Chapter 1. Mirroring images for a disconnected installation
Chapter 1. Mirroring images for a disconnected installation

			You can use the procedures in this section to ensure your clusters only use container images that satisfy your organizational controls on external content. Before you install a cluster on infrastructure that you provision in a restricted network, you must mirror the required container images into that environment. To mirror container images, you must have a registry for mirroring.
		
Important

				You must have access to the internet to obtain the necessary container images. In this procedure, you place your mirror registry on a mirror host that has access to both your network and the Internet. If you do not have access to a mirror host, use the Mirroring an Operator catalog procedure to copy images to a device you can move across network boundaries with.
			

Prerequisites

	
						You must have a container image registry that supports Docker v2-2 in the location that will host the OpenShift Container Platform cluster, such as one of the following registries:
					
	
								Red Hat Quay
							
	
								JFrog Artifactory
							
	
								Sonatype Nexus Repository
							
	
								Harbor
							

						If you have an entitlement to Red Hat Quay, see the documentation on deploying Red Hat Quay for proof-of-concept purposes or by using the Quay Operator. If you need additional assistance selecting and installing a registry, contact your sales representative or Red Hat support.
					

	
						If you do not already have an existing solution for a container image registry, subscribers of OpenShift Container Platform are provided a mirror registry for Red Hat OpenShift. The mirror registry for Red Hat OpenShift is included with your subscription and is a small-scale container registry that can be used to mirror the required container images of OpenShift Container Platform in disconnected installations.
					

About the mirror registry

				You can mirror the images that are required for OpenShift Container Platform installation and subsequent product updates to a container mirror registry such as Red Hat Quay, JFrog Artifactory, Sonatype Nexus Repository, or Harbor. If you do not have access to a large-scale container registry, you can use the mirror registry for Red Hat OpenShift, a small-scale container registry included with OpenShift Container Platform subscriptions.
			

				You can use any container registry that supports Docker v2-2, such as Red Hat Quay, the mirror registry for Red Hat OpenShift, Artifactory, Sonatype Nexus Repository, or Harbor. Regardless of your chosen registry, the procedure to mirror content from Red Hat hosted sites on the internet to an isolated image registry is the same. After you mirror the content, you configure each cluster to retrieve this content from your mirror registry.
			
Important

					The internal registry of the OpenShift Container Platform cluster cannot be used as the target registry because it does not support pushing without a tag, which is required during the mirroring process.
				

				If choosing a container registry that is not the mirror registry for Red Hat OpenShift, it must be reachable by every machine in the clusters that you provision. If the registry is unreachable, installation, updating, or normal operations such as workload relocation might fail. For that reason, you must run mirror registries in a highly available way, and the mirror registries must at least match the production availability of your OpenShift Container Platform clusters.
			

				When you populate your mirror registry with OpenShift Container Platform images, you can follow two scenarios. If you have a host that can access both the internet and your mirror registry, but not your cluster nodes, you can directly mirror the content from that machine. This process is referred to as connected mirroring. If you have no such host, you must mirror the images to a file system and then bring that host or removable media into your restricted environment. This process is referred to as disconnected mirroring.
			

				For mirrored registries, to view the source of pulled images, you must review the Trying to access log entry in the CRI-O logs. Other methods to view the image pull source, such as using the crictl images command on a node, show the non-mirrored image name, even though the image is pulled from the mirrored location.
			
Note

					Red Hat does not test third party registries with OpenShift Container Platform.
				

Additional information

					For information on viewing the CRI-O logs to view the image source, see Viewing the image pull source.
				

Preparing your mirror host

				Before you perform the mirror procedure, you must prepare the host to retrieve content and push it to the remote location.
			
Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Configuring credentials that allow images to be mirrored

				Create a container image registry credentials file that allows mirroring images from Red Hat to your mirror.
			
Warning

					Do not use this image registry credentials file as the pull secret when you install a cluster. If you provide this file when you install cluster, all of the machines in the cluster will have write access to your mirror registry.
				

Warning

					This process requires that you have write access to a container image registry on the mirror registry and adds the credentials to a registry pull secret.
				

Prerequisites
	
						You configured a mirror registry to use in your restricted network.
					
	
						You identified an image repository location on your mirror registry to mirror images into.
					
	
						You provisioned a mirror registry account that allows images to be uploaded to that image repository.
					

Procedure

					Complete the following steps on the installation host:
				
	
						Download your registry.redhat.io pull secret from the Red Hat OpenShift Cluster Manager and save it to a .json file.
					
	
						Generate the base64-encoded user name and password or token for your mirror registry:
					
$ echo -n '<user_name>:<password>' | base64 -w0 [image: 1]
BGVtbYk3ZHAtqXs=
	[image: 1]
	
								For <user_name> and <password>, specify the user name and password that you configured for your registry.
							

	
						Make a copy of your pull secret in JSON format:
					
$ cat ./pull-secret.text | jq . > <path>/<pull_secret_file_in_json>[image: 1]
	[image: 1]
	
								Specify the path to the folder to store the pull secret in and a name for the JSON file that you create.
							

						The contents of the file resemble the following example:
					
{
 "auths": {
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

	
						Edit the new file and add a section that describes your registry to it:
					
 "auths": {
 "<mirror_registry>": { [image: 1]
 "auth": "<credentials>", [image: 2]
 "email": "you@example.com"
 },
	[image: 1]
	
								For <mirror_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:8443
							

	[image: 2]
	
								For <credentials>, specify the base64-encoded user name and password for the mirror registry.
							

						The file resembles the following example:
					
{
 "auths": {
 "registry.example.com": {
 "auth": "BGVtbYk3ZHAtqXs=",
 "email": "you@example.com"
 },
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

Mirror registry for Red Hat OpenShift

				The mirror registry for Red Hat OpenShift is a small and streamlined container registry that you can use as a target for mirroring the required container images of OpenShift Container Platform for disconnected installations.
			

				If you already have a container image registry, such as Red Hat Quay, you can skip these steps and go straight to Mirroring the OpenShift Container Platform image repository.
			
Prerequisites
	
						An OpenShift Container Platform subscription.
					
	
						Red Hat Enterprise Linux (RHEL) 8 with Podman 3.3 and OpenSSL installed.
					
	
						Fully qualified domain name for the Red Hat Quay service, which must resolve through a DNS server.
					
	
						Passwordless sudo access on the target host.
					
	
						Key-based SSH connectivity on the target host. SSH keys are automatically generated for local installs. For remote hosts, you must generate your own SSH keys.
					
	
						2 or more vCPUs.
					
	
						8 GB of RAM.
					
	
						About 6.8 GB for OpenShift Container Platform 4.6 Release images, or about 696 GB for OpenShift Container Platform 4.6 Release images and OpenShift Container Platform 4.6 Red Hat Operator images. Up to 1 TB per stream or more is suggested.
					
Important

							These requirements are based on local testing results with only Release images and Operator images tested. Storage requirements can vary based on your organization’s needs. Some users might require more space, for example, when they mirror multiple z-streams. You can use standard Red Hat Quay functionality to remove unnecessary images and free up space.
						

Mirror registry for Red Hat OpenShift introduction

					For disconnected deployments of OpenShift Container Platform, a container registry is required to carry out the installation of the clusters. To run a production-grade registry service on such a cluster, you must create a separate registry deployment to install the first cluster. The mirror registry for Red Hat OpenShift addresses this need and is included in every OpenShift subscription. It is available for download on the OpenShift console Downloads page.
				

					The mirror registry for Red Hat OpenShift allows users to install a small-scale version of Red Hat Quay and its required components using the mirror-registry command line interface (CLI) tool. The mirror registry for Red Hat OpenShift is deployed automatically with pre-configured local storage and a local database. It also includes auto-generated user credentials and access permissions with a single set of inputs and no additional configuration choices to get started.
				

					The mirror registry for Red Hat OpenShift provides a pre-determined network configuration and reports deployed component credentials and access URLs upon success. A limited set of optional configuration inputs like fully qualified domain name (FQDN) services, superuser name and password, and custom TLS certificates are also provided. This provides users with a container registry so that they can easily create an offline mirror of all OpenShift Container Platform release content when running OpenShift Container Platform in restricted network environments.
				

					The mirror registry for Red Hat OpenShift is limited to hosting images that are required to install a disconnected OpenShift Container Platform cluster, such as Release images or Red Hat Operator images. It uses local storage on your Red Hat Enterprise Linux (RHEL) machine, and storage supported by RHEL is supported by the mirror registry for Red Hat OpenShift. Content built by customers should not be hosted by the mirror registry for Red Hat OpenShift.
				

					Unlike Red Hat Quay, the mirror registry for Red Hat OpenShift is not a highly-available registry and only local file system storage is supported. Using the mirror registry for Red Hat OpenShift with more than one cluster is discouraged, because multiple clusters can create a single point of failure when updating your cluster fleet. It is advised to leverage the mirror registry for Red Hat OpenShift to install a cluster that can host a production-grade, highly-available registry such as Red Hat Quay, which can serve OpenShift Container Platform content to other clusters.
				

					Use of the mirror registry for Red Hat OpenShift is optional if another container registry is already available in the install environment.
				

Mirroring on a local host with mirror registry for Red Hat OpenShift

					This procedure explains how to install the mirror registry for Red Hat OpenShift on a local host using the mirror-registry installer tool. By doing so, users can create a local host registry running on port 443 for the purpose of storing a mirror of OpenShift Container Platform images.
				
Note

						Installing the mirror registry for Red Hat OpenShift using the mirror-registry CLI tool makes several changes to your machine. After installation, a /etc/quay-install directory is created, which has installation files, local storage, and the configuration bundle. Trusted SSH keys are generated in case the deployment target is the local host, and systemd files on the host machine are set up to ensure that container runtimes are persistent. Additionally, an initial user named init is created with an automatically generated password. All access credentials are printed at the end of the install routine.
					

Procedure
	
							Download the mirror-registry.tar.gz package for the latest version of the mirror registry for Red Hat OpenShift found on the OpenShift console Downloads page.
						
	
							Install the mirror registry for Red Hat OpenShift on your local host with your current user account by using the mirror-registry tool. For a full list of available flags, see "mirror registry for Red Hat OpenShift flags".
						
$ sudo ./mirror-registry install \
 --quayHostname <host_example_com> \
 --quayRoot <example_directory_name>

	
							Use the user name and password generated during installation to log into the registry by running the following command:
						
$ podman login --authfile pull-secret.txt \
 -u init \
 -p <password> \
 <host_example_com>:8443> \
 --tls-verify=false [image: 1]
	[image: 1]
	
									You can avoid running --tls-verify=false by configuring your system to trust the generated rootCA certificates. See "Using SSL to protect connections to Red Hat Quay" and "Configuring the system to trust the certificate authority" for more information.
								

Note

								You can also log in by accessing the UI at https://<host.example.com>:8443 after installation.
							

	
							You can mirror OpenShift Container Platform images after logging in. Depending on your needs, see either the "Mirroring the OpenShift Container Platform image repository" or the "Mirroring an Operator catalog" sections of this document.
						
Note

								If there are issues with images stored by the mirror registry for Red Hat OpenShift due to storage layer problems, you can remirror the OpenShift Container Platform images, or reinstall mirror registry on more stable storage.
							

Mirroring on a remote host with mirror registry for Red Hat OpenShift

					This procedure explains how to install the mirror registry for Red Hat OpenShift on a remote host using the mirror-registry tool. By doing so, users can create a registry to hold a mirror of OpenShift Container Platform images.
				
Note

						Installing the mirror registry for Red Hat OpenShift using the mirror-registry CLI tool makes several changes to your machine. After installation, a /etc/quay-install directory is created, which has installation files, local storage, and the configuration bundle. Trusted SSH keys are generated in case the deployment target is the local host, and systemd files on the host machine are set up to ensure that container runtimes are persistent. Additionally, an initial user named init is created with an automatically generated password. All access credentials are printed at the end of the install routine.
					

Procedure
	
							Download the mirror-registry.tar.gz package for the latest version of the mirror registry for Red Hat OpenShift found on the OpenShift console Downloads page.
						
	
							Install the mirror registry for Red Hat OpenShift on your local host with your current user account by using the mirror-registry tool. For a full list of available flags, see "mirror registry for Red Hat OpenShift flags".
						
$ sudo ./mirror-registry install -v \
 --targetHostname <host_example_com> \
 --targetUsername <example_user> \
 -k ~/.ssh/my_ssh_key \
 --quayHostname <host_example_com> \
 --quayRoot <example_directory_name>

	
							Use the user name and password generated during installation to log into the mirror registry by running the following command:
						
$ podman login --authfile pull-secret.txt \
 -u init \
 -p <password> \
 <host_example_com>:8443> \
 --tls-verify=false [image: 1]
	[image: 1]
	
									You can avoid running --tls-verify=false by configuring your system to trust the generated rootCA certificates. See "Using SSL to protect connections to Red Hat Quay" and "Configuring the system to trust the certificate authority" for more information.
								

Note

								You can also log in by accessing the UI at https://<host.example.com>:8443 after installation.
							

	
							You can mirror OpenShift Container Platform images after logging in. Depending on your needs, see either the "Mirroring the OpenShift Container Platform image repository" or the "Mirroring an Operator catalog" sections of this document.
						
Note

								If there are issues with images stored by the mirror registry for Red Hat OpenShift due to storage layer problems, you can remirror the OpenShift Container Platform images, or reinstall mirror registry on more stable storage.
							

Upgrading the mirror registry for Red Hat OpenShift

	
						You can upgrade the mirror registry for Red Hat OpenShift from your local host by running the following command:
					
$ sudo ./mirror-registry upgrade
Note
	
									Users who upgrade the mirror registry for Red Hat OpenShift with the ./mirror-registry upgrade flag must include the same credentials used when creating their mirror registry. For example, if you installed the mirror registry for Red Hat OpenShift with --quayHostname <host_example_com> and --quayRoot <example_directory_name>, you must include that string to properly upgrade the mirror registry.
								

Uninstalling the mirror registry for Red Hat OpenShift

	
							You can uninstall the mirror registry for Red Hat OpenShift from your local host by running the following command:
						
$ sudo ./mirror-registry uninstall -v \
 --quayRoot <example_directory_name>
Note
	
										Deleting the mirror registry for Red Hat OpenShift will prompt the user before deletion. You can use --autoApprove to skip this prompt.
									
	
										Users who install the mirror registry for Red Hat OpenShift with the --quayRoot flag must include the --quayRoot flag when uninstalling. For example, if you installed the mirror registry for Red Hat OpenShift with --quayRoot example_directory_name, you must include that string to properly uninstall the mirror registry.
									

Mirror registry for Red Hat OpenShift flags

					The following flags are available for the mirror registry for Red Hat OpenShift:
				
	Flags	Description
	
									--autoApprove
								

								 	
									A boolean value that disables interactive prompts. If set to true, the quayRoot directory is automatically deleted when uninstalling the mirror registry. Defaults to false if left unspecified.
								

								
	
									--initPassword
								

								 	
									The password of the init user created during Quay installation. Must be at least eight characters and contain no whitespace.
								

								
	
									--initUser string
								

								 	
									Shows the username of the initial user. Defaults to init if left unspecified.
								

								
	
									--quayHostname
								

								 	
									The fully-qualified domain name of the mirror registry that clients will use to contact the registry. Equivalent to SERVER_HOSTNAME in the Quay config.yaml. Must resolve by DNS. Defaults to <targetHostname>:8443 if left unspecified. [1]
								

								
	
									--quayRoot, -r
								

								 	
									The directory where container image layer and configuration data is saved, including rootCA.key, rootCA.pem, and rootCA.srl certificates. Requires about 6.8 GB for OpenShift Container Platform 4.6 Release images, or about 696 GB for OpenShift Container Platform 4.6 Release images and OpenShift Container Platform 4.6 Red Hat Operator images. Defaults to /etc/quay-install if left unspecified.
								

								
	
									--ssh-key, -k
								

								 	
									The path of your SSH identity key. Defaults to ~/.ssh/quay_installer if left unspecified.
								

								
	
									--sslCert
								

								 	
									The path to the SSL/TLS public key / certificate. Defaults to {quayRoot}/quay-config and is auto-generated if left unspecified.
								

								
	
									--sslCheckSkip
								

								 	
									Skips the check for the certificate hostname against the SERVER_HOSTNAME in the config.yaml file. [2]
								

								
	
									--sslKey
								

								 	
									The path to the SSL/TLS private key used for HTTPS communication. Defaults to {quayRoot}/quay-config and is auto-generated if left unspecified.
								

								
	
									--targetHostname, -H
								

								 	
									The hostname of the target you want to install Quay to. Defaults to $HOST, for example, a local host, if left unspecified.
								

								
	
									--targetUsername, -u
								

								 	
									The user on the target host which will be used for SSH. Defaults to $USER, for example, the current user if left unspecified.
								

								
	
									--verbose, -v
								

								 	
									Shows debug logs and Ansible playbook outputs.
								

								
	
									--version
								

								 	
									Shows the version for the mirror registry for Red Hat OpenShift.
								

								

	
							--quayHostname must be modified if the public DNS name of your system is different from the local hostname.
						
	
							--sslCheckSkip is used in cases when the mirror registry is set behind a proxy and the exposed hostname is different from the internal Quay hostname. It can also be used when users do not want the certificates to be validated against the provided Quay hostname during installation.
						

Additional resources
	
							Using SSL to protect connections to Red Hat Quay
						
	
							Configuring the system to trust the certificate authority
						
	
							Mirroring the OpenShift Container Platform image repository
						
	
							Mirroring an Operator catalog
						

Mirroring the OpenShift Container Platform image repository

				Mirror the OpenShift Container Platform image repository to your registry to use during cluster installation or upgrade.
			
Prerequisites
	
						Your mirror host has access to the Internet.
					
	
						You configured a mirror registry to use in your restricted network and can access the certificate and credentials that you configured.
					
	
						You downloaded the pull secret from the Red Hat OpenShift Cluster Manager and modified it to include authentication to your mirror repository.
					
	
						If you use self-signed certificates that do not set a Subject Alternative Name, you must precede the oc commands in this procedure with GODEBUG=x509ignoreCN=0. If you do not set this variable, the oc commands will fail with the following error:
					
x509: certificate relies on legacy Common Name field, use SANs or temporarily enable Common Name matching with GODEBUG=x509ignoreCN=0

Procedure

					Complete the following steps on the mirror host:
				
	
						Review the OpenShift Container Platform downloads page to determine the version of OpenShift Container Platform that you want to install and determine the corresponding tag on the Repository Tags page.
					
	
						Set the required environment variables:
					
	
								Export the release version:
							
$ OCP_RELEASE=<release_version>

								For <release_version>, specify the tag that corresponds to the version of OpenShift Container Platform to install, such as 4.5.4.
							

	
								Export the local registry name and host port:
							
$ LOCAL_REGISTRY='<local_registry_host_name>:<local_registry_host_port>'

								For <local_registry_host_name>, specify the registry domain name for your mirror repository, and for <local_registry_host_port>, specify the port that it serves content on.
							

	
								Export the local repository name:
							
$ LOCAL_REPOSITORY='<local_repository_name>'

								For <local_repository_name>, specify the name of the repository to create in your registry, such as ocp4/openshift4.
							

	
								Export the name of the repository to mirror:
							
$ PRODUCT_REPO='openshift-release-dev'

								For a production release, you must specify openshift-release-dev.
							

	
								Export the path to your registry pull secret:
							
$ LOCAL_SECRET_JSON='<path_to_pull_secret>'

								For <path_to_pull_secret>, specify the absolute path to and file name of the pull secret for your mirror registry that you created.
							

	
								Export the release mirror:
							
$ RELEASE_NAME="ocp-release"

								For a production release, you must specify ocp-release.
							

	
								Export the type of architecture for your server, such as x86_64.:
							
$ ARCHITECTURE=<server_architecture>

	
								Export the path to the directory to host the mirrored images:
							
$ REMOVABLE_MEDIA_PATH=<path> [image: 1]
	[image: 1]
	
										Specify the full path, including the initial forward slash (/) character.
									

	
						Mirror the version images to the mirror registry:
					
	
								If your mirror host does not have internet access, take the following actions:
							
	
										Connect the removable media to a system that is connected to the internet.
									
	
										Review the images and configuration manifests to mirror:
									
$ oc adm release mirror -a ${LOCAL_SECRET_JSON} \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE} --dry-run

	
										Record the entire imageContentSources section from the output of the previous command. The information about your mirrors is unique to your mirrored repository, and you must add the imageContentSources section to the install-config.yaml file during installation.
									
	
										Mirror the images to a directory on the removable media:
									
$ oc adm release mirror -a ${LOCAL_SECRET_JSON} --to-dir=${REMOVABLE_MEDIA_PATH}/mirror quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE}

	
										Take the media to the restricted network environment and upload the images to the local container registry.
									
$ oc image mirror -a ${LOCAL_SECRET_JSON} --from-dir=${REMOVABLE_MEDIA_PATH}/mirror "file://openshift/release:${OCP_RELEASE}*" ${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} [image: 1]
	[image: 1]
	
												For REMOVABLE_MEDIA_PATH, you must use the same path that you specified when you mirrored the images.
											

	
								If the local container registry is connected to the mirror host, take the following actions:
							
	
										Directly push the release images to the local registry by using following command:
									
$ oc adm release mirror -a ${LOCAL_SECRET_JSON} \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}

										This command pulls the release information as a digest, and its output includes the imageContentSources data that you require when you install your cluster.
									

	
										Record the entire imageContentSources section from the output of the previous command. The information about your mirrors is unique to your mirrored repository, and you must add the imageContentSources section to the install-config.yaml file during installation.
									
Note

											The image name gets patched to Quay.io during the mirroring process, and the podman images will show Quay.io in the registry on the bootstrap virtual machine.
										

	
						To create the installation program that is based on the content that you mirrored, extract it and pin it to the release:
					
	
								If your mirror host does not have Internet access, run the following command:
							
$ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}"

	
								If the local container registry is connected to the mirror host, run the following command:
							
$ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}"

Important

					To ensure that you use the correct images for the version of OpenShift Container Platform that you selected, you must extract the installation program from the mirrored content.
				

					You must perform this step on a machine with an active Internet connection.
				

					If you are in a disconnected environment, use the --image flag as part of must-gather and point to the payload image.
				

The Cluster Samples Operator in a disconnected environment

				In a disconnected environment, you must take additional steps after you install a cluster to configure the Cluster Samples Operator.
			

Next steps

	
						Mirror the OperatorHub images for the Operators that you want to install in your cluster.
					
	
						Install a cluster on infrastructure that you provision in your restricted network, such as on VMware vSphere, bare metal, or Amazon Web Services.
					

Additional resources

	
						See Gathering data about specific features for more information about using must-gather.
					

Chapter 2. Installing on AWS

Configuring an AWS account

				Before you can install OpenShift Container Platform, you must configure an Amazon Web Services (AWS) account.
			
Configuring Route 53

					To install OpenShift Container Platform, the Amazon Web Services (AWS) account you use must have a dedicated public hosted zone in your Route 53 service. This zone must be authoritative for the domain. The Route 53 service provides cluster DNS resolution and name lookup for external connections to the cluster.
				
Procedure
	
							Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through AWS or another source.
						
Note

								If you purchase a new domain through AWS, it takes time for the relevant DNS changes to propagate. For more information about purchasing domains through AWS, see Registering Domain Names Using Amazon Route 53 in the AWS documentation.
							

	
							If you are using an existing domain and registrar, migrate its DNS to AWS. See Making Amazon Route 53 the DNS Service for an Existing Domain in the AWS documentation.
						
	
							Create a public hosted zone for your domain or subdomain. See Creating a Public Hosted Zone in the AWS documentation.
						

							Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
						

	
							Extract the new authoritative name servers from the hosted zone records. See Getting the Name Servers for a Public Hosted Zone in the AWS documentation.
						
	
							Update the registrar records for the AWS Route 53 name servers that your domain uses. For example, if you registered your domain to a Route 53 service in a different accounts, see the following topic in the AWS documentation: Adding or Changing Name Servers or Glue Records.
						
	
							If you are using a subdomain, add its delegation records to the parent domain. This gives Amazon Route 53 responsibility for the subdomain. Follow the delegation procedure outlined by the DNS provider of the parent domain. See Creating a subdomain that uses Amazon Route 53 as the DNS service without migrating the parent domain in the AWS documentation for an example high level procedure.
						

Ingress Operator endpoint configuration for AWS Route 53

						If you install in either Amazon Web Services (AWS) GovCloud (US) US-West or US-East region, the Ingress Operator uses us-gov-west-1 region for Route53 and tagging API clients.
					

						The Ingress Operator uses https://tagging.us-gov-west-1.amazonaws.com as the tagging API endpoint if a tagging custom endpoint is configured that includes the string 'us-gov-east-1'.
					

						For more information on AWS GovCloud (US) endpoints, see the Service Endpoints in the AWS documentation about GovCloud (US).
					
Important

							Private, disconnected installations are not supported for AWS GovCloud when you install in the us-gov-east-1 region.
						

Example Route 53 configuration

							

platform:
 aws:
 region: us-gov-west-1
 serviceEndpoints:
 - name: ec2
 url: https://ec2.us-gov-west-1.amazonaws.com
 - name: elasticloadbalancing
 url: https://elasticloadbalancing.us-gov-west-1.amazonaws.com
 - name: route53
 url: https://route53.us-gov.amazonaws.com [image: 1]
 - name: tagging
 url: https://tagging.us-gov-west-1.amazonaws.com [image: 2]

						
	[image: 1]
	
								Route 53 defaults to https://route53.us-gov.amazonaws.com for both AWS GovCloud (US) regions.
							

	[image: 2]
	
								Only the US-West region has endpoints for tagging. Omit this parameter if your cluster is in another region.
							

AWS account limits

					The OpenShift Container Platform cluster uses a number of Amazon Web Services (AWS) components, and the default Service Limits affect your ability to install OpenShift Container Platform clusters. If you use certain cluster configurations, deploy your cluster in certain AWS regions, or run multiple clusters from your account, you might need to request additional resources for your AWS account.
				

					The following table summarizes the AWS components whose limits can impact your ability to install and run OpenShift Container Platform clusters.
				
	Component	Number of clusters available by default	Default AWS limit	Description
	
									Instance Limits
								

								 	
									Varies
								

								 	
									Varies
								

								 	
									By default, each cluster creates the following instances:
								

								 	
											One bootstrap machine, which is removed after installation
										
	
											Three control plane nodes (also known as the master nodes)
										
	
											Three worker nodes
										

								
									These instance type counts are within a new account’s default limit. To deploy more worker nodes, enable autoscaling, deploy large workloads, or use a different instance type, review your account limits to ensure that your cluster can deploy the machines that you need.
								

								
									In most regions, the bootstrap and worker machines uses an m4.large machines and the control plane machines use m4.xlarge instances. In some regions, including all regions that do not support these instance types, m5.large and m5.xlarge instances are used instead.
								

								
	
									Elastic IPs (EIPs)
								

								 	
									0 to 1
								

								 	
									5 EIPs per account
								

								 	
									To provision the cluster in a highly available configuration, the installation program creates a public and private subnet for each availability zone within a region. Each private subnet requires a NAT Gateway, and each NAT gateway requires a separate elastic IP. Review the AWS region map to determine how many availability zones are in each region. To take advantage of the default high availability, install the cluster in a region with at least three availability zones. To install a cluster in a region with more than five availability zones, you must increase the EIP limit.
								

								 Important

										To use the us-east-1 region, you must increase the EIP limit for your account.
									

								
	
									Virtual Private Clouds (VPCs)
								

								 	
									5
								

								 	
									5 VPCs per region
								

								 	
									Each cluster creates its own VPC.
								

								
	
									Elastic Load Balancing (ELB/NLB)
								

								 	
									3
								

								 	
									20 per region
								

								 	
									By default, each cluster creates internal and external network load balancers for the master API server and a single classic elastic load balancer for the router. Deploying more Kubernetes Service objects with type LoadBalancer will create additional load balancers.
								

								
	
									NAT Gateways
								

								 	
									5
								

								 	
									5 per availability zone
								

								 	
									The cluster deploys one NAT gateway in each availability zone.
								

								
	
									Elastic Network Interfaces (ENIs)
								

								 	
									At least 12
								

								 	
									350 per region
								

								 	
									The default installation creates 21 ENIs and an ENI for each availability zone in your region. For example, the us-east-1 region contains six availability zones, so a cluster that is deployed in that zone uses 27 ENIs. Review the AWS region map to determine how many availability zones are in each region.
								

								
									Additional ENIs are created for additional machines and elastic load balancers that are created by cluster usage and deployed workloads.
								

								
	
									VPC Gateway
								

								 	
									20
								

								 	
									20 per account
								

								 	
									Each cluster creates a single VPC Gateway for S3 access.
								

								
	
									S3 buckets
								

								 	
									99
								

								 	
									100 buckets per account
								

								 	
									Because the installation process creates a temporary bucket and the registry component in each cluster creates a bucket, you can create only 99 OpenShift Container Platform clusters per AWS account.
								

								
	
									Security Groups
								

								 	
									250
								

								 	
									2,500 per account
								

								 	
									Each cluster creates 10 distinct security groups.
								

								

Required AWS permissions

Note

						Your IAM user must have the permission tag:GetResources in the region us-east-1 to delete the base cluster resources. As part of the AWS API requirement, the OpenShift Container Platform installation program performs various actions in this region.
					

					When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web Services (AWS), you grant that user all of the required permissions. To deploy all components of an OpenShift Container Platform cluster, the IAM user requires the following permissions:
				
Example 2.1. Required EC2 permissions for installation
	
								tag:TagResources
							
	
								tag:UntagResources
							
	
								ec2:AllocateAddress
							
	
								ec2:AssociateAddress
							
	
								ec2:AuthorizeSecurityGroupEgress
							
	
								ec2:AuthorizeSecurityGroupIngress
							
	
								ec2:CopyImage
							
	
								ec2:CreateNetworkInterface
							
	
								ec2:AttachNetworkInterface
							
	
								ec2:CreateSecurityGroup
							
	
								ec2:CreateTags
							
	
								ec2:CreateVolume
							
	
								ec2:DeleteSecurityGroup
							
	
								ec2:DeleteSnapshot
							
	
								ec2:DeleteTags
							
	
								ec2:DeregisterImage
							
	
								ec2:DescribeAccountAttributes
							
	
								ec2:DescribeAddresses
							
	
								ec2:DescribeAvailabilityZones
							
	
								ec2:DescribeDhcpOptions
							
	
								ec2:DescribeImages
							
	
								ec2:DescribeInstanceAttribute
							
	
								ec2:DescribeInstanceCreditSpecifications
							
	
								ec2:DescribeInstances
							
	
								ec2:DescribeInternetGateways
							
	
								ec2:DescribeKeyPairs
							
	
								ec2:DescribeNatGateways
							
	
								ec2:DescribeNetworkAcls
							
	
								ec2:DescribeNetworkInterfaces
							
	
								ec2:DescribePrefixLists
							
	
								ec2:DescribeRegions
							
	
								ec2:DescribeRouteTables
							
	
								ec2:DescribeSecurityGroups
							
	
								ec2:DescribeSubnets
							
	
								ec2:DescribeTags
							
	
								ec2:DescribeVolumes
							
	
								ec2:DescribeVpcAttribute
							
	
								ec2:DescribeVpcClassicLink
							
	
								ec2:DescribeVpcClassicLinkDnsSupport
							
	
								ec2:DescribeVpcEndpoints
							
	
								ec2:DescribeVpcs
							
	
								ec2:GetEbsDefaultKmsKeyId
							
	
								ec2:ModifyInstanceAttribute
							
	
								ec2:ModifyNetworkInterfaceAttribute
							
	
								ec2:ReleaseAddress
							
	
								ec2:RevokeSecurityGroupEgress
							
	
								ec2:RevokeSecurityGroupIngress
							
	
								ec2:RunInstances
							
	
								ec2:TerminateInstances
							

Example 2.2. Required permissions for creating network resources during installation
	
								ec2:AssociateDhcpOptions
							
	
								ec2:AssociateRouteTable
							
	
								ec2:AttachInternetGateway
							
	
								ec2:CreateDhcpOptions
							
	
								ec2:CreateInternetGateway
							
	
								ec2:CreateNatGateway
							
	
								ec2:CreateRoute
							
	
								ec2:CreateRouteTable
							
	
								ec2:CreateSubnet
							
	
								ec2:CreateVpc
							
	
								ec2:CreateVpcEndpoint
							
	
								ec2:ModifySubnetAttribute
							
	
								ec2:ModifyVpcAttribute
							

Note

							If you use an existing VPC, your account does not require these permissions for creating network resources.
						

Example 2.3. Required Elastic Load Balancing permissions (ELB) for installation
	
								elasticloadbalancing:AddTags
							
	
								elasticloadbalancing:ApplySecurityGroupsToLoadBalancer
							
	
								elasticloadbalancing:AttachLoadBalancerToSubnets
							
	
								elasticloadbalancing:ConfigureHealthCheck
							
	
								elasticloadbalancing:CreateLoadBalancer
							
	
								elasticloadbalancing:CreateLoadBalancerListeners
							
	
								elasticloadbalancing:DeleteLoadBalancer
							
	
								elasticloadbalancing:DeregisterInstancesFromLoadBalancer
							
	
								elasticloadbalancing:DescribeInstanceHealth
							
	
								elasticloadbalancing:DescribeLoadBalancerAttributes
							
	
								elasticloadbalancing:DescribeLoadBalancers
							
	
								elasticloadbalancing:DescribeTags
							
	
								elasticloadbalancing:ModifyLoadBalancerAttributes
							
	
								elasticloadbalancing:RegisterInstancesWithLoadBalancer
							
	
								elasticloadbalancing:SetLoadBalancerPoliciesOfListener
							

Example 2.4. Required Elastic Load Balancing permissions (ELBv2) for installation
	
								elasticloadbalancing:AddTags
							
	
								elasticloadbalancing:CreateListener
							
	
								elasticloadbalancing:CreateLoadBalancer
							
	
								elasticloadbalancing:CreateTargetGroup
							
	
								elasticloadbalancing:DeleteLoadBalancer
							
	
								elasticloadbalancing:DeregisterTargets
							
	
								elasticloadbalancing:DescribeListeners
							
	
								elasticloadbalancing:DescribeLoadBalancerAttributes
							
	
								elasticloadbalancing:DescribeLoadBalancers
							
	
								elasticloadbalancing:DescribeTargetGroupAttributes
							
	
								elasticloadbalancing:DescribeTargetHealth
							
	
								elasticloadbalancing:ModifyLoadBalancerAttributes
							
	
								elasticloadbalancing:ModifyTargetGroup
							
	
								elasticloadbalancing:ModifyTargetGroupAttributes
							
	
								elasticloadbalancing:RegisterTargets
							

Example 2.5. Required IAM permissions for installation
	
								iam:AddRoleToInstanceProfile
							
	
								iam:CreateInstanceProfile
							
	
								iam:CreateRole
							
	
								iam:DeleteInstanceProfile
							
	
								iam:DeleteRole
							
	
								iam:DeleteRolePolicy
							
	
								iam:GetInstanceProfile
							
	
								iam:GetRole
							
	
								iam:GetRolePolicy
							
	
								iam:GetUser
							
	
								iam:ListInstanceProfilesForRole
							
	
								iam:ListRoles
							
	
								iam:ListUsers
							
	
								iam:PassRole
							
	
								iam:PutRolePolicy
							
	
								iam:RemoveRoleFromInstanceProfile
							
	
								iam:SimulatePrincipalPolicy
							
	
								iam:TagRole
							

Note

							If you have not created an elastic load balancer (ELB) in your AWS account, the IAM user also requires the iam:CreateServiceLinkedRole permission.
						

Example 2.6. Required Route 53 permissions for installation
	
								route53:ChangeResourceRecordSets
							
	
								route53:ChangeTagsForResource
							
	
								route53:CreateHostedZone
							
	
								route53:DeleteHostedZone
							
	
								route53:GetChange
							
	
								route53:GetHostedZone
							
	
								route53:ListHostedZones
							
	
								route53:ListHostedZonesByName
							
	
								route53:ListResourceRecordSets
							
	
								route53:ListTagsForResource
							
	
								route53:UpdateHostedZoneComment
							

Example 2.7. Required S3 permissions for installation
	
								s3:CreateBucket
							
	
								s3:DeleteBucket
							
	
								s3:GetAccelerateConfiguration
							
	
								s3:GetBucketAcl
							
	
								s3:GetBucketCors
							
	
								s3:GetBucketLocation
							
	
								s3:GetBucketLogging
							
	
								s3:GetBucketObjectLockConfiguration
							
	
								s3:GetBucketReplication
							
	
								s3:GetBucketRequestPayment
							
	
								s3:GetBucketTagging
							
	
								s3:GetBucketVersioning
							
	
								s3:GetBucketWebsite
							
	
								s3:GetEncryptionConfiguration
							
	
								s3:GetLifecycleConfiguration
							
	
								s3:GetReplicationConfiguration
							
	
								s3:ListBucket
							
	
								s3:PutBucketAcl
							
	
								s3:PutBucketTagging
							
	
								s3:PutEncryptionConfiguration
							

Example 2.8. S3 permissions that cluster Operators require
	
								s3:DeleteObject
							
	
								s3:GetObject
							
	
								s3:GetObjectAcl
							
	
								s3:GetObjectTagging
							
	
								s3:GetObjectVersion
							
	
								s3:PutObject
							
	
								s3:PutObjectAcl
							
	
								s3:PutObjectTagging
							

Example 2.9. Required permissions to delete base cluster resources
	
								autoscaling:DescribeAutoScalingGroups
							
	
								ec2:DeleteNetworkInterface
							
	
								ec2:DeleteVolume
							
	
								elasticloadbalancing:DeleteTargetGroup
							
	
								elasticloadbalancing:DescribeTargetGroups
							
	
								iam:DeleteAccessKey
							
	
								iam:DeleteUser
							
	
								iam:ListAttachedRolePolicies
							
	
								iam:ListInstanceProfiles
							
	
								iam:ListRolePolicies
							
	
								iam:ListUserPolicies
							
	
								s3:DeleteObject
							
	
								s3:ListBucketVersions
							
	
								tag:GetResources
							

Example 2.10. Required permissions to delete network resources
	
								ec2:DeleteDhcpOptions
							
	
								ec2:DeleteInternetGateway
							
	
								ec2:DeleteNatGateway
							
	
								ec2:DeleteRoute
							
	
								ec2:DeleteRouteTable
							
	
								ec2:DeleteSubnet
							
	
								ec2:DeleteVpc
							
	
								ec2:DeleteVpcEndpoints
							
	
								ec2:DetachInternetGateway
							
	
								ec2:DisassociateRouteTable
							
	
								ec2:ReplaceRouteTableAssociation
							

Note

							If you use an existing VPC, your account does not require these permissions to delete network resources.
						

Example 2.11. Additional IAM and S3 permissions that are required to create manifests
	
								iam:DeleteAccessKey
							
	
								iam:DeleteUser
							
	
								iam:DeleteUserPolicy
							
	
								iam:GetUserPolicy
							
	
								iam:ListAccessKeys
							
	
								iam:PutUserPolicy
							
	
								iam:TagUser
							
	
								iam:GetUserPolicy
							
	
								iam:ListAccessKeys
							
	
								s3:PutBucketPublicAccessBlock
							
	
								s3:GetBucketPublicAccessBlock
							
	
								s3:PutLifecycleConfiguration
							
	
								s3:HeadBucket
							
	
								s3:ListBucketMultipartUploads
							
	
								s3:AbortMultipartUpload
							

Note

							If you are managing your cloud provider credentials with mint mode, the IAM user also requires the iam:CreateAccessKey and iam:CreateUser permissions.
						

Example 2.12. Optional permission for quota checks for installation
	
								servicequotas:ListAWSDefaultServiceQuotas
							

Creating an IAM user

					Each Amazon Web Services (AWS) account contains a root user account that is based on the email address you used to create the account. This is a highly-privileged account, and it is recommended to use it for only initial account and billing configuration, creating an initial set of users, and securing the account.
				

					Before you install OpenShift Container Platform, create a secondary IAM administrative user. As you complete the Creating an IAM User in Your AWS Account procedure in the AWS documentation, set the following options:
				
Procedure
	
							Specify the IAM user name and select Programmatic access.
						
	
							Attach the AdministratorAccess policy to ensure that the account has sufficient permission to create the cluster. This policy provides the cluster with the ability to grant credentials to each OpenShift Container Platform component. The cluster grants the components only the credentials that they require.
						
Note

								While it is possible to create a policy that grants the all of the required AWS permissions and attach it to the user, this is not the preferred option. The cluster will not have the ability to grant additional credentials to individual components, so the same credentials are used by all components.
							

	
							Optional: Add metadata to the user by attaching tags.
						
	
							Confirm that the user name that you specified is granted the AdministratorAccess policy.
						
	
							Record the access key ID and secret access key values. You must use these values when you configure your local machine to run the installation program.
						
Important

								You cannot use a temporary session token that you generated while using a multi-factor authentication device to authenticate to AWS when you deploy a cluster. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials.
							

Additional resources
	
							See Manually creating IAM for AWS for steps to set the Cloud Credential Operator (CCO) to manual mode prior to installation. Use this mode in environments where the cloud identity and access management (IAM) APIs are not reachable, or if you prefer not to store an administrator-level credential secret in the cluster kube-system project.
						

Supported AWS regions

					You can deploy an OpenShift Container Platform cluster to the following public regions:
				
Note

						Your IAM user must have the permission tag:GetResources in the region us-east-1 to delete the base cluster resources. As part of the AWS API requirement, the OpenShift Container Platform installation program performs various actions in this region.
					

	
							af-south-1 (Cape Town)
						
	
							ap-east-1 (Hong Kong)
						
	
							ap-northeast-1 (Tokyo)
						
	
							ap-northeast-2 (Seoul)
						
	
							ap-northeast-3 (Osaka)
						
	
							ap-south-1 (Mumbai)
						
	
							ap-southeast-1 (Singapore)
						
	
							ap-southeast-2 (Sydney)
						
	
							ca-central-1 (Central)
						
	
							eu-central-1 (Frankfurt)
						
	
							eu-north-1 (Stockholm)
						
	
							eu-south-1 (Milan)
						
	
							eu-west-1 (Ireland)
						
	
							eu-west-2 (London)
						
	
							eu-west-3 (Paris)
						
	
							me-south-1 (Bahrain)
						
	
							sa-east-1 (São Paulo)
						
	
							us-east-1 (N. Virginia)
						
	
							us-east-2 (Ohio)
						
	
							us-west-1 (N. California)
						
	
							us-west-2 (Oregon)
						

					The following AWS GovCloud regions are supported:
				
	
							us-gov-west-1
						
	
							us-gov-east-1
						

Next steps

	
							Install an OpenShift Container Platform cluster:
						
	
									Quickly install a cluster with default options on installer-provisioned infrastructure
								
	
									Install a cluster with cloud customizations on installer-provisioned infrastructure
								
	
									Install a cluster with network customizations on installer-provisioned infrastructure
								
	
									Installing a cluster on user-provisioned infrastructure in AWS by using CloudFormation templates
								

Manually creating IAM for AWS

				In environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace, you can put the Cloud Credential Operator (CCO) into manual mode before you install the cluster.
			
Alternatives to storing administrator-level secrets in the kube-system project

					The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom resource definitions (CRDs). You can configure the CCO to suit the security requirements of your organization by setting different values for the credentialsMode parameter in the install-config.yaml file.
				

					If you prefer not to store an administrator-level credential secret in the cluster kube-system project, you can choose one of the following options when installing OpenShift Container Platform:
				
	
							Manage cloud credentials manually:
						

							You can set the credentialsMode parameter for the CCO to Manual to manage cloud credentials manually. Using manual mode allows each cluster component to have only the permissions it requires, without storing an administrator-level credential in the cluster. You can also use this mode if your environment does not have connectivity to the cloud provider public IAM endpoint. However, you must manually reconcile permissions with new release images for every upgrade. You must also manually supply credentials for every component that requests them.
						

	
							Remove the administrator-level credential secret after installing OpenShift Container Platform with mint mode:
						

							If you are using the CCO with the credentialsMode parameter set to Mint, you can remove or rotate the administrator-level credential after installing OpenShift Container Platform. Mint mode is the default configuration for the CCO. This option requires the presence of the administrator-level credential during an installation. The administrator-level credential is used during the installation to mint other credentials with some permissions granted. The original credential secret is not stored in the cluster permanently.
						

Note

						Prior to a non z-stream upgrade, you must reinstate the credential secret with the administrator-level credential. If the credential is not present, the upgrade might be blocked.
					

Additional resources
	
							To learn how to rotate or remove the administrator-level credential secret after installing OpenShift Container Platform, see Rotating or removing cloud provider credentials.
						
	
							For a detailed description of all available CCO credential modes and their supported platforms, see Cloud Credential Operator.
						

Manually create IAM

					The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.
				
Procedure
	
							Change to the directory that contains the installation program and create the install-config.yaml file:
						
$ openshift-install create install-config --dir <installation_directory>

	
							Edit the install-config.yaml configuration file so that it contains the credentialsMode parameter set to Manual.
						
Example install-config.yaml configuration file

								

apiVersion: v1
baseDomain: cluster1.example.com
credentialsMode: Manual [image: 1]
compute:
- architecture: amd64
 hyperthreading: Enabled
...

							
	[image: 1]
	
									This line is added to set the credentialsMode parameter to Manual.
								

	
							To generate the manifests, run the following command from the directory that contains the installation program:
						
$ openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	
							Remove the admin credential secret created using your local cloud credentials. This removal prevents your admin credential from being stored in the cluster:
						
$ rm mycluster/openshift/99_cloud-creds-secret.yaml

	
							From the directory that contains the installation program, obtain details of the OpenShift Container Platform release image that your openshift-install binary is built to use:
						
$ openshift-install version
Example output

								

release image quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64

							

	
							Locate all CredentialsRequest objects in this release image that target the cloud you are deploying on:
						
$ oc adm release extract quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64 --credentials-requests --cloud=aws

							This displays the details for each request.
						
Sample CredentialsRequest object

								

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: cloud-credential-operator-iam-ro
 namespace: openshift-cloud-credential-operator
spec:
 secretRef:
 name: cloud-credential-operator-iam-ro-creds
 namespace: openshift-cloud-credential-operator
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"

							

	
							Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each credentialsRequest. The format for the secret data varies for each cloud provider.
						
	
							From the directory that contains the installation program, proceed with your cluster creation:
						
$ openshift-install create cluster --dir <installation_directory>
Important

								Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. For details, see the Upgrading clusters with manually maintained credentials section of the installation content for your cloud provider.
							

Admin credentials root secret format

					Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which is then used to satisfy all credentials requests and create their respective secrets. This is done either by minting new credentials, with mint mode, or by copying the credentials root secret, with passthrough mode.
				

					The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.
				
Amazon Web Services (AWS) secret format

						

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: aws-creds
stringData:
 aws_access_key_id: <AccessKeyID>
 aws_secret_access_key: <SecretAccessKey>

					

Upgrading clusters with manually maintained credentials

					If credentials are added in a future release, the Cloud Credential Operator (CCO) upgradable status for a cluster with manually maintained credentials changes to false. For minor release, for example, from 4.5 to 4.6, this status prevents you from upgrading until you have addressed any updated permissions. For z-stream releases, for example, from 4.5.10 to 4.5.11, the upgrade is not blocked, but the credentials must still be updated for the new release.
				

					Use the Administrator perspective of the web console to determine if the CCO is upgradeable.
				
	
							Navigate to Administration → Cluster Settings.
						
	
							To view the CCO status details, click cloud-credential in the Cluster Operators list.
						
	
							If the Upgradeable status in the Conditions section is False, examine the credentialsRequests for the new release and update the manually maintained credentials on your cluster to match before upgrading.
						

					In addition to creating new credentials for the release image that you are upgrading to, you must review the required permissions for existing credentials and accommodate any new permissions requirements for existing components in the new release. The CCO cannot detect these mismatches and will not set upgradable to false in this case.
				

					The Manually creating IAM section of the installation content for your cloud provider explains how to obtain and use the credentials required for your cloud.
				

Mint mode

					Mint mode is the default and recommended Cloud Credential Operator (CCO) credentials mode for OpenShift Container Platform. In this mode, the CCO uses the provided administrator-level cloud credential to run the cluster. Mint mode is supported for AWS, GCP, and Azure.
				

					In mint mode, the admin credential is stored in the kube-system namespace and then used by the CCO to process the CredentialsRequest objects in the cluster and create users for each with specific permissions.
				

					The benefits of mint mode include:
				
	
							Each cluster component has only the permissions it requires
						
	
							Automatic, on-going reconciliation for cloud credentials, including additional credentials or permissions that might be required for upgrades
						

					One drawback is that mint mode requires admin credential storage in a cluster kube-system secret.
				

Mint Mode with removal or rotation of the admin credential

					Currently, this mode is only supported on AWS.
				

					In this mode, a user installs OpenShift Container Platform with an admin credential just like the normal mint mode. However, this mode removes the admin credential secret from the cluster post-installation.
				

					The administrator can have the Cloud Credential Operator make its own request for a read-only credential that allows it to verify if all CredentialsRequest objects have their required permissions, thus the admin credential is not required unless something needs to be changed. After the associated credential is removed, it can be destroyed on the underlying cloud, if desired.
				

					Prior to upgrade, the admin credential should be restored. In the future, upgrade might be blocked if the credential is not present.
				

					The admin credential is not stored in the cluster permanently.
				

					This mode still requires the admin credential in the cluster for brief periods of time. It also requires manually re-instating the secret with admin credentials for each upgrade.
				

Next steps

	
							Install an OpenShift Container Platform cluster:
						
	
									Installing a cluster quickly on AWS with default options on installer-provisioned infrastructure
								
	
									Install a cluster with cloud customizations on installer-provisioned infrastructure
								
	
									Install a cluster with network customizations on installer-provisioned infrastructure
								
	
									Installing a cluster on user-provisioned infrastructure in AWS by using CloudFormation templates
								

Installing a cluster quickly on AWS

				In OpenShift Container Platform version 4.6, you can install a cluster on Amazon Web Services (AWS) that uses the default configuration options.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Important

								Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							Provide values at the prompts:
						
	
									Optional: Select an SSH key to use to access your cluster machines.
								
Note

										For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
									

	
									Select aws as the platform to target.
								
	
									If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
								
Note

										The AWS access key ID and secret access key are stored in ~/.aws/credentials in the home directory of the current user on the installation host. You are prompted for the credentials by the installation program if the credentials for the exported profile are not present in the file. Any credentials that you provide to the installation program are stored in the file.
									

	
									Select the AWS region to deploy the cluster to.
								
	
									Select the base domain for the Route 53 service that you configured for your cluster.
								
	
									Enter a descriptive name for your cluster.
								
	
									Paste the pull secret from the Red Hat OpenShift Cluster Manager.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.
						
Note

								The elevated permissions provided by the AdministratorAccess policy are required only during installation.
							

Additional resources
	
							See Configuration and credential file settings in the AWS documentation for more information about AWS profile and credential configuration.
						

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a cluster on AWS with customizations

				In OpenShift Container Platform version 4.6, you can install a customized cluster on infrastructure that the installation program provisions on Amazon Web Services (AWS). To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Amazon Web Services (AWS).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select AWS as the platform to target.
										
	
											If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
										
	
											Select the AWS region to deploy the cluster to.
										
	
											Select the base domain for the Route 53 service that you configured for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 2.1. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 2.2. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 2.3. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Optional AWS configuration parameters

							Optional AWS configuration parameters are described in the following table:
						
Table 2.4. Optional AWS parameters
	Parameter	Description	Values
	
											compute.platform.aws.amiID
										

										 	
											The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											compute.platform.aws.rootVolume.iops
										

										 	
											The Input/Output Operations Per Second (IOPS) that is reserved for the root volume.
										

										 	
											Integer, for example 4000.
										

										
	
											compute.platform.aws.rootVolume.size
										

										 	
											The size in GiB of the root volume.
										

										 	
											Integer, for example 500.
										

										
	
											compute.platform.aws.rootVolume.type
										

										 	
											The type of the root volume.
										

										 	
											Valid AWS EBS volume type, such as io1.
										

										
	
											compute.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of worker nodes with a specific KMS key.
										

										 	
											Valid key ID or the key ARN.
										

										
	
											compute.platform.aws.type
										

										 	
											The EC2 instance type for the compute machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											compute.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											compute.aws.region
										

										 	
											The AWS region that the installation program creates compute resources in.
										

										 	
											Any valid AWS region, such as us-east-1.
										

										
	
											controlPlane.platform.aws.amiID
										

										 	
											The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											controlPlane.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of control plane nodes with a specific KMS key.
										

										 	
											Valid key ID and the key ARN.
										

										
	
											controlPlane.platform.aws.type
										

										 	
											The EC2 instance type for the control plane machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											controlPlane.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the control plane machine pool.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											controlPlane.aws.region
										

										 	
											The AWS region that the installation program creates control plane resources in.
										

										 	
											Valid AWS region, such as us-east-1.
										

										
	
											platform.aws.amiID
										

										 	
											The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											platform.aws.serviceEndpoints.name
										

										 	
											The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services.
										

										 	
											Valid AWS service endpoint name.
										

										
	
											platform.aws.serviceEndpoints.url
										

										 	
											The AWS service endpoint URL. The URL must use the https protocol and the host must trust the certificate.
										

										 	
											Valid AWS service endpoint URL.
										

										
	
											platform.aws.userTags
										

										 	
											A map of keys and values that the installation program adds as tags to all resources that it creates.
										

										 	
											Any valid YAML map, such as key value pairs in the <key>: <value> format. For more information about AWS tags, see Tagging Your Amazon EC2 Resources in the AWS documentation.
										

										
	
											platform.aws.subnets
										

										 	
											If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same machineNetwork[].cidr ranges that you specify. For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone.
										

										 	
											Valid subnet IDs.
										

										

Sample customized install-config.yaml file for AWS

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
credentialsMode: Mint [image: 2]
controlPlane: [image: 3] [image: 4]
 hyperthreading: Enabled [image: 5]
 name: master
 platform:
 aws:
 zones:
 - us-west-2a
 - us-west-2b
 rootVolume:
 iops: 4000
 size: 500
 type: io1 [image: 6]
 type: m5.xlarge
 replicas: 3
compute: [image: 7]
- hyperthreading: Enabled [image: 8]
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1 [image: 9]
 type: c5.4xlarge
 zones:
 - us-west-2c
 replicas: 3
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-west-2 [image: 11]
 userTags:
 adminContact: jdoe
 costCenter: 7536
 amiID: ami-96c6f8f7 [image: 12]
 serviceEndpoints: [image: 13]
 - name: ec2
 url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
fips: false [image: 14]
sshKey: ssh-ed25519 AAAA... [image: 15]
pullSecret: '{"auths": ...}' (16)
	[image: 1] [image: 10] [image: 11] (16)
	
								Required. The installation program prompts you for this value.
							

	[image: 2]
	
								Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							

	[image: 3] [image: 7]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 4]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 5] [image: 8]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.
								

	[image: 6] [image: 9]
	
								To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
							

	[image: 12]
	
								The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
							

	[image: 13]
	
								The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
							

	[image: 14]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 15]
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.
						
Note

								The elevated permissions provided by the AdministratorAccess policy are required only during installation.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service.
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a cluster on AWS with network customizations

				In OpenShift Container Platform version 4.6, you can install a cluster on Amazon Web Services (AWS) with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
			

				You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Network configuration phases

					When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
				
	Phase 1
	
								After entering the openshift-install create install-config command. In the install-config.yaml file, you can customize the following network-related fields:
							
	
										networking.networkType
									
	
										networking.clusterNetwork
									
	
										networking.serviceNetwork
									
	
										networking.machineNetwork
									

										For more information on these fields, refer to "Installation configuration parameters".
									
Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

	Phase 2
	
								After entering the openshift-install create manifests command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
							

					You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.
				

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Amazon Web Services (AWS).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select AWS as the platform to target.
										
	
											If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
										
	
											Select the AWS region to deploy the cluster to.
										
	
											Select the base domain for the Route 53 service that you configured for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 2.5. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 2.6. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 2.7. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Optional AWS configuration parameters

							Optional AWS configuration parameters are described in the following table:
						
Table 2.8. Optional AWS parameters
	Parameter	Description	Values
	
											compute.platform.aws.amiID
										

										 	
											The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											compute.platform.aws.rootVolume.iops
										

										 	
											The Input/Output Operations Per Second (IOPS) that is reserved for the root volume.
										

										 	
											Integer, for example 4000.
										

										
	
											compute.platform.aws.rootVolume.size
										

										 	
											The size in GiB of the root volume.
										

										 	
											Integer, for example 500.
										

										
	
											compute.platform.aws.rootVolume.type
										

										 	
											The type of the root volume.
										

										 	
											Valid AWS EBS volume type, such as io1.
										

										
	
											compute.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of worker nodes with a specific KMS key.
										

										 	
											Valid key ID or the key ARN.
										

										
	
											compute.platform.aws.type
										

										 	
											The EC2 instance type for the compute machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											compute.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											compute.aws.region
										

										 	
											The AWS region that the installation program creates compute resources in.
										

										 	
											Any valid AWS region, such as us-east-1.
										

										
	
											controlPlane.platform.aws.amiID
										

										 	
											The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											controlPlane.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of control plane nodes with a specific KMS key.
										

										 	
											Valid key ID and the key ARN.
										

										
	
											controlPlane.platform.aws.type
										

										 	
											The EC2 instance type for the control plane machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											controlPlane.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the control plane machine pool.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											controlPlane.aws.region
										

										 	
											The AWS region that the installation program creates control plane resources in.
										

										 	
											Valid AWS region, such as us-east-1.
										

										
	
											platform.aws.amiID
										

										 	
											The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											platform.aws.serviceEndpoints.name
										

										 	
											The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services.
										

										 	
											Valid AWS service endpoint name.
										

										
	
											platform.aws.serviceEndpoints.url
										

										 	
											The AWS service endpoint URL. The URL must use the https protocol and the host must trust the certificate.
										

										 	
											Valid AWS service endpoint URL.
										

										
	
											platform.aws.userTags
										

										 	
											A map of keys and values that the installation program adds as tags to all resources that it creates.
										

										 	
											Any valid YAML map, such as key value pairs in the <key>: <value> format. For more information about AWS tags, see Tagging Your Amazon EC2 Resources in the AWS documentation.
										

										
	
											platform.aws.subnets
										

										 	
											If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same machineNetwork[].cidr ranges that you specify. For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone.
										

										 	
											Valid subnet IDs.
										

										

Sample customized install-config.yaml file for AWS

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
credentialsMode: Mint [image: 2]
controlPlane: [image: 3] [image: 4]
 hyperthreading: Enabled [image: 5]
 name: master
 platform:
 aws:
 zones:
 - us-west-2a
 - us-west-2b
 rootVolume:
 iops: 4000
 size: 500
 type: io1 [image: 6]
 type: m5.xlarge
 replicas: 3
compute: [image: 7]
- hyperthreading: Enabled [image: 8]
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1 [image: 9]
 type: c5.4xlarge
 zones:
 - us-west-2c
 replicas: 3
metadata:
 name: test-cluster [image: 10]
networking: [image: 11]
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-west-2 [image: 12]
 userTags:
 adminContact: jdoe
 costCenter: 7536
 amiID: ami-96c6f8f7 [image: 13]
 serviceEndpoints: [image: 14]
 - name: ec2
 url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
fips: false [image: 15]
sshKey: ssh-ed25519 AAAA... (16)
pullSecret: '{"auths": ...}' (17)
	[image: 1] [image: 10] [image: 12] (17)
	
								Required. The installation program prompts you for this value.
							

	[image: 2]
	
								Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							

	[image: 3] [image: 7] [image: 11]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 4]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 5] [image: 8]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.
								

	[image: 6] [image: 9]
	
								To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
							

	[image: 13]
	
								The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
							

	[image: 14]
	
								The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Cluster Network Operator configuration

					The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.
				

					The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:
				
	clusterNetwork
	
								IP address pools from which pod IP addresses are allocated.
							
	serviceNetwork
	
								IP address pool for services.
							
	defaultNetwork.type
	
								Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
							

					You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.
				
Cluster Network Operator configuration object

						The fields for the Cluster Network Operator (CNO) are described in the following table:
					
Table 2.9. Cluster Network Operator configuration object
	Field	Type	Description
	
										metadata.name
									

									 	
										string
									

									 	
										The name of the CNO object. This name is always cluster.
									

									
	
										spec.clusterNetwork
									

									 	
										array
									

									 	
										A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
									

									
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.serviceNetwork
									

									 	
										array
									

									 	
										A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:
									

									
spec:
 serviceNetwork:
 - 172.30.0.0/14

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.defaultNetwork
									

									 	
										object
									

									 	
										Configures the Container Network Interface (CNI) cluster network provider for the cluster network.
									

									
	
										spec.kubeProxyConfig
									

									 	
										object
									

									 	
										The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.
									

									

defaultNetwork object configuration

						The values for the defaultNetwork object are defined in the following table:
					
Table 2.10. defaultNetwork object
	Field	Type	Description
	
										type
									

									 	
										string
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.
									

									 Note

											OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.
										

									
	
										openshiftSDNConfig
									

									 	
										object
									

									 	
										This object is only valid for the OpenShift SDN cluster network provider.
									

									
	
										ovnKubernetesConfig
									

									 	
										object
									

									 	
										This object is only valid for the OVN-Kubernetes cluster network provider.
									

									

Configuration for the OpenShift SDN CNI cluster network provider

						The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
					
Table 2.11. openshiftSDNConfig object
	Field	Type	Description
	
										mode
									

									 	
										string
									

									 	
										Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.
									

									
										The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.
									

									
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										vxlanPort
									

									 	
										integer
									

									 	
										The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.
									

									
										If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
									

									
										On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.
									

									

Example OpenShift SDN configuration

							

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

						
Configuration for the OVN-Kubernetes CNI cluster network provider

						The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
					
Table 2.12. ovnKubernetesConfig object
	Field	Type	Description
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										genevePort
									

									 	
										integer
									

									 	
										The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.
									

									

Example OVN-Kubernetes configuration

							

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081

						
kubeProxyConfig object configuration

						The values for the kubeProxyConfig object are defined in the following table:
					
Table 2.13. kubeProxyConfig object
	Field	Type	Description
	
										iptablesSyncPeriod
									

									 	
										string
									

									 	
										The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.
									

									 Note

											Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.
										

									
	
										proxyArguments.iptables-min-sync-period
									

									 	
										array
									

									 	
										The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:
									

									
kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

									

Specifying advanced network configuration

					You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
				
Important

						Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
					

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and specify the advanced network configuration for your cluster, such as in the following example:
						
Specify a different VXLAN port for the OpenShift SDN network provider

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 openshiftSDNConfig:
 vxlanPort: 4800

							

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Note

						For more information on using a Network Load Balancer (NLB) on AWS, see Configuring Ingress cluster traffic on AWS using a Network Load Balancer.
					

