1.2.5. Web console .. 18
1.2.5.1. Improved upgrade experience in the web console
1.2.5.2. Improved Operator installation workflow with OperatorHub
1.2.5.3. Improved operand details view
1.2.5.4. View related objects for cluster Operators
1.2.5.5. Warning messages when editing managed resources
1.2.5.6. The k8sResourcePrefix specDescriptor field supports CRD instance
1.2.5.7. Column management on resources page
1.2.5.8. Developer perspective

1.2.6. Scale
1.2.6.1. Cluster maximums
1.2.6.2. Real-time profile added to the Node Tuning Operator
1.2.6.3. The Performance Addon Operator is now fully supported
1.2.6.4. Optimizing data plane performance with Intel devices
1.2.6.5. Managing bare metal hosts in the console

1.2.7. Developer experience
1.2.7.1. oc set probe command has been extended
1.2.7.2. oc adm upgrade command now mentions upgradeable condition

1.2.8. Networking
1.2.8.1. OVN-Kubernetes cluster networking provider GA
1.2.8.2. Expand node service port range
1.2.8.3. SR-IOV Network Operator InfiniBand device support
1.2.8.4. DHCP range increased for provisioning network
1.2.8.5. Pod network connectivity checks
1.2.8.6. Secondary device metrics can be associated with network attachments
1.2.8.7. CNF tests can be run in discovery mode
1.2.8.8. HAProxy version upgrade
1.2.8.9. Control over X-Forwarded headers
1.2.8.10. Modify route path
1.2.8.11. Ingress termination policies
1.2.8.12. Ingress Controller Network Load Balancer for AWS
1.2.8.13. Ingress Operator endpoint configuration for AWS Route53
1.2.8.14. Ingress Controller unique-id configuration
1.2.8.15. Network policy supports selecting host network Ingress Controllers
1.2.8.16. Network policy supports selecting host network traffic

1.2.9. Storage
1.2.9.1. CSI drivers now managed by the Cluster Storage Operator
1.2.9.2. Automatic device discovery and provisioning with the Local Storage Operator (Technology Preview)
1.2.9.3. External provisioner for AWS EFS (Technology Preview) feature has been removed

1.2.10. Registry
1.2.10.1. Image pruner tolerates invalid images
1.2.10.2. Change the image pruner’s log level
1.2.10.3. Image registry supports Azure Government
1.2.10.4. Change the Image Registry Operator’s log level
1.2.10.5. Change the Image Registry Operator’s spec.storage.managementState

1.2.11. Operator lifecycle
1.2.11.1. Operator version dependency
1.2.11.2. Additional objects supported in Operator bundles
1.2.11.3. Selective bundle image mirroring with opm
1.2.11.4. Conversion webhook support for global Operators
1.2.11.5. Operator API now supported
1.2.11.5.1. Removing Technology Preview Operator API before cluster upgrade
1.2.11.6. Node Maintenance Operator now validates maintenance requests
1.2.11.7. Set nodes to maintenance mode using NodeMaintenance custom resources
1.2.11.8. Set log levels separately for Image Registry Operator and operand
1.2.12. Builds
1.2.12.1. Builds support Git clones behind an HTTPS proxy
1.2.13. Images
1.2.13.1. Support for Cloud Credential Operator modes
1.2.13.2. Cluster Samples Operator on Power and Z
1.2.13.3. Cluster Samples Operator alerts
1.2.14. Metering
1.2.14.1. Configuring a retention period of metering Report custom resources
1.2.15. Nodes
1.2.15.1. Configure the node audit log policy
1.2.15.2. Configure pod topology spread constraints
1.2.15.3. New descheduler strategy is available (Technology Preview)
1.2.15.4. Descheduler filtering by namespace and priority (Technology Preview)
1.2.15.5. New parameter for the RemoveDuplicates descheduler strategy (Technology Preview)
1.2.15.6. Generate ImageContentSourcePolicy object scoped to a registry
1.2.16. Cluster logging
 Log Forwarding API is generally available
 Adding labels to log messages
 New cluster logging dashboards
 New parameters for tuning Fluentd
1.2.17. Monitoring
 1.2.17.1. Monitoring for user-defined projects
 1.2.17.2. Alerting rule changes
 1.2.17.3. Prometheus rule validation
 1.2.17.4. Metrics and alerting rules added for the Thanos Querier
 1.2.17.5. Virtual Machine Pending Changes alert updates
1.2.18. Insights Operator
 1.2.18.1. Insights Operator data collection enhancements
1.3. NOTABLE TECHNICAL CHANGES
 Default Operator catalogs now shipped per cluster version
 Important Operator upgrade requirements
 CNI network provider now uses OVS installed on cluster nodes
 Warnings when using deprecated APIs
 COPY and ADD build instructions improved
 Operator SDK v0.19.4
 UBI 8 used for all images in OpenShift Container Platform
 Jenkins Node.js agent upgrade
 Audit logs not gathered by default for oc adm must-gather command
 Binary sha256sum.txt.sig file has been renamed for OpenShift Container Platform releases
1.4. DEPRECATED AND REMOVED FEATURES
 1.4.1. Deprecated features
 1.4.1.1. Bring your own RHEL 7 compute machines
 1.4.1.2. Metering Operator
 1.4.2. Removed features
 1.4.2.1. OperatorSource resource
 1.4.2.2. MongoDB templates
 1.4.2.3. External provisioner for AWS EFS (Technology Preview)
 1.4.2.4. TLS verification falling back to the Common Name field
1.5. BUG FIXES
1.6. TECHNOLOGY PREVIEW FEATURES
1.7. KNOWN ISSUES
1.8. ASYNCHRONOUS ERRATA UPDATES

1.8.1. RHBA-2020:4196 - OpenShift Container Platform 4.6 image release and bug fix advisory
1.8.2. RHSA-2020:4297 - Moderate: OpenShift Container Platform 4.6 package security updates
1.8.3. RHSA-2020:4298 - Moderate: OpenShift Container Platform 4.6 image security updates
1.8.4. RHBA-2020:4339 - OpenShift Container Platform 4.6.3 bug fix update
 1.8.4.1. Bug fixes
 1.8.4.2. Upgrading
1.8.5. RHBA-2020:4987 - OpenShift Container Platform 4.6.4 bug fix update
 1.8.5.1. Upgrading
1.8.6. RHBA-2020:5115 - OpenShift Container Platform 4.6.6 bug fix update
 1.8.6.1. Bug fixes
 1.8.6.2. Upgrading
1.8.7. RHSA-2020:5159 - Low: OpenShift Container Platform 4.6 package security updates
1.8.8. RHSA-2020:5259 - OpenShift Container Platform 4.6.8 bug fix and security update
 1.8.8.1. Features
 1.8.8.1.1. New Red Hat Enterprise Linux CoreOS (RHCOS) boot images available
 1.8.8.1.2. EUS 4.6 upgrade channel now available
 1.8.8.2. Upgrading
1.8.9. RHSA-2020:5614 - OpenShift Container Platform 4.6.9 bug fix and security update
 1.8.9.1. Upgrading
1.8.10. RHSA-2021:0037 - OpenShift Container Platform 4.6.12 bug fix and security update
 1.8.10.1. Bug fixes
 1.8.10.2. Upgrading
1.8.11. RHSA-2021:0171 - OpenShift Container Platform 4.6.13 bug fix and security update
 1.8.11.1. Upgrading
 1.8.12.1. Upgrading
1.8.13. RHSA-2021:0308 - OpenShift Container Platform 4.6.16 bug fix and security update
 1.8.13.1. Features
 1.8.13.1.1. Enhancements to Insights Operator
 1.8.13.2. Bug fixes
 1.8.13.3. Upgrading
 1.8.14.1. Upgrading
1.8.15. RHBA-2021:0510 - OpenShift Container Platform 4.6.18 bug fix update
 1.8.15.1. Features
 1.8.15.1.1. Enhancements to Insights Operator
 1.8.15.1.2. Support for rotating cloud provider credentials
 1.8.15.2. Upgrading
1.8.16. RHBA-2021:0634 - OpenShift Container Platform 4.6.19 bug fix update
 1.8.16.1. Upgrading
1.8.17. RHBA-2021:0674 - OpenShift Container Platform 4.6.20 bug fix update
 1.8.17.1. Upgrading
1.8.18. RHBA-2021:0753 - OpenShift Container Platform 4.6.21 bug fix update
 1.8.18.1. Upgrading
1.8.19. RHBA-2021:0825 - OpenShift Container Platform 4.6.22 bug fix update
 1.8.19.1. Bug fixes
 1.8.19.2. Upgrading
1.8.20. RHBA-2021:0952 - OpenShift Container Platform 4.6.23 bug fix and security update
 1.8.20.1. Upgrading
 1.8.21.1. Features
 1.8.21.1.1. Installing a cluster on VMC on AWS
1.8.21.1.1. Installing a cluster on VMC on AWS
1.8.21.1.2. Insights Operator enhancement for unhealthy SAP pods
1.8.21.1.3. SAP license management enhancement
1.8.21.1.4. Adding memory and uptime metadata to the Insights Operator archive
1.8.21.2. Bug fixes
1.8.21.3. Upgrading
1.8.22. RHBA-2021:1232 - OpenShift Container Platform 4.6.26 bug fix update
1.8.22.1. Features
1.8.22.1.1. Insights Operator enhancement for gathering SAP pod data
1.8.22.2. Upgrading
1.8.23. RHBA-2021:1427 - OpenShift Container Platform 4.6.27 bug fix update
1.8.23.1. Upgrading
1.8.24.1. Bug fixes
1.8.24.2. Upgrading
1.8.25. RHBA-2021:1521 - OpenShift Container Platform 4.6.29 bug fix update
1.8.25.1. Upgrading
1.8.26.1. Upgrading
1.8.27. RHBA-2021:2100 - OpenShift Container Platform 4.6.31 bug fix update
1.8.27.1. Upgrading
1.8.28. RHBA-2021:2157 - OpenShift Container Platform 4.6.32 bug fix update
1.8.28.1. Bug fixes
1.8.28.2. Upgrading
1.8.29. RHBA-2021:2267 - OpenShift Container Platform 4.6.34 bug fix update
1.8.29.1. Features
1.8.29.1.1. Insights Operator enhancement
1.8.29.2. Upgrading
1.8.30. RHBA-2021:2410 - OpenShift Container Platform 4.6.35 bug fix update
1.8.30.1. Features
1.8.30.1.1. Insights Operator enhancement
1.8.30.2. Bug fixes
1.8.30.3. Upgrading
1.8.31. RHBA-2021:2498 - OpenShift Container Platform 4.6.36 bug fix and security update
1.8.31.1. Upgrading
1.8.32. RHBA-2021:2641 - OpenShift Container Platform 4.6.38 bug fix and security update
1.8.32.1. Bug fixes
1.8.32.2. Upgrading
1.8.33. RHBA-2021:2684 - OpenShift Container Platform 4.6.39 bug fix update
1.8.33.1. Bug fixes
1.8.33.2. Upgrading
1.8.34. RHBA-2021:2767 - OpenShift Container Platform 4.6.40 bug fix update
1.8.34.1. Upgrading
1.8.35. RHBA-2021:2886 - OpenShift Container Platform 4.6.41 bug fix update
1.8.35.1. Features
1.8.35.1.1. New Telemetry metric for number of builds by strategy
1.8.35.2. Bug fixes
1.8.35.3. Upgrading
1.8.36. RHBA-2021:3008 - OpenShift Container Platform 4.6.42 bug fix and security update
1.8.36.1. Bug fixes
1.8.36.2. Upgrading
1.8.37. RHBA-2021:3197 - OpenShift Container Platform 4.6.43 bug fix update
1.8.37.1. Upgrading
1.8.38. RHBA-2021:3395 - OpenShift Container Platform 4.6.44 bug fix update
1.8.38.1. Upgrading
 1.8.39.1. Features
 1.8.39.1.1. New minimum storage requirement for clusters
 1.8.39.2. Bug fixes
 1.8.39.3. Upgrading
1.8.40. RHBA-2021:3643 - OpenShift Container Platform 4.6.46 bug fix and security update
 1.8.40.1. Upgrading
1.8.41. RHBA-2021:3737 - OpenShift Container Platform 4.6.47 bug fix update
 1.8.41.1. Bug fixes
 1.8.41.2. Upgrading
1.8.42. RHBA-2021:3829 - OpenShift Container Platform 4.6.48 bug fix update
 1.8.42.1. Features
 1.8.42.1.1. Updates from Kubernetes 1.19.14
 1.8.42.2. Upgrading
1.8.43. RHBA-2021:4009 - OpenShift Container Platform 4.6.49 bug fix and security update
 1.8.43.1. Upgrading
1.8.44. RHBA-2021:4800 - OpenShift Container Platform 4.6.51 bug fix and security update
 1.8.44.1. Upgrading
1.8.45. RHBA-2021:5010 - OpenShift Container Platform 4.6.52 bug fix and security update
 1.8.45.1. Upgrading
1.8.46. RHBA-2022:0025 - OpenShift Container Platform 4.6.53 bug fix and security update
 1.8.46.1. Bug fixes
 1.8.46.2. Upgrading
1.8.47. RHBA-2022:0180 - OpenShift Container Platform 4.6.54 bug fix and security update
 1.8.47.1. Upgrading
 1.8.48.1. Features
 1.8.48.1.1. IP reconciliation for Whereabouts CNI IPAM plug-in
 1.8.48.2. Upgrading
1.8.49. RHBA-2022:0867 - OpenShift Container Platform 4.6.56 bug fix and security update
 1.8.49.1. Bug fixes
 1.8.49.2. Upgrading
CHAPTER 1. OPENSHEET CONTAINER PLATFORM 4.6
RELEASE NOTES

Red Hat OpenShift Container Platform provides developers and IT organizations with a hybrid cloud application platform for deploying both new and existing applications on secure, scalable resources with minimal configuration and management overhead. OpenShift Container Platform supports a wide selection of programming languages and frameworks, such as Java, JavaScript, Python, Ruby, and PHP.

Built on Red Hat Enterprise Linux and Kubernetes, OpenShift Container Platform provides a more secure and scalable multitenant operating system for today’s enterprise-class applications, while delivering integrated application runtimes and libraries. OpenShift Container Platform enables organizations to meet security, privacy, compliance, and governance requirements.

1.1. ABOUT THIS RELEASE

Red Hat OpenShift Container Platform (RHBA-2020:4196) is now available. This release uses Kubernetes 1.19 with CRI-O runtime. New features, changes, and known issues that pertain to OpenShift Container Platform 4.6 are included in this topic.

Red Hat did not publicly release OpenShift Container Platform 4.6.0 as the GA version and, instead, is releasing OpenShift Container Platform 4.6.1 as the GA version.

OpenShift Container Platform 4.6 clusters are available at https://console.redhat.com/openshift. The Red Hat OpenShift Cluster Manager application for OpenShift Container Platform allows you to deploy OpenShift clusters to either on-premise or cloud environments.

OpenShift Container Platform 4.6 is supported on Red Hat Enterprise Linux 7.9 or later, as well as Red Hat Enterprise Linux CoreOS (RHCOS) 4.6.

You must use RHCOS for the control plane, which are also known as master machines, and can use either RHCOS or Red Hat Enterprise Linux 7.9 or later for compute machines, which are also known as worker machines.

IMPORTANT

Because only Red Hat Enterprise Linux version 7.9 or later is supported for compute machines, you must not upgrade the Red Hat Enterprise Linux compute machines to version 8.

OpenShift Container Platform 4.6 is an Extended Update Support (EUS) release. More information on Red Hat OpenShift EUS is available in OpenShift Life Cycle and OpenShift EUS Overview.

With the release of OpenShift Container Platform 4.6, version 4.3 is now end of life. For more information, see the Red Hat OpenShift Container Platform Life Cycle Policy.

1.2. NEW FEATURES AND ENHANCEMENTS

This release adds improvements related to the following components and concepts.

1.2.1. Red Hat Enterprise Linux CoreOS (RHCOS)

1.2.1.1. RHCOS PXE and ISO now live environment
The PXE media and ISO available for RHCOS are now a fully live environment. Unlike the previous dedicated PXE media and ISO used for RHCOS installation for OpenShift Container Platform clusters on user-provisioned infrastructure, the RHCOS live environment can be configured with Ignition and contains all the same packages as the main RHCOS image, such as `coreos-installer`, `nmcli`, and `podman`. This allows arbitrary scripting of pre- or post-installation workflows. For example, you could run `coreos-installer` and then make an HTTP request to signal success to a provisioning server. PXE boots use the normal `ignition.config.url`. The ISO can be configured with Ignition by using the following command:

```
$ coreos-installer iso ignition embed
```

1.2.1.2. coreos-installer has been rewritten

The `coreos-installer` is now rewritten to support more features including:

- Modifying the kernel arguments of the installed system.
- Fetching Ignition configs.
- Preserving previously existing partitions.
- Configuring Ignition for the new live ISO using the `coreos-installer iso ignition` command.

1.2.1.3. Ignition Spec updated to v3

RHCOS now uses Ignition spec v3 as the only supported spec version of Ignition. This allows for more complex disk configuration support in the future.

The change should be mostly transparent for those using installer-provisioned infrastructure. For user-provisioned infrastructure installations, you must adapt any custom Ignition configurations to use Ignition spec 3. The `openshift-install` program now generates Ignition spec 3.

If you are creating machine configs for day 1 or day 2 operations that use Ignition snippets, they should be created using Ignition spec v3. However, the Machine Config Operator (MCO) still supports Ignition spec v2.

1.2.1.4. Additional steps to add nodes to existing clusters

For clusters that have been upgraded to OpenShift Container Platform 4.6, you can add more nodes to your OpenShift Container Platform cluster. These instructions are only applicable if you originally installed a cluster prior to OpenShift Container Platform 4.6 and have since upgraded to 4.6.

If you installed a user-provisioned cluster on bare metal or vSphere, you must ensure that your boot media or OVA image matches the version that your cluster was upgraded to. Additionally, your Ignition configuration file must be modified to be spec v3 compatible. For more detailed instructions and an example Ignition config file, see the `Adding new nodes to UPI cluster fails after upgrading to OpenShift 4.6+` Knowledgebase Solution article.

1.2.1.5. Extensions now supported for RHCOS and MCO

RHCOS and the MCO now support the following extensions to the default RHCOS installation.

- `kernel-devel`
- `usbguard`
1.2.6. 4Kn disks now supported

RHCOS now supports installing to disks that use 4K sector sizes.

1.2.17. /var partitions now supported

RHCOS now supports /var being a separate partition, as well as any other subdirectory of /var.

1.2.18. Static IP configuration for vSphere using OVA

You can now override default Dynamic Host Configuration Protocol (DHCP) networking in vSphere. This requires setting the static IP configuration and then setting a guestinfo property before booting a VM from an OVA in vSphere.

1. Set your static IP:

 $ export IPCFG="ip=<ip>::<gateway>::<netmask>::<hostname>::<iface>::none
 nameserver=srv1 [nameserver=srv2 [nameserver=srv3 [...]]]"

 Example command

 $ export IPCFG="ip=192.168.100.101::192.168.100.254:255.255.255.0:::none
 nameserver=8.8.8.8"

2. Set the guestinfo.afterburn.initrd.network-kargs property before booting a VM from an OVA in vSphere:

 $ govc vm.change -vm "<vm_name>" -e "guestinfo.afterburn.initrd.network-kargs=${IPCFG}"

This lowers the barrier for automatic Red Hat Enterprise Linux CoreOS (RHCOS) deployment in environments without DHCP. This enhancement allows for higher-level automation to provision an RHCOS OVA in environments with static networking.

For more information, see BZ1785122.

1.2.2. Installation and upgrade

1.2.2.1. Installing a cluster into an AWS GovCloud region

You can now install a cluster on Amazon Web Services (AWS) into a GovCloud region. AWS GovCloud is designed for US government agencies, contractors, educational institutions, and other US customers that must run sensitive workloads.

Because GovCloud regions do not have RHCOS AMIs published by Red Hat, you must upload a custom AMI that belongs to that region.

For more information, see Installing a cluster on AWS into a government region.

1.2.2.2. Defining custom AWS API endpoints

You can now define a serviceEndpoints field in the install-config.yaml file, which lets you specify a list of custom endpoints to override the default service endpoints on AWS.
1.2.2.3. Installing a cluster into a Microsoft Azure Government region

You can now install a cluster on Azure into a Microsoft Azure Government (MAG) region. Microsoft Azure Government (MAG) is designed for US government agencies and their partners that must run sensitive workloads.

For more information, see Installing a cluster on Azure into a government region.

1.2.2.4. User-defined outbound routing for clusters running on Azure

You can now choose your own outbound routing for a cluster running on Azure to connect to the internet. This allows you to skip the creation of public IP addresses and public load balancers.

For more information, see User-defined outbound routing.

1.2.2.5. Installing a cluster to vSphere version 7.0

You can now deploy a cluster to VMware vSphere version 7.0. See VMware vSphere infrastructure requirements for more information.

1.2.2.6. Installing a cluster on bare metal using installer-provisioned infrastructure

OpenShift Container Platform 4.6 introduces support for installing a cluster on bare metal using installer-provisioned infrastructure.

For more information, see Installing a cluster on bare metal

1.2.2.7. Handling credential requests for cloud API access on AWS, Azure, and GCP

There is now a new credentialsMode field in the install-config.yaml file that defines how CredentialsRequest custom resources are handled for OpenShift Container Platform components requiring cloud API access on AWS, Azure, and GCP. There are three new modes that can be configured:

- Mint
- Passthrough
- Manual

IMPORTANT

Azure and GCP do not support the Manual mode configuration by using the install-config.yaml file due to a known issue found in BZ#1884691.

If the credentialsMode field is set to any of the three modes, the installation program does not check the credential for proper permissions prior to installing OpenShift Container Platform. This is useful for when the supplied user credentials cannot be properly validated due to limitations in the cloud policy simulator.

For more information on these modes, see Cloud Credential Operator.

1.2.2.8. Specifying disk type and size for control plane and compute nodes

You can now configure the disk type and size on control plane and compute nodes for clusters running on Azure and GCP. This can be specified in the install-config.yaml file with the following fields:
1.2.2.9. Minimum disk size for control plane nodes has increased for Azure installations

The minimum disk size requirement for control plane nodes for Azure installations has increased from 512 GB to 1024 GB.

1.2.2.10. Latest version of Operators required before cluster upgrade

Starting in OpenShift Container Platform 4.6, the Red Hat-provided default catalogs used by Operator Lifecycle Manager (OLM) and OperatorHub are now shipped as index images specific to the minor version of OpenShift Container Platform. Cluster administrators must ensure all Operators previously installed through OLM are updated to their latest versions in their latest channels before upgrading to OpenShift Container Platform 4.6.

See Default Operator catalogs now shipped per cluster version for more details and important Operator upgrade prerequisites.

1.2.2.11. Deployment without a provisioning network

OpenShift Container Platform now supports deployment without a provisioning network and for RedFish Virtual Media.

See Setting up the environment for an OpenShift installation for more information.

1.2.2.12. Deployment now supports root device hints

Deployment now supports root device hints.

1.2.2.13. Installer improvements

Deployment now performs introspection on nodes to ensure that nodes meet installation requirements instead of generating errors if they do not.