Configuring an Ingress Controller Network Load Balancer on a new AWS cluster

					You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on a new cluster.
				
Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure

						Create an Ingress Controller backed by an AWS NLB on a new cluster.
					
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the name of the directory that contains the install-config.yaml file for your cluster.
								

	
							Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the <installation_directory>/manifests/ directory:
						
$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the directory name that contains the manifests/ directory for your cluster.
								

							After creating the file, several network configuration files are in the manifests/ directory, as shown:
						
$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml
Example output

								

cluster-ingress-default-ingresscontroller.yaml

							

	
							Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a CR that describes the Operator configuration you want:
						
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

	
							Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Configuring hybrid networking with OVN-Kubernetes

					You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid cluster that supports different node networking configurations. For example, this is necessary to run both Linux and Windows nodes in a cluster.
				
Important

						You must configure hybrid networking with OVN-Kubernetes during the installation of your cluster. You cannot switch to hybrid networking after the installation process.
					

Prerequisites
	
							You defined OVNKubernetes for the networking.networkType parameter in the install-config.yaml file. See the installation documentation for configuring OpenShift Container Platform network customizations on your chosen cloud provider for more information.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with hybrid networking, such as in the following example:
						
Specify a hybrid networking configuration

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: [image: 1]
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 [image: 2]

							
	[image: 1]
	
									Specify the CIDR configuration used for nodes on the additional overlay network. The hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.
								

	[image: 2]
	
									Specify a custom VXLAN port for the additional overlay network. This is required for running Windows nodes in a cluster installed on vSphere, and must not be configured for any other cloud provider. The custom port can be any open port excluding the default 4789 port. For more information on this requirement, see the Microsoft documentation on Pod-to-pod connectivity between hosts is broken.
								

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Note

						For more information on using Linux and Windows nodes in the same cluster, see Understanding Windows container workloads.
					

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.
						
Note

								The elevated permissions provided by the AdministratorAccess policy are required only during installation.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service.
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a cluster on AWS in a restricted network

				In OpenShift Container Platform version 4.6, you can install a cluster on Amazon Web Services (AWS) in a restricted network by creating an internal mirror of the installation release content on an existing Amazon Virtual Private Cloud (VPC).
			
Prerequisites

	
							You mirrored the images for a disconnected installation to your registry and obtained the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							You have an existing VPC in AWS. When installing to a restricted network using installer-provisioned infrastructure, you cannot use the installer-provisioned VPC. You must use a user-provisioned VPC that satisfies one of the following requirements:
						
	
									Contains the mirror registry.
								
	
									Has firewall rules or a peering connection to access the mirror registry hosted elsewhere.
								

	
							You reviewed details about the OpenShift Container Platform installation and update processes.
						
	
							You configured an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or Unix) in the AWS documentation.
						
	
							If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow the sites that your cluster requires access to.
						
Note

								If you are configuring a proxy, be sure to also review this site list.
							

	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

About using a custom VPC

					In OpenShift Container Platform 4.6, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
				

					Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
				
Requirements for using your VPC

						The installation program no longer creates the following components:
					
	
								Internet gateways
							
	
								NAT gateways
							
	
								Subnets
							
	
								Route tables
							
	
								VPCs
							
	
								VPC DHCP options
							
	
								VPC endpoints
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Amazon VPC console wizard configurations and Work with VPCs and subnets in the AWS documentation for more information on creating and managing an AWS VPC.
					

						The installation program cannot:
					
	
								Subdivide network ranges for the cluster to use.
							
	
								Set route tables for the subnets.
							
	
								Set VPC options like DHCP.
							

						You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
					

						Your VPC must meet the following characteristics:
					
	
								The VPC must not use the kubernetes.io/cluster/.*: owned tag.
							

								The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify.
							

	
								You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
							

								If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone field in the install-config.yaml file.
							

	
								If you use a cluster with public access, you must create a public and a private subnet for each availability zone that your cluster uses. Each availability zone can contain no more than one public and one private subnet.
							

						If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2 and ELB endpoints. To resolve this, you must create a VPC endpoint and attach it to the subnet that the clusters are using. The endpoints should be named as follows:
					
	
								ec2.<region>.amazonaws.com
							
	
								elasticloadbalancing.<region>.amazonaws.com
							
	
								s3.<region>.amazonaws.com
							

Required VPC components

							You must provide a suitable VPC and subnets that allow communication to your machines.
						
	Component	AWS type	Description
	
										VPC
									

									 	 	
												AWS::EC2::VPC
											
	
												AWS::EC2::VPCEndpoint
											

									 	
										You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.
									

									
	
										Public subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::SubnetNetworkAclAssociation
											

									 	
										Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.
									

									
	
										Internet gateway
									

									 	 	
												AWS::EC2::InternetGateway
											
	
												AWS::EC2::VPCGatewayAttachment
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::Route
											
	
												AWS::EC2::SubnetRouteTableAssociation
											
	
												AWS::EC2::NatGateway
											
	
												AWS::EC2::EIP
											

									 	
										You must have a public Internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the Internet and are not required for some restricted network or proxy scenarios.
									

									
	
										Network access control
									

									 	 	
												AWS::EC2::NetworkAcl
											
	
												AWS::EC2::NetworkAclEntry
											

									 	
										You must allow the VPC to access the following ports:
									

									
	
										Port
									

									 	
										Reason
									

									
	
										80
									

									 	
										Inbound HTTP traffic
									

									
	
										443
									

									 	
										Inbound HTTPS traffic
									

									
	
										22
									

									 	
										Inbound SSH traffic
									

									
	
										1024 - 65535
									

									 	
										Inbound ephemeral traffic
									

									
	
										0 - 65535
									

									 	
										Outbound ephemeral traffic
									

									
	
										Private subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::SubnetRouteTableAssociation
											

									 	
										Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.
									

									

VPC validation

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the subnets that you specify exist.
							
	
								You provide private subnets.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified.
							
	
								You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
							
	
								You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
							

						If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed from the subnets that it used.
					

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
					

						The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, Internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
					

Isolation between clusters

						If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:
					
	
								You can install multiple OpenShift Container Platform clusters in the same VPC.
							
	
								ICMP ingress is allowed from the entire network.
							
	
								TCP 22 ingress (SSH) is allowed to the entire network.
							
	
								Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
							
	
								Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Amazon Web Services (AWS).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
						
	
							Have the imageContentSources values that were generated during mirror registry creation.
						
	
							Obtain the contents of the certificate for your mirror registry.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select AWS as the platform to target.
										
	
											If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
										
	
											Select the AWS region to deploy the cluster to.
										
	
											Select the base domain for the Route 53 service that you configured for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Edit the install-config.yaml file to provide the additional information that is required for an installation in a restricted network.
						
	
									Update the pullSecret value to contain the authentication information for your registry:
								
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

									For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.
								

	
									Add the additionalTrustBundle parameter and value.
								
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----

									The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
								

	
									Define the subnets for the VPC to install the cluster in:
								
subnets:
- subnet-1
- subnet-2
- subnet-3

	
									Add the image content resources, which look like this excerpt:
								
imageContentSources:
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: quay.example.com/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: registry.example.com/ocp/release

									To complete these values, use the imageContentSources that you recorded during mirror registry creation.
								

	
							Make any other modifications to the install-config.yaml file that you require. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 2.14. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 2.15. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 2.16. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Optional AWS configuration parameters

							Optional AWS configuration parameters are described in the following table:
						
Table 2.17. Optional AWS parameters
	Parameter	Description	Values
	
											compute.platform.aws.amiID
										

										 	
											The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											compute.platform.aws.rootVolume.iops
										

										 	
											The Input/Output Operations Per Second (IOPS) that is reserved for the root volume.
										

										 	
											Integer, for example 4000.
										

										
	
											compute.platform.aws.rootVolume.size
										

										 	
											The size in GiB of the root volume.
										

										 	
											Integer, for example 500.
										

										
	
											compute.platform.aws.rootVolume.type
										

										 	
											The type of the root volume.
										

										 	
											Valid AWS EBS volume type, such as io1.
										

										
	
											compute.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of worker nodes with a specific KMS key.
										

										 	
											Valid key ID or the key ARN.
										

										
	
											compute.platform.aws.type
										

										 	
											The EC2 instance type for the compute machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											compute.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											compute.aws.region
										

										 	
											The AWS region that the installation program creates compute resources in.
										

										 	
											Any valid AWS region, such as us-east-1.
										

										
	
											controlPlane.platform.aws.amiID
										

										 	
											The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											controlPlane.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of control plane nodes with a specific KMS key.
										

										 	
											Valid key ID and the key ARN.
										

										
	
											controlPlane.platform.aws.type
										

										 	
											The EC2 instance type for the control plane machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											controlPlane.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the control plane machine pool.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											controlPlane.aws.region
										

										 	
											The AWS region that the installation program creates control plane resources in.
										

										 	
											Valid AWS region, such as us-east-1.
										

										
	
											platform.aws.amiID
										

										 	
											The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											platform.aws.serviceEndpoints.name
										

										 	
											The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services.
										

										 	
											Valid AWS service endpoint name.
										

										
	
											platform.aws.serviceEndpoints.url
										

										 	
											The AWS service endpoint URL. The URL must use the https protocol and the host must trust the certificate.
										

										 	
											Valid AWS service endpoint URL.
										

										
	
											platform.aws.userTags
										

										 	
											A map of keys and values that the installation program adds as tags to all resources that it creates.
										

										 	
											Any valid YAML map, such as key value pairs in the <key>: <value> format. For more information about AWS tags, see Tagging Your Amazon EC2 Resources in the AWS documentation.
										

										
	
											platform.aws.subnets
										

										 	
											If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same machineNetwork[].cidr ranges that you specify. For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone.
										

										 	
											Valid subnet IDs.
										

										

Sample customized install-config.yaml file for AWS

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
credentialsMode: Mint [image: 2]
controlPlane: [image: 3] [image: 4]
 hyperthreading: Enabled [image: 5]
 name: master
 platform:
 aws:
 zones:
 - us-west-2a
 - us-west-2b
 rootVolume:
 iops: 4000
 size: 500
 type: io1 [image: 6]
 type: m5.xlarge
 replicas: 3
compute: [image: 7]
- hyperthreading: Enabled [image: 8]
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1 [image: 9]
 type: c5.4xlarge
 zones:
 - us-west-2c
 replicas: 3
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-west-2 [image: 11]
 userTags:
 adminContact: jdoe
 costCenter: 7536
 subnets: [image: 12]
 - subnet-1
 - subnet-2
 - subnet-3
 amiID: ami-96c6f8f7 [image: 13]
 serviceEndpoints: [image: 14]
 - name: ec2
 url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
 hostedZone: Z3URY6TWQ91KVV [image: 15]
fips: false (16)
sshKey: ssh-ed25519 AAAA... (17)
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (18)
additionalTrustBundle: | (19)
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
imageContentSources: (20)
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1] [image: 10] [image: 11]
	
								Required. The installation program prompts you for this value.
							

	[image: 2]
	
								Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							

	[image: 3] [image: 7]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 4]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 5] [image: 8]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.
								

	[image: 6] [image: 9]
	
								To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
							

	[image: 12]
	
								If you provide your own VPC, specify subnets for each availability zone that your cluster uses.
							

	[image: 13]
	
								The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
							

	[image: 14]
	
								The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
							

	[image: 15]
	
								The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone.
							

	(16)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(17)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(18)
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	(19)
	
								Provide the contents of the certificate file that you used for your mirror registry.
							

	(20)
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.
						
Note

								The elevated permissions provided by the AdministratorAccess policy are required only during installation.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Disabling the default OperatorHub sources

					Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
				
Procedure
	
							Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
						
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

					Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
				

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Validate an installation.
						
	
							Customize your cluster.
						
	
							Configure image streams for the Cluster Samples Operator and the must-gather tool.
						
	
							Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on AWS into an existing VPC

				In OpenShift Container Platform version 4.6, you can install a cluster into an existing Amazon Virtual Private Cloud (VPC) on Amazon Web Services (AWS). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About using a custom VPC

					In OpenShift Container Platform 4.6, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
				

					Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
				
Requirements for using your VPC

						The installation program no longer creates the following components:
					
	
								Internet gateways
							
	
								NAT gateways
							
	
								Subnets
							
	
								Route tables
							
	
								VPCs
							
	
								VPC DHCP options
							
	
								VPC endpoints
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Amazon VPC console wizard configurations and Work with VPCs and subnets in the AWS documentation for more information on creating and managing an AWS VPC.
					

						The installation program cannot:
					
	
								Subdivide network ranges for the cluster to use.
							
	
								Set route tables for the subnets.
							
	
								Set VPC options like DHCP.
							

						You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
					

						Your VPC must meet the following characteristics:
					
	
								Create a public and private subnet for each availability zone that your cluster uses. Each availability zone can contain no more than one public and one private subnet. For an example of this type of configuration, see VPC with public and private subnets (NAT) in the AWS documentation.
							

								Record each subnet ID. Completing the installation requires that you enter these values in the platform section of the install-config.yaml file. See Finding a subnet ID in the AWS documentation.
							

	
								The VPC’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines. The subnet CIDR blocks must belong to the machine CIDR that you specify.
							
	
								The VPC must have a public internet gateway attached to it. For each availability zone:
							
	
										The public subnet requires a route to the internet gateway.
									
	
										The public subnet requires a NAT gateway with an EIP address.
									
	
										The private subnet requires a route to the NAT gateway in public subnet.
									

	
								The VPC must not use the kubernetes.io/cluster/.*: owned tag.
							

								The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify.
							

	
								You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
							

								If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone field in the install-config.yaml file.
							

						If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2 and ELB endpoints. To resolve this, you must create a VPC endpoint and attach it to the subnet that the clusters are using. The endpoints should be named as follows:
					
	
								ec2.<region>.amazonaws.com
							
	
								elasticloadbalancing.<region>.amazonaws.com
							
	
								s3.<region>.amazonaws.com
							

Required VPC components

							You must provide a suitable VPC and subnets that allow communication to your machines.
						
	Component	AWS type	Description
	
										VPC
									

									 	 	
												AWS::EC2::VPC
											
	
												AWS::EC2::VPCEndpoint
											

									 	
										You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.
									

									
	
										Public subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::SubnetNetworkAclAssociation
											

									 	
										Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.
									

									
	
										Internet gateway
									

									 	 	
												AWS::EC2::InternetGateway
											
	
												AWS::EC2::VPCGatewayAttachment
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::Route
											
	
												AWS::EC2::SubnetRouteTableAssociation
											
	
												AWS::EC2::NatGateway
											
	
												AWS::EC2::EIP
											

									 	
										You must have a public Internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the Internet and are not required for some restricted network or proxy scenarios.
									

									
	
										Network access control
									

									 	 	
												AWS::EC2::NetworkAcl
											
	
												AWS::EC2::NetworkAclEntry
											

									 	
										You must allow the VPC to access the following ports:
									

									
	
										Port
									

									 	
										Reason
									

									
	
										80
									

									 	
										Inbound HTTP traffic
									

									
	
										443
									

									 	
										Inbound HTTPS traffic
									

									
	
										22
									

									 	
										Inbound SSH traffic
									

									
	
										1024 - 65535
									

									 	
										Inbound ephemeral traffic
									

									
	
										0 - 65535
									

									 	
										Outbound ephemeral traffic
									

									
	
										Private subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::SubnetRouteTableAssociation
											

									 	
										Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.
									

									

VPC validation

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the subnets that you specify exist.
							
	
								You provide private subnets.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified.
							
	
								You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
							
	
								You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
							

						If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed from the subnets that it used.
					

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
					

						The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, Internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
					

Isolation between clusters

						If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:
					
	
								You can install multiple OpenShift Container Platform clusters in the same VPC.
							
	
								ICMP ingress is allowed from the entire network.
							
	
								TCP 22 ingress (SSH) is allowed to the entire network.
							
	
								Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
							
	
								Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Amazon Web Services (AWS).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select AWS as the platform to target.
										
	
											If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
										
	
											Select the AWS region to deploy the cluster to.
										
	
											Select the base domain for the Route 53 service that you configured for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 2.18. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 2.19. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 2.20. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Optional AWS configuration parameters

							Optional AWS configuration parameters are described in the following table:
						
Table 2.21. Optional AWS parameters
	Parameter	Description	Values
	
											compute.platform.aws.amiID
										

										 	
											The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											compute.platform.aws.rootVolume.iops
										

										 	
											The Input/Output Operations Per Second (IOPS) that is reserved for the root volume.
										

										 	
											Integer, for example 4000.
										

										
	
											compute.platform.aws.rootVolume.size
										

										 	
											The size in GiB of the root volume.
										

										 	
											Integer, for example 500.
										

										
	
											compute.platform.aws.rootVolume.type
										

										 	
											The type of the root volume.
										

										 	
											Valid AWS EBS volume type, such as io1.
										

										
	
											compute.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of worker nodes with a specific KMS key.
										

										 	
											Valid key ID or the key ARN.
										

										
	
											compute.platform.aws.type
										

										 	
											The EC2 instance type for the compute machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											compute.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											compute.aws.region
										

										 	
											The AWS region that the installation program creates compute resources in.
										

										 	
											Any valid AWS region, such as us-east-1.
										

										
	
											controlPlane.platform.aws.amiID
										

										 	
											The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											controlPlane.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of control plane nodes with a specific KMS key.
										

										 	
											Valid key ID and the key ARN.
										

										
	
											controlPlane.platform.aws.type
										

										 	
											The EC2 instance type for the control plane machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											controlPlane.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the control plane machine pool.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											controlPlane.aws.region
										

										 	
											The AWS region that the installation program creates control plane resources in.
										

										 	
											Valid AWS region, such as us-east-1.
										

										
	
											platform.aws.amiID
										

										 	
											The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											platform.aws.serviceEndpoints.name
										

										 	
											The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services.
										

										 	
											Valid AWS service endpoint name.
										

										
	
											platform.aws.serviceEndpoints.url
										

										 	
											The AWS service endpoint URL. The URL must use the https protocol and the host must trust the certificate.
										

										 	
											Valid AWS service endpoint URL.
										

										
	
											platform.aws.userTags
										

										 	
											A map of keys and values that the installation program adds as tags to all resources that it creates.
										

										 	
											Any valid YAML map, such as key value pairs in the <key>: <value> format. For more information about AWS tags, see Tagging Your Amazon EC2 Resources in the AWS documentation.
										

										
	
											platform.aws.subnets
										

										 	
											If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same machineNetwork[].cidr ranges that you specify. For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone.
										

										 	
											Valid subnet IDs.
										

										

Sample customized install-config.yaml file for AWS

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
credentialsMode: Mint [image: 2]
controlPlane: [image: 3] [image: 4]
 hyperthreading: Enabled [image: 5]
 name: master
 platform:
 aws:
 zones:
 - us-west-2a
 - us-west-2b
 rootVolume:
 iops: 4000
 size: 500
 type: io1 [image: 6]
 type: m5.xlarge
 replicas: 3
compute: [image: 7]
- hyperthreading: Enabled [image: 8]
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1 [image: 9]
 type: c5.4xlarge
 zones:
 - us-west-2c
 replicas: 3
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-west-2 [image: 11]
 userTags:
 adminContact: jdoe
 costCenter: 7536
 subnets: [image: 12]
 - subnet-1
 - subnet-2
 - subnet-3
 amiID: ami-96c6f8f7 [image: 13]
 serviceEndpoints: [image: 14]
 - name: ec2
 url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
 hostedZone: Z3URY6TWQ91KVV [image: 15]
fips: false (16)
sshKey: ssh-ed25519 AAAA... (17)
pullSecret: '{"auths": ...}' (18)
	[image: 1] [image: 10] [image: 11] (18)
	
								Required. The installation program prompts you for this value.
							

	[image: 2]
	
								Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							

	[image: 3] [image: 7]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 4]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 5] [image: 8]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.
								

	[image: 6] [image: 9]
	
								To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
							

	[image: 12]
	
								If you provide your own VPC, specify subnets for each availability zone that your cluster uses.
							

	[image: 13]
	
								The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
							

	[image: 14]
	
								The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
							

	[image: 15]
	
								The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone.
							

	(16)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(17)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.
						
Note

								The elevated permissions provided by the AdministratorAccess policy are required only during installation.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service.
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a private cluster on AWS

				In OpenShift Container Platform version 4.6, you can install a private cluster into an existing VPC on Amazon Web Services (AWS). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Private clusters

					You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
				

					By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
				

					To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
				

					Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
				
Private clusters in AWS

						To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for access from only the private network.
					

						The cluster still requires access to Internet to access the AWS APIs.
					

						The following items are not required or created when you install a private cluster:
					
	
								Public subnets
							
	
								Public load balancers, which support public ingress
							
	
								A public Route 53 zone that matches the baseDomain for the cluster
							

						The installation program does use the baseDomain that you specify to create a private Route 53 zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
					
Limitations

							The ability to add public functionality to a private cluster is limited.
						
	
									You cannot make the Kubernetes API endpoints public after installation without taking additional actions, including creating public subnets in the VPC for each availability zone in use, creating a public load balancer, and configuring the control plane security groups to allow traffic from Internet on 6443 (Kubernetes API port).
								
	
									If you use a public Service type load balancer, you must tag a public subnet in each availability zone with kubernetes.io/cluster/<cluster-infra-id>: shared so that AWS can use them to create public load balancers.
								

About using a custom VPC

					In OpenShift Container Platform 4.6, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
				

					Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
				
Requirements for using your VPC

						The installation program no longer creates the following components:
					
	
								Internet gateways
							
	
								NAT gateways
							
	
								Subnets
							
	
								Route tables
							
	
								VPCs
							
	
								VPC DHCP options
							
	
								VPC endpoints
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Amazon VPC console wizard configurations and Work with VPCs and subnets in the AWS documentation for more information on creating and managing an AWS VPC.
					

						The installation program cannot:
					
	
								Subdivide network ranges for the cluster to use.
							
	
								Set route tables for the subnets.
							
	
								Set VPC options like DHCP.
							

						You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
					

						Your VPC must meet the following characteristics:
					
	
								The VPC must not use the kubernetes.io/cluster/.*: owned tag.
							

								The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify.
							

	
								You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
							

								If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone field in the install-config.yaml file.
							

	
								If you use a cluster with public access, you must create a public and a private subnet for each availability zone that your cluster uses. Each availability zone can contain no more than one public and one private subnet.
							

						If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2 and ELB endpoints. To resolve this, you must create a VPC endpoint and attach it to the subnet that the clusters are using. The endpoints should be named as follows:
					
	
								ec2.<region>.amazonaws.com
							
	
								elasticloadbalancing.<region>.amazonaws.com
							
	
								s3.<region>.amazonaws.com
							

Required VPC components

							You must provide a suitable VPC and subnets that allow communication to your machines.
						
	Component	AWS type	Description
	
										VPC
									

									 	 	
												AWS::EC2::VPC
											
	
												AWS::EC2::VPCEndpoint
											

									 	
										You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.
									

									
	
										Public subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::SubnetNetworkAclAssociation
											

									 	
										Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.
									

									
	
										Internet gateway
									

									 	 	
												AWS::EC2::InternetGateway
											
	
												AWS::EC2::VPCGatewayAttachment
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::Route
											
	
												AWS::EC2::SubnetRouteTableAssociation
											
	
												AWS::EC2::NatGateway
											
	
												AWS::EC2::EIP
											

									 	
										You must have a public Internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the Internet and are not required for some restricted network or proxy scenarios.
									

									
	
										Network access control
									

									 	 	
												AWS::EC2::NetworkAcl
											
	
												AWS::EC2::NetworkAclEntry
											

									 	
										You must allow the VPC to access the following ports:
									

									
	
										Port
									

									 	
										Reason
									

									
	
										80
									

									 	
										Inbound HTTP traffic
									

									
	
										443
									

									 	
										Inbound HTTPS traffic
									

									
	
										22
									

									 	
										Inbound SSH traffic
									

									
	
										1024 - 65535
									

									 	
										Inbound ephemeral traffic
									

									
	
										0 - 65535
									

									 	
										Outbound ephemeral traffic
									

									
	
										Private subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::SubnetRouteTableAssociation
											

									 	
										Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.
									

									

VPC validation

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the subnets that you specify exist.
							
	
								You provide private subnets.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified.
							
	
								You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
							
	
								You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
							

						If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed from the subnets that it used.
					

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
					

						The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, Internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
					

Isolation between clusters

						If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:
					
	
								You can install multiple OpenShift Container Platform clusters in the same VPC.
							
	
								ICMP ingress is allowed from the entire network.
							
	
								TCP 22 ingress (SSH) is allowed to the entire network.
							
	
								Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
							
	
								Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					For installations of a private OpenShift Container Platform cluster that are only accessible from an internal network and are not visible to the Internet, you must manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 2.22. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 2.23. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 2.24. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Optional AWS configuration parameters

							Optional AWS configuration parameters are described in the following table:
						
Table 2.25. Optional AWS parameters
	Parameter	Description	Values
	
											compute.platform.aws.amiID
										

										 	
											The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											compute.platform.aws.rootVolume.iops
										

										 	
											The Input/Output Operations Per Second (IOPS) that is reserved for the root volume.
										

										 	
											Integer, for example 4000.
										

										
	
											compute.platform.aws.rootVolume.size
										

										 	
											The size in GiB of the root volume.
										

										 	
											Integer, for example 500.
										

										
	
											compute.platform.aws.rootVolume.type
										

										 	
											The type of the root volume.
										

										 	
											Valid AWS EBS volume type, such as io1.
										

										
	
											compute.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of worker nodes with a specific KMS key.
										

										 	
											Valid key ID or the key ARN.
										

										
	
											compute.platform.aws.type
										

										 	
											The EC2 instance type for the compute machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											compute.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											compute.aws.region
										

										 	
											The AWS region that the installation program creates compute resources in.
										

										 	
											Any valid AWS region, such as us-east-1.
										

										
	
											controlPlane.platform.aws.amiID
										

										 	
											The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											controlPlane.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of control plane nodes with a specific KMS key.
										

										 	
											Valid key ID and the key ARN.
										

										
	
											controlPlane.platform.aws.type
										

										 	
											The EC2 instance type for the control plane machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											controlPlane.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the control plane machine pool.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											controlPlane.aws.region
										

										 	
											The AWS region that the installation program creates control plane resources in.
										

										 	
											Valid AWS region, such as us-east-1.
										

										
	
											platform.aws.amiID
										

										 	
											The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											platform.aws.serviceEndpoints.name
										

										 	
											The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services.
										

										 	
											Valid AWS service endpoint name.
										

										
	
											platform.aws.serviceEndpoints.url
										

										 	
											The AWS service endpoint URL. The URL must use the https protocol and the host must trust the certificate.
										

										 	
											Valid AWS service endpoint URL.
										

										
	
											platform.aws.userTags
										

										 	
											A map of keys and values that the installation program adds as tags to all resources that it creates.
										

										 	
											Any valid YAML map, such as key value pairs in the <key>: <value> format. For more information about AWS tags, see Tagging Your Amazon EC2 Resources in the AWS documentation.
										

										
	
											platform.aws.subnets
										

										 	
											If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same machineNetwork[].cidr ranges that you specify. For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone.
										

										 	
											Valid subnet IDs.
										

										

Sample customized install-config.yaml file for AWS

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
credentialsMode: Mint [image: 2]
controlPlane: [image: 3] [image: 4]
 hyperthreading: Enabled [image: 5]
 name: master
 platform:
 aws:
 zones:
 - us-west-2a
 - us-west-2b
 rootVolume:
 iops: 4000
 size: 500
 type: io1 [image: 6]
 type: m5.xlarge
 replicas: 3
compute: [image: 7]
- hyperthreading: Enabled [image: 8]
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1 [image: 9]
 type: c5.4xlarge
 zones:
 - us-west-2c
 replicas: 3
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-west-2 [image: 11]
 userTags:
 adminContact: jdoe
 costCenter: 7536
 subnets: [image: 12]
 - subnet-1
 - subnet-2
 - subnet-3
 amiID: ami-96c6f8f7 [image: 13]
 serviceEndpoints: [image: 14]
 - name: ec2
 url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
 hostedZone: Z3URY6TWQ91KVV [image: 15]
fips: false (16)
sshKey: ssh-ed25519 AAAA... (17)
publish: Internal (18)
pullSecret: '{"auths": ...}' (19)
	[image: 1] [image: 10] [image: 11] (19)
	
								Required. The installation program prompts you for this value.
							

	[image: 2]
	
								Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							

	[image: 3] [image: 7]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 4]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 5] [image: 8]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.
								

	[image: 6] [image: 9]
	
								To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
							

	[image: 12]
	
								If you provide your own VPC, specify subnets for each availability zone that your cluster uses.
							

	[image: 13]
	
								The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
							

	[image: 14]
	
								The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
							

	[image: 15]
	
								The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone.
							

	(16)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(17)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(18)
	
								How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the Internet. The default value is External.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service.
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a cluster on AWS into a government region

				In OpenShift Container Platform version 4.6, you can install a cluster on Amazon Web Services (AWS) into a government region. To configure the government region, modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

AWS government regions

					OpenShift Container Platform supports deploying a cluster to AWS GovCloud (US) regions. AWS GovCloud is specifically designed for US government agencies at the federal, state, and local level, as well as contractors, educational institutions, and other US customers that must run sensitive workloads in the cloud.
				

					These regions do not have published Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Images (AMI) to select, so you must upload a custom AMI that belongs to that region.
				

					The following AWS GovCloud partitions are supported:
				
	
							us-gov-west-1
						
	
							us-gov-east-1
						

					The AWS GovCloud region and custom AMI must be manually configured in the install-config.yaml file since RHCOS AMIs are not provided by Red Hat for those regions.
				

Private clusters

					You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
				
Note

						Public zones are not supported in Route 53 in AWS GovCloud. Therefore, clusters must be private if they are deployed to an AWS government region.
					

					By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
				

					To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
				

					Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
				
Private clusters in AWS

						To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for access from only the private network.
					

						The cluster still requires access to Internet to access the AWS APIs.
					

						The following items are not required or created when you install a private cluster:
					
	
								Public subnets
							
	
								Public load balancers, which support public ingress
							
	
								A public Route 53 zone that matches the baseDomain for the cluster
							

						The installation program does use the baseDomain that you specify to create a private Route 53 zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
					
Limitations

							The ability to add public functionality to a private cluster is limited.
						
	
									You cannot make the Kubernetes API endpoints public after installation without taking additional actions, including creating public subnets in the VPC for each availability zone in use, creating a public load balancer, and configuring the control plane security groups to allow traffic from Internet on 6443 (Kubernetes API port).
								
	
									If you use a public Service type load balancer, you must tag a public subnet in each availability zone with kubernetes.io/cluster/<cluster-infra-id>: shared so that AWS can use them to create public load balancers.
								

About using a custom VPC

					In OpenShift Container Platform 4.6, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
				

					Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
				
Requirements for using your VPC

						The installation program no longer creates the following components:
					
	
								Internet gateways
							
	
								NAT gateways
							
	
								Subnets
							
	
								Route tables
							
	
								VPCs
							
	
								VPC DHCP options
							
	
								VPC endpoints
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Amazon VPC console wizard configurations and Work with VPCs and subnets in the AWS documentation for more information on creating and managing an AWS VPC.
					

						The installation program cannot:
					
	
								Subdivide network ranges for the cluster to use.
							
	
								Set route tables for the subnets.
							
	
								Set VPC options like DHCP.
							

						You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
					

						Your VPC must meet the following characteristics:
					
	
								The VPC must not use the kubernetes.io/cluster/.*: owned tag.
							

								The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify.
							

	
								You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
							

								If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone field in the install-config.yaml file.
							

	
								If you use a cluster with public access, you must create a public and a private subnet for each availability zone that your cluster uses. Each availability zone can contain no more than one public and one private subnet.
							

						If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2 and ELB endpoints. To resolve this, you must create a VPC endpoint and attach it to the subnet that the clusters are using. The endpoints should be named as follows:
					
	
								ec2.<region>.amazonaws.com
							
	
								elasticloadbalancing.<region>.amazonaws.com
							
	
								s3.<region>.amazonaws.com
							

Required VPC components

							You must provide a suitable VPC and subnets that allow communication to your machines.
						
	Component	AWS type	Description
	
										VPC
									

									 	 	
												AWS::EC2::VPC
											
	
												AWS::EC2::VPCEndpoint
											

									 	
										You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.
									

									
	
										Public subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::SubnetNetworkAclAssociation
											

									 	
										Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.
									

									
	
										Internet gateway
									

									 	 	
												AWS::EC2::InternetGateway
											
	
												AWS::EC2::VPCGatewayAttachment
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::Route
											
	
												AWS::EC2::SubnetRouteTableAssociation
											
	
												AWS::EC2::NatGateway
											
	
												AWS::EC2::EIP
											

									 	
										You must have a public Internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the Internet and are not required for some restricted network or proxy scenarios.
									

									
	
										Network access control
									

									 	 	
												AWS::EC2::NetworkAcl
											
	
												AWS::EC2::NetworkAclEntry
											

									 	
										You must allow the VPC to access the following ports:
									

									
	
										Port
									

									 	
										Reason
									

									
	
										80
									

									 	
										Inbound HTTP traffic
									

									
	
										443
									

									 	
										Inbound HTTPS traffic
									

									
	
										22
									

									 	
										Inbound SSH traffic
									

									
	
										1024 - 65535
									

									 	
										Inbound ephemeral traffic
									

									
	
										0 - 65535
									

									 	
										Outbound ephemeral traffic
									

									
	
										Private subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::SubnetRouteTableAssociation
											

									 	
										Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.
									

									

VPC validation

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the subnets that you specify exist.
							
	
								You provide private subnets.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified.
							
	
								You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
							
	
								You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
							

						If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed from the subnets that it used.
					

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
					

						The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, Internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
					

Isolation between clusters

						If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:
					
	
								You can install multiple OpenShift Container Platform clusters in the same VPC.
							
	
								ICMP ingress is allowed from the entire network.
							
	
								TCP 22 ingress (SSH) is allowed to the entire network.
							
	
								Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
							
	
								Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					When installing OpenShift Container Platform on Amazon Web Services (AWS) into a region requiring a custom Red Hat Enterprise Linux CoreOS (RHCOS) AMI, you must manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 2.26. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 2.27. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 2.28. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Optional AWS configuration parameters

							Optional AWS configuration parameters are described in the following table:
						
Table 2.29. Optional AWS parameters
	Parameter	Description	Values
	
											compute.platform.aws.amiID
										

										 	
											The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											compute.platform.aws.rootVolume.iops
										

										 	
											The Input/Output Operations Per Second (IOPS) that is reserved for the root volume.
										

										 	
											Integer, for example 4000.
										

										
	
											compute.platform.aws.rootVolume.size
										

										 	
											The size in GiB of the root volume.
										

										 	
											Integer, for example 500.
										

										
	
											compute.platform.aws.rootVolume.type
										

										 	
											The type of the root volume.
										

										 	
											Valid AWS EBS volume type, such as io1.
										

										
	
											compute.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of worker nodes with a specific KMS key.
										

										 	
											Valid key ID or the key ARN.
										

										
	
											compute.platform.aws.type
										

										 	
											The EC2 instance type for the compute machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											compute.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											compute.aws.region
										

										 	
											The AWS region that the installation program creates compute resources in.
										

										 	
											Any valid AWS region, such as us-east-1.
										

										
	
											controlPlane.platform.aws.amiID
										

										 	
											The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											controlPlane.platform.aws.rootVolume.kmsKeyARN
										

										 	
											The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt OS volumes of control plane nodes with a specific KMS key.
										

										 	
											Valid key ID and the key ARN.
										

										
	
											controlPlane.platform.aws.type
										

										 	
											The EC2 instance type for the control plane machines.
										

										 	
											Valid AWS instance type, such as c5.9xlarge.
										

										
	
											controlPlane.platform.aws.zones
										

										 	
											The availability zones where the installation program creates machines for the control plane machine pool.
										

										 	
											A list of valid AWS availability zones, such as us-east-1c, in a YAML sequence.
										

										
	
											controlPlane.aws.region
										

										 	
											The AWS region that the installation program creates control plane resources in.
										

										 	
											Valid AWS region, such as us-east-1.
										

										
	
											platform.aws.amiID
										

										 	
											The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom RHCOS AMI.
										

										 	
											Any published or custom RHCOS AMI that belongs to the set AWS region.
										

										
	
											platform.aws.serviceEndpoints.name
										

										 	
											The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services.
										

										 	
											Valid AWS service endpoint name.
										

										
	
											platform.aws.serviceEndpoints.url
										

										 	
											The AWS service endpoint URL. The URL must use the https protocol and the host must trust the certificate.
										

										 	
											Valid AWS service endpoint URL.
										

										
	
											platform.aws.userTags
										

										 	
											A map of keys and values that the installation program adds as tags to all resources that it creates.
										

										 	
											Any valid YAML map, such as key value pairs in the <key>: <value> format. For more information about AWS tags, see Tagging Your Amazon EC2 Resources in the AWS documentation.
										

										
	
											platform.aws.subnets
										

										 	
											If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same machineNetwork[].cidr ranges that you specify. For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone.
										

										 	
											Valid subnet IDs.
										

										

Sample customized install-config.yaml file for AWS

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
credentialsMode: Mint [image: 2]
controlPlane: [image: 3] [image: 4]
 hyperthreading: Enabled [image: 5]
 name: master
 platform:
 aws:
 zones:
 - us-gov-west-1a
 - us-gov-west-1b
 rootVolume:
 iops: 4000
 size: 500
 type: io1 [image: 6]
 type: m5.xlarge
 replicas: 3
compute: [image: 7]
- hyperthreading: Enabled [image: 8]
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1 [image: 9]
 type: c5.4xlarge
 zones:
 - us-gov-west-1c
 replicas: 3
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-gov-west-1
 userTags:
 adminContact: jdoe
 costCenter: 7536
 subnets: [image: 11]
 - subnet-1
 - subnet-2
 - subnet-3
 amiID: ami-96c6f8f7 [image: 12]
 serviceEndpoints: [image: 13]
 - name: ec2
 url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
 hostedZone: Z3URY6TWQ91KVV [image: 14]
fips: false [image: 15]
sshKey: ssh-ed25519 AAAA... (16)
publish: Internal (17)
pullSecret: '{"auths": ...}' (18)
additionalTrustBundle: | (19)
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
	[image: 1] [image: 10] (18)
	
								Required.
							

	[image: 2]
	
								Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							

	[image: 3] [image: 7]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 4]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 5] [image: 8]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.
								

	[image: 6] [image: 9]
	
								To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
							

	[image: 11]
	
								If you provide your own VPC, specify subnets for each availability zone that your cluster uses.
							

	[image: 12]
	
								The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
							

	[image: 13]
	
								The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
							

	[image: 14]
	
								The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(17)
	
								How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the Internet. The default value is External.
							

	(19)
	
								The custom CA certificate. This is required when deploying to the AWS C2S Secret Region because the AWS API requires a custom CA trust bundle.
							

AWS regions without a published RHCOS AMI

						You can deploy an OpenShift Container Platform cluster to Amazon Web Services (AWS) regions without native support for a Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) or the AWS software development kit (SDK). If a published AMI is not available for an AWS region, you can upload a custom AMI prior to installing the cluster. This is required if you are deploying your cluster to an AWS government region.
					

						If you are deploying to a non-government region that does not have a published RHCOS AMI, and you do not specify a custom AMI, the installation program copies the us-east-1 AMI to the user account automatically. Then the installation program creates the control plane machines with encrypted EBS volumes using the default or user-specified Key Management Service (KMS) key. This allows the AMI to follow the same process workflow as published RHCOS AMIs.
					

						A region without native support for an RHCOS AMI is not available to select from the terminal during cluster creation because it is not published. However, you can install to this region by configuring the custom AMI in the install-config.yaml file.
					

Uploading a custom RHCOS AMI in AWS

						If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) that belongs to that region.
					
Prerequisites
	
								You configured an AWS account.
							
	
								You created an Amazon S3 bucket with the required IAM service role.
							
	
								You uploaded your RHCOS VMDK file to Amazon S3. The RHCOS VMDK file must be the highest version that is less than or equal to the OpenShift Container Platform version you are installing.
							
	
								You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer.
							

Procedure
	
								Export your AWS profile as an environment variable:
							
$ export AWS_PROFILE=<aws_profile> [image: 1]
	[image: 1]
	
										The AWS profile name that holds your AWS credentials, like govcloud.
									

	
								Export the region to associate with your custom AMI as an environment variable:
							
$ export AWS_DEFAULT_REGION=<aws_region> [image: 1]
	[image: 1]
	
										The AWS region, like us-gov-east-1.
									

	
								Export the version of RHCOS you uploaded to Amazon S3 as an environment variable:
							
$ export RHCOS_VERSION=<version> [image: 1]
	[image: 1]
	
										The RHCOS VMDK version, like 4.6.0.
									

	
								Export the Amazon S3 bucket name as an environment variable:
							
$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>

	
								Create the containers.json file and define your RHCOS VMDK file:
							
$ cat <<EOF > containers.json
{
 "Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
 "Format": "vmdk",
 "UserBucket": {
 "S3Bucket": "${VMIMPORT_BUCKET_NAME}",
 "S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
 }
}
EOF

	
								Import the RHCOS disk as an Amazon EBS snapshot:
							
$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
 --description "<description>" \ [image: 1]
 --disk-container "file://<file_path>/containers.json" [image: 2]
	[image: 1]
	
										The description of your RHCOS disk being imported, like rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.
									

	[image: 2]
	
										The file path to the JSON file describing your RHCOS disk. The JSON file should contain your Amazon S3 bucket name and key.
									

	
								Check the status of the image import:
							
$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}
Example output

									

{
 "ImportSnapshotTasks": [
 {
 "Description": "rhcos-4.6.0-x86_64-aws.x86_64",
 "ImportTaskId": "import-snap-fh6i8uil",
 "SnapshotTaskDetail": {
 "Description": "rhcos-4.6.0-x86_64-aws.x86_64",
 "DiskImageSize": 819056640.0,
 "Format": "VMDK",
 "SnapshotId": "snap-06331325870076318",
 "Status": "completed",
 "UserBucket": {
 "S3Bucket": "external-images",
 "S3Key": "rhcos-4.6.0-x86_64-aws.x86_64.vmdk"
 }
 }
 }
]
}

								

								Copy the SnapshotId to register the image.
							

	
								Create a custom RHCOS AMI from the RHCOS snapshot:
							
$ aws ec2 register-image \
 --region ${AWS_DEFAULT_REGION} \
 --architecture x86_64 \ [image: 1]
 --description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ [image: 2]
 --ena-support \
 --name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ [image: 3]
 --virtualization-type hvm \
 --root-device-name '/dev/xvda' \
 --block-device-mappings 'DeviceName=/dev/xvda,Ebs={DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' [image: 4]
	[image: 1]
	
										The RHCOS VMDK architecture type, like x86_64, s390x, or ppc64le.
									

	[image: 2]
	
										The Description from the imported snapshot.
									

	[image: 3]
	
										The name of the RHCOS AMI.
									

	[image: 4]
	
										The SnapshotID from the imported snapshot.
									

						To learn more about these APIs, see the AWS documentation for importing snapshots and creating EBS-backed AMIs.
					

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.
						
Note

								The elevated permissions provided by the AdministratorAccess policy are required only during installation.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service.
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a cluster on user-provisioned infrastructure in AWS by using CloudFormation templates

				In OpenShift Container Platform version 4.6, you can install a cluster on Amazon Web Services (AWS) that uses infrastructure that you provide.
			

				One way to create this infrastructure is to use the provided CloudFormation templates. You can modify the templates to customize your infrastructure or use the information that they contain to create AWS objects according to your company’s policies.
			
Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several CloudFormation templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
				

Prerequisites

	
							You reviewed details about the OpenShift Container Platform installation and update processes.
						
	
							You configured an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or Unix) in the AWS documentation.
						
	
							If you use a firewall, you configured it to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Required AWS infrastructure components

					To install OpenShift Container Platform on user-provisioned infrastructure in Amazon Web Services (AWS), you must manually create both the machines and their supporting infrastructure.
				

					For more information about the integration testing for different platforms, see the OpenShift Container Platform 4.x Tested Integrations page.
				

					By using the provided CloudFormation templates, you can create stacks of AWS resources that represent the following components:
				
	
							An AWS Virtual Private Cloud (VPC)
						
	
							Networking and load balancing components
						
	
							Security groups and roles
						
	
							An OpenShift Container Platform bootstrap node
						
	
							OpenShift Container Platform control plane nodes
						
	
							An OpenShift Container Platform compute node
						

					Alternatively, you can manually create the components or you can reuse existing infrastructure that meets the cluster requirements. Review the CloudFormation templates for more details about how the components interrelate.
				
Cluster machines

						You need AWS::EC2::Instance objects for the following machines:
					
	
								A bootstrap machine. This machine is required during installation, but you can remove it after your cluster deploys.
							
	
								Three control plane machines. The control plane machines are not governed by a machine set.
							
	
								Compute machines. You must create at least two compute machines, which are also known as worker machines, during installation. These machines are not governed by a machine set.
							

						You can use the following instance types for the cluster machines with the provided CloudFormation templates.
					
Important

							If m4 instance types are not available in your region, such as with eu-west-3, use m5 types instead.
						

Table 2.30. Instance types for machines
	Instance type	Bootstrap	Control plane	Compute
	
										i3.large
									

									 	
										x
									

									 	 	
	
										m4.large
									

									 	 	 	
										x
									

									
	
										m4.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.10xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.16xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.large
									

									 	 	 	
										x
									

									
	
										m5.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.10xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.16xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m6i.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										c4.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										c4.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										c4.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.large
									

									 	 	 	
										x
									

									
	
										r4.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.16xlarge
									

									 	 	
										x
									

									 	
										x
									

									

						You might be able to use other instance types that meet the specifications of these instance types.
					

Other infrastructure components

	
								A VPC
							
	
								DNS entries
							
	
								Load balancers (classic or network) and listeners
							
	
								A public and a private Route 53 zone
							
	
								Security groups
							
	
								IAM roles
							
	
								S3 buckets
							

						If you are working in a disconnected environment or use a proxy, you cannot reach the public IP addresses for EC2 and ELB endpoints. To reach these endpoints, you must create a VPC endpoint and attach it to the subnet that the clusters are using. Create the following endpoints:
					
	
								ec2.<region>.amazonaws.com
							
	
								elasticloadbalancing.<region>.amazonaws.com
							
	
								s3.<region>.amazonaws.com
							

Required VPC components

							You must provide a suitable VPC and subnets that allow communication to your machines.
						
	Component	AWS type	Description
	
										VPC
									

									 	 	
												AWS::EC2::VPC
											
	
												AWS::EC2::VPCEndpoint
											

									 	
										You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.
									

									
	
										Public subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::SubnetNetworkAclAssociation
											

									 	
										Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.
									

									
	
										Internet gateway
									

									 	 	
												AWS::EC2::InternetGateway
											
	
												AWS::EC2::VPCGatewayAttachment
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::Route
											
	
												AWS::EC2::SubnetRouteTableAssociation
											
	
												AWS::EC2::NatGateway
											
	
												AWS::EC2::EIP
											

									 	
										You must have a public Internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the Internet and are not required for some restricted network or proxy scenarios.
									

									
	
										Network access control
									

									 	 	
												AWS::EC2::NetworkAcl
											
	
												AWS::EC2::NetworkAclEntry
											

									 	
										You must allow the VPC to access the following ports:
									

									
	
										Port
									

									 	
										Reason
									

									
	
										80
									

									 	
										Inbound HTTP traffic
									

									
	
										443
									

									 	
										Inbound HTTPS traffic
									

									
	
										22
									

									 	
										Inbound SSH traffic
									

									
	
										1024 - 65535
									

									 	
										Inbound ephemeral traffic
									

									
	
										0 - 65535
									

									 	
										Outbound ephemeral traffic
									

									
	
										Private subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::SubnetRouteTableAssociation
											

									 	
										Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.
									

									

Required DNS and load balancing components

							Your DNS and load balancer configuration needs to use a public hosted zone and can use a private hosted zone similar to the one that the installation program uses if it provisions the cluster’s infrastructure. You must create a DNS entry that resolves to your load balancer. An entry for api.<cluster_name>.<domain> must point to the external load balancer, and an entry for api-int.<cluster_name>.<domain> must point to the internal load balancer.
						

						The cluster also requires load balancers and listeners for port 6443, which are required for the Kubernetes API and its extensions, and port 22623, which are required for the Ignition config files for new machines. The targets will be the control plane nodes (also known as the master nodes). Port 6443 must be accessible to both clients external to the cluster and nodes within the cluster. Port 22623 must be accessible to nodes within the cluster.
					
	Component	AWS type	Description
	
										DNS
									

									 	
										AWS::Route53::HostedZone
									

									 	
										The hosted zone for your internal DNS.
									

									
	
										etcd record sets
									

									 	
										AWS::Route53::RecordSet
									

									 	
										The registration records for etcd for your control plane machines.
									

									
	
										Public load balancer
									

									 	
										AWS::ElasticLoadBalancingV2::LoadBalancer
									

									 	
										The load balancer for your public subnets.
									

									
	
										External API server record
									

									 	
										AWS::Route53::RecordSetGroup
									

									 	
										Alias records for the external API server.
									

									
	
										External listener
									

									 	
										AWS::ElasticLoadBalancingV2::Listener
									

									 	
										A listener on port 6443 for the external load balancer.
									

									
	
										External target group
									

									 	
										AWS::ElasticLoadBalancingV2::TargetGroup
									

									 	
										The target group for the external load balancer.
									

									
	
										Private load balancer
									

									 	
										AWS::ElasticLoadBalancingV2::LoadBalancer
									

									 	
										The load balancer for your private subnets.
									

									
	
										Internal API server record
									

									 	
										AWS::Route53::RecordSetGroup
									

									 	
										Alias records for the internal API server.
									

									
	
										Internal listener
									

									 	
										AWS::ElasticLoadBalancingV2::Listener
									

									 	
										A listener on port 22623 for the internal load balancer.
									

									
	
										Internal target group
									

									 	
										AWS::ElasticLoadBalancingV2::TargetGroup
									

									 	
										The target group for the internal load balancer.
									

									
	
										Internal listener
									

									 	
										AWS::ElasticLoadBalancingV2::Listener
									

									 	
										A listener on port 6443 for the internal load balancer.
									

									
	
										Internal target group
									

									 	
										AWS::ElasticLoadBalancingV2::TargetGroup
									

									 	
										The target group for the internal load balancer.
									

									

Security groups

							The control plane and worker machines require access to the following ports:
						
	Group	Type	IP Protocol	Port range
	
										MasterSecurityGroup
									

									 	
										AWS::EC2::SecurityGroup
									

									 	
										icmp
									

									 	
										0
									

									
	
										tcp
									

									 	
										22
									

									
	
										tcp
									

									 	
										6443
									

									
	
										tcp
									

									 	
										22623
									

									
	
										WorkerSecurityGroup
									

									 	
										AWS::EC2::SecurityGroup
									

									 	
										icmp
									

									 	
										0
									

									
	
										tcp
									

									 	
										22
									

									
	
										BootstrapSecurityGroup
									

									 	
										AWS::EC2::SecurityGroup
									

									 	
										tcp
									

									 	
										22
									

									
	
										tcp
									

									 	
										19531
									

									

Control plane Ingress

							The control plane machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress resource.
						
	Ingress group	Description	IP protocol	Port range
	
										MasterIngressEtcd
									

									 	
										etcd
									

									 	
										tcp
									

									 	
										2379- 2380
									

									
	
										MasterIngressVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										MasterIngressWorkerVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										MasterIngressInternal
									

									 	
										Internal cluster communication and Kubernetes proxy metrics
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressWorkerInternal
									

									 	
										Internal cluster communication
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressKube
									

									 	
										Kubernetes kubelet, scheduler and controller manager
									

									 	
										tcp
									

									 	
										10250 - 10259
									

									
	
										MasterIngressWorkerKube
									

									 	
										Kubernetes kubelet, scheduler and controller manager
									

									 	
										tcp
									

									 	
										10250 - 10259
									

									
	
										MasterIngressIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										MasterIngressWorkerIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										MasterIngressGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										MasterIngressWorkerGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										MasterIngressIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										MasterIngressWorkerIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										MasterIngressIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										MasterIngressWorkerIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										MasterIngressIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										MasterIngressWorkerIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										MasterIngressInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressWorkerInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									
	
										MasterIngressWorkerIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									

Worker Ingress

							The worker machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress resource.
						
	Ingress group	Description	IP protocol	Port range
	
										WorkerIngressVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										WorkerIngressWorkerVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										WorkerIngressInternal
									

									 	
										Internal cluster communication
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressWorkerInternal
									

									 	
										Internal cluster communication
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressKube
									

									 	
										Kubernetes kubelet, scheduler, and controller manager
									

									 	
										tcp
									

									 	
										10250
									

									
	
										WorkerIngressWorkerKube
									

									 	
										Kubernetes kubelet, scheduler, and controller manager
									

									 	
										tcp
									

									 	
										10250
									

									
	
										WorkerIngressIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										WorkerIngressWorkerIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										WorkerIngressGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										WorkerIngressMasterGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										WorkerIngressIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										WorkerIngressMasterIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										WorkerIngressIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										WorkerIngressMasterIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										WorkerIngressIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										WorkerIngressMasterIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										WorkerIngressInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressMasterInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									
	
										WorkerIngressMasterIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									

Roles and instance profiles

							You must grant the machines permissions in AWS. The provided CloudFormation templates grant the machines Allow permissions for the following AWS::IAM::Role objects and provide a AWS::IAM::InstanceProfile for each set of roles. If you do not use the templates, you can grant the machines the following broad permissions or the following individual permissions.
						
	Role	Effect	Action	Resource
	
										Master
									

									 	
										Allow
									

									 	
										ec2:*
									

									 	
										*
									

									
	
										Allow
									

									 	
										elasticloadbalancing:*
									

									 	
										*
									

									
	
										Allow
									

									 	
										iam:PassRole
									

									 	
										*
									

									
	
										Allow
									

									 	
										s3:GetObject
									

									 	
										*
									

									
	
										Worker
									

									 	
										Allow
									

									 	
										ec2:Describe*
									

									 	
										*
									

									
	
										Bootstrap
									

									 	
										Allow
									

									 	
										ec2:Describe*
									

									 	
										*
									

									
	
										Allow
									

									 	
										ec2:AttachVolume
									

									 	
										*
									

									
	
										Allow
									

									 	
										ec2:DetachVolume
									

									 	
										*
									

									

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Required AWS permissions

Note

							Your IAM user must have the permission tag:GetResources in the region us-east-1 to delete the base cluster resources. As part of the AWS API requirement, the OpenShift Container Platform installation program performs various actions in this region.
						

						When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web Services (AWS), you grant that user all of the required permissions. To deploy all components of an OpenShift Container Platform cluster, the IAM user requires the following permissions:
					
Example 2.13. Required EC2 permissions for installation
	
									tag:TagResources
								
	
									tag:UntagResources
								
	
									ec2:AllocateAddress
								
	
									ec2:AssociateAddress
								
	
									ec2:AuthorizeSecurityGroupEgress
								
	
									ec2:AuthorizeSecurityGroupIngress
								
	
									ec2:CopyImage
								
	
									ec2:CreateNetworkInterface
								
	
									ec2:AttachNetworkInterface
								
	
									ec2:CreateSecurityGroup
								
	
									ec2:CreateTags
								
	
									ec2:CreateVolume
								
	
									ec2:DeleteSecurityGroup
								
	
									ec2:DeleteSnapshot
								
	
									ec2:DeleteTags
								
	
									ec2:DeregisterImage
								
	
									ec2:DescribeAccountAttributes
								
	
									ec2:DescribeAddresses
								
	
									ec2:DescribeAvailabilityZones
								
	
									ec2:DescribeDhcpOptions
								
	
									ec2:DescribeImages
								
	
									ec2:DescribeInstanceAttribute
								
	
									ec2:DescribeInstanceCreditSpecifications
								
	
									ec2:DescribeInstances
								
	
									ec2:DescribeInternetGateways
								
	
									ec2:DescribeKeyPairs
								
	
									ec2:DescribeNatGateways
								
	
									ec2:DescribeNetworkAcls
								
	
									ec2:DescribeNetworkInterfaces
								
	
									ec2:DescribePrefixLists
								
	
									ec2:DescribeRegions
								
	
									ec2:DescribeRouteTables
								
	
									ec2:DescribeSecurityGroups
								
	
									ec2:DescribeSubnets
								
	
									ec2:DescribeTags
								
	
									ec2:DescribeVolumes
								
	
									ec2:DescribeVpcAttribute
								
	
									ec2:DescribeVpcClassicLink
								
	
									ec2:DescribeVpcClassicLinkDnsSupport
								
	
									ec2:DescribeVpcEndpoints
								
	
									ec2:DescribeVpcs
								
	
									ec2:GetEbsDefaultKmsKeyId
								
	
									ec2:ModifyInstanceAttribute
								
	
									ec2:ModifyNetworkInterfaceAttribute
								
	
									ec2:ReleaseAddress
								
	
									ec2:RevokeSecurityGroupEgress
								
	
									ec2:RevokeSecurityGroupIngress
								
	
									ec2:RunInstances
								
	
									ec2:TerminateInstances
								

Example 2.14. Required permissions for creating network resources during installation
	
									ec2:AssociateDhcpOptions
								
	
									ec2:AssociateRouteTable
								
	
									ec2:AttachInternetGateway
								
	
									ec2:CreateDhcpOptions
								
	
									ec2:CreateInternetGateway
								
	
									ec2:CreateNatGateway
								
	
									ec2:CreateRoute
								
	
									ec2:CreateRouteTable
								
	
									ec2:CreateSubnet
								
	
									ec2:CreateVpc
								
	
									ec2:CreateVpcEndpoint
								
	
									ec2:ModifySubnetAttribute
								
	
									ec2:ModifyVpcAttribute
								

Note

								If you use an existing VPC, your account does not require these permissions for creating network resources.
							

Example 2.15. Required Elastic Load Balancing permissions (ELB) for installation
	
									elasticloadbalancing:AddTags
								
	
									elasticloadbalancing:ApplySecurityGroupsToLoadBalancer
								
	
									elasticloadbalancing:AttachLoadBalancerToSubnets
								
	
									elasticloadbalancing:ConfigureHealthCheck
								
	
									elasticloadbalancing:CreateLoadBalancer
								
	
									elasticloadbalancing:CreateLoadBalancerListeners
								
	
									elasticloadbalancing:DeleteLoadBalancer
								
	
									elasticloadbalancing:DeregisterInstancesFromLoadBalancer
								
	
									elasticloadbalancing:DescribeInstanceHealth
								
	
									elasticloadbalancing:DescribeLoadBalancerAttributes
								
	
									elasticloadbalancing:DescribeLoadBalancers
								
	
									elasticloadbalancing:DescribeTags
								
	
									elasticloadbalancing:ModifyLoadBalancerAttributes
								
	
									elasticloadbalancing:RegisterInstancesWithLoadBalancer
								
	
									elasticloadbalancing:SetLoadBalancerPoliciesOfListener
								

Example 2.16. Required Elastic Load Balancing permissions (ELBv2) for installation
	
									elasticloadbalancing:AddTags
								
	
									elasticloadbalancing:CreateListener
								
	
									elasticloadbalancing:CreateLoadBalancer
								
	
									elasticloadbalancing:CreateTargetGroup
								
	
									elasticloadbalancing:DeleteLoadBalancer
								
	
									elasticloadbalancing:DeregisterTargets
								
	
									elasticloadbalancing:DescribeListeners
								
	
									elasticloadbalancing:DescribeLoadBalancerAttributes
								
	
									elasticloadbalancing:DescribeLoadBalancers
								
	
									elasticloadbalancing:DescribeTargetGroupAttributes
								
	
									elasticloadbalancing:DescribeTargetHealth
								
	
									elasticloadbalancing:ModifyLoadBalancerAttributes
								
	
									elasticloadbalancing:ModifyTargetGroup
								
	
									elasticloadbalancing:ModifyTargetGroupAttributes
								
	
									elasticloadbalancing:RegisterTargets
								

Example 2.17. Required IAM permissions for installation
	
									iam:AddRoleToInstanceProfile
								
	
									iam:CreateInstanceProfile
								
	
									iam:CreateRole
								
	
									iam:DeleteInstanceProfile
								
	
									iam:DeleteRole
								
	
									iam:DeleteRolePolicy
								
	
									iam:GetInstanceProfile
								
	
									iam:GetRole
								
	
									iam:GetRolePolicy
								
	
									iam:GetUser
								
	
									iam:ListInstanceProfilesForRole
								
	
									iam:ListRoles
								
	
									iam:ListUsers
								
	
									iam:PassRole
								
	
									iam:PutRolePolicy
								
	
									iam:RemoveRoleFromInstanceProfile
								
	
									iam:SimulatePrincipalPolicy
								
	
									iam:TagRole
								

Note

								If you have not created an elastic load balancer (ELB) in your AWS account, the IAM user also requires the iam:CreateServiceLinkedRole permission.
							

Example 2.18. Required Route 53 permissions for installation
	
									route53:ChangeResourceRecordSets
								
	
									route53:ChangeTagsForResource
								
	
									route53:CreateHostedZone
								
	
									route53:DeleteHostedZone
								
	
									route53:GetChange
								
	
									route53:GetHostedZone
								
	
									route53:ListHostedZones
								
	
									route53:ListHostedZonesByName
								
	
									route53:ListResourceRecordSets
								
	
									route53:ListTagsForResource
								
	
									route53:UpdateHostedZoneComment
								

Example 2.19. Required S3 permissions for installation
	
									s3:CreateBucket
								
	
									s3:DeleteBucket
								
	
									s3:GetAccelerateConfiguration
								
	
									s3:GetBucketAcl
								
	
									s3:GetBucketCors
								
	
									s3:GetBucketLocation
								
	
									s3:GetBucketLogging
								
	
									s3:GetBucketObjectLockConfiguration
								
	
									s3:GetBucketReplication
								
	
									s3:GetBucketRequestPayment
								
	
									s3:GetBucketTagging
								
	
									s3:GetBucketVersioning
								
	
									s3:GetBucketWebsite
								
	
									s3:GetEncryptionConfiguration
								
	
									s3:GetLifecycleConfiguration
								
	
									s3:GetReplicationConfiguration
								
	
									s3:ListBucket
								
	
									s3:PutBucketAcl
								
	
									s3:PutBucketTagging
								
	
									s3:PutEncryptionConfiguration
								

Example 2.20. S3 permissions that cluster Operators require
	
									s3:DeleteObject
								
	
									s3:GetObject
								
	
									s3:GetObjectAcl
								
	
									s3:GetObjectTagging
								
	
									s3:GetObjectVersion
								
	
									s3:PutObject
								
	
									s3:PutObjectAcl
								
	
									s3:PutObjectTagging
								

Example 2.21. Required permissions to delete base cluster resources
	
									autoscaling:DescribeAutoScalingGroups
								
	
									ec2:DeleteNetworkInterface
								
	
									ec2:DeleteVolume
								
	
									elasticloadbalancing:DeleteTargetGroup
								
	
									elasticloadbalancing:DescribeTargetGroups
								
	
									iam:DeleteAccessKey
								
	
									iam:DeleteUser
								
	
									iam:ListAttachedRolePolicies
								
	
									iam:ListInstanceProfiles
								
	
									iam:ListRolePolicies
								
	
									iam:ListUserPolicies
								
	
									s3:DeleteObject
								
	
									s3:ListBucketVersions
								
	
									tag:GetResources
								

Example 2.22. Required permissions to delete network resources
	
									ec2:DeleteDhcpOptions
								
	
									ec2:DeleteInternetGateway
								
	
									ec2:DeleteNatGateway
								
	
									ec2:DeleteRoute
								
	
									ec2:DeleteRouteTable
								
	
									ec2:DeleteSubnet
								
	
									ec2:DeleteVpc
								
	
									ec2:DeleteVpcEndpoints
								
	
									ec2:DetachInternetGateway
								
	
									ec2:DisassociateRouteTable
								
	
									ec2:ReplaceRouteTableAssociation
								

Note

								If you use an existing VPC, your account does not require these permissions to delete network resources.
							

Example 2.23. Additional IAM and S3 permissions that are required to create manifests
	
									iam:DeleteAccessKey
								
	
									iam:DeleteUser
								
	
									iam:DeleteUserPolicy
								
	
									iam:GetUserPolicy
								
	
									iam:ListAccessKeys
								
	
									iam:PutUserPolicy
								
	
									iam:TagUser
								
	
									iam:GetUserPolicy
								
	
									iam:ListAccessKeys
								
	
									s3:PutBucketPublicAccessBlock
								
	
									s3:GetBucketPublicAccessBlock
								
	
									s3:PutLifecycleConfiguration
								
	
									s3:HeadBucket
								
	
									s3:ListBucketMultipartUploads
								
	
									s3:AbortMultipartUpload
								

Note

								If you are managing your cloud provider credentials with mint mode, the IAM user also requires the iam:CreateAccessKey and iam:CreateUser permissions.
							

Example 2.24. Optional permission for quota checks for installation
	
									servicequotas:ListAWSDefaultServiceQuotas
								

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Creating the installation files for AWS

					To install OpenShift Container Platform on Amazon Web Services (AWS) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.
				
Optional: Creating a separate /var partition

						It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
					

						OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
					
	
								/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
							
	
								/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
							
	
								/var: Holds data that you might want to keep separate for purposes such as auditing.
							

						Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
					

						Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
					
Important

							If you follow the steps to create a separate /var partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
						

Procedure
	
								Create a directory to hold the OpenShift Container Platform installation files:
							
$ mkdir $HOME/clusterconfig

	
								Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
							
$ openshift-install create manifests --dir $HOME/clusterconfig
Example output

									

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift

								

	
								Optional: Confirm that the installation program created manifests in the clusterconfig/openshift directory:
							
$ ls $HOME/clusterconfig/openshift/
Example output

									

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

								

	
								Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
							
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
										The storage device name of the disk that you want to partition.
									

	[image: 2]
	
										When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
									

	[image: 3]
	
										The size of the data partition in mebibytes.
									

	[image: 4]
	
										The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
									

	[image: 5]
	
										The prjquota mount option must be enabled for filesystems used for container storage.
									

Note

									When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
								

	
								Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
							
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

						Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
					

Creating the installation configuration file

						Generate and customize the installation configuration file that the installation program needs to deploy your cluster.
					
Prerequisites
	
								You obtained the OpenShift Container Platform installation program for user-provisioned infrastructure and the pull secret for your cluster.
							
	
								You checked that you are deploying your cluster to a region with an accompanying Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to a region that requires a custom AMI, such as an AWS GovCloud region, you must create the install-config.yaml file manually.
							

Procedure
	
								Create the install-config.yaml file.
							
	
										Change to the directory that contains the installation program and run the following command:
									
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
												For <installation_directory>, specify the directory name to store the files that the installation program creates.
											

Important

											Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
										

	
										At the prompts, provide the configuration details for your cloud:
									
	
												Optional: Select an SSH key to use to access your cluster machines.
											
Note

													For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
												

	
												Select aws as the platform to target.
											
	
												If you do not have an AWS profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
											
Note

													The AWS access key ID and secret access key are stored in ~/.aws/credentials in the home directory of the current user on the installation host. You are prompted for the credentials by the installation program if the credentials for the exported profile are not present in the file. Any credentials that you provide to the installation program are stored in the file.
												

	
												Select the AWS region to deploy the cluster to.
											
	
												Select the base domain for the Route 53 service that you configured for your cluster.
											
	
												Enter a descriptive name for your cluster.
											
	
												Paste the pull secret from the Red Hat OpenShift Cluster Manager.
											

	
								Optional: Back up the install-config.yaml file.
							
Important

									The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
								

Additional resources
	
								See Configuration and credential file settings in the AWS documentation for more information about AWS profile and credential configuration.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

						Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
					

						The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
					
Important
	
									The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
								
	
									It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
								

Prerequisites
	
								You obtained the OpenShift Container Platform installation program.
							
	
								You created the install-config.yaml installation configuration file.
							

Procedure
	
								Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
									

	
								Remove the Kubernetes manifest files that define the control plane machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

								By removing these files, you prevent the cluster from automatically generating control plane machines.
							

	
								Remove the Kubernetes manifest files that define the worker machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

								Because you create and manage the worker machines yourself, you do not need to initialize these machines.
							

	
								Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
							
	
										Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
									
	
										Locate the mastersSchedulable parameter and ensure that it is set to false.
									
	
										Save and exit the file.
									

	
								Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the privateZone and publicZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:
							
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: [image: 1]
 id: mycluster-100419-private-zone
 publicZone: [image: 2]
 id: example.openshift.com
status: {}
	[image: 1] [image: 2]
	
										Remove this section completely.
									

								If you do so, you must add ingress DNS records manually in a later step.
							

	
								To create the Ignition configuration files, run the following command from the directory that contains the installation program:
							
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the same installation directory.
									

								The following files are generated in the directory:
							
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Extracting the infrastructure name

					The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Amazon Web Services (AWS). The infrastructure name is also used to locate the appropriate AWS resources during an OpenShift Container Platform installation. The provided CloudFormation templates contain references to this infrastructure name, so you must extract it.
				
Prerequisites
	
							You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You installed the jq package.
						

Procedure
	
							To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
						
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

openshift-vw9j6 [image: 1]

							
	[image: 1]
	
									The output of this command is your cluster name and a random string.
								

Creating a VPC in AWS

					You must create a Virtual Private Cloud (VPC) in Amazon Web Services (AWS) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements, including VPN and route tables.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the VPC.
				
Note

						If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						

Procedure
	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "VpcCidr", [image: 1]
 "ParameterValue": "10.0.0.0/16" [image: 2]
 },
 {
 "ParameterKey": "AvailabilityZoneCount", [image: 3]
 "ParameterValue": "1" [image: 4]
 },
 {
 "ParameterKey": "SubnetBits", [image: 5]
 "ParameterValue": "12" [image: 6]
 }
]
	[image: 1]
	
									The CIDR block for the VPC.
								

	[image: 2]
	
									Specify a CIDR block in the format x.x.x.x/16-24.
								

	[image: 3]
	
									The number of availability zones to deploy the VPC in.
								

	[image: 4]
	
									Specify an integer between 1 and 3.
								

	[image: 5]
	
									The size of each subnet in each availability zone.
								

	[image: 6]
	
									Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.
								

	
							Copy the template from the CloudFormation template for the VPC section of this topic and save it as a YAML file on your computer. This template describes the VPC that your cluster requires.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the VPC:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-vpc/dbedae40-2fd3-11eb-820e-12a48460849f

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											VpcId
										

										 	
											The ID of your VPC.
										

										
	
											PublicSubnetIds
										

										 	
											The IDs of the new public subnets.
										

										
	
											PrivateSubnetIds
										

										 	
											The IDs of the new private subnets.
										

										

CloudFormation template for the VPC

						You can use the following CloudFormation template to deploy the VPC that you need for your OpenShift Container Platform cluster.
					
Example 2.25. CloudFormation template for the VPC
AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 AvailabilityZoneCount:
 ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
 MinValue: 1
 MaxValue: 3
 Default: 1
 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
 Type: Number
 SubnetBits:
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
 MinValue: 5
 MaxValue: 13
 Default: 12
 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 = /19)"
 Type: Number

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcCidr
 - SubnetBits
 - Label:
 default: "Availability Zones"
 Parameters:
 - AvailabilityZoneCount
 ParameterLabels:
 AvailabilityZoneCount:
 default: "Availability Zone Count"
 VpcCidr:
 default: "VPC CIDR"
 SubnetBits:
 default: "Bits Per Subnet"

Conditions:
 DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
 DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 EnableDnsSupport: "true"
 EnableDnsHostnames: "true"
 CidrBlock: !Ref VpcCidr
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 InternetGateway:
 Type: "AWS::EC2::InternetGateway"
 GatewayToInternet:
 Type: "AWS::EC2::VPCGatewayAttachment"
 Properties:
 VpcId: !Ref VPC
 InternetGatewayId: !Ref InternetGateway
 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: GatewayToInternet
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PublicSubnet2
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation3:
 Condition: DoAz3
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet3
 RouteTableId: !Ref PublicRouteTable
 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTable
 NAT:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP
 - AllocationId
 SubnetId: !Ref PublicSubnet
 EIP:
 Type: "AWS::EC2::EIP"
 Properties:
 Domain: vpc
 Route:
 Type: "AWS::EC2::Route"
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT
 PrivateSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable2:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PrivateSubnet2
 RouteTableId: !Ref PrivateRouteTable2
 NAT2:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz2
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP2
 - AllocationId
 SubnetId: !Ref PublicSubnet2
 EIP2:
 Type: "AWS::EC2::EIP"
 Condition: DoAz2
 Properties:
 Domain: vpc
 Route2:
 Type: "AWS::EC2::Route"
 Condition: DoAz2
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT2
 PrivateSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable3:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation3:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz3
 Properties:
 SubnetId: !Ref PrivateSubnet3
 RouteTableId: !Ref PrivateRouteTable3
 NAT3:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz3
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP3
 - AllocationId
 SubnetId: !Ref PublicSubnet3
 EIP3:
 Type: "AWS::EC2::EIP"
 Condition: DoAz3
 Properties:
 Domain: vpc
 Route3:
 Type: "AWS::EC2::Route"
 Condition: DoAz3
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable3
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT3
 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'
 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 - !Ref PrivateRouteTable
 - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
 - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VPC

Outputs:
 VpcId:
 Description: ID of the new VPC.
 Value: !Ref VPC
 PublicSubnetIds:
 Description: Subnet IDs of the public subnets.
 Value:
 !Join [
 ",",
 [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PublicSubnet3, !Ref "AWS::NoValue"]]
]
 PrivateSubnetIds:
 Description: Subnet IDs of the private subnets.
 Value:
 !Join [
 ",",
 [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PrivateSubnet3, !Ref "AWS::NoValue"]]
]

Additional resources
	
								You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
							

Creating networking and load balancing components in AWS

					You must configure networking and classic or network load balancing in Amazon Web Services (AWS) that your OpenShift Container Platform cluster can use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the networking and load balancing components that your OpenShift Container Platform cluster requires. The template also creates a hosted zone and subnet tags.
				

					You can run the template multiple times within a single Virtual Private Cloud (VPC).
				
Note

						If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						

Procedure
	
							Obtain the hosted zone ID for the Route 53 base domain that you specified in the install-config.yaml file for your cluster. You can obtain details about your hosted zone by running the following command:
						
$ aws route53 list-hosted-zones-by-name --dns-name <route53_domain> [image: 1]
	[image: 1]
	
									For the <route53_domain>, specify the Route 53 base domain that you used when you generated the install-config.yaml file for the cluster.
								

Example output

								

mycluster.example.com.	False	100
HOSTEDZONES	65F8F38E-2268-B835-E15C-AB55336FCBFA	/hostedzone/Z21IXYZABCZ2A4	mycluster.example.com.	10

							

							In the example output, the hosted zone ID is Z21IXYZABCZ2A4.
						

	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "ClusterName", [image: 1]
 "ParameterValue": "mycluster" [image: 2]
 },
 {
 "ParameterKey": "InfrastructureName", [image: 3]
 "ParameterValue": "mycluster-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "HostedZoneId", [image: 5]
 "ParameterValue": "<random_string>" [image: 6]
 },
 {
 "ParameterKey": "HostedZoneName", [image: 7]
 "ParameterValue": "example.com" [image: 8]
 },
 {
 "ParameterKey": "PublicSubnets", [image: 9]
 "ParameterValue": "subnet-<random_string>" [image: 10]
 },
 {
 "ParameterKey": "PrivateSubnets", [image: 11]
 "ParameterValue": "subnet-<random_string>" [image: 12]
 },
 {
 "ParameterKey": "VpcId", [image: 13]
 "ParameterValue": "vpc-<random_string>" [image: 14]
 }
]
	[image: 1]
	
									A short, representative cluster name to use for hostnames, etc.
								

	[image: 2]
	
									Specify the cluster name that you used when you generated the install-config.yaml file for the cluster.
								

	[image: 3]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 4]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 5]
	
									The Route 53 public zone ID to register the targets with.
								

	[image: 6]
	
									Specify the Route 53 public zone ID, which as a format similar to Z21IXYZABCZ2A4. You can obtain this value from the AWS console.
								

	[image: 7]
	
									The Route 53 zone to register the targets with.
								

	[image: 8]
	
									Specify the Route 53 base domain that you used when you generated the install-config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console.
								

	[image: 9]
	
									The public subnets that you created for your VPC.
								

	[image: 10]
	
									Specify the PublicSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 11]
	
									The private subnets that you created for your VPC.
								

	[image: 12]
	
									Specify the PrivateSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 13]
	
									The VPC that you created for the cluster.
								

	[image: 14]
	
									Specify the VpcId value from the output of the CloudFormation template for the VPC.
								

	
							Copy the template from the CloudFormation template for the network and load balancers section of this topic and save it as a YAML file on your computer. This template describes the networking and load balancing objects that your cluster requires.
						
Important

								If you are deploying your cluster to an AWS government region, you must update the InternalApiServerRecord in the CloudFormation template to use CNAME records. Records of type ALIAS are not supported for AWS government regions.
							

	
							Launch the CloudFormation template to create a stack of AWS resources that provide the networking and load balancing components:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
 --capabilities CAPABILITY_NAMED_IAM [image: 4]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-dns. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

	[image: 4]
	
									You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role resources.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-dns/cd3e5de0-2fd4-11eb-5cf0-12be5c33a183

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											PrivateHostedZoneId
										

										 	
											Hosted zone ID for the private DNS.
										

										
	
											ExternalApiLoadBalancerName
										

										 	
											Full name of the external API load balancer.
										

										
	
											InternalApiLoadBalancerName
										

										 	
											Full name of the internal API load balancer.
										

										
	
											ApiServerDnsName
										

										 	
											Full hostname of the API server.
										

										
	
											RegisterNlbIpTargetsLambda
										

										 	
											Lambda ARN useful to help register/deregister IP targets for these load balancers.
										

										
	
											ExternalApiTargetGroupArn
										

										 	
											ARN of external API target group.
										

										
	
											InternalApiTargetGroupArn
										

										 	
											ARN of internal API target group.
										

										
	
											InternalServiceTargetGroupArn
										

										 	
											ARN of internal service target group.
										

										

CloudFormation template for the network and load balancers

						You can use the following CloudFormation template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster.
					
Example 2.26. CloudFormation template for the network and load balancers
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Network Elements (Route53 & LBs)

Parameters:
 ClusterName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Cluster name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, representative cluster name to use for host names and other identifying names.
 Type: String
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
 Type: String
 HostedZoneId:
 Description: The Route53 public zone ID to register the targets with, such as Z21IXYZABCZ2A4.
 Type: String
 HostedZoneName:
 Description: The Route53 zone to register the targets with, such as example.com. Omit the trailing period.
 Type: String
 Default: "example.com"
 PublicSubnets:
 Description: The internet-facing subnets.
 Type: List<AWS::EC2::Subnet::Id>
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - ClusterName
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - PublicSubnets
 - PrivateSubnets
 - Label:
 default: "DNS"
 Parameters:
 - HostedZoneName
 - HostedZoneId
 ParameterLabels:
 ClusterName:
 default: "Cluster Name"
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 PublicSubnets:
 default: "Public Subnets"
 PrivateSubnets:
 default: "Private Subnets"
 HostedZoneName:
 default: "Public Hosted Zone Name"
 HostedZoneId:
 default: "Public Hosted Zone ID"

Resources:
 ExtApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "ext"]]
 IpAddressType: ipv4
 Subnets: !Ref PublicSubnets
 Type: network

 IntApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "int"]]
 Scheme: internal
 IpAddressType: ipv4
 Subnets: !Ref PrivateSubnets
 Type: network

 IntDns:
 Type: "AWS::Route53::HostedZone"
 Properties:
 HostedZoneConfig:
 Comment: "Managed by CloudFormation"
 Name: !Join [".", [!Ref ClusterName, !Ref HostedZoneName]]
 HostedZoneTags:
 - Key: Name
 Value: !Join ["-", [!Ref InfrastructureName, "int"]]
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "owned"
 VPCs:
 - VPCId: !Ref VpcId
 VPCRegion: !Ref "AWS::Region"

 ExternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref HostedZoneId
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt ExtApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt ExtApiElb.DNSName

 InternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref IntDns
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName
 - Name:
 !Join [
 ".",
 ["api-int", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName

 ExternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: ExternalApiTargetGroup
 LoadBalancerArn:
 Ref: ExtApiElb
 Port: 6443
 Protocol: TCP

 ExternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalApiTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 6443
 Protocol: TCP

 InternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalServiceInternalListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalServiceTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 22623
 Protocol: TCP

 InternalServiceTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/healthz"
 HealthCheckPort: 22623
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 22623
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 RegisterTargetLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "nlb", "lambda", "role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalApiTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalServiceTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref ExternalApiTargetGroup

 RegisterNlbIpTargets:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterTargetLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 elb = boto3.client('elbv2')
 if event['RequestType'] == 'Delete':
 elb.deregister_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
 elif event['RequestType'] == 'Create':
 elb.register_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['TargetArn']+event['ResourceProperties']['TargetIp'])
 Runtime: "python3.7"
 Timeout: 120

 RegisterSubnetTagsLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "subnet-tags-lambda-role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "subnet-tagging-policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "ec2:DeleteTags",
 "ec2:CreateTags"
]
 Resource: "arn:aws:ec2:*:*:subnet/*"
 - Effect: "Allow"
 Action:
 [
 "ec2:DescribeSubnets",
 "ec2:DescribeTags"
]
 Resource: "*"

 RegisterSubnetTags:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterSubnetTagsLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 ec2_client = boto3.client('ec2')
 if event['RequestType'] == 'Delete':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.delete_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName']}]);
 elif event['RequestType'] == 'Create':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.create_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName'], 'Value': 'shared'}]);
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['InfrastructureName']+event['ResourceProperties']['Subnets'][0])
 Runtime: "python3.7"
 Timeout: 120

 RegisterPublicSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PublicSubnets

 RegisterPrivateSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PrivateSubnets

Outputs:
 PrivateHostedZoneId:
 Description: Hosted zone ID for the private DNS, which is required for private records.
 Value: !Ref IntDns
 ExternalApiLoadBalancerName:
 Description: Full name of the external API load balancer.
 Value: !GetAtt ExtApiElb.LoadBalancerFullName
 InternalApiLoadBalancerName:
 Description: Full name of the internal API load balancer.
 Value: !GetAtt IntApiElb.LoadBalancerFullName
 ApiServerDnsName:
 Description: Full hostname of the API server, which is required for the Ignition config files.
 Value: !Join [".", ["api-int", !Ref ClusterName, !Ref HostedZoneName]]
 RegisterNlbIpTargetsLambda:
 Description: Lambda ARN useful to help register or deregister IP targets for these load balancers.
 Value: !GetAtt RegisterNlbIpTargets.Arn
 ExternalApiTargetGroupArn:
 Description: ARN of the external API target group.
 Value: !Ref ExternalApiTargetGroup
 InternalApiTargetGroupArn:
 Description: ARN of the internal API target group.
 Value: !Ref InternalApiTargetGroup
 InternalServiceTargetGroupArn:
 Description: ARN of the internal service target group.
 Value: !Ref InternalServiceTargetGroup

Important

							If you are deploying your cluster to an AWS government region, you must update the InternalApiServerRecord to use CNAME records. Records of type ALIAS are not supported for AWS government regions. For example:
						
Type: CNAME
TTL: 10
ResourceRecords:
- !GetAtt IntApiElb.DNSName

Additional resources
	
								You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
							
	
								You can view details about your hosted zones by navigating to the AWS Route 53 console.
							
	
								See Listing public hosted zones in the AWS documentation for more information about listing public hosted zones.
							

Creating security group and roles in AWS

					You must create security groups and roles in Amazon Web Services (AWS) for your OpenShift Container Platform cluster to use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the security groups and roles that your OpenShift Container Platform cluster requires.
				
Note

						If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						

Procedure
	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "VpcCidr", [image: 3]
 "ParameterValue": "10.0.0.0/16" [image: 4]
 },
 {
 "ParameterKey": "PrivateSubnets", [image: 5]
 "ParameterValue": "subnet-<random_string>" [image: 6]
 },
 {
 "ParameterKey": "VpcId", [image: 7]
 "ParameterValue": "vpc-<random_string>" [image: 8]
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									The CIDR block for the VPC.
								

	[image: 4]
	
									Specify the CIDR block parameter that you used for the VPC that you defined in the form x.x.x.x/16-24.
								

	[image: 5]
	
									The private subnets that you created for your VPC.
								

	[image: 6]
	
									Specify the PrivateSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 7]
	
									The VPC that you created for the cluster.
								

	[image: 8]
	
									Specify the VpcId value from the output of the CloudFormation template for the VPC.
								

	
							Copy the template from the CloudFormation template for security objects section of this topic and save it as a YAML file on your computer. This template describes the security groups and roles that your cluster requires.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the security groups and roles:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
 --capabilities CAPABILITY_NAMED_IAM [image: 4]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-sec. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

	[image: 4]
	
									You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile resources.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-sec/03bd4210-2ed7-11eb-6d7a-13fc0b61e9db

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											MasterSecurityGroupId
										

										 	
											Master Security Group ID
										

										
	
											WorkerSecurityGroupId
										

										 	
											Worker Security Group ID
										

										
	
											MasterInstanceProfile
										

										 	
											Master IAM Instance Profile
										

										
	
											WorkerInstanceProfile
										

										 	
											Worker IAM Instance Profile
										

										

CloudFormation template for security objects

						You can use the following CloudFormation template to deploy the security objects that you need for your OpenShift Container Platform cluster.
					
Example 2.27. CloudFormation template for security objects
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Security Elements (Security Groups & IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
 Type: String
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - VpcCidr
 - PrivateSubnets
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 VpcCidr:
 default: "VPC CIDR"
 PrivateSubnets:
 default: "Private Subnets"

Resources:
 MasterSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Master Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 ToPort: 6443
 FromPort: 6443
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22623
 ToPort: 22623
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 WorkerSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Worker Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 MasterIngressEtcd:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: etcd
 FromPort: 2379
 ToPort: 2380
 IpProtocol: tcp

 MasterIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressWorkerVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressWorkerGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressWorkerInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressWorkerInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressWorkerIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIngressWorkerIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressMasterVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressMasterGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressMasterInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressMasterInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes secure kubelet port
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal Kubernetes communication
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressMasterIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressMasterIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:AttachVolume"
 - "ec2:AuthorizeSecurityGroupIngress"
 - "ec2:CreateSecurityGroup"
 - "ec2:CreateTags"
 - "ec2:CreateVolume"
 - "ec2:DeleteSecurityGroup"
 - "ec2:DeleteVolume"
 - "ec2:Describe*"
 - "ec2:DetachVolume"
 - "ec2:ModifyInstanceAttribute"
 - "ec2:ModifyVolume"
 - "ec2:RevokeSecurityGroupIngress"
 - "elasticloadbalancing:AddTags"
 - "elasticloadbalancing:AttachLoadBalancerToSubnets"
 - "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer"
 - "elasticloadbalancing:CreateListener"
 - "elasticloadbalancing:CreateLoadBalancer"
 - "elasticloadbalancing:CreateLoadBalancerPolicy"
 - "elasticloadbalancing:CreateLoadBalancerListeners"
 - "elasticloadbalancing:CreateTargetGroup"
 - "elasticloadbalancing:ConfigureHealthCheck"
 - "elasticloadbalancing:DeleteListener"
 - "elasticloadbalancing:DeleteLoadBalancer"
 - "elasticloadbalancing:DeleteLoadBalancerListeners"
 - "elasticloadbalancing:DeleteTargetGroup"
 - "elasticloadbalancing:DeregisterInstancesFromLoadBalancer"
 - "elasticloadbalancing:DeregisterTargets"
 - "elasticloadbalancing:Describe*"
 - "elasticloadbalancing:DetachLoadBalancerFromSubnets"
 - "elasticloadbalancing:ModifyListener"
 - "elasticloadbalancing:ModifyLoadBalancerAttributes"
 - "elasticloadbalancing:ModifyTargetGroup"
 - "elasticloadbalancing:ModifyTargetGroupAttributes"
 - "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
 - "elasticloadbalancing:RegisterTargets"
 - "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer"
 - "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
 - "kms:DescribeKey"
 Resource: "*"

 MasterInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "MasterIamRole"

 WorkerIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "worker", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:DescribeInstances"
 - "ec2:DescribeRegions"
 Resource: "*"

 WorkerInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "WorkerIamRole"

Outputs:
 MasterSecurityGroupId:
 Description: Master Security Group ID
 Value: !GetAtt MasterSecurityGroup.GroupId

 WorkerSecurityGroupId:
 Description: Worker Security Group ID
 Value: !GetAtt WorkerSecurityGroup.GroupId

 MasterInstanceProfile:
 Description: Master IAM Instance Profile
 Value: !Ref MasterInstanceProfile

 WorkerInstanceProfile:
 Description: Worker IAM Instance Profile
 Value: !Ref WorkerInstanceProfile

Additional resources
	
								You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
							

RHCOS AMIs for the AWS infrastructure

					Red Hat provides Red Hat Enterprise Linux CoreOS (RHCOS) AMIs valid for the various Amazon Web Services (AWS) zones you can specify for your OpenShift Container Platform nodes.
				
Note

						You can also install to regions that do not have a RHCOS AMI published by importing your own AMI.
					

Table 2.31. RHCOS AMIs
	AWS zone	AWS AMI
	
									af-south-1
								

								 	
									ami-09921c9c1c36e695c
								

								
	
									ap-east-1
								

								 	
									ami-01ee8446e9af6b197
								

								
	
									ap-northeast-1
								

								 	
									ami-04e5b5722a55846ea
								

								
	
									ap-northeast-2
								

								 	
									ami-0fdc25c8a0273a742
								

								
	
									ap-south-1
								

								 	
									ami-09e3deb397cc526a8
								

								
	
									ap-southeast-1
								

								 	
									ami-0630e03f75e02eec4
								

								
	
									ap-southeast-2
								

								 	
									ami-069450613262ba03c
								

								
	
									ca-central-1
								

								 	
									ami-012518cdbd3057dfd
								

								
	
									eu-central-1
								

								 	
									ami-0bd7175ff5b1aef0c
								

								
	
									eu-north-1
								

								 	
									ami-06c9ec42d0a839ad2
								

								
	
									eu-south-1
								

								 	
									ami-0614d7440a0363d71
								

								
	
									eu-west-1
								

								 	
									ami-01b89df58b5d4d5fa
								

								
	
									eu-west-2
								

								 	
									ami-06f6e31ddd554f89d
								

								
	
									eu-west-3
								

								 	
									ami-0dc82e2517ded15a1
								

								
	
									me-south-1
								

								 	
									ami-07d181e3aa0f76067
								

								
	
									sa-east-1
								

								 	
									ami-0cd44e6dd20e6c7fa
								

								
	
									us-east-1
								

								 	
									ami-04a16d506e5b0e246
								

								
	
									us-east-2
								

								 	
									ami-0a1f868ad58ea59a7
								

								
	
									us-west-1
								

								 	
									ami-0a65d76e3a6f6622f
								

								
	
									us-west-2
								

								 	
									ami-0dd9008abadc519f1
								

								

AWS regions without a published RHCOS AMI

						You can deploy an OpenShift Container Platform cluster to Amazon Web Services (AWS) regions without native support for a Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) or the AWS software development kit (SDK). If a published AMI is not available for an AWS region, you can upload a custom AMI prior to installing the cluster. This is required if you are deploying your cluster to an AWS government region.
					

						If you are deploying to a non-government region that does not have a published RHCOS AMI, and you do not specify a custom AMI, the installation program copies the us-east-1 AMI to the user account automatically. Then the installation program creates the control plane machines with encrypted EBS volumes using the default or user-specified Key Management Service (KMS) key. This allows the AMI to follow the same process workflow as published RHCOS AMIs.
					

						A region without native support for an RHCOS AMI is not available to select from the terminal during cluster creation because it is not published. However, you can install to this region by configuring the custom AMI in the install-config.yaml file.
					

Uploading a custom RHCOS AMI in AWS

						If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) that belongs to that region.
					
Prerequisites
	
								You configured an AWS account.
							
	
								You created an Amazon S3 bucket with the required IAM service role.
							
	
								You uploaded your RHCOS VMDK file to Amazon S3. The RHCOS VMDK file must be the highest version that is less than or equal to the OpenShift Container Platform version you are installing.
							
	
								You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer.
							

Procedure
	
								Export your AWS profile as an environment variable:
							
$ export AWS_PROFILE=<aws_profile> [image: 1]
	[image: 1]
	
										The AWS profile name that holds your AWS credentials, like govcloud.
									

	
								Export the region to associate with your custom AMI as an environment variable:
							
$ export AWS_DEFAULT_REGION=<aws_region> [image: 1]
	[image: 1]
	
										The AWS region, like us-gov-east-1.
									

	
								Export the version of RHCOS you uploaded to Amazon S3 as an environment variable:
							
$ export RHCOS_VERSION=<version> [image: 1]
	[image: 1]
	
										The RHCOS VMDK version, like 4.6.0.
									

	
								Export the Amazon S3 bucket name as an environment variable:
							
$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>

	
								Create the containers.json file and define your RHCOS VMDK file:
							
$ cat <<EOF > containers.json
{
 "Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
 "Format": "vmdk",
 "UserBucket": {
 "S3Bucket": "${VMIMPORT_BUCKET_NAME}",
 "S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
 }
}
EOF

	
								Import the RHCOS disk as an Amazon EBS snapshot:
							
$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
 --description "<description>" \ [image: 1]
 --disk-container "file://<file_path>/containers.json" [image: 2]
	[image: 1]
	
										The description of your RHCOS disk being imported, like rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.
									

	[image: 2]
	
										The file path to the JSON file describing your RHCOS disk. The JSON file should contain your Amazon S3 bucket name and key.
									

	
								Check the status of the image import:
							
$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}
Example output

									

{
 "ImportSnapshotTasks": [
 {
 "Description": "rhcos-4.6.0-x86_64-aws.x86_64",
 "ImportTaskId": "import-snap-fh6i8uil",
 "SnapshotTaskDetail": {
 "Description": "rhcos-4.6.0-x86_64-aws.x86_64",
 "DiskImageSize": 819056640.0,
 "Format": "VMDK",
 "SnapshotId": "snap-06331325870076318",
 "Status": "completed",
 "UserBucket": {
 "S3Bucket": "external-images",
 "S3Key": "rhcos-4.6.0-x86_64-aws.x86_64.vmdk"
 }
 }
 }
]
}

								

								Copy the SnapshotId to register the image.
							

	
								Create a custom RHCOS AMI from the RHCOS snapshot:
							
$ aws ec2 register-image \
 --region ${AWS_DEFAULT_REGION} \
 --architecture x86_64 \ [image: 1]
 --description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ [image: 2]
 --ena-support \
 --name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ [image: 3]
 --virtualization-type hvm \
 --root-device-name '/dev/xvda' \
 --block-device-mappings 'DeviceName=/dev/xvda,Ebs={DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' [image: 4]
	[image: 1]
	
										The RHCOS VMDK architecture type, like x86_64, s390x, or ppc64le.
									

	[image: 2]
	
										The Description from the imported snapshot.
									

	[image: 3]
	
										The name of the RHCOS AMI.
									

	[image: 4]
	
										The SnapshotID from the imported snapshot.
									

						To learn more about these APIs, see the AWS documentation for importing snapshots and creating EBS-backed AMIs.
					

Creating the bootstrap node in AWS

					You must create the bootstrap node in Amazon Web Services (AWS) to use during OpenShift Container Platform cluster initialization.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the bootstrap node that your OpenShift Container Platform installation requires.
				
Note

						If you do not use the provided CloudFormation template to create your bootstrap node, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						

Procedure
	
							Provide a location to serve the bootstrap.ign Ignition config file to your cluster. This file is located in your installation directory. One way to do this is to create an S3 bucket in your cluster’s region and upload the Ignition config file to it.
						
Important

								The provided CloudFormation Template assumes that the Ignition config files for your cluster are served from an S3 bucket. If you choose to serve the files from another location, you must modify the templates.
							

Important

								If you are deploying to a region that has endpoints that differ from the AWS SDK, or you are providing your own custom endpoints, you must use a presigned URL for your S3 bucket instead of the s3:// schema.
							

Note

								The bootstrap Ignition config file does contain secrets, like X.509 keys. The following steps provide basic security for the S3 bucket. To provide additional security, you can enable an S3 bucket policy to allow only certain users, such as the OpenShift IAM user, to access objects that the bucket contains. You can avoid S3 entirely and serve your bootstrap Ignition config file from any address that the bootstrap machine can reach.
							

	
									Create the bucket:
								
$ aws s3 mb s3://<cluster-name>-infra [image: 1]
	[image: 1]
	
											<cluster-name>-infra is the bucket name. When creating the install-config.yaml file, replace <cluster-name> with the name specified for the cluster.
										

	
									Upload the bootstrap.ign Ignition config file to the bucket:
								
$ aws s3 cp <installation_directory>/bootstrap.ign s3://<cluster-name>-infra/bootstrap.ign [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the path to the directory that you stored the installation files in.
										

	
									Verify that the file uploaded:
								
$ aws s3 ls s3://<cluster-name>-infra/
Example output

										

2019-04-03 16:15:16 314878 bootstrap.ign

									

	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "RhcosAmi", [image: 3]
 "ParameterValue": "ami-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "AllowedBootstrapSshCidr", [image: 5]
 "ParameterValue": "0.0.0.0/0" [image: 6]
 },
 {
 "ParameterKey": "PublicSubnet", [image: 7]
 "ParameterValue": "subnet-<random_string>" [image: 8]
 },
 {
 "ParameterKey": "MasterSecurityGroupId", [image: 9]
 "ParameterValue": "sg-<random_string>" [image: 10]
 },
 {
 "ParameterKey": "VpcId", [image: 11]
 "ParameterValue": "vpc-<random_string>" [image: 12]
 },
 {
 "ParameterKey": "BootstrapIgnitionLocation", [image: 13]
 "ParameterValue": "s3://<bucket_name>/bootstrap.ign" [image: 14]
 },
 {
 "ParameterKey": "AutoRegisterELB", [image: 15]
 "ParameterValue": "yes" (16)
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", (17)
 "ParameterValue": "arn:aws:lambda:<region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" (18)
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", (19)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" (20)
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", (21)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (22)
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", (23)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (24)
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the bootstrap node.
								

	[image: 4]
	
									Specify a valid AWS::EC2::Image::Id value.
								

	[image: 5]
	
									CIDR block to allow SSH access to the bootstrap node.
								

	[image: 6]
	
									Specify a CIDR block in the format x.x.x.x/16-24.
								

	[image: 7]
	
									The public subnet that is associated with your VPC to launch the bootstrap node into.
								

	[image: 8]
	
									Specify the PublicSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 9]
	
									The master security group ID (for registering temporary rules)
								

	[image: 10]
	
									Specify the MasterSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
								

	[image: 11]
	
									The VPC created resources will belong to.
								

	[image: 12]
	
									Specify the VpcId value from the output of the CloudFormation template for the VPC.
								

	[image: 13]
	
									Location to fetch bootstrap Ignition config file from.
								

	[image: 14]
	
									Specify the S3 bucket and file name in the form s3://<bucket_name>/bootstrap.ign.
								

	[image: 15]
	
									Whether or not to register a network load balancer (NLB).
								

	(16)
	
									Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name (ARN) value.
								

	(17)
	
									The ARN for NLB IP target registration lambda group.
								

	(18)
	
									Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(19)
	
									The ARN for external API load balancer target group.
								

	(20)
	
									Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(21)
	
									The ARN for internal API load balancer target group.
								

	(22)
	
									Specify the InternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(23)
	
									The ARN for internal service load balancer target group.
								

	(24)
	
									Specify the InternalServiceTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	
							Copy the template from the CloudFormation template for the bootstrap machine section of this topic and save it as a YAML file on your computer. This template describes the bootstrap machine that your cluster requires.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the bootstrap node:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
 --capabilities CAPABILITY_NAMED_IAM [image: 4]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-bootstrap. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

	[image: 4]
	
									You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile resources.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-bootstrap/12944486-2add-11eb-9dee-12dace8e3a83

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											BootstrapInstanceId
										

										 	
											The bootstrap Instance ID.
										

										
	
											BootstrapPublicIp
										

										 	
											The bootstrap node public IP address.
										

										
	
											BootstrapPrivateIp
										

										 	
											The bootstrap node private IP address.
										

										

CloudFormation template for the bootstrap machine

						You can use the following CloudFormation template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster.
					
Example 2.28. CloudFormation template for the bootstrap machine
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Bootstrap (EC2 Instance, Security Groups and IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AllowedBootstrapSshCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/([0-9]|1[0-9]|2[0-9]|3[0-2]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/0-32.
 Default: 0.0.0.0/0
 Description: CIDR block to allow SSH access to the bootstrap node.
 Type: String
 PublicSubnet:
 Description: The public subnet to launch the bootstrap node into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID for registering temporary rules.
 Type: AWS::EC2::SecurityGroup::Id
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 BootstrapIgnitionLocation:
 Default: s3://my-s3-bucket/bootstrap.ign
 Description: Ignition config file location.
 Type: String
 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group.
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - RhcosAmi
 - BootstrapIgnitionLocation
 - MasterSecurityGroupId
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - PublicSubnet
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 AllowedBootstrapSshCidr:
 default: "Allowed SSH Source"
 PublicSubnet:
 default: "Public Subnet"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Bootstrap Ignition Source"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]

Resources:
 BootstrapIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "bootstrap", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action: "ec2:Describe*"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:AttachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:DetachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "s3:GetObject"
 Resource: "*"

 BootstrapInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Path: "/"
 Roles:
 - Ref: "BootstrapIamRole"

 BootstrapSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Bootstrap Security Group
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref AllowedBootstrapSshCidr
 - IpProtocol: tcp
 ToPort: 19531
 FromPort: 19531
 CidrIp: 0.0.0.0/0
 VpcId: !Ref VpcId

 BootstrapInstance:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 IamInstanceProfile: !Ref BootstrapInstanceProfile
 InstanceType: "i3.large"
 NetworkInterfaces:
 - AssociatePublicIpAddress: "true"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "BootstrapSecurityGroup"
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "PublicSubnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"replace":{"source":"${S3Loc}"}},"version":"3.1.0"}}'
 - {
 S3Loc: !Ref BootstrapIgnitionLocation
 }

 RegisterBootstrapApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

Outputs:
 BootstrapInstanceId:
 Description: Bootstrap Instance ID.
 Value: !Ref BootstrapInstance

 BootstrapPublicIp:
 Description: The bootstrap node public IP address.
 Value: !GetAtt BootstrapInstance.PublicIp

 BootstrapPrivateIp:
 Description: The bootstrap node private IP address.
 Value: !GetAtt BootstrapInstance.PrivateIp

Additional resources
	
								You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
							
	
								See RHCOS AMIs for the AWS infrastructure for details about the Red Hat Enterprise Linux CoreOS (RHCOS) AMIs for the AWS zones.
							

Creating the control plane machines in AWS

					You must create the control plane machines in Amazon Web Services (AWS) that your cluster will use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the control plane nodes.
				
Important

						The CloudFormation template creates a stack that represents three control plane nodes.
					

Note

						If you do not use the provided CloudFormation template to create your control plane nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						
	
							You created the bootstrap machine.
						

Procedure
	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "RhcosAmi", [image: 3]
 "ParameterValue": "ami-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "AutoRegisterDNS", [image: 5]
 "ParameterValue": "yes" [image: 6]
 },
 {
 "ParameterKey": "PrivateHostedZoneId", [image: 7]
 "ParameterValue": "<random_string>" [image: 8]
 },
 {
 "ParameterKey": "PrivateHostedZoneName", [image: 9]
 "ParameterValue": "mycluster.example.com" [image: 10]
 },
 {
 "ParameterKey": "Master0Subnet", [image: 11]
 "ParameterValue": "subnet-<random_string>" [image: 12]
 },
 {
 "ParameterKey": "Master1Subnet", [image: 13]
 "ParameterValue": "subnet-<random_string>" [image: 14]
 },
 {
 "ParameterKey": "Master2Subnet", [image: 15]
 "ParameterValue": "subnet-<random_string>" (16)
 },
 {
 "ParameterKey": "MasterSecurityGroupId", (17)
 "ParameterValue": "sg-<random_string>" (18)
 },
 {
 "ParameterKey": "IgnitionLocation", (19)
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/master" (20)
 },
 {
 "ParameterKey": "CertificateAuthorities", (21)
 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" (22)
 },
 {
 "ParameterKey": "MasterInstanceProfileName", (23)
 "ParameterValue": "<roles_stack>-MasterInstanceProfile-<random_string>" (24)
 },
 {
 "ParameterKey": "MasterInstanceType", (25)
 "ParameterValue": "m4.xlarge" (26)
 },
 {
 "ParameterKey": "AutoRegisterELB", (27)
 "ParameterValue": "yes" (28)
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", (29)
 "ParameterValue": "arn:aws:lambda:<region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" (30)
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", (31)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" (32)
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", (33)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (34)
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", (35)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (36)
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									CurrentRed Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the control plane machines.
								

	[image: 4]
	
									Specify an AWS::EC2::Image::Id value.
								

	[image: 5]
	
									Whether or not to perform DNS etcd registration.
								

	[image: 6]
	
									Specify yes or no. If you specify yes, you must provide hosted zone information.
								

	[image: 7]
	
									The Route 53 private zone ID to register the etcd targets with.
								

	[image: 8]
	
									Specify the PrivateHostedZoneId value from the output of the CloudFormation template for DNS and load balancing.
								

	[image: 9]
	
									The Route 53 zone to register the targets with.
								

	[image: 10]
	
									Specify <cluster_name>.<domain_name> where <domain_name> is the Route 53 base domain that you used when you generated install-config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console.
								

	[image: 11] [image: 13] [image: 15]
	
									A subnet, preferably private, to launch the control plane machines on.
								

	[image: 12] [image: 14] (16)
	
									Specify a subnet from the PrivateSubnets value from the output of the CloudFormation template for DNS and load balancing.
								

	(17)
	
									The master security group ID to associate with control plane nodes (also known as the master nodes).
								

	(18)
	
									Specify the MasterSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
								

	(19)
	
									The location to fetch control plane Ignition config file from.
								

	(20)
	
									Specify the generated Ignition config file location, https://api-int.<cluster_name>.<domain_name>:22623/config/master.
								

	(21)
	
									The base64 encoded certificate authority string to use.
								

	(22)
	
									Specify the value from the master.ign file that is in the installation directory. This value is the long string with the format data:text/plain;charset=utf-8;base64,ABC…​xYz==.
								

	(23)
	
									The IAM profile to associate with control plane nodes.
								

	(24)
	
									Specify the MasterInstanceProfile parameter value from the output of the CloudFormation template for the security group and roles.
								

	(25)
	
									The type of AWS instance to use for the control plane machines.
								

	(26)
	
									Allowed values:
								
	
											m4.xlarge
										
	
											m4.2xlarge
										
	
											m4.4xlarge
										
	
											m4.8xlarge
										
	
											m4.10xlarge
										
	
											m4.16xlarge
										
	
											m5.xlarge
										
	
											m5.2xlarge
										
	
											m5.4xlarge
										
	
											m5.8xlarge
										
	
											m5.10xlarge
										
	
											m5.16xlarge
										
	
											m6i.xlarge
										
	
											c4.2xlarge
										
	
											c4.4xlarge
										
	
											c4.8xlarge
										
	
											r4.xlarge
										
	
											r4.2xlarge
										
	
											r4.4xlarge
										
	
											r4.8xlarge
										
	
											r4.16xlarge
										
Important

												If m4 instance types are not available in your region, such as with eu-west-3, specify an m5 type, such as m5.xlarge, instead.
											

	(27)
	
									Whether or not to register a network load balancer (NLB).
								

	(28)
	
									Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name (ARN) value.
								

	(29)
	
									The ARN for NLB IP target registration lambda group.
								

	(30)
	
									Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(31)
	
									The ARN for external API load balancer target group.
								

	(32)
	
									Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(33)
	
									The ARN for internal API load balancer target group.
								

	(34)
	
									Specify the InternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(35)
	
									The ARN for internal service load balancer target group.
								

	(36)
	
									Specify the InternalServiceTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	
							Copy the template from the CloudFormation template for control plane machines section of this topic and save it as a YAML file on your computer. This template describes the control plane machines that your cluster requires.
						
	
							If you specified an m5 instance type as the value for MasterInstanceType, add that instance type to the MasterInstanceType.AllowedValues parameter in the CloudFormation template.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the control plane nodes:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-control-plane. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-control-plane/21c7e2b0-2ee2-11eb-c6f6-0aa34627df4b

							
Note

								The CloudFormation template creates a stack that represents three control plane nodes.
							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

CloudFormation template for control plane machines

						You can use the following CloudFormation template to deploy the control plane machines that you need for your OpenShift Container Platform cluster.
					
Example 2.29. CloudFormation template for control plane machines
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 master instances)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AutoRegisterDNS:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke DNS etcd registration, which requires Hosted Zone information?
 Type: String
 PrivateHostedZoneId:
 Description: The Route53 private zone ID to register the etcd targets with, such as Z21IXYZABCZ2A4.
 Type: String
 PrivateHostedZoneName:
 Description: The Route53 zone to register the targets with, such as cluster.example.com. Omit the trailing period.
 Type: String
 Master0Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master1Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master2Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID to associate with master nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/master
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 MasterInstanceProfileName:
 Description: IAM profile to associate with master nodes.
 Type: String
 MasterInstanceType:
 Default: m5.xlarge
 Type: String
 AllowedValues:
 - "m4.xlarge"
 - "m4.2xlarge"
 - "m4.4xlarge"
 - "m4.10xlarge"
 - "m4.16xlarge"
 - "m5.xlarge"
 - "m5.2xlarge"
 - "m5.4xlarge"
 - "m5.8xlarge"
 - "m5.12xlarge"
 - "m5.16xlarge"
 - "m5a.xlarge"
 - "m5a.2xlarge"
 - "m5a.4xlarge"
 - "m5a.8xlarge"
 - "m5a.10xlarge"
 - "m5a.16xlarge"
 - "c4.2xlarge"
 - "c4.4xlarge"
 - "c4.8xlarge"
 - "c5.2xlarge"
 - "c5.4xlarge"
 - "c5.9xlarge"
 - "c5.12xlarge"
 - "c5.18xlarge"
 - "c5.24xlarge"
 - "c5a.2xlarge"
 - "c5a.4xlarge"
 - "c5a.8xlarge"
 - "c5a.12xlarge"
 - "c5a.16xlarge"
 - "c5a.24xlarge"
 - "r4.xlarge"
 - "r4.2xlarge"
 - "r4.4xlarge"
 - "r4.8xlarge"
 - "r4.16xlarge"
 - "r5.xlarge"
 - "r5.2xlarge"
 - "r5.4xlarge"
 - "r5.8xlarge"
 - "r5.12xlarge"
 - "r5.16xlarge"
 - "r5.24xlarge"
 - "r5a.xlarge"
 - "r5a.2xlarge"
 - "r5a.4xlarge"
 - "r5a.8xlarge"
 - "r5a.12xlarge"
 - "r5a.16xlarge"
 - "r5a.24xlarge"

 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - MasterInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - MasterSecurityGroupId
 - MasterInstanceProfileName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - Master0Subnet
 - Master1Subnet
 - Master2Subnet
 - Label:
 default: "DNS"
 Parameters:
 - AutoRegisterDNS
 - PrivateHostedZoneName
 - PrivateHostedZoneId
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 Master0Subnet:
 default: "Master-0 Subnet"
 Master1Subnet:
 default: "Master-1 Subnet"
 Master2Subnet:
 default: "Master-2 Subnet"
 MasterInstanceType:
 default: "Master Instance Type"
 MasterInstanceProfileName:
 default: "Master Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Master Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterDNS:
 default: "Use Provided DNS Automation"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"
 PrivateHostedZoneName:
 default: "Private Hosted Zone Name"
 PrivateHostedZoneId:
 default: "Private Hosted Zone ID"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]
 DoDns: !Equals ["yes", !Ref AutoRegisterDNS]

Resources:
 Master0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master0Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster0:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 Master1:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master1Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster1:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 Master2:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master2Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster2:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 EtcdSrvRecords:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["_etcd-server-ssl._tcp", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !Join [
 " ",
 ["0 10 2380", !Join [".", ["etcd-0", !Ref PrivateHostedZoneName]]],
]
 - !Join [
 " ",
 ["0 10 2380", !Join [".", ["etcd-1", !Ref PrivateHostedZoneName]]],
]
 - !Join [
 " ",
 ["0 10 2380", !Join [".", ["etcd-2", !Ref PrivateHostedZoneName]]],
]
 TTL: 60
 Type: SRV

 Etcd0Record:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["etcd-0", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !GetAtt Master0.PrivateIp
 TTL: 60
 Type: A

 Etcd1Record:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["etcd-1", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !GetAtt Master1.PrivateIp
 TTL: 60
 Type: A

 Etcd2Record:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["etcd-2", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !GetAtt Master2.PrivateIp
 TTL: 60
 Type: A

Outputs:
 PrivateIPs:
 Description: The control-plane node private IP addresses.
 Value:
 !Join [
 ",",
 [!GetAtt Master0.PrivateIp, !GetAtt Master1.PrivateIp, !GetAtt Master2.PrivateIp]
]

Additional resources
	
								You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
							

Creating the worker nodes in AWS

					You can create worker nodes in Amazon Web Services (AWS) for your cluster to use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent a worker node.
				
Important

						The CloudFormation template creates a stack that represents one worker node. You must create a stack for each worker node.
					

Note

						If you do not use the provided CloudFormation template to create your worker nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						
	
							You created the bootstrap machine.
						
	
							You created the control plane machines.
						

Procedure
	
							Create a JSON file that contains the parameter values that the CloudFormation template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "RhcosAmi", [image: 3]
 "ParameterValue": "ami-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "Subnet", [image: 5]
 "ParameterValue": "subnet-<random_string>" [image: 6]
 },
 {
 "ParameterKey": "WorkerSecurityGroupId", [image: 7]
 "ParameterValue": "sg-<random_string>" [image: 8]
 },
 {
 "ParameterKey": "IgnitionLocation", [image: 9]
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/worker" [image: 10]
 },
 {
 "ParameterKey": "CertificateAuthorities", [image: 11]
 "ParameterValue": "" [image: 12]
 },
 {
 "ParameterKey": "WorkerInstanceProfileName", [image: 13]
 "ParameterValue": "" [image: 14]
 },
 {
 "ParameterKey": "WorkerInstanceType", [image: 15]
 "ParameterValue": "m4.large" (16)
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the worker nodes.
								

	[image: 4]
	
									Specify an AWS::EC2::Image::Id value.
								

	[image: 5]
	
									A subnet, preferably private, to launch the worker nodes on.
								

	[image: 6]
	
									Specify a subnet from the PrivateSubnets value from the output of the CloudFormation template for DNS and load balancing.
								

	[image: 7]
	
									The worker security group ID to associate with worker nodes.
								

	[image: 8]
	
									Specify the WorkerSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
								

	[image: 9]
	
									The location to fetch bootstrap Ignition config file from.
								

	[image: 10]
	
									Specify the generated Ignition config location, https://api-int.<cluster_name>.<domain_name>:22623/config/worker.
								

	[image: 11]
	
									Base64 encoded certificate authority string to use.
								

	[image: 12]
	
									Specify the value from the worker.ign file that is in the installation directory. This value is the long string with the format data:text/plain;charset=utf-8;base64,ABC…​xYz==.
								

	[image: 13]
	
									The IAM profile to associate with worker nodes.
								

	[image: 14]
	
									Specify the WorkerInstanceProfile parameter value from the output of the CloudFormation template for the security group and roles.
								

	[image: 15]
	
									The type of AWS instance to use for the control plane machines.
								

	(16)
	
									Allowed values:
								
	
											m4.large
										
	
											m4.xlarge
										
	
											m4.2xlarge
										
	
											m4.4xlarge
										
	
											m4.8xlarge
										
	
											m4.10xlarge
										
	
											m4.16xlarge
										
	
											m5.large
										
	
											m5.xlarge
										
	
											m5.2xlarge
										
	
											m5.4xlarge
										
	
											m5.8xlarge
										
	
											m5.10xlarge
										
	
											m5.16xlarge
										
	
											m6i.xlarge
										
	
											c4.2xlarge
										
	
											c4.4xlarge
										
	
											c4.8xlarge
										
	
											r4.large
										
	
											r4.xlarge
										
	
											r4.2xlarge
										
	
											r4.4xlarge
										
	
											r4.8xlarge
										
	
											r4.16xlarge
										
Important

												If m4 instance types are not available in your region, such as with eu-west-3, use m5 types instead.
											

	
							Copy the template from the CloudFormation template for worker machines section of this topic and save it as a YAML file on your computer. This template describes the networking objects and load balancers that your cluster requires.
						
	
							If you specified an m5 instance type as the value for WorkerInstanceType, add that instance type to the WorkerInstanceType.AllowedValues parameter in the CloudFormation template.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent a worker node:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml \ [image: 2]
 --parameters file://<parameters>.json [image: 3]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-worker-1. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-11eb-348f-sd9888c65b59

							
Note

								The CloudFormation template creates a stack that represents one worker node.
							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

	
							Continue to create worker stacks until you have created enough worker machines for your cluster. You can create additional worker stacks by referencing the same template and parameter files and specifying a different stack name.
						
Important

								You must create at least two worker machines, so you must create at least two stacks that use this CloudFormation template.
							

CloudFormation template for worker machines

						You can use the following CloudFormation template to deploy the worker machines that you need for your OpenShift Container Platform cluster.
					
Example 2.30. CloudFormation template for worker machines
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 worker instance)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 WorkerSecurityGroupId:
 Description: The master security group ID to associate with master nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/worker
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 WorkerInstanceProfileName:
 Description: IAM profile to associate with master nodes.
 Type: String
 WorkerInstanceType:
 Default: m5.large
 Type: String
 AllowedValues:
 - "m4.large"
 - "m4.xlarge"
 - "m4.2xlarge"
 - "m4.4xlarge"
 - "m4.10xlarge"
 - "m4.16xlarge"
 - "m5.large"
 - "m5.xlarge"
 - "m5.2xlarge"
 - "m5.4xlarge"
 - "m5.8xlarge"
 - "m5.12xlarge"
 - "m5.16xlarge"
 - "m5a.large"
 - "m5a.xlarge"
 - "m5a.2xlarge"
 - "m5a.4xlarge"
 - "m5a.8xlarge"
 - "m5a.10xlarge"
 - "m5a.16xlarge"
 - "c4.large"
 - "c4.xlarge"
 - "c4.2xlarge"
 - "c4.4xlarge"
 - "c4.8xlarge"
 - "c5.large"
 - "c5.xlarge"
 - "c5.2xlarge"
 - "c5.4xlarge"
 - "c5.9xlarge"
 - "c5.12xlarge"
 - "c5.18xlarge"
 - "c5.24xlarge"
 - "c5a.large"
 - "c5a.xlarge"
 - "c5a.2xlarge"
 - "c5a.4xlarge"
 - "c5a.8xlarge"
 - "c5a.12xlarge"
 - "c5a.16xlarge"
 - "c5a.24xlarge"
 - "r4.large"
 - "r4.xlarge"
 - "r4.2xlarge"
 - "r4.4xlarge"
 - "r4.8xlarge"
 - "r4.16xlarge"
 - "r5.large"
 - "r5.xlarge"
 - "r5.2xlarge"
 - "r5.4xlarge"
 - "r5.8xlarge"
 - "r5.12xlarge"
 - "r5.16xlarge"
 - "r5.24xlarge"
 - "r5a.large"
 - "r5a.xlarge"
 - "r5a.2xlarge"
 - "r5a.4xlarge"
 - "r5a.8xlarge"
 - "r5a.12xlarge"
 - "r5a.16xlarge"
 - "r5a.24xlarge"
 - "t3.large"
 - "t3.xlarge"
 - "t3.2xlarge"
 - "t3a.large"
 - "t3a.xlarge"
 - "t3a.2xlarge"

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - WorkerInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - WorkerSecurityGroupId
 - WorkerInstanceProfileName
 - Label:
 default: "Network Configuration"
 Parameters:
 - Subnet
 ParameterLabels:
 Subnet:
 default: "Subnet"
 InfrastructureName:
 default: "Infrastructure Name"
 WorkerInstanceType:
 default: "Worker Instance Type"
 WorkerInstanceProfileName:
 default: "Worker Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 IgnitionLocation:
 default: "Worker Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 WorkerSecurityGroupId:
 default: "Worker Security Group ID"

Resources:
 Worker0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref WorkerInstanceProfileName
 InstanceType: !Ref WorkerInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "WorkerSecurityGroupId"
 SubnetId: !Ref "Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

Outputs:
 PrivateIP:
 Description: The compute node private IP address.
 Value: !GetAtt Worker0.PrivateIp

Additional resources
	
								You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
							

Initializing the bootstrap sequence on AWS with user-provisioned infrastructure

					After you create all of the required infrastructure in Amazon Web Services (AWS), you can start the bootstrap sequence that initializes the OpenShift Container Platform control plane.
				
Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						
	
							You created the bootstrap machine.
						
	
							You created the control plane machines.
						
	
							You created the worker nodes.
						

Procedure
	
							Change to the directory that contains the installation program and start the bootstrap process that initializes the OpenShift Container Platform control plane:
						
$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 20m0s for the Kubernetes API at https://api.mycluster.example.com:6443...
INFO API v1.19.0+9f84db3 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources
INFO Time elapsed: 1s

							

							If the command exits without a FATAL warning, your OpenShift Container Platform control plane has initialized.
						
Note

								After the control plane initializes, it sets up the compute nodes and installs additional services in the form of Operators.
							

Additional resources
	
							See Monitoring installation progress for details about monitoring the installation, bootstrap, and control plane logs as an OpenShift Container Platform installation progresses.
						
	
							See Gathering bootstrap node diagnostic data for information about troubleshooting issues related to the bootstrap process.
						
	
							You can view details about the running instances that are created by using the AWS EC2 console.
						

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Image registry storage configuration

						Amazon Web Services provides default storage, which means the Image Registry Operator is available after installation. However, if the Registry Operator cannot create an S3 bucket and automatically configure storage, you must manually configure registry storage.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					

						You can configure registry storage for user-provisioned infrastructure in AWS to deploy OpenShift Container Platform to hidden regions. See Configuring the registry for AWS user-provisioned infrastructure for more information.
					
Configuring registry storage for AWS with user-provisioned infrastructure

							During installation, your cloud credentials are sufficient to create an Amazon S3 bucket and the Registry Operator will automatically configure storage.
						

							If the Registry Operator cannot create an S3 bucket and automatically configure storage, you can create an S3 bucket and configure storage with the following procedure.
						
Prerequisites
	
									You have a cluster on AWS with user-provisioned infrastructure.
								
	
									For Amazon S3 storage, the secret is expected to contain two keys:
								
	
											REGISTRY_STORAGE_S3_ACCESSKEY
										
	
											REGISTRY_STORAGE_S3_SECRETKEY
										

Procedure

								Use the following procedure if the Registry Operator cannot create an S3 bucket and automatically configure storage.
							
	
									Set up a Bucket Lifecycle Policy to abort incomplete multipart uploads that are one day old.
								
	
									Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:
								
$ oc edit configs.imageregistry.operator.openshift.io/cluster
Example configuration

										

storage:
 s3:
 bucket: <bucket-name>
 region: <region-name>

									

Warning

								To secure your registry images in AWS, block public access to the S3 bucket.
							

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Deleting the bootstrap resources

					After you complete the initial Operator configuration for the cluster, remove the bootstrap resources from Amazon Web Services (AWS).
				
Prerequisites
	
							You completed the initial Operator configuration for your cluster.
						

Procedure
	
							Delete the bootstrap resources. If you used the CloudFormation template, delete its stack:
						
	
									Delete the stack by using the AWS CLI:
								
$ aws cloudformation delete-stack --stack-name <name> [image: 1]
	[image: 1]
	
											<name> is the name of your bootstrap stack.
										

	
									Delete the stack by using the AWS CloudFormation console.
								

Creating the Ingress DNS Records

					If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load balancer. You can create either a wildcard record or specific records. While the following procedure uses A records, you can use other record types that you require, such as CNAME or alias.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster on Amazon Web Services (AWS) that uses infrastructure that you provisioned.
						
	
							You installed the OpenShift CLI (oc).
						
	
							You installed the jq package.
						
	
							You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or Unix).
						

Procedure
	
							Determine the routes to create.
						
	
									To create a wildcard record, use *.apps.<cluster_name>.<domain_name>, where <cluster_name> is your cluster name, and <domain_name> is the Route 53 base domain for your OpenShift Container Platform cluster.
								
	
									To create specific records, you must create a record for each route that your cluster uses, as shown in the output of the following command:
								
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output

										

oauth-openshift.apps.<cluster_name>.<domain_name>
console-openshift-console.apps.<cluster_name>.<domain_name>
downloads-openshift-console.apps.<cluster_name>.<domain_name>
alertmanager-main-openshift-monitoring.apps.<cluster_name>.<domain_name>
grafana-openshift-monitoring.apps.<cluster_name>.<domain_name>
prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<domain_name>

									

	
							Retrieve the Ingress Operator load balancer status and note the value of the external IP address that it uses, which is shown in the EXTERNAL-IP column:
						
$ oc -n openshift-ingress get service router-default
Example output

								

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
router-default LoadBalancer 172.30.62.215 ab3...28.us-east-2.elb.amazonaws.com 80:31499/TCP,443:30693/TCP 5m

							

	
							Locate the hosted zone ID for the load balancer:
						
$ aws elb describe-load-balancers | jq -r '.LoadBalancerDescriptions[] | select(.DNSName == "<external_ip>").CanonicalHostedZoneNameID' [image: 1]
	[image: 1]
	
									For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer that you obtained.
								