For example:

```yaml
... compute: ...
  platform:
    - osDisk:
      diskSizeGB: 120
      diskType: pd-standard
      replicas: 3
    controlPlane: ...
    platform:
      - osDisk:
        diskSizeGB: 120
        diskType: pd-ssd
...```

- osDisk.diskSizeGB
- osDisk.diskType
1.2.2.14. RHOSP availability zones selection at installation

You can now select Red Hat OpenStack Platform (RHOSP) Compute (Nova) availability zones while installing a cluster on RHOSP.

For more information, see the OpenShift Container Platform on RHOSP installation documentation.

1.2.2.15. Floating IP addresses are no longer required for installation on RHOSP

You no longer need floating IP addresses to complete a OpenShift Container Platform installation on RHOSP.

For more information, see the OpenShift Container Platform on RHOSP installation documentation.

1.2.2.16. Select disk for RHCOS installation

Previously, when you used infrastructure that the installation program creates to deploy a bare metal cluster, you could not specify which disk to the deploy RHCOS on. Now, you can select the disk to install RHCOS on, and rootDeviceHints provide guidance about selecting the target disk. (BZ#1805237)

1.2.2.17. AWS clusters now default to use M5 instances

M5 instances are now preferred for IPI and UPI installations on AWS. Thus, new clusters that are deployed on AWS now use M5 instances by default. If an M5 instance is not available, the installer uses an M4 instance. (BZ#1710981)

1.2.2.18. IBM Z and LinuxONE

With this release, IBM Z and LinuxONE is now compatible with OpenShift Container Platform 4.6. See Installing a cluster on IBM Z and LinuxONE for installation instructions.

Restrictions

Note the following restrictions for OpenShift Container Platform on IBM Z and LinuxONE:

- OpenShift Container Platform for IBM Z does not include the following Technology Preview features:
  - Log forwarding
  - Precision Time Protocol (PTP) hardware
  - CSI volume snapshots
  - OpenShift Pipelines

- The following OpenShift Container Platform features are unsupported:
  - OpenShift Container Platform Virtualization
  - Red Hat OpenShift Service Mesh
  - CodeReady Containers (CRC)
  - OpenShift Container Platform Metering
  - Multus CNI plug-in
- FIPS cryptography
- Encrypting data stored in etcd
- Automatic repair of damaged machines with machine health checking
- Tang mode disk encryption during OpenShift Container Platform deployment
- OpenShift Container Platform Serverless
- Helm command-line interface (CLI) tool
- Controlling overcommit and managing container density on nodes
- CSI volume cloning
- NVMe
- Persistent storage using Fibre Channel

- Worker nodes must run Red Hat Enterprise Linux CoreOS (RHCOS).
- Persistent shared storage must be provisioned using NFS.
- Persistent non-shared storage must be provisioned using local storage, like iSCSI, FC, or LSO with DASD/FCP.
- These features are available only for OpenShift Container Platform on IBM Z for 4.6:
  - HyperPAV enabled on IBM System Z/LinuxONE for the virtual machines for FICON attached ECKD storage

**Supported features**
With this release, the following features are supported on IBM Z and LinuxONE:

- Persistent storage using iSCSI
- Persistent storage using local volumes (Local Storage Operator)
- OpenShift Do (odo)

**1.2.2.19. IBM Power Systems**

With this release, IBM Power Systems are now compatible with OpenShift Container Platform 4.6. See [Installing a cluster on IBM Power Systems](#) or [Installing a cluster on IBM Power Systems in a restricted network](#).

**Restrictions**
Note the following restrictions for OpenShift Container Platform on IBM Power Systems:

- OpenShift Container Platform for IBM Power Systems does not include the following Technology Preview features:
  - OpenShift Virtualization
  - OpenShift Serverless (knative, FaaS integrations)
- The following OpenShift Container Platform features are unsupported:
- Red Hat OpenShift Service Mesh (istio, jaeger, kiali)
- CodeReady Workspaces
- CodeReady Containers (CRC)
- OpenShift Pipelines based on Tekton
- OpenShift Container Platform Metering
- Multus Plugins (SR-IOV, IPVAN, Bridge with VLAN, Static IPAM)
- SR-IOV CNI plug-in
- Red Hat Single Sign-On
- OpenShift Metering (Presto, Hive)

- Worker nodes must run Red Hat Enterprise Linux CoreOS (RHCOS).
- Persistent storage must be of the **Filesystem** mode using local volumes, Network File System (NFS), OpenStack Cinder, or Container Storage Interface (CSI).
- Networking must use either DHCP or static addressing with Red Hat Openshift SDN.
- AdoptOpenJDK with Eclipse OpenJ9
- Installer-provisioned infrastructure
- Device Manager for NVIDIA GPUs
- Special Resources Operator
- OpenShift Ansible Service Broker Operator (deprecated)
- dotNET on RHEL

**Supported Features**

- Currently, four Operators are supported:
  - Cluster-Logging-Operator
  - Cluster-NFD-Operator
  - Elastic Search-Operator
  - Local Storage Operator

- User-provisioned infrastructure deployment scenario on bare-metal
- OpenShift Cluster Monitoring
- Node Tuning Operator
- OpenShift Jenkins
- OpenShift Logging
OpenShift Do (odo)

• Machine Configuration Operator, which is used in installations with installer-provisioned infrastructure
• Node Feature Discovery Operator
• OpenShift Container Platform core (CVO Operators)
• Installation program for clusters that use user-provisioned infrastructure
• OVS
• RHEL8 Based container support
• RHEL CoreOS
• Ansible Engine
• Red Hat Software Collections
• HostPath
• iSCSI
• 4k Disk support

1.2.2.20. Enhancements to Red Hat Virtualization (RHV) full-stack installer

• You can use Container Storage Interface (CSI) Driver Operators to dynamically provision storage from RHV storage domains to an OpenShift Container Platform cluster.
• You can use auto-scaling additional of RHV virtual machine worker nodes to improve control of workloads and resources.
• You can perform disconnected or restricted installations by using a local mirror. This capability is beneficial for financial, public sector, and secure environments.
• You can install OpenShift Container Platform on RHV with user-provisioned infrastructure, such as an external load balancer. This process uses a series of Ansible playbooks to enable a more flexible installation.
• Installing OpenShift Container Platform on RHV with installer-provisioned infrastructure does not require a static IP address for internal DNS.
• OpenShift Container Platform version 4.6 requires RHV version 4.4.2 or later.

**IMPORTANT**

If you are running OpenShift Container Platform version 4.5 on RHV version 4.3, upgrade RHV to version 4.4.2 or later before updating OpenShift Container Platform to version 4.6.

1.2.2.21. Improvements to the remediation of failed nodes for bare metal deployments using installer-provisioned infrastructure
Reboot-based remediation of failed control plane nodes is now possible. The labels and annotations of those nodes are preserved when using the reboot-based remediation method.

1.2.3. Security and compliance

1.2.3.1. Compliance Operator

The Compliance Operator is now available. This feature allows the use of OpenSCAP tools to check that a deployment complies with security standards and provides remediation options. See Understanding the Compliance Operator for more information.

1.2.3.2. Configure OAuth token inactivity timeout

You can now configure OAuth tokens to expire after a certain amount of time that they have been inactive. By default, there is no token inactivity timeout set. You can configure the timeout for the internal OAuth server and for OAuth clients.

See Configuring token inactivity timeout for the internal OAuth server and Configuring token inactivity timeout for an OAuth client for more information.

1.2.3.3. Secure OAuth token storage format

OAuth access token and OAuth authorize token object names are now stored as non-sensitive object names.

Previously, secret information was used as the OAuth access token and OAuth authorize token object names. When etcd is encrypted, only the value is encrypted, so this sensitive information was not encrypted.

IMPORTANT

If you are upgrading your cluster to OpenShift Container Platform 4.6, old tokens from OpenShift Container Platform 4.5 will still have the secret information exposed in the object name. By default, the expiration for tokens is 24 hours, but this setting can be changed by administrators. Sensitive data can still be exposed until all old tokens have either expired or have been deleted by an administrator.

1.2.3.4. File Integrity Operator is now available

The File Integrity Operator, an OpenShift Container Platform Operator that continually runs file integrity checks on the cluster nodes, is now available. It deploys a daemon set that initializes and runs privileged advanced intrusion detection environment (AIDE) containers on each node, providing a status object with a log of files that are modified during the initial run of the daemon set pods.

1.2.3.5. Cluster scripts updated for cluster restore failures

The cluster-backup.sh and cluster-restore.sh scripts were updated to provide better feedback, so that users can better understand why a restore has failed.

1.2.4. Machine API

1.2.4.1. Support for multiple block device mappings
The Machine API now supports multiple block device mappings for machines running on AWS. If more than one block device is given, you can now store logs, data in empty directory pods, and Docker images in block devices that are separate from the root device on a machine.

### 1.2.4.2. Defaults and validation for the Machine API providerSpec

Defaults and validation are now enabled on a particular cloud provider API before input from the providerSpec is persisted to etcd. Validation is run against machines and machine sets when they are created. Feedback is returned when the configuration is known to prevent machines from being created by the cloud provider. For example, a machine set is rejected if location information is required but is not provided.

### 1.2.4.3. Machine sets running on Azure support Spot VMs

Machine sets running on Azure now support Spot VMs. You can create a machine set that deploys machines as Spot VMs to save on costs compared to standard VM prices. For more information, see Machine sets that deploy machines as Spot VMs.

Configure Spot VMs by adding `spotVMOptions` under the providerSpec field in the machine set YAML file:

```
providerSpec:
 value:
 spotVMOptions: {}
```

### 1.2.4.4. Machine sets running on GCP support preemptible VM instances

Machine sets running on GCP now support preemptible VM instances. You can create a machine set that deploys machines as preemptible VM instances to save on costs compared to normal instance prices. For more information, see Machine sets that deploy machines as preemptible VM instances.

Configure preemptible VM instances by adding `preemptible` under the providerSpec field in the machine set YAML file:

```
providerSpec:
 value:
 preemptible: true
```

### 1.2.5. Web console

#### 1.2.5.1. Improved upgrade experience in the web console

- Administrators are now better informed about the differences between the upgrade channels by helpful text and links in the web console.
- A link to the list of bug fixes and enhancements is now included for each minor or patch release.
- There is now a visual representation of the different upgrade paths.
- Alerts now inform administrators when new patch releases, new minor releases, and new channels become available.

#### 1.2.5.2. Improved Operator installation workflow with OperatorHub
When administrators install Operators with OperatorHub, they now get immediate feedback to ensure that the Operator is installing properly.

1.2.5.3. Improved operand details view

You can now see the schema grouping of `specDescriptor` fields and the status of your Operands on the operand’s details view, so that you can easily see the status and configure the `spec` of the operand instance.

1.2.5.4. View related objects for cluster Operators

Previously, when viewing a cluster Operator, it was not clear what resources the Operator was associated with. When troubleshooting a cluster Operator, it could be challenging to locate the logs for all the resources that the Operator managed, which might be needed for troubleshooting. Now, with OpenShift Container Platform 4.6, you can expose a list of related objects of a cluster Operator and easily review one of the related objects' details or YAML code for troubleshooting.

1.2.5.5. Warning messages when editing managed resources

Some resources are managed, such as an Operator managed by a deployment, route, service, or config map. Users are discouraged from editing these resources. Instead, users should edit the custom resources for the Operator and its operand, and expect the Operator to update its related resources. With this update:

- A Managed by label now appears below the resource name with a clickable resource link for the managing resource.
- When the resource is modified or deleted, a message appears warning the user that their changes might be reverted.

1.2.5.6. The `k8sResourcePrefix specDescriptor` field supports CRD instance

Operator authors, maintainers, and providers can now specify the `k8sResourcePrefix specDescriptor` field with `Group/Version/Kind` for assigning a CRD resource type besides Kubernetes core API.

For more information, see OLM Descriptor Reference.

1.2.5.7. Column management on resources page

A Manage columns icon is now added to some resources pages, for example the Pods page. When you click on the icon, default column names are listed with check boxes on the left side of the modal and additional column names are listed on the right. Deselecting a check box will remove that column from the table view. Selecting a check box will add that column to the table view. A maximum combination of nine columns from both sides of the modal are available for display at one time. Clicking Save will save the changes that you make. Clicking Restore Default Columns will restore the default settings of the columns.

1.2.5.8. Developer perspective

- Based on user access roles or privileges, the user is now directed to either the Administrator or Developer perspective.
An interactive getting started tour of the functionalities in the **Developer** perspective is now provided when a user logs in.

The **List** view and **Topology** view now provide the same information so that the user can choose the best view based on the application size and number of components.

Support for all workload types is now provided in the **Topology** and the **List** view to get a better idea of the compute resources being used.

You can now select the Helm chart version and the application version while installing the chart from the **Developer catalog**. You can also switch between the form and YAML editor while preserving the values that have been entered.

The Knative eventing workflow was enhanced:

- Support for Knative Eventing Channels to build a reliable event delivery mechanism has been added.
- You can now create a subscription for channels and triggers with the associated filters for brokers, and select a Knative service as the subscriber.
- When creating Event Sources, you can now specify the sink as any Knative resource such as, Knative service, channel, or broker, from that namespace; or a URI.
- You can now visualize the relationship for the event source subscribed by a Knative service through a channel, subscription, broker, or trigger. Details of the event source relationship can be seen in the side panel as well.
- Ability to filter for a specific event type has been provided.

Usability enhancements like adding runtime labels to see the appropriate runtime icons and tooltips have been added.

You can now add, edit, and delete a basic horizontal pod autoscaling (HPA) from a workload and create an HPA and specify the workload to assign it to.

If OpenShift Service Mesh is enabled on the cluster and the given namespace is enabled, you can now click the Kiali link on the **Topology** view to navigate to the configured Kiali dashboard into the right namespace.

The **Monitoring** view now provides the ability to filter resource specific metrics in the **Monitoring** dashboard. You can also view the firing alerts, silence them, and see the alert rules configured for your project.

### 1.2.6. Scale

#### 1.2.6.1. Cluster maximums

Updated guidance around **cluster maximums** for OpenShift Container Platform 4.6 is now available.

Use the **OpenShift Container Platform Limit Calculator** to estimate cluster limits for your environment.

#### 1.2.6.2. Real-time profile added to the Node Tuning Operator
Partial Tuned real-time profile support became available in OpenShift Container Platform 4.4. Now, the real-time profiles are fully compatible with what the real-time profiles do in Tuned on Red Hat Enterprise Linux (RHEL).

1.2.6.3. The Performance Addon Operator is now fully supported

The Performance Addon Operator helps the administrator with tuning worker nodes for low latency and real-time workloads. It takes a high-level tuning intent in the form of a PerformanceProfile custom resource and translates it into all the actions necessary to configure the Linux kernel, operating system, huge pages, and kubelet for low latency purposes.

In addition to the features provided in the previous pre-releases, this version includes the following:

- CPU load balancing can be enabled per pod.
- Multiple huge page sizes can be specified at the same time.
- Improvements to supportability, such as integration gathering and better status reporting.
- A method for in-field emergency configuration overrides was devised and documented.

1.2.6.4. Optimizing data plane performance with Intel devices

OpenShift Container Platform 4.6 supports the:

- OpenNESS Operator for Intel FPGA PAC N3000
- OpenNESS SR-IOV Operator for Wireless FEC Accelerators

**NOTE**

The N3000 Operator requires a prebuilt driver container with the Open Programmable Accelerator Engine (OPAE) out of tree kernel modules. The prebuilt driver container is built and shipped by Intel and is currently supported with OpenShift Container Platform 4.6.16. If a different OpenShift Container Platform version is requested, contact Intel through their premier support portal at Intel® Premier Support Access or at openness.n3000.operator@intel.com.

For more details, see [OpenNESS Operator for Wireless FEC Accelerators](#).

These Operators support the requirements of vRAN deployments for low power, cost, and latency, while also delivering the capacity to manage spikes in performance for a range of use cases. One of the most compute-intensive 4G and 5G workloads is RAN layer 1 (L1) forward error correction (FEC), which resolves data transmission errors over unreliable or noisy communication channels.

Delivering high performance FEC is critical to 5G maintaining high performance as it matures and as more users depend on the network. FEC has been typically implemented on Field Programmable Gate Arrays (FPGA) accelerator cards, like the Intel PAC N300 and more recently on the Intel vRAN Dedicated Accelerator ACC100.

For more information, see [Optimizing data plane performance with the Intel FPGA PAC N3000 and Intel vRAN Dedicated Accelerator ACC100](#).

1.2.6.5. Managing bare metal hosts in the console
Previously, how to maintain bare-metal hosts in the web console was not documented. This content has been added. For more information, see Managing bare metal hosts.

1.2.7. Developer experience

1.2.7.1. `oc set probe` command has been extended

The `oc set probe` command was extended to support setting startup probes.

1.2.7.2. `oc adm upgrade` command now mentions upgradeable condition

The `oc adm upgrade` command now mentions any `Upgradeable=False` conditions, so that administrators are aware that a particular update might be rejected due to an `Upgradeable=False` condition.

1.2.8. Networking

1.2.8.1. OVN-Kubernetes cluster networking provider GA

The OVN-Kubernetes cluster networking provider is now GA. The networking provider is implemented as a Kubernetes Container Network Interface (CNI) plug-in. For more information, including details on feature parity with OpenShift SDN, refer to About the OVN-Kubernetes Container Network Interface (CNI) network provider.

For this release, OpenShift SDN remains the default cluster networking provider.

NOTE

OVN-Kubernetes is not supported on Red Hat Enterprise Linux (RHEL) 7.8 at OpenShift Container Platform 4.6 GA.

1.2.8.2. Expand node service port range

The node service port range is expandable beyond the default range of 30000-32767. You can use this expanded range in your Service objects. For more information, refer to Configuring the node port service range.

1.2.8.3. SR-IOV Network Operator InfiniBand device support

The Single Root I/O Virtualization (SR-IOV) Network Operator now supports InfiniBand (IB) network devices. For more information on configuring an IB network device for your cluster, refer to Configuring an SR-IOV InfiniBand network attachment.

1.2.8.4. DHCP range increased for provisioning network

To better support large deployments, the default DHCP range for the provisioning network is increased to include the remainder of the subnet in this release. Users who would like to use less of the subnet for DHCP can still configure it to their needs. (BZ#1841135)

1.2.8.5. Pod network connectivity checks
Operators can now configure `PodNetworkConnectivityCheck` resources to check each network connection from the pods that are managed by the Operator. This allows you to more easily identify and troubleshoot issues with important network connections in your cluster.

This resource keeps track of the latest reachable condition, the last 10 successes, the last 10 failures, and details about detected outages. The results are also logged and events are created when outages are detected and resolved.

By default, the following network connections are checked:

- **Between the Kubernetes API server and:**
  - the OpenShift API server service
  - each OpenShift API server endpoint
  - each etcd endpoint
  - the internal API load balancer
  - the external API load balancer

- **Between the OpenShift API server and:**
  - the Kubernetes API server service
  - each Kubernetes API server endpoint
  - each etcd endpoint
  - the internal API load balancer
  - the external API load balancer

1.2.8.6. Secondary device metrics can be associated with network attachments

Secondary devices, or interfaces, are used for different purposes. It is important to have a way to classify them so that you can aggregate the metrics for secondary devices with the same classification.

The kubelet is already publishing a set of network-observable related metrics. The labels in these metrics contain, among others:

- Pod name
- Pod namespace
- Interface name, such as eth0

This works well until new interfaces are added to the pod, for example via Multus, as it will not be clear what the interface names refer to. The interface label refers to the interface name, but it is not clear what that interface is meant for. In case of many different interfaces, it would be impossible to understand what network the metrics we are monitoring refer to. This is addressed by introducing the new `pod_network_name_info` metric, which can be used to build queries containing both the values exposed by the kubelet and the name of the network attachment definition the metrics relates to, which identifies the type of network.

See [Associating secondary interfaces metrics to network attachments](#) for more information.
CNF tests can be run in discovery mode

There is an optional mode where the Cloud-native Network Functions (CNF) tests try to look for configurations on the cluster instead of applying the new ones. The CNF tests image is a containerized version of the CNF conformance test suite. It is intended to be run against a CNF-enabled OpenShift Container Platform cluster where all the components required for running CNF workloads are installed.

The tests need to perform an environment configuration every time they are executed. This involves items such as creating SRI-OV node policies, performance profiles, or PTP profiles. Allowing the tests to configure an already configured cluster might affect the functionality of the cluster. Also, changes to configuration items such as SR-IOV node policy might result in the environment being temporarily unavailable until the configuration change is processed.

**Discovery mode** validates the functionality of a cluster without altering its configuration. Existing environment configurations are used for the tests. The tests attempt to find the configuration items needed and use those items to execute the tests. If resources needed to run a specific test are not found, the test is skipped, providing an appropriate message to the user. After the tests are finished, no cleanup of the preconfigured configuration items is done, and the test environment can be used immediately for another test run.

HAProxy version upgrade

Ingress in OpenShift Container Platform 4.6 now uses HAProxy version 2.0.16.

Control over X-Forwarded headers

Control over X-Forwarded headers is now possible by setting the `forwardedHeaderPolicy` parameter.

Application and configuration of X-forwarded headers on a per-route basis is now supported with the introduction of the `haproxy.router.openshift.io/set-forwarded-headers` route annotations.

See [Using X-Forwarded headers](#) for more information.

Modify route path

Modifying route paths for incoming requests is now supported with the `haproxy.router.openshift.io/rewrite-target` variable.

See [Route configuration](#) for more information.

Ingress termination policies

Termination policies can now be defined by using the `route.openshift.io/termination` annotation for Ingress objects.

See [Creating a route through an Ingress object](#) for more information.

Ingress Controller Network Load Balancer for AWS

Configuration of an Ingress Controller Network Load Balancer (NLB) for new and existing AWS clusters is now supported.

See [Configuring ingress cluster traffic on AWS using a Network Load Balancer](#) for more information.

Ingress Operator endpoint configuration for AWS Route53
AWS Route53 endpoint configuration is now supported on the Ingress Operator.

See Ingress Operator endpoint configuration for AWS Route53 for more information.

1.2.8.14. Ingress Controller unique-id configuration

Configuring an Ingress Controller to inject an HTTP header with a uniquely defined request ID is now supported. This can be used to trace cluster traffic.

For more information, see the IngressController specification.

1.2.8.15. Network policy supports selecting host network Ingress Controllers

When using the OVN-Kubernetes cluster network provider, you can select traffic from Ingress Controllers in a network policy rule regardless of whether an Ingress Controller runs on the cluster network or the host network. In a network policy rule, the policy-group.network.openshift.io/ingress="" namespace selector label matches traffic from an Ingress Controller. You can continue to use the network.openshift.io/policy-group: ingress namespace selector label, but this is a legacy label that can be removed in a future release of OpenShift Container Platform.

In earlier releases of OpenShift Container Platform, the following limitations existed:

- A cluster that uses the OVN-Kubernetes cluster network provider could not select traffic from an Ingress Controller on the host network.

For more information, refer to About network policy.

1.2.8.16. Network policy supports selecting host network traffic

When using the OVN-Kubernetes cluster network provider, you can use the policy-group.network.openshift.io/host-network: "" namespace selector to select host network traffic in a network policy rule.

1.2.9. Storage

1.2.9.1. CSI drivers now managed by the Cluster Storage Operator

The Container Storage Interface (CSI) Driver Operators and drivers for AWS Elastic Block Store (EBS), Red Hat Virtualization (oVirt), and OpenStack Manila shared file system service are now managed by the Cluster Storage Operator in OpenShift Container Platform.

For AWS EBS and oVirt, this feature installs the CSI Driver Operator and driver in the openshift-cluster-csi-drivers namespace by default. For Manila, the CSI Driver Operator is installed in openshift-cluster-csi-drivers and the driver is installed in the openshift-manila-csi-driver namespace.
If you installed a CSI Driver Operator and driver on an OpenShift Container Platform 4.5 cluster:

- The AWS EBS CSI Driver Operator and driver must be uninstalled before you update to a newer version of OpenShift Container Platform.

- The OpenStack Manila CSI Driver Operator is no longer available in Operator Lifecycle Manager (OLM). It has been automatically converted by the Cluster Version Operator. The original openshift-manila-csi-driver-operator namespace might still exist and can be deleted manually by a cluster administrator.

1.2.9.2. Automatic device discovery and provisioning with the Local Storage Operator (Technology Preview)

The Local Storage Operator now has the ability to:

- Automatically discover a list of available disks in a cluster. You can select a list of nodes, or all nodes, for auto-discovery to be continuously applied to.

- Automatically provision local persistent volumes from attached devices. Appropriate devices are filtered and persistent volumes are provisioned based on the filtered devices.

For more information, see Automating discovery and provisioning for local storage devices.

1.2.9.3. External provisioner for AWS EFS (Technology Preview) feature has been removed

The Amazon Web Services (AWS) Elastic File System (EFS) Technology Preview feature has been removed and is no longer supported.

1.2.10. Registry

1.2.10.1. Image pruner tolerates invalid images

The image pruner now tolerates invalid image references by default on new installations of OpenShift Container Platform, which allows pruning to continue even if it finds invalid images.

1.2.10.2. Change the image pruner’s log level

Cluster administrators can now configure logLevel in the Pruning Custom Resource to debug logs.

1.2.10.3. Image registry supports Azure Government

The image registry can now be set up and configured for Azure Government.

See Configuring registry storage for Azure Government for more information.

1.2.10.4. Change the Image Registry Operator’s log level

Cluster administrators can now configure logLevel in the Image Registry Operator to debug logs.

The supported values for logLevel are:
1.2.10.5. Change the Image Registry Operator’s `spec.storage.managementState`

The Image Registry Operator now sets the `spec.storage.managementState` parameter to `Managed` on new installations or upgrades of clusters using installer-provisioned infrastructure on AWS or Azure.

- **Managed**: Determines that the Image Registry Operator manages underlying storage. If the Image Registry Operator’s `managementState` is set to `Removed`, then the storage is deleted.
  - If the `managementState` is set to `Managed`, the Image Registry Operator attempts to apply some default configuration on the underlying storage unit. For example, if set to `Managed`, the Operator tries to enable encryption on the S3 bucket before making it available to the registry. If you do not want the default settings to be applied on the storage you are providing, make sure the `managementState` is set to `Unmanaged`.

- **Unmanaged**: Determines that the Image Registry Operator ignores the storage settings. If the Image Registry Operator’s `managementState` is set to `Removed`, then the storage is not deleted. If you provided an underlying storage unit configuration, such as a bucket or container name, and the `spec.storage.managementState` is not yet set to any value, then the Image Registry Operator configures it to `Unmanaged`.

1.2.11. Operator lifecycle

1.2.11.1. Operator version dependency

Operator developers can now ensure their Operators include dependencies on specific versions of other Operators by using the `olm.package` type in the `dependencies.yaml` file.

See Operator Lifecycle Manager dependency resolution for more information.

1.2.11.2. Additional objects supported in Operator bundles

The Operator Bundle Format now supports the following additional Kubernetes objects:

- **PodDisruptionBudget**
- **PriorityClass**
- **VerticalPodAutoScaler**

See Operator Framework packaging formats for more information.
1.2.11.3. Selective bundle image mirroring with opm

Operator administrators can now select which bundle images to mirror by using the `opm index prune` command.

See Pruning an index image for more information.

1.2.11.4. Conversion webhook support for global Operators

Operator developers can now use conversion webhooks for Operators that target all namespaces, also known as global Operators.

See Defining webhooks for more information.

1.2.11.5. Operator API now supported

The Operator API introduced in OpenShift Container Platform 4.5 as a Technology Preview feature is now supported and enabled by default. Installing Operators using Operator Lifecycle Manager (OLM) has required cluster administrators to be aware of multiple API objects, including `CatalogSource`, `Subscription`, `ClusterServiceVersion`, and `InstallPlan` resources. This single Operator API resource is a first step towards a more simplified experience discovering and managing the lifecycle of Operators in a OpenShift Container Platform cluster.

Relevant resources are now automatically labeled accordingly for the new Operator API for any Operators where the CSV is installed using a `Subscription` resource. Cluster administrators can use the CLI with this single API to interact with installed Operators. For example:

```
$ oc get operators

$ oc describe operator <operator_name>
```

1.2.11.5.1. Removing Technology Preview Operator API before cluster upgrade

If you enabled the Technology Preview feature version of the Operator API in OpenShift Container Platform 4.5, you must disable it before upgrading to OpenShift Container Platform 4.6. Failure to do so blocks your cluster upgrade, because the feature required a Cluster Version Operator (CVO) override.

**Prerequisites**

- OpenShift Container Platform 4.5 cluster with Technology Preview Operator API enabled

**Procedure**

1. Because Operator API labels are applied to relevant resources automatically in OpenShift Container Platform 4.6, you must remove any `operators.coreos.com/<name>` labels you previously applied manually.
   
   a. You can check which resources are currently labeled for your Operator by running the following command and reviewing the `status.components.refs` section:

   ```
 $ oc describe operator <operator_name>
   ```

   For example:
$ oc describe operator etcd-test

Example output

...  
Status:  
Components:  
  Label Selector:  
    Match Expressions:  
      Key: operators.coreos.com/etcd-test  
      Operator: Exists  
Refs:  
  API Version: apiextensions.k8s.io/v1  
Conditions:  
  Last Transition Time: 2020-07-02T05:50:40Z  
  Message: no conflicts found  
  Reason: NoConflicts  
  Status: True  
  Type: NamesAccepted  
  Last Transition Time: 2020-07-02T05:50:41Z  
  Message: the initial names have been accepted  
  Reason: InitialNamesAccepted  
  Status: True  
  Type: Established  
  Kind: CustomResourceDefinition  
  Name: etcdclusters.etcddatabase.coreos.com  
...

1. Resource type.  
2. Resource name.  

b. Remove the labels from all relevant resources. For example:

$ oc label sub etcd operators.coreos.com/etcd-test -n test-project  
$ oc label ip install-6c5mr operators.coreos.com/etcd-test -n test-project  
$ oc label csv etcdoperator.v0.9.4 operators.coreos.com/etcd-test -n test-project  
$ oc label crd etcdclusters.etcddatabase.coreos.com operators.coreos.com/etcd-test  
$ oc label crd etcdbackups.etcddatabase.coreos.com operators.coreos.com/etcd-test  
$ oc label crd etcdrestores.etcddatabase.coreos.com operators.coreos.com/etcd-test

2. Delete the Operator custom resource definition (CRD):

$ oc delete crd operators.operators.coreos.com

3. Remove the OperatorLifecycleManagerV2=true feature gate from the OLM Operator.

a. Edit the Deployment object for the OLM Operator:

$ oc -n openshift-operator-lifecycle-manager \\  edit deployment olm-operator

b. Remove the following flags from the args section in the Deployment object:
c. Save your changes.

4. Re-enable CVO management of OLM:

```bash
$ oc patch clusterversion version --type=merge -p \
 '{
 "spec":{
 "overrides":[
 {
 "kind":"Deployment",
 "name":"olm-operator",
 "namespace":"openshift-operator-lifecycle-manager",
 "unmanaged":false,
 "group":"apps/v1"
 }
]
 }
 }
```

5. Verify that the Operator resource is no longer available:

```bash
$ oc get operators
```

**Example output**

```bash
error: the server doesn't have a resource type "operators"
```

Your upgrade to OpenShift Container Platform 4.6 should now no longer be blocked by this feature.

1.2.11.6. Node Maintenance Operator now validates maintenance requests

The Node Maintenance Operator now validates maintenance requests for master nodes, preventing master (etcd) quorum violation. As a result, master nodes can only be set into maintenance if the `etcd-quorum-guard` pod disruption budget (PDB) allows it. ([BZ#1826914](https://bugzilla.redhat.com/1826914))

1.2.11.7. Set nodes to maintenance mode using NodeMaintenance custom resources

Previously, putting a node into maintenance mode using a `NodeMaintenance` custom resource (CR) was not documented. This content has been added. For more information, see [Understanding node maintenance mode](https://docs.openshift.com/container-platform/4.6/administration/understanding-node-maintenance-mode.html)
1.2.11.8. Set log levels separately for Image Registry Operator and operand

Users can now set log levels separately for the Image Registry Operator and operand. (BZ#1808118)

1.2.12. Builds

1.2.12.1. Builds support Git clones behind an HTTPS proxy

Builds now support Git clones behind an HTTPS proxy.

1.2.13. Images

1.2.13.1. Support for Cloud Credential Operator modes

In addition to the existing default mode of operation, the Cloud Credential Operator (CCO) can now be explicitly configured to operate in the following modes: **Mint**, **Passthrough**, and **Manual**. This feature provides transparency and flexibility in how the CCO uses cloud credentials to process `CredentialsRequest` custom resources in the cluster for installation and other tasks.

1.2.13.2. Cluster Samples Operator on Power and Z

Image streams and templates for Power and Z architectures are now available and installed by the Cluster Samples Operator by default.

1.2.13.3. Cluster Samples Operator alerts

If samples do not import, the Cluster Samples Operator now notifies you with an alert instead of moving to a degraded status.

See [Using Cluster Samples Operator image streams with alternate or mirrored registries](#) for more information.

1.2.14. Metering

1.2.14.1. Configuring a retention period of metering Report custom resources

You can now set a retention period on a metering `Report` custom resources (CRs). The metering `Report` CR has a new `expiration` field. If the `expiration` duration value is set on a `Report` CR, and no other `Report` or `ReportQuery` CRs depend on the expiring `Report` CR, the Metering Operator removes the `Report` CR from your cluster at the end of its retention period. For more information, see metering `Report` CRs expiration.

1.2.15. Nodes

1.2.15.1. Configure the node audit log policy

You can now control the amount of information that is logged to the node audit logs by choosing the audit log policy profile to use.

See [Configuring the node audit log policy](#) for more information.

1.2.15.2. Configure pod topology spread constraints
You can now configure pod topology spread constraints for more fine-grained control the placement of your pods across nodes, zones, regions, or other user-defined topology domains. This can help you improve high availability and resource utilization.

See Controlling pod placement by using pod topology spread constraints for more information.

1.2.15.3. New descheduler strategy is available (Technology Preview)

The descheduler now allows you to configure the `PodLifeTime` strategy. This strategy evicts pods after they reach a certain, configurable age.

See Descheduler strategies for more information.

1.2.15.4. Descheduler filtering by namespace and priority (Technology Preview)

You can now configure whether descheduler strategies should consider pods for eviction based on their namespace and priority.

See Filtering pods by namespace and Filtering pods by priority for more information.

1.2.15.5. New parameter for the RemoveDuplicates descheduler strategy (Technology Preview)

The `RemoveDuplicates` strategy now provides an optional parameter, `ExcludeOwnerKinds`, that allows you to specify a list of `Kind` types. If a pod has any of these types listed as an `OwnerRef`, that pod is not considered for eviction.

See Descheduler strategies for more information.

1.2.15.6. Generate `ImageContentSourcePolicy` object scoped to a registry

The `oc adm catalog mirror` command generates an `ImageContentSourcePolicy` (ICSP) object that maps the original container image repository to a new location where it will be mirrored, typically inside a disconnected environment. When a new or modified ICSP is applied to a cluster, it is converted to a config file for CRI-O and placed onto each node. The process of placing the config file on a node includes rebooting that node.

This enhancement adds the `--icsp-scope` flag to `oc adm catalog mirror`. Scopes can be registry or repository. By default, the `oc adm catalog mirror` command generates an ICSP where each entry is specific to a repository. For example, it would map `registry.redhat.io/cloud/test-db` to `mirror.internal.customer.com/cloud/test-db`. Widening the mirror to registry scope in the ICSP file minimizes the number of times the cluster must reboot its nodes. Using the same example, `registry.redhat.io` would map to `mirror.internal.customer.com`.

Having a widely scoped ICSP reduces the number of times the ICSP might need to change in the future and, thus, reduces the number of times a cluster must reboot all of its nodes.

1.2.16. Cluster logging

Log Forwarding API is generally available

The Log Forwarding API is now generally available. The Log Forwarding API allows you to send container, infrastructure, and audit logs to specific endpoints within and outside your cluster by configuring a custom resource with the endpoints to forward the logs. The Log Forwarding API now supports forwarding to Kafka brokers and supports syslog RFC 3164 and RFC 5424 including TLS. You can also forward application logs from a specific projects to an endpoint.
With the GA, the Log Forwarding API has a number of changes, including changes to parameter names in the Log Forwarding custom resource (CR). If you used the Log Forwarding Technology Preview, you need to manually make the needed changes to your existing Log Forwarding CR.

**Adding labels to log messages**
The Log Forwarding API allows you to add free-text labels to log messages that are affixed to outbound log messages. For example, you could label logs by data center or label the logs by type. Labels added to objects are also forwarded with the log message.

**New cluster logging dashboards**
Two new dashboards have been added to the OpenShift Container Platform web console that display charts with important, low-level metrics for detailed investigation and troubleshooting of your cluster logging and Elasticsearch instances.

The **OpenShift Logging** dashboard contains charts that show details about your Elasticsearch instance at a cluster-level, including cluster resources, garbage collection, shards in the cluster, and Fluentd statistics.

The **Logging/Elasticsearch Nodes** dashboard contains charts that show details about your Elasticsearch instance, many at node-level, including details on indexing, shards, resources, and so forth.

**New parameters for tuning Fluentd**
New Fluentd parameters allow you to performance-tune your Fluentd log collector. With these parameters, you can change:

- the size of Fluentd chunks and chunk buffer
- the Fluentd chunk flushing behavior
- the Fluentd chunk forwarding retry behavior

These parameters can help you determine the trade-offs between latency and throughput in your cluster logging instance.

**1.2.17. Monitoring**

**1.2.17.1. Monitoring for user-defined projects**

In OpenShift Container Platform 4.6, you can enable monitoring for user-defined projects in addition to the default platform monitoring. You can now monitor your own projects in OpenShift Container Platform without the need for an additional monitoring solution. Using this new feature centralizes monitoring for core platform components and user-defined projects.

With this new feature, you can perform the following tasks:

- Enable and configure monitoring for user-defined projects
- Create recording and alerting rules that use metrics from your own pods and services
- Access metrics and information about alerts through a single, multitenant interface
- Cross-correlate the metrics for user-defined projects with platform metrics

For more information, see [Monitoring overview](#).

**1.2.17.2. Alerting rule changes**
OpenShift Container Platform 4.6 includes the following alerting rule changes:

- The PrometheusOperatorListErrors alert is added. The alert provides notification of errors when running list operations on controllers.

- The PrometheusOperatorWatchErrors alert is added. The alert provides notification of errors when running watch operations on controllers.

- The KubeQuotaExceeded alert is replaced by KubeQuotaFullyUsed. Previously, the KubeQuotaExceeded alert fired if a resource quota exceeded a 90% threshold. The KubeQuotaFullyUsed alert fires if a resource quota is fully used.

- etcd alerts now support the addition of custom labels for metrics.

- The KubeAPILatencyHigh and KubeAPIErrorsHigh alerts are replaced by the KubeAPIErrorBudgetBurn alert. KubeAPIErrorBudgetBurn combines API error and latency alerts and fires only when the conditions are severe enough.

- The readiness and liveness probe metrics exposed by the kubelet are now scraped. This provides historical liveness and readiness data for containers, which can be helpful when troubleshooting container issues.

- The alerting rules for the Thanos Ruler are updated so that alerts are paged if recording rules and alerting rules are not correctly evaluated. This update ensures that critical alerts are not lost when rule and alert evaluation in the Thanos Ruler is not completed.

- The KubeStatefulSetUpdateNotRolledOut alert is updated so that it does not fire when a stateful set is being deployed.

- The KubeDaemonSetRolloutStuck alert is updated to account for daemon set roll out progress.

- The severity of cause-based alerts are adjusted from critical to warning.

NOTE

Red Hat does not guarantee backward compatibility for metrics, recording rules, or alerting rules.

1.2.17.3. Prometheus rule validation

OpenShift Container Platform 4.6 introduces validation of Prometheus rules through a webhook that calls the validating admission plug-in. With this enhancement, PrometheusRule custom resources in all projects are checked against the Prometheus Operator rule validation API.

1.2.17.4. Metrics and alerting rules added for the Thanos Querier

The Thanos Querier aggregates and optionally deduplicates core OpenShift Container Platform metrics and metrics for user-defined projects under a single, multitenant interface. In OpenShift Container Platform 4.6, a service monitor and alerting rules are now deployed for the Thanos Querier, which enables monitoring of the Thanos Querier by the monitoring stack.

1.2.17.5. Virtual Machine Pending Changes alert updates

The Virtual Machine Pending Changes alert is now more informative. (BZ#1862801)
1.2.18. Insights Operator

1.2.18.1. Insights Operator data collection enhancements

In OpenShift Container Platform 4.6, the Insights Operator collects the following additional information:

- Pod disruption budgets
- The volume snapshot custom resource definition
- The latest pod logs from pods that are not healthy
- Data about running Red Hat images, including the number of containers using an image and the age of the corresponding pods
- JSON dumps for pods that have crash looping containers
- The MachineSet resource configuration
- The anonymized HostSubnet resource configuration
- The MachineConfigPool resource configuration
- The InstallPlan resource for default and openshift-* projects and their count
- ServiceAccount resource statistics from Openshift namespaces

Additionally, with this release the Insights Operator collects information about all cluster nodes, while previous versions only collected information about unhealthy nodes.

With this additional information, Red Hat can provide improved remediation steps in Red Hat OpenShift Cluster Manager.

1.3. NOTABLE TECHNICAL CHANGES

OpenShift Container Platform 4.6 introduces the following notable technical changes.

Default Operator catalogs now shipped per cluster version

Starting in OpenShift Container Platform 4.6, the Red Hat–provided default catalogs used by Operator Lifecycle Manager (OLM) and OperatorHub are now shipped as index images specific to the minor version of OpenShift Container Platform. This allows Operator providers to ship intentional ranges of Operator versions per cluster version.

These index images, based on the Bundle Format, replace the App Registry catalog images, based on the deprecated Package Manifest Format, that are distributed for previous versions of OpenShift Container Platform 4. OpenShift Container Platform 4.1 through 4.5 will continue to share a single App Registry catalog.

NOTE

While App Registry catalog images are not distributed by Red Hat for OpenShift Container Platform 4.6 and later, custom catalog images based on the Package Manifest Format are still supported.
See Operator Framework packaging formats for more information on the Bundle Format and index images.

**Important Operator upgrade requirements**

Cluster administrators must ensure all Operators previously installed through Operator Lifecycle Manager (OLM) are updated to their latest versions in their latest channels before upgrading to OpenShift Container Platform 4.6. Updating the Operators ensures that they have a valid upgrade path when the default OperatorHub catalogs switch from using the App Registry catalogs in OpenShift Container Platform 4.5 to the new index image-based catalogs in OpenShift Container Platform 4.6 during the cluster upgrade.

See Upgrading installed Operators for more information on ensuring installed Operators are on the latest channels and upgraded either using automatic or manual approval strategies.

**Additional resources**

- See the following Red Hat Knowledgebase Article for a list of minimum versions of deployed Red Hat Integration components (including Red Hat Fuse, Red Hat AMQ, and Red Hat 3scale) that are required for OpenShift Container Platform 4.6: https://access.redhat.com/articles/5423161

**CNI network provider now uses OVS installed on cluster nodes**

Both the OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) cluster networking providers now use the Open vSwitch (OVS) version installed on the cluster nodes. Previously, OVS ran in a container on each node, managed by a daemon set. Using the host OVS eliminates any possible downtime from upgrading the containerized version of OVS.

**Warnings when using deprecated APIs**

Warnings are now visible in client-go and oc on every invocation against a deprecated API. Calling a deprecated API returns a warning message containing the target Kubernetes removal release and replacement API, if applicable.

For example:

```bash
warnings.go:67] batch/v1beta1 CronJob is deprecated in v1.22+, unavailable in v1.25+
```

This is new functionality included with Kubernetes 1.19.

**COPY and ADD build instructions improved**

The performance of COPY and ADD instructions in OpenShift Container Platform builds are improved. The initial implementation of COPY and ADD instructions in buildah had noticeable performance regressions compared to docker. With this enhancement, builds now run more quickly, especially with large source repositories. (BZ#1833328)

**Operator SDK v0.19.4**

OpenShift Container Platform 4.6 supports Operator SDK v0.19.4, which introduces the following notable technical changes:

- Operator SDK now aligns with the OpenShift Container Platform-wide switch to using UBI-8 and Python 3. Downstream base images now use UBI-8 and include Python 3.

- The command `run --local` is deprecated in favor of `run local`.

- The commands `run --olm` and `--kubeconfig` are deprecated in favor of `run packagemanifests`. 
- The default CRD version changed from `apiextensions.k8s.io/v1beta1` to `apiextensions.k8s.io/v1` for commands that create or generate CRDs.
- The `--kubeconfig` flag is added to the `<run|cleanup> packagemanifests` command.

Ansible-based Operator enhancements include:
- The Ansible Operator is now available as a supported release.
- The Ansible Operator now includes a `healthz` endpoint and `liveness` probe.

Helm-based Operator enhancements include:
- Helm Operators can watch and reconcile when cluster-scoped release resources are changed.
- Helm Operators can now reconcile logic by using three-way strategic merge patches for native Kubernetes objects so that array patch strategies are correctly honored and applied.
- Helm Operators have the default API version changed to `helm.operator-sdk/v1alpha1`.

**UBI 8 used for all images in OpenShift Container Platform**
All images in OpenShift Container Platform now use universal base image (UBI) version 8 by default.

**Jenkins Node.js agent upgrade**
The default Jenkins Node.js agent has been upgraded to Node.js version 12.

**Audit logs not gathered by default**

The `oc adm must-gather` command no longer collects audit logs by default. You must include an additional parameter to gather audit logs using the `oc` command. For example:

```
$ oc adm must-gather -- /usr/bin/gather_audit_logs
```

**Binary sha256sum.txt.sig file has been renamed for OpenShift Container Platform releases**
The `sha256sum.txt.sig` file included in OpenShift Container Platform releases has been renamed to `sha256sum.txt.gpg`. This binary file contains a hash of each of the installer and client binaries, which are used to verify their integrity.

The renamed binary file allows for GPG to correctly verify `sha256sum.txt`, which was not possible previously due to naming conflicts.

**1.4. DEPRECATED AND REMOVED FEATURES**

Some features available in previous releases have been deprecated or removed.

Deprecated functionality is still included in OpenShift Container Platform and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments. For the most recent list of major functionality deprecated and removed within OpenShift Container Platform 4.6, refer to the table below. Additional details for more fine-grained functionality that has been deprecated and removed are listed after the table.

In the table, features are marked with the following statuses:

- **GA**: General Availability
- **DEP**: Deprecated
Table 1.1. Deprecated and removed features tracker

<table>
<thead>
<tr>
<th>Feature</th>
<th>OCP 4.4</th>
<th>OCP 4.5</th>
<th>OCP 4.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Catalog</td>
<td>DEP</td>
<td>REM</td>
<td>REM</td>
</tr>
<tr>
<td>Template Service Broker</td>
<td>DEP</td>
<td>REM</td>
<td>REM</td>
</tr>
<tr>
<td><strong>OperatorSource resources</strong></td>
<td>DEP</td>
<td>DEP</td>
<td>REM</td>
</tr>
<tr>
<td><strong>CatalogSourceConfig resources</strong></td>
<td>DEP</td>
<td>REM</td>
<td>REM</td>
</tr>
<tr>
<td>Package Manifest Format (Operator Framework)</td>
<td>DEP</td>
<td>DEP</td>
<td>DEP</td>
</tr>
<tr>
<td><code>oc adm catalog build</code></td>
<td>DEP</td>
<td>DEP</td>
<td>DEP</td>
</tr>
<tr>
<td>v1beta1 CRDs</td>
<td>GA</td>
<td>DEP</td>
<td>DEP</td>
</tr>
<tr>
<td>Metering Operator</td>
<td>GA</td>
<td>GA</td>
<td>DEP</td>
</tr>
<tr>
<td>External provisioner for AWS EFS</td>
<td>REM</td>
<td>REM</td>
<td>REM</td>
</tr>
</tbody>
</table>

1.4.1. Deprecated features

1.4.1.1. Bring your own RHEL 7 compute machines

The strategy to bring your own (BYO) Red Hat Enterprise Linux (RHEL) 7 compute machines is now deprecated. Support for using RHEL 7 compute machines is planned for removal in a future release of OpenShift 4.

1.4.1.2. Metering Operator

The Metering Operator is deprecated and will be removed in a future release.

1.4.2. Removed features

1.4.2.1. OperatorSource resource

The **OperatorSource** resource, part of the Marketplace API for the Operator Framework, has been deprecated for several OpenShift Container Platform releases and is now removed. In OpenShift Container Platform 4.6, the default catalogs for OperatorHub in the `openshift-marketplace` namespace now only use **CatalogSource** resources with the **polling** feature enabled. The default catalogs poll for new updates in their referenced index images every 15 minutes.

1.4.2.2. MongoDB templates

All MongoDB-based samples have been replaced, deprecated, or removed.
1.4.2.3. External provisioner for AWS EFS (Technology Preview)

The Amazon Web Services (AWS) Elastic File System (EFS) Technology Preview feature has been removed and is no longer supported.

1.4.2.4. TLS verification falling back to the Common Name field

The behavior of falling back to the Common Name field on X.509 certificates as a host name when no Subject Alternative Names (SANs) are present is removed. Certificates must properly set the Subject Alternative Names field.

1.5. BUG FIXES

apiserver-auth

- Previously, certain conditions caused the Ingress Operator to not push the CA certificate to its router-certs secret, so the Cluster Authentication Operator could not construct a trust chain to the certificate in its health checks, causing it to go Degraded and prevent an upgrade. The CA is now always included from the default-ingress-cert config map during the default router CA check, so the Cluster Authentication Operator no longer blocks upgrades. (BZ#1866818)

- Previously, the Cluster Authentication Operator failed to parse HTML pages that were returned from OIDC servers that ignore Accept: application/json when a login flow that they do not support is requested, because the Operator was expecting a JSON response. As a result, the Operator failed to honor the IDP configuration. The Cluster Authentication Operator no longer fails with an error when an HTML page is returned from an OIDC server because it does not support the requested flow. (BZ#1877803)

- Previously, config maps and secrets were not properly validated by the Cluster Authentication Operator, which could cause a new deployment of the OAuth server to roll out with invalid or missing files, causing the pods to crash. Config maps and secrets are now properly validated by the Cluster Authentication Operator, so a new deployment should not roll out when the config maps or secrets referenced contain invalid data. (BZ#1777137)

Bare Metal Hardware Provisioning

- Previously, the ironic-image container configuration was missing the setting to enable the idrac-redfish-virtual-media boot driver. Because of this, users were unable to select the idrac-virtual-media boot URL for Metal3. The missing ironic-image container configuration is now included, so users are able to select the idrac-virtual-media URL for Metal3. (BZ#1858019)

- Previously, certain Dell firmware versions dropped support for configuring persistent boot using Redfish. Updating Dell iDRAC firmware to version 4.20.20.20 resolves the issue. (BZ#1828885)

- In this release, an issue that resulted in inspection timeouts if many nodes were inspected at the same time has been fixed. (BZ#1830256)

- Previously, the ironic-image container configuration was missing the setting to enable the idrac-redfish-virtual-media boot driver. Because of this, users were unable to select the idrac-virtual-media boot URL for Metal3. The missing ironic-image container configuration is now included, so users are able to select the idrac-virtual-media URL for Metal3. (BZ#1853302)

- Previously, the HTTPd container in the metal3 pod in the openshift-machine-api namespace that is used for serving bare metal ironic images allowed directory listings. With this release, directory listings are no longer allowed in this container. (BZ#1859334)
Build

- Errors in `buildah` libraries could ignore certain HTTP errors. Builds could fail to push images due to temporary issues with the target registry. This bug fix updates `buildah` to respect these errors when pushing image blobs. As a result, `buildah` now fails to push an image if the upstream registry is temporarily unavailable. (BZ#1816578)

- Previously, the container image signature policy used in OpenShift Container Platform builds did not contain any configuration for local images. When only allowing images from specific registries, postCommit scripts in builds failed because it was not allowed to use local images. The container image signature policy has been updated to always allow images that reference local storage layers directly. Now, builds can successfully complete if they contain a postCommit hook. (BZ#1838372)

- Previously, if a `Dockerfile` used in Docker strategy builds used the `ARG` instruction to define build arguments before the first `FROM` instruction occurred in the `Dockerfile`, that instruction was dropped when the `Dockerfile` was preprocessed to incorporate any overrides that were specified in the `Build` or `BuildConfig` resource. References to those arguments were subsequently not resolved properly while building an image using the preprocessed Dockerfile. The preprocessing logic has been modified to preserve `ARG` instructions which are encountered before the first `FROM` instruction when generating the updated `Dockerfile` contents, so this problem no longer occurs. (BZ#1842982)

- Previously, Buildah erased image architecture and OS fields on images. This caused common container tools to fail because the resulting images could not identify their architecture and OS. This bug fix prevents Buildah from overwriting the image and architecture unless there are explicit overrides. This ensures that images always have architecture and OS fields, and the image mismatch warning does not appear. (BZ#1858779)

- Previously, `Dockerfile` builds failed because they did not expand build arguments correctly in some situations. This update fixes the `Dockerfile` build argument processing, and thus `Dockerfile` builds now succeed. (BZ#1839683)

- Previously, Buildah made an extraneous call to read an image from its blob cache, which caused Source-to-Image (S2I) builds to fail. This issue was fixed in Buildah v1.14.11, which was vendored into OpenShift Container Platform builds in 4.6. (BZ#1844469)

- Previously, Buildah could not reference images in `COPY --from` `Dockerfile` instructions. As a result, multistage `Dockerfile` builds that contained `COPY --from=<image>` failed. Buildah has been updated to a version that supports `COPY --from` instructions. Builds that contain these instructions can now succeed. (BZ#1844596)

Cloud Compute

- Previously, if the `replicas` field on a machine set was set to a nil value, the autoscaler could not determine the current number of replicas within the machine set and therefore could not perform scaling operations. With this release, the autoscaler uses the last number of observed replicas in the machine set as reported by the `replicas` field in the status if a nil value is set. (BZ#1852061)

- Previously, the autoscaler did not balance workloads across different failure domains if a memory discrepancy of more than 128 MB existed between nodes of the same type. With this release, the maximum memory discrepancy is increased to 256 MB. (BZ#1824215)

- Previously, the machine set replicas field did not have a default value. As a result, if the field were not present, the machine set controller failed silently. The replicas field now has a default value. A default of one replica is used if the replicas field is not set. (BZ#1844596)
• Previously, the machine health check controller did not check if a machine had been deleted previously before it attempted to delete it. As a result, the controller could send multiple deletion requests, resulting in spurious logging and event reports. The machine health check controller now checks if a machine has been deleted before attempting to delete it. As a result, duplicate logs and events are reduced. ([BZ#1844986])

• Previously, the machine API Operator updated the cluster Operator machine API when it was in a stable state. As a result, the resource cycled rapidly between states. The resource’s status now changes only after changes are rolled out. The status remains stable. ([BZ#1855839])

• Previously, setting the `ClusterAutoscaler` resource values of `balanceSimilarNodeGroups`, `ignoreDaemonSetsUtilization`, or `skipNodesWithLocalStorage` to `false` did not register when the cluster autoscaler was deployed. These values are now read properly when the cluster autoscaler is deployed. ([BZ#1854907])

• Rarely, duplicate machine API controller instances could be deployed. As a result, clusters could leak machines that would become inaccessible. Leader election mechanisms are now added to all machine API components to ensure that duplicate instances are not created. Machine API controllers only run the prescribed number of instances. ([BZ#1861896])

• On Red Hat Virtualization (RHV) clusters, manual machine scaling could fail. Scaling machines from the web console or CLI now works. ([BZ#1817853])

• Previously, must-gather did not collect `BareMetalHost` records. As a result, debugging information could be incomplete. `BareMetalHost` records are now collected by must-gather. ([BZ#1841886])

• Previously, on clusters that run on Azure, compute machines converted into a `Failed` stage at installation. As a result, VMs were not recognized after being created. Attempts to contact the machines flooded logs with errors, and VMs could fail after starting correctly. As a fix, machines in the `Creating` state are identified as being created already. Logs contain fewer errors, and machines are less likely to fail. ([BZ#1836141])

• Previously, machine health check could accept negative values for `spec.maxUnhealthy`. As a result, at negative values, numerous events were produced for each reconciliation attempt. Negative values for `spec.maxUnhealthy` are now treated as `0`, which reduces spurious log messages. ([BZ#1862556])

Cloud Credential Operator

• Previously, when upgrading from OpenShift Container Platform version 4.5 to version 4.6, some fields were updated to the 4.6 default values. This affected the ability to downgrade from 4.6 to 4.5 because the 4.5 field values were not preserved. Rather than leaving the fields unspecified in 4.5, this bug fix explicitly preserves the 4.5 values so they can be specified as default values again on a downgrade attempt. Now, downgrading from 4.6 to 4.5 can succeed. ([BZ#1868376])

• Previously, the Cloud Credential Operator leader election used the default values from `controller-runtime` and as a result, wrote to `etcd` every two seconds. This release implements custom leader election, which now writes only every 90 seconds and releases the lock immediately on normal shutdown. ([BZ#1858403])

Cluster Version Operator

• The Cluster Version Operator served metrics using HTTP instead of HTTPS, and was subject to man-in-the-middle attacks as a result of unencrypted data. Now, The Cluster Version Operator serves metrics using HTTPS and data is encrypted. ([BZ#1809195])
When cluster administrators had configured cluster version overrides, the upgrade process would get stuck. Now, the upgrades are blocked when the override is set. Upgrades will not begin until an administrator removes the overrides. ([BZ#1822844](#))

The Cluster Version Operator used to load trusted CAs from the config map referenced by the proxy configuration’s `trustedCA` property. The referenced config map is user-maintained, and a user setting corrupted certificates would interrupt the Operator’s access to the Proxy. Now, the Operator loads the `trustedCA` configuration from the `openshift-config-managed/trusted-ca-bundle`, which the Network Operator populates when the proxy configuration’s referenced `trustedCA` config map is valid. ([BZ#1797123](#))

HTTPS signatures retrieved serialized stores, causing potential timeouts before the Cluster Version Operator could complete the tasks. Now, external HTTPS signature retrieval is parallel and all stores will be attempted. ([BZ#1840343](#))

Previously, during z-stream cluster upgrades using the option `--to-image`, for example `oc adm upgrade --to-image`, the Cluster Version Operator was using the cluster version being upgraded to, rather than the current cluster version for validation purposes. This caused z-stream upgrades to fail. Now, z-stream cluster upgrades using the option `--to-image` are allowed even when Cluster Version Operator has `Upgradeable=false`. ([BZ#1822513](#))

Previously, the Cluster Version Operator (CVO) was not syncing the `shareProcessNamespace` parameter in the pod spec, which caused the Registry Operator to not update the `shareProcessNamespace` setting. The CVO now syncs the `shareProcessNamespace`, `DNSPolicy`, and `TerminationGracePeriodSeconds` parameters, fixing the Registry Operator update issues. ([BZ#1866554](#))

### Console Kubevirt Plugin

- Previously, NICs that had the same NIC profile could not be imported successfully, or the wrong network was chosen. The web console now forces users to select the same network, which is not the pod network, for such NICs. ([BZ#1852473](#))

- Virtual machines were not displayed when logged in as a non-administrative user, due to the VM list waiting for the `virtualmachineimports` data to render. Now, the VM list is rendered correctly. ([BZ#1843780](#))

- The `Create VM` wizard `Edit Disk` modal did not respect cloned PVC namespaces. It was not possible to edit `datavolume` disks from a different namespace. Now, the disk modal properly registers the correct namespace of `datavolume` disks. ([BZ#1859518](#))

- Virtual machines and templates could not have the same name when referring to a URL source because the `datavolume` name was hard-coded. Now, an automatically generated unique string is added to the `datavolume` name and new virtual machines and templates can have the same name. ([BZ#1860936](#))

- Network utilization data would show `Not Available` due to an empty array of data. Now, a check has been implemented and empty arrays are interpreted as no data. ([BZ#1850438](#))

- With this release, the `Import VM` function is removed from the `Developer` perspective of the web console. ([BZ#1876377](#))

### Console Metal3 Plugin

- The user interface did not detect older node maintenance CRDs because the EI was searching for the latest version. As a result, the Node Maintenance action would miss the older `NodeMaintenance` CR if present. Now, the web console observes both `NodeMaintenance` CRs.
The user interface did not correctly evaluate graceful shutdowns, causing incorrect warnings to appear when shutting down the console. Now, the interface waits for the node pods to load and the correct warnings are displayed upon shutdown. (BZ#1872893)

Containers

- Previously, the logic that handled COPY or ADD instructions for copying content from the build context did not efficiently filter when a .dockerignore file was present. COPY and ADD would be noticeably slowed by the cumulative overhead of evaluating whether each item in the source location needed to be copied to the destination. This bug fix rewrote the logic and the presence of a .dockerignore file will no longer noticeably slow the speed at which COPY and ADD instructions are handled during a build. (BZ#1828119, BZ#1813258)

- Previously, image builds and pushes would fail with the error reading blob from source error message because the builder logic would compute the contents of new layers twice. The logic, which cached layer contents, depended on the products of those calculations remaining consistent. If a new layer's contents changed between the two computations, the cache was unable to supply the layers contents when they were needed. The contents of new layers are no longer computed twice and image builds and pushes will no longer fail. (BZ#1720730)

Web console (Developer perspective)

- Previously, when you tried to delete a Knative application through the Topology view, a false positive error about a non-existing Knative route was reported. This issue is now fixed and the error is no longer displayed. (BZ#1866214)

- Previously, the Developer perspective of the web console did not allow images from insecure registries to be imported. This bug fix adds a checkbox that allows users to use the insecure registries in the Deploy image form. (BZ#1826740)

- When a user selected the From Catalog option to create an application, the Developer Catalog displayed a blank page instead of a list of templates to create an application. This was caused when the 1.18.0 Jaeger Operator was installed. This issue has now been fixed and the templates are displayed as expected. (BZ#1845279)

- When deleting a parallel task in a Pipeline through the Pipeline Builder in the Developer perspective of the web console, the interface was rearranging the tasks connected to the parallel task incorrectly, creating orphan tasks. With this fix, the tasks connected to the deleted parallel task are reconnected with the original Pipeline. (BZ#1856155)

- The web console was crashing with a JavaScript exception when the user canceled the creation of a Pipeline through the web console with a side panel opened at the same time. This was fixed by improving the internal state handling. (BZ#1856267)

- A user with the required permissions was unable to retrieve and deploy an image from another project. The required role bindings have now been created to fix this issue. (BZ#1843222)

- When you tried to deploy an application from a Git repository with the Import from Git function, the Developer perspective of the web console reported a false positive error Git repository is not reachable for private repositories reachable by the cluster. This was fixed by adding information on making the private repository available to the cluster in the error message. (BZ#1877739)

- When a Go application was created through the Developer perspective of the web console, a route to the application was not created. This was caused by a bug in build-tools and incorrectly
configured ports. The issue has been fixed by picking either the user-provided port or the
default port 8080 as the target port. (BZ#1874817)

- When you created an application with the Import from Git function, a subsequent change of
the application’s Git repository from the web console was not possible. This was caused by
changing the application name in subsequent editing of the Git repository URL. This was fixed
by making the application name read-only when editing the application Git repository URL.
(BZ#1873095)

- Previously, a user without administrative or project listing privileges could not see the metrics of
any projects. This bug fix removes the checks for user privileges when accessing the cluster
metrics. (BZ#1842875)

- Users with the @ character in their user names, like user@example.com, could not start a
Pipeline from the Developer perspective of the web console. This was caused by a limitation in
Kubernetes labels. The issue was fixed by moving the Started by metadata from a Kubernetes
label to a Kubernetes annotation. (BZ#1868653)

- Previously, when a user selected a metric the QueryEditor would show the query. However, if
the user deleted or modified the query and selected the same metric again, the QueryEditor
would not update. With this fix, if a query is cleared by the user and they tried to select the same
query again, the query input text area will show the query. (BZ#1843387)

- The Che Workspace Operator removed support for the Workspace resource and replaced it
with the DevWorkspace CRD. As a result, the command line terminal was not enabled with the
latest Che Workspace Operator. With this fix, the OpenShift command line terminal was moved
to use the DevWorkspace resource. The command line terminal will now be enabled in the
OpenShift Console when the Che Workspace Operator is installed. (BZ#1844938)

- Previously, the route decorator for Knative services redirected users to a revision specific route
if traffic was distributed across multiple revisions. The route decorator has been updated to
always point to the Knative base service route. (BZ#1860768)

- Previously, the pod did not start when the user added a secret for an external private container
registry and imported the container image from the registry. As a result, the deployment was
stuck until the service account or the deployment was updated manually. This bug fix allows the
new deployments to use the internal container registry to start their pods. With this bug fix, the
user can import a container image from an external private container registry without additional
changes on the service account or the deployment. (BZ#1926340)

- The console used a prior version of the KafkaSource object that used the resources and
serviceAccountName fields in their specification. The v1beta1 version of the KafkaSource
object removed these fields, due to which the user was unable to create the KafkaSource
object with the v1beta1 version. This issue has been fixed now and the user is able to create the
KafkaSource object with the v1beta1 version. (BZ#1892695)

- Previously, the relative chart URL for downloading the chart to instantiate a helm release was
unreachable. This happened because the index.yaml file from the remote repository,
referred to in the Helm chart repository, was fetched and used as is. Some of these index files
contained relative chart URLs. This issue is fixed by translating relative chart URLs to absolute
URLs, which makes the chart URL reachable. (BZ#1916406)

- Previously, the users were not able to see any Knative services and sources on the Topology
view. This was because the triggers had both a Knative service and an In-Memory Channel as
subscribers due to a Null Pointer Exception (NPE). This issue is resolved by fixing the Null
Pointer Exception, so that the Knative data model returns proper data and the Knative
resources are properly shown on the Topology view. (BZ#1907827)
• Previously, the API server could fail to create a resource and return a 409 status code due to a conflict while updating a resource quota resource. This issue is fixed and the {product title} web console will attempt to retry the request while receiving a 409 status code. At most three attempts are made which is often sufficient to complete the request. In the event that a 409 continues to occur, an error will be displayed in the console. (BZ#1928230)

• Previously, no helm charts were displayed in the developer catalog because the chart repository `httpClient()` did not consider any proxy environment variable. This issue is fixed and the helm charts are now being displayed in the developer catalog. (BZ#1919138)

• Technology preview badges are being displayed on the Eventing user interface although it would be going for a GA release. The Technology preview badges are now removed from Eventing user interface. (BZ#1899382)

• Previously, the application crashed when the correlated pod data was not available for the deployment config. This was because the console deployment fetched two sets of data with the pod status donut shown as soon as deployment config is loaded. If the API returns more than 250 pods, some of the information is skipped and is not available. This issue is fixed and the pod data is available even when the project contains more than 250 pods, thus ensuring that the DeploymentConfig detail page does not crash anymore. (BZ#1921603)

• Previously, the static models corresponding to the trigger, subscription, channel, and IMC eventing sources used the beta API version. With the Serverless 0.10 release, the latest supported versions for eventing sources were updated to the v1 version. This bug fix updates the user interface models to point to the latest supported version. (BZ#1896625)

• Previously, when conditional tasks failed, the completed pipeline runs showed a permanent pending task for each failed conditional task. This issue has been fixed by disabling the failed conditional tasks and by adding skipped icons to them. This gives a better picture of the state of the pipeline run. (BZ#1916378)

• Previously, the user was denied access to pull images from other projects due to insufficient user permissions. This bug fix removes all the user interface checks for role bindings and shows the `oc` command alert to help users use the command line. With this bug fix, the user is no longer blocked from creating images from different namespaces and is now able to deploy images from other projects. (BZ#1933727)

• While creating a sample application, the Developer perspective creates multiple resources that depend on each other and must be completed in a specific order. Previously, the admission plug-in sometimes could not check one of these resources, preventing the Developer perspective from generating the sample application. This issue has been fixed. The code creates the resources in the required order, so creating a sample application is more stable. (BZ#1933666)

• Previously, users were not able to create a Knative service as a private service from the Developer perspective. This issue has now been fixed, by updating the label `networking.knative.dev/visibility`: 'cluster-local'. (BZ#1978159)

• Previously, the topology URLs created for deployments using a Bitbucket repository in the OpenShift Container Platform web console did not work if they included a branch name that contained a slash character. This was due to an issue with the Bitbucket API BCLOUD-9969. The current release mitigates this issue: if a branch name contains a slash, the topology URLs point to the default branch page for the repository. (BZ#1972694)

• Previously, pipelines created in the git import flow for private repositories failed to run. This issue has now been fixed by adding the secret name to the pipeline’s ServiceAccount object annotations, and by adding pipeline-specific annotations to the provided secret.
DNS

- Previously, intermittent invalid memory address or nil pointer dereference errors occurred and were followed by timeouts for Kube API access when running CoreDNS 1.6.6. This is now fixed by correctly handling errors with Endpoint Tombstones. Now, CoreDNS behaves as intended without intermittent panics. (BZ#1868315)

- Previously, the DNS Operator repeatedly attempted to update DNS and Service objects in response to default values that were set by the API. With this update, the DNS Operator now considers values that are left unspecified by the DNS Operator to be equal to values in DNS and Service objects. Thus, the DNS Operator no longer updates a DNS or Service object in response to API default values. (BZ#1842741)

etcd

- Previously, the bootstrap endpoint in ETCDCTL_ENDPOINTS was not removed after the bootstrap node was removed, so etcdctl commands showed unexpected errors. The bootstrap endpoint is no longer added to ETCDCTL_ENDPOINTS, so etcdctl commands do not show errors related to the bootstrap endpoint. (BZ#1835238)

Image

- Previously, image imports using digests on manifests lists failed. This update fixes the conversion from manifest list to manifest by using the digest of the selected manifest inside the manifest list. Thus, imports by digest of manifest lists now work as expected. (BZ#1751258)

Image Registry

- Previously, some internal packages used an internal error structure, causing a null pointer issue. Now, the internal error interface is returned and nil errors are converted correctly. (BZ#1815562)

- The Operator did not generate httpSecrets when empty, causing the value to not set correctly. Now, the Operator generates the httpSecret and uses it for all replicas when the configuration file is created. (BZ#1824834)

- Previously, an invalid alert would appear when the image pruner was disabled. This alert has now been removed. (BZ#1845642)

- Registry Operator type assertions were made twice for a variable and the second time the result was not checked. This caused false assertions and created panic conditions. Now, checked type assertions are used and the Operator does not panic. (BZ#1879426)

- Previously, the Operator bootstrap storageManaged setting was set to true, causing conflicts if the user manually updated the configuration file. Now, an additional configuration field, spec.storage.storageManagementState has been created. Users can indicate Managed or Unmanaged and the Operator will respect the setting. (BZ#1833109)

- Removing the Image Registry on OpenStack when content was written to storage resulted in storage for the Image Registry not being removed and a 409 HTTP return code error being logged. This bug fix removes the storage content before removing the storage. Now, when the Image Registry Operator is removed, its storage is also removed. (BZ#1835770)

- During installation on OpenStack, if there was a failure to access Swift storage during the Image Registry Operator bootstrap process, it caused an incomplete bootstrap. This resulted in a
failure to create the Image Registry configuration resource, which blocked fixes or changes its configuration. This bug fix prevents failure during bootstrap in case of a problem when accessing Swift storage. If there is an error, it is logged allowing the bootstrap to finish and configuration resources to be created. Now, the Image Registry Operator is now more flexible, and if it cannot access Swift storage, it bootstraps the internal Image Registry using a PVC. (BZ#1846263)

- The Image Registry Operator avoids calling Azure endpoints too many times, because Azure enforces quotas and previously the Operator was constantly querying for storage account keys. This bug fix caches the keys locally for a set period of time to avoid going remotely to get the keys every time they are needed. (BZ#1853734)

- Previously, the Operator interpreted a running job as successful when reporting on the Operator status, even though the job could potentially result in a failed state. Now, the running jobs are ignored when reporting the Operator status. (BZ#1857684)

- The image registry purging process failed when running over s3 storage because it was listing directories twice. Now, directories are listed once and the image purging process completes successfully. (BZ#1861304)

- Previously, if the Image Registry Operator was removed, the pruner job failed because it could not reach a non-existent registry. Now, the pruner job removes etcd objects only and does not attempt to ping the registry if it is removed. (BZ#1867792)

- If a user manually added a bucket name, the Operator did not create the bucket. Now, the Operator creates a bucket successfully based on the user-provided name. (BZ31875013)

- Previously, the Image Registry Operator could not get events from the cluster when it encountered Too large resource version error messages. With this release, the client-go library is updated to fix the reflector so that the Operator can recover from Too large resource version error messages. (BZ#1880354)

- Previously, dependency tracking between image objects was slow when pruning images. Image pruning would sometimes take a long time to complete. The underlying image pruning mechanism has been redesigned. Now, image pruning is faster and has improved parallelism. (BZ#1860163)

### Installer

- Previously, when a machine tried to get the resourcePoolPath, it found multiple resource pools and was unable to resolve the correct one. With this release, a property added to the machine sets with the resourcePoolPath information helps resolve the correct one. (BZ#1852545)

- Previously, a hard-coded value was set when calculating the end of the DHCP allocation pool when provisioning the nodes subnet. This caused an error when deploying on an OpenShift Container Platform cluster on OpenStack with a machine CIDR smaller than 18. This bug fix removes hard-coding the number of nodes and, instead, dynamically calculates the end of the DHCP allocation pool. Now, it is possible to deploy a cluster on OpenStack with a machine CIDR of any length, provided it is large enough for all required nodes. (BZ#1871048)
• Previously, some available networks were not shown during cluster installation because of an ovirt-engine-sdk-go API error that affected oVirt network parsing. The issue is now resolved. (BZ#1838559)

• Previously, in the vSphere web console wizard, only networks of type Network and DistributedVirtualPortgroup were displayed even though OpaqueNetwork is also a valid option. OpaqueNetwork is now an option in the wizard, so that type of network can be selected. (BZ#1844103)

• Previously, the Manila Operator did not support custom self-signed certificates, so the Manila Operator failed to deploy Manila CSI driver on some environments that used self-signed certificates. Now, the Operator fetches the user-provided CA certificate from the system config map, mounts it to the driver’s containers, and update the driver’s configuration. As a result, the Manila Operator can deploy and manage the Manila CSI driver on environments with self-signed certificates. (BZ#1839226)

• Previously, configuring the platform.aws.userTags parameter to add name or kubernetes.io/cluster/tags to resources that the installation program creates caused the machine API to fail to identify existing control plane machines and create another set of control plane hosts, which created problems with etcd cluster membership. Now, you can no longer set error-prone tags in the platform.aws.userTags parameter, and your cluster is less likely to have extra control plane hosts and broken etcd clusters. (BZ#1862209)

• Previously, health check probes were not defined on load balancers deployed in Azure clusters on user-provisioned infrastructure. Because the load balancers were not defined, they did not detect when an API endpoints were no longer available and still directed traffic to them, which caused client failures. Now, the health check probes are used on the load balancers, and they correctly detect when API endpoints are not available and stop routing traffic to offline nodes. (BZ#1836016)

• Previously, the installation program did not accept * as a valid value for the proxy.noProxy field, so you could not create a cluster with no proxy set to * during installation. Now, the installation program accepts * as a valid value for that parameter, so you can set no proxy to * during installation. (BZ#1877486)

• Previously, when you installed a cluster in GCP, US was always used as the location, and it was not possible to install a cluster in some regions outside of US. Now, the installation program sets the right location for the region that you specify, and installations succeed in other locations. (BZ#1871030)

• Previously, when you installed a cluster on vSphere with installer-provisioned infrastructure, it was possible to assign the same IP address to ingress and the API, which caused the bootstrap machine and one of the control plane machines to have the same IP address. Now, the installation program validates that the IP addresses are different, and the control plane and bootstrap machines have unique IP addresses. (BZ#1853859)

• Previously, when an interface obtained a new DHCP4 or DHCP6 lease, the local-dns-prepender did not update the resolv.conf file to include all the required resolvers for the cluster. Now, the dhcp4-change and dhcp6-change action types always make the local-dns-prepender start updates. (BZ#1866534)

• Previously, you could not deploy clusters to the following GCP regions: asia-northeast3, asia-southeast-2, us-west3, and us-west4. You can now use these regions. (BZ#1847549)

• Previously, the OpenStack installation program used inconsistent output format for the InstanceID() function. It obtained the instance ID from either metadata or by sending requests to the server. In the latter case, the result always had ‘/’ prefix, which is the correct format. If the
instance ID came from the metadata, the system failed to verify its node existence and failed because of the error. Because, the metadata format now also contains the '/' prefix there, the ID format is always correct, and the system can always successfully verify node existence. (BZ#1850149)

- Previously, provisioning services for the bare metal installer-provisioned infrastructure platform failed when FIPS was enabled for a cluster. With this update, provisioning services run as expected when FIPS is enabled and installation successfully completes. (BZ#1804232)

- Previously, you could configure the DHCP range so that the provisioning network consumed the entire subnet, including the cluster provisioning VIP. Thus, installation would fail because a bootstrap VM IP and cluster provisioning IP could not be assigned. This fix validates VIPs to ensure that they do not overlap with the DHCP range. (BZ#1843587)

- Previously, installation failed when a certificate was followed by two end-of-line character sequences. This update fixes the certificate authority (CA) certificate trust bundle parser, which now ignores invisible characters. Thus, the CA certificate trust bundle can now feature an arbitrary number of end-of-line character sequences before, between, and after certificates. (BZ#1813354)

- Previously, when the interactive installer prompt requested the *ExternalNetwork* resource for the cluster, all possible network choices were listed, which included invalid options. With this update, the interactive installer now filters the possible options and lists only external networks. (BZ#1881532)

- Previously, the bare metal *kube-apiserver* health check probe used a hard-coded IPv4 address to communicate with the load balancer. This update fixes the health check to use *localhost*, which covers both IPv4 and IPv6 cases. Additionally, the *readyz* endpoint for the API server is checked rather than *healthz*. (BZ#1847082)

- Due to a Terraform step that did not list all of its dependent steps, clusters on Red Hat OpenStack Platform (RHOSP) experienced a race condition that sometimes caused the Terraform job to fail with a *Resource not found* error message. The step is now listed as *depends_on* to avoid the race condition. (BZ#1734460)

- Previously, the cluster API did not validate RHOSP flavors before updating machines. As a result, machines that had invalid flavors failed to boot. Flavors are now validated before updating machines, and machines that have invalid flavors return errors immediately. (BZ#1820421)

- Previously, clusters on RHOSP that had periods (,) in their names failed at the bootstrap phase in installation. Periods are no longer allowed in the names of clusters on RHOSP. If a cluster name contains a period, an error message is generated early in the installation process. (BZ#1857158)

- Previously, health check probes were not defined for load balancers in user-provisioned infrastructure deployed clusters on AWS. The load balancers did not detect when API endpoints became unavailable, which caused client failures. In this update, health check probes have been added and the load balancers do not route traffic to offline nodes. (BZ#1836018)

- Previously, the *DiskPostCloneOperation* function in the Terraform vSphere provider checked the *thin_provisioned* and *eagerly_scrub* properties of virtual machines cloned from Red Hat CoreOS OVA images. The check failed because the provisioning type changed during cloning and did not match the source provisioning type. The *DiskPostCloneOperation* function now ignores those properties and the Red Hat CoreOS OVA cloning succeeds. (BZ#1862290)

- When running `./openshift-install destroy cluster`, the installer attempted to remove installer
tags before the resources using those tags were removed. The installer subsequently failed to remove the tags. With this update, the installer removes the tags after the corresponding resources are deleted. (BZ#1846125)

**kube-apiserver**

- Previously, the Cluster Version Operator (CVO) marked a cluster as not upgradeable when the **LatencySensitive** Feature Gate was in use. With this update, the CVO no longer considers **LatencySensitive** Feature Gate as a block for cluster upgrades. To resolve the issue, force the upgrade to the latest 4.5.z or stable version, which include the solution. (BZ#1861431)

**kube-controller-manager**

- Previously, the daemon set controller did not clear expectations when recreating a daemon set. As a result, the daemon set might get stuck for five minutes until the expectations expired. Now, the daemon set controller correctly clears the expectations. (BZ#1843319)

- UID range allocation is not updated when a project is removed, and thus the UID range can be exhausted on a cluster that has high namespace creation and removal turnover. To resolve the issue, the **kube-controller-manager** pod is periodically restarted, which triggers the repair procedure and clears the UID range. (BZ#1808588)

- Previously, the endpoints controller sent large quantities of API requests at every informer resync interval, which caused degradation in large clusters with many endpoints. Various inconsistencies in storage and the comparison of endpoints caused the endpoints controller to incorrectly assume that there were many additional updates that needed to be made to a cluster than were actually necessary. This fix updates storage and comparison functions for endpoints so that they are more consistent. Thus, the endpoints controller now only sends updates when necessary. (BZ#1854434)

- Previously, **NotFound** errors were mishandled by controller logic. This caused controllers such as deployment, daemon set, and replica set controllers to not be aware of missing pods. This fix updates controllers to correctly react to a pod **NotFound** event, which indicates that the pod was previously removed. (BZ#1843187)

**kube-scheduler**

- Previously, when evicting a pod in dry run mode, certain descheduler strategies logged the eviction twice. Now, only a single log entry is created for the eviction. (BZ#1841187)

**Logging**

- Previously, the Elasticsearch index metrics were collected in Prometheus by default. As a consequence, Prometheus would run out of storage quickly, due to the size of the index-level metrics, and the user would need to intervene, for example, reducing the Prometheus retention time, to keep Prometheus functioning. The default behavior was changed to not collect the Elasticsearch index metrics. (BZ#1858249)

- Because the OpenShift Elasticsearch Operator was not updating the secret hash for the Kibana deployment, Kibana pods would not be restarted if the secret gets updated. The code was changed to correctly update the hash for the deployment, which triggers a the pods to redeploy, as expected. (BZ#1834576)

- Because of the introduction of Fluentd init containers, Fluentd could not be deployed in a cluster without deploying the OpenShift Elasticsearch Operator (EO). The code was changed to allow Fluentd without the EO being present. As a result, in a cluster without Elasticsearch, Fluentd works as expected. (BZ#1849188)
Because the ability to open Kibana in an iframe was not expressly denied, it opened Kibana to the possibility of attack, such as clickjacking. The code was changed to explicitly set `x-frame-options:deny`, which blocks the use of iframes. (BZ#1832783)

**Machine Config Operator**

- In bare metal environments, an `infra-dns` container runs on each host to support node name resolutions and other internal DNS records. A `NetworkManager` script also updates the `/etc/resolv.conf` on the host to point to the `infra-dns` container. Additionally, when pods are created, they receive their DNS configuration file (the `/etc/resolv.conf` file) from their hosts. If an HAProxy pod was created before `NetworkManager` scripts update the `/etc/resolv.conf` file on the host, the pod can repeatedly fail because the `api-int` internal DNS record is not resolvable. This bug fix updates the Machine Config Operator (MCO) to now verify that the `/etc/resolv.conf` file of the HAProxy pod is identical to the host `/etc/resolv.conf` file. As a result, the HAProxy pod no longer experiences these errors. (BZ#1849432)

- Keepalived is used to provide high availability (HA) for both the API and default router. The Keepalived instance in each node monitors local health by curling the health endpoint of the local entity, for example the local `kube-apiserver`. Previously, the `curl` command failed only when the TCP connection failed, and not on HTTP non-200 errors. This caused Keepalived to sometimes not fail over to another healthy node, even when the local entity was unhealthy, which lead to errors in API requests.

  This bug fix updates the Machine Config Operator (MCO) to modify the `curl` command to now also fail when the server replies with a non-200 return code. As a result, the API and Ingress router now correctly failover to a healthy node in case of failure in a local entity. (BZ#1844387)

- In bare metal environments, some DNS records were hard-coded for IPv4. This caused some records to not be served correctly in IPv6 environments, which might necessitate creating those records in an external DNS server. This bug fix updates the Machine Config Operator (MCO) so that DNS records are now populated correctly based on the Internet Protocol version in use. As a result, internal records are now served correctly in both IPv4 and IPv6. (BZ#1820785)

- Previously, kernel arguments specified in machine configs needed to be split out into individual argument strings in the array. These arguments were not validated before being concatenated into an `rpm-ostree` command. Multiple kernel arguments concatenated using a space, as allowed in a single line in the kernel command line, would create an invalid `rpm-ostree` command. This bug fix updates the machine config controller to parse each `kernelArgument` item in a similar manner as the kernel. As a result, users can supply multiple arguments concatenated using a space without errors. (BZ#1812649)

- Previously, the control plane would always be schedulable for user workloads in bare metal environments. This bug fix updates the Machine Config Operator (MCO) so that control plane nodes are now correctly configured as `NoSchedule` in a typical deployment with workers. (BZ#1828250)

- Previously, with the Machine Config Operator (MCO), unnecessary API VIP moves could cause client connection errors. This bug fix updates API VIP health checks to limit the number of times it moves. As a result, there are now fewer errors caused by API VIP moves. (BZ#1823950)

**Web console (Administrator perspective)**

- The operand’s tab for operand list view was missing. With this bug fix, the issue is resolved. (BZ#1842965)

- When IPv6 was disabled, the downloads pod socket could not bind and the downloads pod crashed. If IPv6 is not enabled, IPv4 is now used for the socket. The downloads pod now works regardless of enabling IPv4 and IPv6. (BZ#1846922)
- The Operator status display values did not account for manual approval strategy. Therefore, the upgrade available status was displayed, which did not convey that further action was required in order to upgrade. A new status message was added for Operators that are waiting for manual approval to upgrade. You can now clearly tell when an Operator upgrade requires further action. *(BZ#1826481)*

- The catch logic for a failed operand form submission was attempting to access a deep property in the resulting error object that is not always defined. For specific failed request types, this would cause a runtime error. With this bug fix, the issue is resolved. *(BZ#1846863)*

- Victory does not handle all-zero data sets well. Y-axis tick marks for all-zero data sets were repeated zeros. The area chart logic was updated to force a Y-domain of \([0,1]\) when all data sets are all-zero. Now, Y-axis tick marks for all-zero data sets are 0 and 1. *(BZ#1856352)*

- The currently installed version was not shown in the Operator details pane on OperatorHub. Therefore, a user could not determine if the currently installed version was latest. When the currently installed Operator version is not the latest, the installed version is now shown in the Operator details pane on OperatorHub. *(BZ#1856353)*

- The `create role binding` links were inconsistently namespaced or used cluster links, so the `create role binding` page was incorrect. This bug fix updates the links to use the namespace, where available, and the cluster in other cases. The correct page is now used. *(BZ#1871996)*

- Previously, the web console did not support Grafana value maps for singlestat panels, so singlestat panels were unable to display Grafana value maps. Support is now added and singlestat panels can display Grafana value maps. *(BZ#1866928)*

- `oc debug` was updated with BZ#1812813 to create a new debug project with an empty node selector in order to work around a problem where `oc debug` only works against worker nodes. The web console avoided this problem by asking users to choose a namespace when visiting the Node → Terminal page before the terminal is opened, resulting in inconsistency in the user experience compared to `oc`. The web console now creates a new debug project with an empty node selector upon visiting the Node → Terminal page. The behavior of the web console Node → Terminal page now aligns with the behavior of `oc debug`. *(BZ#1881953)*

- When all receivers were deleted, the web console would experience a runtime error and the user was presented with a blank screen. Null checks are now added in the code and users are presented with a No Receivers empty state screen instead. *(BZ#1849556)*

- In some cases, the value passed to the resource requirements widget in the legacy operand creation form might not be an immutablejs map instance. A runtime error was thrown when trying to reference the immutablejs `Map.getIn` function on the resource requirement widget current value. Use optional chaining when referencing the immutablejs `Map.getIn` function. No runtime error is thrown and the widget is rendered without a value. *(BZ#1883679)*

- A blank page appeared when using search on the `imagemanifestvuln` resource. The component was using `props.match.params.ns`, which was sometimes undefined. As a result, there was a runtime error. This issue is now resolved. *(BZ#1859256)*

- Previously, the action menu to the right of operand lists could close immediately after opening. This could be seen on the Installed Operators details page when clicking one of the tabs for the Operator-provided APIs. The menu now functions correctly and will no longer close without user interaction. *(BZ#1840706)*

- There was a missing keyword field in the API and users were unable to search by keyword in OperatorHub. With this bug fix, the issue is resolved. *(BZ#1840786)*
- Previously, the OperatorHub in the web console sometimes showed the incorrect icon for an Operator. The issue has been resolved in this release. (BZ#1844125)

- In this release, a broken link to the cluster monitoring documentation from the web console OperatorHub install page is corrected. (BZ#1856803)

- Previously, clicking Create EtcdRestore on the EtcdRestores page caused the web console to stop responding. With this release, the Create EtcdRestore form view workflow loads correctly. (BZ#1845815)

- Previously, the operand form array and object fields did not have logic to retrieve and show field descriptions on the form. As a result, descriptions were not rendered for array or object type fields. This bug fix adds logic to now display array and object field descriptions on the operand creation form. (BZ#1854198)

- Previously, the Deployment Configuration Overview page sometimes crashed with the error `e is undefined` when a new pod was starting up. The issue has been resolved in this release. (BZ#1853705)

- Previously, the cluster upgrade interface in the web console was visible on OpenShift Dedicated, even though OpenShift Dedicated users cannot perform cluster upgrades. The cluster upgrade interface is now hidden for OpenShift Dedicated. (BZ#1874257)

- Previously, empty objects in an operand template were pruned when submitting the form or switching between the form and YAML view. With this release, template data is used as a mask when pruning empty structures from the form data, and only values that are not defined in the template are pruned. Empty values that are defined in a template remain. (BZ#1847921)

- The tooltip details were sometimes truncated when hovering over the Cluster Logging donut chart. This bug fix enables the entire tooltip description to display for this chart. (BZ#1842408)

- For the Registry field on the Create Instance page, some of the text in the schema property descriptions matched the format used to create fuzzy hyperlinks in Linkify. This resulted in unintended hyperlinks. This bug fix disables the fuzzy link feature in Linkify. Now, only URL strings using a proper protocol scheme are rendered as hyperlinks. (BZ#1841025)

- The AWS Secret field always displayed the loading icon even when the ListDropdown component was not in a loading state. This bug fixes the component logic so that the loading icon only displays when the drop-down list is in a loading state. A placeholder displays if the drop-down list is not in a loading state. (BZ#1845817)

- Previously, Resource Log pages in the web console became slow or unresponsive when the logs contained long lines. This bug fixes the performance issues by limiting the number of characters per log line that displays on the Resource Log page and providing an alternate method to view the full log content. (BZ#1874558)

- Previously, the node file system calculations for Used and Total were incorrect due to an incorrect query. Now, the query is updated and calculates the data correctly. (BZ31874028)

- The Overview page in the web console incorrectly included the container level usage metric to display network utilization data. This bug fix replaces the incorrect metric with the node level usage metric to accurately display network utilization data. (BZ#1855556)

- Previously, the Created At timestamp format for Operators did not require a specific format, resulting in the timestamp displaying inconsistently on the web console. Now, if the Created At timestamp value is entered as a valid date for an Operator, the timestamp displays in a
consistent manner with other timestamps in the console. If the value is not entered using a valid date format, the Created At timestamp displays as an invalid string. (BZ#1855378)

- The web console displayed an old logo for OperatorHub. This bug fix replaces the old logo with the current logo. (BZ#1810046)

- Previously, the Operator resource field names displayed inconsistently in the web console as either camelCase or Start Case. Now, the operand form generation logic labels the form fields using Start Case by default. The default can be overridden by CSV or CRD objects. (BZ#1854196)

- Previously, the Resource Log view did not show single line logs and did not show the last line of a pod log if it was missing a newline control character (\n). Now, the log view has been updated to show the entire pod log content for single line logs and final lines that are not terminated with a newline character. (BZ#1876853)

- Previously, the OpenShift Container Platform web console YAML editor allowed metadata.namespace entries for all resources. An error was returned when namespace: <namespace> was added for resources that did not take a namespace value. metadata.namespace entries are now removed when a configuration is saved, if a resource does not take a namespace value. (BZ#1846894)

- Previously, the delete icon (-) for the name value editor did not provide a tooltip, so it was not clear to users what this icon did. The the delete icon (-) now provides a tooltip to make its action easier to understand. (BZ#1853706)

- Previously, resource names with special characters, such as ( and ), could prevent resource details from being displayed in the OpenShift Container Platform console. Resource details are now displayed properly when resource names have special characters. (BZ#1845624)

### Monitoring

- Previously, the configuration reload for Prometheus was sometimes triggered while the configuration was not fully generated, which triggered the PrometheusNotIngestingSamples and PrometheusNotConnectedToAlertmanagers alerts because there were no scrape or alerting targets. The configuration reload process now ensures that the configuration on disk is valid before reloading Prometheus, and the alerts are not fired. (BZ#1845561)

- Previously, the AlertmanagerConfigInconsistent alert could fire during an upgrade because some of the Alertmanager pods were temporarily not running due to a rolling update of the stateful set. Even though the alert resolved itself, this could cause confusion for cluster administrators. The AlertmanagerConfigInconsistent no longer considers the number of running Alertmanager pods, so it no longer fires during upgrades when some of the Alertmanager pods are in a not-running, transient state. (BZ#1846397)

- Previously, some alerts did not have the correct severity set or were incorrect, which caused upgrade issues. The severity level for many alerts were changed from critical to warning, the KubeStatefulSetUpdateNotRolledOut and KubeDaemonSetRolloutStuck alerts were adjusted, and the KubeAPILatencyHigh and KubeAPIErrorsHigh alerts were removed. These alerts are now correct and should not cause upgrade issues. (BZ#1846397)

- Previously, KubeTooManyPods alert used the kubelet_running_pod_count, which includes completed pods, so was incorrect for the KubeTooManyPods alert. Now, container_memory_rss is leveraged to find the actual number of pods running on a node for the KubeTooManyPods alert. (BZ#1846805)

- Previously, the node_exporter daemon set defaulted to a maxUnavailable value of 1, so the
rollout was entirely serialized and slow on large clusters. Since the node_exporter daemon set does not affect workload availability, the maxUnavailable value now scales with the cluster size, which allows for a faster rollout. (BZ#1867603)

Networking

- With this release, Kuryr-Kubernetes now attempts to detect the bridge interface for pod subports on the Container Network Interface (CNI) level, instead of using a value set in kuryr.conf. This approach supports cases when VMs call the interface without using a value set in kuryr.conf. (BZ#1829517)

- Previously, OpenShift SDN exposed metrics unencrypted over HTTP. Now, OpenShift SDN exposes metrics over TLS. (BZ#1809205)

- Previously, when idling a service, OpenShift SDN did not always delete a service and its endpoints in the correct order. As a result, sometimes the node port for a service was not deleted. When the service scaled up again, it was therefore unreachable. Now, OpenShift SDN ensures that the node port is always deleted correctly. (BZ#1857743)

- Previously, an egress router pod failed to initialize because of a missing dependency on legacy iptables binaries. Now, an egress router pod successfully initializes. (BZ#1822945)

- Previously, when deleting network policies on a cluster that is using the OVN-Kubernetes cluster networking provider, a race condition prevented network policies from being reliably deleted when deleting the associated namespace. Now, network policy objects are always correctly deleted. (BZ#1859682)

- Previously, when using the OpenShift SDN pod network provider in multitenant isolation mode, pods were unable to reach services configured with externalIPs set. Now, pods can reach services with a service external IP address configured. (BZ#1762580)

- Previously, OVN-Kubernetes exposed metrics unencrypted over HTTP. Now, OVN-Kubernetes exposes metrics over TLS. (BZ#1822720)

- Previously, on OpenShift Container Platform on Red Hat OpenStack Platform, when using the OVN-Octavia driver, it was not possible to attach listeners to different protocols on the same port. Now, it is possible to expose several protocols on the same port. (BZ#1846396)

Node

- Previously, a Kubelet failed to start if a soft eviction threshold and grace period were not specified. With this release, the presence of these values is verified during Kubelet configuration. (BZ#1805019)

- Because the user could enter invalid characters, such as negative values, non-numeric characters, and so forth, in the CPU and memory requests for a kubeconfig object, the kubelet would not start. The code has been changed to verify that the kubelet config memory request values are valid. As a result, invalid values are rejected. (BZ#1745919)

- Previously, if a system were using a device mapper for the root device, a number of key host level IO metrics returned by cadvisor were incorrectly set to zero. cadvisor was fixed to report these metrics if the device mapper is used for root. (BZ#1831908)

oauth-apiserver

- Previously, when the Authentication Operator received an HTML payload from an OpenID Connect Authentication (OIDC) server that ignores the Accept: application/json header, the
Operator logged an error about the payload. Now, the Operator includes the URL of the page that it requested to aid in troubleshooting the OIDC server response. (BZ#1861789)

**oc**

- Previously, the `oc project` command required the privileges of a `self-provisioner` role to switch projects, which meant that some users could not switch projects if they did not have that role. The `self-provisioner` role requirement was removed, so anyone with access to a project can now switch projects using `oc project`. (BZ#1849983)

- Previously, sorting events by `lastTimestamp` could cause an error when sorting an event that has an empty `lastTimestamp`. Sorting is now resistant to empty elements, and works properly when sorting by `lastTimestamp`. (BZ#1880283)

- Previously, the `oc create job` command was missing logic for the `--save-config` flag, so the `--save-config` option did not work as expected. Logic was added for the `--save-logic` flag, and it now works properly. (BZ#1844998)

**OLM**

- Operator Lifecycle Manager (OLM) exposes the `subscription.spec.config.nodeSelector` field in the subscription CRD, but previously did not apply `nodeSelectors` labels to the deployments defined in the `ClusterServiceVersion` object (CSV). This made users unable to set `nodeSelectors` on their CSV deployments. This bug fix updates OLM to now propagate `nodeSelector` labels defined in the `subscription.spec.config.nodeSelector` field to deployments in the CSV. As a result, the field now works as expected. (BZ#1860035)

- Previously, Operator Lifecycle Manager (OLM) did not reuse existing valid CA certificates when installing a `ClusterServiceVersion` object (CSV) that entered the `installing` phase multiple times. OLM applied a new webhook hash to the deployment, causing a new replica set to be created. The running Operator then redeployed, possibly many times during an installation. This bug fix updates OLM to now check if the CA already exists and reuses it if valid. As a result, if OLM detects existing valid CAs, OLM now reuses the CAs. (BZ#1868712)

- Operator Lifecycle Manager (OLM) appends `OwnerReferences` metadata to service resources installed for Operators that provide API services. Previously, whenever an Operator of this class was redeployed by OLM, for example during a certificate rotation, a duplicate `OwnerReference` was appended to the related service, causing the number of `OwnerReferences` to grow unbounded. With this bug fix, when adding `OwnerReferences`, OLM now updates an existing `OwnerReference` if found. As a result, the number of `OwnerReferences` appended to a service by OLM is bounded. (BZ#1842399)

- Operator Lifecycle Manager (OLM) previously did not pull bundle images before attempting to unpack them, causing the `opm alpha bundle validate` command to fail with `image not found` or similar error messages. This bug fix updates OLM to now pull bundle images before attempting to unpack in the bundle validator. As a result, the `opm alpha bundle validate` command successfully pulls and unpacks images before performing validation. (BZ#1857502)

- Previously, the web console would choose Operator icons to display in OperatorHub by returning the icon from the first channel declared in the package. This sometimes caused the displayed icon to be different than the latest icon published to the package. This has been fixed by choosing the icon from the default channel, which ensures the latest icon is displayed. (BZ#1843652)

- Previously, whiteout files appeared in unpacked content when using `podman` or `docker` tooling options. With this release, whiteout files are no longer present after unpacking with `podman` and `docker` tooling options. (BZ#1841178)
**openshift-controller-manager**

- Previously, intermittent availability issues with the API server could lead to intermittent issues with the OpenShift Controller Manager Operator retrieving deployments. Failure to retrieve a deployment sometimes caused the Operator to panic. With this release, checks have been added to handle and report this error condition, and to retry the operation. The Operator now properly handles intermittent issues retrieving deployments from the API server. (BZ#1852964)

**RHCOS**

- Previously, machines with a large number of NICs on networks without DHCP took a long time to boot. This was caused by the initramfs using legacy network scripts that attempted to bring up DHCP on every interface on the machine, one interface at a time. Now, initramfs uses NetworkManager instead of the legacy scripts. NetworkManager does not attempt DHCP on any interface that does not have a physical connection. The NetworkManager also attempts DHCP on interfaces in parallel, instead of one-at-a-time. These changes reduce the waiting time for DHCP timeouts. (BZ#1836248)

- Previously, it was not possible to modify kernel arguments during installation. Now, kernel arguments can be modified on an installed system using the `coreos-installer` command. For example, you can configure the installed system to use a different serial console argument using:

  ```
 $ coreos-installer install ...
 --delete-karg console=ttyS0,115200n8
 --append-karg console=ttyS1,115200n8
  ```

  (BZ#1712511)

- When MCO was being used to deploy a worker node, it failed to load the file because the user-configured iSCSI initiator name in the Ignition configuration was automatically replaced by a dynamically generated name. Now, the iSCSI initiator name is generated dynamically only when a name has not been specified in the Ignition configuration. (BZ#1868174)

- Manual changes to Azure VMs during provisioning altered the incarnation number, which then caused the afterburn read state reporting to fail due to the incarnation numbers not matching. Afterburn now fetches a fresh incarnation number just before posting the ready state. (BZ#1853068)

- Some interfaces, such as bond interfaces, were not visible in the console. The NetworkManager dispatch scripts replaced the previously used Udev rules. This fix enables network interfaces that have either permanent hardware addresses or that are backed by devices with permanent hardware addresses to display in the console. (BZ#1866048)

**Routing**

- Previously, the HAProxy router 503 page was not compliant with the standards used by some web application firewalls. The 503 page has been updated to resolve this issue. (BZ#1852728)

- When the Ingress Operator reconciles an `IngressController` object configured for the `NodePortService` endpoint publishing strategy type, the Operator gets the ingress controller’s `NodePort` service from the API to determine whether the Operator needs to create or update the service. If the service does not exist, the Operator creates it, with an empty value for the `spec.sessionAffinity` field. If the service does exist, the Operator compares it with what the Ingress Operator expects in order to determine whether an update is needed for that service. In
this comparison, if the API has set the default value, **None**, for the service `spec.sessionAffinity` field, the Operator detects the update and tries to set the `spec.sessionAffinity` field back to the empty value.

As a result, the Ingress Operator repeatedly attempts to update the **NodePort** services in response to the blank. The Ingress Operator was changed to consider unspecified values and default values to be equal when comparing **NodePort** service. The Operator no longer updates an Ingress Controller **NodePort** service in response to API defaulting.  

(BZ#1842742)

- Previously, if you updated a cluster with improper routes, HAProxy would initialize into a defunct state. However, the update would not trigger any alerts and the cluster would incorrectly report the Ingress Controller as available. HAProxy initial sync logic was fixed so that upgrades with broken routes fail. As a result, upgrading a cluster with improper routes is not successful and the **HAProxyReloadFail** or **HAProxyDown** alerts are reported. (BZ#1861455)

- Because of the risk of connection re-use/coalescing when using HTTP/2 ALPN, a warning message was added to the output of the Ingress Controller in the CLI to use to enable HTTP/2 ALPN only on a route that uses custom (non-wildcard) certificate. As a result, routes that do not have their own custom certificate will not be HTTP/2 ALPN-enabled on either the frontend or the backend. (BZ#1827364)

- Previously, when HAProxy was reloaded, HAProxy Prometheus counter metrics would decrease in value, which explicitly violates the definition of a counter metric. The router code was fixed to note the time of the last metrics scrape. This prevents scraping beyond the preserved counter values during a reload. As a result the counter metrics do not show a sudden increase followed by a decrease when the router is reloading. (BZ#1752814)

**Samples**

- Previously, an alert rule for the Samples Operator misspelled the `registry.redhat.io` host name. The rule now uses the correct host name in the alert message. (BZ#1863014)

- Previously, when upgrading OpenShift Container Platform, the Samples Operator might block the upgrade if the API server is intermittently unavailable. Now, the Operator handles intermittent connectivity gracefully and upgrades are no longer blocked. (BZ#1854857)

**Storage**

- Error message content for Local Storage Operator logging was too generic to help with debugging. Additional details are now provided when a **LocalVolume** object is created and the specified device is either not found or invalid. (BZ#1840127)

- Storage Operator stopped reconciling when **Upgradable=False** on v1alpha1 CRDs. As a result, the Cluster Storage Operator could not perform z-stream upgrades when these CRDs were detected on the cluster. This fix changed the order of the reconciliation loop. Now, z-stream upgrades complete successfully and v1alpha1 CRDs are detected without errors. (BZ#1873299)

- Manila volumes could not be unmounted after the NFS driver pod restarted because the restart process assigned a new IP address to the pod. Now, the pod uses the host network and host IP address to mount and unmount volumes, even after restarting the driver pod. (BZ#1867152)

- This bug fix reduces log noise when changing fsGroup of a small volume. (BZ#1877001)

- A condition in the vSphere cloud provider could cause failures in persistent volume provisioning in rare circumstances due to a heavy load. This bug fixes the condition and allows vSphere volumes to provision reliably. (BZ#1806034)

- Upgrades from OCP 4.3.z to 4.4.0 fail when clusters have installed v1alpha1 **VolumeSnapshot**
CRDs manually or by an independent CSI driver. OpenShift Container Platform 4.4 introduced v1beta1 `VolumeSnapshot` CRDs, which are not compatible with v1alpha1 `VolumeSnapshot` CRDs. Now, the Cluster Storage Operator checks for the presence of v1alpha1 `VolumeSnapshot` CRDs. If detected, a message displays stating that the v1alpha1 `VolumeSnapshot` CRDs must be removed for the upgrade to proceed. (BZ#1835869)

- When `VolumeSnapshotContent` object deletion policies were modified, the `VolumeSnapshot` resource instances could not be deleted because the finalizers associated with those instances were not updated. This bug fix removes the finalizers when the `VolumeSnapshotContent` object deletion policies are modified, and allows the `VolumeSnapshot` resource instances to be deleted after the associated resource objects are removed. (BZ#1842964)

- Previously, the default OpenShift RBAC rules did not allow regular users to access or create `VolumeSnapshot` and `VolumeSnapshotClass` resource instances. Now, the default OpenShift RBAC rules allow basic-users to read/write `VolumeSnapshot` resources and read `VolumeSnapshotClass` resources. Additionally, storage-admins can read/write `VolumeSnapshotContent` objects by default. (BZ#1842408)

- Previously, there was no validation to prevent the Local Storage Operator from creating one device to multiple PVs. This release adds validation for this scenario so that trying to create a PV on a block device where one is already provisioned by the Local Storage Operator will fail. (BZ#1744385)

**Insights Operator**

- Previously, the Insights Operator could gather data for an unlimited number of certificate signing requests (CSRs) in a single report. This resulted in excessive data collection for clusters with many CSRs. The Insights Operator now gathers data for a maximum of 5000 CSRs in a single report. (BZ#1881044)

### 1.6. TECHNOLOGY PREVIEW FEATURES

Some features in this release are currently in Technology Preview. These experimental features are not intended for production use. Note the following scope of support on the Red Hat Customer Portal for these features:

#### Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

- **TP**: Technology Preview
- **GA**: General Availability
- **-**: Not Available

#### Table 1.2. Technology Preview tracker

<table>
<thead>
<tr>
<th>Feature</th>
<th>OCP 4.4</th>
<th>OCP 4.5</th>
<th>OCP 4.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision Time Protocol (PTP)</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>oc CLI Plug-ins</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Feature</td>
<td>OCP 4.4</td>
<td>OCP 4.5</td>
<td>OCP 4.6</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>experimental-qos-reserved</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Pod Unidler</td>
<td>TP</td>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>Ephemeral Storage Limit/Requests</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Descheduler</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Podman</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Sharing Control of the PID Namespace</td>
<td>TP</td>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>OVN-Kubernetes cluster networking provider</td>
<td>TP</td>
<td>TP</td>
<td>GA</td>
</tr>
<tr>
<td>HPA custom metrics adapter based on Prometheus</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>HPA for memory utilization</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Three-node bare metal deployments</td>
<td>TP</td>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>Service Binding</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>Log forwarding</td>
<td>TP</td>
<td>TP</td>
<td>GA</td>
</tr>
<tr>
<td>Monitoring for user-defined projects</td>
<td>TP</td>
<td>TP</td>
<td>GA</td>
</tr>
<tr>
<td>Compute Node Topology Manager</td>
<td>TP</td>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>Raw Block with Cinder</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>CSI volume snapshots</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>CSI volume cloning</td>
<td>TP</td>
<td>TP</td>
<td>GA</td>
</tr>
<tr>
<td>CSI volume expansion</td>
<td>TP</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>CSI AWS EBS Driver Operator</td>
<td>-</td>
<td>TP</td>
<td>TP</td>
</tr>
<tr>
<td>OpenStack Manila CSI Driver Operator</td>
<td>-</td>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>Red Hat Virtualization (oVirt) CSI Driver Operator</td>
<td>-</td>
<td>-</td>
<td>GA</td>
</tr>
<tr>
<td>CSI inline ephemeral volumes</td>
<td>-</td>
<td>TP</td>
<td>TP</td>
</tr>
</tbody>
</table>
1.7. KNOWN ISSUES

- When powering on a virtual machine on vSphere with user-provisioned infrastructure, the process of scaling up a node might not work as expected. A known issue in the hypervisor configuration causes machines to be created within the hypervisor but not powered on. If a node appears to be stuck in the **Provisioning** state after scaling up a machine set, you can investigate the status of the virtual machine in the vSphere instance itself. Use the VMware commands **govc tasks** and **govc events** to determine the status of the virtual machine. Check for a similar error message to the following:

  [Invalid memory setting: memory reservation (sched.mem.min) should be equal to memsize(8192). ]

  You can attempt to resolve the issue with the steps in this VMware KBase article. For more information, see the Red Hat Knowledgebase solution [UPI vSphere] Node scale-up doesn’t work as expected. (BZ#1918383)

- In OpenShift Container Platform 4.6.8, a bug fix was introduced that changed how certificates were regenerated by the Cluster Logging Operator (CLO). This fix causes an issue where the CLO could possibly regenerate certificates while the OpenShift Elasticsearch Operator (EO) is trying to restart the cluster. This results in communication issues between the EO and the cluster, causing EO nodes to have mismatched certificates. The mismatched certificates could cause issues when upgrading Elasticsearch. As a workaround, you can selectively upgrade the CLO and EO separately. If that does not work, run the following command to restart Elasticsearch pods:

  $ oc delete pod -l component=es

  After the pods restart, the mismatched certificates are fixed, resolving the upgrade issue. (BZ#1906641)

- Currently, upgrading from OpenShift Container Platform 4.5 to 4.6 with the OVN-Kubernetes cluster networking provider will not work. This will be resolved in a future 4.6.z release. (BZ#1880591)
Currently, when scaling to greater than 75 nodes in a cluster, the OVN-Kubernetes cluster networking provider database might become corrupt, leaving the cluster in an unusable state. (BZ#1887585)

Currently, scaling up Red Hat Enterprise Linux (RHEL) worker nodes on a cluster with the OVN-Kubernetes cluster networking provider will not work. This will be resolved in a future RHEL 7.8.z and RHEL 7.9.z release. (BZ#1884323, BZ#1871935)

Currently, when scaling up a worker node that is running on Red Hat Enterprise Linux (RHEL) 7.8, the OVN-Kubernetes cluster networking provider fails to initialize on the new node. (BZ#1884323)

Downgrading from OpenShift Container Platform 4.6 to 4.5 will be fixed in a future 4.5.z release. (BZ#1882394, BZ#1886148, BZ#1886127)

Currently, upgrading from OpenShift Container Platform 4.5 to 4.6 with Red Hat Enterprise Linux (RHEL) worker nodes does not work. This will be resolved in a future 4.6.z release. First, upgrade RHEL, then upgrade the cluster, and then run the normal RHEL upgrade playbook again. (BZ#1887607)

OpenShift Container Platform 4.5 to 4.6 upgrade fails when an external network is configured on a bond device; the ovs-configuration service fails and nodes becomes unreachable. This will be resolved in a future 4.6.z release. (BZ#1887545)

Currently, huge pages are not detected properly when requested in several Non-Uniform Memory Access (NUMA) nodes. This is caused by the cnf-tests suite reporting errors when clusters contain several NUMA nodes because the tests compare the number of huge pages on one NUMA with the total number of huge pages on the entire node. (BZ#1889633)

The Data Plane Development Kit (DPDK) test used to check packet forwarding and receiving always fails. (BZ#1889631)

The Stream Control Transmission Protocol (SCTP) validation phase fails when there is at least one machine configuration with no raw configuration. For example, this would include machine configurations containing only kernel arguments. (BZ#1889275)

The Precision Time Protocol (PTP) validation phase fails because the cnf-tests suite does not properly detect the number of nodes running PTP. (BZ#1889741)

The Network Interface Card (NIC) validation phase fails because it does not wait for the devices on the node to become available. The waiting time for a pod to start running on the node is too short, so a pod could still have the status Pending and be incorrectly tested. (BZ#1890088)

The ose-egress-dns-proxy image has a known defect that prevents the container from starting. This image is also broken in earlier releases, so this is not considered a regression in 4.6. (BZ#1888024)

In OpenShift Container Platform 4.1, anonymous users could access discovery endpoints. Later releases revoked this access to reduce the possible attack surface for security exploits because some discovery endpoints are forwarded to aggregated API servers. However, unauthenticated access is preserved in upgraded clusters so that existing use cases are not broken. If you are a cluster administrator for a cluster that has been upgraded from OpenShift Container Platform 4.1 to 4.6, you can either revoke or continue to allow unauthenticated access. It is recommended to revoke unauthenticated access unless there is a specific need for it. If you do continue to allow unauthenticated access, be aware of the increased risks.
If you have applications that rely on unauthenticated access, they might receive HTTP 403 errors if you revoke unauthenticated access.

Use the following script to revoke unauthenticated access to discovery endpoints:

```bash
Snippet to remove unauthenticated group from all the cluster role bindings
$ for clusterrolebinding in cluster-status-binding discovery system:basic-user system:discovery system:openshift:discovery ;
do
Find the index of unauthenticated group in list of subjects
index=$(oc get clusterrolebinding $clusterrolebinding -o json | jq '.subjects | map(.name=="system:unauthenticated") | index(true)');
Remove the element at index from subjects array
oc patch clusterrolebinding $clusterrolebinding --type=json --patch "[{'op': 'remove','path': '/subjects/$index'}]";
done
```

This script removes unauthenticated subjects from the following cluster role bindings:

- cluster-status-binding
- discovery
- system:basic-user
- system:discovery
- system:openshift:discovery

(BZ#1821771)

- Running the `operator-sdk new` or `operator-sdk create api` commands without the `--helm-chart` flag builds a Helm-based Operator that uses the default boilerplate Nginx chart. While this example chart works correctly on upstream Kubernetes, it fails to deploy successfully on OpenShift Container Platform.
To work around this issue, use the `--helm-chart` flag to provide a Helm chart that deploys successfully on OpenShift Container Platform. For example:

```bash
$ operator-sdk new <operator_name> --type=helm
 --helm-chart=<repo>/<name>
```

(BZ#1874754)

- When installing OpenShift Container Platform on bare metal nodes with the Redfish Virtual Media feature, a failure occurs when the Baseboard Management Controller (BMC) attempts to load the virtual media image from the provisioning network. This happens if the BMC is not using the provisioning network, or its network does not have routing set up to the provisioning network. As a workaround, when using virtual media, the provisioning network must be turned off, or the BMCs must be routed to the provisioning network as a prerequisite. (BZ#1872787)
• The OpenShift Container Platform installation program does not support the Manual mode configuration by using the install-config.yaml file on GCP and Azure due to a known issue. Instead, you must manually insert a config map into the manifest directory during the manifest generation stage of the cluster installation process as documented in Manually creating IAM for Azure and Manually creating IAM for GCP. (BZ#1884691)

• On a power environment, when a pod is created using the FC persistent volume claim and the targetWWN as a parameter, the FC volume attach fails with no fc disk found error message and the pod remains in ContainerCreating state. (BZ#1887026)

• When a node providing an egress IP is shut down, the pods hosted on that node are not moved to another node providing an egress IP. This causes the outgoing traffic of the pods to always fail when a node providing an egress IP is shut down. (BZ#1877273)

• Private, disconnected cluster installations are not supported for AWS GovCloud when installing in the us-gov-east-1 region due to a known issue. (BZ#1881262).

• Firewall rules used by machines not prefixed with the infrastructure ID are preserved when destroying a cluster running on Google Cloud Platform (GCP) with installer-provisioned infrastructure. This causes the destroy process of the installation program to fail. As a workaround, you must manually delete the firewall rule of the machine in the GCP web console:

   ```
 $ gcloud compute firewall-rules delete <firewall_rule_name>
   ```

   Once the firewall rule of the machine with the missing infrastructure ID is removed, the cluster can be destroyed. (BZ#1801968)

• The opm alpha bundle build command fails on Windows 10. (BZ#1883773)

• In OpenShift Container Platform 4.6, the resource metrics API server provides support for custom metrics. The resource metrics API server does not implement the OpenAPI specification, and the following messages are sent to the kube-apiserver logs:

   ```
 controller.go:114] loading OpenAPI spec for "v1beta1.metrics.k8s.io" failed with: OpenAPI spec does not exist
 controller.go:127] OpenAPI AggregationController: action for item v1beta1.metrics.k8s.io:Rate Limited Requeue.
   ```

   In some cases, these errors might cause the KubeAPIErrorsHigh alert to fire, but the underlying issue is not known to degrade OpenShift Container Platform functionality. (BZ#1819053)

• Rules API back-ends are sometimes not detected if Store API stores are discovered before Rules API stores. When this occurs, a store reference is created without a Rules API client, and the Rules API endpoint from Thanos Querier does not return any rules. (BZ#1870287)

• If an AWS account is configured to use AWS Organizations service control policies (SCPs) that use a global condition to deny all actions or require a specific permission, the AWS policy simulator API that validates permissions produces a false negative. When the permissions cannot be validated, OpenShift Container Platform AWS installations fail, even if the provided credentials have the required permissions for installation. To work around this issue, you can bypass the AWS policy simulator permissions check by setting a value for the credentialsMode parameter in the install-config.yaml configuration file. The value of credentialsMode changes the behavior of the Cloud Credential Operator (CCO) to one of three supported modes.
Example install-config.yaml configuration file