Example output

								

Z3AADJGX6KTTL2

							

							The output of this command is the load balancer hosted zone ID.
						

	
							Obtain the public hosted zone ID for your cluster’s domain:
						
$ aws route53 list-hosted-zones-by-name \
 --dns-name "<domain_name>" \ [image: 1]
 --query 'HostedZones[? Config.PrivateZone != `true` && Name == `<domain_name>.`].Id' [image: 2]
 --output text
	[image: 1] [image: 2]
	
									For <domain_name>, specify the Route 53 base domain for your OpenShift Container Platform cluster.
								

Example output

								

/hostedzone/Z3URY6TWQ91KVV

							

							The public hosted zone ID for your domain is shown in the command output. In this example, it is Z3URY6TWQ91KVV.
						

	
							Add the alias records to your private zone:
						
$ aws route53 change-resource-record-sets --hosted-zone-id "<private_hosted_zone_id>" --change-batch '{ [image: 1]
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", [image: 2]
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", [image: 3]
> "DNSName": "<external_ip>.", [image: 4]
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'
	[image: 1]
	
									For <private_hosted_zone_id>, specify the value from the output of the CloudFormation template for DNS and load balancing.
								

	[image: 2]
	
									For <cluster_domain>, specify the domain or subdomain that you use with your OpenShift Container Platform cluster.
								

	[image: 3]
	
									For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you obtained.
								

	[image: 4]
	
									For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.) in this parameter value.
								

	
							Add the records to your public zone:
						
$ aws route53 change-resource-record-sets --hosted-zone-id "<public_hosted_zone_id>"" --change-batch '{ [image: 1]
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", [image: 2]
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", [image: 3]
> "DNSName": "<external_ip>.", [image: 4]
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'
	[image: 1]
	
									For <public_hosted_zone_id>, specify the public hosted zone for your domain.
								

	[image: 2]
	
									For <cluster_domain>, specify the domain or subdomain that you use with your OpenShift Container Platform cluster.
								

	[image: 3]
	
									For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you obtained.
								

	[image: 4]
	
									For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.) in this parameter value.
								

Completing an AWS installation on user-provisioned infrastructure

					After you start the OpenShift Container Platform installation on Amazon Web Service (AWS) user-provisioned infrastructure, monitor the deployment to completion.
				
Prerequisites
	
							You removed the bootstrap node for an OpenShift Container Platform cluster on user-provisioned AWS infrastructure.
						
	
							You installed the oc CLI.
						

Procedure
	
							From the directory that contains the installation program, complete the cluster installation:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 40m0s for the cluster at https://api.mycluster.example.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Fe5en-ymBEc-Wt6NL"
INFO Time elapsed: 1s

							
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service.
						

Additional resources

	
							See Working with stacks in the AWS documentation for more information about AWS CloudFormation stacks.
						

Next steps

	
							Validating an installation.
						
	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Installing a cluster on AWS in a restricted network with user-provisioned infrastructure

				In OpenShift Container Platform version 4.6, you can install a cluster on Amazon Web Services (AWS) using infrastructure that you provide and an internal mirror of the installation release content.
			
Important

					While you can install an OpenShift Container Platform cluster by using mirrored installation release content, your cluster still requires Internet access to use the AWS APIs.
				

				One way to create this infrastructure is to use the provided CloudFormation templates. You can modify the templates to customize your infrastructure or use the information that they contain to create AWS objects according to your company’s policies.
			
Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several CloudFormation templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
				

Prerequisites

	
							You created a mirror registry on your mirror host and obtained the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							You reviewed details about the OpenShift Container Platform installation and update processes.
						
	
							You configured an AWS account to host the cluster.
						
Important

								If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
							

	
							You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or Unix) in the AWS documentation.
						
	
							If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Important

						Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
					

Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Required AWS infrastructure components

					To install OpenShift Container Platform on user-provisioned infrastructure in Amazon Web Services (AWS), you must manually create both the machines and their supporting infrastructure.
				

					For more information about the integration testing for different platforms, see the OpenShift Container Platform 4.x Tested Integrations page.
				

					By using the provided CloudFormation templates, you can create stacks of AWS resources that represent the following components:
				
	
							An AWS Virtual Private Cloud (VPC)
						
	
							Networking and load balancing components
						
	
							Security groups and roles
						
	
							An OpenShift Container Platform bootstrap node
						
	
							OpenShift Container Platform control plane nodes
						
	
							An OpenShift Container Platform compute node
						

					Alternatively, you can manually create the components or you can reuse existing infrastructure that meets the cluster requirements. Review the CloudFormation templates for more details about how the components interrelate.
				
Cluster machines

						You need AWS::EC2::Instance objects for the following machines:
					
	
								A bootstrap machine. This machine is required during installation, but you can remove it after your cluster deploys.
							
	
								Three control plane machines. The control plane machines are not governed by a machine set.
							
	
								Compute machines. You must create at least two compute machines, which are also known as worker machines, during installation. These machines are not governed by a machine set.
							

						You can use the following instance types for the cluster machines with the provided CloudFormation templates.
					
Important

							If m4 instance types are not available in your region, such as with eu-west-3, use m5 types instead.
						

Table 2.32. Instance types for machines
	Instance type	Bootstrap	Control plane	Compute
	
										i3.large
									

									 	
										x
									

									 	 	
	
										m4.large
									

									 	 	 	
										x
									

									
	
										m4.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.10xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m4.16xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.large
									

									 	 	 	
										x
									

									
	
										m5.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.10xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m5.16xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										m6i.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										c4.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										c4.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										c4.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.large
									

									 	 	 	
										x
									

									
	
										r4.xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.2xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.4xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.8xlarge
									

									 	 	
										x
									

									 	
										x
									

									
	
										r4.16xlarge
									

									 	 	
										x
									

									 	
										x
									

									

						You might be able to use other instance types that meet the specifications of these instance types.
					

Other infrastructure components

	
								A VPC
							
	
								DNS entries
							
	
								Load balancers (classic or network) and listeners
							
	
								A public and a private Route 53 zone
							
	
								Security groups
							
	
								IAM roles
							
	
								S3 buckets
							

						If you are working in a disconnected environment or use a proxy, you cannot reach the public IP addresses for EC2 and ELB endpoints. To reach these endpoints, you must create a VPC endpoint and attach it to the subnet that the clusters are using. Create the following endpoints:
					
	
								ec2.<region>.amazonaws.com
							
	
								elasticloadbalancing.<region>.amazonaws.com
							
	
								s3.<region>.amazonaws.com
							

Required VPC components

							You must provide a suitable VPC and subnets that allow communication to your machines.
						
	Component	AWS type	Description
	
										VPC
									

									 	 	
												AWS::EC2::VPC
											
	
												AWS::EC2::VPCEndpoint
											

									 	
										You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.
									

									
	
										Public subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::SubnetNetworkAclAssociation
											

									 	
										Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.
									

									
	
										Internet gateway
									

									 	 	
												AWS::EC2::InternetGateway
											
	
												AWS::EC2::VPCGatewayAttachment
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::Route
											
	
												AWS::EC2::SubnetRouteTableAssociation
											
	
												AWS::EC2::NatGateway
											
	
												AWS::EC2::EIP
											

									 	
										You must have a public Internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the Internet and are not required for some restricted network or proxy scenarios.
									

									
	
										Network access control
									

									 	 	
												AWS::EC2::NetworkAcl
											
	
												AWS::EC2::NetworkAclEntry
											

									 	
										You must allow the VPC to access the following ports:
									

									
	
										Port
									

									 	
										Reason
									

									
	
										80
									

									 	
										Inbound HTTP traffic
									

									
	
										443
									

									 	
										Inbound HTTPS traffic
									

									
	
										22
									

									 	
										Inbound SSH traffic
									

									
	
										1024 - 65535
									

									 	
										Inbound ephemeral traffic
									

									
	
										0 - 65535
									

									 	
										Outbound ephemeral traffic
									

									
	
										Private subnets
									

									 	 	
												AWS::EC2::Subnet
											
	
												AWS::EC2::RouteTable
											
	
												AWS::EC2::SubnetRouteTableAssociation
											

									 	
										Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.
									

									

Required DNS and load balancing components

							Your DNS and load balancer configuration needs to use a public hosted zone and can use a private hosted zone similar to the one that the installation program uses if it provisions the cluster’s infrastructure. You must create a DNS entry that resolves to your load balancer. An entry for api.<cluster_name>.<domain> must point to the external load balancer, and an entry for api-int.<cluster_name>.<domain> must point to the internal load balancer.
						

						The cluster also requires load balancers and listeners for port 6443, which are required for the Kubernetes API and its extensions, and port 22623, which are required for the Ignition config files for new machines. The targets will be the control plane nodes (also known as the master nodes). Port 6443 must be accessible to both clients external to the cluster and nodes within the cluster. Port 22623 must be accessible to nodes within the cluster.
					
	Component	AWS type	Description
	
										DNS
									

									 	
										AWS::Route53::HostedZone
									

									 	
										The hosted zone for your internal DNS.
									

									
	
										etcd record sets
									

									 	
										AWS::Route53::RecordSet
									

									 	
										The registration records for etcd for your control plane machines.
									

									
	
										Public load balancer
									

									 	
										AWS::ElasticLoadBalancingV2::LoadBalancer
									

									 	
										The load balancer for your public subnets.
									

									
	
										External API server record
									

									 	
										AWS::Route53::RecordSetGroup
									

									 	
										Alias records for the external API server.
									

									
	
										External listener
									

									 	
										AWS::ElasticLoadBalancingV2::Listener
									

									 	
										A listener on port 6443 for the external load balancer.
									

									
	
										External target group
									

									 	
										AWS::ElasticLoadBalancingV2::TargetGroup
									

									 	
										The target group for the external load balancer.
									

									
	
										Private load balancer
									

									 	
										AWS::ElasticLoadBalancingV2::LoadBalancer
									

									 	
										The load balancer for your private subnets.
									

									
	
										Internal API server record
									

									 	
										AWS::Route53::RecordSetGroup
									

									 	
										Alias records for the internal API server.
									

									
	
										Internal listener
									

									 	
										AWS::ElasticLoadBalancingV2::Listener
									

									 	
										A listener on port 22623 for the internal load balancer.
									

									
	
										Internal target group
									

									 	
										AWS::ElasticLoadBalancingV2::TargetGroup
									

									 	
										The target group for the internal load balancer.
									

									
	
										Internal listener
									

									 	
										AWS::ElasticLoadBalancingV2::Listener
									

									 	
										A listener on port 6443 for the internal load balancer.
									

									
	
										Internal target group
									

									 	
										AWS::ElasticLoadBalancingV2::TargetGroup
									

									 	
										The target group for the internal load balancer.
									

									

Security groups

							The control plane and worker machines require access to the following ports:
						
	Group	Type	IP Protocol	Port range
	
										MasterSecurityGroup
									

									 	
										AWS::EC2::SecurityGroup
									

									 	
										icmp
									

									 	
										0
									

									
	
										tcp
									

									 	
										22
									

									
	
										tcp
									

									 	
										6443
									

									
	
										tcp
									

									 	
										22623
									

									
	
										WorkerSecurityGroup
									

									 	
										AWS::EC2::SecurityGroup
									

									 	
										icmp
									

									 	
										0
									

									
	
										tcp
									

									 	
										22
									

									
	
										BootstrapSecurityGroup
									

									 	
										AWS::EC2::SecurityGroup
									

									 	
										tcp
									

									 	
										22
									

									
	
										tcp
									

									 	
										19531
									

									

Control plane Ingress

							The control plane machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress resource.
						
	Ingress group	Description	IP protocol	Port range
	
										MasterIngressEtcd
									

									 	
										etcd
									

									 	
										tcp
									

									 	
										2379- 2380
									

									
	
										MasterIngressVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										MasterIngressWorkerVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										MasterIngressInternal
									

									 	
										Internal cluster communication and Kubernetes proxy metrics
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressWorkerInternal
									

									 	
										Internal cluster communication
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressKube
									

									 	
										Kubernetes kubelet, scheduler and controller manager
									

									 	
										tcp
									

									 	
										10250 - 10259
									

									
	
										MasterIngressWorkerKube
									

									 	
										Kubernetes kubelet, scheduler and controller manager
									

									 	
										tcp
									

									 	
										10250 - 10259
									

									
	
										MasterIngressIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										MasterIngressWorkerIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										MasterIngressGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										MasterIngressWorkerGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										MasterIngressIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										MasterIngressWorkerIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										MasterIngressIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										MasterIngressWorkerIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										MasterIngressIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										MasterIngressWorkerIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										MasterIngressInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressWorkerInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										MasterIngressIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									
	
										MasterIngressWorkerIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									

Worker Ingress

							The worker machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress resource.
						
	Ingress group	Description	IP protocol	Port range
	
										WorkerIngressVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										WorkerIngressWorkerVxlan
									

									 	
										Vxlan packets
									

									 	
										udp
									

									 	
										4789
									

									
	
										WorkerIngressInternal
									

									 	
										Internal cluster communication
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressWorkerInternal
									

									 	
										Internal cluster communication
									

									 	
										tcp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressKube
									

									 	
										Kubernetes kubelet, scheduler, and controller manager
									

									 	
										tcp
									

									 	
										10250
									

									
	
										WorkerIngressWorkerKube
									

									 	
										Kubernetes kubelet, scheduler, and controller manager
									

									 	
										tcp
									

									 	
										10250
									

									
	
										WorkerIngressIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										WorkerIngressWorkerIngressServices
									

									 	
										Kubernetes Ingress services
									

									 	
										tcp
									

									 	
										30000 - 32767
									

									
	
										WorkerIngressGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										WorkerIngressMasterGeneve
									

									 	
										Geneve packets
									

									 	
										udp
									

									 	
										6081
									

									
	
										WorkerIngressIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										WorkerIngressMasterIpsecIke
									

									 	
										IPsec IKE packets
									

									 	
										udp
									

									 	
										500
									

									
	
										WorkerIngressIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										WorkerIngressMasterIpsecNat
									

									 	
										IPsec NAT-T packets
									

									 	
										udp
									

									 	
										4500
									

									
	
										WorkerIngressIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										WorkerIngressMasterIpsecEsp
									

									 	
										IPsec ESP packets
									

									 	
										50
									

									 	
										All
									

									
	
										WorkerIngressInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressMasterInternalUDP
									

									 	
										Internal cluster communication
									

									 	
										udp
									

									 	
										9000 - 9999
									

									
	
										WorkerIngressIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									
	
										WorkerIngressMasterIngressServicesUDP
									

									 	
										Kubernetes Ingress services
									

									 	
										udp
									

									 	
										30000 - 32767
									

									

Roles and instance profiles

							You must grant the machines permissions in AWS. The provided CloudFormation templates grant the machines Allow permissions for the following AWS::IAM::Role objects and provide a AWS::IAM::InstanceProfile for each set of roles. If you do not use the templates, you can grant the machines the following broad permissions or the following individual permissions.
						
	Role	Effect	Action	Resource
	
										Master
									

									 	
										Allow
									

									 	
										ec2:*
									

									 	
										*
									

									
	
										Allow
									

									 	
										elasticloadbalancing:*
									

									 	
										*
									

									
	
										Allow
									

									 	
										iam:PassRole
									

									 	
										*
									

									
	
										Allow
									

									 	
										s3:GetObject
									

									 	
										*
									

									
	
										Worker
									

									 	
										Allow
									

									 	
										ec2:Describe*
									

									 	
										*
									

									
	
										Bootstrap
									

									 	
										Allow
									

									 	
										ec2:Describe*
									

									 	
										*
									

									
	
										Allow
									

									 	
										ec2:AttachVolume
									

									 	
										*
									

									
	
										Allow
									

									 	
										ec2:DetachVolume
									

									 	
										*
									

									

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Required AWS permissions

Note

							Your IAM user must have the permission tag:GetResources in the region us-east-1 to delete the base cluster resources. As part of the AWS API requirement, the OpenShift Container Platform installation program performs various actions in this region.
						

						When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web Services (AWS), you grant that user all of the required permissions. To deploy all components of an OpenShift Container Platform cluster, the IAM user requires the following permissions:
					
Example 2.31. Required EC2 permissions for installation
	
									tag:TagResources
								
	
									tag:UntagResources
								
	
									ec2:AllocateAddress
								
	
									ec2:AssociateAddress
								
	
									ec2:AuthorizeSecurityGroupEgress
								
	
									ec2:AuthorizeSecurityGroupIngress
								
	
									ec2:CopyImage
								
	
									ec2:CreateNetworkInterface
								
	
									ec2:AttachNetworkInterface
								
	
									ec2:CreateSecurityGroup
								
	
									ec2:CreateTags
								
	
									ec2:CreateVolume
								
	
									ec2:DeleteSecurityGroup
								
	
									ec2:DeleteSnapshot
								
	
									ec2:DeleteTags
								
	
									ec2:DeregisterImage
								
	
									ec2:DescribeAccountAttributes
								
	
									ec2:DescribeAddresses
								
	
									ec2:DescribeAvailabilityZones
								
	
									ec2:DescribeDhcpOptions
								
	
									ec2:DescribeImages
								
	
									ec2:DescribeInstanceAttribute
								
	
									ec2:DescribeInstanceCreditSpecifications
								
	
									ec2:DescribeInstances
								
	
									ec2:DescribeInternetGateways
								
	
									ec2:DescribeKeyPairs
								
	
									ec2:DescribeNatGateways
								
	
									ec2:DescribeNetworkAcls
								
	
									ec2:DescribeNetworkInterfaces
								
	
									ec2:DescribePrefixLists
								
	
									ec2:DescribeRegions
								
	
									ec2:DescribeRouteTables
								
	
									ec2:DescribeSecurityGroups
								
	
									ec2:DescribeSubnets
								
	
									ec2:DescribeTags
								
	
									ec2:DescribeVolumes
								
	
									ec2:DescribeVpcAttribute
								
	
									ec2:DescribeVpcClassicLink
								
	
									ec2:DescribeVpcClassicLinkDnsSupport
								
	
									ec2:DescribeVpcEndpoints
								
	
									ec2:DescribeVpcs
								
	
									ec2:GetEbsDefaultKmsKeyId
								
	
									ec2:ModifyInstanceAttribute
								
	
									ec2:ModifyNetworkInterfaceAttribute
								
	
									ec2:ReleaseAddress
								
	
									ec2:RevokeSecurityGroupEgress
								
	
									ec2:RevokeSecurityGroupIngress
								
	
									ec2:RunInstances
								
	
									ec2:TerminateInstances
								

Example 2.32. Required permissions for creating network resources during installation
	
									ec2:AssociateDhcpOptions
								
	
									ec2:AssociateRouteTable
								
	
									ec2:AttachInternetGateway
								
	
									ec2:CreateDhcpOptions
								
	
									ec2:CreateInternetGateway
								
	
									ec2:CreateNatGateway
								
	
									ec2:CreateRoute
								
	
									ec2:CreateRouteTable
								
	
									ec2:CreateSubnet
								
	
									ec2:CreateVpc
								
	
									ec2:CreateVpcEndpoint
								
	
									ec2:ModifySubnetAttribute
								
	
									ec2:ModifyVpcAttribute
								

Note

								If you use an existing VPC, your account does not require these permissions for creating network resources.
							

Example 2.33. Required Elastic Load Balancing permissions (ELB) for installation
	
									elasticloadbalancing:AddTags
								
	
									elasticloadbalancing:ApplySecurityGroupsToLoadBalancer
								
	
									elasticloadbalancing:AttachLoadBalancerToSubnets
								
	
									elasticloadbalancing:ConfigureHealthCheck
								
	
									elasticloadbalancing:CreateLoadBalancer
								
	
									elasticloadbalancing:CreateLoadBalancerListeners
								
	
									elasticloadbalancing:DeleteLoadBalancer
								
	
									elasticloadbalancing:DeregisterInstancesFromLoadBalancer
								
	
									elasticloadbalancing:DescribeInstanceHealth
								
	
									elasticloadbalancing:DescribeLoadBalancerAttributes
								
	
									elasticloadbalancing:DescribeLoadBalancers
								
	
									elasticloadbalancing:DescribeTags
								
	
									elasticloadbalancing:ModifyLoadBalancerAttributes
								
	
									elasticloadbalancing:RegisterInstancesWithLoadBalancer
								
	
									elasticloadbalancing:SetLoadBalancerPoliciesOfListener
								

Example 2.34. Required Elastic Load Balancing permissions (ELBv2) for installation
	
									elasticloadbalancing:AddTags
								
	
									elasticloadbalancing:CreateListener
								
	
									elasticloadbalancing:CreateLoadBalancer
								
	
									elasticloadbalancing:CreateTargetGroup
								
	
									elasticloadbalancing:DeleteLoadBalancer
								
	
									elasticloadbalancing:DeregisterTargets
								
	
									elasticloadbalancing:DescribeListeners
								
	
									elasticloadbalancing:DescribeLoadBalancerAttributes
								
	
									elasticloadbalancing:DescribeLoadBalancers
								
	
									elasticloadbalancing:DescribeTargetGroupAttributes
								
	
									elasticloadbalancing:DescribeTargetHealth
								
	
									elasticloadbalancing:ModifyLoadBalancerAttributes
								
	
									elasticloadbalancing:ModifyTargetGroup
								
	
									elasticloadbalancing:ModifyTargetGroupAttributes
								
	
									elasticloadbalancing:RegisterTargets
								

Example 2.35. Required IAM permissions for installation
	
									iam:AddRoleToInstanceProfile
								
	
									iam:CreateInstanceProfile
								
	
									iam:CreateRole
								
	
									iam:DeleteInstanceProfile
								
	
									iam:DeleteRole
								
	
									iam:DeleteRolePolicy
								
	
									iam:GetInstanceProfile
								
	
									iam:GetRole
								
	
									iam:GetRolePolicy
								
	
									iam:GetUser
								
	
									iam:ListInstanceProfilesForRole
								
	
									iam:ListRoles
								
	
									iam:ListUsers
								
	
									iam:PassRole
								
	
									iam:PutRolePolicy
								
	
									iam:RemoveRoleFromInstanceProfile
								
	
									iam:SimulatePrincipalPolicy
								
	
									iam:TagRole
								

Note

								If you have not created an elastic load balancer (ELB) in your AWS account, the IAM user also requires the iam:CreateServiceLinkedRole permission.
							

Example 2.36. Required Route 53 permissions for installation
	
									route53:ChangeResourceRecordSets
								
	
									route53:ChangeTagsForResource
								
	
									route53:CreateHostedZone
								
	
									route53:DeleteHostedZone
								
	
									route53:GetChange
								
	
									route53:GetHostedZone
								
	
									route53:ListHostedZones
								
	
									route53:ListHostedZonesByName
								
	
									route53:ListResourceRecordSets
								
	
									route53:ListTagsForResource
								
	
									route53:UpdateHostedZoneComment
								

Example 2.37. Required S3 permissions for installation
	
									s3:CreateBucket
								
	
									s3:DeleteBucket
								
	
									s3:GetAccelerateConfiguration
								
	
									s3:GetBucketAcl
								
	
									s3:GetBucketCors
								
	
									s3:GetBucketLocation
								
	
									s3:GetBucketLogging
								
	
									s3:GetBucketObjectLockConfiguration
								
	
									s3:GetBucketReplication
								
	
									s3:GetBucketRequestPayment
								
	
									s3:GetBucketTagging
								
	
									s3:GetBucketVersioning
								
	
									s3:GetBucketWebsite
								
	
									s3:GetEncryptionConfiguration
								
	
									s3:GetLifecycleConfiguration
								
	
									s3:GetReplicationConfiguration
								
	
									s3:ListBucket
								
	
									s3:PutBucketAcl
								
	
									s3:PutBucketTagging
								
	
									s3:PutEncryptionConfiguration
								

Example 2.38. S3 permissions that cluster Operators require
	
									s3:DeleteObject
								
	
									s3:GetObject
								
	
									s3:GetObjectAcl
								
	
									s3:GetObjectTagging
								
	
									s3:GetObjectVersion
								
	
									s3:PutObject
								
	
									s3:PutObjectAcl
								
	
									s3:PutObjectTagging
								

Example 2.39. Required permissions to delete base cluster resources
	
									autoscaling:DescribeAutoScalingGroups
								
	
									ec2:DeleteNetworkInterface
								
	
									ec2:DeleteVolume
								
	
									elasticloadbalancing:DeleteTargetGroup
								
	
									elasticloadbalancing:DescribeTargetGroups
								
	
									iam:DeleteAccessKey
								
	
									iam:DeleteUser
								
	
									iam:ListAttachedRolePolicies
								
	
									iam:ListInstanceProfiles
								
	
									iam:ListRolePolicies
								
	
									iam:ListUserPolicies
								
	
									s3:DeleteObject
								
	
									s3:ListBucketVersions
								
	
									tag:GetResources
								

Example 2.40. Required permissions to delete network resources
	
									ec2:DeleteDhcpOptions
								
	
									ec2:DeleteInternetGateway
								
	
									ec2:DeleteNatGateway
								
	
									ec2:DeleteRoute
								
	
									ec2:DeleteRouteTable
								
	
									ec2:DeleteSubnet
								
	
									ec2:DeleteVpc
								
	
									ec2:DeleteVpcEndpoints
								
	
									ec2:DetachInternetGateway
								
	
									ec2:DisassociateRouteTable
								
	
									ec2:ReplaceRouteTableAssociation
								

Note

								If you use an existing VPC, your account does not require these permissions to delete network resources.
							

Example 2.41. Additional IAM and S3 permissions that are required to create manifests
	
									iam:DeleteAccessKey
								
	
									iam:DeleteUser
								
	
									iam:DeleteUserPolicy
								
	
									iam:GetUserPolicy
								
	
									iam:ListAccessKeys
								
	
									iam:PutUserPolicy
								
	
									iam:TagUser
								
	
									iam:GetUserPolicy
								
	
									iam:ListAccessKeys
								
	
									s3:PutBucketPublicAccessBlock
								
	
									s3:GetBucketPublicAccessBlock
								
	
									s3:PutLifecycleConfiguration
								
	
									s3:HeadBucket
								
	
									s3:ListBucketMultipartUploads
								
	
									s3:AbortMultipartUpload
								

Note

								If you are managing your cloud provider credentials with mint mode, the IAM user also requires the iam:CreateAccessKey and iam:CreateUser permissions.
							

Example 2.42. Optional permission for quota checks for installation
	
									servicequotas:ListAWSDefaultServiceQuotas
								

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Creating the installation files for AWS

					To install OpenShift Container Platform on Amazon Web Services (AWS) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.
				
Optional: Creating a separate /var partition

						It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
					

						OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
					
	
								/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
							
	
								/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
							
	
								/var: Holds data that you might want to keep separate for purposes such as auditing.
							

						Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
					

						Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
					
Important

							If you follow the steps to create a separate /var partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
						

Procedure
	
								Create a directory to hold the OpenShift Container Platform installation files:
							
$ mkdir $HOME/clusterconfig

	
								Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
							
$ openshift-install create manifests --dir $HOME/clusterconfig
Example output

									

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift

								

	
								Optional: Confirm that the installation program created manifests in the clusterconfig/openshift directory:
							
$ ls $HOME/clusterconfig/openshift/
Example output

									

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

								

	
								Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
							
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
										The storage device name of the disk that you want to partition.
									

	[image: 2]
	
										When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
									

	[image: 3]
	
										The size of the data partition in mebibytes.
									

	[image: 4]
	
										The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
									

	[image: 5]
	
										The prjquota mount option must be enabled for filesystems used for container storage.
									

Note

									When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
								

	
								Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
							
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

						Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
					

Creating the installation configuration file

						Generate and customize the installation configuration file that the installation program needs to deploy your cluster.
					
Prerequisites
	
								You obtained the OpenShift Container Platform installation program for user-provisioned infrastructure and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
							
	
								You checked that you are deploying your cluster to a region with an accompanying Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to a region that requires a custom AMI, such as an AWS GovCloud region, you must create the install-config.yaml file manually.
							

Procedure
	
								Create the install-config.yaml file.
							
	
										Change to the directory that contains the installation program and run the following command:
									
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
												For <installation_directory>, specify the directory name to store the files that the installation program creates.
											

Important

											Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
										

	
										At the prompts, provide the configuration details for your cloud:
									
	
												Optional: Select an SSH key to use to access your cluster machines.
											
Note

													For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
												

	
												Select aws as the platform to target.
											
	
												If you do not have an AWS profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
											
Note

													The AWS access key ID and secret access key are stored in ~/.aws/credentials in the home directory of the current user on the installation host. You are prompted for the credentials by the installation program if the credentials for the exported profile are not present in the file. Any credentials that you provide to the installation program are stored in the file.
												

	
												Select the AWS region to deploy the cluster to.
											
	
												Select the base domain for the Route 53 service that you configured for your cluster.
											
	
												Enter a descriptive name for your cluster.
											
	
												Paste the pull secret from the Red Hat OpenShift Cluster Manager.
											

	
								Edit the install-config.yaml file to provide the additional information that is required for an installation in a restricted network.
							
	
										Update the pullSecret value to contain the authentication information for your registry:
									
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}'

										For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
									

	
										Add the additionalTrustBundle parameter and value. The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
									
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----

	
										Add the image content resources:
									
imageContentSources:
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

										Use the imageContentSources section from the output of the command to mirror the repository or the values that you used when you mirrored the content from the media that you brought into your restricted network.
									

	
										Optional: Set the publishing strategy to Internal:
									
publish: Internal

										By setting this option, you create an internal Ingress Controller and a private load balancer.
									

	
								Optional: Back up the install-config.yaml file.
							
Important

									The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
								

Additional resources
	
								See Configuration and credential file settings in the AWS documentation for more information about AWS profile and credential configuration.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

	
								If your cluster is on AWS, you added the ec2.<region>.amazonaws.com, elasticloadbalancing.<region>.amazonaws.com, and s3.<region>.amazonaws.com endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
							

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

						Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
					

						The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
					
Important
	
									The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
								
	
									It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
								

Prerequisites
	
								You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
							
	
								You created the install-config.yaml installation configuration file.
							

Procedure
	
								Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
									

	
								Remove the Kubernetes manifest files that define the control plane machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

								By removing these files, you prevent the cluster from automatically generating control plane machines.
							

	
								Remove the Kubernetes manifest files that define the worker machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

								Because you create and manage the worker machines yourself, you do not need to initialize these machines.
							

	
								Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
							
	
										Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
									
	
										Locate the mastersSchedulable parameter and ensure that it is set to false.
									
	
										Save and exit the file.
									

	
								Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the privateZone and publicZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:
							
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: [image: 1]
 id: mycluster-100419-private-zone
 publicZone: [image: 2]
 id: example.openshift.com
status: {}
	[image: 1] [image: 2]
	
										Remove this section completely.
									

								If you do so, you must add ingress DNS records manually in a later step.
							

	
								To create the Ignition configuration files, run the following command from the directory that contains the installation program:
							
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the same installation directory.
									

								The following files are generated in the directory:
							
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Extracting the infrastructure name

					The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Amazon Web Services (AWS). The infrastructure name is also used to locate the appropriate AWS resources during an OpenShift Container Platform installation. The provided CloudFormation templates contain references to this infrastructure name, so you must extract it.
				
Prerequisites
	
							You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You installed the jq package.
						

Procedure
	
							To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
						
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

openshift-vw9j6 [image: 1]

							
	[image: 1]
	
									The output of this command is your cluster name and a random string.
								

Creating a VPC in AWS

					You must create a Virtual Private Cloud (VPC) in Amazon Web Services (AWS) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements, including VPN and route tables.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the VPC.
				
Note

						If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						

Procedure
	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "VpcCidr", [image: 1]
 "ParameterValue": "10.0.0.0/16" [image: 2]
 },
 {
 "ParameterKey": "AvailabilityZoneCount", [image: 3]
 "ParameterValue": "1" [image: 4]
 },
 {
 "ParameterKey": "SubnetBits", [image: 5]
 "ParameterValue": "12" [image: 6]
 }
]
	[image: 1]
	
									The CIDR block for the VPC.
								

	[image: 2]
	
									Specify a CIDR block in the format x.x.x.x/16-24.
								

	[image: 3]
	
									The number of availability zones to deploy the VPC in.
								

	[image: 4]
	
									Specify an integer between 1 and 3.
								

	[image: 5]
	
									The size of each subnet in each availability zone.
								

	[image: 6]
	
									Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.
								

	
							Copy the template from the CloudFormation template for the VPC section of this topic and save it as a YAML file on your computer. This template describes the VPC that your cluster requires.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the VPC:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-vpc/dbedae40-2fd3-11eb-820e-12a48460849f

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											VpcId
										

										 	
											The ID of your VPC.
										

										
	
											PublicSubnetIds
										

										 	
											The IDs of the new public subnets.
										

										
	
											PrivateSubnetIds
										

										 	
											The IDs of the new private subnets.
										

										

CloudFormation template for the VPC

						You can use the following CloudFormation template to deploy the VPC that you need for your OpenShift Container Platform cluster.
					
Example 2.43. CloudFormation template for the VPC
AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 AvailabilityZoneCount:
 ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
 MinValue: 1
 MaxValue: 3
 Default: 1
 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
 Type: Number
 SubnetBits:
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
 MinValue: 5
 MaxValue: 13
 Default: 12
 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 = /19)"
 Type: Number

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcCidr
 - SubnetBits
 - Label:
 default: "Availability Zones"
 Parameters:
 - AvailabilityZoneCount
 ParameterLabels:
 AvailabilityZoneCount:
 default: "Availability Zone Count"
 VpcCidr:
 default: "VPC CIDR"
 SubnetBits:
 default: "Bits Per Subnet"

Conditions:
 DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
 DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 EnableDnsSupport: "true"
 EnableDnsHostnames: "true"
 CidrBlock: !Ref VpcCidr
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 InternetGateway:
 Type: "AWS::EC2::InternetGateway"
 GatewayToInternet:
 Type: "AWS::EC2::VPCGatewayAttachment"
 Properties:
 VpcId: !Ref VPC
 InternetGatewayId: !Ref InternetGateway
 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: GatewayToInternet
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PublicSubnet2
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation3:
 Condition: DoAz3
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet3
 RouteTableId: !Ref PublicRouteTable
 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTable
 NAT:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP
 - AllocationId
 SubnetId: !Ref PublicSubnet
 EIP:
 Type: "AWS::EC2::EIP"
 Properties:
 Domain: vpc
 Route:
 Type: "AWS::EC2::Route"
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT
 PrivateSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable2:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PrivateSubnet2
 RouteTableId: !Ref PrivateRouteTable2
 NAT2:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz2
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP2
 - AllocationId
 SubnetId: !Ref PublicSubnet2
 EIP2:
 Type: "AWS::EC2::EIP"
 Condition: DoAz2
 Properties:
 Domain: vpc
 Route2:
 Type: "AWS::EC2::Route"
 Condition: DoAz2
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT2
 PrivateSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable3:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation3:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz3
 Properties:
 SubnetId: !Ref PrivateSubnet3
 RouteTableId: !Ref PrivateRouteTable3
 NAT3:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz3
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP3
 - AllocationId
 SubnetId: !Ref PublicSubnet3
 EIP3:
 Type: "AWS::EC2::EIP"
 Condition: DoAz3
 Properties:
 Domain: vpc
 Route3:
 Type: "AWS::EC2::Route"
 Condition: DoAz3
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable3
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT3
 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'
 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 - !Ref PrivateRouteTable
 - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
 - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VPC

Outputs:
 VpcId:
 Description: ID of the new VPC.
 Value: !Ref VPC
 PublicSubnetIds:
 Description: Subnet IDs of the public subnets.
 Value:
 !Join [
 ",",
 [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PublicSubnet3, !Ref "AWS::NoValue"]]
]
 PrivateSubnetIds:
 Description: Subnet IDs of the private subnets.
 Value:
 !Join [
 ",",
 [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PrivateSubnet3, !Ref "AWS::NoValue"]]
]

Creating networking and load balancing components in AWS

					You must configure networking and classic or network load balancing in Amazon Web Services (AWS) that your OpenShift Container Platform cluster can use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the networking and load balancing components that your OpenShift Container Platform cluster requires. The template also creates a hosted zone and subnet tags.
				

					You can run the template multiple times within a single Virtual Private Cloud (VPC).
				
Note

						If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						

Procedure
	
							Obtain the hosted zone ID for the Route 53 base domain that you specified in the install-config.yaml file for your cluster. You can obtain details about your hosted zone by running the following command:
						
$ aws route53 list-hosted-zones-by-name --dns-name <route53_domain> [image: 1]
	[image: 1]
	
									For the <route53_domain>, specify the Route 53 base domain that you used when you generated the install-config.yaml file for the cluster.
								

Example output

								

mycluster.example.com.	False	100
HOSTEDZONES	65F8F38E-2268-B835-E15C-AB55336FCBFA	/hostedzone/Z21IXYZABCZ2A4	mycluster.example.com.	10

							

							In the example output, the hosted zone ID is Z21IXYZABCZ2A4.
						

	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "ClusterName", [image: 1]
 "ParameterValue": "mycluster" [image: 2]
 },
 {
 "ParameterKey": "InfrastructureName", [image: 3]
 "ParameterValue": "mycluster-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "HostedZoneId", [image: 5]
 "ParameterValue": "<random_string>" [image: 6]
 },
 {
 "ParameterKey": "HostedZoneName", [image: 7]
 "ParameterValue": "example.com" [image: 8]
 },
 {
 "ParameterKey": "PublicSubnets", [image: 9]
 "ParameterValue": "subnet-<random_string>" [image: 10]
 },
 {
 "ParameterKey": "PrivateSubnets", [image: 11]
 "ParameterValue": "subnet-<random_string>" [image: 12]
 },
 {
 "ParameterKey": "VpcId", [image: 13]
 "ParameterValue": "vpc-<random_string>" [image: 14]
 }
]
	[image: 1]
	
									A short, representative cluster name to use for hostnames, etc.
								

	[image: 2]
	
									Specify the cluster name that you used when you generated the install-config.yaml file for the cluster.
								

	[image: 3]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 4]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 5]
	
									The Route 53 public zone ID to register the targets with.
								

	[image: 6]
	
									Specify the Route 53 public zone ID, which as a format similar to Z21IXYZABCZ2A4. You can obtain this value from the AWS console.
								

	[image: 7]
	
									The Route 53 zone to register the targets with.
								

	[image: 8]
	
									Specify the Route 53 base domain that you used when you generated the install-config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console.
								

	[image: 9]
	
									The public subnets that you created for your VPC.
								

	[image: 10]
	
									Specify the PublicSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 11]
	
									The private subnets that you created for your VPC.
								

	[image: 12]
	
									Specify the PrivateSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 13]
	
									The VPC that you created for the cluster.
								

	[image: 14]
	
									Specify the VpcId value from the output of the CloudFormation template for the VPC.
								

	
							Copy the template from the CloudFormation template for the network and load balancers section of this topic and save it as a YAML file on your computer. This template describes the networking and load balancing objects that your cluster requires.
						
Important

								If you are deploying your cluster to an AWS government region, you must update the InternalApiServerRecord in the CloudFormation template to use CNAME records. Records of type ALIAS are not supported for AWS government regions.
							

	
							Launch the CloudFormation template to create a stack of AWS resources that provide the networking and load balancing components:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
 --capabilities CAPABILITY_NAMED_IAM [image: 4]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-dns. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

	[image: 4]
	
									You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role resources.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-dns/cd3e5de0-2fd4-11eb-5cf0-12be5c33a183

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											PrivateHostedZoneId
										

										 	
											Hosted zone ID for the private DNS.
										

										
	
											ExternalApiLoadBalancerName
										

										 	
											Full name of the external API load balancer.
										

										
	
											InternalApiLoadBalancerName
										

										 	
											Full name of the internal API load balancer.
										

										
	
											ApiServerDnsName
										

										 	
											Full hostname of the API server.
										

										
	
											RegisterNlbIpTargetsLambda
										

										 	
											Lambda ARN useful to help register/deregister IP targets for these load balancers.
										

										
	
											ExternalApiTargetGroupArn
										

										 	
											ARN of external API target group.
										

										
	
											InternalApiTargetGroupArn
										

										 	
											ARN of internal API target group.
										

										
	
											InternalServiceTargetGroupArn
										

										 	
											ARN of internal service target group.
										

										

CloudFormation template for the network and load balancers

						You can use the following CloudFormation template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster.
					
Example 2.44. CloudFormation template for the network and load balancers
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Network Elements (Route53 & LBs)

Parameters:
 ClusterName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Cluster name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, representative cluster name to use for host names and other identifying names.
 Type: String
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
 Type: String
 HostedZoneId:
 Description: The Route53 public zone ID to register the targets with, such as Z21IXYZABCZ2A4.
 Type: String
 HostedZoneName:
 Description: The Route53 zone to register the targets with, such as example.com. Omit the trailing period.
 Type: String
 Default: "example.com"
 PublicSubnets:
 Description: The internet-facing subnets.
 Type: List<AWS::EC2::Subnet::Id>
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - ClusterName
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - PublicSubnets
 - PrivateSubnets
 - Label:
 default: "DNS"
 Parameters:
 - HostedZoneName
 - HostedZoneId
 ParameterLabels:
 ClusterName:
 default: "Cluster Name"
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 PublicSubnets:
 default: "Public Subnets"
 PrivateSubnets:
 default: "Private Subnets"
 HostedZoneName:
 default: "Public Hosted Zone Name"
 HostedZoneId:
 default: "Public Hosted Zone ID"

Resources:
 ExtApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "ext"]]
 IpAddressType: ipv4
 Subnets: !Ref PublicSubnets
 Type: network

 IntApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "int"]]
 Scheme: internal
 IpAddressType: ipv4
 Subnets: !Ref PrivateSubnets
 Type: network

 IntDns:
 Type: "AWS::Route53::HostedZone"
 Properties:
 HostedZoneConfig:
 Comment: "Managed by CloudFormation"
 Name: !Join [".", [!Ref ClusterName, !Ref HostedZoneName]]
 HostedZoneTags:
 - Key: Name
 Value: !Join ["-", [!Ref InfrastructureName, "int"]]
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "owned"
 VPCs:
 - VPCId: !Ref VpcId
 VPCRegion: !Ref "AWS::Region"

 ExternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref HostedZoneId
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt ExtApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt ExtApiElb.DNSName

 InternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref IntDns
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName
 - Name:
 !Join [
 ".",
 ["api-int", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName

 ExternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: ExternalApiTargetGroup
 LoadBalancerArn:
 Ref: ExtApiElb
 Port: 6443
 Protocol: TCP

 ExternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalApiTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 6443
 Protocol: TCP

 InternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalServiceInternalListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalServiceTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 22623
 Protocol: TCP

 InternalServiceTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/healthz"
 HealthCheckPort: 22623
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 22623
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 RegisterTargetLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "nlb", "lambda", "role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalApiTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalServiceTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref ExternalApiTargetGroup

 RegisterNlbIpTargets:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterTargetLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 elb = boto3.client('elbv2')
 if event['RequestType'] == 'Delete':
 elb.deregister_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
 elif event['RequestType'] == 'Create':
 elb.register_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['TargetArn']+event['ResourceProperties']['TargetIp'])
 Runtime: "python3.7"
 Timeout: 120

 RegisterSubnetTagsLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "subnet-tags-lambda-role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "subnet-tagging-policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "ec2:DeleteTags",
 "ec2:CreateTags"
]
 Resource: "arn:aws:ec2:*:*:subnet/*"
 - Effect: "Allow"
 Action:
 [
 "ec2:DescribeSubnets",
 "ec2:DescribeTags"
]
 Resource: "*"

 RegisterSubnetTags:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterSubnetTagsLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 ec2_client = boto3.client('ec2')
 if event['RequestType'] == 'Delete':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.delete_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName']}]);
 elif event['RequestType'] == 'Create':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.create_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName'], 'Value': 'shared'}]);
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['InfrastructureName']+event['ResourceProperties']['Subnets'][0])
 Runtime: "python3.7"
 Timeout: 120

 RegisterPublicSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PublicSubnets

 RegisterPrivateSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PrivateSubnets

Outputs:
 PrivateHostedZoneId:
 Description: Hosted zone ID for the private DNS, which is required for private records.
 Value: !Ref IntDns
 ExternalApiLoadBalancerName:
 Description: Full name of the external API load balancer.
 Value: !GetAtt ExtApiElb.LoadBalancerFullName
 InternalApiLoadBalancerName:
 Description: Full name of the internal API load balancer.
 Value: !GetAtt IntApiElb.LoadBalancerFullName
 ApiServerDnsName:
 Description: Full hostname of the API server, which is required for the Ignition config files.
 Value: !Join [".", ["api-int", !Ref ClusterName, !Ref HostedZoneName]]
 RegisterNlbIpTargetsLambda:
 Description: Lambda ARN useful to help register or deregister IP targets for these load balancers.
 Value: !GetAtt RegisterNlbIpTargets.Arn
 ExternalApiTargetGroupArn:
 Description: ARN of the external API target group.
 Value: !Ref ExternalApiTargetGroup
 InternalApiTargetGroupArn:
 Description: ARN of the internal API target group.
 Value: !Ref InternalApiTargetGroup
 InternalServiceTargetGroupArn:
 Description: ARN of the internal service target group.
 Value: !Ref InternalServiceTargetGroup

Important

							If you are deploying your cluster to an AWS government region, you must update the InternalApiServerRecord to use CNAME records. Records of type ALIAS are not supported for AWS government regions. For example:
						
Type: CNAME
TTL: 10
ResourceRecords:
- !GetAtt IntApiElb.DNSName

Additional resources
	
								See Listing public hosted zones in the AWS documentation for more information about listing public hosted zones.
							

Creating security group and roles in AWS

					You must create security groups and roles in Amazon Web Services (AWS) for your OpenShift Container Platform cluster to use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the security groups and roles that your OpenShift Container Platform cluster requires.
				
Note

						If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						

Procedure
	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "VpcCidr", [image: 3]
 "ParameterValue": "10.0.0.0/16" [image: 4]
 },
 {
 "ParameterKey": "PrivateSubnets", [image: 5]
 "ParameterValue": "subnet-<random_string>" [image: 6]
 },
 {
 "ParameterKey": "VpcId", [image: 7]
 "ParameterValue": "vpc-<random_string>" [image: 8]
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									The CIDR block for the VPC.
								

	[image: 4]
	
									Specify the CIDR block parameter that you used for the VPC that you defined in the form x.x.x.x/16-24.
								

	[image: 5]
	
									The private subnets that you created for your VPC.
								

	[image: 6]
	
									Specify the PrivateSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 7]
	
									The VPC that you created for the cluster.
								

	[image: 8]
	
									Specify the VpcId value from the output of the CloudFormation template for the VPC.
								

	
							Copy the template from the CloudFormation template for security objects section of this topic and save it as a YAML file on your computer. This template describes the security groups and roles that your cluster requires.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the security groups and roles:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
 --capabilities CAPABILITY_NAMED_IAM [image: 4]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-sec. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

	[image: 4]
	
									You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile resources.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-sec/03bd4210-2ed7-11eb-6d7a-13fc0b61e9db

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											MasterSecurityGroupId
										

										 	
											Master Security Group ID
										

										
	
											WorkerSecurityGroupId
										

										 	
											Worker Security Group ID
										

										
	
											MasterInstanceProfile
										

										 	
											Master IAM Instance Profile
										

										
	
											WorkerInstanceProfile
										

										 	
											Worker IAM Instance Profile
										

										

CloudFormation template for security objects

						You can use the following CloudFormation template to deploy the security objects that you need for your OpenShift Container Platform cluster.
					
Example 2.45. CloudFormation template for security objects
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Security Elements (Security Groups & IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
 Type: String
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - VpcCidr
 - PrivateSubnets
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 VpcCidr:
 default: "VPC CIDR"
 PrivateSubnets:
 default: "Private Subnets"

Resources:
 MasterSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Master Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 ToPort: 6443
 FromPort: 6443
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22623
 ToPort: 22623
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 WorkerSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Worker Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 MasterIngressEtcd:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: etcd
 FromPort: 2379
 ToPort: 2380
 IpProtocol: tcp

 MasterIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressWorkerVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressWorkerGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressWorkerInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressWorkerInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressWorkerIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIngressWorkerIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressMasterVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressMasterGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressMasterInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressMasterInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes secure kubelet port
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal Kubernetes communication
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressMasterIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressMasterIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:AttachVolume"
 - "ec2:AuthorizeSecurityGroupIngress"
 - "ec2:CreateSecurityGroup"
 - "ec2:CreateTags"
 - "ec2:CreateVolume"
 - "ec2:DeleteSecurityGroup"
 - "ec2:DeleteVolume"
 - "ec2:Describe*"
 - "ec2:DetachVolume"
 - "ec2:ModifyInstanceAttribute"
 - "ec2:ModifyVolume"
 - "ec2:RevokeSecurityGroupIngress"
 - "elasticloadbalancing:AddTags"
 - "elasticloadbalancing:AttachLoadBalancerToSubnets"
 - "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer"
 - "elasticloadbalancing:CreateListener"
 - "elasticloadbalancing:CreateLoadBalancer"
 - "elasticloadbalancing:CreateLoadBalancerPolicy"
 - "elasticloadbalancing:CreateLoadBalancerListeners"
 - "elasticloadbalancing:CreateTargetGroup"
 - "elasticloadbalancing:ConfigureHealthCheck"
 - "elasticloadbalancing:DeleteListener"
 - "elasticloadbalancing:DeleteLoadBalancer"
 - "elasticloadbalancing:DeleteLoadBalancerListeners"
 - "elasticloadbalancing:DeleteTargetGroup"
 - "elasticloadbalancing:DeregisterInstancesFromLoadBalancer"
 - "elasticloadbalancing:DeregisterTargets"
 - "elasticloadbalancing:Describe*"
 - "elasticloadbalancing:DetachLoadBalancerFromSubnets"
 - "elasticloadbalancing:ModifyListener"
 - "elasticloadbalancing:ModifyLoadBalancerAttributes"
 - "elasticloadbalancing:ModifyTargetGroup"
 - "elasticloadbalancing:ModifyTargetGroupAttributes"
 - "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
 - "elasticloadbalancing:RegisterTargets"
 - "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer"
 - "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
 - "kms:DescribeKey"
 Resource: "*"

 MasterInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "MasterIamRole"

 WorkerIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "worker", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:DescribeInstances"
 - "ec2:DescribeRegions"
 Resource: "*"

 WorkerInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "WorkerIamRole"

Outputs:
 MasterSecurityGroupId:
 Description: Master Security Group ID
 Value: !GetAtt MasterSecurityGroup.GroupId

 WorkerSecurityGroupId:
 Description: Worker Security Group ID
 Value: !GetAtt WorkerSecurityGroup.GroupId

 MasterInstanceProfile:
 Description: Master IAM Instance Profile
 Value: !Ref MasterInstanceProfile

 WorkerInstanceProfile:
 Description: Worker IAM Instance Profile
 Value: !Ref WorkerInstanceProfile

RHCOS AMIs for the AWS infrastructure

					Red Hat provides Red Hat Enterprise Linux CoreOS (RHCOS) AMIs valid for the various Amazon Web Services (AWS) zones you can specify for your OpenShift Container Platform nodes.
				
Note

						You can also install to regions that do not have a RHCOS AMI published by importing your own AMI.
					

Table 2.33. RHCOS AMIs
	AWS zone	AWS AMI
	
									af-south-1
								

								 	
									ami-09921c9c1c36e695c
								

								
	
									ap-east-1
								

								 	
									ami-01ee8446e9af6b197
								

								
	
									ap-northeast-1
								

								 	
									ami-04e5b5722a55846ea
								

								
	
									ap-northeast-2
								

								 	
									ami-0fdc25c8a0273a742
								

								
	
									ap-south-1
								

								 	
									ami-09e3deb397cc526a8
								

								
	
									ap-southeast-1
								

								 	
									ami-0630e03f75e02eec4
								

								
	
									ap-southeast-2
								

								 	
									ami-069450613262ba03c
								

								
	
									ca-central-1
								

								 	
									ami-012518cdbd3057dfd
								

								
	
									eu-central-1
								

								 	
									ami-0bd7175ff5b1aef0c
								

								
	
									eu-north-1
								

								 	
									ami-06c9ec42d0a839ad2
								

								
	
									eu-south-1
								

								 	
									ami-0614d7440a0363d71
								

								
	
									eu-west-1
								

								 	
									ami-01b89df58b5d4d5fa
								

								
	
									eu-west-2
								

								 	
									ami-06f6e31ddd554f89d
								

								
	
									eu-west-3
								

								 	
									ami-0dc82e2517ded15a1
								

								
	
									me-south-1
								

								 	
									ami-07d181e3aa0f76067
								

								
	
									sa-east-1
								

								 	
									ami-0cd44e6dd20e6c7fa
								

								
	
									us-east-1
								

								 	
									ami-04a16d506e5b0e246
								

								
	
									us-east-2
								

								 	
									ami-0a1f868ad58ea59a7
								

								
	
									us-west-1
								

								 	
									ami-0a65d76e3a6f6622f
								

								
	
									us-west-2
								

								 	
									ami-0dd9008abadc519f1
								

								

Creating the bootstrap node in AWS

					You must create the bootstrap node in Amazon Web Services (AWS) to use during OpenShift Container Platform cluster initialization.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the bootstrap node that your OpenShift Container Platform installation requires.
				
Note

						If you do not use the provided CloudFormation template to create your bootstrap node, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						

Procedure
	
							Provide a location to serve the bootstrap.ign Ignition config file to your cluster. This file is located in your installation directory. One way to do this is to create an S3 bucket in your cluster’s region and upload the Ignition config file to it.
						
Important

								The provided CloudFormation Template assumes that the Ignition config files for your cluster are served from an S3 bucket. If you choose to serve the files from another location, you must modify the templates.
							

Important

								If you are deploying to a region that has endpoints that differ from the AWS SDK, or you are providing your own custom endpoints, you must use a presigned URL for your S3 bucket instead of the s3:// schema.
							

Note

								The bootstrap Ignition config file does contain secrets, like X.509 keys. The following steps provide basic security for the S3 bucket. To provide additional security, you can enable an S3 bucket policy to allow only certain users, such as the OpenShift IAM user, to access objects that the bucket contains. You can avoid S3 entirely and serve your bootstrap Ignition config file from any address that the bootstrap machine can reach.
							

	
									Create the bucket:
								
$ aws s3 mb s3://<cluster-name>-infra [image: 1]
	[image: 1]
	
											<cluster-name>-infra is the bucket name. When creating the install-config.yaml file, replace <cluster-name> with the name specified for the cluster.
										

	
									Upload the bootstrap.ign Ignition config file to the bucket:
								
$ aws s3 cp <installation_directory>/bootstrap.ign s3://<cluster-name>-infra/bootstrap.ign [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the path to the directory that you stored the installation files in.
										

	
									Verify that the file uploaded:
								
$ aws s3 ls s3://<cluster-name>-infra/
Example output

										

2019-04-03 16:15:16 314878 bootstrap.ign

									

	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "RhcosAmi", [image: 3]
 "ParameterValue": "ami-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "AllowedBootstrapSshCidr", [image: 5]
 "ParameterValue": "0.0.0.0/0" [image: 6]
 },
 {
 "ParameterKey": "PublicSubnet", [image: 7]
 "ParameterValue": "subnet-<random_string>" [image: 8]
 },
 {
 "ParameterKey": "MasterSecurityGroupId", [image: 9]
 "ParameterValue": "sg-<random_string>" [image: 10]
 },
 {
 "ParameterKey": "VpcId", [image: 11]
 "ParameterValue": "vpc-<random_string>" [image: 12]
 },
 {
 "ParameterKey": "BootstrapIgnitionLocation", [image: 13]
 "ParameterValue": "s3://<bucket_name>/bootstrap.ign" [image: 14]
 },
 {
 "ParameterKey": "AutoRegisterELB", [image: 15]
 "ParameterValue": "yes" (16)
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", (17)
 "ParameterValue": "arn:aws:lambda:<region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" (18)
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", (19)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" (20)
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", (21)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (22)
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", (23)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (24)
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the bootstrap node.
								

	[image: 4]
	
									Specify a valid AWS::EC2::Image::Id value.
								

	[image: 5]
	
									CIDR block to allow SSH access to the bootstrap node.
								

	[image: 6]
	
									Specify a CIDR block in the format x.x.x.x/16-24.
								

	[image: 7]
	
									The public subnet that is associated with your VPC to launch the bootstrap node into.
								

	[image: 8]
	
									Specify the PublicSubnetIds value from the output of the CloudFormation template for the VPC.
								

	[image: 9]
	
									The master security group ID (for registering temporary rules)
								

	[image: 10]
	
									Specify the MasterSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
								

	[image: 11]
	
									The VPC created resources will belong to.
								

	[image: 12]
	
									Specify the VpcId value from the output of the CloudFormation template for the VPC.
								

	[image: 13]
	
									Location to fetch bootstrap Ignition config file from.
								

	[image: 14]
	
									Specify the S3 bucket and file name in the form s3://<bucket_name>/bootstrap.ign.
								

	[image: 15]
	
									Whether or not to register a network load balancer (NLB).
								

	(16)
	
									Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name (ARN) value.
								

	(17)
	
									The ARN for NLB IP target registration lambda group.
								

	(18)
	
									Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(19)
	
									The ARN for external API load balancer target group.
								

	(20)
	
									Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(21)
	
									The ARN for internal API load balancer target group.
								

	(22)
	
									Specify the InternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(23)
	
									The ARN for internal service load balancer target group.
								

	(24)
	
									Specify the InternalServiceTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	
							Copy the template from the CloudFormation template for the bootstrap machine section of this topic and save it as a YAML file on your computer. This template describes the bootstrap machine that your cluster requires.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the bootstrap node:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
 --capabilities CAPABILITY_NAMED_IAM [image: 4]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-bootstrap. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

	[image: 4]
	
									You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile resources.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-bootstrap/12944486-2add-11eb-9dee-12dace8e3a83

							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

							After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:
						
	
											BootstrapInstanceId
										

										 	
											The bootstrap Instance ID.
										

										
	
											BootstrapPublicIp
										

										 	
											The bootstrap node public IP address.
										

										
	
											BootstrapPrivateIp
										

										 	
											The bootstrap node private IP address.
										

										

CloudFormation template for the bootstrap machine

						You can use the following CloudFormation template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster.
					
Example 2.46. CloudFormation template for the bootstrap machine
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Bootstrap (EC2 Instance, Security Groups and IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AllowedBootstrapSshCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/([0-9]|1[0-9]|2[0-9]|3[0-2]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/0-32.
 Default: 0.0.0.0/0
 Description: CIDR block to allow SSH access to the bootstrap node.
 Type: String
 PublicSubnet:
 Description: The public subnet to launch the bootstrap node into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID for registering temporary rules.
 Type: AWS::EC2::SecurityGroup::Id
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 BootstrapIgnitionLocation:
 Default: s3://my-s3-bucket/bootstrap.ign
 Description: Ignition config file location.
 Type: String
 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group.
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - RhcosAmi
 - BootstrapIgnitionLocation
 - MasterSecurityGroupId
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - PublicSubnet
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 AllowedBootstrapSshCidr:
 default: "Allowed SSH Source"
 PublicSubnet:
 default: "Public Subnet"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Bootstrap Ignition Source"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]

Resources:
 BootstrapIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "bootstrap", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action: "ec2:Describe*"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:AttachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:DetachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "s3:GetObject"
 Resource: "*"

 BootstrapInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Path: "/"
 Roles:
 - Ref: "BootstrapIamRole"

 BootstrapSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Bootstrap Security Group
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref AllowedBootstrapSshCidr
 - IpProtocol: tcp
 ToPort: 19531
 FromPort: 19531
 CidrIp: 0.0.0.0/0
 VpcId: !Ref VpcId

 BootstrapInstance:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 IamInstanceProfile: !Ref BootstrapInstanceProfile
 InstanceType: "i3.large"
 NetworkInterfaces:
 - AssociatePublicIpAddress: "true"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "BootstrapSecurityGroup"
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "PublicSubnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"replace":{"source":"${S3Loc}"}},"version":"3.1.0"}}'
 - {
 S3Loc: !Ref BootstrapIgnitionLocation
 }

 RegisterBootstrapApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

Outputs:
 BootstrapInstanceId:
 Description: Bootstrap Instance ID.
 Value: !Ref BootstrapInstance

 BootstrapPublicIp:
 Description: The bootstrap node public IP address.
 Value: !GetAtt BootstrapInstance.PublicIp

 BootstrapPrivateIp:
 Description: The bootstrap node private IP address.
 Value: !GetAtt BootstrapInstance.PrivateIp

Additional resources
	
								See RHCOS AMIs for the AWS infrastructure for details about the Red Hat Enterprise Linux CoreOS (RHCOS) AMIs for the AWS zones.
							

Creating the control plane machines in AWS

					You must create the control plane machines in Amazon Web Services (AWS) that your cluster will use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the control plane nodes.
				
Important

						The CloudFormation template creates a stack that represents three control plane nodes.
					

Note

						If you do not use the provided CloudFormation template to create your control plane nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						
	
							You created the bootstrap machine.
						

Procedure
	
							Create a JSON file that contains the parameter values that the template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "RhcosAmi", [image: 3]
 "ParameterValue": "ami-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "AutoRegisterDNS", [image: 5]
 "ParameterValue": "yes" [image: 6]
 },
 {
 "ParameterKey": "PrivateHostedZoneId", [image: 7]
 "ParameterValue": "<random_string>" [image: 8]
 },
 {
 "ParameterKey": "PrivateHostedZoneName", [image: 9]
 "ParameterValue": "mycluster.example.com" [image: 10]
 },
 {
 "ParameterKey": "Master0Subnet", [image: 11]
 "ParameterValue": "subnet-<random_string>" [image: 12]
 },
 {
 "ParameterKey": "Master1Subnet", [image: 13]
 "ParameterValue": "subnet-<random_string>" [image: 14]
 },
 {
 "ParameterKey": "Master2Subnet", [image: 15]
 "ParameterValue": "subnet-<random_string>" (16)
 },
 {
 "ParameterKey": "MasterSecurityGroupId", (17)
 "ParameterValue": "sg-<random_string>" (18)
 },
 {
 "ParameterKey": "IgnitionLocation", (19)
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/master" (20)
 },
 {
 "ParameterKey": "CertificateAuthorities", (21)
 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" (22)
 },
 {
 "ParameterKey": "MasterInstanceProfileName", (23)
 "ParameterValue": "<roles_stack>-MasterInstanceProfile-<random_string>" (24)
 },
 {
 "ParameterKey": "MasterInstanceType", (25)
 "ParameterValue": "m4.xlarge" (26)
 },
 {
 "ParameterKey": "AutoRegisterELB", (27)
 "ParameterValue": "yes" (28)
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", (29)
 "ParameterValue": "arn:aws:lambda:<region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" (30)
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", (31)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" (32)
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", (33)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (34)
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", (35)
 "ParameterValue": "arn:aws:elasticloadbalancing:<region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (36)
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									CurrentRed Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the control plane machines.
								

	[image: 4]
	
									Specify an AWS::EC2::Image::Id value.
								

	[image: 5]
	
									Whether or not to perform DNS etcd registration.
								

	[image: 6]
	
									Specify yes or no. If you specify yes, you must provide hosted zone information.
								

	[image: 7]
	
									The Route 53 private zone ID to register the etcd targets with.
								

	[image: 8]
	
									Specify the PrivateHostedZoneId value from the output of the CloudFormation template for DNS and load balancing.
								

	[image: 9]
	
									The Route 53 zone to register the targets with.
								

	[image: 10]
	
									Specify <cluster_name>.<domain_name> where <domain_name> is the Route 53 base domain that you used when you generated install-config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console.
								

	[image: 11] [image: 13] [image: 15]
	
									A subnet, preferably private, to launch the control plane machines on.
								

	[image: 12] [image: 14] (16)
	
									Specify a subnet from the PrivateSubnets value from the output of the CloudFormation template for DNS and load balancing.
								

	(17)
	
									The master security group ID to associate with control plane nodes (also known as the master nodes).
								

	(18)
	
									Specify the MasterSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
								

	(19)
	
									The location to fetch control plane Ignition config file from.
								

	(20)
	
									Specify the generated Ignition config file location, https://api-int.<cluster_name>.<domain_name>:22623/config/master.
								

	(21)
	
									The base64 encoded certificate authority string to use.
								

	(22)
	
									Specify the value from the master.ign file that is in the installation directory. This value is the long string with the format data:text/plain;charset=utf-8;base64,ABC…​xYz==.
								

	(23)
	
									The IAM profile to associate with control plane nodes.
								

	(24)
	
									Specify the MasterInstanceProfile parameter value from the output of the CloudFormation template for the security group and roles.
								

	(25)
	
									The type of AWS instance to use for the control plane machines.
								

	(26)
	
									Allowed values:
								
	
											m4.xlarge
										
	
											m4.2xlarge
										
	
											m4.4xlarge
										
	
											m4.8xlarge
										
	
											m4.10xlarge
										
	
											m4.16xlarge
										
	
											m5.xlarge
										
	
											m5.2xlarge
										
	
											m5.4xlarge
										
	
											m5.8xlarge
										
	
											m5.10xlarge
										
	
											m5.16xlarge
										
	
											m6i.xlarge
										
	
											c4.2xlarge
										
	
											c4.4xlarge
										
	
											c4.8xlarge
										
	
											r4.xlarge
										
	
											r4.2xlarge
										
	
											r4.4xlarge
										
	
											r4.8xlarge
										
	
											r4.16xlarge
										
Important

												If m4 instance types are not available in your region, such as with eu-west-3, specify an m5 type, such as m5.xlarge, instead.
											

	(27)
	
									Whether or not to register a network load balancer (NLB).
								

	(28)
	
									Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name (ARN) value.
								

	(29)
	
									The ARN for NLB IP target registration lambda group.
								

	(30)
	
									Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(31)
	
									The ARN for external API load balancer target group.
								

	(32)
	
									Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(33)
	
									The ARN for internal API load balancer target group.
								

	(34)
	
									Specify the InternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	(35)
	
									The ARN for internal service load balancer target group.
								

	(36)
	
									Specify the InternalServiceTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
								

	
							Copy the template from the CloudFormation template for control plane machines section of this topic and save it as a YAML file on your computer. This template describes the control plane machines that your cluster requires.
						
	
							If you specified an m5 instance type as the value for MasterInstanceType, add that instance type to the MasterInstanceType.AllowedValues parameter in the CloudFormation template.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent the control plane nodes:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml [image: 2]
 --parameters file://<parameters>.json [image: 3]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-control-plane. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-control-plane/21c7e2b0-2ee2-11eb-c6f6-0aa34627df4b

							
Note

								The CloudFormation template creates a stack that represents three control plane nodes.
							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

CloudFormation template for control plane machines

						You can use the following CloudFormation template to deploy the control plane machines that you need for your OpenShift Container Platform cluster.
					
Example 2.47. CloudFormation template for control plane machines
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 master instances)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AutoRegisterDNS:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke DNS etcd registration, which requires Hosted Zone information?
 Type: String
 PrivateHostedZoneId:
 Description: The Route53 private zone ID to register the etcd targets with, such as Z21IXYZABCZ2A4.
 Type: String
 PrivateHostedZoneName:
 Description: The Route53 zone to register the targets with, such as cluster.example.com. Omit the trailing period.
 Type: String
 Master0Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master1Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master2Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID to associate with master nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/master
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 MasterInstanceProfileName:
 Description: IAM profile to associate with master nodes.
 Type: String
 MasterInstanceType:
 Default: m5.xlarge
 Type: String
 AllowedValues:
 - "m4.xlarge"
 - "m4.2xlarge"
 - "m4.4xlarge"
 - "m4.10xlarge"
 - "m4.16xlarge"
 - "m5.xlarge"
 - "m5.2xlarge"
 - "m5.4xlarge"
 - "m5.8xlarge"
 - "m5.12xlarge"
 - "m5.16xlarge"
 - "m5a.xlarge"
 - "m5a.2xlarge"
 - "m5a.4xlarge"
 - "m5a.8xlarge"
 - "m5a.10xlarge"
 - "m5a.16xlarge"
 - "c4.2xlarge"
 - "c4.4xlarge"
 - "c4.8xlarge"
 - "c5.2xlarge"
 - "c5.4xlarge"
 - "c5.9xlarge"
 - "c5.12xlarge"
 - "c5.18xlarge"
 - "c5.24xlarge"
 - "c5a.2xlarge"
 - "c5a.4xlarge"
 - "c5a.8xlarge"
 - "c5a.12xlarge"
 - "c5a.16xlarge"
 - "c5a.24xlarge"
 - "r4.xlarge"
 - "r4.2xlarge"
 - "r4.4xlarge"
 - "r4.8xlarge"
 - "r4.16xlarge"
 - "r5.xlarge"
 - "r5.2xlarge"
 - "r5.4xlarge"
 - "r5.8xlarge"
 - "r5.12xlarge"
 - "r5.16xlarge"
 - "r5.24xlarge"
 - "r5a.xlarge"
 - "r5a.2xlarge"
 - "r5a.4xlarge"
 - "r5a.8xlarge"
 - "r5a.12xlarge"
 - "r5a.16xlarge"
 - "r5a.24xlarge"

 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - MasterInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - MasterSecurityGroupId
 - MasterInstanceProfileName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - Master0Subnet
 - Master1Subnet
 - Master2Subnet
 - Label:
 default: "DNS"
 Parameters:
 - AutoRegisterDNS
 - PrivateHostedZoneName
 - PrivateHostedZoneId
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 Master0Subnet:
 default: "Master-0 Subnet"
 Master1Subnet:
 default: "Master-1 Subnet"
 Master2Subnet:
 default: "Master-2 Subnet"
 MasterInstanceType:
 default: "Master Instance Type"
 MasterInstanceProfileName:
 default: "Master Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Master Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterDNS:
 default: "Use Provided DNS Automation"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"
 PrivateHostedZoneName:
 default: "Private Hosted Zone Name"
 PrivateHostedZoneId:
 default: "Private Hosted Zone ID"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]
 DoDns: !Equals ["yes", !Ref AutoRegisterDNS]

Resources:
 Master0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master0Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster0:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 Master1:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master1Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster1:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 Master2:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master2Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster2:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 EtcdSrvRecords:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["_etcd-server-ssl._tcp", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !Join [
 " ",
 ["0 10 2380", !Join [".", ["etcd-0", !Ref PrivateHostedZoneName]]],
]
 - !Join [
 " ",
 ["0 10 2380", !Join [".", ["etcd-1", !Ref PrivateHostedZoneName]]],
]
 - !Join [
 " ",
 ["0 10 2380", !Join [".", ["etcd-2", !Ref PrivateHostedZoneName]]],
]
 TTL: 60
 Type: SRV

 Etcd0Record:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["etcd-0", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !GetAtt Master0.PrivateIp
 TTL: 60
 Type: A

 Etcd1Record:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["etcd-1", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !GetAtt Master1.PrivateIp
 TTL: 60
 Type: A

 Etcd2Record:
 Condition: DoDns
 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref PrivateHostedZoneId
 Name: !Join [".", ["etcd-2", !Ref PrivateHostedZoneName]]
 ResourceRecords:
 - !GetAtt Master2.PrivateIp
 TTL: 60
 Type: A

Outputs:
 PrivateIPs:
 Description: The control-plane node private IP addresses.
 Value:
 !Join [
 ",",
 [!GetAtt Master0.PrivateIp, !GetAtt Master1.PrivateIp, !GetAtt Master2.PrivateIp]
]

Creating the worker nodes in AWS

					You can create worker nodes in Amazon Web Services (AWS) for your cluster to use.
				

					You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent a worker node.
				
Important

						The CloudFormation template creates a stack that represents one worker node. You must create a stack for each worker node.
					

Note

						If you do not use the provided CloudFormation template to create your worker nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						
	
							You created the bootstrap machine.
						
	
							You created the control plane machines.
						

Procedure
	
							Create a JSON file that contains the parameter values that the CloudFormation template requires:
						
[
 {
 "ParameterKey": "InfrastructureName", [image: 1]
 "ParameterValue": "mycluster-<random_string>" [image: 2]
 },
 {
 "ParameterKey": "RhcosAmi", [image: 3]
 "ParameterValue": "ami-<random_string>" [image: 4]
 },
 {
 "ParameterKey": "Subnet", [image: 5]
 "ParameterValue": "subnet-<random_string>" [image: 6]
 },
 {
 "ParameterKey": "WorkerSecurityGroupId", [image: 7]
 "ParameterValue": "sg-<random_string>" [image: 8]
 },
 {
 "ParameterKey": "IgnitionLocation", [image: 9]
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/worker" [image: 10]
 },
 {
 "ParameterKey": "CertificateAuthorities", [image: 11]
 "ParameterValue": "" [image: 12]
 },
 {
 "ParameterKey": "WorkerInstanceProfileName", [image: 13]
 "ParameterValue": "" [image: 14]
 },
 {
 "ParameterKey": "WorkerInstanceType", [image: 15]
 "ParameterValue": "m4.large" (16)
 }
]
	[image: 1]
	
									The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
								

	[image: 2]
	
									Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
								

	[image: 3]
	
									Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the worker nodes.
								

	[image: 4]
	
									Specify an AWS::EC2::Image::Id value.
								

	[image: 5]
	
									A subnet, preferably private, to launch the worker nodes on.
								

	[image: 6]
	
									Specify a subnet from the PrivateSubnets value from the output of the CloudFormation template for DNS and load balancing.
								

	[image: 7]
	
									The worker security group ID to associate with worker nodes.
								

	[image: 8]
	
									Specify the WorkerSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
								

	[image: 9]
	
									The location to fetch bootstrap Ignition config file from.
								

	[image: 10]
	
									Specify the generated Ignition config location, https://api-int.<cluster_name>.<domain_name>:22623/config/worker.
								

	[image: 11]
	
									Base64 encoded certificate authority string to use.
								

	[image: 12]
	
									Specify the value from the worker.ign file that is in the installation directory. This value is the long string with the format data:text/plain;charset=utf-8;base64,ABC…​xYz==.
								

	[image: 13]
	
									The IAM profile to associate with worker nodes.
								

	[image: 14]
	
									Specify the WorkerInstanceProfile parameter value from the output of the CloudFormation template for the security group and roles.
								

	[image: 15]
	
									The type of AWS instance to use for the control plane machines.
								

	(16)
	
									Allowed values:
								
	
											m4.large
										
	
											m4.xlarge
										
	
											m4.2xlarge
										
	
											m4.4xlarge
										
	
											m4.8xlarge
										
	
											m4.10xlarge
										
	
											m4.16xlarge
										
	
											m5.large
										
	
											m5.xlarge
										
	
											m5.2xlarge
										
	
											m5.4xlarge
										
	
											m5.8xlarge
										
	
											m5.10xlarge
										
	
											m5.16xlarge
										
	
											m6i.xlarge
										
	
											c4.2xlarge
										
	
											c4.4xlarge
										
	
											c4.8xlarge
										
	
											r4.large
										
	
											r4.xlarge
										
	
											r4.2xlarge
										
	
											r4.4xlarge
										
	
											r4.8xlarge
										
	
											r4.16xlarge
										
Important

												If m4 instance types are not available in your region, such as with eu-west-3, use m5 types instead.
											

	
							Copy the template from the CloudFormation template for worker machines section of this topic and save it as a YAML file on your computer. This template describes the networking objects and load balancers that your cluster requires.
						
	
							If you specified an m5 instance type as the value for WorkerInstanceType, add that instance type to the WorkerInstanceType.AllowedValues parameter in the CloudFormation template.
						
	
							Launch the CloudFormation template to create a stack of AWS resources that represent a worker node:
						
Important

								You must enter the command on a single line.
							

$ aws cloudformation create-stack --stack-name <name> [image: 1]
 --template-body file://<template>.yaml \ [image: 2]
 --parameters file://<parameters>.json [image: 3]
	[image: 1]
	
									<name> is the name for the CloudFormation stack, such as cluster-worker-1. You need the name of this stack if you remove the cluster.
								

	[image: 2]
	
									<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
								

	[image: 3]
	
									<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
								

Example output

								

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-11eb-348f-sd9888c65b59

							
Note

								The CloudFormation template creates a stack that represents one worker node.
							

	
							Confirm that the template components exist:
						
$ aws cloudformation describe-stacks --stack-name <name>

	
							Continue to create worker stacks until you have created enough worker machines for your cluster. You can create additional worker stacks by referencing the same template and parameter files and specifying a different stack name.
						
Important

								You must create at least two worker machines, so you must create at least two stacks that use this CloudFormation template.
							

CloudFormation template for worker machines

						You can use the following CloudFormation template to deploy the worker machines that you need for your OpenShift Container Platform cluster.
					
Example 2.48. CloudFormation template for worker machines
AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 worker instance)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 WorkerSecurityGroupId:
 Description: The master security group ID to associate with master nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/worker
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 WorkerInstanceProfileName:
 Description: IAM profile to associate with master nodes.
 Type: String
 WorkerInstanceType:
 Default: m5.large
 Type: String
 AllowedValues:
 - "m4.large"
 - "m4.xlarge"
 - "m4.2xlarge"
 - "m4.4xlarge"
 - "m4.10xlarge"
 - "m4.16xlarge"
 - "m5.large"
 - "m5.xlarge"
 - "m5.2xlarge"
 - "m5.4xlarge"
 - "m5.8xlarge"
 - "m5.12xlarge"
 - "m5.16xlarge"
 - "m5a.large"
 - "m5a.xlarge"
 - "m5a.2xlarge"
 - "m5a.4xlarge"
 - "m5a.8xlarge"
 - "m5a.10xlarge"
 - "m5a.16xlarge"
 - "c4.large"
 - "c4.xlarge"
 - "c4.2xlarge"
 - "c4.4xlarge"
 - "c4.8xlarge"
 - "c5.large"
 - "c5.xlarge"
 - "c5.2xlarge"
 - "c5.4xlarge"
 - "c5.9xlarge"
 - "c5.12xlarge"
 - "c5.18xlarge"
 - "c5.24xlarge"
 - "c5a.large"
 - "c5a.xlarge"
 - "c5a.2xlarge"
 - "c5a.4xlarge"
 - "c5a.8xlarge"
 - "c5a.12xlarge"
 - "c5a.16xlarge"
 - "c5a.24xlarge"
 - "r4.large"
 - "r4.xlarge"
 - "r4.2xlarge"
 - "r4.4xlarge"
 - "r4.8xlarge"
 - "r4.16xlarge"
 - "r5.large"
 - "r5.xlarge"
 - "r5.2xlarge"
 - "r5.4xlarge"
 - "r5.8xlarge"
 - "r5.12xlarge"
 - "r5.16xlarge"
 - "r5.24xlarge"
 - "r5a.large"
 - "r5a.xlarge"
 - "r5a.2xlarge"
 - "r5a.4xlarge"
 - "r5a.8xlarge"
 - "r5a.12xlarge"
 - "r5a.16xlarge"
 - "r5a.24xlarge"
 - "t3.large"
 - "t3.xlarge"
 - "t3.2xlarge"
 - "t3a.large"
 - "t3a.xlarge"
 - "t3a.2xlarge"

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - WorkerInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - WorkerSecurityGroupId
 - WorkerInstanceProfileName
 - Label:
 default: "Network Configuration"
 Parameters:
 - Subnet
 ParameterLabels:
 Subnet:
 default: "Subnet"
 InfrastructureName:
 default: "Infrastructure Name"
 WorkerInstanceType:
 default: "Worker Instance Type"
 WorkerInstanceProfileName:
 default: "Worker Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 IgnitionLocation:
 default: "Worker Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 WorkerSecurityGroupId:
 default: "Worker Security Group ID"

Resources:
 Worker0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref WorkerInstanceProfileName
 InstanceType: !Ref WorkerInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "WorkerSecurityGroupId"
 SubnetId: !Ref "Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

Outputs:
 PrivateIP:
 Description: The compute node private IP address.
 Value: !GetAtt Worker0.PrivateIp

Initializing the bootstrap sequence on AWS with user-provisioned infrastructure

					After you create all of the required infrastructure in Amazon Web Services (AWS), you can start the bootstrap sequence that initializes the OpenShift Container Platform control plane.
				
Prerequisites
	
							You configured an AWS account.
						
	
							You added your AWS keys and region to your local AWS profile by running aws configure.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You created and configured a VPC and associated subnets in AWS.
						
	
							You created and configured DNS, load balancers, and listeners in AWS.
						
	
							You created the security groups and roles required for your cluster in AWS.
						
	
							You created the bootstrap machine.
						
	
							You created the control plane machines.
						
	
							You created the worker nodes.
						

Procedure
	
							Change to the directory that contains the installation program and start the bootstrap process that initializes the OpenShift Container Platform control plane:
						
$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 20m0s for the Kubernetes API at https://api.mycluster.example.com:6443...
INFO API v1.19.0+9f84db3 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources
INFO Time elapsed: 1s

							

							If the command exits without a FATAL warning, your OpenShift Container Platform control plane has initialized.
						
Note

								After the control plane initializes, it sets up the compute nodes and installs additional services in the form of Operators.
							

Additional resources
	
							See Monitoring installation progress for details about monitoring the installation, bootstrap, and control plane logs as an OpenShift Container Platform installation progresses.
						
	
							See Gathering bootstrap node diagnostic data for information about troubleshooting issues related to the bootstrap process.
						

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Disabling the default OperatorHub sources

						Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
					
Procedure
	
								Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
							
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

						Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
					

Image registry storage configuration

						Amazon Web Services provides default storage, which means the Image Registry Operator is available after installation. However, if the Registry Operator cannot create an S3 bucket and automatically configure storage, you must manually configure registry storage.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for AWS with user-provisioned infrastructure

							During installation, your cloud credentials are sufficient to create an Amazon S3 bucket and the Registry Operator will automatically configure storage.
						

							If the Registry Operator cannot create an S3 bucket and automatically configure storage, you can create an S3 bucket and configure storage with the following procedure.
						
Prerequisites
	
									You have a cluster on AWS with user-provisioned infrastructure.
								
	
									For Amazon S3 storage, the secret is expected to contain two keys:
								
	
											REGISTRY_STORAGE_S3_ACCESSKEY
										
	
											REGISTRY_STORAGE_S3_SECRETKEY
										

Procedure

								Use the following procedure if the Registry Operator cannot create an S3 bucket and automatically configure storage.
							
	
									Set up a Bucket Lifecycle Policy to abort incomplete multipart uploads that are one day old.
								
	
									Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:
								
$ oc edit configs.imageregistry.operator.openshift.io/cluster
Example configuration

										

storage:
 s3:
 bucket: <bucket-name>
 region: <region-name>

									

Warning

								To secure your registry images in AWS, block public access to the S3 bucket.
							

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Deleting the bootstrap resources

					After you complete the initial Operator configuration for the cluster, remove the bootstrap resources from Amazon Web Services (AWS).
				
Prerequisites
	
							You completed the initial Operator configuration for your cluster.
						

Procedure
	
							Delete the bootstrap resources. If you used the CloudFormation template, delete its stack:
						
	
									Delete the stack by using the AWS CLI:
								
$ aws cloudformation delete-stack --stack-name <name> [image: 1]
	[image: 1]
	
											<name> is the name of your bootstrap stack.
										

	
									Delete the stack by using the AWS CloudFormation console.
								

Creating the Ingress DNS Records

					If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load balancer. You can create either a wildcard record or specific records. While the following procedure uses A records, you can use other record types that you require, such as CNAME or alias.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster on Amazon Web Services (AWS) that uses infrastructure that you provisioned.
						
	
							You installed the OpenShift CLI (oc).
						
	
							You installed the jq package.
						
	
							You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or Unix).
						

Procedure
	
							Determine the routes to create.
						
	
									To create a wildcard record, use *.apps.<cluster_name>.<domain_name>, where <cluster_name> is your cluster name, and <domain_name> is the Route 53 base domain for your OpenShift Container Platform cluster.
								
	
									To create specific records, you must create a record for each route that your cluster uses, as shown in the output of the following command:
								
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output

										

oauth-openshift.apps.<cluster_name>.<domain_name>
console-openshift-console.apps.<cluster_name>.<domain_name>
downloads-openshift-console.apps.<cluster_name>.<domain_name>
alertmanager-main-openshift-monitoring.apps.<cluster_name>.<domain_name>
grafana-openshift-monitoring.apps.<cluster_name>.<domain_name>
prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<domain_name>

									

	
							Retrieve the Ingress Operator load balancer status and note the value of the external IP address that it uses, which is shown in the EXTERNAL-IP column:
						
$ oc -n openshift-ingress get service router-default
Example output

								

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
router-default LoadBalancer 172.30.62.215 ab3...28.us-east-2.elb.amazonaws.com 80:31499/TCP,443:30693/TCP 5m

							

	
							Locate the hosted zone ID for the load balancer:
						
$ aws elb describe-load-balancers | jq -r '.LoadBalancerDescriptions[] | select(.DNSName == "<external_ip>").CanonicalHostedZoneNameID' [image: 1]
	[image: 1]
	
									For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer that you obtained.
								

Example output

								

Z3AADJGX6KTTL2

							

							The output of this command is the load balancer hosted zone ID.
						

	
							Obtain the public hosted zone ID for your cluster’s domain:
						
$ aws route53 list-hosted-zones-by-name \
 --dns-name "<domain_name>" \ [image: 1]
 --query 'HostedZones[? Config.PrivateZone != `true` && Name == `<domain_name>.`].Id' [image: 2]
 --output text
	[image: 1] [image: 2]
	
									For <domain_name>, specify the Route 53 base domain for your OpenShift Container Platform cluster.
								

Example output

								

/hostedzone/Z3URY6TWQ91KVV

							

							The public hosted zone ID for your domain is shown in the command output. In this example, it is Z3URY6TWQ91KVV.
						

	
							Add the alias records to your private zone:
						
$ aws route53 change-resource-record-sets --hosted-zone-id "<private_hosted_zone_id>" --change-batch '{ [image: 1]
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", [image: 2]
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", [image: 3]
> "DNSName": "<external_ip>.", [image: 4]
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'
	[image: 1]
	
									For <private_hosted_zone_id>, specify the value from the output of the CloudFormation template for DNS and load balancing.
								

	[image: 2]
	
									For <cluster_domain>, specify the domain or subdomain that you use with your OpenShift Container Platform cluster.
								

	[image: 3]
	
									For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you obtained.
								

	[image: 4]
	
									For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.) in this parameter value.
								

	
							Add the records to your public zone:
						
$ aws route53 change-resource-record-sets --hosted-zone-id "<public_hosted_zone_id>"" --change-batch '{ [image: 1]
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", [image: 2]
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", [image: 3]
> "DNSName": "<external_ip>.", [image: 4]
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'
	[image: 1]
	
									For <public_hosted_zone_id>, specify the public hosted zone for your domain.
								

	[image: 2]
	
									For <cluster_domain>, specify the domain or subdomain that you use with your OpenShift Container Platform cluster.
								

	[image: 3]
	
									For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you obtained.
								

	[image: 4]
	
									For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.) in this parameter value.
								

Completing an AWS installation on user-provisioned infrastructure

					After you start the OpenShift Container Platform installation on Amazon Web Service (AWS) user-provisioned infrastructure, monitor the deployment to completion.
				
Prerequisites
	
							You removed the bootstrap node for an OpenShift Container Platform cluster on user-provisioned AWS infrastructure.
						
	
							You installed the oc CLI.
						

Procedure
	
							From the directory that contains the installation program, complete the cluster installation:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 40m0s for the cluster at https://api.mycluster.example.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Fe5en-ymBEc-Wt6NL"
INFO Time elapsed: 1s

							
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Register your cluster on the Cluster registration page.
						

Logging in to the cluster by using the web console

					The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
				
Prerequisites
	
							You have access to the installation host.
						
	
							You completed a cluster installation and all cluster Operators are available.
						

Procedure
	
							Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:
						
$ cat <installation_directory>/auth/kubeadmin-password
Note

								Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.
							

	
							List the OpenShift Container Platform web console route:
						
$ oc get routes -n openshift-console | grep 'console-openshift'
Note

								Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.
							

Example output

								

console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None

							

	
							Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.
						

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Additional resources

	
							See Working with stacks in the AWS documentation for more information about AWS CloudFormation stacks.
						

Next steps

	
							Validate an installation.
						
	
							Customize your cluster.
						
	
							Configure image streams for the Cluster Samples Operator and the must-gather tool.
						
	
							Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If necessary, you can remove cloud provider credentials.
						

Uninstalling a cluster on AWS

				You can remove a cluster that you deployed to Amazon Web Services (AWS).
			
Removing a cluster that uses installer-provisioned infrastructure

					You can remove a cluster that uses installer-provisioned infrastructure from your cloud.
				
Note

						After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access.
					

Prerequisites
	
							Have a copy of the installation program that you used to deploy the cluster.
						
	
							Have the files that the installation program generated when you created your cluster.
						

Procedure
	
							From the directory that contains the installation program on the computer that you used to install the cluster, run the following command:
						
$./openshift-install destroy cluster \
--dir <installation_directory> --log-level info [image: 1] [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different details, specify warn, debug, or error instead of info.
								

Note

								You must specify the directory that contains the cluster definition files for your cluster. The installation program requires the metadata.json file in this directory to delete the cluster.
							

	
							Optional: Delete the <installation_directory> directory and the OpenShift Container Platform installation program.
						

Chapter 3. Installing on Azure

Configuring an Azure account

				Before you can install OpenShift Container Platform, you must configure a Microsoft Azure account.
			
Important

					All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
				

Azure account limits

					The OpenShift Container Platform cluster uses a number of Microsoft Azure components, and the default Azure subscription and service limits, quotas, and constraints affect your ability to install OpenShift Container Platform clusters.
				
Important

						Default limits vary by offer category types, such as Free Trial and Pay-As-You-Go, and by series, such as Dv2, F, and G. For example, the default for Enterprise Agreement subscriptions is 350 cores.
					

						Check the limits for your subscription type and if necessary, increase quota limits for your account before you install a default cluster on Azure.
					

					The following table summarizes the Azure components whose limits can impact your ability to install and run OpenShift Container Platform clusters.
				
	Component	Number of components required by default	Default Azure limit	Description
	
									vCPU
								

								 	
									40
								

								 	
									20 per region
								

								 	
									A default cluster requires 40 vCPUs, so you must increase the account limit.
								

								
									By default, each cluster creates the following instances:
								

								 	
											One bootstrap machine, which is removed after installation
										
	
											Three control plane machines
										
	
											Three compute machines
										

								
									Because the bootstrap machine uses Standard_D4s_v3 machines, which use 4 vCPUs, the control plane machines use Standard_D8s_v3 virtual machines, which use 8 vCPUs, and the worker machines use Standard_D4s_v3 virtual machines, which use 4 vCPUs, a default cluster requires 40 vCPUs. The bootstrap node VM, which uses 4 vCPUs, is used only during installation.
								

								
									To deploy more worker nodes, enable autoscaling, deploy large workloads, or use a different instance type, you must further increase the vCPU limit for your account to ensure that your cluster can deploy the machines that you require.
								

								
									By default, the installation program distributes control plane and compute machines across all availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones.
								

								
	
									OS Disk
								

								 	
									7
								

								 	 	
									VM OS disk must be able to sustain a minimum throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB Premium SSD (P30). In Azure, disk performance is directly dependent on SSD disk sizes, so to achieve the throughput supported by Standard_D8s_v3, or other similar machine types available, and the target of 5000 IOPS, at least a P30 disk is required.
								

								
									Host caching must be set to ReadOnly for low read latency and high read IOPS and throughput. The reads performed from the cache, which is present either in the VM memory or in the local SSD disk, are much faster than the reads from the data disk, which is in the blob storage.
								

								
	
									VNet
								

								 	
									1
								

								 	
									1000 per region
								

								 	
									Each default cluster requires one Virtual Network (VNet), which contains two subnets.
								

								
	
									Network interfaces
								

								 	
									6
								

								 	
									65,536 per region
								

								 	
									Each default cluster requires six network interfaces. If you create more machines or your deployed workloads create load balancers, your cluster uses more network interfaces.
								

								
	
									Network security groups
								

								 	
									2
								

								 	
									5000
								

								 	
									Each default cluster Each cluster creates network security groups for each subnet in the VNet. The default cluster creates network security groups for the control plane and for the compute node subnets:
								

								 	
													controlplane
												

												 	
													Allows the control plane machines to be reached on port 6443 from anywhere
												

												
	
													node
												

												 	
													Allows worker nodes to be reached from the Internet on ports 80 and 443
												

												

								
	
									Network load balancers
								

								 	
									3
								

								 	
									1000 per region
								

								 	
									Each cluster creates the following load balancers:
								

								 	
													default
												

												 	
													Public IP address that load balances requests to ports 80 and 443 across worker machines
												

												
	
													internal
												

												 	
													Private IP address that load balances requests to ports 6443 and 22623 across control plane machines
												

												
	
													external
												

												 	
													Public IP address that load balances requests to port 6443 across control plane machines
												

												

								
									If your applications create more Kubernetes LoadBalancer service objects, your cluster uses more load balancers.
								

								
	
									Public IP addresses
								

								 	
									3
								

								 	 	
									Each of the two public load balancers uses a public IP address. The bootstrap machine also uses a public IP address so that you can SSH into the machine to troubleshoot issues during installation. The IP address for the bootstrap node is used only during installation.
								

								
	
									Private IP addresses
								

								 	
									7
								

								 	 	
									The internal load balancer, each of the three control plane machines, and each of the three worker machines each use a private IP address.
								

								
	
									Spot VM vCPUs (optional)
								

								 	
									0
								

								
									If you configure spot VMs, your cluster must have two spot VM vCPUs for every compute node.
								

								 	
									20 per region
								

								 	
									This is an optional component. To use spot VMs, you must increase the Azure default limit to at least twice the number of compute nodes in your cluster.
								

								 Note

										Using spot VMs for control plane nodes is not recommended.
									

								

Configuring a public DNS zone in Azure

					To install OpenShift Container Platform, the Microsoft Azure account you use must have a dedicated public hosted DNS zone in your account. This zone must be authoritative for the domain. This service provides cluster DNS resolution and name lookup for external connections to the cluster.
				
Procedure
	
							Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through Azure or another source.
						
Note

								For more information about purchasing domains through Azure, see Buy a custom domain name for Azure App Service in the Azure documentation.
							

	
							If you are using an existing domain and registrar, migrate its DNS to Azure. See Migrate an active DNS name to Azure App Service in the Azure documentation.
						
	
							Configure DNS for your domain. Follow the steps in the Tutorial: Host your domain in Azure DNS in the Azure documentation to create a public hosted zone for your domain or subdomain, extract the new authoritative name servers, and update the registrar records for the name servers that your domain uses.
						

							Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
						

	
							If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain.
						

Increasing Azure account limits

					To increase an account limit, file a support request on the Azure portal.
				
Note

						You can increase only one type of quota per support request.
					

Procedure
	
							From the Azure portal, click Help + support in the lower left corner.
						
	
							Click New support request and then select the required values:
						
	
									From the Issue type list, select Service and subscription limits (quotas).
								
	
									From the Subscription list, select the subscription to modify.
								
	
									From the Quota type list, select the quota to increase. For example, select Compute-VM (cores-vCPUs) subscription limit increases to increase the number of vCPUs, which is required to install a cluster.
								
	
									Click Next: Solutions.
								

	
							On the Problem Details page, provide the required information for your quota increase:
						
	
									Click Provide details and provide the required details in the Quota details window.
								
	
									In the SUPPORT METHOD and CONTACT INFO sections, provide the issue severity and your contact details.
								

	
							Click Next: Review + create and then click Create.
						

Required Azure roles

					OpenShift Container Platform needs a service principal so it can manage Microsoft Azure resources. Before you can create a service principal, your Azure account subscription must have the following roles:
				
	
							User Access Administrator
						
	
							Owner
						

					To set roles on the Azure portal, see the Manage access to Azure resources using RBAC and the Azure portal in the Azure documentation.
				

Creating a service principal

					Because OpenShift Container Platform and its installation program must create Microsoft Azure resources through Azure Resource Manager, you must create a service principal to represent it.
				
Prerequisites
	
							Install or update the Azure CLI.
						
	
							Install the jq package.
						
	
							Your Azure account has the required roles for the subscription that you use.
						

Procedure
	
							Log in to the Azure CLI:
						
$ az login

							Log in to Azure in the web console by using your credentials.
						

	
							If your Azure account uses subscriptions, ensure that you are using the right subscription.
						
	
									View the list of available accounts and record the tenantId value for the subscription you want to use for your cluster:
								
$ az account list --refresh
Example output

										

[
 {
 "cloudName": "AzureCloud",
 "id": "9bab1460-96d5-40b3-a78e-17b15e978a80",
 "isDefault": true,
 "name": "Subscription Name",
 "state": "Enabled",
 "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee",
 "user": {
 "name": "you@example.com",
 "type": "user"
 }
 }
]

									

	
									View your active account details and confirm that the tenantId value matches the subscription you want to use:
								
$ az account show
Example output

										

{
 "environmentName": "AzureCloud",
 "id": "9bab1460-96d5-40b3-a78e-17b15e978a80",
 "isDefault": true,
 "name": "Subscription Name",
 "state": "Enabled",
 "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee", [image: 1]
 "user": {
 "name": "you@example.com",
 "type": "user"
 }
}

									
	[image: 1]
	
											Ensure that the value of the tenantId parameter is the UUID of the correct subscription.
										

	
									If you are not using the right subscription, change the active subscription:
								
$ az account set -s <id> [image: 1]
	[image: 1]
	
											Substitute the value of the id for the subscription that you want to use for <id>.
										

	
									If you changed the active subscription, display your account information again:
								
$ az account show
Example output

										

{
 "environmentName": "AzureCloud",
 "id": "33212d16-bdf6-45cb-b038-f6565b61edda",
 "isDefault": true,
 "name": "Subscription Name",
 "state": "Enabled",
 "tenantId": "8049c7e9-c3de-762d-a54e-dc3f6be6a7ee",
 "user": {
 "name": "you@example.com",
 "type": "user"
 }
}

									

	
							Record the values of the tenantId and id parameters from the previous output. You need these values during OpenShift Container Platform installation.
						
	
							Create the service principal for your account:
						
$ az ad sp create-for-rbac --role Contributor --name <service_principal> [image: 1]
	[image: 1]
	
									Replace <service_principal> with the name to assign to the service principal.
								

Example output

								

Changing "<service_principal>" to a valid URI of "http://<service_principal>", which is the required format used for service principal names
Retrying role assignment creation: 1/36
Retrying role assignment creation: 2/36
Retrying role assignment creation: 3/36
Retrying role assignment creation: 4/36
{
 "appId": "8bd0d04d-0ac2-43a8-928d-705c598c6956",
 "displayName": "<service_principal>",
 "name": "http://<service_principal>",
 "password": "ac461d78-bf4b-4387-ad16-7e32e328aec6",
 "tenant": "6048c7e9-b2ad-488d-a54e-dc3f6be6a7ee"
}

							

	
							Record the values of the appId and password parameters from the previous output. You need these values during OpenShift Container Platform installation.
						
	
							Grant additional permissions to the service principal.
						
	
									You must always add the Contributor and User Access Administrator roles to the app registration service principal so the cluster can assign credentials for its components.
								
	
									To operate the Cloud Credential Operator (CCO) in mint mode, the app registration service principal also requires the Azure Active Directory Graph/Application.ReadWrite.OwnedBy API permission.
								
	
									To operate the CCO in passthrough mode, the app registration service principal does not require additional API permissions.
								

							For more information about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
						
	
									To assign the User Access Administrator role, run the following command:
								
$ az role assignment create --role "User Access Administrator" \
 --assignee-object-id $(az ad sp list --filter "appId eq '<appId>'" \
 | jq '.[0].id' -r) [image: 1]
	[image: 1]
	
											Replace <appId> with the appId parameter value for your service principal.
										

	
									To assign the Azure Active Directory Graph permission, run the following command:
								
$ az ad app permission add --id <appId> \ [image: 1]
 --api 00000002-0000-0000-c000-000000000000 \
 --api-permissions 824c81eb-e3f8-4ee6-8f6d-de7f50d565b7=Role
	[image: 1]
	
											Replace <appId> with the appId parameter value for your service principal.
										

Example output

										

Invoking "az ad app permission grant --id 46d33abc-b8a3-46d8-8c84-f0fd58177435 --api 00000002-0000-0000-c000-000000000000" is needed to make the change effective

									

									For more information about the specific permissions that you grant with this command, see the GUID Table for Windows Azure Active Directory Permissions.
								

	
									Approve the permissions request. If your account does not have the Azure Active Directory tenant administrator role, follow the guidelines for your organization to request that the tenant administrator approve your permissions request.
								
$ az ad app permission grant --id <appId> \ [image: 1]
 --api 00000002-0000-0000-c000-000000000000
	[image: 1]
	
											Replace <appId> with the appId parameter value for your service principal.
										

Supported Azure regions

					The installation program dynamically generates the list of available Microsoft Azure regions based on your subscription. The following Azure regions were tested and validated in OpenShift Container Platform version 4.6.1:
				
Supported Azure public regions
	
							australiacentral (Australia Central)
						
	
							australiaeast (Australia East)
						
	
							australiasoutheast (Australia South East)
						
	
							brazilsouth (Brazil South)
						
	
							canadacentral (Canada Central)
						
	
							canadaeast (Canada East)
						
	
							centralindia (Central India)
						
	
							centralus (Central US)
						
	
							eastasia (East Asia)
						
	
							eastus (East US)
						
	
							eastus2 (East US 2)
						
	
							francecentral (France Central)
						
	
							germanywestcentral (Germany West Central)
						
	
							japaneast (Japan East)
						
	
							japanwest (Japan West)
						
	
							koreacentral (Korea Central)
						
	
							koreasouth (Korea South)
						
	
							northcentralus (North Central US)
						
	
							northeurope (North Europe)
						
	
							norwayeast (Norway East)
						
	
							southafricanorth (South Africa North)
						
	
							southcentralus (South Central US)
						
	
							southeastasia (Southeast Asia)
						
	
							southindia (South India)
						
	
							switzerlandnorth (Switzerland North)
						
	
							uaenorth (UAE North)
						
	
							uksouth (UK South)
						
	
							ukwest (UK West)
						
	
							westcentralus (West Central US)
						
	
							westeurope (West Europe)
						
	
							westindia (West India)
						
	
							westus (West US)
						
	
							westus2 (West US 2)
						

Supported Azure Government regions

					Support for the following Microsoft Azure Government (MAG) regions was added in OpenShift Container Platform version 4.6:
				
	
							usgovtexas (US Gov Texas)
						
	
							usgovvirginia (US Gov Virginia)
						

					You can reference all available MAG regions in the Azure documentation. Other provided MAG regions are expected to work with OpenShift Container Platform, but have not been tested.
				

Next steps

	
							Install an OpenShift Container Platform cluster on Azure. You can install a customized cluster or quickly install a cluster with default options.
						

Manually creating IAM for Azure

				In environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace, you can put the Cloud Credential Operator (CCO) into manual mode before you install the cluster.
			
Alternatives to storing administrator-level secrets in the kube-system project

					The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom resource definitions (CRDs). You can configure the CCO to suit the security requirements of your organization by setting different values for the credentialsMode parameter in the install-config.yaml file.
				

					If you prefer not to store an administrator-level credential secret in the cluster kube-system project, you can set the credentialsMode parameter for the CCO to Manual when installing OpenShift Container Platform and manage your cloud credentials manually.
				

					Using manual mode allows each cluster component to have only the permissions it requires, without storing an administrator-level credential in the cluster. You can also use this mode if your environment does not have connectivity to the cloud provider public IAM endpoint. However, you must manually reconcile permissions with new release images for every upgrade. You must also manually supply credentials for every component that requests them.
				
Additional resources
	
							For a detailed description of all available CCO credential modes and their supported platforms, see the Cloud Credential Operator reference.
						

Manually create IAM

					The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.
				
Procedure
	
							To generate the manifests, run the following command from the directory that contains the installation program:
						
$ openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	
							Insert a config map into the manifests directory so that the Cloud Credential Operator is placed in manual mode:
						
$ cat <<EOF > mycluster/manifests/cco-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cloud-credential-operator-config
 namespace: openshift-cloud-credential-operator
 annotations:
 release.openshift.io/create-only: "true"
data:
 disabled: "true"
EOF

	
							Remove the admin credential secret created using your local cloud credentials. This removal prevents your admin credential from being stored in the cluster:
						
$ rm mycluster/openshift/99_cloud-creds-secret.yaml

	
							From the directory that contains the installation program, obtain details of the OpenShift Container Platform release image that your openshift-install binary is built to use:
						
$ openshift-install version
Example output

								

release image quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64

							

	
							Locate all CredentialsRequest objects in this release image that target the cloud you are deploying on:
						
$ oc adm release extract quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64 --credentials-requests --cloud=azure

							This displays the details for each request.
						
Sample CredentialsRequest object

								

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 labels:
 controller-tools.k8s.io: "1.0"
 name: openshift-image-registry-azure
 namespace: openshift-cloud-credential-operator
spec:
 secretRef:
 name: installer-cloud-credentials
 namespace: openshift-image-registry
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AzureProviderSpec
 roleBindings:
 - role: Contributor

							

	
							Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each credentialsRequest. The format for the secret data varies for each cloud provider.
						
	
							From the directory that contains the installation program, proceed with your cluster creation:
						
$ openshift-install create cluster --dir <installation_directory>
Important

								Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. For details, see the Upgrading clusters with manually maintained credentials section of the installation content for your cloud provider.
							

Admin credentials root secret format

					Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which is then used to satisfy all credentials requests and create their respective secrets. This is done either by minting new credentials, with mint mode, or by copying the credentials root secret, with passthrough mode.
				

					The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.
				
Microsoft Azure secret format

						

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: azure-credentials
stringData:
 azure_subscription_id: <SubscriptionID>
 azure_client_id: <ClientID>
 azure_client_secret: <ClientSecret>
 azure_tenant_id: <TenantID>
 azure_resource_prefix: <ResourcePrefix>
 azure_resourcegroup: <ResourceGroup>
 azure_region: <Region>

					

					On Microsoft Azure, the credentials secret format includes two properties that must contain the cluster’s infrastructure ID, generated randomly for each cluster installation. This value can be found after running create manifests:
				
$ cat .openshift_install_state.json | jq '."*installconfig.ClusterID".InfraID' -r
Example output

						

mycluster-2mpcn

					

					This value would be used in the secret data as follows:
				
azure_resource_prefix: mycluster-2mpcn
azure_resourcegroup: mycluster-2mpcn-rg

Upgrading clusters with manually maintained credentials

					If credentials are added in a future release, the Cloud Credential Operator (CCO) upgradable status for a cluster with manually maintained credentials changes to false. For minor release, for example, from 4.5 to 4.6, this status prevents you from upgrading until you have addressed any updated permissions. For z-stream releases, for example, from 4.5.10 to 4.5.11, the upgrade is not blocked, but the credentials must still be updated for the new release.
				

					Use the Administrator perspective of the web console to determine if the CCO is upgradeable.
				
	
							Navigate to Administration → Cluster Settings.
						
	
							To view the CCO status details, click cloud-credential in the Cluster Operators list.
						
	
							If the Upgradeable status in the Conditions section is False, examine the credentialsRequests for the new release and update the manually maintained credentials on your cluster to match before upgrading.
						

					In addition to creating new credentials for the release image that you are upgrading to, you must review the required permissions for existing credentials and accommodate any new permissions requirements for existing components in the new release. The CCO cannot detect these mismatches and will not set upgradable to false in this case.
				

					The Manually creating IAM section of the installation content for your cloud provider explains how to obtain and use the credentials required for your cloud.
				

Mint mode

					Mint mode is the default and recommended Cloud Credential Operator (CCO) credentials mode for OpenShift Container Platform. In this mode, the CCO uses the provided administrator-level cloud credential to run the cluster. Mint mode is supported for AWS, GCP, and Azure.
				

					In mint mode, the admin credential is stored in the kube-system namespace and then used by the CCO to process the CredentialsRequest objects in the cluster and create users for each with specific permissions.
				

					The benefits of mint mode include:
				
	
							Each cluster component has only the permissions it requires
						
	
							Automatic, on-going reconciliation for cloud credentials, including additional credentials or permissions that might be required for upgrades
						

					One drawback is that mint mode requires admin credential storage in a cluster kube-system secret.
				

Next steps

	
							Install an OpenShift Container Platform cluster:
						
	
									Installing a cluster quickly on Azure with default options on installer-provisioned infrastructure
								
	
									Install a cluster with cloud customizations on installer-provisioned infrastructure
								
	
									Install a cluster with network customizations on installer-provisioned infrastructure
								

Installing a cluster quickly on Azure

				In OpenShift Container Platform version 4.6, you can install a cluster on Microsoft Azure that uses the default configuration options.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Important

								Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							Provide values at the prompts:
						
	
									Optional: Select an SSH key to use to access your cluster machines.
								
Note

										For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
									

	
									Select azure as the platform to target.
								
	
									If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
								
	
											azure subscription id: The subscription ID to use for the cluster. Specify the id value in your account output.
										
	
											azure tenant id: The tenant ID. Specify the tenantId value in your account output.
										
	
											azure service principal client id: The value of the appId parameter for the service principal.
										
	
											azure service principal client secret: The value of the password parameter for the service principal.
										

	
									Select the region to deploy the cluster to.
								
	
									Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
								
	
									Enter a descriptive name for your cluster.
								
Important

										All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
									

	
									Paste the pull secret from the Red Hat OpenShift Cluster Manager.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on Azure with customizations

				In OpenShift Container Platform version 4.6, you can install a customized cluster on infrastructure that the installation program provisions on Microsoft Azure. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select azure as the platform to target.
										
	
											If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
										
	
													azure subscription id: The subscription ID to use for the cluster. Specify the id value in your account output.
												
	
													azure tenant id: The tenant ID. Specify the tenantId value in your account output.
												
	
													azure service principal client id: The value of the appId parameter for the service principal.
												
	
													azure service principal client secret: The value of the password parameter for the service principal.
												

	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
Important

												All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
											

	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 3.1. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 3.2. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 3.3. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Azure configuration parameters

							Additional Azure configuration parameters are described in the following table:
						
Table 3.4. Additional Azure parameters
	Parameter	Description	Values
	
											compute.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 128.
										

										
	
											compute.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											standard_LRS, premium_LRS, or standardSSD_LRS. The default is premium_LRS.
										

										
	
											controlPlane.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 1024.
										

										
	
											controlPlane.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											premium_LRS or standardSSD_LRS. The default is premium_LRS.
										

										
	
											platform.azure.baseDomainResourceGroupName
										

										 	
											The name of the resource group that contains the DNS zone for your base domain.
										

										 	
											String, for example production_cluster.
										

										
	
											platform.azure.outboundType
										

										 	
											The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing.
										

										 	
											LoadBalancer or UserDefinedRouting. The default is LoadBalancer.
										

										
	
											platform.azure.region
										

										 	
											The name of the Azure region that hosts your cluster.
										

										 	
											Any valid region name, such as centralus.
										

										
	
											platform.azure.zone
										

										 	
											List of availability zones to place machines in. For high availability, specify at least two zones.
										

										 	
											List of zones, for example ["1", "2", "3"].
										

										
	
											platform.azure.networkResourceGroupName
										

										 	
											The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the platform.azure.baseDomainResourceGroupName.
										

										 	
											String.
										

										
	
											platform.azure.virtualNetwork
										

										 	
											The name of the existing VNet that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.azure.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your control plane machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.computeSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your compute machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.cloudName
										

										 	
											The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value AzurePublicCloud is used.
										

										 	
											Any valid cloud environment, such as AzurePublicCloud or AzureUSGovernmentCloud.
										

										

Note

								You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
							

Sample customized install-config.yaml file for Azure

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2]
 hyperthreading: Enabled [image: 3] [image: 4]
 name: master
 platform:
 azure:
 osDisk:
 diskSizeGB: 1024 [image: 5]
 diskType: Premium_LRS
 type: Standard_D8s_v3
 replicas: 3
compute: [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 azure:
 type: Standard_D2s_v3
 osDisk:
 diskSizeGB: 512 [image: 8]
 diskType: Standard_LRS
 zones: [image: 9]
 - "1"
 - "2"
 - "3"
 replicas: 5
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 azure:
 baseDomainResourceGroupName: resource_group [image: 11]
 region: centralus [image: 12]
 resourceGroupName: existing_resource_group [image: 13]
 outboundType: Loadbalancer
 cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' [image: 14]
fips: false [image: 15]
sshKey: ssh-ed25519 AAAA... (16)
	[image: 1] [image: 10] [image: 12] [image: 14]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 6]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 7]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.
								

	[image: 5] [image: 8]
	
								You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
							

	[image: 9]
	
								Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
							

	[image: 11]
	
								Specify the name of the resource group that contains the DNS zone for your base domain.
							

	[image: 13]
	
								Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on Azure with network customizations

				In OpenShift Container Platform version 4.6, you can install a cluster with a customized network configuration on infrastructure that the installation program provisions on Microsoft Azure. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
			

				You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select azure as the platform to target.
										
	
											If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
										
	
													azure subscription id: The subscription ID to use for the cluster. Specify the id value in your account output.
												
	
													azure tenant id: The tenant ID. Specify the tenantId value in your account output.
												
	
													azure service principal client id: The value of the appId parameter for the service principal.
												
	
													azure service principal client secret: The value of the password parameter for the service principal.
												

	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
Important

												All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
											

	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 3.5. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 3.6. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 3.7. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Azure configuration parameters

							Additional Azure configuration parameters are described in the following table:
						
Table 3.8. Additional Azure parameters
	Parameter	Description	Values
	
											compute.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 128.
										

										
	
											compute.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											standard_LRS, premium_LRS, or standardSSD_LRS. The default is premium_LRS.
										

										
	
											controlPlane.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 1024.
										

										
	
											controlPlane.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											premium_LRS or standardSSD_LRS. The default is premium_LRS.
										

										
	
											platform.azure.baseDomainResourceGroupName
										

										 	
											The name of the resource group that contains the DNS zone for your base domain.
										

										 	
											String, for example production_cluster.
										

										
	
											platform.azure.outboundType
										

										 	
											The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing.
										

										 	
											LoadBalancer or UserDefinedRouting. The default is LoadBalancer.
										

										
	
											platform.azure.region
										

										 	
											The name of the Azure region that hosts your cluster.
										

										 	
											Any valid region name, such as centralus.
										

										
	
											platform.azure.zone
										

										 	
											List of availability zones to place machines in. For high availability, specify at least two zones.
										

										 	
											List of zones, for example ["1", "2", "3"].
										

										
	
											platform.azure.networkResourceGroupName
										

										 	
											The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the platform.azure.baseDomainResourceGroupName.
										

										 	
											String.
										

										
	
											platform.azure.virtualNetwork
										

										 	
											The name of the existing VNet that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.azure.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your control plane machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.computeSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your compute machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.cloudName
										

										 	
											The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value AzurePublicCloud is used.
										

										 	
											Any valid cloud environment, such as AzurePublicCloud or AzureUSGovernmentCloud.
										

										

Note

								You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
							

Sample customized install-config.yaml file for Azure

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2]
 hyperthreading: Enabled [image: 3] [image: 4]
 name: master
 platform:
 azure:
 osDisk:
 diskSizeGB: 1024 [image: 5]
 diskType: Premium_LRS
 type: Standard_D8s_v3
 replicas: 3
compute: [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 azure:
 type: Standard_D2s_v3
 osDisk:
 diskSizeGB: 512 [image: 8]
 diskType: Standard_LRS
 zones: [image: 9]
 - "1"
 - "2"
 - "3"
 replicas: 5
metadata:
 name: test-cluster [image: 10]
networking: [image: 11]
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 azure:
 baseDomainResourceGroupName: resource_group [image: 12]
 region: centralus [image: 13]
 resourceGroupName: existing_resource_group [image: 14]
 outboundType: Loadbalancer
 cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' [image: 15]
fips: false (16)
sshKey: ssh-ed25519 AAAA... (17)
	[image: 1] [image: 10] [image: 13] [image: 15]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 6] [image: 11]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 7]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.
								

	[image: 5] [image: 8]
	
								You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
							

	[image: 9]
	
								Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
							

	[image: 12]
	
								Specify the name of the resource group that contains the DNS zone for your base domain.
							

	[image: 14]
	
								Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
							

	(16)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(17)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Network configuration phases

					When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
				
	Phase 1
	
								After entering the openshift-install create install-config command. In the install-config.yaml file, you can customize the following network-related fields:
							
	
										networking.networkType
									
	
										networking.clusterNetwork
									
	
										networking.serviceNetwork
									
	
										networking.machineNetwork
									

										For more information on these fields, refer to "Installation configuration parameters".
									
Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

	Phase 2
	
								After entering the openshift-install create manifests command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
							

					You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.
				

Specifying advanced network configuration

					You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
				
Important

						Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
					

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and specify the advanced network configuration for your cluster, such as in the following example:
						
Specify a different VXLAN port for the OpenShift SDN network provider

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 openshiftSDNConfig:
 vxlanPort: 4800

							

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Cluster Network Operator configuration

					The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.
				

					The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:
				
	clusterNetwork
	
								IP address pools from which pod IP addresses are allocated.
							
	serviceNetwork
	
								IP address pool for services.
							
	defaultNetwork.type
	
								Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
							

					You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.
				
Cluster Network Operator configuration object

						The fields for the Cluster Network Operator (CNO) are described in the following table:
					
Table 3.9. Cluster Network Operator configuration object
	Field	Type	Description
	
										metadata.name
									

									 	
										string
									

									 	
										The name of the CNO object. This name is always cluster.
									

									
	
										spec.clusterNetwork
									

									 	
										array
									

									 	
										A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
									

									
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.serviceNetwork
									

									 	
										array
									

									 	
										A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:
									

									
spec:
 serviceNetwork:
 - 172.30.0.0/14

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.defaultNetwork
									

									 	
										object
									

									 	
										Configures the Container Network Interface (CNI) cluster network provider for the cluster network.
									

									
	
										spec.kubeProxyConfig
									

									 	
										object
									

									 	
										The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.
									

									

defaultNetwork object configuration

						The values for the defaultNetwork object are defined in the following table:
					
Table 3.10. defaultNetwork object
	Field	Type	Description
	
										type
									

									 	
										string
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.
									

									 Note

											OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.
										

									
	
										openshiftSDNConfig
									

									 	
										object
									

									 	
										This object is only valid for the OpenShift SDN cluster network provider.
									

									
	
										ovnKubernetesConfig
									

									 	
										object
									

									 	
										This object is only valid for the OVN-Kubernetes cluster network provider.
									

									

Configuration for the OpenShift SDN CNI cluster network provider

						The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
					
Table 3.11. openshiftSDNConfig object
	Field	Type	Description
	
										mode
									

									 	
										string
									

									 	
										Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.
									

									
										The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.
									

									
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										vxlanPort
									

									 	
										integer
									

									 	
										The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.
									

									
										If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
									

									
										On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.
									

									

Example OpenShift SDN configuration

							

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

						
Configuration for the OVN-Kubernetes CNI cluster network provider

						The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
					
Table 3.12. ovnKubernetesConfig object
	Field	Type	Description
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										genevePort
									

									 	
										integer
									

									 	
										The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.
									

									

Example OVN-Kubernetes configuration

							

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081

						
kubeProxyConfig object configuration

						The values for the kubeProxyConfig object are defined in the following table:
					
Table 3.13. kubeProxyConfig object
	Field	Type	Description
	
										iptablesSyncPeriod
									

									 	
										string
									

									 	
										The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.
									

									 Note

											Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.
										

									
	
										proxyArguments.iptables-min-sync-period
									

									 	
										array
									

									 	
										The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:
									

									
kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

									

Configuring hybrid networking with OVN-Kubernetes

					You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid cluster that supports different node networking configurations. For example, this is necessary to run both Linux and Windows nodes in a cluster.
				
Important

						You must configure hybrid networking with OVN-Kubernetes during the installation of your cluster. You cannot switch to hybrid networking after the installation process.
					

Prerequisites
	
							You defined OVNKubernetes for the networking.networkType parameter in the install-config.yaml file. See the installation documentation for configuring OpenShift Container Platform network customizations on your chosen cloud provider for more information.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with hybrid networking, such as in the following example:
						
Specify a hybrid networking configuration

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: [image: 1]
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 [image: 2]

							
	[image: 1]
	
									Specify the CIDR configuration used for nodes on the additional overlay network. The hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.
								

	[image: 2]
	
									Specify a custom VXLAN port for the additional overlay network. This is required for running Windows nodes in a cluster installed on vSphere, and must not be configured for any other cloud provider. The custom port can be any open port excluding the default 4789 port. For more information on this requirement, see the Microsoft documentation on Pod-to-pod connectivity between hosts is broken.
								

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Note

						For more information on using Linux and Windows nodes in the same cluster, see Understanding Windows container workloads.
					

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on Azure into an existing VNet

				In OpenShift Container Platform version 4.6, you can install a cluster into an existing Azure Virtual Network (VNet) on Microsoft Azure. The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About reusing a VNet for your OpenShift Container Platform cluster

					In OpenShift Container Platform 4.6, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.
				

					By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.
				
Requirements for using your VNet

						When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:
					
	
								Subnets
							
	
								Route tables
							
	
								VNets
							
	
								Network Security Groups
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.
					

						The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.
					

						Your VNet must meet the following characteristics:
					
	
								The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
							
	
								The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.
							

						You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.
					

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the specified subnets exist.
							
	
								There are two private subnets, one for the control plane machines and one for the compute machines.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
							

Note

							If you destroy a cluster that uses an existing VNet, the VNet is not deleted.
						

Network security group requirements

							The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.
						
Important

								The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.
							

Table 3.14. Required ports
	Port	Description	Control plane	Compute
	
											80
										

										 	
											Allows HTTP traffic
										

										 	 	
											x
										

										
	
											443
										

										 	
											Allows HTTPS traffic
										

										 	 	
											x
										

										
	
											6443
										

										 	
											Allows communication to the control plane machines
										

										 	
											x
										

										 	
	
											22623
										

										 	
											Allows communication to the machine config server
										

										 	
											x
										

										 	

Note

								Since cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.
							

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.
					

						The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.
					

Isolation between clusters

						Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.
					

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select azure as the platform to target.
										
	
											If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
										
	
													azure subscription id: The subscription ID to use for the cluster. Specify the id value in your account output.
												
	
													azure tenant id: The tenant ID. Specify the tenantId value in your account output.
												
	
													azure service principal client id: The value of the appId parameter for the service principal.
												
	
													azure service principal client secret: The value of the password parameter for the service principal.
												

	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
Important

												All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
											

	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 3.15. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 3.16. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 3.17. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Azure configuration parameters

							Additional Azure configuration parameters are described in the following table:
						
Table 3.18. Additional Azure parameters
	Parameter	Description	Values
	
											compute.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 128.
										

										
	
											compute.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											standard_LRS, premium_LRS, or standardSSD_LRS. The default is premium_LRS.
										

										
	
											controlPlane.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 1024.
										

										
	
											controlPlane.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											premium_LRS or standardSSD_LRS. The default is premium_LRS.
										

										
	
											platform.azure.baseDomainResourceGroupName
										

										 	
											The name of the resource group that contains the DNS zone for your base domain.
										

										 	
											String, for example production_cluster.
										

										
	
											platform.azure.outboundType
										

										 	
											The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing.
										

										 	
											LoadBalancer or UserDefinedRouting. The default is LoadBalancer.
										

										
	
											platform.azure.region
										

										 	
											The name of the Azure region that hosts your cluster.
										

										 	
											Any valid region name, such as centralus.
										

										
	
											platform.azure.zone
										

										 	
											List of availability zones to place machines in. For high availability, specify at least two zones.
										

										 	
											List of zones, for example ["1", "2", "3"].
										

										
	
											platform.azure.networkResourceGroupName
										

										 	
											The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the platform.azure.baseDomainResourceGroupName.
										

										 	
											String.
										

										
	
											platform.azure.virtualNetwork
										

										 	
											The name of the existing VNet that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.azure.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your control plane machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.computeSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your compute machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.cloudName
										

										 	
											The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value AzurePublicCloud is used.
										

										 	
											Any valid cloud environment, such as AzurePublicCloud or AzureUSGovernmentCloud.
										

										

Note

								You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
							

Sample customized install-config.yaml file for Azure

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2]
 hyperthreading: Enabled [image: 3] [image: 4]
 name: master
 platform:
 azure:
 osDisk:
 diskSizeGB: 1024 [image: 5]
 diskType: Premium_LRS
 type: Standard_D8s_v3
 replicas: 3
compute: [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 azure:
 type: Standard_D2s_v3
 osDisk:
 diskSizeGB: 512 [image: 8]
 diskType: Standard_LRS
 zones: [image: 9]
 - "1"
 - "2"
 - "3"
 replicas: 5
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 azure:
 baseDomainResourceGroupName: resource_group [image: 11]
 region: centralus [image: 12]
 resourceGroupName: existing_resource_group [image: 13]
 networkResourceGroupName: vnet_resource_group [image: 14]
 virtualNetwork: vnet [image: 15]
 controlPlaneSubnet: control_plane_subnet (16)
 computeSubnet: compute_subnet (17)
 outboundType: Loadbalancer
 cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' (18)
fips: false (19)
sshKey: ssh-ed25519 AAAA... (20)
	[image: 1] [image: 10] [image: 12] (18)
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 6]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 7]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.
								