```yaml
apiVersion: v1
baseDomain: cluster1.example.com
credentialsMode: Mint
compute:
 - architecture: amd64
 hyperthreading: Enabled
 ...
```

1 This line is added to set the credentialsMode parameter to Mint.

When bypassing this check, ensure that the credentials you provide have the permissions that are required for the specified mode.

(BZ#1829101)

- Clusters that run on RHOSP and use Kuryr create unnecessary Neutron ports for each hostNetworking pod. You can delete these ports safely. Automatic port deletion is planned for a future release of OpenShift Container Platform. (BZ#1888318)

- Deployments on RHOSP configured with Kuryr might experience kuryr-cni pods going into a crash loop, which reports a NetlinkError: (17, 'File exists') error message. As a workaround, you must reboot the node. A fix is planned to resolve this issue in a future release of OpenShift Container Platform. (BZ#1869606)

- When deploying an egress router pod in DNS proxy mode, the pod fails to initialize. (BZ#1888024)

- RHCOS real time (RT) kernels are currently only supported on compute nodes, not control plane nodes. Compact clusters are not supported with RT kernels in OpenShift Container Platform 4.6. (BZ#1887007)

- To increase security, the NET_RAW and SYS_CHROOT capabilities are no longer available in the default list of CRI-O capabilities.
  - **NET_RAW**: If unprotected, this capability enables pods to craft packets that can change header fields, such as low ports, source IP address, and source MAC address. This functionality could allow malicious hacking attempts.
  - **SYS_CHROOT**: Normal workloads should not require chroot. Access to privileged operations should be granted only when required.

The **NET_RAW** and **SYS_CHROOT** capabilities were removed as default capabilities in OpenShift Container Platform 4.5.16. To reduce impact to clusters created in releases before 4.5.16, the default capabilities list is now contained in separate machine configs: 99-worker-generated-crio-capabilities and 99-master-generated-crio-capabilities. OpenShift Container Platform creates the new machine configs when you upgrade from a previous release.

After upgrading, it is recommended to disable the **NET_RAW** and **SYS_CHROOT** capabilities, and then test your workloads. When you are ready to remove these capabilities, delete the 99-worker-generated-crio-capabilities and 99-master-generated-crio-capabilities machine configs.
Important: If you are upgrading from an earlier release, upgrade to 4.5.16 before you upgrade to 4.6. (BZ#1874671).

- The OpenShift Container Platform Machine API bare metal actuator currently deletes Machine objects when the underlying bare metal host is deleted. This behavior does not align with other cloud provider actuators, which move a Machine object to the failed phase rather than removing it altogether if the underlying cloud provider resource is deleted. (BZ#1868104)

- When upgrading a cluster from version 4.5 to 4.6 that was installed with installer-provisioned infrastructure on vSphere, the upgrade fails if the control plane node IP addresses change during the upgrade. As a workaround, you must reserve the control plane node IP addresses before upgrading to version 4.6. Review your DHCP server’s documentation for the configuration of reservations. (BZ#1883521)

- For oc commands that require TLS verification, if the certificates do not set a Subject Alternative Name, verification does not fall back to the Common Name field and the command fails with the following error:

  x509: certificate relies on legacy Common Name field, use SANs or temporarily enable Common Name matching with GODEBUG=x509ignoreCN=0

  As a workaround, you can either use a certificate with a proper Subject Alternative Name set, or precede the oc command with GODEBUG=x509ignoreCN=0 to temporarily override this behavior.

  A future 4.6 z-stream might return a warning instead of an error, to allow more time for users to update their certificates to be compliant. (BZ#1889204)

- When you install Agones using Helm package manager and try to examine the chart resources in your namespace using the Developer perspective, you see an error message instead of the resource details. (BZ#1866087)

- When you select a deployment in the Topology view, click Actions → Edit <deployment_name>, and then modify it; the modified Deployment YAML file overwrites or removes the volume mounts in the Pod Template spec. (BZ#1867965)

- No success or failure message is displayed in the Developer perspective when you use the Add → From Catalog option, filter by Template, select a template, and then instantiate a template. (BZ#1876535)

- PipelineRuns with skipped tasks incorrectly show the tasks as Failed. (BZ#1880389)

- The Application Details page, in the Application Stages view, provides inaccurate links for the projects in the application environment. (BZ#1889348)

- Under the condition of heavy pod creation, creation fails with the message error reserving pod name ...: name is reserved. CRI-O’s context for the CNI executable ends and it kills the process. Pod creation succeeds eventually, but it takes a lot of time. Therefore, the kubelet thinks that CRI-O did not create the pod. The kubelet sends the request again and a name conflict occurs. This issue is currently under investigation. (BZ#1785399)

- If the cluster networking provider is OVN-Kubernetes, when using a service external IP address that is not assigned to any node in the cluster, network traffic to the external IP address is not routable. As a workaround, ensure that a service external IP address is always assigned to a node in the cluster. (BZ#1890270)
Administrators can mirror the **redhat-operators** catalog to use Operator Lifecycle Manager (OLM) on OpenShift Container Platform 4.6 clusters in restricted network environments (also known as disconnected clusters). However, the following Operators return entries in the `mapping.txt` file with the private host name `registry-proxy.engineering.redhat.com` instead of the expected public host name `registry.redhat.io`:

- amq-online.1.5.3
- amq-online.1.6.0

This causes image pulls to fail against the inaccessible private registry, normally intended for internal Red Hat testing. To work around this issue, run the following command after generating your `mapping.txt` file:

```bash
$ sed -i -e 's/registry-proxy.engineering.redhat.com/registry.redhat.io/g'
 -e 's/rh-osbs/amq7-/amq7/g'
 -e 's/amq7/tech-preview-/amq7-tech-preview//g'
 ./redhat-operator-index-manifests/imageContentSourcePolicy.yaml
 ./redhat-operator-index-manifests/mapping.txt
```

For OpenShift Container Platform on IBM Power Systems on PowerVM, the following requirements are preferred:

- 2 virtual CPUs for master nodes
- 4 virtual CPUs for worker nodes
- 0.5 processors for all nodes
- 32 GB virtual RAM for all nodes

A bug in the publishing process for Red Hat Operators caused the stage environment version of the OpenShift Container Platform 4.6 index image to be published briefly. The bug has been resolved and the image was soon republished with the correct content. If you attempted to install or upgrade Operators while using this stage registry image, jobs in the `openshift-marketplace` namespace might have failed with the following errors that showed the private host name `registry.stage.redhat.io` instead of the expected public host name `registry.redhat.io`:

**Example output**

```
ImagePullBackOff for
Back-off pulling image "registry.stage.redhat.io/openshift4/ose-elasticsearch-operator-bundle@sha256:6d2587129c746ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"
```

**Example output**

```
rpc error: code = Unknown desc = error pinging docker registry registry.stage.redhat.io: Get "https://registry.stage.redhat.io/v2/": dial tcp: lookup registry.stage.redhat.io on 10.0.0.1:53: no such host
```

This caused image pulls to fail against the inaccessible private registry, normally intended for internal Red Hat testing, and related Operator installations and upgrades would never succeed. See [Refreshing failing subscriptions](#) for a workaround to clean up this issue. ([BZ#1909152](#))
• The `oc annotate` command does not work for LDAP group names that contain an equal sign (=), because the command uses the equal sign as a delimiter between the annotation name and value. As a workaround, use `oc patch` or `oc edit` to add the annotation. (BZ#1917280)

• The OVN-Kubernetes network provider does not support the `externalTrafficPolicy` feature for `NodePort`- and `LoadBalancer`-type services. The `service.spec.externalTrafficPolicy` field determines whether traffic for a service is routed to node-local or cluster-wide endpoints. Currently, such traffic is routed by default to cluster-wide endpoints, and there is no way to limit traffic to node-local endpoints. This will be resolved in a future release. (BZ#1903408)

• Currently, a Kubernetes port collision issue can cause a breakdown in pod-to-pod communication, even after pods are redeployed. For detailed information and a workaround, see the Red Hat Knowledge Base solution Port collisions between pod and cluster IPs on OpenShift 4 with OVN-Kubernetes. (BZ#1939676, BZ#1939045)

1.8. ASYNCHRONOUS ERRATA UPDATES

Security, bug fix, and enhancement updates for OpenShift Container Platform 4.6 are released as asynchronous errata through the Red Hat Network. All OpenShift Container Platform 4.6 errata is available on the Red Hat Customer Portal. See the OpenShift Container Platform Life Cycle for more information about asynchronous errata.

Red Hat Customer Portal users can enable errata notifications in the account settings for Red Hat Subscription Management (RHSM). When errata notifications are enabled, users are notified via email whenever new errata relevant to their registered systems are released.

**NOTE**

Red Hat Customer Portal user accounts must have systems registered and consuming OpenShift Container Platform entitlements for OpenShift Container Platform errata notification emails to generate.

This section will continue to be updated over time to provide notes on enhancements and bug fixes for future asynchronous errata releases of OpenShift Container Platform 4.6. Versioned asynchronous releases, for example with the form OpenShift Container Platform 4.6.z, will be detailed in subsections. In addition, releases in which the errata text cannot fit in the space provided by the advisory will be detailed in subsections that follow.

**IMPORTANT**

For any OpenShift Container Platform release, always review the instructions on updating your cluster properly.

1.8.1. RHBA-2020:4196 - OpenShift Container Platform 4.6 image release and bug fix advisory

Issued: 2020-10-27

OpenShift Container Platform release 4.6 is now available. The bug fixes that are included in the update are listed in the RHBA-2020:4196 advisory. The RPM packages that are included in the update are provided by the RHBA-2020:4197 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:
1.8.2. RHSA-2020:4297 - Moderate: OpenShift Container Platform 4.6 package security updates

Issued: 2020-10-27

An update for jenkins-2-plugins, openshift-clients, podman, runc, and skopeo is now available for OpenShift Container Platform 4.6. Details of the update are documented in the RHSA-2020:4297 advisory.

1.8.3. RHSA-2020:4298 - Moderate: OpenShift Container Platform 4.6 image security updates

Issued: 2020-10-27

An update for several images is now available for OpenShift Container Platform 4.6. Details of the update are documented in the RHSA-2020:4298 advisory.

1.8.4. RHBA-2020:4339 - OpenShift Container Platform 4.6.3 bug fix update

Issued: 2020-11-09

OpenShift Container Platform release 4.6.3 is now available. The bug fixes that are included in the update are listed in the RHBA-2020:4339 advisory. The RPM packages that are included in the update are provided by the RHBA-2020:4340 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.3 container image list

1.8.4.1. Bug fixes

- Due to a known issue, the GPU Operator and Node Feature Discovery (NFD) Operator were not available on a fresh installation of OpenShift Container Platform 4.6.1. You were required to install OpenShift Container Platform 4.5 and upgrade the cluster to version 4.6.1 to use the GPU and NFD Operators. This issue has been fixed, and the GPU and NFD Operators are now available on a fresh installation of OpenShift Container Platform 4.6.3 and later. (BZ#1890673)

1.8.4.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.5. RHBA-2020:4987 - OpenShift Container Platform 4.6.4 bug fix update

Issued: 2020-11-16

OpenShift Container Platform release 4.6.4 is now available. The bug fixes that are included in the update are listed in the RHBA-2020:4987 advisory. There are no RPM packages for this release.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:
OpenShift Container Platform 4.6.4 container image list

1.8.5.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.6. RHBA-2020:5115 - OpenShift Container Platform 4.6.6 bug fix update

Issued: 2020-11-30

OpenShift Container Platform release 4.6.6 is now available. The bug fixes that are included in the update are listed in the RHBA-2020:5115 advisory. The RPM packages that are included in the update are provided by the RHBA-2020:5116 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.6 container image list

1.8.6.1. Bug fixes

- Prior to OpenShift Container Platform 4.6, when the Marketplace Operator used the OperatorSource custom resource definition (CRD), cluster administrators using a cluster on a restricted network (also known as a disconnected cluster) could disable the default OperatorSource objects in the openshift-marketplace namespace and create custom CatalogSource objects with the same name as the default sources. In OpenShift Container Platform 4.6, the Marketplace Operator uses CatalogSource objects directly now that the OperatorSource CRD is removed. As a result, the openshift-marketplace has default catalog sources that are managed by the OperatorHub API.

After disabling the default catalog sources on a disconnected OpenShift Container Platform 4.6 cluster, when an administrator tried to create a catalog source with the same name as that of the default sources, the OperatorHub API previously removed the custom catalog source. If the catalog source was not disabled using the OperatorHub API and changes were made to the default catalog source (for example, changing the spec.image parameter to point to an internal registry for the disconnected environment), the spec was restored to the default spec.

This bug fix allows cluster administrators to create, update, and delete custom catalog sources with the same name as the default sources, if they are disabled using the OperatorHub API. As a result, administrators can now disable the default catalog sources and create custom catalog sources using the default names without them being removed or overwritten. If the default catalog source is re-enabled, the default spec is restored. (BZ#1895952)

1.8.6.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.7. RHSA-2020:5159 - Low: OpenShift Container Platform 4.6 package security updates

Issued: 2020-11-30

An update for golang is now available for OpenShift Container Platform 4.6. Details of the update are documented in the RHSA-2020:5159 advisory.
1.8.8. RHSA-2020:5259 - OpenShift Container Platform 4.6.8 bug fix and security update

Issued: 2020-12-14

OpenShift Container Platform release 4.6.8 is now available. The bug fixes that are included in the update are listed in the RHSA-2020:5259 advisory. The RPM packages that are included in the update are provided by the RHSA-2020:5260 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.8 container image list

1.8.8.1. Features

1.8.8.1.1. New Red Hat Enterprise Linux CoreOS (RHCOS) boot images available

New RHCOS boot images are now available as part of the OpenShift Container Platform 4.6.8 release. The updated RHCOS boot images provide improvements to the cluster boot experience. (BZ#1899176)

1.8.8.1.2. EUS 4.6 upgrade channel now available

The eus-4.6 upgrade channel is now available. This channel offers Extended Update Support (EUS). EUS versions extend the maintenance phase for customers with Premium Subscriptions to 14 months. OpenShift Container Platform. For more information, see OpenShift Container Platform upgrade channels and releases.

1.8.8.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.9. RHSA-2020:5614 - OpenShift Container Platform 4.6.9 bug fix and security update

Issued: 2020-12-21

OpenShift Container Platform release 4.6.9, which includes a security update for openshift-clients, openvswitch2.13, and python-sushy, is now available. The bug fixes that are included in the update are listed in the RHSA-2020:5614 advisory. The RPM packages that are included in the update are provided by the RHSA-2020:5615 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.9 container image list

1.8.9.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.
1.8.10. RHSA-2021:0037 - OpenShift Container Platform 4.6.12 bug fix and security update

Issued: 2021-01-18

OpenShift Container Platform release 4.6.12, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHSA-2021:0037 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:0038 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.12 container image list

1.8.10.1. Bug fixes

- There were performance fixes introduced in OpenShift Container Platform 4.6.9 that caused clusters with network policies to experience network connectivity problems after upgrading, even in namespaces that did not have network policies. These performance-related fixes have been reverted to allow clusters with network policies to work properly again. (BZ#1915007)

- Previously, pre-flight installer validation for OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) was performed on the flavor metadata. This could prevent installations to flavors detected as baremetal, which might have the required capacity to complete the installation. This is usually caused by RHOSP administrators not setting the appropriate metadata on their bare metal flavors. Validations are now skipped on flavors detected as baremetal, to prevent incorrect failures from being reported. (BZ#1889416)

- Previously, the ephemeral-storage resource computation was not feature gated, causing it to be available even when the feature was disabled. This resulted in pods failing to be scheduled. The ephemeral-storage resource is now feature gated, removing the feature when it is disabled. (BZ#1913263)

- A bug in the terser dependency resulted in the persistent unmounting and remounting of the YAML Editor component. This caused the YAML editor in the web console to jump to the top of the YAML file every few seconds. This has been temporarily fixed by removing the default parameter value causing the issue, now allowing the YAML editor to work as expected. (BZ#1910066)

- Previously, the cluster sometimes collected must-gather logs before the daemon set was ready, which caused the creation of empty files. This has been fixed by confirming that the daemon set is ready before collecting must-gather logs to ensure all generated files contain real content. (BZ#1852619)

1.8.10.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.11. RHSA-2021:0171 - OpenShift Container Platform 4.6.13 bug fix and security update

Issued: 2021-01-25
OpenShift Container Platform release 4.6.13, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHSA-2021:0171 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:0172 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.13 container image list

1.8.11.1. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.12. RHBA-2021:0235 - OpenShift Container Platform 4.6.15 bug fix update
Issued: 2021-02-01
OpenShift Container Platform release 4.6.15 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0235 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0237 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.15 container image list

1.8.12.1. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.13. RHSA-2021:0308 - OpenShift Container Platform 4.6.16 bug fix and security update
Issued: 2021-02-08
OpenShift Container Platform release 4.6.16, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHSA-2021:0308 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0309 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.16 container image list

1.8.13.1. Features

1.8.13.1.1. Enhancements to Insights Operator
The Insights Operator now collects the following additional information:

- Config files for MachineConfigPool objects
- The number of install plans
• Config files for generic control planes
• The set of running Red Hat images on a cluster
• Information about crashlooping pods in the openshift* namespaces

This information is useful for troubleshooting. For more information, see BZ#1887759, BZ#1889676, BZ#1905031, and BZ#1913645.

1.8.13.2. Bug fixes

• Previously, version information metadata was not produced during the build process on Windows binaries. This update generates Windows version information during the build process by Red Hat’s go-lang compiler, and thus presents version information on Windows binaries. (BZ#1891892)

• The Ironic API service that is embedded during installer-provisioned installation on bare metal now uses four worker nodes instead of eight. This change reduces the RAM usage. (BZ#1899107)

• Previously, changing the serviceAccountIssuer field of the authentication resource updated the kubi-apiserver to validate tokens with the new issuer and reject tokens with the previous issuer. Because kubi-apiserver does not support multiple issuers, changing the serviceAccountIssuer has the potential to disrupt applications relying on bound tokens. Unless an application is coded to request a new token when the existing token receives 401 responses from the kubi-apiserver, the use of an invalid token will continue until the hardware is restarted or the invalid token exceeds 80% of its duration, at which point the kubelet will request a new token.

As a workaround, only change the serviceAccountIssuer field if disruption is acceptable and restarting all pods is an option. (BZ#1905573)

• Previously, the role name was missing on the create role binding form. This update presents the role name on the create role binding form. (BZ#1905788)

• Previously, a low limit for client throttling led to an increasing number of CRDs installed in the cluster. As a result, the requests reaching for API discovery were limited by the client code. This fix increases the limit number to twice the current amount, thus reducing the frequency of client-side throttling. (BZ#1906332)

• When using an incorrect user name to verify image signatures, image signature verification is not possible. Using a proper user name results in image signature verification to work as intended. (BZ#1906796)

• Previously, if triggers went to Knative Service (KSVC) and In Memory Channel (IMC) from the same broker, Knative resources would not show up in the Topology view. With this update, Knative data is properly returned, which results in the Topology view properly showing Knative resources. (BZ#1907827)

• Previously, init container support was lost during changes to the oc debug command. As a result, init containers could not be debugged. This update adds support for init containers in the oc debug command, making it possible to debug init containers. (BZ#1913109)

• Previously, the lack of update in config status during an Operator sync execution would not present the most up-to-date (applied) swift configuration. This update fixes the sync process to match config’s status with config’s spec values. As a result, config status and config spec are now in sync with the current applied config. (BZ#1916857)
Previously, intermittent DNS errors created invalid entries in the node’s /etc/hosts file. This update filters error messages out of the DNS requests. This eventually returns a valid record, which prompts the dns-node-resolver to no longer create invalid /etc/hosts entries. (BZ#1916907)

Previously, the provisioning interface could lose its IPv6 link-local address in some circumstances, preventing more workers from being provisioned. This is now fixed. (BZ#1918779)

1.8.13.3. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.


Issued: 2021-02-15

OpenShift Container Platform release 4.6.17, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0424 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:0423 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.17 container image list

1.8.14.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.15. RHBA-2021:0510 - OpenShift Container Platform 4.6.18 bug fix update

Issued: 2021-02-22

OpenShift Container Platform release 4.6.18 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0510 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0511 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.18 container image list

1.8.15.1. Features

1.8.15.1.1. Enhancements to Insights Operator

With this update, the Insights Operator now collects information for ContainerRuntimeConfig objects. This information is useful for troubleshooting. For more information, see BZ#1891544.

1.8.15.1.2. Support for rotating cloud provider credentials
With this release, you can manually update the secret that the Cloud Credential Operator (CCO) uses to manage cloud provider credentials. For more information, see Rotating cloud provider credentials manually.

1.8.15.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.16. RHBA-2021:0634 - OpenShift Container Platform 4.6.19 bug fix update

Issued: 2021-03-01

OpenShift Container Platform release 4.6.19 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0634 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0633 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.19 container image list

1.8.16.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.17. RHBA-2021:0674 - OpenShift Container Platform 4.6.20 bug fix update

Issued: 2021-03-09

OpenShift Container Platform release 4.6.20 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0674 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0673 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.20 container image list

1.8.17.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.18. RHBA-2021:0753 - OpenShift Container Platform 4.6.21 bug fix update

Issued: 2021-03-16

OpenShift Container Platform release 4.6.21 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0753 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0750 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:
OpenShift Container Platform 4.6.21 container image list

1.8.18.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.19. RHBA-2021:0825 - OpenShift Container Platform 4.6.22 bug fix update

Issued: 2021-03-23

OpenShift Container Platform release 4.6.22 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0825 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:0826 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.22 container image list

1.8.19.1. Bug fixes

- Previously, the Zeroconf library did not correctly rate-limit multicast DNS (mDNS) responses. As a result, excessive mDNS traffic flooded network records. This update adds rate-limiting to the Zeroconf library, which significantly reduces mDNS traffic. (BZ#1936539)

- Previously, an API server could fail to create a resource, which would return a 409 status code when there was a conflict updating a resource quota. Consequently, the resource would fail to create, and you might have had to retry the API request. With this update, the OpenShift web console attempts to retry the request three times when receiving a 409 status code, which is often sufficient for completing the request. In the event that a 409 status code continues to occur, an error will be displayed in the console. (BZ#1938230)

- Previously, the liveness probe would fail when the Prometheus container was under a heavy load; for example, during write-ahead logging (WAL) replay. This heavy load would cause several issues and endless restart loops. This update removes liveness probe, and as a result, heavy loads no longer cause endless restart loops. (BZ#1935586)

- Due to iptables rewriting rules, clients that used a fixed source port to connect to a service via both the service IP and a pod IP might have encountered problems with port conflicts. With this update, an additional Open vSwitch (OVS) rule is inserted to notice when port conflicts occur and to do an extra source network address translation (SNAT) to avoid said conflicts. As a result, there are no longer port conflicts when connecting to a service. (BZ#1937547)

- Previously, nodes were marked as Ready and would admit pods before they had a chance to sync. Consequently, Pod status might have gone out of sync, and oftentimes many were stuck in nodeAffinity at startup if the node was not cordoned. In this update, nodes are not marked as Ready until the node has synced with PI servers at least once. As a result, pods will no longer get stuck in nodeAffinity after a cold cluster restart. (BZ#1930960)

- Previously, when upgrading a cluster from a prior version with an idled workload, the idled workload would not start on HTTP request once upgraded to OpenShift Container Platform 4.6/4.7 due to oc idle feature updates. With this update, idling changes are mirrored from endpoints to services on Ingress Operator startup. As a result, unidling workloads after upgrades works as expected. (BZ#1927364)
1.8.19.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.20. RHBA-2021:0952 - OpenShift Container Platform 4.6.23 bug fix and security update

Issued: 2021-03-30

OpenShift Container Platform release 4.6.23, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:0952 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:0956 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.23 container image list

1.8.20.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.


Issued: 2021-04-20

OpenShift Container Platform release 4.6.25 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:1153 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:1154 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.25 container image list

1.8.21.1. Features

1.8.21.1.1. Installing a cluster on VMC on AWS

You can now install an OpenShift Container Platform cluster on VMware vSphere infrastructure by deploying it to VMware Cloud (VMC) on AWS. For more information, see deploying a cluster to VMC.

1.8.21.1.2. Insights Operator enhancement for unhealthy SAP pods

The Insights Operator can now gather data for unhealthy SAP pods. When the SDI installation fails, it is possible to detect the problem by looking at which of the initialization pods have failed. The Insights Operator now gathers information about failed pods in the SAP/SDI namespaces. For more information, see BZ#1935775.

1.8.21.1.3. SAP license management enhancement
With this update, you can now use the following command to detect failure in the license management pod:

```bash
oc logs deploy/license-management-l4rvh
```

**Example output**

```
Found 2 pods, using pod/license-management-l4rvh-74595f8c9b-flgz9
+ iptables -D PREROUTING -t nat -j VSYSTEM-AGENT-PREROUTING
 + true
+ iptables -F VSYSTEM-AGENT-PREROUTING -t nat
 + true
+ iptables -X VSYSTEM-AGENT-PREROUTING -t nat
 + true
+ iptables -N VSYSTEM-AGENT-PREROUTING -t nat

iptables v1.6.2: can't initialize iptables table `nat`: Permission denied
```

If results return **Permission denied**, iptables or your kernal might need to be upgraded. For more information, see BZ#1939059.

### 1.8.21.1.4. Adding memory and uptime metadata to the Insights Operator archive

This update adds **uptime** and **memory alloc** metadata to the Insights Operator archive so that small memory leaks can be investigated properly. For more information, see BZ#1942457.

### 1.8.21.2. Bug fixes

- Previously, the host name from the VMware vSphere metadata was not set before NetworkManager started, and this metadata was ignored when the host name was set later. With this release, the host name is now set by `vsphere-hostname.service` before NetworkManager starts if this information is available in the vSphere metadata. (BZ#1904825)

- Previously, the automatically generated Docker config secret did not include credentials for integrated internal registry routes. Because no credentials for accessing the registry through any of its routes were present, pods that attempted to reach the registry failed due to lack of authentication. With this release, all configured registry routes to the default Docker credential secret are included, and pods can reach the integrated registry by any of its routes. (BZ#1931857)

- Previously, the file `/etc/pki/ca-trust/extracted` could become unwritable, preventing the Image Registry Operator from adding CA certificates to the pod’s trust store. With this release, an emptyDir volume is mounted into `/etc/pki/ca-trust/extracted` and the volume is now always writable by the pod. (BZ#1936984)

- Previously, a misconfigured `nodeip-configuration` service for vSphere on user-provisioned infrastructure was fixed in the Machine Config Operator (MCO) for OpenShift Container Platform 4.7, but not for OpenShift Container Platform 4.6. As a result, when upgrading OpenShift Container Platform from a version 4.6.z to a different 4.6.z and then to 4.7, the 4.7 version of the MCO stopped the entire upgrade if the control plane completed the 4.7 upgrade before the compute machines completed the 4.6.z upgrade. This release fixes the misconfigured `nodeip-configuration` service so that upgrades can complete successfully. (BZ#1940585)
Previously, HTTP requests were not closed when they were no longer needed, causing Go routine leaks, which increase memory usage over time. With this release, HTTP requests are always closed when they are no longer needed. (BZ#1941563)

Previously, BZ#1936587 set the global CoreDNS cache max TTL to 900 seconds. As a result, NXDOMAIN records received from upstream resolvers were cached for 900 seconds. This update explicitly caches negative DNS response records for a maximum of 30 seconds. As a result, resolving NXDOMAINs records are no longer cached for 900 seconds. (BZ#1944245)

### 1.8.21.3. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

### 1.8.22. RHBA-2021:1232 - OpenShift Container Platform 4.6.26 bug fix update

Issued: 2021-04-27

OpenShift Container Platform release 4.6.26 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:1232 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:1229 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.26 container image list

### 1.8.22.1. Features

#### 1.8.22.1.1. Insights Operator enhancement for gathering SAP pod data

The Insights Operator can now gather Datahubs resources from SAP clusters. This data allows SAP clusters to be distinguished from non-SAP clusters in the Insights Operator archives, even in situations in which all of the data gathered exclusively from SAP clusters is missing and it would otherwise be impossible to determine if a cluster has an SDI installation. For more information, see BZ#1942907.

#### 1.8.22.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

### 1.8.23. RHBA-2021:1427 - OpenShift Container Platform 4.6.27 bug fix update

Issued: 2021-05-04

OpenShift Container Platform release 4.6.27 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:1427 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:1428 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.27 container image list
1.8.23.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.


Issued: 2021-05-12

OpenShift Container Platform release 4.6.28 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:1487 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:1488 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.28 container image list

1.8.24.1. Bug fixes

- Previously, during installation, the SDN pods were repeatedly crashing and restarting until other parts of the installation were complete, resulting in long installation times. With this update, the SDN pods can read the partially-installed cluster state and wait until the right time to proceed. As a result, the SDN pods do not crash, and installations are not delayed. (BZ#1950407)

- Previously, the Cluster Samples Operator could make changes to the controller cache for objects it was watching, which caused errors when Kubernetes managed the controller cache. This update adds fixes to how the Cluster Samples Operator uses information in the controller cache. As a result, the Cluster Samples Operator does not cause errors by modifying controller caches. (BZ#1950809)

- Previously, creating a sample application from the web console could fail because the application’s resources were being created out of order. This update specifies the order in which those resources are created, resulting in a more stable process for creating sample applications. (BZ#1933666)

1.8.24.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.25. RHBA-2021:1521 - OpenShift Container Platform 4.6.29 bug fix update

Issued: 2021-05-20

OpenShift Container Platform release 4.6.29 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:1521 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:1522 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.29 container image list

1.8.25.1. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.


Issued: 2021-05-25

OpenShift Container Platform release 4.6.30, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:1565 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:1566 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.30 container image list

1.8.26.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.27. RHBA-2021:2100 - OpenShift Container Platform 4.6.31 bug fix update

Issued: 2021-06-01

OpenShift Container Platform release 4.6.31 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2100 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2101 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.31 container image list

1.8.27.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.28. RHBA-2021:2157 - OpenShift Container Platform 4.6.32 bug fix update

Issued: 2021-06-08

OpenShift Container Platform release 4.6.32 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2157 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2158 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.32 container image list

1.8.28.1. Bug fixes
Previously, when creating a new binding from the Role Bindings tab of the Role page, the web console prefilled the incorrect role name and namespace in the form. With this release, the new binding has the default cluster-admin role. (BZ#1950490)

Previously, namespaces were missing from the Machine Config Operator relatedObjects resource, and logs for some on-premises services were not collected in must-gather as a result. With this release, the required namespaces are added to the Machine Config Operator relatedObjects resource and logs for on-premises services are collected in must-gather. (BZ#1955715)

Previously, both the Cloud Credential Operator (CCO) and the Cluster Version Operator (CVO) reported if the CCO deployment was unhealthy. This resulted in double reporting if there was an issue. With this release, the CCO no longer reports if its deployment is unhealthy. (BZ#1958959)

Previously, for traffic originating in a member of a service and redirected by the load balancer to the same member, Open Virtual Network (OVN) changed the source IP address of the packets to the IP address of the load balancer. If a network policy was applied, this type of traffic was sometimes blocked unnecessarily. With this release, Kuryr opens traffic to the IP addresses of all services in the namespace of a network policy, and the traffic is not blocked. (BZ#1963846)

1.8.28.2. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.29. RHBA-2021:2267 - OpenShift Container Platform 4.6.34 bug fix update
Issued: 2021-06-14

OpenShift Container Platform release 4.6.34 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2267 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2268 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.34 container image list

1.8.29.1. Features

1.8.29.1.1. Insights Operator enhancement
With this update, users can now collect the virt_platform metric. The virt_platform metric is needed for the Insights Operator’s rules to determine the virtual platform of a cluster. This information is stored in the Insights Operator archive of the config/metric file. For more information, see BZ#1965219.

1.8.29.2. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.30. RHBA-2021:2410 - OpenShift Container Platform 4.6.35 bug fix update
Issued: 2021-06-22
OpenShift Container Platform release 4.6.35 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2410 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2407 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.35 container image list

1.8.30.1. Features

1.8.30.1.1. Insights Operator enhancement

With this update, the Insights Operator Gather method can now collect logs from pods that are related to unhealthy Operators, and pods that are co-located in the same namespace as the Operator. This allows the Insights Operator to determine the namespace associated with the Operator and include pod logs in the bundle. As a result, the Insights Operator is now collecting logs from unhealthy pods not only related to the Operator, but from every pod that lives in the operator namespace.

1.8.30.2. Bug fixes

- Previously, when starting a single-stack IPv6 cluster on nodes with IPv4 address, the kubelet might have used the IPv4 IP instead of the IPv6 IP for the node IP. Consequently, host network pods would have IPv4 IPs rather than IPv6 IPs, which made them unreachable from IPv6-only pods. This update fixes the node-IP-picking code, which results in the kubelet using the IPv6 IPs. (BZ#1942488)

- The fix for BZ#1953097 enabled the CoreDNS bufsize plug-in with a size of 1232 bytes. Some primitive DNS resolvers are not capable of receiving DNS response messages over UDP that are greater than 512 bytes. Consequently, some DNS resolvers, such as Go’s internal DNS library, are unable to receive verbose DNS responses from the DNS Operator. This update sets the CoreDNS bufsize to 512 bytes for all servers. As a result, UDP DNS messages are now properly received. (BZ#1970140)

- Previously, a lack of proper timeouts when executing HTTP connections left connections opened. As a result, these connections accumulated until reaching the maximum limit, and consequently the Operator would become incapable of processing incoming events. This update adds timeouts to the HTTP client used by the Operator, which ensures that open connections are closed after the timeout is reached. (BZ#1959563)

- Previously, removing selector from a service exposed via a route resulted in the duplication of endpointslices that would be created for the service’s pods, which would trigger HAProxy reload errors due to duplicate server entries. This update filters out accidental duplicate server lines when writing out the HAProxy config file, so that deleting the selector from a service no longer causes the router to fail. (BZ#1965329)

1.8.30.3. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.31. RHBA-2021:2498 - OpenShift Container Platform 4.6.36 bug fix and security update

Issued: 2021-06-29
OpenShift Container Platform release 4.6.36 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2498 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:2499 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.36 container image list

1.8.31.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.32. RHBA-2021:2641 - OpenShift Container Platform 4.6.38 bug fix and security update

Issued: 2021-07-13

OpenShift Container Platform release 4.6.38 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2641 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2642 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.36 container image list

1.8.32.1. Bug fixes

- Previously, when starting a single-stack IPv6 cluster on nodes with IPv4 address, the kubelet might have used the IPv4 address instead of the IPv6 address for the node IP address. Consequently, host network pods would have IPv4 addresses rather than IPv6 addresses, which made them unreachable from IPv6-only pods. This update fixes the node-IP-picking code, which results in the kubelet using the IPv6 addresses. (BZ#1942506)

- Previously, CRI-O logs did not contain information about the source where images were pulled from. Consequently, CRI-O failed to tell if the image was pulled from the registry mirror. This update adds level log information to CRI-O about the pull source of the image. As a result, the pull source is now shown in the information level of the log. (BZ#1976293)

- Previously, the authorization header created during image mirroring could exceed the header size limit for some registries. This would cause an error during the mirroring operation. Now, the --skip-multiple-scopes option is set to true for the oc adm catalog mirror command to help prevent the authorization header from exceeding the header size limits. (BZ#1946839)

- Before this update, the Pipeline ServiceAccount did not use secrets created during the git import flow for private Git repositories, which caused these Pipelines to fail. This update fixes the problem by adding annotations to the secrets and to the Pipeline ServiceAccount. Pipelines for private Git repositories now run correctly. (BZ#1970470)

- Previously, not all options in kubeconfig were copied when switching projects. Consequently, when switching projects using Exec to authenticate in kubeconfig, information was lost. This update copies all the necessary information when switching projects that use oc projects and Exec to authenticate. (BZ#1973613)
• Previously, when a second internal IP address was added to one or more control plane nodes, the etcd Operator degraded due to detecting the IP address change as a potential membership change. Consequently, it did not regenerate etcd serving certificates for the node. With this update, the etcd Operator differentiates between an IP address change for new and existing nodes. As a result, the etcd Operator regenerates serving certificates for changes to an existing node, and adding a new IP address no longer causes the etcd Operator to degrade. (BZ#1965535)

• Previously, the topology URLs created for deployments using the Bitbucket repository in the OpenShift Container Platform web console did not work if they included a branch name that contained a backslash (\) or forward slash (/). This was due to an issue with the Bitbucket API (BCLOUD-9969). The current release mitigates this issue. If a branch name contains either a backslash or forward slash, the topology URLs point to the default branch page for the repository. This issue will be fixed in a future release of OpenShift Container Platform. (BZ#1972694)

1.8.32.2. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.33. RHBA-2021:2684 - OpenShift Container Platform 4.6.39 bug fix update
Issued: 2021-07-21

OpenShift Container Platform release 4.6.39 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2684 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2685 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.39 container image list

1.8.33.1. Bug fixes

• Previously, when the oc image extract command was run as a non-root user, it failed with an operation not permitted error. This was the result of insufficient privileges to set extended attributes during decompression. With this update, extended security attributes are only set when the command is run as root, so that the command works for both root and non-root users. (BZ#1969929)

• Previously, when the label changed for making a service cluster local on the Developer Console, users were not able to create a Knative service. This update to the Knative service uses the latest supported label for cluster-local in order to enable users to create a Knative service as cluster-local from Developer Console. (BZ1978159)

1.8.33.2. Upgrading
To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.34. RHBA-2021:2767 - OpenShift Container Platform 4.6.40 bug fix update
Issued: 2021-07-28
OpenShift Container Platform release 4.6.40 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2767 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2768 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.40 container image list

1.8.34.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.35. RHBA-2021:2886 - OpenShift Container Platform 4.6.41 bug fix update

Issued: 2021-08-04

OpenShift Container Platform release 4.6.41 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:2886 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:2888 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.41 container image list

1.8.35.1. Features

1.8.35.1.1. New Telemetry metric for number of builds by strategy

Telemetry includes a new openshift:build_by_strategy:sum gauge metric, which sends the number of builds by strategy type to the Telemeter Client. This metric gives site reliability engineers (SREs) and product managers visibility into the kinds of builds that run on OpenShift Container Platform clusters. (BZ#1969964)

1.8.35.2. Bug fixes

- Previously, when starting a single-stack IPv6 cluster on nodes with IPv4 address, the kubelet might have used the IPv4 IP instead of the IPv6 IP for the node IP. Consequently, host network pods would have IPv4 IPs rather than IPv6 IPs, which made them unreachable from IPv6-only pods. This update fixes the node-IP-picking code, which results in the kubelet using the IPv6 IPs. (BZ#1942506)

1.8.35.3. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.36. RHBA-2021:3008 - OpenShift Container Platform 4.6.42 bug fix and security update

Issued: 2021-08-11
OpenShift Container Platform release 4.6.42 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3008 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:3009 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.42 container image list

1.8.36.1. Bug fixes

- Previously, host network pods had IPv4 IPs making them unreachable from IPv6-only pods. This update fixes the node-IP-picking code so that nodes have IPv6 IPs. As a result, the host network pods are now reachable. (BZ1942506)

1.8.36.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.37. RHBA-2021:3197 - OpenShift Container Platform 4.6.43 bug fix update

Issued: 2021-08-25

OpenShift Container Platform release 4.6.43 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3197 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:3198 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.43 container image list

1.8.37.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.38. RHBA-2021:3395 - OpenShift Container Platform 4.6.44 bug fix update

Issued: 2021-09-08

OpenShift Container Platform release 4.6.44 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3395 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:3396 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.44 container image list

1.8.38.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

Issued: 2021-09-22

OpenShift Container Platform release 4.6.45 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3517 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:3518 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.45 container image list

1.8.39.1. Features

1.8.39.1.1. New minimum storage requirement for clusters

The minimum storage required to install an OpenShift Container Platform cluster has decreased from 120 GB to 100 GB. This update applies to all supported platforms.

1.8.39.2. Bug fixes

- Previously, when a deployment was created with an invalid image stream, or unresolved image, it resulted in an inconsistent state between the deployment controller and the API server’s imagepolicy plug-in. Consequently, it could cause an infinite number of replica sets and reach the etcd quota limit, which could crash the entire OpenShift Container Platform cluster. This update lowers the responsibilities of the API server’s imagepolicy plug-in. As a result, inconsistent image stream resolution will not occur in the deployments. (BZ#1981784).

1.8.39.3. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.40. RHBA-2021:3643 - OpenShift Container Platform 4.6.46 bug fix and security update

Issued: 2021-09-29

OpenShift Container Platform release 4.6.46, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3643 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:3642 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.46 container image list

1.8.40.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.41. RHBA-2021:3737 - OpenShift Container Platform 4.6.47 bug fix update
OpenShift Container Platform release 4.6.47 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3737 advisory. There are no RPM packages for this release.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.47 container image list

### 1.8.41. Bug fixes

- Previously, the HTTP transport to connect to Red Hat OpenStack Platform (RHOSP) endpoints using a custom CA certificate was missing the proxy settings. Consequently, the cluster was not fully operational when deployed on RHOSP. This update passes the proxy settings to the HTTP transport when connecting with a custom CA certificate. As a result, all cluster components work as expected. ([BZ#2002752](#))

### 1.8.41.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

### 1.8.42. RHBA-2021:3829 - OpenShift Container Platform 4.6.48 bug fix update

Issued: 2021-10-20

OpenShift Container Platform release 4.6.48 is now available. The bug fixes that are included in the update are listed in the RHBA-2021:3829 advisory. The RPM packages that are included in the update are provided by the RHBA-2021:3828 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.48 container image list

#### 1.8.42.1. Features

#### 1.8.42.1.1. Updates from Kubernetes 1.19.14

This update contains changes from Kubernetes 1.19.14. More information can be found in the following changelogs: 1.19.14, 1.19.13, 1.19.12, 1.19.11, 1.19.10, 1.19.9, 1.19.8, 1.19.7, 1.19.6, 1.19.5.

#### 1.8.42.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

### 1.8.43. RHBA-2021:4009 - OpenShift Container Platform 4.6.49 bug fix and security update

Issued: 2021-11-03
OpenShift Container Platform release 4.6.49, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:4009 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:4008 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.49 container image list

1.8.43.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.44. RHBA-2021:4800 - OpenShift Container Platform 4.6.51 bug fix and security update

Issued: 2021-12-02

OpenShift Container Platform release 4.6.51, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:4800 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:4799 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.51 container image list

1.8.44.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.45. RHBA-2021:5010 - OpenShift Container Platform 4.6.52 bug fix and security update

Issued: 2021-12-14

OpenShift Container Platform release 4.6.52, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2021:5010 advisory. The RPM packages that are included in the update are provided by the RHSA-2021:5106 advisories.

This release includes critical security updates for CVE-2021-44228, CVE-2021-45046, CVE-2021-4104, and CVE-2021-4125, all of which concern the Apache Log4j utility. Fixes for these flaws are provided by the RHSA-2021:5106, RHSA-2021:5141, and RHSA-2021:5186 advisories.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.52 container image list

1.8.45.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.
1.8.46. RHBA-2022:0025 - OpenShift Container Platform 4.6.53 bug fix and security update

Issued: 2022-01-12

OpenShift Container Platform release 4.6.53, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2022:0025 advisory. The RPM packages that are included in the update are provided by the RHSA-2022:0024 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.53 container image list

1.8.46.1. Bug fixes

- Previously, in Unified Extensible Firmware Interface (UEFI) mode, ironic-python-agent created a UEFI bootloader entry after downloading the Red Hat Enterprise Linux CoreOS (RHCOS) image. When using a RHCOS image based on Red Hat Enterprise Linux (RHEL) 8.4, the image could fail to boot using this entry. Consequently, depending on the ordering of UEFI entries, if the entry installed by ironic-python-agent is used when booting the image, the boot could fail and output a BIOS error screen. With this update, ironic-python-agent configures the boot entry based on a CSV file located in the image, instead of using a fixed boot entry. As a result the image boots properly without an error. (BZ#2025495)

1.8.46.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.47. RHBA-2022:0180 - OpenShift Container Platform 4.6.54 bug fix and security update

Issued: 2022-01-26

OpenShift Container Platform release 4.6.54, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2022:0180 advisory. There are no RPM packages for this release.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.54 container image list

1.8.47.1. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.


Issued: 2022-02-23
OpenShift Container Platform release 4.6.55, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2022:0566 advisory. The RPM packages that are included in the update are provided by the RHSA-2022:0565 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.55 container image list

1.8.48.1. Features

1.8.48.1.1. IP reconciliation for Whereabouts CNI IPAM plug-in

A new enhancement to the Whereabouts CNI IPAM plug-in adds an IP reconciliation job, `ip-reconciler`, which runs as a Kubernetes cronjob. Previously, if a `CNI DEL` request did not finish for a pod, the pod's IP addresses remained allocated even though they were not used. Now these IP addresses are periodically collected and made available to be reallocated. (BZ#2028968)

1.8.48.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.

1.8.49. RHBA-2022:0867 - OpenShift Container Platform 4.6.56 bug fix and security update

Issued: 2022-03-23

OpenShift Container Platform release 4.6.56, which includes security updates, is now available. The bug fixes that are included in the update are listed in the RHBA-2022:0867 advisory. The RPM packages that are included in the update are provided by the RHSA-2022:0866 advisory.

Space precluded documenting all of the container images for this release in the advisory. See the following article for notes on the container images in this release:

OpenShift Container Platform 4.6.56 container image list

1.8.49.1. Bug fixes

- Previously, an error between Red Hat OpenStack Platform (RHOSP) credentials secret creation and `kube-controller-manager` startup prevented RHOSP credentials from configuring properly. Consequently, `LoadBalancer` services were not created in RHOSP. This updates fetches the RHOSP credentials when `kube-controller-manager` starts. As a result, RHOSP secret credentials now initialize properly. (BZ#2059677)

1.8.49.2. Upgrading

To upgrade an existing OpenShift Container Platform 4.6 cluster to this latest release, see Updating a cluster using the CLI for instructions.