	[image: 5] [image: 8]
	
								You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
							

	[image: 9]
	
								Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
							

	[image: 11]
	
								Specify the name of the resource group that contains the DNS zone for your base domain.
							

	[image: 13]
	
								Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
							

	[image: 14]
	
								If you use an existing VNet, specify the name of the resource group that contains it.
							

	[image: 15]
	
								If you use an existing VNet, specify its name.
							

	(16)
	
								If you use an existing VNet, specify the name of the subnet to host the control plane machines.
							

	(17)
	
								If you use an existing VNet, specify the name of the subnet to host the compute machines.
							

	(19)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(20)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a private cluster on Azure

				In OpenShift Container Platform version 4.6, you can install a private cluster into an existing Azure Virtual Network (VNet) on Microsoft Azure. The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Private clusters

					You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
				

					By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
				

					To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
				

					Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
				
Private clusters in Azure

						To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.
					

						Depending how your network connects to the private VNET, you might need to use a DNS forwarder in order to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16 internally for DNS resolution. For more information, see What is Azure Private DNS? and What is IP address 168.63.129.16? in the Azure documentation.
					

						The cluster still requires access to Internet to access the Azure APIs.
					

						The following items are not required or created when you install a private cluster:
					
	
								A BaseDomainResourceGroup, since the cluster does not create public records
							
	
								Public IP addresses
							
	
								Public DNS records
							
	
								Public endpoints
							
The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.

Limitations

							Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.
						

User-defined outbound routing

						In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the Internet. This allows you to skip the creation of public IP addresses and the public load balancer.
					

						You can configure user-defined routing by modifying parameters in the install-config.yaml file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.
					

						When configuring a cluster to use user-defined routing, the installation program does not create the following resources:
					
	
								Outbound rules for access to the Internet.
							
	
								Public IPs for the public load balancer.
							
	
								Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.
							

						You must ensure the following items are available before setting user-defined routing:
					
	
								Egress to the Internet is possible to pull container images, unless using an internal registry mirror.
							
	
								The cluster can access Azure APIs.
							
	
								Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.
							

						There are several pre-existing networking setups that are supported for Internet access using user-defined routing.
					
Private cluster with network address translation

						You can use Azure VNET network address translation (NAT) to provide outbound Internet access for the subnets in your cluster. You can reference Create a NAT gateway using Azure CLI in the Azure documentation for configuration instructions.
					

						When using a VNet setup with Azure NAT and user-defined routing configured, you can create a private cluster with no public endpoints.
					
Private cluster with Azure Firewall

						You can use Azure Firewall to provide outbound routing for the VNet used to install the cluster. You can learn more about providing user-defined routing with Azure Firewall in the Azure documentation.
					

						When using a VNet setup with Azure Firewall and user-defined routing configured, you can create a private cluster with no public endpoints.
					
Private cluster with a proxy configuration

						You can use a proxy with user-defined routing to allow egress to the Internet. You must ensure that cluster Operators do not access Azure APIs using a proxy; Operators must have access to Azure APIs outside of the proxy.
					

						When using the default route table for subnets, with 0.0.0.0/0 populated automatically by Azure, all Azure API requests are routed over Azure’s internal network even though the IP addresses are public. As long as the Network Security Group rules allow egress to Azure API endpoints, proxies with user-defined routing configured allow you to create private clusters with no public endpoints.
					
Private cluster with no Internet access

						You can install a private network that restricts all access to the internet, except the Azure API. This is accomplished by mirroring the release image registry locally. Your cluster must have access to the following:
					
	
								An internal registry mirror that allows for pulling container images
							
	
								Access to Azure APIs
							

						With these requirements available, you can use user-defined routing to create private clusters with no public endpoints.
					

About reusing a VNet for your OpenShift Container Platform cluster

					In OpenShift Container Platform 4.6, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.
				

					By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.
				
Requirements for using your VNet

						When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:
					
	
								Subnets
							
	
								Route tables
							
	
								VNets
							
	
								Network Security Groups
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.
					

						The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.
					

						Your VNet must meet the following characteristics:
					
	
								The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
							
	
								The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.
							

						You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.
					

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the specified subnets exist.
							
	
								There are two private subnets, one for the control plane machines and one for the compute machines.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for.
							

Note

							If you destroy a cluster that uses an existing VNet, the VNet is not deleted.
						

Network security group requirements

							The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.
						
Important

								The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.
							

Table 3.19. Required ports
	Port	Description	Control plane	Compute
	
											80
										

										 	
											Allows HTTP traffic
										

										 	 	
											x
										

										
	
											443
										

										 	
											Allows HTTPS traffic
										

										 	 	
											x
										

										
	
											6443
										

										 	
											Allows communication to the control plane machines
										

										 	
											x
										

										 	
	
											22623
										

										 	
											Allows communication to the machine config server
										

										 	
											x
										

										 	

Note

								Since cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.
							

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.
					

						The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.
					

Isolation between clusters

						Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.
					

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					For installations of a private OpenShift Container Platform cluster that are only accessible from an internal network and are not visible to the Internet, you must manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 3.20. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 3.21. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 3.22. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Azure configuration parameters

							Additional Azure configuration parameters are described in the following table:
						
Table 3.23. Additional Azure parameters
	Parameter	Description	Values
	
											compute.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 128.
										

										
	
											compute.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											standard_LRS, premium_LRS, or standardSSD_LRS. The default is premium_LRS.
										

										
	
											controlPlane.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 1024.
										

										
	
											controlPlane.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											premium_LRS or standardSSD_LRS. The default is premium_LRS.
										

										
	
											platform.azure.baseDomainResourceGroupName
										

										 	
											The name of the resource group that contains the DNS zone for your base domain.
										

										 	
											String, for example production_cluster.
										

										
	
											platform.azure.outboundType
										

										 	
											The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing.
										

										 	
											LoadBalancer or UserDefinedRouting. The default is LoadBalancer.
										

										
	
											platform.azure.region
										

										 	
											The name of the Azure region that hosts your cluster.
										

										 	
											Any valid region name, such as centralus.
										

										
	
											platform.azure.zone
										

										 	
											List of availability zones to place machines in. For high availability, specify at least two zones.
										

										 	
											List of zones, for example ["1", "2", "3"].
										

										
	
											platform.azure.networkResourceGroupName
										

										 	
											The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the platform.azure.baseDomainResourceGroupName.
										

										 	
											String.
										

										
	
											platform.azure.virtualNetwork
										

										 	
											The name of the existing VNet that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.azure.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your control plane machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.computeSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your compute machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.cloudName
										

										 	
											The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value AzurePublicCloud is used.
										

										 	
											Any valid cloud environment, such as AzurePublicCloud or AzureUSGovernmentCloud.
										

										

Note

								You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
							

Sample customized install-config.yaml file for Azure

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2]
 hyperthreading: Enabled [image: 3] [image: 4]
 name: master
 platform:
 azure:
 osDisk:
 diskSizeGB: 1024 [image: 5]
 diskType: Premium_LRS
 type: Standard_D8s_v3
 replicas: 3
compute: [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 azure:
 type: Standard_D2s_v3
 osDisk:
 diskSizeGB: 512 [image: 8]
 diskType: Standard_LRS
 zones: [image: 9]
 - "1"
 - "2"
 - "3"
 replicas: 5
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 azure:
 baseDomainResourceGroupName: resource_group [image: 11]
 region: centralus [image: 12]
 resourceGroupName: existing_resource_group [image: 13]
 networkResourceGroupName: vnet_resource_group [image: 14]
 virtualNetwork: vnet [image: 15]
 controlPlaneSubnet: control_plane_subnet (16)
 computeSubnet: compute_subnet (17)
 outboundType: UserDefinedRouting (18)
 cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' (19)
fips: false (20)
sshKey: ssh-ed25519 AAAA... (21)
publish: Internal (22)
	[image: 1] [image: 10] [image: 12] (19)
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 6]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 7]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.
								

	[image: 5] [image: 8]
	
								You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
							

	[image: 9]
	
								Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
							

	[image: 11]
	
								Specify the name of the resource group that contains the DNS zone for your base domain.
							

	[image: 13]
	
								Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
							

	[image: 14]
	
								If you use an existing VNet, specify the name of the resource group that contains it.
							

	[image: 15]
	
								If you use an existing VNet, specify its name.
							

	(16)
	
								If you use an existing VNet, specify the name of the subnet to host the control plane machines.
							

	(17)
	
								If you use an existing VNet, specify the name of the subnet to host the compute machines.
							

	(18)
	
								You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
							

	(20)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(21)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(22)
	
								How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the Internet. The default value is External.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on Azure into a government region

				In OpenShift Container Platform version 4.6, you can install a cluster on Microsoft Azure into a government region. To configure the government region, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster and determine the tested and validated government region to deploy the cluster to.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Azure government regions

					OpenShift Container Platform supports deploying a cluster to Microsoft Azure Government (MAG) regions. MAG is specifically designed for US government agencies at the federal, state, and local level, as well as contractors, educational institutions, and other US customers that must run sensitive workloads on Azure. MAG is composed of government-only data center regions, all granted an Impact Level 5 Provisional Authorization.
				

					Installing to a MAG region requires manually configuring the Azure Government dedicated cloud instance and region in the install-config.yaml file. You must also update your service principal to reference the appropriate government environment.
				
Note

						The Azure government region cannot be selected using the guided terminal prompts from the installation program. You must define the region manually in the install-config.yaml file. Remember to also set the dedicated cloud instance, like AzureUSGovernmentCloud, based on the region specified.
					

Private clusters

					You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
				

					By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
				

					To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
				

					Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
				
Private clusters in Azure

						To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.
					

						Depending how your network connects to the private VNET, you might need to use a DNS forwarder in order to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16 internally for DNS resolution. For more information, see What is Azure Private DNS? and What is IP address 168.63.129.16? in the Azure documentation.
					

						The cluster still requires access to Internet to access the Azure APIs.
					

						The following items are not required or created when you install a private cluster:
					
	
								A BaseDomainResourceGroup, since the cluster does not create public records
							
	
								Public IP addresses
							
	
								Public DNS records
							
	
								Public endpoints
							
The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.

Limitations

							Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.
						

User-defined outbound routing

						In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the Internet. This allows you to skip the creation of public IP addresses and the public load balancer.
					

						You can configure user-defined routing by modifying parameters in the install-config.yaml file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.
					

						When configuring a cluster to use user-defined routing, the installation program does not create the following resources:
					
	
								Outbound rules for access to the Internet.
							
	
								Public IPs for the public load balancer.
							
	
								Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.
							

						You must ensure the following items are available before setting user-defined routing:
					
	
								Egress to the Internet is possible to pull container images, unless using an internal registry mirror.
							
	
								The cluster can access Azure APIs.
							
	
								Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.
							

						There are several pre-existing networking setups that are supported for Internet access using user-defined routing.
					
Private cluster with network address translation

						You can use Azure VNET network address translation (NAT) to provide outbound Internet access for the subnets in your cluster. You can reference Create a NAT gateway using Azure CLI in the Azure documentation for configuration instructions.
					

						When using a VNet setup with Azure NAT and user-defined routing configured, you can create a private cluster with no public endpoints.
					
Private cluster with Azure Firewall

						You can use Azure Firewall to provide outbound routing for the VNet used to install the cluster. You can learn more about providing user-defined routing with Azure Firewall in the Azure documentation.
					

						When using a VNet setup with Azure Firewall and user-defined routing configured, you can create a private cluster with no public endpoints.
					
Private cluster with a proxy configuration

						You can use a proxy with user-defined routing to allow egress to the Internet. You must ensure that cluster Operators do not access Azure APIs using a proxy; Operators must have access to Azure APIs outside of the proxy.
					

						When using the default route table for subnets, with 0.0.0.0/0 populated automatically by Azure, all Azure API requests are routed over Azure’s internal network even though the IP addresses are public. As long as the Network Security Group rules allow egress to Azure API endpoints, proxies with user-defined routing configured allow you to create private clusters with no public endpoints.
					
Private cluster with no Internet access

						You can install a private network that restricts all access to the internet, except the Azure API. This is accomplished by mirroring the release image registry locally. Your cluster must have access to the following:
					
	
								An internal registry mirror that allows for pulling container images
							
	
								Access to Azure APIs
							

						With these requirements available, you can use user-defined routing to create private clusters with no public endpoints.
					

About reusing a VNet for your OpenShift Container Platform cluster

					In OpenShift Container Platform 4.6, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.
				

					By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.
				
Requirements for using your VNet

						When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:
					
	
								Subnets
							
	
								Route tables
							
	
								VNets
							
	
								Network Security Groups
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

						If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.
					

						The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.
					

						Your VNet must meet the following characteristics:
					
	
								The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
							
	
								The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.
							

						You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.
					

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the specified subnets exist.
							
	
								There are two private subnets, one for the control plane machines and one for the compute machines.
							
	
								The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
							

Note

							If you destroy a cluster that uses an existing VNet, the VNet is not deleted.
						

Network security group requirements

							The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.
						
Important

								The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.
							

Table 3.24. Required ports
	Port	Description	Control plane	Compute
	
											80
										

										 	
											Allows HTTP traffic
										

										 	 	
											x
										

										
	
											443
										

										 	
											Allows HTTPS traffic
										

										 	 	
											x
										

										
	
											6443
										

										 	
											Allows communication to the control plane machines
										

										 	
											x
										

										 	
	
											22623
										

										 	
											Allows communication to the machine config server
										

										 	
											x
										

										 	

Note

								Since cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.
							

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.
					

						The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.
					

Isolation between clusters

						Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.
					

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					When installing OpenShift Container Platform on Microsoft Azure into a government region, you must manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 3.25. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 3.26. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 3.27. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Azure configuration parameters

							Additional Azure configuration parameters are described in the following table:
						
Table 3.28. Additional Azure parameters
	Parameter	Description	Values
	
											compute.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 128.
										

										
	
											compute.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											standard_LRS, premium_LRS, or standardSSD_LRS. The default is premium_LRS.
										

										
	
											controlPlane.platform.azure.osDisk.diskSizeGB
										

										 	
											The Azure disk size for the VM.
										

										 	
											Integer that represents the size of the disk in GB. The default is 1024.
										

										
	
											controlPlane.platform.azure.osDisk.diskType
										

										 	
											Defines the type of disk.
										

										 	
											premium_LRS or standardSSD_LRS. The default is premium_LRS.
										

										
	
											platform.azure.baseDomainResourceGroupName
										

										 	
											The name of the resource group that contains the DNS zone for your base domain.
										

										 	
											String, for example production_cluster.
										

										
	
											platform.azure.outboundType
										

										 	
											The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing.
										

										 	
											LoadBalancer or UserDefinedRouting. The default is LoadBalancer.
										

										
	
											platform.azure.region
										

										 	
											The name of the Azure region that hosts your cluster.
										

										 	
											Any valid region name, such as centralus.
										

										
	
											platform.azure.zone
										

										 	
											List of availability zones to place machines in. For high availability, specify at least two zones.
										

										 	
											List of zones, for example ["1", "2", "3"].
										

										
	
											platform.azure.networkResourceGroupName
										

										 	
											The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the platform.azure.baseDomainResourceGroupName.
										

										 	
											String.
										

										
	
											platform.azure.virtualNetwork
										

										 	
											The name of the existing VNet that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.azure.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your control plane machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.computeSubnet
										

										 	
											The name of the existing subnet in your VNet that you want to deploy your compute machines to.
										

										 	
											Valid CIDR, for example 10.0.0.0/16.
										

										
	
											platform.azure.cloudName
										

										 	
											The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value AzurePublicCloud is used.
										

										 	
											Any valid cloud environment, such as AzurePublicCloud or AzureUSGovernmentCloud.
										

										

Note

								You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
							

Sample customized install-config.yaml file for Azure

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2]
 hyperthreading: Enabled [image: 3] [image: 4]
 name: master
 platform:
 azure:
 osDisk:
 diskSizeGB: 1024 [image: 5]
 diskType: Premium_LRS
 type: Standard_D8s_v3
 replicas: 3
compute: [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 azure:
 type: Standard_D2s_v3
 osDisk:
 diskSizeGB: 512 [image: 8]
 diskType: Standard_LRS
 zones: [image: 9]
 - "1"
 - "2"
 - "3"
 replicas: 5
metadata:
 name: test-cluster [image: 10]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 azure:
 baseDomainResourceGroupName: resource_group [image: 11]
 region: usgovvirginia
 resourceGroupName: existing_resource_group [image: 12]
 networkResourceGroupName: vnet_resource_group [image: 13]
 virtualNetwork: vnet [image: 14]
 controlPlaneSubnet: control_plane_subnet [image: 15]
 computeSubnet: compute_subnet (16)
 outboundType: UserDefinedRouting (17)
 cloudName: AzureUSGovernmentCloud (18)
pullSecret: '{"auths": ...}' (19)
fips: false (20)
sshKey: ssh-ed25519 AAAA... (21)
publish: Internal (22)
	[image: 1] [image: 10] (19)
	
								Required.
							

	[image: 2] [image: 6]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 7]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.
								

	[image: 5] [image: 8]
	
								You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
							

	[image: 9]
	
								Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
							

	[image: 11]
	
								Specify the name of the resource group that contains the DNS zone for your base domain.
							

	[image: 12]
	
								Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
							

	[image: 13]
	
								If you use an existing VNet, specify the name of the resource group that contains it.
							

	[image: 14]
	
								If you use an existing VNet, specify its name.
							

	[image: 15]
	
								If you use an existing VNet, specify the name of the subnet to host the control plane machines.
							

	(16)
	
								If you use an existing VNet, specify the name of the subnet to host the compute machines.
							

	(17)
	
								You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
							

	(18)
	
								Specify the name of the Azure cloud environment to deploy your cluster to. Set AzureUSGovernmentCloud to deploy to a Microsoft Azure Government (MAG) region. The default value is AzurePublicCloud.
							

	(20)
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(21)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(22)
	
								How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the Internet. The default value is External.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on Azure using ARM templates

				In OpenShift Container Platform version 4.6, you can install a cluster on Microsoft Azure by using infrastructure that you provide.
			

				Several Azure Resource Manager (ARM) templates are provided to assist in completing these steps or to help model your own.
			
Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several ARM templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure an Azure account to host the cluster.
						
	
							Download the Azure CLI and install it on your computer. See Install the Azure CLI in the Azure documentation. The documentation below was last tested using version 2.2.0 of the Azure CLI. Azure CLI commands might perform differently based on the version you use.
						
	
							If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Configuring your Azure project

					Before you can install OpenShift Container Platform, you must configure an Azure project to host it.
				
Important

						All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
					

Azure account limits

						The OpenShift Container Platform cluster uses a number of Microsoft Azure components, and the default Azure subscription and service limits, quotas, and constraints affect your ability to install OpenShift Container Platform clusters.
					
Important

							Default limits vary by offer category types, such as Free Trial and Pay-As-You-Go, and by series, such as Dv2, F, and G. For example, the default for Enterprise Agreement subscriptions is 350 cores.
						

							Check the limits for your subscription type and if necessary, increase quota limits for your account before you install a default cluster on Azure.
						

						The following table summarizes the Azure components whose limits can impact your ability to install and run OpenShift Container Platform clusters.
					
	Component	Number of components required by default	Default Azure limit	Description
	
										vCPU
									

									 	
										40
									

									 	
										20 per region
									

									 	
										A default cluster requires 40 vCPUs, so you must increase the account limit.
									

									
										By default, each cluster creates the following instances:
									

									 	
												One bootstrap machine, which is removed after installation
											
	
												Three control plane machines
											
	
												Three compute machines
											

									
										Because the bootstrap machine uses Standard_D4s_v3 machines, which use 4 vCPUs, the control plane machines use Standard_D8s_v3 virtual machines, which use 8 vCPUs, and the worker machines use Standard_D4s_v3 virtual machines, which use 4 vCPUs, a default cluster requires 40 vCPUs. The bootstrap node VM, which uses 4 vCPUs, is used only during installation.
									

									
										To deploy more worker nodes, enable autoscaling, deploy large workloads, or use a different instance type, you must further increase the vCPU limit for your account to ensure that your cluster can deploy the machines that you require.
									

									
										By default, the installation program distributes control plane and compute machines across all availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones.
									

									
	
										OS Disk
									

									 	
										7
									

									 	 	
										VM OS disk must be able to sustain a minimum throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB Premium SSD (P30). In Azure, disk performance is directly dependent on SSD disk sizes, so to achieve the throughput supported by Standard_D8s_v3, or other similar machine types available, and the target of 5000 IOPS, at least a P30 disk is required.
									

									
										Host caching must be set to ReadOnly for low read latency and high read IOPS and throughput. The reads performed from the cache, which is present either in the VM memory or in the local SSD disk, are much faster than the reads from the data disk, which is in the blob storage.
									

									
	
										VNet
									

									 	
										1
									

									 	
										1000 per region
									

									 	
										Each default cluster requires one Virtual Network (VNet), which contains two subnets.
									

									
	
										Network interfaces
									

									 	
										6
									

									 	
										65,536 per region
									

									 	
										Each default cluster requires six network interfaces. If you create more machines or your deployed workloads create load balancers, your cluster uses more network interfaces.
									

									
	
										Network security groups
									

									 	
										2
									

									 	
										5000
									

									 	
										Each default cluster Each cluster creates network security groups for each subnet in the VNet. The default cluster creates network security groups for the control plane and for the compute node subnets:
									

									 	
														controlplane
													

													 	
														Allows the control plane machines to be reached on port 6443 from anywhere
													

													
	
														node
													

													 	
														Allows worker nodes to be reached from the Internet on ports 80 and 443
													

													

									
	
										Network load balancers
									

									 	
										3
									

									 	
										1000 per region
									

									 	
										Each cluster creates the following load balancers:
									

									 	
														default
													

													 	
														Public IP address that load balances requests to ports 80 and 443 across worker machines
													

													
	
														internal
													

													 	
														Private IP address that load balances requests to ports 6443 and 22623 across control plane machines
													

													
	
														external
													

													 	
														Public IP address that load balances requests to port 6443 across control plane machines
													

													

									
										If your applications create more Kubernetes LoadBalancer service objects, your cluster uses more load balancers.
									

									
	
										Public IP addresses
									

									 	
										3
									

									 	 	
										Each of the two public load balancers uses a public IP address. The bootstrap machine also uses a public IP address so that you can SSH into the machine to troubleshoot issues during installation. The IP address for the bootstrap node is used only during installation.
									

									
	
										Private IP addresses
									

									 	
										7
									

									 	 	
										The internal load balancer, each of the three control plane machines, and each of the three worker machines each use a private IP address.
									

									
	
										Spot VM vCPUs (optional)
									

									 	
										0
									

									
										If you configure spot VMs, your cluster must have two spot VM vCPUs for every compute node.
									

									 	
										20 per region
									

									 	
										This is an optional component. To use spot VMs, you must increase the Azure default limit to at least twice the number of compute nodes in your cluster.
									

									 Note

											Using spot VMs for control plane nodes is not recommended.
										

									

Configuring a public DNS zone in Azure

						To install OpenShift Container Platform, the Microsoft Azure account you use must have a dedicated public hosted DNS zone in your account. This zone must be authoritative for the domain. This service provides cluster DNS resolution and name lookup for external connections to the cluster.
					
Procedure
	
								Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through Azure or another source.
							
Note

									For more information about purchasing domains through Azure, see Buy a custom domain name for Azure App Service in the Azure documentation.
								

	
								If you are using an existing domain and registrar, migrate its DNS to Azure. See Migrate an active DNS name to Azure App Service in the Azure documentation.
							
	
								Configure DNS for your domain. Follow the steps in the Tutorial: Host your domain in Azure DNS in the Azure documentation to create a public hosted zone for your domain or subdomain, extract the new authoritative name servers, and update the registrar records for the name servers that your domain uses.
							

								Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
							

	
								If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain.
							

						You can view Azure’s DNS solution by visiting this example for creating DNS zones.
					

Increasing Azure account limits

						To increase an account limit, file a support request on the Azure portal.
					
Note

							You can increase only one type of quota per support request.
						

Procedure
	
								From the Azure portal, click Help + support in the lower left corner.
							
	
								Click New support request and then select the required values:
							
	
										From the Issue type list, select Service and subscription limits (quotas).
									
	
										From the Subscription list, select the subscription to modify.
									
	
										From the Quota type list, select the quota to increase. For example, select Compute-VM (cores-vCPUs) subscription limit increases to increase the number of vCPUs, which is required to install a cluster.
									
	
										Click Next: Solutions.
									

	
								On the Problem Details page, provide the required information for your quota increase:
							
	
										Click Provide details and provide the required details in the Quota details window.
									
	
										In the SUPPORT METHOD and CONTACT INFO sections, provide the issue severity and your contact details.
									

	
								Click Next: Review + create and then click Create.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Required Azure roles

						OpenShift Container Platform needs a service principal so it can manage Microsoft Azure resources. Before you can create a service principal, your Azure account subscription must have the following roles:
					
	
								User Access Administrator
							
	
								Owner
							

						To set roles on the Azure portal, see the Manage access to Azure resources using RBAC and the Azure portal in the Azure documentation.
					

Creating a service principal

						Because OpenShift Container Platform and its installation program must create Microsoft Azure resources through Azure Resource Manager, you must create a service principal to represent it.
					
Prerequisites
	
								Install or update the Azure CLI.
							
	
								Install the jq package.
							
	
								Your Azure account has the required roles for the subscription that you use.
							

Procedure
	
								Log in to the Azure CLI:
							
$ az login

								Log in to Azure in the web console by using your credentials.
							

	
								If your Azure account uses subscriptions, ensure that you are using the right subscription.
							
	
										View the list of available accounts and record the tenantId value for the subscription you want to use for your cluster:
									
$ az account list --refresh
Example output

											

[
 {
 "cloudName": "AzureCloud",
 "id": "9bab1460-96d5-40b3-a78e-17b15e978a80",
 "isDefault": true,
 "name": "Subscription Name",
 "state": "Enabled",
 "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee",
 "user": {
 "name": "you@example.com",
 "type": "user"
 }
 }
]

										

	
										View your active account details and confirm that the tenantId value matches the subscription you want to use:
									
$ az account show
Example output

											

{
 "environmentName": "AzureCloud",
 "id": "9bab1460-96d5-40b3-a78e-17b15e978a80",
 "isDefault": true,
 "name": "Subscription Name",
 "state": "Enabled",
 "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee", [image: 1]
 "user": {
 "name": "you@example.com",
 "type": "user"
 }
}

										
	[image: 1]
	
												Ensure that the value of the tenantId parameter is the UUID of the correct subscription.
											

	
										If you are not using the right subscription, change the active subscription:
									
$ az account set -s <id> [image: 1]
	[image: 1]
	
												Substitute the value of the id for the subscription that you want to use for <id>.
											

	
										If you changed the active subscription, display your account information again:
									
$ az account show
Example output

											

{
 "environmentName": "AzureCloud",
 "id": "33212d16-bdf6-45cb-b038-f6565b61edda",
 "isDefault": true,
 "name": "Subscription Name",
 "state": "Enabled",
 "tenantId": "8049c7e9-c3de-762d-a54e-dc3f6be6a7ee",
 "user": {
 "name": "you@example.com",
 "type": "user"
 }
}

										

	
								Record the values of the tenantId and id parameters from the previous output. You need these values during OpenShift Container Platform installation.
							
	
								Create the service principal for your account:
							
$ az ad sp create-for-rbac --role Contributor --name <service_principal> [image: 1]
	[image: 1]
	
										Replace <service_principal> with the name to assign to the service principal.
									

Example output

									

Changing "<service_principal>" to a valid URI of "http://<service_principal>", which is the required format used for service principal names
Retrying role assignment creation: 1/36
Retrying role assignment creation: 2/36
Retrying role assignment creation: 3/36
Retrying role assignment creation: 4/36
{
 "appId": "8bd0d04d-0ac2-43a8-928d-705c598c6956",
 "displayName": "<service_principal>",
 "name": "http://<service_principal>",
 "password": "ac461d78-bf4b-4387-ad16-7e32e328aec6",
 "tenant": "6048c7e9-b2ad-488d-a54e-dc3f6be6a7ee"
}

								

	
								Record the values of the appId and password parameters from the previous output. You need these values during OpenShift Container Platform installation.
							
	
								Grant additional permissions to the service principal.
							
	
										You must always add the Contributor and User Access Administrator roles to the app registration service principal so the cluster can assign credentials for its components.
									
	
										To operate the Cloud Credential Operator (CCO) in mint mode, the app registration service principal also requires the Azure Active Directory Graph/Application.ReadWrite.OwnedBy API permission.
									
	
										To operate the CCO in passthrough mode, the app registration service principal does not require additional API permissions.
									

								For more information about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
							
	
										To assign the User Access Administrator role, run the following command:
									
$ az role assignment create --role "User Access Administrator" \
 --assignee-object-id $(az ad sp list --filter "appId eq '<appId>'" \
 | jq '.[0].id' -r) [image: 1]
	[image: 1]
	
												Replace <appId> with the appId parameter value for your service principal.
											

	
										To assign the Azure Active Directory Graph permission, run the following command:
									
$ az ad app permission add --id <appId> \ [image: 1]
 --api 00000002-0000-0000-c000-000000000000 \
 --api-permissions 824c81eb-e3f8-4ee6-8f6d-de7f50d565b7=Role
	[image: 1]
	
												Replace <appId> with the appId parameter value for your service principal.
											

Example output

											

Invoking "az ad app permission grant --id 46d33abc-b8a3-46d8-8c84-f0fd58177435 --api 00000002-0000-0000-c000-000000000000" is needed to make the change effective

										

										For more information about the specific permissions that you grant with this command, see the GUID Table for Windows Azure Active Directory Permissions.
									

	
										Approve the permissions request. If your account does not have the Azure Active Directory tenant administrator role, follow the guidelines for your organization to request that the tenant administrator approve your permissions request.
									
$ az ad app permission grant --id <appId> \ [image: 1]
 --api 00000002-0000-0000-c000-000000000000
	[image: 1]
	
												Replace <appId> with the appId parameter value for your service principal.
											

Supported Azure regions

						The installation program dynamically generates the list of available Microsoft Azure regions based on your subscription. The following Azure regions were tested and validated in OpenShift Container Platform version 4.6.1:
					
Supported Azure public regions
	
								australiacentral (Australia Central)
							
	
								australiaeast (Australia East)
							
	
								australiasoutheast (Australia South East)
							
	
								brazilsouth (Brazil South)
							
	
								canadacentral (Canada Central)
							
	
								canadaeast (Canada East)
							
	
								centralindia (Central India)
							
	
								centralus (Central US)
							
	
								eastasia (East Asia)
							
	
								eastus (East US)
							
	
								eastus2 (East US 2)
							
	
								francecentral (France Central)
							
	
								germanywestcentral (Germany West Central)
							
	
								japaneast (Japan East)
							
	
								japanwest (Japan West)
							
	
								koreacentral (Korea Central)
							
	
								koreasouth (Korea South)
							
	
								northcentralus (North Central US)
							
	
								northeurope (North Europe)
							
	
								norwayeast (Norway East)
							
	
								southafricanorth (South Africa North)
							
	
								southcentralus (South Central US)
							
	
								southeastasia (Southeast Asia)
							
	
								southindia (South India)
							
	
								switzerlandnorth (Switzerland North)
							
	
								uaenorth (UAE North)
							
	
								uksouth (UK South)
							
	
								ukwest (UK West)
							
	
								westcentralus (West Central US)
							
	
								westeurope (West Europe)
							
	
								westindia (West India)
							
	
								westus (West US)
							
	
								westus2 (West US 2)
							

Supported Azure Government regions

						Support for the following Microsoft Azure Government (MAG) regions was added in OpenShift Container Platform version 4.6:
					
	
								usgovtexas (US Gov Texas)
							
	
								usgovvirginia (US Gov Virginia)
							

						You can reference all available MAG regions in the Azure documentation. Other provided MAG regions are expected to work with OpenShift Container Platform, but have not been tested.
					

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Creating the installation files for Azure

					To install OpenShift Container Platform on Microsoft Azure using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.
				
Optional: Creating a separate /var partition

						It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
					

						OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
					
	
								/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
							
	
								/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
							
	
								/var: Holds data that you might want to keep separate for purposes such as auditing.
							

						Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
					

						Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
					
Important

							If you follow the steps to create a separate /var partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
						

Procedure
	
								Create a directory to hold the OpenShift Container Platform installation files:
							
$ mkdir $HOME/clusterconfig

	
								Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
							
$ openshift-install create manifests --dir $HOME/clusterconfig
Example output

									

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift

								

	
								Optional: Confirm that the installation program created manifests in the clusterconfig/openshift directory:
							
$ ls $HOME/clusterconfig/openshift/
Example output

									

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

								

	
								Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
							
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
										The storage device name of the disk that you want to partition.
									

	[image: 2]
	
										When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
									

	[image: 3]
	
										The size of the data partition in mebibytes.
									

	[image: 4]
	
										The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
									

	[image: 5]
	
										The prjquota mount option must be enabled for filesystems used for container storage.
									

Note

									When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
								

	
								Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
							
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

						Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
					

Creating the installation configuration file

						You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
					
Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
							

Procedure
	
								Create the install-config.yaml file.
							
	
										Change to the directory that contains the installation program and run the following command:
									
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
												For <installation_directory>, specify the directory name to store the files that the installation program creates.
											

Important

											Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
										

	
										At the prompts, provide the configuration details for your cloud:
									
	
												Optional: Select an SSH key to use to access your cluster machines.
											
Note

													For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
												

	
												Select azure as the platform to target.
											
	
												If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
											
	
														azure subscription id: The subscription ID to use for the cluster. Specify the id value in your account output.
													
	
														azure tenant id: The tenant ID. Specify the tenantId value in your account output.
													
	
														azure service principal client id: The value of the appId parameter for the service principal.
													
	
														azure service principal client secret: The value of the password parameter for the service principal.
													

	
												Select the region to deploy the cluster to.
											
	
												Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
											
	
												Enter a descriptive name for your cluster.
											
Important

													All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
												

	
												Paste the pull secret from the Red Hat OpenShift Cluster Manager.
											

	
										Optional: If you do not want the cluster to provision compute machines, empty the compute pool by editing the resulting install-config.yaml file to set replicas to 0 for the compute pool:
									
compute:
- hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 0 [image: 1]
	[image: 1]
	
												Set to 0.
											

	
								Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
							
	
								Back up the install-config.yaml file so that you can use it to install multiple clusters.
							
Important

									The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Exporting common variables for ARM templates

						You must export a common set of variables that are used with the provided Azure Resource Manager (ARM) templates used to assist in completing a user-provided infrastructure install on Microsoft Azure.
					
Note

							Specific ARM templates can also require additional exported variables, which are detailed in their related procedures.
						

Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
							

Procedure
	
								Export common variables found in the install-config.yaml to be used by the provided ARM templates:
							
$ export CLUSTER_NAME=<cluster_name>[image: 1]
$ export AZURE_REGION=<azure_region>[image: 2]
$ export SSH_KEY=<ssh_key>[image: 3]
$ export BASE_DOMAIN=<base_domain>[image: 4]
$ export BASE_DOMAIN_RESOURCE_GROUP=<base_domain_resource_group>[image: 5]
	[image: 1]
	
										The value of the .metadata.name attribute from the install-config.yaml file.
									

	[image: 2]
	
										The region to deploy the cluster into, for example centralus. This is the value of the .platform.azure.region attribute from the install-config.yaml file.
									

	[image: 3]
	
										The SSH RSA public key file as a string. You must enclose the SSH key in quotes since it contains spaces. This is the value of the .sshKey attribute from the install-config.yaml file.
									

	[image: 4]
	
										The base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster. This is the value of the .baseDomain attribute from the install-config.yaml file.
									

	[image: 5]
	
										The resource group where the public DNS zone exists. This is the value of the .platform.azure.baseDomainResourceGroupName attribute from the install-config.yaml file.
									

								For example:
							
$ export CLUSTER_NAME=test-cluster
$ export AZURE_REGION=centralus
$ export SSH_KEY="ssh-rsa xxx/xxx/xxx= user@email.com"
$ export BASE_DOMAIN=example.com
$ export BASE_DOMAIN_RESOURCE_GROUP=ocp-cluster

	
								Export the kubeadmin credentials:
							
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the path to the directory that you stored the installation files in.
									

Creating the Kubernetes manifest and Ignition config files

						Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
					

						The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
					
Important
	
									The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
								
	
									It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
								

Prerequisites
	
								You obtained the OpenShift Container Platform installation program.
							
	
								You created the install-config.yaml installation configuration file.
							

Procedure
	
								Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
									

	
								Remove the Kubernetes manifest files that define the control plane machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

								By removing these files, you prevent the cluster from automatically generating control plane machines.
							

	
								Remove the Kubernetes manifest files that define the worker machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

								Because you create and manage the worker machines yourself, you do not need to initialize these machines.
							

	
								Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
							
	
										Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
									
	
										Locate the mastersSchedulable parameter and ensure that it is set to false.
									
	
										Save and exit the file.
									

	
								Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the privateZone and publicZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:
							
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: [image: 1]
 id: mycluster-100419-private-zone
 publicZone: [image: 2]
 id: example.openshift.com
status: {}
	[image: 1] [image: 2]
	
										Remove this section completely.
									

								If you do so, you must add ingress DNS records manually in a later step.
							

	
								When configuring Azure on user-provisioned infrastructure, you must export some common variables defined in the manifest files to use later in the Azure Resource Manager (ARM) templates:
							
	
										Export the infrastructure ID by using the following command:
									
$ export INFRA_ID=<infra_id> [image: 1]
	[image: 1]
	
												The OpenShift Container Platform cluster has been assigned an identifier (INFRA_ID) in the form of <cluster_name>-<random_string>. This will be used as the base name for most resources created using the provided ARM templates. This is the value of the .status.infrastructureName attribute from the manifests/cluster-infrastructure-02-config.yml file.
											

	
										Export the resource group by using the following command:
									
$ export RESOURCE_GROUP=<resource_group> [image: 1]
	[image: 1]
	
												All resources created in this Azure deployment exists as part of a resource group. The resource group name is also based on the INFRA_ID, in the form of <cluster_name>-<random_string>-rg. This is the value of the .status.platformStatus.azure.resourceGroupName attribute from the manifests/cluster-infrastructure-02-config.yml file.
											

	
								To create the Ignition configuration files, run the following command from the directory that contains the installation program:
							
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the same installation directory.
									

								The following files are generated in the directory:
							
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Creating the Azure resource group and identity

					You must create a Microsoft Azure resource group and an identity for that resource group. These are both used during the installation of your OpenShift Container Platform cluster on Azure.
				
Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						

Procedure
	
							Create the resource group in a supported Azure region:
						
$ az group create --name ${RESOURCE_GROUP} --location ${AZURE_REGION}

	
							Create an Azure identity for the resource group:
						
$ az identity create -g ${RESOURCE_GROUP} -n ${INFRA_ID}-identity

							This is used to grant the required access to Operators in your cluster. For example, this allows the Ingress Operator to create a public IP and its load balancer. You must assign the Azure identity to a role.
						

	
							Grant the Contributor role to the Azure identity:
						
	
									Export the following variables required by the Azure role assignment:
								
$ export PRINCIPAL_ID=`az identity show -g ${RESOURCE_GROUP} -n ${INFRA_ID}-identity --query principalId --out tsv`
$ export RESOURCE_GROUP_ID=`az group show -g ${RESOURCE_GROUP} --query id --out tsv`

	
									Assign the Contributor role to the identity:
								
$ az role assignment create --assignee "${PRINCIPAL_ID}" --role 'Contributor' --scope "${RESOURCE_GROUP_ID}"

Uploading the RHCOS cluster image and bootstrap Ignition config file

					The Azure client does not support deployments based on files existing locally; therefore, you must copy and store the RHCOS virtual hard disk (VHD) cluster image and bootstrap Ignition config file in a storage container so they are accessible during deployment.
				
Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						

Procedure
	
							Create an Azure storage account to store the VHD cluster image:
						
$ az storage account create -g ${RESOURCE_GROUP} --location ${AZURE_REGION} --name ${CLUSTER_NAME}sa --kind Storage --sku Standard_LRS
Warning

								The Azure storage account name must be between 3 and 24 characters in length and use numbers and lower-case letters only. If your CLUSTER_NAME variable does not follow these restrictions, you must manually define the Azure storage account name. For more information on Azure storage account name restrictions, see Resolve errors for storage account names in the Azure documentation.
							

	
							Export the storage account key as an environment variable:
						
$ export ACCOUNT_KEY=`az storage account keys list -g ${RESOURCE_GROUP} --account-name ${CLUSTER_NAME}sa --query "[0].value" -o tsv`

	
							Choose the RHCOS version to use and export the URL of its VHD to an environment variable:
						
$ export VHD_URL=`curl -s https://raw.githubusercontent.com/openshift/installer/release-4.6/data/data/rhcos.json | jq -r .azure.url`
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must specify an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
							

	
							Copy the chosen VHD to a blob:
						
$ az storage container create --name vhd --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY}
$ az storage blob copy start --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} --destination-blob "rhcos.vhd" --destination-container vhd --source-uri "${VHD_URL}"

							To track the progress of the VHD copy task, run this script:
						
status="unknown"
while ["$status" != "success"]
do
 status=`az storage blob show --container-name vhd --name "rhcos.vhd" --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -o tsv --query properties.copy.status`
 echo $status
done

	
							Create a blob storage container and upload the generated bootstrap.ign file:
						
$ az storage container create --name files --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} --public-access blob
$ az storage blob upload --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c "files" -f "<installation_directory>/bootstrap.ign" -n "bootstrap.ign"

Example for creating DNS zones

					DNS records are required for clusters that use user-provisioned infrastructure. You should choose the DNS strategy that fits your scenario.
				

					For this example, Azure’s DNS solution is used, so you will create a new public DNS zone for external (internet) visibility and a private DNS zone for internal cluster resolution.
				
Note

						The public DNS zone is not required to exist in the same resource group as the cluster deployment and might already exist in your organization for the desired base domain. If that is the case, you can skip creating the public DNS zone; be sure the installation config you generated earlier reflects that scenario.
					

Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						

Procedure
	
							Create the new public DNS zone in the resource group exported in the BASE_DOMAIN_RESOURCE_GROUP environment variable:
						
$ az network dns zone create -g ${BASE_DOMAIN_RESOURCE_GROUP} -n ${CLUSTER_NAME}.${BASE_DOMAIN}

							You can skip this step if you are using a public DNS zone that already exists.
						

	
							Create the private DNS zone in the same resource group as the rest of this deployment:
						
$ az network private-dns zone create -g ${RESOURCE_GROUP} -n ${CLUSTER_NAME}.${BASE_DOMAIN}

					You can learn more about configuring a public DNS zone in Azure by visiting that section.
				

Creating a VNet in Azure

					You must create a virtual network (VNet) in Microsoft Azure for your OpenShift Container Platform cluster to use. You can customize the VNet to meet your requirements. One way to create the VNet is to modify the provided Azure Resource Manager (ARM) template.
				
Note

						If you do not use the provided ARM template to create your Azure infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						

Procedure
	
							Copy the template from the ARM template for the VNet section of this topic and save it as 01_vnet.json in your cluster’s installation directory. This template describes the VNet that your cluster requires.
						
	
							Create the deployment by using the az CLI:
						
$ az deployment group create -g ${RESOURCE_GROUP} \
 --template-file "<installation_directory>/01_vnet.json" \
 --parameters baseName="${INFRA_ID}"[image: 1]
	[image: 1]
	
									The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
								

	
							Link the VNet template to the private DNS zone:
						
$ az network private-dns link vnet create -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n ${INFRA_ID}-network-link -v "${INFRA_ID}-vnet" -e false

ARM template for the VNet

						You can use the following Azure Resource Manager (ARM) template to deploy the VNet that you need for your OpenShift Container Platform cluster:
					
Example 3.1. 01_vnet.json ARM template
{
 "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "parameters" : {
 "baseName" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Base name to be used in resource names (usually the cluster's Infra ID)"
 }
 }
 },
 "variables" : {
 "location" : "[resourceGroup().location]",
 "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]",
 "addressPrefix" : "10.0.0.0/16",
 "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]",
 "masterSubnetPrefix" : "10.0.0.0/24",
 "nodeSubnetName" : "[concat(parameters('baseName'), '-worker-subnet')]",
 "nodeSubnetPrefix" : "10.0.1.0/24",
 "clusterNsgName" : "[concat(parameters('baseName'), '-nsg')]"
 },
 "resources" : [
 {
 "apiVersion" : "2018-12-01",
 "type" : "Microsoft.Network/virtualNetworks",
 "name" : "[variables('virtualNetworkName')]",
 "location" : "[variables('location')]",
 "dependsOn" : [
 "[concat('Microsoft.Network/networkSecurityGroups/', variables('clusterNsgName'))]"
],
 "properties" : {
 "addressSpace" : {
 "addressPrefixes" : [
 "[variables('addressPrefix')]"
]
 },
 "subnets" : [
 {
 "name" : "[variables('masterSubnetName')]",
 "properties" : {
 "addressPrefix" : "[variables('masterSubnetPrefix')]",
 "serviceEndpoints": [],
 "networkSecurityGroup" : {
 "id" : "[resourceId('Microsoft.Network/networkSecurityGroups', variables('clusterNsgName'))]"
 }
 }
 },
 {
 "name" : "[variables('nodeSubnetName')]",
 "properties" : {
 "addressPrefix" : "[variables('nodeSubnetPrefix')]",
 "serviceEndpoints": [],
 "networkSecurityGroup" : {
 "id" : "[resourceId('Microsoft.Network/networkSecurityGroups', variables('clusterNsgName'))]"
 }
 }
 }
]
 }
 },
 {
 "type" : "Microsoft.Network/networkSecurityGroups",
 "name" : "[variables('clusterNsgName')]",
 "apiVersion" : "2018-10-01",
 "location" : "[variables('location')]",
 "properties" : {
 "securityRules" : [
 {
 "name" : "apiserver_in",
 "properties" : {
 "protocol" : "Tcp",
 "sourcePortRange" : "*",
 "destinationPortRange" : "6443",
 "sourceAddressPrefix" : "*",
 "destinationAddressPrefix" : "*",
 "access" : "Allow",
 "priority" : 101,
 "direction" : "Inbound"
 }
 }
]
 }
 }
]
}

Deploying the RHCOS cluster image for the Azure infrastructure

					You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Microsoft Azure for your OpenShift Container Platform nodes.
				
Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Store the RHCOS virtual hard disk (VHD) cluster image in an Azure storage container.
						
	
							Store the bootstrap Ignition config file in an Azure storage container.
						

Procedure
	
							Copy the template from the ARM template for image storage section of this topic and save it as 02_storage.json in your cluster’s installation directory. This template describes the image storage that your cluster requires.
						
	
							Export the RHCOS VHD blob URL as a variable:
						
$ export VHD_BLOB_URL=`az storage blob url --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c vhd -n "rhcos.vhd" -o tsv`

	
							Deploy the cluster image:
						
$ az deployment group create -g ${RESOURCE_GROUP} \
 --template-file "<installation_directory>/02_storage.json" \
 --parameters vhdBlobURL="${VHD_BLOB_URL}" \ [image: 1]
 --parameters baseName="${INFRA_ID}"[image: 2]
	[image: 1]
	
									The blob URL of the RHCOS VHD to be used to create master and worker machines.
								

	[image: 2]
	
									The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
								

ARM template for image storage

						You can use the following Azure Resource Manager (ARM) template to deploy the stored Red Hat Enterprise Linux CoreOS (RHCOS) image that you need for your OpenShift Container Platform cluster:
					
Example 3.2. 02_storage.json ARM template
{
 "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "parameters" : {
 "baseName" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Base name to be used in resource names (usually the cluster's Infra ID)"
 }
 },
 "vhdBlobURL" : {
 "type" : "string",
 "metadata" : {
 "description" : "URL pointing to the blob where the VHD to be used to create master and worker machines is located"
 }
 }
 },
 "variables" : {
 "location" : "[resourceGroup().location]",
 "imageName" : "[concat(parameters('baseName'), '-image')]"
 },
 "resources" : [
 {
 "apiVersion" : "2018-06-01",
 "type": "Microsoft.Compute/images",
 "name": "[variables('imageName')]",
 "location" : "[variables('location')]",
 "properties": {
 "storageProfile": {
 "osDisk": {
 "osType": "Linux",
 "osState": "Generalized",
 "blobUri": "[parameters('vhdBlobURL')]",
 "storageAccountType": "Standard_LRS"
 }
 }
 }
 }
]
}

Networking requirements for user-provisioned infrastructure

					All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
				

					You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
				
Table 3.29. All machines to all machines
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									VXLAN and Geneve
								

								
	
									6081
								

								 	
									VXLAN and Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								

Table 3.30. All machines to control plane
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 3.31. Control plane machines to control plane machines
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

Network topology requirements

					The infrastructure that you provision for your cluster must meet the following network topology requirements.
				
Important

						OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
					

Load balancers

					Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
				
	
							API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
								
	
									A stateless load balancing algorithm. The options vary based on the load balancer implementation.
								

Important

								Do not configure session persistence for an API load balancer.
							

							Configure the following ports on both the front and back of the load balancers:
						
Table 3.32. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											6443
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
										

										 	
											X
										

										 	
											X
										

										 	
											Kubernetes API server
										

										
	
											22623
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
										

										 	
											X
										

										 	 	
											Machine config server
										

										

Note

								The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
							

	
							Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
								
	
									A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
								

							Configure the following ports on both the front and back of the load balancers:
						
Table 3.33. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											443
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTPS traffic
										

										
	
											80
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTP traffic
										

										

Tip

					If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
				

Note

						A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
					

Creating networking and load balancing components in Azure

					You must configure networking and load balancing in Microsoft Azure for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Azure Resource Manager (ARM) template.
				
Note

						If you do not use the provided ARM template to create your Azure infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VNet and associated subnets in Azure.
						

Procedure
	
							Copy the template from the ARM template for the network and load balancers section of this topic and save it as 03_infra.json in your cluster’s installation directory. This template describes the networking and load balancing objects that your cluster requires.
						
	
							Create the deployment by using the az CLI:
						
$ az deployment group create -g ${RESOURCE_GROUP} \
 --template-file "<installation_directory>/03_infra.json" \
 --parameters privateDNSZoneName="${CLUSTER_NAME}.${BASE_DOMAIN}" \ [image: 1]
 --parameters baseName="${INFRA_ID}"[image: 2]
	[image: 1]
	
									The name of the private DNS zone.
								

	[image: 2]
	
									The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
								

	
							Create an api DNS record in the public zone for the API public load balancer. The ${BASE_DOMAIN_RESOURCE_GROUP} variable must point to the resource group where the public DNS zone exists.
						
	
									Export the following variable:
								
$ export PUBLIC_IP=`az network public-ip list -g ${RESOURCE_GROUP} --query "[?name=='${INFRA_ID}-master-pip'] | [0].ipAddress" -o tsv`

	
									Create the DNS record in a new public zone:
								
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n api -a ${PUBLIC_IP} --ttl 60

	
									If you are adding the cluster to an existing public zone, you can create the DNS record in it instead:
								
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${BASE_DOMAIN} -n api.${CLUSTER_NAME} -a ${PUBLIC_IP} --ttl 60

ARM template for the network and load balancers

						You can use the following Azure Resource Manager (ARM) template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster:
					
Example 3.3. 03_infra.json ARM template
{
 "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "parameters" : {
 "baseName" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Base name to be used in resource names (usually the cluster's Infra ID)"
 }
 },
 "privateDNSZoneName" : {
 "type" : "string",
 "metadata" : {
 "description" : "Name of the private DNS zone"
 }
 }
 },
 "variables" : {
 "location" : "[resourceGroup().location]",
 "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]",
 "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]",
 "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]",
 "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]",
 "masterPublicIpAddressName" : "[concat(parameters('baseName'), '-master-pip')]",
 "masterPublicIpAddressID" : "[resourceId('Microsoft.Network/publicIPAddresses', variables('masterPublicIpAddressName'))]",
 "masterLoadBalancerName" : "[concat(parameters('baseName'), '-public-lb')]",
 "masterLoadBalancerID" : "[resourceId('Microsoft.Network/loadBalancers', variables('masterLoadBalancerName'))]",
 "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]",
 "internalLoadBalancerID" : "[resourceId('Microsoft.Network/loadBalancers', variables('internalLoadBalancerName'))]",
 "skuName": "Standard"
 },
 "resources" : [
 {
 "apiVersion" : "2018-12-01",
 "type" : "Microsoft.Network/publicIPAddresses",
 "name" : "[variables('masterPublicIpAddressName')]",
 "location" : "[variables('location')]",
 "sku": {
 "name": "[variables('skuName')]"
 },
 "properties" : {
 "publicIPAllocationMethod" : "Static",
 "dnsSettings" : {
 "domainNameLabel" : "[variables('masterPublicIpAddressName')]"
 }
 }
 },
 {
 "apiVersion" : "2018-12-01",
 "type" : "Microsoft.Network/loadBalancers",
 "name" : "[variables('masterLoadBalancerName')]",
 "location" : "[variables('location')]",
 "sku": {
 "name": "[variables('skuName')]"
 },
 "dependsOn" : [
 "[concat('Microsoft.Network/publicIPAddresses/', variables('masterPublicIpAddressName'))]"
],
 "properties" : {
 "frontendIPConfigurations" : [
 {
 "name" : "public-lb-ip",
 "properties" : {
 "publicIPAddress" : {
 "id" : "[variables('masterPublicIpAddressID')]"
 }
 }
 }
],
 "backendAddressPools" : [
 {
 "name" : "public-lb-backend"
 }
],
 "loadBalancingRules" : [
 {
 "name" : "api-internal",
 "properties" : {
 "frontendIPConfiguration" : {
 "id" :"[concat(variables('masterLoadBalancerID'), '/frontendIPConfigurations/public-lb-ip')]"
 },
 "backendAddressPool" : {
 "id" : "[concat(variables('masterLoadBalancerID'), '/backendAddressPools/public-lb-backend')]"
 },
 "protocol" : "Tcp",
 "loadDistribution" : "Default",
 "idleTimeoutInMinutes" : 30,
 "frontendPort" : 6443,
 "backendPort" : 6443,
 "probe" : {
 "id" : "[concat(variables('masterLoadBalancerID'), '/probes/api-internal-probe')]"
 }
 }
 }
],
 "probes" : [
 {
 "name" : "api-internal-probe",
 "properties" : {
 "protocol" : "Https",
 "port" : 6443,
 "requestPath": "/readyz",
 "intervalInSeconds" : 10,
 "numberOfProbes" : 3
 }
 }
]
 }
 },
 {
 "apiVersion" : "2018-12-01",
 "type" : "Microsoft.Network/loadBalancers",
 "name" : "[variables('internalLoadBalancerName')]",
 "location" : "[variables('location')]",
 "sku": {
 "name": "[variables('skuName')]"
 },
 "properties" : {
 "frontendIPConfigurations" : [
 {
 "name" : "internal-lb-ip",
 "properties" : {
 "privateIPAllocationMethod" : "Dynamic",
 "subnet" : {
 "id" : "[variables('masterSubnetRef')]"
 },
 "privateIPAddressVersion" : "IPv4"
 }
 }
],
 "backendAddressPools" : [
 {
 "name" : "internal-lb-backend"
 }
],
 "loadBalancingRules" : [
 {
 "name" : "api-internal",
 "properties" : {
 "frontendIPConfiguration" : {
 "id" : "[concat(variables('internalLoadBalancerID'), '/frontendIPConfigurations/internal-lb-ip')]"
 },
 "frontendPort" : 6443,
 "backendPort" : 6443,
 "enableFloatingIP" : false,
 "idleTimeoutInMinutes" : 30,
 "protocol" : "Tcp",
 "enableTcpReset" : false,
 "loadDistribution" : "Default",
 "backendAddressPool" : {
 "id" : "[concat(variables('internalLoadBalancerID'), '/backendAddressPools/internal-lb-backend')]"
 },
 "probe" : {
 "id" : "[concat(variables('internalLoadBalancerID'), '/probes/api-internal-probe')]"
 }
 }
 },
 {
 "name" : "sint",
 "properties" : {
 "frontendIPConfiguration" : {
 "id" : "[concat(variables('internalLoadBalancerID'), '/frontendIPConfigurations/internal-lb-ip')]"
 },
 "frontendPort" : 22623,
 "backendPort" : 22623,
 "enableFloatingIP" : false,
 "idleTimeoutInMinutes" : 30,
 "protocol" : "Tcp",
 "enableTcpReset" : false,
 "loadDistribution" : "Default",
 "backendAddressPool" : {
 "id" : "[concat(variables('internalLoadBalancerID'), '/backendAddressPools/internal-lb-backend')]"
 },
 "probe" : {
 "id" : "[concat(variables('internalLoadBalancerID'), '/probes/sint-probe')]"
 }
 }
 }
],
 "probes" : [
 {
 "name" : "api-internal-probe",
 "properties" : {
 "protocol" : "Https",
 "port" : 6443,
 "requestPath": "/readyz",
 "intervalInSeconds" : 10,
 "numberOfProbes" : 3
 }
 },
 {
 "name" : "sint-probe",
 "properties" : {
 "protocol" : "Https",
 "port" : 22623,
 "requestPath": "/healthz",
 "intervalInSeconds" : 10,
 "numberOfProbes" : 3
 }
 }
]
 }
 },
 {
 "apiVersion": "2018-09-01",
 "type": "Microsoft.Network/privateDnsZones/A",
 "name": "[concat(parameters('privateDNSZoneName'), '/api')]",
 "location" : "[variables('location')]",
 "dependsOn" : [
 "[concat('Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'))]"
],
 "properties": {
 "ttl": 60,
 "aRecords": [
 {
 "ipv4Address": "[reference(variables('internalLoadBalancerName')).frontendIPConfigurations[0].properties.privateIPAddress]"
 }
]
 }
 },
 {
 "apiVersion": "2018-09-01",
 "type": "Microsoft.Network/privateDnsZones/A",
 "name": "[concat(parameters('privateDNSZoneName'), '/api-int')]",
 "location" : "[variables('location')]",
 "dependsOn" : [
 "[concat('Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'))]"
],
 "properties": {
 "ttl": 60,
 "aRecords": [
 {
 "ipv4Address": "[reference(variables('internalLoadBalancerName')).frontendIPConfigurations[0].properties.privateIPAddress]"
 }
]
 }
 }
]
}

Creating the bootstrap machine in Azure

					You must create the bootstrap machine in Microsoft Azure to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Azure Resource Manager (ARM) template.
				
Note

						If you do not use the provided ARM template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VNet and associated subnets in Azure.
						
	
							Create and configure networking and load balancers in Azure.
						
	
							Create control plane and compute roles.
						

Procedure
	
							Copy the template from the ARM template for the bootstrap machine section of this topic and save it as 04_bootstrap.json in your cluster’s installation directory. This template describes the bootstrap machine that your cluster requires.
						
	
							Export the following variables required by the bootstrap machine deployment:
						
$ export BOOTSTRAP_URL=`az storage blob url --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c "files" -n "bootstrap.ign" -o tsv`
$ export BOOTSTRAP_IGNITION=`jq -rcnM --arg v "3.1.0" --arg url ${BOOTSTRAP_URL} '{ignition:{version:$v,config:{replace:{source:$url}}}}' | base64 | tr -d '\n'`

	
							Create the deployment by using the az CLI:
						
$ az deployment group create -g ${RESOURCE_GROUP} \
 --template-file "<installation_directory>/04_bootstrap.json" \
 --parameters bootstrapIgnition="${BOOTSTRAP_IGNITION}" \ [image: 1]
 --parameters sshKeyData="${SSH_KEY}" \ [image: 2]
 --parameters baseName="${INFRA_ID}" [image: 3]
	[image: 1]
	
									The bootstrap Ignition content for the bootstrap cluster.
								

	[image: 2]
	
									The SSH RSA public key file as a string.
								

	[image: 3]
	
									The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
								

ARM template for the bootstrap machine

						You can use the following Azure Resource Manager (ARM) template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
					
Example 3.4. 04_bootstrap.json ARM template
{
 "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "parameters" : {
 "baseName" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Base name to be used in resource names (usually the cluster's Infra ID)"
 }
 },
 "bootstrapIgnition" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Bootstrap ignition content for the bootstrap cluster"
 }
 },
 "sshKeyData" : {
 "type" : "securestring",
 "metadata" : {
 "description" : "SSH RSA public key file as a string."
 }
 },
 "bootstrapVMSize" : {
 "type" : "string",
 "defaultValue" : "Standard_D4s_v3",
 "allowedValues" : [
 "Standard_A2",
 "Standard_A3",
 "Standard_A4",
 "Standard_A5",
 "Standard_A6",
 "Standard_A7",
 "Standard_A8",
 "Standard_A9",
 "Standard_A10",
 "Standard_A11",
 "Standard_D2",
 "Standard_D3",
 "Standard_D4",
 "Standard_D11",
 "Standard_D12",
 "Standard_D13",
 "Standard_D14",
 "Standard_D2_v2",
 "Standard_D3_v2",
 "Standard_D4_v2",
 "Standard_D5_v2",
 "Standard_D8_v3",
 "Standard_D11_v2",
 "Standard_D12_v2",
 "Standard_D13_v2",
 "Standard_D14_v2",
 "Standard_E2_v3",
 "Standard_E4_v3",
 "Standard_E8_v3",
 "Standard_E16_v3",
 "Standard_E32_v3",
 "Standard_E64_v3",
 "Standard_E2s_v3",
 "Standard_E4s_v3",
 "Standard_E8s_v3",
 "Standard_E16s_v3",
 "Standard_E32s_v3",
 "Standard_E64s_v3",
 "Standard_G1",
 "Standard_G2",
 "Standard_G3",
 "Standard_G4",
 "Standard_G5",
 "Standard_DS2",
 "Standard_DS3",
 "Standard_DS4",
 "Standard_DS11",
 "Standard_DS12",
 "Standard_DS13",
 "Standard_DS14",
 "Standard_DS2_v2",
 "Standard_DS3_v2",
 "Standard_DS4_v2",
 "Standard_DS5_v2",
 "Standard_DS11_v2",
 "Standard_DS12_v2",
 "Standard_DS13_v2",
 "Standard_DS14_v2",
 "Standard_GS1",
 "Standard_GS2",
 "Standard_GS3",
 "Standard_GS4",
 "Standard_GS5",
 "Standard_D2s_v3",
 "Standard_D4s_v3",
 "Standard_D8s_v3"
],
 "metadata" : {
 "description" : "The size of the Bootstrap Virtual Machine"
 }
 }
 },
 "variables" : {
 "location" : "[resourceGroup().location]",
 "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]",
 "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]",
 "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]",
 "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]",
 "masterLoadBalancerName" : "[concat(parameters('baseName'), '-public-lb')]",
 "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]",
 "sshKeyPath" : "/home/core/.ssh/authorized_keys",
 "identityName" : "[concat(parameters('baseName'), '-identity')]",
 "vmName" : "[concat(parameters('baseName'), '-bootstrap')]",
 "nicName" : "[concat(variables('vmName'), '-nic')]",
 "imageName" : "[concat(parameters('baseName'), '-image')]",
 "clusterNsgName" : "[concat(parameters('baseName'), '-nsg')]",
 "sshPublicIpAddressName" : "[concat(variables('vmName'), '-ssh-pip')]"
 },
 "resources" : [
 {
 "apiVersion" : "2018-12-01",
 "type" : "Microsoft.Network/publicIPAddresses",
 "name" : "[variables('sshPublicIpAddressName')]",
 "location" : "[variables('location')]",
 "sku": {
 "name": "Standard"
 },
 "properties" : {
 "publicIPAllocationMethod" : "Static",
 "dnsSettings" : {
 "domainNameLabel" : "[variables('sshPublicIpAddressName')]"
 }
 }
 },
 {
 "apiVersion" : "2018-06-01",
 "type" : "Microsoft.Network/networkInterfaces",
 "name" : "[variables('nicName')]",
 "location" : "[variables('location')]",
 "dependsOn" : [
 "[resourceId('Microsoft.Network/publicIPAddresses', variables('sshPublicIpAddressName'))]"
],
 "properties" : {
 "ipConfigurations" : [
 {
 "name" : "pipConfig",
 "properties" : {
 "privateIPAllocationMethod" : "Dynamic",
 "publicIPAddress": {
 "id": "[resourceId('Microsoft.Network/publicIPAddresses', variables('sshPublicIpAddressName'))]"
 },
 "subnet" : {
 "id" : "[variables('masterSubnetRef')]"
 },
 "loadBalancerBackendAddressPools" : [
 {
 "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('masterLoadBalancerName'), '/backendAddressPools/public-lb-backend')]"
 },
 {
 "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'), '/backendAddressPools/internal-lb-backend')]"
 }
]
 }
 }
]
 }
 },
 {
 "apiVersion" : "2018-06-01",
 "type" : "Microsoft.Compute/virtualMachines",
 "name" : "[variables('vmName')]",
 "location" : "[variables('location')]",
 "identity" : {
 "type" : "userAssigned",
 "userAssignedIdentities" : {
 "[resourceID('Microsoft.ManagedIdentity/userAssignedIdentities/', variables('identityName'))]" : {}
 }
 },
 "dependsOn" : [
 "[concat('Microsoft.Network/networkInterfaces/', variables('nicName'))]"
],
 "properties" : {
 "hardwareProfile" : {
 "vmSize" : "[parameters('bootstrapVMSize')]"
 },
 "osProfile" : {
 "computerName" : "[variables('vmName')]",
 "adminUsername" : "core",
 "customData" : "[parameters('bootstrapIgnition')]",
 "linuxConfiguration" : {
 "disablePasswordAuthentication" : true,
 "ssh" : {
 "publicKeys" : [
 {
 "path" : "[variables('sshKeyPath')]",
 "keyData" : "[parameters('sshKeyData')]"
 }
]
 }
 }
 },
 "storageProfile" : {
 "imageReference": {
 "id": "[resourceId('Microsoft.Compute/images', variables('imageName'))]"
 },
 "osDisk" : {
 "name": "[concat(variables('vmName'),'_OSDisk')]",
 "osType" : "Linux",
 "createOption" : "FromImage",
 "managedDisk": {
 "storageAccountType": "Premium_LRS"
 },
 "diskSizeGB" : 100
 }
 },
 "networkProfile" : {
 "networkInterfaces" : [
 {
 "id" : "[resourceId('Microsoft.Network/networkInterfaces', variables('nicName'))]"
 }
]
 }
 }
 },
 {
 "apiVersion" : "2018-06-01",
 "type": "Microsoft.Network/networkSecurityGroups/securityRules",
 "name" : "[concat(variables('clusterNsgName'), '/bootstrap_ssh_in')]",
 "location" : "[variables('location')]",
 "dependsOn" : [
 "[resourceId('Microsoft.Compute/virtualMachines', variables('vmName'))]"
],
 "properties": {
 "protocol" : "Tcp",
 "sourcePortRange" : "*",
 "destinationPortRange" : "22",
 "sourceAddressPrefix" : "*",
 "destinationAddressPrefix" : "*",
 "access" : "Allow",
 "priority" : 100,
 "direction" : "Inbound"
 }
 }
]
}

Creating the control plane machines in Azure

					You must create the control plane machines in Microsoft Azure for your cluster to use. One way to create these machines is to modify the provided Azure Resource Manager (ARM) template.
				
Note

						If you do not use the provided ARM template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VNet and associated subnets in Azure.
						
	
							Create and configure networking and load balancers in Azure.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						

Procedure
	
							Copy the template from the ARM template for control plane machines section of this topic and save it as 05_masters.json in your cluster’s installation directory. This template describes the control plane machines that your cluster requires.
						
	
							Export the following variable needed by the control plane machine deployment:
						
$ export MASTER_IGNITION=`cat <installation_directory>/master.ign | base64 | tr -d '\n'`

	
							Create the deployment by using the az CLI:
						
$ az deployment group create -g ${RESOURCE_GROUP} \
 --template-file "<installation_directory>/05_masters.json" \
 --parameters masterIgnition="${MASTER_IGNITION}" \ [image: 1]
 --parameters sshKeyData="${SSH_KEY}" \ [image: 2]
 --parameters privateDNSZoneName="${CLUSTER_NAME}.${BASE_DOMAIN}" \ [image: 3]
 --parameters baseName="${INFRA_ID}"[image: 4]
	[image: 1]
	
									The Ignition content for the control plane nodes (also known as the master nodes).
								

	[image: 2]
	
									The SSH RSA public key file as a string.
								

	[image: 3]
	
									The name of the private DNS zone to which the control plane nodes are attached.
								

	[image: 4]
	
									The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
								

ARM template for control plane machines

						You can use the following Azure Resource Manager (ARM) template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
					
Example 3.5. 05_masters.json ARM template
{
 "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "parameters" : {
 "baseName" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Base name to be used in resource names (usually the cluster's Infra ID)"
 }
 },
 "masterIgnition" : {
 "type" : "string",
 "metadata" : {
 "description" : "Ignition content for the master nodes"
 }
 },
 "numberOfMasters" : {
 "type" : "int",
 "defaultValue" : 3,
 "minValue" : 2,
 "maxValue" : 30,
 "metadata" : {
 "description" : "Number of OpenShift masters to deploy"
 }
 },
 "sshKeyData" : {
 "type" : "securestring",
 "metadata" : {
 "description" : "SSH RSA public key file as a string"
 }
 },
 "privateDNSZoneName" : {
 "type" : "string",
 "metadata" : {
 "description" : "Name of the private DNS zone the master nodes are going to be attached to"
 }
 },
 "masterVMSize" : {
 "type" : "string",
 "defaultValue" : "Standard_D8s_v3",
 "allowedValues" : [
 "Standard_A2",
 "Standard_A3",
 "Standard_A4",
 "Standard_A5",
 "Standard_A6",
 "Standard_A7",
 "Standard_A8",
 "Standard_A9",
 "Standard_A10",
 "Standard_A11",
 "Standard_D2",
 "Standard_D3",
 "Standard_D4",
 "Standard_D11",
 "Standard_D12",
 "Standard_D13",
 "Standard_D14",
 "Standard_D2_v2",
 "Standard_D3_v2",
 "Standard_D4_v2",
 "Standard_D5_v2",
 "Standard_D8_v3",
 "Standard_D11_v2",
 "Standard_D12_v2",
 "Standard_D13_v2",
 "Standard_D14_v2",
 "Standard_E2_v3",
 "Standard_E4_v3",
 "Standard_E8_v3",
 "Standard_E16_v3",
 "Standard_E32_v3",
 "Standard_E64_v3",
 "Standard_E2s_v3",
 "Standard_E4s_v3",
 "Standard_E8s_v3",
 "Standard_E16s_v3",
 "Standard_E32s_v3",
 "Standard_E64s_v3",
 "Standard_G1",
 "Standard_G2",
 "Standard_G3",
 "Standard_G4",
 "Standard_G5",
 "Standard_DS2",
 "Standard_DS3",
 "Standard_DS4",
 "Standard_DS11",
 "Standard_DS12",
 "Standard_DS13",
 "Standard_DS14",
 "Standard_DS2_v2",
 "Standard_DS3_v2",
 "Standard_DS4_v2",
 "Standard_DS5_v2",
 "Standard_DS11_v2",
 "Standard_DS12_v2",
 "Standard_DS13_v2",
 "Standard_DS14_v2",
 "Standard_GS1",
 "Standard_GS2",
 "Standard_GS3",
 "Standard_GS4",
 "Standard_GS5",
 "Standard_D2s_v3",
 "Standard_D4s_v3",
 "Standard_D8s_v3"
],
 "metadata" : {
 "description" : "The size of the Master Virtual Machines"
 }
 },
 "diskSizeGB" : {
 "type" : "int",
 "defaultValue" : 1024,
 "metadata" : {
 "description" : "Size of the Master VM OS disk, in GB"
 }
 }
 },
 "variables" : {
 "location" : "[resourceGroup().location]",
 "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]",
 "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]",
 "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]",
 "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]",
 "masterLoadBalancerName" : "[concat(parameters('baseName'), '-public-lb')]",
 "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]",
 "sshKeyPath" : "/home/core/.ssh/authorized_keys",
 "identityName" : "[concat(parameters('baseName'), '-identity')]",
 "imageName" : "[concat(parameters('baseName'), '-image')]",
 "copy" : [
 {
 "name" : "vmNames",
 "count" : "[parameters('numberOfMasters')]",
 "input" : "[concat(parameters('baseName'), '-master-', copyIndex('vmNames'))]"
 }
]
 },
 "resources" : [
 {
 "apiVersion" : "2018-06-01",
 "type" : "Microsoft.Network/networkInterfaces",
 "copy" : {
 "name" : "nicCopy",
 "count" : "[length(variables('vmNames'))]"
 },
 "name" : "[concat(variables('vmNames')[copyIndex()], '-nic')]",
 "location" : "[variables('location')]",
 "properties" : {
 "ipConfigurations" : [
 {
 "name" : "pipConfig",
 "properties" : {
 "privateIPAllocationMethod" : "Dynamic",
 "subnet" : {
 "id" : "[variables('masterSubnetRef')]"
 },
 "loadBalancerBackendAddressPools" : [
 {
 "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('masterLoadBalancerName'), '/backendAddressPools/public-lb-backend')]"
 },
 {
 "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'), '/backendAddressPools/internal-lb-backend')]"
 }
]
 }
 }
]
 }
 },
 {
 "apiVersion": "2018-09-01",
 "type": "Microsoft.Network/privateDnsZones/SRV",
 "name": "[concat(parameters('privateDNSZoneName'), '/_etcd-server-ssl._tcp')]",
 "location" : "[variables('location')]",
 "properties": {
 "ttl": 60,
 "copy": [{
 "name": "srvRecords",
 "count": "[length(variables('vmNames'))]",
 "input": {
 "priority": 0,
 "weight" : 10,
 "port" : 2380,
 "target" : "[concat('etcd-', copyIndex('srvRecords'), '.', parameters('privateDNSZoneName'))]"
 }
 }]
 }
 },
 {
 "apiVersion": "2018-09-01",
 "type": "Microsoft.Network/privateDnsZones/A",
 "copy" : {
 "name" : "dnsCopy",
 "count" : "[length(variables('vmNames'))]"
 },
 "name": "[concat(parameters('privateDNSZoneName'), '/etcd-', copyIndex())]",
 "location" : "[variables('location')]",
 "dependsOn" : [
 "[concat('Microsoft.Network/networkInterfaces/', concat(variables('vmNames')[copyIndex()], '-nic'))]"
],
 "properties": {
 "ttl": 60,
 "aRecords": [
 {
 "ipv4Address": "[reference(concat(variables('vmNames')[copyIndex()], '-nic')).ipConfigurations[0].properties.privateIPAddress]"
 }
]
 }
 },
 {
 "apiVersion" : "2018-06-01",
 "type" : "Microsoft.Compute/virtualMachines",
 "copy" : {
 "name" : "vmCopy",
 "count" : "[length(variables('vmNames'))]"
 },
 "name" : "[variables('vmNames')[copyIndex()]]",
 "location" : "[variables('location')]",
 "identity" : {
 "type" : "userAssigned",
 "userAssignedIdentities" : {
 "[resourceID('Microsoft.ManagedIdentity/userAssignedIdentities/', variables('identityName'))]" : {}
 }
 },
 "dependsOn" : [
 "[concat('Microsoft.Network/networkInterfaces/', concat(variables('vmNames')[copyIndex()], '-nic'))]",
 "[concat('Microsoft.Network/privateDnsZones/', parameters('privateDNSZoneName'), '/A/etcd-', copyIndex())]",
 "[concat('Microsoft.Network/privateDnsZones/', parameters('privateDNSZoneName'), '/SRV/_etcd-server-ssl._tcp')]"
],
 "properties" : {
 "hardwareProfile" : {
 "vmSize" : "[parameters('masterVMSize')]"
 },
 "osProfile" : {
 "computerName" : "[variables('vmNames')[copyIndex()]]",
 "adminUsername" : "core",
 "customData" : "[parameters('masterIgnition')]",
 "linuxConfiguration" : {
 "disablePasswordAuthentication" : true,
 "ssh" : {
 "publicKeys" : [
 {
 "path" : "[variables('sshKeyPath')]",
 "keyData" : "[parameters('sshKeyData')]"
 }
]
 }
 }
 },
 "storageProfile" : {
 "imageReference": {
 "id": "[resourceId('Microsoft.Compute/images', variables('imageName'))]"
 },
 "osDisk" : {
 "name": "[concat(variables('vmNames')[copyIndex()], '_OSDisk')]",
 "osType" : "Linux",
 "createOption" : "FromImage",
 "caching": "ReadOnly",
 "writeAcceleratorEnabled": false,
 "managedDisk": {
 "storageAccountType": "Premium_LRS"
 },
 "diskSizeGB" : "[parameters('diskSizeGB')]"
 }
 },
 "networkProfile" : {
 "networkInterfaces" : [
 {
 "id" : "[resourceId('Microsoft.Network/networkInterfaces', concat(variables('vmNames')[copyIndex()], '-nic'))]",
 "properties": {
 "primary": false
 }
 }
]
 }
 }
 }
]
}

Wait for bootstrap completion and remove bootstrap resources in Azure

					After you create all of the required infrastructure in Microsoft Azure, wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VNet and associated subnets in Azure.
						
	
							Create and configure networking and load balancers in Azure.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Change to the directory that contains the installation program and run the following command:
						
$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ [image: 1]
 --log-level info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

							If the command exits without a FATAL warning, your production control plane has initialized.
						

	
							Delete the bootstrap resources:
						
$ az network nsg rule delete -g ${RESOURCE_GROUP} --nsg-name ${INFRA_ID}-nsg --name bootstrap_ssh_in
$ az vm stop -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap
$ az vm deallocate -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap
$ az vm delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap --yes
$ az disk delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap_OSDisk --no-wait --yes
$ az network nic delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap-nic --no-wait
$ az storage blob delete --account-key ${ACCOUNT_KEY} --account-name ${CLUSTER_NAME}sa --container-name files --name bootstrap.ign
$ az network public-ip delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap-ssh-pip

Creating additional worker machines in Azure

					You can create worker machines in Microsoft Azure for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
				

					In this example, you manually launch one instance by using the Azure Resource Manager (ARM) template. Additional instances can be launched by including additional resources of type 06_workers.json in the file.
				
Note

						If you do not use the provided ARM template to create your worker machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure an Azure account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VNet and associated subnets in Azure.
						
	
							Create and configure networking and load balancers in Azure.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Copy the template from the ARM template for worker machines section of this topic and save it as 06_workers.json in your cluster’s installation directory. This template describes the worker machines that your cluster requires.
						
	
							Export the following variable needed by the worker machine deployment:
						
$ export WORKER_IGNITION=`cat <installation_directory>/worker.ign | base64 | tr -d '\n'`

	
							Create the deployment by using the az CLI:
						
$ az deployment group create -g ${RESOURCE_GROUP} \
 --template-file "<installation_directory>/06_workers.json" \
 --parameters workerIgnition="${WORKER_IGNITION}" \ [image: 1]
 --parameters sshKeyData="${SSH_KEY}" \ [image: 2]
 --parameters baseName="${INFRA_ID}" [image: 3]
	[image: 1]
	
									The Ignition content for the worker nodes.
								

	[image: 2]
	
									The SSH RSA public key file as a string.
								

	[image: 3]
	
									The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
								

ARM template for worker machines

						You can use the following Azure Resource Manager (ARM) template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
					
Example 3.6. 06_workers.json ARM template
{
 "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "parameters" : {
 "baseName" : {
 "type" : "string",
 "minLength" : 1,
 "metadata" : {
 "description" : "Base name to be used in resource names (usually the cluster's Infra ID)"
 }
 },
 "workerIgnition" : {
 "type" : "string",
 "metadata" : {
 "description" : "Ignition content for the worker nodes"
 }
 },
 "numberOfNodes" : {
 "type" : "int",
 "defaultValue" : 3,
 "minValue" : 2,
 "maxValue" : 30,
 "metadata" : {
 "description" : "Number of OpenShift compute nodes to deploy"
 }
 },
 "sshKeyData" : {
 "type" : "securestring",
 "metadata" : {
 "description" : "SSH RSA public key file as a string"
 }
 },
 "nodeVMSize" : {
 "type" : "string",
 "defaultValue" : "Standard_D4s_v3",
 "allowedValues" : [
 "Standard_A2",
 "Standard_A3",
 "Standard_A4",
 "Standard_A5",
 "Standard_A6",
 "Standard_A7",
 "Standard_A8",
 "Standard_A9",
 "Standard_A10",
 "Standard_A11",
 "Standard_D2",
 "Standard_D3",
 "Standard_D4",
 "Standard_D11",
 "Standard_D12",
 "Standard_D13",
 "Standard_D14",
 "Standard_D2_v2",
 "Standard_D3_v2",
 "Standard_D4_v2",
 "Standard_D5_v2",
 "Standard_D8_v3",
 "Standard_D11_v2",
 "Standard_D12_v2",
 "Standard_D13_v2",
 "Standard_D14_v2",
 "Standard_E2_v3",
 "Standard_E4_v3",
 "Standard_E8_v3",
 "Standard_E16_v3",
 "Standard_E32_v3",
 "Standard_E64_v3",
 "Standard_E2s_v3",
 "Standard_E4s_v3",
 "Standard_E8s_v3",
 "Standard_E16s_v3",
 "Standard_E32s_v3",
 "Standard_E64s_v3",
 "Standard_G1",
 "Standard_G2",
 "Standard_G3",
 "Standard_G4",
 "Standard_G5",
 "Standard_DS2",
 "Standard_DS3",
 "Standard_DS4",
 "Standard_DS11",
 "Standard_DS12",
 "Standard_DS13",
 "Standard_DS14",
 "Standard_DS2_v2",
 "Standard_DS3_v2",
 "Standard_DS4_v2",
 "Standard_DS5_v2",
 "Standard_DS11_v2",
 "Standard_DS12_v2",
 "Standard_DS13_v2",
 "Standard_DS14_v2",
 "Standard_GS1",
 "Standard_GS2",
 "Standard_GS3",
 "Standard_GS4",
 "Standard_GS5",
 "Standard_D2s_v3",
 "Standard_D4s_v3",
 "Standard_D8s_v3"
],
 "metadata" : {
 "description" : "The size of the each Node Virtual Machine"
 }
 }
 },
 "variables" : {
 "location" : "[resourceGroup().location]",
 "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]",
 "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]",
 "nodeSubnetName" : "[concat(parameters('baseName'), '-worker-subnet')]",
 "nodeSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('nodeSubnetName'))]",
 "infraLoadBalancerName" : "[parameters('baseName')]",
 "sshKeyPath" : "/home/capi/.ssh/authorized_keys",
 "identityName" : "[concat(parameters('baseName'), '-identity')]",
 "imageName" : "[concat(parameters('baseName'), '-image')]",
 "copy" : [
 {
 "name" : "vmNames",
 "count" : "[parameters('numberOfNodes')]",
 "input" : "[concat(parameters('baseName'), '-worker-', variables('location'), '-', copyIndex('vmNames', 1))]"
 }
]
 },
 "resources" : [
 {
 "apiVersion" : "2019-05-01",
 "name" : "[concat('node', copyIndex())]",
 "type" : "Microsoft.Resources/deployments",
 "copy" : {
 "name" : "nodeCopy",
 "count" : "[length(variables('vmNames'))]"
 },
 "properties" : {
 "mode" : "Incremental",
 "template" : {
 "$schema" : "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion" : "1.0.0.0",
 "resources" : [
 {
 "apiVersion" : "2018-06-01",
 "type" : "Microsoft.Network/networkInterfaces",
 "name" : "[concat(variables('vmNames')[copyIndex()], '-nic')]",
 "location" : "[variables('location')]",
 "properties" : {
 "ipConfigurations" : [
 {
 "name" : "pipConfig",
 "properties" : {
 "privateIPAllocationMethod" : "Dynamic",
 "subnet" : {
 "id" : "[variables('nodeSubnetRef')]"
 }
 }
 }
]
 }
 },
 {
 "apiVersion" : "2018-06-01",
 "type" : "Microsoft.Compute/virtualMachines",
 "name" : "[variables('vmNames')[copyIndex()]]",
 "location" : "[variables('location')]",
 "tags" : {
 "kubernetes.io-cluster-ffranzupi": "owned"
 },
 "identity" : {
 "type" : "userAssigned",
 "userAssignedIdentities" : {
 "[resourceID('Microsoft.ManagedIdentity/userAssignedIdentities/', variables('identityName'))]" : {}
 }
 },
 "dependsOn" : [
 "[concat('Microsoft.Network/networkInterfaces/', concat(variables('vmNames')[copyIndex()], '-nic'))]"
],
 "properties" : {
 "hardwareProfile" : {
 "vmSize" : "[parameters('nodeVMSize')]"
 },
 "osProfile" : {
 "computerName" : "[variables('vmNames')[copyIndex()]]",
 "adminUsername" : "capi",
 "customData" : "[parameters('workerIgnition')]",
 "linuxConfiguration" : {
 "disablePasswordAuthentication" : true,
 "ssh" : {
 "publicKeys" : [
 {
 "path" : "[variables('sshKeyPath')]",
 "keyData" : "[parameters('sshKeyData')]"
 }
]
 }
 }
 },
 "storageProfile" : {
 "imageReference": {
 "id": "[resourceId('Microsoft.Compute/images', variables('imageName'))]"
 },
 "osDisk" : {
 "name": "[concat(variables('vmNames')[copyIndex()],'_OSDisk')]",
 "osType" : "Linux",
 "createOption" : "FromImage",
 "managedDisk": {
 "storageAccountType": "Premium_LRS"
 },
 "diskSizeGB": 128
 }
 },
 "networkProfile" : {
 "networkInterfaces" : [
 {
 "id" : "[resourceId('Microsoft.Network/networkInterfaces', concat(variables('vmNames')[copyIndex()], '-nic'))]",
 "properties": {
 "primary": true
 }
 }
]
 }
 }
 }
]
 }
 }
 }
]
}

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Adding the Ingress DNS records

					If you removed the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs, you must manually create DNS records that point at the Ingress load balancer. You can create either a wildcard *.apps.{baseDomain}. or specific records. You can use A, CNAME, and other records per your requirements.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster on Microsoft Azure by using infrastructure that you provisioned.
						
	
							Install the OpenShift CLI (oc).
						
	
							Install the jq package.
						
	
							Install or update the Azure CLI.
						

Procedure
	
							Confirm the Ingress router has created a load balancer and populated the EXTERNAL-IP field:
						
$ oc -n openshift-ingress get service router-default
Example output

								

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
router-default LoadBalancer 172.30.20.10 35.130.120.110 80:32288/TCP,443:31215/TCP 20

							

	
							Export the Ingress router IP as a variable:
						
$ export PUBLIC_IP_ROUTER=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'`

	
							Add a *.apps record to the public DNS zone.
						
	
									If you are adding this cluster to a new public zone, run:
								
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n *.apps -a ${PUBLIC_IP_ROUTER} --ttl 300

	
									If you are adding this cluster to an already existing public zone, run:
								
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${BASE_DOMAIN} -n *.apps.${CLUSTER_NAME} -a ${PUBLIC_IP_ROUTER} --ttl 300

	
							Add a *.apps record to the private DNS zone:
						
	
									Create a *.apps record by using the following command:
								
$ az network private-dns record-set a create -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n *.apps --ttl 300

	
									Add the *.apps record to the private DNS zone by using the following command:
								
$ az network private-dns record-set a add-record -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n *.apps -a ${PUBLIC_IP_ROUTER}

					If you prefer to add explicit domains instead of using a wildcard, you can create entries for each of the cluster’s current routes:
				
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output

						

oauth-openshift.apps.cluster.basedomain.com
console-openshift-console.apps.cluster.basedomain.com
downloads-openshift-console.apps.cluster.basedomain.com
alertmanager-main-openshift-monitoring.apps.cluster.basedomain.com
grafana-openshift-monitoring.apps.cluster.basedomain.com
prometheus-k8s-openshift-monitoring.apps.cluster.basedomain.com

					

Completing an Azure installation on user-provisioned infrastructure

					After you start the OpenShift Container Platform installation on Microsoft Azure user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
				
Prerequisites
	
							Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned Azure infrastructure.
						
	
							Install the oc CLI and log in.
						

Procedure
	
							Complete the cluster installation:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Uninstalling a cluster on Azure

				You can remove a cluster that you deployed to Microsoft Azure.
			
Removing a cluster that uses installer-provisioned infrastructure

					You can remove a cluster that uses installer-provisioned infrastructure from your cloud.
				
Note

						After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access.
					

Prerequisites
	
							Have a copy of the installation program that you used to deploy the cluster.
						
	
							Have the files that the installation program generated when you created your cluster.
						

Procedure
	
							From the directory that contains the installation program on the computer that you used to install the cluster, run the following command:
						
$./openshift-install destroy cluster \
--dir <installation_directory> --log-level info [image: 1] [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different details, specify warn, debug, or error instead of info.
								

Note

								You must specify the directory that contains the cluster definition files for your cluster. The installation program requires the metadata.json file in this directory to delete the cluster.
							

	
							Optional: Delete the <installation_directory> directory and the OpenShift Container Platform installation program.
						

Chapter 4. Installing on GCP

Configuring a GCP project

				Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.
			
Creating a GCP project

					To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.
				
Procedure
	
							Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
						
Important

								Your GCP project must use the Premium Network Service Tier if you are using installer-provisioned infrastructure. The Standard Network Service Tier is not supported for clusters installed using the installation program. The installation program configures internal load balancing for the api-int.<cluster_name>.<base_domain> URL; the Premium Tier is required for internal load balancing.
							

Enabling API services in GCP

					Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.
				
Prerequisites
	
							You created a project to host your cluster.
						

Procedure
	
							Enable the following required API services in the project that hosts your cluster. See Enabling services in the GCP documentation.
						
Table 4.1. Required API services
	API service	Console service name
	
											Compute Engine API
										

										 	
											compute.googleapis.com
										

										
	
											Google Cloud APIs
										

										 	
											cloudapis.googleapis.com
										

										
	
											Cloud Resource Manager API
										

										 	
											cloudresourcemanager.googleapis.com
										

										
	
											Google DNS API
										

										 	
											dns.googleapis.com
										

										
	
											IAM Service Account Credentials API
										

										 	
											iamcredentials.googleapis.com
										

										
	
											Identity and Access Management (IAM) API
										

										 	
											iam.googleapis.com
										

										
	
											Service Management API
										

										 	
											servicemanagement.googleapis.com
										

										
	
											Service Usage API
										

										 	
											serviceusage.googleapis.com
										

										
	
											Google Cloud Storage JSON API
										

										 	
											storage-api.googleapis.com
										

										
	
											Cloud Storage
										

										 	
											storage-component.googleapis.com
										

										

Configuring DNS for GCP

					To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the same project that you host the OpenShift Container Platform cluster. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.
				
Procedure
	
							Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.
						
Note

								If you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains.
							

	
							Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.
						

							Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
						

	
							Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.
						

							You typically have four name servers.
						

	
							Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
						
	
							If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
						
	
							If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.
						

GCP account limits

					The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.
				

					A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.
				
Table 4.2. GCP resources used in a default cluster
	Service	Component	Location	Total resources required	Resources removed after bootstrap
	
									Service account
								

								 	
									IAM
								

								 	
									Global
								

								 	
									5
								

								 	
									0
								

								
	
									Firewall rules
								

								 	
									Compute
								

								 	
									Global
								

								 	
									11
								

								 	
									1
								

								
	
									Forwarding rules
								

								 	
									Compute
								

								 	
									Global
								

								 	
									2
								

								 	
									0
								

								
	
									In-use global IP addresses
								

								 	
									Compute
								

								 	
									Global
								

								 	
									4
								

								 	
									1
								

								
	
									Health checks
								

								 	
									Compute
								

								 	
									Global
								

								 	
									3
								

								 	
									0
								

								
	
									Images
								

								 	
									Compute
								

								 	
									Global
								

								 	
									1
								

								 	
									0
								

								
	
									Networks
								

								 	
									Compute
								

								 	
									Global
								

								 	
									2
								

								 	
									0
								

								
	
									Static IP addresses
								

								 	
									Compute
								

								 	
									Region
								

								 	
									4
								

								 	
									1
								

								
	
									Routers
								

								 	
									Compute
								

								 	
									Global
								

								 	
									1
								

								 	
									0
								

								
	
									Routes
								

								 	
									Compute
								

								 	
									Global
								

								 	
									2
								

								 	
									0
								

								
	
									Subnetworks
								

								 	
									Compute
								

								 	
									Global
								

								 	
									2
								

								 	
									0
								

								
	
									Target pools
								

								 	
									Compute
								

								 	
									Global
								

								 	
									3
								

								 	
									0
								

								
	
									CPUs
								

								 	
									Compute
								

								 	
									Region
								

								 	
									28
								

								 	
									4
								

								
	
									Persistent disk SSD (GB)
								

								 	
									Compute
								

								 	
									Region
								

								 	
									896
								

								 	
									128
								

								

Note

						If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region.
					

					Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.
				

					If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:
				
	
							asia-east2
						
	
							asia-northeast2
						
	
							asia-south1
						
	
							australia-southeast1
						
	
							europe-north1
						
	
							europe-west2
						
	
							europe-west3
						
	
							europe-west6
						
	
							northamerica-northeast1
						
	
							southamerica-east1
						
	
							us-west2
						

					You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster.
				

Creating a service account in GCP

					OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.
				
Prerequisites
	
							You created a project to host your cluster.
						

Procedure
	
							Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
						
	
							Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the Owner role to it. See Granting roles to a service account for specific resources.
						
Note

								While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
							

	
							Create the service account key in JSON format. See Creating service account keys in the GCP documentation.
						

							The service account key is required to create a cluster.
						

Required GCP permissions

						When you attach the Owner role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform. To deploy an OpenShift Container Platform cluster, the service account requires the following permissions. If you deploy your cluster into an existing VPC, the service account does not require certain networking permissions, which are noted in the following lists:
					
Required roles for the installation program
	
								Compute Admin
							
	
								Security Admin
							
	
								Service Account Admin
							
	
								Service Account User
							
	
								Storage Admin
							

Required roles for creating network resources during installation
	
								DNS Administrator
							

Optional roles

							For the cluster to create new limited credentials for its Operators, add the following role:
						
	
								Service Account Key Admin
							

						The roles are applied to the service accounts that the control plane and compute machines use:
					
Table 4.3. GCP service account permissions
	Account	Roles
	
										Control Plane
									

									 	
										roles/compute.instanceAdmin
									

									
	
										roles/compute.networkAdmin
									

									
	
										roles/compute.securityAdmin
									

									
	
										roles/storage.admin
									

									
	
										roles/iam.serviceAccountUser
									

									
	
										Compute
									

									 	
										roles/compute.viewer
									

									
	
										roles/storage.admin
									

									

Supported GCP regions

					You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:
				
	
							asia-east1 (Changhua County, Taiwan)
						
	
							asia-east2 (Hong Kong)
						
	
							asia-northeast1 (Tokyo, Japan)
						
	
							asia-northeast2 (Osaka, Japan)
						
	
							asia-northeast3 (Seoul, South Korea)
						
	
							asia-south1 (Mumbai, India)
						
	
							asia-southeast1 (Jurong West, Singapore)
						
	
							asia-southeast2 (Jakarta, Indonesia)
						
	
							australia-southeast1 (Sydney, Australia)
						
	
							europe-north1 (Hamina, Finland)
						
	
							europe-west1 (St. Ghislain, Belgium)
						
	
							europe-west2 (London, England, UK)
						
	
							europe-west3 (Frankfurt, Germany)
						
	
							europe-west4 (Eemshaven, Netherlands)
						
	
							europe-west6 (Zürich, Switzerland)
						
	
							northamerica-northeast1 (Montréal, Québec, Canada)
						
	
							southamerica-east1 (São Paulo, Brazil)
						
	
							us-central1 (Council Bluffs, Iowa, USA)
						
	
							us-east1 (Moncks Corner, South Carolina, USA)
						
	
							us-east4 (Ashburn, Northern Virginia, USA)
						
	
							us-west1 (The Dalles, Oregon, USA)
						
	
							us-west2 (Los Angeles, California, USA)
						
	
							us-west3 (Salt Lake City, Utah, USA)
						
	
							us-west4 (Las Vegas, Nevada, USA)
						

Next steps

	
							Install an OpenShift Container Platform cluster on GCP. You can install a customized cluster or quickly install a cluster with default options.
						

Manually creating IAM for GCP

				In environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace, you can put the Cloud Credential Operator (CCO) into manual mode before you install the cluster.
			
Alternatives to storing administrator-level secrets in the kube-system project

					The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom resource definitions (CRDs). You can configure the CCO to suit the security requirements of your organization by setting different values for the credentialsMode parameter in the install-config.yaml file.
				

					If you prefer not to store an administrator-level credential secret in the cluster kube-system project, you can set the credentialsMode parameter for the CCO to Manual when installing OpenShift Container Platform and manage your cloud credentials manually.
				

					Using manual mode allows each cluster component to have only the permissions it requires, without storing an administrator-level credential in the cluster. You can also use this mode if your environment does not have connectivity to the cloud provider public IAM endpoint. However, you must manually reconcile permissions with new release images for every upgrade. You must also manually supply credentials for every component that requests them.
				
Additional resources
	
							Rotating or removing cloud provider credentials.
						

					For a detailed description of all available CCO credential modes and their supported platforms, see the Cloud Credential Operator reference.
				

Manually create IAM

					The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.
				
Procedure
	
							To generate the manifests, run the following command from the directory that contains the installation program:
						
$ openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	
							Insert a config map into the manifests directory so that the Cloud Credential Operator is placed in manual mode:
						
$ cat <<EOF > mycluster/manifests/cco-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cloud-credential-operator-config
 namespace: openshift-cloud-credential-operator
 annotations:
 release.openshift.io/create-only: "true"
data:
 disabled: "true"
EOF

	
							Remove the admin credential secret created using your local cloud credentials. This removal prevents your admin credential from being stored in the cluster:
						
$ rm mycluster/openshift/99_cloud-creds-secret.yaml

	
							From the directory that contains the installation program, obtain details of the OpenShift Container Platform release image that your openshift-install binary is built to use:
						
$ openshift-install version
Example output

								

release image quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64

							

	
							Locate all CredentialsRequest objects in this release image that target the cloud you are deploying on:
						
$ oc adm release extract quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64 --credentials-requests --cloud=gcp

							This displays the details for each request.
						
Sample CredentialsRequest object

								

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 labels:
 controller-tools.k8s.io: "1.0"
 name: openshift-image-registry-gcs
 namespace: openshift-cloud-credential-operator
spec:
 secretRef:
 name: installer-cloud-credentials
 namespace: openshift-image-registry
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: GCPProviderSpec
 predefinedRoles:
 - roles/storage.admin
 - roles/iam.serviceAccountUser
 skipServiceCheck: true

							

	
							Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each credentialsRequest. The format for the secret data varies for each cloud provider.
						
	
							From the directory that contains the installation program, proceed with your cluster creation:
						
$ openshift-install create cluster --dir <installation_directory>
Important

								Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. For details, see the Upgrading clusters with manually maintained credentials section of the installation content for your cloud provider.
							

Admin credentials root secret format

					Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which is then used to satisfy all credentials requests and create their respective secrets. This is done either by minting new credentials, with mint mode, or by copying the credentials root secret, with passthrough mode.
				

					The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.
				
Google Cloud Platform (GCP) secret format

						

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: gcp-credentials
stringData:
 service_account.json: <ServiceAccount>

					

Upgrading clusters with manually maintained credentials

					If credentials are added in a future release, the Cloud Credential Operator (CCO) upgradable status for a cluster with manually maintained credentials changes to false. For minor release, for example, from 4.5 to 4.6, this status prevents you from upgrading until you have addressed any updated permissions. For z-stream releases, for example, from 4.5.10 to 4.5.11, the upgrade is not blocked, but the credentials must still be updated for the new release.
				

					Use the Administrator perspective of the web console to determine if the CCO is upgradeable.
				
	
							Navigate to Administration → Cluster Settings.
						
	
							To view the CCO status details, click cloud-credential in the Cluster Operators list.
						
	
							If the Upgradeable status in the Conditions section is False, examine the credentialsRequests for the new release and update the manually maintained credentials on your cluster to match before upgrading.
						

					In addition to creating new credentials for the release image that you are upgrading to, you must review the required permissions for existing credentials and accommodate any new permissions requirements for existing components in the new release. The CCO cannot detect these mismatches and will not set upgradable to false in this case.
				

					The Manually creating IAM section of the installation content for your cloud provider explains how to obtain and use the credentials required for your cloud.
				

Mint mode

					Mint mode is the default and recommended Cloud Credential Operator (CCO) credentials mode for OpenShift Container Platform. In this mode, the CCO uses the provided administrator-level cloud credential to run the cluster. Mint mode is supported for AWS, GCP, and Azure.
				

					In mint mode, the admin credential is stored in the kube-system namespace and then used by the CCO to process the CredentialsRequest objects in the cluster and create users for each with specific permissions.
				

					The benefits of mint mode include:
				
	
							Each cluster component has only the permissions it requires
						
	
							Automatic, on-going reconciliation for cloud credentials, including additional credentials or permissions that might be required for upgrades
						

					One drawback is that mint mode requires admin credential storage in a cluster kube-system secret.
				

Mint Mode with removal or rotation of the admin credential

					Currently, this mode is only supported on AWS.
				

					In this mode, a user installs OpenShift Container Platform with an admin credential just like the normal mint mode. However, this mode removes the admin credential secret from the cluster post-installation.
				

					The administrator can have the Cloud Credential Operator make its own request for a read-only credential that allows it to verify if all CredentialsRequest objects have their required permissions, thus the admin credential is not required unless something needs to be changed. After the associated credential is removed, it can be destroyed on the underlying cloud, if desired.
				

					Prior to upgrade, the admin credential should be restored. In the future, upgrade might be blocked if the credential is not present.
				

					The admin credential is not stored in the cluster permanently.
				

					This mode still requires the admin credential in the cluster for brief periods of time. It also requires manually re-instating the secret with admin credentials for each upgrade.
				

Next steps

	
							Install an OpenShift Container Platform cluster:
						
	
									Installing a cluster quickly on GCP with default options on installer-provisioned infrastructure
								
	
									Install a cluster with cloud customizations on installer-provisioned infrastructure
								
	
									Install a cluster with network customizations on installer-provisioned infrastructure
								

Installing a cluster quickly on GCP

				In OpenShift Container Platform version 4.6, you can install a cluster on Google Cloud Platform (GCP) that uses the default configuration options.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure a GCP account to host the cluster.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

	
							Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service account private key file.
						
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"

	
							Verify that the credentials were applied.
						
$ gcloud auth list

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
						
	
									The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
								
	
									The ~/.gcp/osServiceAccount.json file
								
	
									The gcloud cli default credentials
								

	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Important

								Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							Provide values at the prompts:
						
	
									Optional: Select an SSH key to use to access your cluster machines.
								
Note

										For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
									

	
									Select gcp as the platform to target.
								
	
									If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
								
	
									Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
								
	
									Select the region to deploy the cluster to.
								
	
									Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
								
	
									Enter a descriptive name for your cluster. If you provide a name that is longer than 6 characters, only the first 6 characters will be used in the infrastructure ID that is generated from the cluster name.
								
	
									Paste the pull secret from the Red Hat OpenShift Cluster Manager.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
						
	
									If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
								
	
									If you included the Service Account Key Admin role, you can remove it.
								

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on GCP with customizations

				In OpenShift Container Platform version 4.6, you can install a customized cluster on infrastructure that the installation program provisions on Google Cloud Platform (GCP). To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure a GCP account to host the cluster.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

	
							Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service account private key file.
						
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"

	
							Verify that the credentials were applied.
						
$ gcloud auth list

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select gcp as the platform to target.
										
	
											If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
										
	
											Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
										
	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 4.4. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 4.5. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 4.6. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Google Cloud Platform (GCP) configuration parameters

							Additional GCP configuration parameters are described in the following table:
						
Table 4.7. Additional GCP parameters
	Parameter	Description	Values
	
											platform.gcp.network
										

										 	
											The name of the existing VPC that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.gcp.region
										

										 	
											The name of the GCP region that hosts your cluster.
										

										 	
											Any valid region name, such as us-central1.
										

										
	
											platform.gcp.type
										

										 	
											The GCP machine type.
										

										 	
											The GCP machine type.
										

										
	
											platform.gcp.zones
										

										 	
											The availability zones where the installation program creates machines for the specified MachinePool.
										

										 	
											A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.
										

										
	
											platform.gcp.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your control plane machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.computeSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your compute machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.licenses
										

										 	
											A list of license URLs that must be applied to the compute images.
										

										 Important

												The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.
											

										 	
											Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installer to copy the source image before use.
										

										
	
											platform.gcp.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes (GB).
										

										 	
											Any size between 16 GB and 65536 GB.
										

										
	
											platform.gcp.osDisk.diskType
										

										 	
											The type of disk.
										

										 	
											Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. The worker nodes can be either type.
										

										

Sample customized install-config.yaml file for GCP

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2] [image: 3]
 hyperthreading: Enabled [image: 4]
 name: master
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-ssd
 diskSizeGB: 1024
 replicas: 3
compute: [image: 5] [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-standard
 diskSizeGB: 128
 replicas: 3
metadata:
 name: test-cluster [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 gcp:
 projectID: openshift-production [image: 9]
 region: us-central1 [image: 10]
pullSecret: '{"auths": ...}' [image: 11]
fips: false [image: 12]
sshKey: ssh-ed25519 AAAA... [image: 13]
	[image: 1] [image: 8] [image: 9] [image: 10] [image: 11]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 5]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 6]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4] [image: 7]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.
								

	[image: 12]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 13]
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
						
	
									The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
								
	
									The ~/.gcp/osServiceAccount.json file
								
	
									The gcloud cli default credentials
								

	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
						
	
									If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
								
	
									If you included the Service Account Key Admin role, you can remove it.
								

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on GCP with network customizations

				In OpenShift Container Platform version 4.6, you can install a cluster with a customized network configuration on infrastructure that the installation program provisions on Google Cloud Platform (GCP). By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			

				You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure a GCP account to host the cluster.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

	
							Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service account private key file.
						
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"

	
							Verify that the credentials were applied.
						
$ gcloud auth list

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select gcp as the platform to target.
										
	
											If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
										
	
											Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
										
	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 4.8. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 4.9. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 4.10. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Google Cloud Platform (GCP) configuration parameters

							Additional GCP configuration parameters are described in the following table:
						
Table 4.11. Additional GCP parameters
	Parameter	Description	Values
	
											platform.gcp.network
										

										 	
											The name of the existing VPC that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.gcp.region
										

										 	
											The name of the GCP region that hosts your cluster.
										

										 	
											Any valid region name, such as us-central1.
										

										
	
											platform.gcp.type
										

										 	
											The GCP machine type.
										

										 	
											The GCP machine type.
										

										
	
											platform.gcp.zones
										

										 	
											The availability zones where the installation program creates machines for the specified MachinePool.
										

										 	
											A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.
										

										
	
											platform.gcp.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your control plane machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.computeSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your compute machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.licenses
										

										 	
											A list of license URLs that must be applied to the compute images.
										

										 Important

												The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.
											

										 	
											Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installer to copy the source image before use.
										

										
	
											platform.gcp.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes (GB).
										

										 	
											Any size between 16 GB and 65536 GB.
										

										
	
											platform.gcp.osDisk.diskType
										

										 	
											The type of disk.
										

										 	
											Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. The worker nodes can be either type.
										

										

Sample customized install-config.yaml file for GCP

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2] [image: 3]
 hyperthreading: Enabled [image: 4]
 name: master
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-ssd
 diskSizeGB: 1024
 replicas: 3
compute: [image: 5] [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-standard
 diskSizeGB: 128
 replicas: 3
metadata:
 name: test-cluster [image: 8]
networking: [image: 9]
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 gcp:
 projectID: openshift-production [image: 10]
 region: us-central1 [image: 11]
pullSecret: '{"auths": ...}' [image: 12]
fips: false [image: 13]
sshKey: ssh-ed25519 AAAA... [image: 14]
	[image: 1] [image: 8] [image: 10] [image: 11] [image: 12]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 5] [image: 9]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 6]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4] [image: 7]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.
								

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Network configuration phases

					When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
				
	Phase 1
	
								After entering the openshift-install create install-config command. In the install-config.yaml file, you can customize the following network-related fields:
							
	
										networking.networkType
									
	
										networking.clusterNetwork
									
	
										networking.serviceNetwork
									
	
										networking.machineNetwork
									

										For more information on these fields, refer to "Installation configuration parameters".
									
Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

	Phase 2
	
								After entering the openshift-install create manifests command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
							

					You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.
				

Specifying advanced network configuration

					You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
				
Important

						Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
					

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and specify the advanced network configuration for your cluster, such as in the following example:
						
Specify a different VXLAN port for the OpenShift SDN network provider

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 openshiftSDNConfig:
 vxlanPort: 4800

							

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Cluster Network Operator configuration

					The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.
				

					The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:
				
	clusterNetwork
	
								IP address pools from which pod IP addresses are allocated.
							
	serviceNetwork
	
								IP address pool for services.
							
	defaultNetwork.type
	
								Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
							

					You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.
				
Cluster Network Operator configuration object

						The fields for the Cluster Network Operator (CNO) are described in the following table:
					
Table 4.12. Cluster Network Operator configuration object
	Field	Type	Description
	
										metadata.name
									

									 	
										string
									

									 	
										The name of the CNO object. This name is always cluster.
									

									
	
										spec.clusterNetwork
									

									 	
										array
									

									 	
										A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
									

									
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.serviceNetwork
									

									 	
										array
									

									 	
										A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:
									

									
spec:
 serviceNetwork:
 - 172.30.0.0/14

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.defaultNetwork
									

									 	
										object
									

									 	
										Configures the Container Network Interface (CNI) cluster network provider for the cluster network.
									

									
	
										spec.kubeProxyConfig
									

									 	
										object
									

									 	
										The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.
									

									

defaultNetwork object configuration

						The values for the defaultNetwork object are defined in the following table:
					
Table 4.13. defaultNetwork object
	Field	Type	Description
	
										type
									

									 	
										string
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.
									

									 Note

											OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.
										

									
	
										openshiftSDNConfig
									

									 	
										object
									

									 	
										This object is only valid for the OpenShift SDN cluster network provider.
									

									
	
										ovnKubernetesConfig
									

									 	
										object
									

									 	
										This object is only valid for the OVN-Kubernetes cluster network provider.
									

									

Configuration for the OpenShift SDN CNI cluster network provider

						The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
					
Table 4.14. openshiftSDNConfig object
	Field	Type	Description
	
										mode
									

									 	
										string
									

									 	
										Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.
									

									
										The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.
									

									
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										vxlanPort
									

									 	
										integer
									

									 	
										The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.
									

									
										If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
									

									
										On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.
									

									

Example OpenShift SDN configuration

							

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

						
Configuration for the OVN-Kubernetes CNI cluster network provider

						The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
					
Table 4.15. ovnKubernetesConfig object
	Field	Type	Description
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										genevePort
									

									 	
										integer
									

									 	
										The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.
									

									

Example OVN-Kubernetes configuration

							

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081

						
kubeProxyConfig object configuration

						The values for the kubeProxyConfig object are defined in the following table:
					
Table 4.16. kubeProxyConfig object
	Field	Type	Description
	
										iptablesSyncPeriod
									

									 	
										string
									

									 	
										The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.
									

									 Note

											Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.
										

									
	
										proxyArguments.iptables-min-sync-period
									

									 	
										array
									

									 	
										The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:
									

									
kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

									

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on GCP in a restricted network

				In OpenShift Container Platform 4.6, you can install a cluster on Google Cloud Platform (GCP) in a restricted network by creating an internal mirror of the installation release content on an existing Google Virtual Private Cloud (VPC).
			
Important

					You can install an OpenShift Container Platform cluster by using mirrored installation release content, but your cluster will require internet access to use the GCP APIs.
				

Prerequisites

	
							You mirrored the images for a disconnected installation to your registry and obtained the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							You have an existing VPC in GCP. While installing a cluster in a restricted network that uses installer-provisioned infrastructure, you cannot use the installer-provisioned VPC. You must use a user-provisioned VPC that satisfies one of the following requirements:
						
	
									Contains the mirror registry
								
	
									Has firewall rules or a peering connection to access the mirror registry hosted elsewhere
								

	
							You reviewed details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to. While you might need to grant access to more sites, you must grant access to *.googleapis.com and accounts.google.com.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

	
							Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service account private key file.
						
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"

	
							Verify that the credentials were applied.
						
$ gcloud auth list

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
						
	
							Have the imageContentSources values that were generated during mirror registry creation.
						
	
							Obtain the contents of the certificate for your mirror registry.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select gcp as the platform to target.
										
	
											If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
										
	
											Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
										
	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Edit the install-config.yaml file to provide the additional information that is required for an installation in a restricted network.
						
	
									Update the pullSecret value to contain the authentication information for your registry:
								
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

									For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.
								

	
									Add the additionalTrustBundle parameter and value.
								
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----

									The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
								

	
									Define the network and subnets for the VPC to install the cluster in under the parent platform.gcp field:
								
network: <existing_vpc>
controlPlaneSubnet: <control_plane_subnet>
computeSubnet: <compute_subnet>

									For platform.gcp.network, specify the name for the existing Google VPC. For platform.gcp.controlPlaneSubnet and platform.gcp.computeSubnet, specify the existing subnets to deploy the control plane machines and compute machines, respectively.
								

	
									Add the image content resources, which look like this excerpt:
								
imageContentSources:
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: quay.example.com/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: registry.example.com/ocp/release

									To complete these values, use the imageContentSources that you recorded during mirror registry creation.
								

	
							Make any other modifications to the install-config.yaml file that you require. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 4.17. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 4.18. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 4.19. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Google Cloud Platform (GCP) configuration parameters

							Additional GCP configuration parameters are described in the following table:
						
Table 4.20. Additional GCP parameters
	Parameter	Description	Values
	
											platform.gcp.network
										

										 	
											The name of the existing VPC that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.gcp.region
										

										 	
											The name of the GCP region that hosts your cluster.
										

										 	
											Any valid region name, such as us-central1.
										

										
	
											platform.gcp.type
										

										 	
											The GCP machine type.
										

										 	
											The GCP machine type.
										

										
	
											platform.gcp.zones
										

										 	
											The availability zones where the installation program creates machines for the specified MachinePool.
										

										 	
											A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.
										

										
	
											platform.gcp.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your control plane machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.computeSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your compute machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.licenses
										

										 	
											A list of license URLs that must be applied to the compute images.
										

										 Important

												The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.
											

										 	
											Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installer to copy the source image before use.
										

										
	
											platform.gcp.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes (GB).
										

										 	
											Any size between 16 GB and 65536 GB.
										

										
	
											platform.gcp.osDisk.diskType
										

										 	
											The type of disk.
										

										 	
											Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. The worker nodes can be either type.
										

										

Sample customized install-config.yaml file for GCP

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2] [image: 3]
 hyperthreading: Enabled [image: 4]
 name: master
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-ssd
 diskSizeGB: 1024
 replicas: 3
compute: [image: 5] [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-standard
 diskSizeGB: 128
 replicas: 3
metadata:
 name: test-cluster [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 gcp:
 projectID: openshift-production [image: 9]
 region: us-central1 [image: 10]
 network: existing_vpc [image: 11]
 controlPlaneSubnet: control_plane_subnet [image: 12]
 computeSubnet: compute_subnet [image: 13]
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' [image: 14]
fips: false [image: 15]
sshKey: ssh-ed25519 AAAA... (16)
additionalTrustBundle: | (17)
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
imageContentSources: (18)
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1] [image: 8] [image: 9] [image: 10]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 5]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 6]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4] [image: 7]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.
								

	[image: 11]
	
								Specify the name of an existing VPC.
							

	[image: 12]
	
								Specify the name of the existing subnet to deploy the control plane machines to. The subnet must belong to the VPC that you specified.
							

	[image: 13]
	
								Specify the name of the existing subnet to deploy the compute machines to. The subnet must belong to the VPC that you specified.
							

	[image: 14]
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(17)
	
								Provide the contents of the certificate file that you used for your mirror registry.
							

	(18)
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
						
	
									The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
								
	
									The ~/.gcp/osServiceAccount.json file
								
	
									The gcloud cli default credentials
								

	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
						
	
									If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
								
	
									If you included the Service Account Key Admin role, you can remove it.
								

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Disabling the default OperatorHub sources

					Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
				
Procedure
	
							Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
						
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

					Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
				

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Validate an installation.
						
	
							Customize your cluster.
						
	
							Configure image streams for the Cluster Samples Operator and the must-gather tool.
						
	
							Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on GCP into an existing VPC

				In OpenShift Container Platform version 4.6, you can install a cluster into an existing Virtual Private Cloud (VPC) on Google Cloud Platform (GCP). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure a GCP account to host the cluster.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About using a custom VPC

					In OpenShift Container Platform 4.6, you can deploy a cluster into existing subnets in an existing Virtual Private Cloud (VPC) in Google Cloud Platform (GCP). By deploying OpenShift Container Platform into an existing GCP VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option. You must configure networking for the subnets.
				
Requirements for using your VPC

						The union of the VPC CIDR block and the machine network CIDR must be non-empty. The subnets must be within the machine network.
					

						The installation program does not create the following components:
					
	
								NAT gateways
							
	
								Subnets
							
	
								Route tables
							
	
								VPC network
							

Note

							The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
						

VPC validation

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the subnets that you specify exist.
							
	
								You provide one subnet for control-plane machines and one subnet for compute machines.
							
	
								The subnet’s CIDRs belong to the machine CIDR that you specified.
							

Division of permissions

						Some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
					

Isolation between clusters

						If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:
					
	
								You can install multiple OpenShift Container Platform clusters in the same VPC.
							
	
								ICMP ingress is allowed to the entire network.
							
	
								TCP 22 ingress (SSH) is allowed to the entire network.
							
	
								Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
							
	
								Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

	
							Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service account private key file.
						
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"

	
							Verify that the credentials were applied.
						
$ gcloud auth list

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select gcp as the platform to target.
										
	
											If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
										
	
											Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
										
	
											Select the region to deploy the cluster to.
										
	
											Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
										
	
											Enter a descriptive name for your cluster.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 4.21. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 4.22. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 4.23. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Google Cloud Platform (GCP) configuration parameters

							Additional GCP configuration parameters are described in the following table:
						
Table 4.24. Additional GCP parameters
	Parameter	Description	Values
	
											platform.gcp.network
										

										 	
											The name of the existing VPC that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.gcp.region
										

										 	
											The name of the GCP region that hosts your cluster.
										

										 	
											Any valid region name, such as us-central1.
										

										
	
											platform.gcp.type
										

										 	
											The GCP machine type.
										

										 	
											The GCP machine type.
										

										
	
											platform.gcp.zones
										

										 	
											The availability zones where the installation program creates machines for the specified MachinePool.
										

										 	
											A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.
										

										
	
											platform.gcp.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your control plane machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.computeSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your compute machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.licenses
										

										 	
											A list of license URLs that must be applied to the compute images.
										

										 Important

												The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.
											

										 	
											Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installer to copy the source image before use.
										

										
	
											platform.gcp.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes (GB).
										

										 	
											Any size between 16 GB and 65536 GB.
										

										
	
											platform.gcp.osDisk.diskType
										

										 	
											The type of disk.
										

										 	
											Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. The worker nodes can be either type.
										

										

Sample customized install-config.yaml file for GCP

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2] [image: 3]
 hyperthreading: Enabled [image: 4]
 name: master
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-ssd
 diskSizeGB: 1024
 replicas: 3
compute: [image: 5] [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-standard
 diskSizeGB: 128
 replicas: 3
metadata:
 name: test-cluster [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 gcp:
 projectID: openshift-production [image: 9]
 region: us-central1 [image: 10]
 network: existing_vpc [image: 11]
 controlPlaneSubnet: control_plane_subnet [image: 12]
 computeSubnet: compute_subnet [image: 13]
pullSecret: '{"auths": ...}' [image: 14]
fips: false [image: 15]
sshKey: ssh-ed25519 AAAA... (16)
	[image: 1] [image: 8] [image: 9] [image: 10] [image: 14]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 5]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 6]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4] [image: 7]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.
								

	[image: 11]
	
								Specify the name of an existing VPC.
							

	[image: 12]
	
								Specify the name of the existing subnet to deploy the control plane machines to. The subnet must belong to the VPC that you specified.
							

	[image: 13]
	
								Specify the name of the existing subnet to deploy the compute machines to. The subnet must belong to the VPC that you specified.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
						
	
									The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
								
	
									The ~/.gcp/osServiceAccount.json file
								
	
									The gcloud cli default credentials
								

	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

	
							Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
						
	
									If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
								
	
									If you included the Service Account Key Admin role, you can remove it.
								

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a private cluster on GCP

				In OpenShift Container Platform version 4.6, you can install a private cluster into an existing VPC on Google Cloud Platform (GCP). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Configure a GCP account to host the cluster.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

Private clusters

					You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
				

					By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
				

					To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
				

					Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
				
Private clusters in GCP

						To create a private cluster on Google Cloud Platform (GCP), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.
					

						The cluster still requires access to Internet to access the GCP APIs.
					

						The following items are not required or created when you install a private cluster:
					
	
								Public subnets
							
	
								Public network load balancers, which support public ingress
							
	
								A public DNS zone that matches the baseDomain for the cluster
							

						The installation program does use the baseDomain that you specify to create a private DNS zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
					

						Because it is not possible to limit access to external load balancers based on source tags, the private cluster uses only internal load balancers to allow access to internal instances.
					

						The internal load balancer relies on instance groups rather than the target pools that the network load balancers use. The installation program creates instance groups for each zone, even if there is no instance in that group.
					
	
								The cluster IP address is internal only.
							
	
								One forwarding rule manages both the Kubernetes API and machine config server ports.
							
	
								The backend service is comprised of each zone’s instance group and, while it exists, the bootstrap instance group.
							
	
								The firewall uses a single rule that is based on only internal source ranges.
							

Limitations

							No health check for the Machine config server, /healthz, runs because of a difference in load balancer functionality. Two internal load balancers cannot share a single IP address, but two network load balancers can share a single external IP address. Instead, the health of an instance is determined entirely by the /readyz check on port 6443.
						

About using a custom VPC

					In OpenShift Container Platform 4.6, you can deploy a cluster into an existing VPC in Google Cloud Platform (GCP). If you do, you must also use existing subnets within the VPC and routing rules.
				

					By deploying OpenShift Container Platform into an existing GCP VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself.
				
Requirements for using your VPC

						The installation program will no longer create the following components:
					
	
								VPC
							
	
								Subnets
							
	
								Cloud router
							
	
								Cloud NAT
							
	
								NAT IP addresses
							

						If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VPC options like DHCP, so you must do so before you install the cluster.
					

						Your VPC and subnets must meet the following characteristics:
					
	
								The VPC must be in the same GCP project that you deploy the OpenShift Container Platform cluster to.
							
	
								To allow access to the Internet from the control plane and compute machines, you must configure cloud NAT on the subnets to allow egress to it. These machines do not have a public address. Even if you do not require access to the Internet, you must allow egress to the VPC network to obtain the installation program and images. Because multiple cloud NATs cannot be configured on the shared subnets, the installation program cannot configure it.
							

						To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
					
	
								All the subnets that you specify exist and belong to the VPC that you specified.
							
	
								The subnet CIDRs belong to the machine CIDR.
							
	
								You must provide a subnet to deploy the cluster control plane and compute machines to. You can use the same subnet for both machine types.
							

						If you destroy a cluster that uses an existing VPC, the VPC is not deleted.
					

Division of permissions

						Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or Ingress rules.
					

						The GCP credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage, and nodes.
					

Isolation between clusters

						If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is preserved by firewall rules that reference the machines in your cluster by the cluster’s infrastructure ID. Only traffic within the cluster is allowed.
					

						If you deploy multiple clusters to the same VPC, the following components might share access between clusters:
					
	
								The API, which is globally available with an external publishing strategy or available throughout the network in an internal publishing strategy
							
	
								Debugging tools, such as ports on VM instances that are open to the machine CIDR for SSH and ICMP access
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

	
							Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service account private key file.
						
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"

	
							Verify that the credentials were applied.
						
$ gcloud auth list

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					For installations of a private OpenShift Container Platform cluster that are only accessible from an internal network and are not visible to the Internet, you must manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 4.25. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 4.26. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 4.27. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.
										

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Google Cloud Platform (GCP) configuration parameters

							Additional GCP configuration parameters are described in the following table:
						
Table 4.28. Additional GCP parameters
	Parameter	Description	Values
	
											platform.gcp.network
										

										 	
											The name of the existing VPC that you want to deploy your cluster to.
										

										 	
											String.
										

										
	
											platform.gcp.region
										

										 	
											The name of the GCP region that hosts your cluster.
										

										 	
											Any valid region name, such as us-central1.
										

										
	
											platform.gcp.type
										

										 	
											The GCP machine type.
										

										 	
											The GCP machine type.
										

										
	
											platform.gcp.zones
										

										 	
											The availability zones where the installation program creates machines for the specified MachinePool.
										

										 	
											A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.
										

										
	
											platform.gcp.controlPlaneSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your control plane machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.computeSubnet
										

										 	
											The name of the existing subnet in your VPC that you want to deploy your compute machines to.
										

										 	
											The subnet name.
										

										
	
											platform.gcp.licenses
										

										 	
											A list of license URLs that must be applied to the compute images.
										

										 Important

												The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.
											

										 	
											Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installer to copy the source image before use.
										

										
	
											platform.gcp.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes (GB).
										

										 	
											Any size between 16 GB and 65536 GB.
										

										
	
											platform.gcp.osDisk.diskType
										

										 	
											The type of disk.
										

										 	
											Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. The worker nodes can be either type.
										

										

Sample customized install-config.yaml file for GCP

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2] [image: 3]
 hyperthreading: Enabled [image: 4]
 name: master
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-ssd
 diskSizeGB: 1024
 replicas: 3
compute: [image: 5] [image: 6]
- hyperthreading: Enabled [image: 7]
 name: worker
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 osDisk:
 diskType: pd-standard
 diskSizeGB: 128
 replicas: 3
metadata:
 name: test-cluster [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 gcp:
 projectID: openshift-production [image: 9]
 region: us-central1 [image: 10]
 network: existing_vpc [image: 11]
 controlPlaneSubnet: control_plane_subnet [image: 12]
 computeSubnet: compute_subnet [image: 13]
pullSecret: '{"auths": ...}' [image: 14]
fips: false [image: 15]
sshKey: ssh-ed25519 AAAA... (16)
publish: Internal (17)
	[image: 1] [image: 8] [image: 9] [image: 10] [image: 14]
	
								Required. The installation program prompts you for this value.
							

	[image: 2] [image: 5]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 6]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 4] [image: 7]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.
								

	[image: 11]
	
								Specify the name of an existing VPC.
							

	[image: 12]
	
								Specify the name of the existing subnet to deploy the control plane machines to. The subnet must belong to the VPC that you specified.
							

	[image: 13]
	
								Specify the name of the existing subnet to deploy the compute machines to. The subnet must belong to the VPC that you specified.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(17)
	
								How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the Internet. The default value is External.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Configure an account with the cloud platform that hosts your cluster.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on user-provisioned infrastructure in GCP by using Deployment Manager templates

				In OpenShift Container Platform version 4.6, you can install a cluster on Google Cloud Platform (GCP) that uses infrastructure that you provide.
			

				The steps for performing a user-provided infrastructure install are outlined here. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods.
			
Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Certificate signing requests management

					Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
				

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Configuring your GCP project

					Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.
				
Creating a GCP project

						To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.
					
Procedure
	
								Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
							
Important

									Your GCP project must use the Premium Network Service Tier if you are using installer-provisioned infrastructure. The Standard Network Service Tier is not supported for clusters installed using the installation program. The installation program configures internal load balancing for the api-int.<cluster_name>.<base_domain> URL; the Premium Tier is required for internal load balancing.
								

Enabling API services in GCP

						Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.
					
Prerequisites
	
								You created a project to host your cluster.
							

Procedure
	
								Enable the following required API services in the project that hosts your cluster. See Enabling services in the GCP documentation.
							
Table 4.29. Required API services
	API service	Console service name
	
												Cloud Deployment Manager V2 API
											

											 	
												deploymentmanager.googleapis.com
											

											
	
												Compute Engine API
											

											 	
												compute.googleapis.com
											

											
	
												Google Cloud APIs
											

											 	
												cloudapis.googleapis.com
											

											
	
												Cloud Resource Manager API
											

											 	
												cloudresourcemanager.googleapis.com
											

											
	
												Google DNS API
											

											 	
												dns.googleapis.com
											

											
	
												IAM Service Account Credentials API
											

											 	
												iamcredentials.googleapis.com
											

											
	
												Identity and Access Management (IAM) API
											

											 	
												iam.googleapis.com
											

											
	
												Service Management API
											

											 	
												servicemanagement.googleapis.com
											

											
	
												Service Usage API
											

											 	
												serviceusage.googleapis.com
											

											
	
												Google Cloud Storage JSON API
											

											 	
												storage-api.googleapis.com
											

											
	
												Cloud Storage
											

											 	
												storage-component.googleapis.com
											

											

Configuring DNS for GCP

						To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the same project that you host the OpenShift Container Platform cluster. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.
					
Procedure
	
								Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.
							
Note

									If you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains.
								

	
								Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.
							

								Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
							

	
								Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.
							

								You typically have four name servers.
							

	
								Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
							
	
								If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
							
	
								If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.
							

GCP account limits

						The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.
					

						A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.
					
Table 4.30. GCP resources used in a default cluster
	Service	Component	Location	Total resources required	Resources removed after bootstrap
	
										Service account
									

									 	
										IAM
									

									 	
										Global
									

									 	
										5
									

									 	
										0
									

									
	
										Firewall rules
									

									 	
										Networking
									

									 	
										Global
									

									 	
										11
									

									 	
										1
									

									
	
										Forwarding rules
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Health checks
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Images
									

									 	
										Compute
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Networks
									

									 	
										Networking
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Routers
									

									 	
										Networking
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Routes
									

									 	
										Networking
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Subnetworks
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Target pools
									

									 	
										Networking
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									

Note

							If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region.
						

						Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.
					

						If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:
					
	
								asia-east2
							
	
								asia-northeast2
							
	
								asia-south1
							
	
								australia-southeast1
							
	
								europe-north1
							
	
								europe-west2
							
	
								europe-west3
							
	
								europe-west6
							
	
								northamerica-northeast1
							
	
								southamerica-east1
							
	
								us-west2
							

						You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster.
					

Creating a service account in GCP

						OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.
					
Prerequisites
	
								You created a project to host your cluster.
							

Procedure
	
								Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
							
	
								Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the Owner role to it. See Granting roles to a service account for specific resources.
							
Note

									While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
								

	
								Create the service account key in JSON format. See Creating service account keys in the GCP documentation.
							

								The service account key is required to create a cluster.
							

Required GCP permissions

							When you attach the Owner role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform. To deploy an OpenShift Container Platform cluster, the service account requires the following permissions. If you deploy your cluster into an existing VPC, the service account does not require certain networking permissions, which are noted in the following lists:
						
Required roles for the installation program
	
									Compute Admin
								
	
									Security Admin
								
	
									Service Account Admin
								
	
									Service Account User
								
	
									Storage Admin
								

Required roles for creating network resources during installation
	
									DNS Administrator
								

Required roles for user-provisioned GCP infrastructure
	
									Deployment Manager Editor
								
	
									Service Account Key Admin
								

Optional roles

								For the cluster to create new limited credentials for its Operators, add the following role:
							
	
									Service Account Key Admin
								

							The roles are applied to the service accounts that the control plane and compute machines use:
						
Table 4.31. GCP service account permissions
	Account	Roles
	
											Control Plane
										

										 	
											roles/compute.instanceAdmin
										

										
	
											roles/compute.networkAdmin
										

										
	
											roles/compute.securityAdmin
										

										
	
											roles/storage.admin
										

										
	
											roles/iam.serviceAccountUser
										

										
	
											Compute
										

										 	
											roles/compute.viewer
										

										
	
											roles/storage.admin
										

										

Supported GCP regions

						You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:
					
	
								asia-east1 (Changhua County, Taiwan)
							
	
								asia-east2 (Hong Kong)
							
	
								asia-northeast1 (Tokyo, Japan)
							
	
								asia-northeast2 (Osaka, Japan)
							
	
								asia-northeast3 (Seoul, South Korea)
							
	
								asia-south1 (Mumbai, India)
							
	
								asia-southeast1 (Jurong West, Singapore)
							
	
								asia-southeast2 (Jakarta, Indonesia)
							
	
								australia-southeast1 (Sydney, Australia)
							
	
								europe-north1 (Hamina, Finland)
							
	
								europe-west1 (St. Ghislain, Belgium)
							
	
								europe-west2 (London, England, UK)
							
	
								europe-west3 (Frankfurt, Germany)
							
	
								europe-west4 (Eemshaven, Netherlands)
							
	
								europe-west6 (Zürich, Switzerland)
							
	
								northamerica-northeast1 (Montréal, Québec, Canada)
							
	
								southamerica-east1 (São Paulo, Brazil)
							
	
								us-central1 (Council Bluffs, Iowa, USA)
							
	
								us-east1 (Moncks Corner, South Carolina, USA)
							
	
								us-east4 (Ashburn, Northern Virginia, USA)
							
	
								us-west1 (The Dalles, Oregon, USA)
							
	
								us-west2 (Los Angeles, California, USA)
							
	
								us-west3 (Salt Lake City, Utah, USA)
							
	
								us-west4 (Las Vegas, Nevada, USA)
							

Installing and configuring CLI tools for GCP

						To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must install and configure the CLI tools for GCP.
					
Prerequisites
	
								You created a project to host your cluster.
							
	
								You created a service account and granted it the required permissions.
							

Procedure
	
								Install the following binaries in $PATH:
							
	
										gcloud
									
	
										gsutil
									

								See Install the latest Cloud SDK version in the GCP documentation.
							

	
								Authenticate using the gcloud tool with your configured service account.
							

								See Authorizing with a service account in the GCP documentation.
							

Creating the installation files for GCP

					To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.
				
Optional: Creating a separate /var partition

						It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
					

						OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
					
	
								/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
							
	
								/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
							
	
								/var: Holds data that you might want to keep separate for purposes such as auditing.
							

						Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
					

						Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
					
Important

							If you follow the steps to create a separate /var partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
						

Procedure
	
								Create a directory to hold the OpenShift Container Platform installation files:
							
$ mkdir $HOME/clusterconfig

	
								Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
							
$ openshift-install create manifests --dir $HOME/clusterconfig
Example output

									

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift

								

	
								Optional: Confirm that the installation program created manifests in the clusterconfig/openshift directory:
							
$ ls $HOME/clusterconfig/openshift/
Example output

									

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

								

	
								Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
							
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
										The storage device name of the disk that you want to partition.
									

	[image: 2]
	
										When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
									

	[image: 3]
	
										The size of the data partition in mebibytes.
									

	[image: 4]
	
										The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
									

	[image: 5]
	
										The prjquota mount option must be enabled for filesystems used for container storage.
									

Note

									When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
								

	
								Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
							
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

						Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
					

Creating the installation configuration file

						You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
					
Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
							

Procedure
	
								Create the install-config.yaml file.
							
	
										Change to the directory that contains the installation program and run the following command:
									
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
												For <installation_directory>, specify the directory name to store the files that the installation program creates.
											

Important

											Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
										

	
										At the prompts, provide the configuration details for your cloud:
									
	
												Optional: Select an SSH key to use to access your cluster machines.
											
Note

													For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
												

	
												Select gcp as the platform to target.
											
	
												If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
											
	
												Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
											
	
												Select the region to deploy the cluster to.
											
	
												Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
											
	
												Enter a descriptive name for your cluster.
											
	
												Paste the pull secret from the Red Hat OpenShift Cluster Manager.
											

	
										Optional: If you do not want the cluster to provision compute machines, empty the compute pool by editing the resulting install-config.yaml file to set replicas to 0 for the compute pool:
									
compute:
- hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 0 [image: 1]
	[image: 1]
	
												Set to 0.
											

	
								Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
							
	
								Back up the install-config.yaml file so that you can use it to install multiple clusters.
							
Important

									The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

						Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
					

						The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
					
Important
	
									The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
								
	
									It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
								

Prerequisites
	
								You obtained the OpenShift Container Platform installation program.
							
	
								You created the install-config.yaml installation configuration file.
							

Procedure
	
								Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
									

	
								Remove the Kubernetes manifest files that define the control plane machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

								By removing these files, you prevent the cluster from automatically generating control plane machines.
							

	
								Optional: If you do not want the cluster to provision compute machines, remove the Kubernetes manifest files that define the worker machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

								Because you create and manage the worker machines yourself, you do not need to initialize these machines.
							

	
								Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
							
	
										Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
									
	
										Locate the mastersSchedulable parameter and ensure that it is set to false.
									
	
										Save and exit the file.
									

	
								Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the privateZone and publicZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:
							
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: [image: 1]
 id: mycluster-100419-private-zone
 publicZone: [image: 2]
 id: example.openshift.com
status: {}
	[image: 1] [image: 2]
	
										Remove this section completely.
									

								If you do so, you must add ingress DNS records manually in a later step.
							

	
								To create the Ignition configuration files, run the following command from the directory that contains the installation program:
							
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the same installation directory.
									

								The following files are generated in the directory:
							
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Additional resources
	
								Optional: Adding the ingress DNS records
							

Exporting common variables

Extracting the infrastructure name

						The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Google Cloud Platform (GCP). The infrastructure name is also used to locate the appropriate GCP resources during an OpenShift Container Platform installation. The provided Deployment Manager templates contain references to this infrastructure name, so you must extract it.
					
Prerequisites
	
								You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
							
	
								You generated the Ignition config files for your cluster.
							
	
								You installed the jq package.
							

Procedure
	
								To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
							
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the path to the directory that you stored the installation files in.
									

Example output

									

openshift-vw9j6 [image: 1]

								
	[image: 1]
	
										The output of this command is your cluster name and a random string.
									

Exporting common variables for Deployment Manager templates

						You must export a common set of variables that are used with the provided Deployment Manager templates used to assist in completing a user-provided infrastructure install on Google Cloud Platform (GCP).
					
Note

							Specific Deployment Manager templates can also require additional exported variables, which are detailed in their related procedures.
						

Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
							
	
								Generate the Ignition config files for your cluster.
							
	
								Install the jq package.
							

Procedure
	
								Export the following common variables to be used by the provided Deployment Manager templates:
							
$ export BASE_DOMAIN='<base_domain>'
$ export BASE_DOMAIN_ZONE_NAME='<base_domain_zone_name>'
$ export NETWORK_CIDR='10.0.0.0/16'
$ export MASTER_SUBNET_CIDR='10.0.0.0/19'
$ export WORKER_SUBNET_CIDR='10.0.32.0/19'

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
$ export CLUSTER_NAME=`jq -r .clusterName <installation_directory>/metadata.json`
$ export INFRA_ID=`jq -r .infraID <installation_directory>/metadata.json`
$ export PROJECT_NAME=`jq -r .gcp.projectID <installation_directory>/metadata.json`
$ export REGION=`jq -r .gcp.region <installation_directory>/metadata.json`
	[image: 1]
	
										For <installation_directory>, specify the path to the directory that you stored the installation files in.
									

Creating a VPC in GCP

					You must create a VPC in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements. One way to create the VPC is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						

Procedure
	
							Copy the template from the Deployment Manager template for the VPC section of this topic and save it as 01_vpc.py on your computer. This template describes the VPC that your cluster requires.
						
	
							Create a 01_vpc.yaml resource definition file:
						
$ cat <<EOF >01_vpc.yaml
imports:
- path: 01_vpc.py

resources:
- name: cluster-vpc
 type: 01_vpc.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 region: '${REGION}' [image: 2]
 master_subnet_cidr: '${MASTER_SUBNET_CIDR}' [image: 3]
 worker_subnet_cidr: '${WORKER_SUBNET_CIDR}' [image: 4]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 3]
	
									master_subnet_cidr is the CIDR for the master subnet, for example 10.0.0.0/19.
								

	[image: 4]
	
									worker_subnet_cidr is the CIDR for the worker subnet, for example 10.0.32.0/19.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-vpc --config 01_vpc.yaml

Deployment Manager template for the VPC

						You can use the following Deployment Manager template to deploy the VPC that you need for your OpenShift Container Platform cluster:
					
Example 4.1. 01_vpc.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-network',
 'type': 'compute.v1.network',
 'properties': {
 'region': context.properties['region'],
 'autoCreateSubnetworks': False
 }
 }, {
 'name': context.properties['infra_id'] + '-master-subnet',
 'type': 'compute.v1.subnetwork',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'ipCidrRange': context.properties['master_subnet_cidr']
 }
 }, {
 'name': context.properties['infra_id'] + '-worker-subnet',
 'type': 'compute.v1.subnetwork',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'ipCidrRange': context.properties['worker_subnet_cidr']
 }
 }, {
 'name': context.properties['infra_id'] + '-router',
 'type': 'compute.v1.router',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'nats': [{
 'name': context.properties['infra_id'] + '-nat-master',
 'natIpAllocateOption': 'AUTO_ONLY',
 'minPortsPerVm': 7168,
 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
 'subnetworks': [{
 'name': '$(ref.' + context.properties['infra_id'] + '-master-subnet.selfLink)',
 'sourceIpRangesToNat': ['ALL_IP_RANGES']
 }]
 }, {
 'name': context.properties['infra_id'] + '-nat-worker',
 'natIpAllocateOption': 'AUTO_ONLY',
 'minPortsPerVm': 512,
 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
 'subnetworks': [{
 'name': '$(ref.' + context.properties['infra_id'] + '-worker-subnet.selfLink)',
 'sourceIpRangesToNat': ['ALL_IP_RANGES']
 }]
 }]
 }
 }]

 return {'resources': resources}

Networking requirements for user-provisioned infrastructure

					All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
				

					You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
				
Table 4.32. All machines to all machines
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									VXLAN and Geneve
								

								
	
									6081
								

								 	
									VXLAN and Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								

Table 4.33. All machines to control plane
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 4.34. Control plane machines to control plane machines
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

Network topology requirements

					The infrastructure that you provision for your cluster must meet the following network topology requirements.
				
Important

						OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
					

Load balancers

					Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
				
	
							API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
								
	
									A stateless load balancing algorithm. The options vary based on the load balancer implementation.
								

Important

								Do not configure session persistence for an API load balancer.
							

							Configure the following ports on both the front and back of the load balancers:
						
Table 4.35. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											6443
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
										

										 	
											X
										

										 	
											X
										

										 	
											Kubernetes API server
										

										
	
											22623
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
										

										 	
											X
										

										 	 	
											Machine config server
										

										

Note

								The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
							

	
							Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
								
	
									A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
								

							Configure the following ports on both the front and back of the load balancers:
						
Table 4.36. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											443
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTPS traffic
										

										
	
											80
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTP traffic
										

										

Tip

					If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
				

Note

						A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
					

Creating load balancers in GCP

					You must configure load balancers in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for the internal load balancer section of this topic and save it as 02_lb_int.py on your computer. This template describes the internal load balancing objects that your cluster requires.
						
	
							For an external cluster, also copy the template from the Deployment Manager template for the external load balancer section of this topic and save it as 02_lb_ext.py on your computer. This template describes the external load balancing objects that your cluster requires.
						
	
							Export the variables that the deployment template uses:
						
	
									Export the cluster network location:
								
$ export CLUSTER_NETWORK=(`gcloud compute networks describe ${INFRA_ID}-network --format json | jq -r .selfLink`)

	
									Export the control plane subnet location:
								
$ export CONTROL_SUBNET=(`gcloud compute networks subnets describe ${INFRA_ID}-master-subnet --region=${REGION} --format json | jq -r .selfLink`)

	
									Export the three zones that the cluster uses:
								
$ export ZONE_0=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[0] | cut -d "/" -f9`)
$ export ZONE_1=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[1] | cut -d "/" -f9`)
$ export ZONE_2=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[2] | cut -d "/" -f9`)

	
							Create a 02_infra.yaml resource definition file:
						
$ cat <<EOF >02_infra.yaml
imports:
- path: 02_lb_ext.py
- path: 02_lb_int.py [image: 1]
resources:
- name: cluster-lb-ext [image: 2]
 type: 02_lb_ext.py
 properties:
 infra_id: '${INFRA_ID}' [image: 3]
 region: '${REGION}' [image: 4]
- name: cluster-lb-int
 type: 02_lb_int.py
 properties:
 cluster_network: '${CLUSTER_NETWORK}'
 control_subnet: '${CONTROL_SUBNET}' [image: 5]
 infra_id: '${INFRA_ID}'
 region: '${REGION}'
 zones: [image: 6]
 - '${ZONE_0}'
 - '${ZONE_1}'
 - '${ZONE_2}'
EOF
	[image: 1] [image: 2]
	
									Required only when deploying an external cluster.
								

	[image: 3]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 4]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 5]
	
									control_subnet is the URI to the control subnet.
								

	[image: 6]
	
									zones are the zones to deploy the control plane instances into, like us-east1-b, us-east1-c, and us-east1-d.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-infra --config 02_infra.yaml

	
							Export the cluster IP address:
						
$ export CLUSTER_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-ip --region=${REGION} --format json | jq -r .address`)

	
							For an external cluster, also export the cluster public IP address:
						
$ export CLUSTER_PUBLIC_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-public-ip --region=${REGION} --format json | jq -r .address`)

Deployment Manager template for the external load balancer

						You can use the following Deployment Manager template to deploy the external load balancer that you need for your OpenShift Container Platform cluster:
					
Example 4.2. 02_lb_ext.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-cluster-public-ip',
 'type': 'compute.v1.address',
 'properties': {
 'region': context.properties['region']
 }
 }, {
 # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver
 'name': context.properties['infra_id'] + '-api-http-health-check',
 'type': 'compute.v1.httpHealthCheck',
 'properties': {
 'port': 6080,
 'requestPath': '/readyz'
 }
 }, {
 'name': context.properties['infra_id'] + '-api-target-pool',
 'type': 'compute.v1.targetPool',
 'properties': {
 'region': context.properties['region'],
 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-http-health-check.selfLink)'],
 'instances': []
 }
 }, {
 'name': context.properties['infra_id'] + '-api-forwarding-rule',
 'type': 'compute.v1.forwardingRule',
 'properties': {
 'region': context.properties['region'],
 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-public-ip.selfLink)',
 'target': '$(ref.' + context.properties['infra_id'] + '-api-target-pool.selfLink)',
 'portRange': '6443'
 }
 }]

 return {'resources': resources}

Deployment Manager template for the internal load balancer

						You can use the following Deployment Manager template to deploy the internal load balancer that you need for your OpenShift Container Platform cluster:
					
Example 4.3. 02_lb_int.py Deployment Manager template
def GenerateConfig(context):

 backends = []
 for zone in context.properties['zones']:
 backends.append({
 'group': '$(ref.' + context.properties['infra_id'] + '-master-' + zone + '-instance-group' + '.selfLink)'
 })

 resources = [{
 'name': context.properties['infra_id'] + '-cluster-ip',
 'type': 'compute.v1.address',
 'properties': {
 'addressType': 'INTERNAL',
 'region': context.properties['region'],
 'subnetwork': context.properties['control_subnet']
 }
 }, {
 # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver
 'name': context.properties['infra_id'] + '-api-internal-health-check',
 'type': 'compute.v1.healthCheck',
 'properties': {
 'httpsHealthCheck': {
 'port': 6443,
 'requestPath': '/readyz'
 },
 'type': "HTTPS"
 }
 }, {
 'name': context.properties['infra_id'] + '-api-internal-backend-service',
 'type': 'compute.v1.regionBackendService',
 'properties': {
 'backends': backends,
 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-internal-health-check.selfLink)'],
 'loadBalancingScheme': 'INTERNAL',
 'region': context.properties['region'],
 'protocol': 'TCP',
 'timeoutSec': 120
 }
 }, {
 'name': context.properties['infra_id'] + '-api-internal-forwarding-rule',
 'type': 'compute.v1.forwardingRule',
 'properties': {
 'backendService': '$(ref.' + context.properties['infra_id'] + '-api-internal-backend-service.selfLink)',
 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-ip.selfLink)',
 'loadBalancingScheme': 'INTERNAL',
 'ports': ['6443','22623'],
 'region': context.properties['region'],
 'subnetwork': context.properties['control_subnet']
 }
 }]

 for zone in context.properties['zones']:
 resources.append({
 'name': context.properties['infra_id'] + '-master-' + zone + '-instance-group',
 'type': 'compute.v1.instanceGroup',
 'properties': {
 'namedPorts': [
 {
 'name': 'ignition',
 'port': 22623
 }, {
 'name': 'https',
 'port': 6443
 }
],
 'network': context.properties['cluster_network'],
 'zone': zone
 }
 })

 return {'resources': resources}

						You will need this template in addition to the 02_lb_ext.py template when you create an external cluster.
					

Creating a private DNS zone in GCP

					You must configure a private DNS zone in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create this component is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for the private DNS section of this topic and save it as 02_dns.py on your computer. This template describes the private DNS objects that your cluster requires.
						
	
							Create a 02_dns.yaml resource definition file:
						
$ cat <<EOF >02_dns.yaml
imports:
- path: 02_dns.py

resources:
- name: cluster-dns
 type: 02_dns.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 cluster_domain: '${CLUSTER_NAME}.${BASE_DOMAIN}' [image: 2]
 cluster_network: '${CLUSTER_NETWORK}' [image: 3]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									cluster_domain is the domain for the cluster, for example openshift.example.com.
								

	[image: 3]
	
									cluster_network is the selfLink URL to the cluster network.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-dns --config 02_dns.yaml

	
							The templates do not create DNS entries due to limitations of Deployment Manager, so you must create them manually:
						
	
									Add the internal DNS entries:
								
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api-int.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone

	
									For an external cluster, also add the external DNS entries:
								
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction add ${CLUSTER_PUBLIC_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}

Deployment Manager template for the private DNS

						You can use the following Deployment Manager template to deploy the private DNS that you need for your OpenShift Container Platform cluster:
					
Example 4.4. 02_dns.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-private-zone',
 'type': 'dns.v1.managedZone',
 'properties': {
 'description': '',
 'dnsName': context.properties['cluster_domain'] + '.',
 'visibility': 'private',
 'privateVisibilityConfig': {
 'networks': [{
 'networkUrl': context.properties['cluster_network']
 }]
 }
 }
 }]

 return {'resources': resources}

Creating firewall rules in GCP

					You must create firewall rules in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for firewall rules section of this topic and save it as 03_firewall.py on your computer. This template describes the security groups that your cluster requires.
						
	
							Create a 03_firewall.yaml resource definition file:
						
$ cat <<EOF >03_firewall.yaml
imports:
- path: 03_firewall.py

resources:
- name: cluster-firewall
 type: 03_firewall.py
 properties:
 allowed_external_cidr: '0.0.0.0/0' [image: 1]
 infra_id: '${INFRA_ID}' [image: 2]
 cluster_network: '${CLUSTER_NETWORK}' [image: 3]
 network_cidr: '${NETWORK_CIDR}' [image: 4]
EOF
	[image: 1]
	
									allowed_external_cidr is the CIDR range that can access the cluster API and SSH to the bootstrap host. For an internal cluster, set this value to ${NETWORK_CIDR}.
								

	[image: 2]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 3]
	
									cluster_network is the selfLink URL to the cluster network.
								

	[image: 4]
	
									network_cidr is the CIDR of the VPC network, for example 10.0.0.0/16.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-firewall --config 03_firewall.yaml

Deployment Manager template for firewall rules

						You can use the following Deployment Manager template to deploy the firewall rues that you need for your OpenShift Container Platform cluster:
					
Example 4.5. 03_firewall.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-bootstrap-in-ssh',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['22']
 }],
 'sourceRanges': [context.properties['allowed_external_cidr']],
 'targetTags': [context.properties['infra_id'] + '-bootstrap']
 }
 }, {
 'name': context.properties['infra_id'] + '-api',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['6443']
 }],
 'sourceRanges': [context.properties['allowed_external_cidr']],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-health-checks',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['6080', '6443', '22624']
 }],
 'sourceRanges': ['35.191.0.0/16', '130.211.0.0/22', '209.85.152.0/22', '209.85.204.0/22'],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-etcd',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['2379-2380']
 }],
 'sourceTags': [context.properties['infra_id'] + '-master'],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-control-plane',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['10257']
 },{
 'IPProtocol': 'tcp',
 'ports': ['10259']
 },{
 'IPProtocol': 'tcp',
 'ports': ['22623']
 }],
 'sourceTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-internal-network',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'icmp'
 },{
 'IPProtocol': 'tcp',
 'ports': ['22']
 }],
 'sourceRanges': [context.properties['network_cidr']],
 'targetTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
]
 }
 }, {
 'name': context.properties['infra_id'] + '-internal-cluster',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'udp',
 'ports': ['4789', '6081']
 },{
 'IPProtocol': 'tcp',
 'ports': ['9000-9999']
 },{
 'IPProtocol': 'udp',
 'ports': ['9000-9999']
 },{
 'IPProtocol': 'tcp',
 'ports': ['10250']
 },{
 'IPProtocol': 'tcp',
 'ports': ['30000-32767']
 },{
 'IPProtocol': 'udp',
 'ports': ['30000-32767']
 }],
 'sourceTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
],
 'targetTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
]
 }
 }]

 return {'resources': resources}

Creating IAM roles in GCP

					You must create IAM roles in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for IAM roles section of this topic and save it as 03_iam.py on your computer. This template describes the IAM roles that your cluster requires.
						
	
							Create a 03_iam.yaml resource definition file:
						
$ cat <<EOF >03_iam.yaml
imports:
- path: 03_iam.py
resources:
- name: cluster-iam
 type: 03_iam.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-iam --config 03_iam.yaml

	
							Export the variable for the master service account:
						
$ export MASTER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-m@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
							Export the variable for the worker service account:
						
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
							Export the variable for the subnet that hosts the compute machines:
						
$ export COMPUTE_SUBNET=(`gcloud compute networks subnets describe ${INFRA_ID}-worker-subnet --region=${REGION} --format json | jq -r .selfLink`)

	
							The templates do not create the policy bindings due to limitations of Deployment Manager, so you must create them manually:
						
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.instanceAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.networkAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.securityAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/iam.serviceAccountUser"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/storage.admin"

$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/compute.viewer"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/storage.admin"

	
							Create a service account key and store it locally for later use:
						
$ gcloud iam service-accounts keys create service-account-key.json --iam-account=${MASTER_SERVICE_ACCOUNT}

Deployment Manager template for IAM roles

						You can use the following Deployment Manager template to deploy the IAM roles that you need for your OpenShift Container Platform cluster:
					
Example 4.6. 03_iam.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-master-node-sa',
 'type': 'iam.v1.serviceAccount',
 'properties': {
 'accountId': context.properties['infra_id'] + '-m',
 'displayName': context.properties['infra_id'] + '-master-node'
 }
 }, {
 'name': context.properties['infra_id'] + '-worker-node-sa',
 'type': 'iam.v1.serviceAccount',
 'properties': {
 'accountId': context.properties['infra_id'] + '-w',
 'displayName': context.properties['infra_id'] + '-worker-node'
 }
 }]

 return {'resources': resources}

Creating the RHCOS cluster image for the GCP infrastructure

					You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Google Cloud Platform (GCP) for your OpenShift Container Platform nodes.
				
Procedure
	
							Obtain the RHCOS image from the RHCOS image mirror page.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
							

							The file name contains the OpenShift Container Platform version number in the format rhcos-<version>-<arch>-gcp.<arch>.tar.gz.
						

	
							Create the Google storage bucket:
						
$ gsutil mb gs://<bucket_name>

	
							Upload the RHCOS image to the Google storage bucket:
						
$ gsutil cp <downloaded_image_file_path>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz gs://<bucket_name>

	
							Export the uploaded RHCOS image location as a variable:
						
$ export IMAGE_SOURCE="gs://<bucket_name>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz"

	
							Create the cluster image:
						
$ gcloud compute images create "${INFRA_ID}-rhcos-image" \
 --source-uri="${IMAGE_SOURCE}"

Creating the bootstrap machine in GCP

					You must create the bootstrap machine in Google Cloud Platform (GCP) to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Ensure pyOpenSSL is installed.
						

Procedure
	
							Copy the template from the Deployment Manager template for the bootstrap machine section of this topic and save it as 04_bootstrap.py on your computer. This template describes the bootstrap machine that your cluster requires.
						
	
							Export the location of the Red Hat Enterprise Linux CoreOS (RHCOS) image that the installation program requires:
						
$ export CLUSTER_IMAGE=(`gcloud compute images describe ${INFRA_ID}-rhcos-image --format json | jq -r .selfLink`)

	
							Create a bucket and upload the bootstrap.ign file:
						
$ gsutil mb gs://${INFRA_ID}-bootstrap-ignition
$ gsutil cp <installation_directory>/bootstrap.ign gs://${INFRA_ID}-bootstrap-ignition/

	
							Create a signed URL for the bootstrap instance to use to access the Ignition config. Export the URL from the output as a variable:
						
$ export BOOTSTRAP_IGN=`gsutil signurl -d 1h service-account-key.json gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign | grep "^gs:" | awk '{print $5}'`

	
							Create a 04_bootstrap.yaml resource definition file:
						
$ cat <<EOF >04_bootstrap.yaml
imports:
- path: 04_bootstrap.py

resources:
- name: cluster-bootstrap
 type: 04_bootstrap.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 region: '${REGION}' [image: 2]
 zone: '${ZONE_0}' [image: 3]

 cluster_network: '${CLUSTER_NETWORK}' [image: 4]
 control_subnet: '${CONTROL_SUBNET}' [image: 5]
 image: '${CLUSTER_IMAGE}' [image: 6]
 machine_type: 'n1-standard-4' [image: 7]
 root_volume_size: '128' [image: 8]

 bootstrap_ign: '${BOOTSTRAP_IGN}' [image: 9]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 3]
	
									zone is the zone to deploy the bootstrap instance into, for example us-central1-b.
								

	[image: 4]
	
									cluster_network is the selfLink URL to the cluster network.
								

	[image: 5]
	
									control_subnet is the selfLink URL to the control subnet.
								

	[image: 6]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 7]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 8]
	
									root_volume_size is the boot disk size for the bootstrap machine.
								

	[image: 9]
	
									bootstrap_ign is the URL output when creating a signed URL.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-bootstrap --config 04_bootstrap.yaml

	
							The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the bootstrap machine manually.
						
	
									Add the bootstrap instance to the internal load balancer instance group:
								
$ gcloud compute instance-groups unmanaged add-instances \
 ${INFRA_ID}-bootstrap-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-bootstrap

	
									Add the bootstrap instance group to the internal load balancer backend service:
								
$ gcloud compute backend-services add-backend \
 ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}

Deployment Manager template for the bootstrap machine

						You can use the following Deployment Manager template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
					
Example 4.7. 04_bootstrap.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-bootstrap-public-ip',
 'type': 'compute.v1.address',
 'properties': {
 'region': context.properties['region']
 }
 }, {
 'name': context.properties['infra_id'] + '-bootstrap',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': '{"ignition":{"config":{"replace":{"source":"' + context.properties['bootstrap_ign'] + '"}},"version":"3.1.0"}}',
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet'],
 'accessConfigs': [{
 'natIP': '$(ref.' + context.properties['infra_id'] + '-bootstrap-public-ip.address)'
 }]
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-bootstrap'
]
 },
 'zone': context.properties['zone']
 }
 }, {
 'name': context.properties['infra_id'] + '-bootstrap-instance-group',
 'type': 'compute.v1.instanceGroup',
 'properties': {
 'namedPorts': [
 {
 'name': 'ignition',
 'port': 22623
 }, {
 'name': 'https',
 'port': 6443
 }
],
 'network': context.properties['cluster_network'],
 'zone': context.properties['zone']
 }
 }]

 return {'resources': resources}

Creating the control plane machines in GCP

					You must create the control plane machines in Google Cloud Platform (GCP) for your cluster to use. One way to create these machines is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						

Procedure
	
							Copy the template from the Deployment Manager template for control plane machines section of this topic and save it as 05_control_plane.py on your computer. This template describes the control plane machines that your cluster requires.
						
	
							Export the following variable required by the resource definition:
						
$ export MASTER_IGNITION=`cat <installation_directory>/master.ign`

	
							Create a 05_control_plane.yaml resource definition file:
						
$ cat <<EOF >05_control_plane.yaml
imports:
- path: 05_control_plane.py

resources:
- name: cluster-control-plane
 type: 05_control_plane.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 zones: [image: 2]
 - '${ZONE_0}'
 - '${ZONE_1}'
 - '${ZONE_2}'

 control_subnet: '${CONTROL_SUBNET}' [image: 3]
 image: '${CLUSTER_IMAGE}' [image: 4]
 machine_type: 'n1-standard-4' [image: 5]
 root_volume_size: '128'
 service_account_email: '${MASTER_SERVICE_ACCOUNT}' [image: 6]

 ignition: '${MASTER_IGNITION}' [image: 7]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									zones are the zones to deploy the control plane instances into, for example us-central1-a, us-central1-b, and us-central1-c.
								

	[image: 3]
	
									control_subnet is the selfLink URL to the control subnet.
								

	[image: 4]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 5]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 6]
	
									service_account_email is the email address for the master service account that you created.
								

	[image: 7]
	
									ignition is the contents of the master.ign file.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-control-plane --config 05_control_plane.yaml

	
							The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the control plane machines manually.
						
	
									Run the following commands to add the control plane machines to the appropriate instance groups:
								
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_0}-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-master-0
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_1}-instance-group --zone=${ZONE_1} --instances=${INFRA_ID}-master-1
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_2}-instance-group --zone=${ZONE_2} --instances=${INFRA_ID}-master-2

	
									For an external cluster, you must also run the following commands to add the control plane machines to the target pools:
								
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-master-0
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_1}" --instances=${INFRA_ID}-master-1
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_2}" --instances=${INFRA_ID}-master-2

Deployment Manager template for control plane machines

						You can use the following Deployment Manager template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
					
Example 4.8. 05_control_plane.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-master-0',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][0] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][0] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][0]
 }
 }, {
 'name': context.properties['infra_id'] + '-master-1',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][1] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][1] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][1]
 }
 }, {
 'name': context.properties['infra_id'] + '-master-2',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][2] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][2] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][2]
 }
 }]

 return {'resources': resources}

Wait for bootstrap completion and remove bootstrap resources in GCP

					After you create all of the required infrastructure in Google Cloud Platform (GCP), wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Change to the directory that contains the installation program and run the following command:
						
$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ [image: 1]
 --log-level info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

							If the command exits without a FATAL warning, your production control plane has initialized.
						

	
							Delete the bootstrap resources:
						
$ gcloud compute backend-services remove-backend ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}
$ gsutil rm gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign
$ gsutil rb gs://${INFRA_ID}-bootstrap-ignition
$ gcloud deployment-manager deployments delete ${INFRA_ID}-bootstrap

Creating additional worker machines in GCP

					You can create worker machines in Google Cloud Platform (GCP) for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
				

					In this example, you manually launch one instance by using the Deployment Manager template. Additional instances can be launched by including additional resources of type 06_worker.py in the file.
				
Note

						If you do not use the provided Deployment Manager template to create your worker machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Copy the template from the Deployment Manager template for worker machines section of this topic and save it as 06_worker.py on your computer. This template describes the worker machines that your cluster requires.
						
	
							Export the variables that the resource definition uses.
						
	
									Export the subnet that hosts the compute machines:
								
$ export COMPUTE_SUBNET=(`gcloud compute networks subnets describe ${INFRA_ID}-worker-subnet --region=${REGION} --format json | jq -r .selfLink`)

	
									Export the email address for your service account:
								
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
									Export the location of the compute machine Ignition config file:
								
$ export WORKER_IGNITION=`cat <installation_directory>/worker.ign`

	
							Create a 06_worker.yaml resource definition file:
						
$ cat <<EOF >06_worker.yaml
imports:
- path: 06_worker.py

resources:
- name: 'worker-0' [image: 1]
 type: 06_worker.py
 properties:
 infra_id: '${INFRA_ID}' [image: 2]
 zone: '${ZONE_0}' [image: 3]
 compute_subnet: '${COMPUTE_SUBNET}' [image: 4]
 image: '${CLUSTER_IMAGE}' [image: 5]
 machine_type: 'n1-standard-4' [image: 6]
 root_volume_size: '128'
 service_account_email: '${WORKER_SERVICE_ACCOUNT}' [image: 7]
 ignition: '${WORKER_IGNITION}' [image: 8]
- name: 'worker-1'
 type: 06_worker.py
 properties:
 infra_id: '${INFRA_ID}' [image: 9]
 zone: '${ZONE_1}' [image: 10]
 compute_subnet: '${COMPUTE_SUBNET}' [image: 11]
 image: '${CLUSTER_IMAGE}' [image: 12]
 machine_type: 'n1-standard-4' [image: 13]
 root_volume_size: '128'
 service_account_email: '${WORKER_SERVICE_ACCOUNT}' [image: 14]
 ignition: '${WORKER_IGNITION}' [image: 15]
EOF
	[image: 1]
	
									name is the name of the worker machine, for example worker-0.
								

	[image: 2] [image: 9]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 3] [image: 10]
	
									zone is the zone to deploy the worker machine into, for example us-central1-a.
								

	[image: 4] [image: 11]
	
									compute_subnet is the selfLink URL to the compute subnet.
								

	[image: 5] [image: 12]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 6] [image: 13]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 7] [image: 14]
	
									service_account_email is the email address for the worker service account that you created.
								

	[image: 8] [image: 15]
	
									ignition is the contents of the worker.ign file.
								

	
							Optional: If you want to launch additional instances, include additional resources of type 06_worker.py in your 06_worker.yaml resource definition file.
						
	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-worker --config 06_worker.yaml

Deployment Manager template for worker machines

						You can use the following Deployment Manager template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
					
Example 4.9. 06_worker.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-' + context.env['name'],
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['compute_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-worker',
]
 },
 'zone': context.properties['zone']
 }
 }]

 return {'resources': resources}

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Optional: Adding the ingress DNS records

					If you removed the DNS zone configuration when creating Kubernetes manifests and generating Ignition configs, you must manually create DNS records that point at the ingress load balancer. You can create either a wildcard *.apps.{baseDomain}. or specific records. You can use A, CNAME, and other records per your requirements.
				
Prerequisites
	
							Configure a GCP account.
						
	
							Remove the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						
	
							Create the worker machines.
						

Procedure
	
							Wait for the Ingress router to create a load balancer and populate the EXTERNAL-IP field:
						
$ oc -n openshift-ingress get service router-default
Example output

								

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
router-default LoadBalancer 172.30.18.154 35.233.157.184 80:32288/TCP,443:31215/TCP 98

							

	
							Add the A record to your zones:
						
	
									To use A records:
								
	
											Export the variable for the router IP address:
										
$ export ROUTER_IP=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'`

	
											Add the A record to the private zones:
										
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction add ${ROUTER_IP} --name *.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone

	
											For an external cluster, also add the A record to the public zones:
										
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction add ${ROUTER_IP} --name *.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}

	
									To add explicit domains instead of using a wildcard, create entries for each of the cluster’s current routes:
								
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output

										

oauth-openshift.apps.your.cluster.domain.example.com
console-openshift-console.apps.your.cluster.domain.example.com
downloads-openshift-console.apps.your.cluster.domain.example.com
alertmanager-main-openshift-monitoring.apps.your.cluster.domain.example.com
grafana-openshift-monitoring.apps.your.cluster.domain.example.com
prometheus-k8s-openshift-monitoring.apps.your.cluster.domain.example.com

									

Completing a GCP installation on user-provisioned infrastructure

					After you start the OpenShift Container Platform installation on Google Cloud Platform (GCP) user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
				
Prerequisites
	
							Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned GCP infrastructure.
						
	
							Install the oc CLI and log in.
						

Procedure
	
							Complete the cluster installation:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Observe the running state of your cluster.
						
	
									Run the following command to view the current cluster version and status:
								
$ oc get clusterversion
Example output

										

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version False True 24m Working towards 4.5.4: 99% complete

									

	
									Run the following command to view the Operators managed on the control plane by the Cluster Version Operator (CVO):
								
$ oc get clusteroperators
Example output

										

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.5.4 True False False 7m56s
cloud-credential 4.5.4 True False False 31m
cluster-autoscaler 4.5.4 True False False 16m
console 4.5.4 True False False 10m
csi-snapshot-controller 4.5.4 True False False 16m
dns 4.5.4 True False False 22m
etcd 4.5.4 False False False 25s
image-registry 4.5.4 True False False 16m
ingress 4.5.4 True False False 16m
insights 4.5.4 True False False 17m
kube-apiserver 4.5.4 True False False 19m
kube-controller-manager 4.5.4 True False False 20m
kube-scheduler 4.5.4 True False False 20m
kube-storage-version-migrator 4.5.4 True False False 16m
machine-api 4.5.4 True False False 22m
machine-config 4.5.4 True False False 22m
marketplace 4.5.4 True False False 16m
monitoring 4.5.4 True False False 10m
network 4.5.4 True False False 23m
node-tuning 4.5.4 True False False 23m
openshift-apiserver 4.5.4 True False False 17m
openshift-controller-manager 4.5.4 True False False 15m
openshift-samples 4.5.4 True False False 16m
operator-lifecycle-manager 4.5.4 True False False 22m
operator-lifecycle-manager-catalog 4.5.4 True False False 22m
operator-lifecycle-manager-packageserver 4.5.4 True False False 18m
service-ca 4.5.4 True False False 23m
service-catalog-apiserver 4.5.4 True False False 23m
service-catalog-controller-manager 4.5.4 True False False 23m
storage 4.5.4 True False False 17m

									

	
									Run the following command to view your cluster pods:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-member-ip-10-0-3-111.us-east-2.compute.internal 1/1 Running 0 35m
kube-system etcd-member-ip-10-0-3-239.us-east-2.compute.internal 1/1 Running 0 37m
kube-system etcd-member-ip-10-0-3-24.us-east-2.compute.internal 1/1 Running 0 35m
openshift-apiserver-operator openshift-apiserver-operator-6d6674f4f4-h7t2t 1/1 Running 1 37m
openshift-apiserver apiserver-fm48r 1/1 Running 0 30m
openshift-apiserver apiserver-fxkvv 1/1 Running 0 29m
openshift-apiserver apiserver-q85nm 1/1 Running 0 29m
...
openshift-service-ca-operator openshift-service-ca-operator-66ff6dc6cd-9r257 1/1 Running 0 37m
openshift-service-ca apiservice-cabundle-injector-695b6bcbc-cl5hm 1/1 Running 0 35m
openshift-service-ca configmap-cabundle-injector-8498544d7-25qn6 1/1 Running 0 35m
openshift-service-ca service-serving-cert-signer-6445fc9c6-wqdqn 1/1 Running 0 35m
openshift-service-catalog-apiserver-operator openshift-service-catalog-apiserver-operator-549f44668b-b5q2w 1/1 Running 0 32m
openshift-service-catalog-controller-manager-operator openshift-service-catalog-controller-manager-operator-b78cr2lnm 1/1 Running 0 31m

									

							When the current cluster version is AVAILABLE, the installation is complete.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster into a shared VPC on GCP using Deployment Manager templates

				In OpenShift Container Platform version 4.6, you can install a cluster into a shared Virtual Private Cloud (VPC) on Google Cloud Platform (GCP) that uses infrastructure that you provide. In this context, a cluster installed into a shared VPC is a cluster that is configured to use a VPC from a project different from where the cluster is being deployed.
			

				A shared VPC enables an organization to connect resources from multiple projects to a common VPC network. You can communicate within the organization securely and efficiently by using internal IPs from that network. For more information about shared VPC, see Shared VPC overview in the GCP documentation.
			

				The steps for performing a user-provided infrastructure installation into a shared VPC are outlined here. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods.
			
Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Certificate signing requests management

					Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
				

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Configuring the GCP project that hosts your cluster

					Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.
				
Creating a GCP project

						To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.
					
Procedure
	
								Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
							
Important

									Your GCP project must use the Premium Network Service Tier if you are using installer-provisioned infrastructure. The Standard Network Service Tier is not supported for clusters installed using the installation program. The installation program configures internal load balancing for the api-int.<cluster_name>.<base_domain> URL; the Premium Tier is required for internal load balancing.
								

Enabling API services in GCP

						Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.
					
Prerequisites
	
								You created a project to host your cluster.
							

Procedure
	
								Enable the following required API services in the project that hosts your cluster. See Enabling services in the GCP documentation.
							
Table 4.37. Required API services
	API service	Console service name
	
												Cloud Deployment Manager V2 API
											

											 	
												deploymentmanager.googleapis.com
											

											
	
												Compute Engine API
											

											 	
												compute.googleapis.com
											

											
	
												Google Cloud APIs
											

											 	
												cloudapis.googleapis.com
											

											
	
												Cloud Resource Manager API
											

											 	
												cloudresourcemanager.googleapis.com
											

											
	
												Google DNS API
											

											 	
												dns.googleapis.com
											

											
	
												IAM Service Account Credentials API
											

											 	
												iamcredentials.googleapis.com
											

											
	
												Identity and Access Management (IAM) API
											

											 	
												iam.googleapis.com
											

											
	
												Service Management API
											

											 	
												servicemanagement.googleapis.com
											

											
	
												Service Usage API
											

											 	
												serviceusage.googleapis.com
											

											
	
												Google Cloud Storage JSON API
											

											 	
												storage-api.googleapis.com
											

											
	
												Cloud Storage
											

											 	
												storage-component.googleapis.com
											

											

GCP account limits

						The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.
					

						A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.
					
Table 4.38. GCP resources used in a default cluster
	Service	Component	Location	Total resources required	Resources removed after bootstrap
	
										Service account
									

									 	
										IAM
									

									 	
										Global
									

									 	
										5
									

									 	
										0
									

									
	
										Firewall rules
									

									 	
										Networking
									

									 	
										Global
									

									 	
										11
									

									 	
										1
									

									
	
										Forwarding rules
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Health checks
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Images
									

									 	
										Compute
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Networks
									

									 	
										Networking
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Routers
									

									 	
										Networking
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Routes
									

									 	
										Networking
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Subnetworks
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Target pools
									

									 	
										Networking
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									

Note

							If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region.
						

						Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.
					

						If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:
					
	
								asia-east2
							
	
								asia-northeast2
							
	
								asia-south1
							
	
								australia-southeast1
							
	
								europe-north1
							
	
								europe-west2
							
	
								europe-west3
							
	
								europe-west6
							
	
								northamerica-northeast1
							
	
								southamerica-east1
							
	
								us-west2
							

						You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster.
					

Creating a service account in GCP

						OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.
					
Prerequisites
	
								You created a project to host your cluster.
							

Procedure
	
								Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
							
	
								Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the Owner role to it. See Granting roles to a service account for specific resources.
							
Note

									While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
								

	
								Create the service account key in JSON format. See Creating service account keys in the GCP documentation.
							

								The service account key is required to create a cluster.
							

Required GCP permissions

							When you attach the Owner role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform. To deploy an OpenShift Container Platform cluster, the service account requires the following permissions. If you deploy your cluster into an existing VPC, the service account does not require certain networking permissions, which are noted in the following lists:
						
Required roles for the installation program
	
									Compute Admin
								
	
									Security Admin
								
	
									Service Account Admin
								
	
									Service Account User
								
	
									Storage Admin
								

Required roles for creating network resources during installation
	
									DNS Administrator
								

Required roles for user-provisioned GCP infrastructure
	
									Deployment Manager Editor
								
	
									Service Account Key Admin
								

Optional roles

								For the cluster to create new limited credentials for its Operators, add the following role:
							
	
									Service Account Key Admin
								

							The roles are applied to the service accounts that the control plane and compute machines use:
						
Table 4.39. GCP service account permissions
	Account	Roles
	
											Control Plane
										

										 	
											roles/compute.instanceAdmin
										

										
	
											roles/compute.networkAdmin
										

										
	
											roles/compute.securityAdmin
										

										
	
											roles/storage.admin
										

										
	
											roles/iam.serviceAccountUser
										

										
	
											Compute
										

										 	
											roles/compute.viewer
										

										
	
											roles/storage.admin
										

										

Supported GCP regions

						You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:
					
	
								asia-east1 (Changhua County, Taiwan)
							
	
								asia-east2 (Hong Kong)
							
	
								asia-northeast1 (Tokyo, Japan)
							
	
								asia-northeast2 (Osaka, Japan)
							
	
								asia-northeast3 (Seoul, South Korea)
							
	
								asia-south1 (Mumbai, India)
							
	
								asia-southeast1 (Jurong West, Singapore)
							
	
								asia-southeast2 (Jakarta, Indonesia)
							
	
								australia-southeast1 (Sydney, Australia)
							
	
								europe-north1 (Hamina, Finland)
							
	
								europe-west1 (St. Ghislain, Belgium)
							
	
								europe-west2 (London, England, UK)
							
	
								europe-west3 (Frankfurt, Germany)
							
	
								europe-west4 (Eemshaven, Netherlands)
							
	
								europe-west6 (Zürich, Switzerland)
							
	
								northamerica-northeast1 (Montréal, Québec, Canada)
							
	
								southamerica-east1 (São Paulo, Brazil)
							
	
								us-central1 (Council Bluffs, Iowa, USA)
							
	
								us-east1 (Moncks Corner, South Carolina, USA)
							
	
								us-east4 (Ashburn, Northern Virginia, USA)
							
	
								us-west1 (The Dalles, Oregon, USA)
							
	
								us-west2 (Los Angeles, California, USA)
							
	
								us-west3 (Salt Lake City, Utah, USA)
							
	
								us-west4 (Las Vegas, Nevada, USA)
							

Installing and configuring CLI tools for GCP

						To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must install and configure the CLI tools for GCP.
					
Prerequisites
	
								You created a project to host your cluster.
							
	
								You created a service account and granted it the required permissions.
							

Procedure
	
								Install the following binaries in $PATH:
							
	
										gcloud
									
	
										gsutil
									

								See Install the latest Cloud SDK version in the GCP documentation.
							

	
								Authenticate using the gcloud tool with your configured service account.
							

								See Authorizing with a service account in the GCP documentation.
							

Configuring the GCP project that hosts your shared VPC network

					If you use a shared Virtual Private Cloud (VPC) to host your OpenShift Container Platform cluster in Google Cloud Platform (GCP), you must configure the project that hosts it.
				
Note

						If you already have a project that hosts the shared VPC network, review this section to ensure that the project meets all of the requirements to install an OpenShift Container Platform cluster.
					

Procedure
	
							Create a project to host the shared VPC for your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
						
	
							Create a service account in the project that hosts your shared VPC. See Creating a service account in the GCP documentation.
						
	
							Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the Owner role to it. See Granting roles to a service account for specific resources.
						
Note

								While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
							

								The service account for the project that hosts the shared VPC network requires the following roles:
							
	
										Compute Network User
									
	
										Compute Security Admin
									
	
										Deployment Manager Editor
									
	
										DNS Administrator
									
	
										Security Admin
									
	
										Network Management Admin
									

Configuring DNS for GCP

						To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the project that hosts the shared VPC that you install the cluster into. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.
					
Procedure
	
								Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.
							
Note

									If you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains.
								

	
								Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.
							

								Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
							

	
								Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.
							

								You typically have four name servers.
							

	
								Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
							
	
								If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
							
	
								If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.
							

Creating a VPC in GCP

						You must create a VPC in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements. One way to create the VPC is to modify the provided Deployment Manager template.
					
Note

							If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
						

Prerequisites
	
								Configure a GCP account.
							

Procedure
	
								Copy the template from the Deployment Manager template for the VPC section of this topic and save it as 01_vpc.py on your computer. This template describes the VPC that your cluster requires.
							
	
								Export the following variables required by the resource definition:
							
	
										Export the control plane CIDR:
									
$ export MASTER_SUBNET_CIDR='10.0.0.0/19'

	
										Export the compute CIDR:
									
$ export WORKER_SUBNET_CIDR='10.0.32.0/19'

	
										Export the region to deploy the VPC network and cluster to:
									
$ export REGION='<region>'

	
								Export the variable for the ID of the project that hosts the shared VPC:
							
$ export HOST_PROJECT=<host_project>

	
								Export the variable for the email of the service account that belongs to host project:
							
$ export HOST_PROJECT_ACCOUNT=<host_service_account_email>

	
								Create a 01_vpc.yaml resource definition file:
							
$ cat <<EOF >01_vpc.yaml
imports:
- path: 01_vpc.py

resources:
- name: cluster-vpc
 type: 01_vpc.py
 properties:
 infra_id: '<prefix>' [image: 1]
 region: '${REGION}' [image: 2]
 master_subnet_cidr: '${MASTER_SUBNET_CIDR}' [image: 3]
 worker_subnet_cidr: '${WORKER_SUBNET_CIDR}' [image: 4]
EOF
	[image: 1]
	
										infra_id is the prefix of the network name.
									

	[image: 2]
	
										region is the region to deploy the cluster into, for example us-central1.
									

	[image: 3]
	
										master_subnet_cidr is the CIDR for the master subnet, for example 10.0.0.0/19.
									

	[image: 4]
	
										worker_subnet_cidr is the CIDR for the worker subnet, for example 10.0.32.0/19.
									

	
								Create the deployment by using the gcloud CLI:
							
$ gcloud deployment-manager deployments create <vpc_deployment_name> --config 01_vpc.yaml --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} [image: 1]
	[image: 1]
	
										For <vpc_deployment_name>, specify the name of the VPC to deploy.
									

	
								Export the VPC variable that other components require:
							
	
										Export the name of the host project network:
									
$ export HOST_PROJECT_NETWORK=<vpc_network>

	
										Export the name of the host project control plane subnet:
									
$ export HOST_PROJECT_CONTROL_SUBNET=<control_plane_subnet>

	
										Export the name of the host project compute subnet:
									
$ export HOST_PROJECT_COMPUTE_SUBNET=<compute_subnet>

	
								Set up the shared VPC. See Setting up Shared VPC in the GCP documentation.
							

Deployment Manager template for the VPC

							You can use the following Deployment Manager template to deploy the VPC that you need for your OpenShift Container Platform cluster:
						
Example 4.10. 01_vpc.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-network',
 'type': 'compute.v1.network',
 'properties': {
 'region': context.properties['region'],
 'autoCreateSubnetworks': False
 }
 }, {
 'name': context.properties['infra_id'] + '-master-subnet',
 'type': 'compute.v1.subnetwork',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'ipCidrRange': context.properties['master_subnet_cidr']
 }
 }, {
 'name': context.properties['infra_id'] + '-worker-subnet',
 'type': 'compute.v1.subnetwork',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'ipCidrRange': context.properties['worker_subnet_cidr']
 }
 }, {
 'name': context.properties['infra_id'] + '-router',
 'type': 'compute.v1.router',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'nats': [{
 'name': context.properties['infra_id'] + '-nat-master',
 'natIpAllocateOption': 'AUTO_ONLY',
 'minPortsPerVm': 7168,
 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
 'subnetworks': [{
 'name': '$(ref.' + context.properties['infra_id'] + '-master-subnet.selfLink)',
 'sourceIpRangesToNat': ['ALL_IP_RANGES']
 }]
 }, {
 'name': context.properties['infra_id'] + '-nat-worker',
 'natIpAllocateOption': 'AUTO_ONLY',
 'minPortsPerVm': 512,
 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
 'subnetworks': [{
 'name': '$(ref.' + context.properties['infra_id'] + '-worker-subnet.selfLink)',
 'sourceIpRangesToNat': ['ALL_IP_RANGES']
 }]
 }]
 }
 }]

 return {'resources': resources}

Creating the installation files for GCP

					To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.
				
Manually creating the installation configuration file

						For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
					
Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the access token for your cluster.
							

Procedure
	
								Create an installation directory to store your required installation assets in:
							
$ mkdir <installation_directory>
Important

									You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
								

	
								Customize the following install-config.yaml file template and save it in the <installation_directory>.
							
Note

									You must name this configuration file install-config.yaml.
								

	
								Back up the install-config.yaml file so that you can use it to install multiple clusters.
							
Important

									The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
								

Sample customized install-config.yaml file for GCP

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
Important

							This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
						

apiVersion: v1
baseDomain: example.com [image: 1]
controlPlane: [image: 2]
 hyperthreading: Enabled [image: 3] [image: 4]
 name: master
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 replicas: 3
compute: [image: 5]
- hyperthreading: Enabled [image: 6]
 name: worker
 platform:
 gcp:
 type: n2-standard-4
 zones:
 - us-central1-a
 - us-central1-c
 replicas: 0
metadata:
 name: test-cluster
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 gcp:
 projectID: openshift-production [image: 7]
 region: us-central1 [image: 8]
pullSecret: '{"auths": ...}'
fips: false [image: 9]
sshKey: ssh-ed25519 AAAA... [image: 10]
publish: Internal [image: 11]
	[image: 1]
	
								Specify the public DNS on the host project.
							

	[image: 2] [image: 5]
	
								If you do not provide these parameters and values, the installation program provides the default value.
							

	[image: 3] [image: 6]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used.
							

	[image: 4]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.
								

	[image: 7]
	
								Specify the main project where the VM instances reside.
							

	[image: 8]
	
								Specify the region that your VPC network is in.
							

	[image: 9]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 10]
	
								You can optionally provide the sshKey value that you use to access the machines in your cluster.
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	[image: 11]
	
								How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the Internet. The default value is External. To use a shared VPC in a cluster that uses infrastructure that you provision, you must set publish to Internal. The installation program will no longer be able to access the public DNS zone for the base domain in the host project.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

						Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
					

						The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
					
Important
	
									The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
								
	
									It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
								

Prerequisites
	
								You obtained the OpenShift Container Platform installation program.
							
	
								You created the install-config.yaml installation configuration file.
							

Procedure
	
								Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
									

	
								Remove the Kubernetes manifest files that define the control plane machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

								By removing these files, you prevent the cluster from automatically generating control plane machines.
							

	
								Remove the Kubernetes manifest files that define the worker machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

								Because you create and manage the worker machines yourself, you do not need to initialize these machines.
							

	
								Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
							
	
										Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
									
	
										Locate the mastersSchedulable parameter and ensure that it is set to false.
									
	
										Save and exit the file.
									

	
								Remove the privateZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:
							
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: [image: 1]
 id: mycluster-100419-private-zone
status: {}
	[image: 1]
	
										Remove this section completely.
									

	
								Configure the cloud provider for your VPC.
							
	
										Open the <installation_directory>/manifests/cloud-provider-config.yaml file.
									
	
										Add the network-project-id parameter and set its value to the ID of project that hosts the shared VPC network.
									
	
										Add the network-name parameter and set its value to the name of the shared VPC network that hosts the OpenShift Container Platform cluster.
									
	
										Replace the value of the subnetwork-name parameter with the value of the shared VPC subnet that hosts your compute machines.
									

								The contents of the <installation_directory>/manifests/cloud-provider-config.yaml resemble the following example:
							
config: |+
 [global]
 project-id = example-project
 regional = true
 multizone = true
 node-tags = opensh-ptzzx-master
 node-tags = opensh-ptzzx-worker
 node-instance-prefix = opensh-ptzzx
 external-instance-groups-prefix = opensh-ptzzx
 network-project-id = example-shared-vpc
 network-name = example-network
 subnetwork-name = example-worker-subnet

	
								If you deploy a cluster that is not on a private network, open the <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml file and replace the value of the scope parameter with External. The contents of the file resemble the following example:
							
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 type: LoadBalancerService
status:
 availableReplicas: 0
 domain: ''
 selector: ''

	
								To create the Ignition configuration files, run the following command from the directory that contains the installation program:
							
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the same installation directory.
									

								The following files are generated in the directory:
							
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Exporting common variables

Extracting the infrastructure name

						The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Google Cloud Platform (GCP). The infrastructure name is also used to locate the appropriate GCP resources during an OpenShift Container Platform installation. The provided Deployment Manager templates contain references to this infrastructure name, so you must extract it.
					
Prerequisites
	
								You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
							
	
								You generated the Ignition config files for your cluster.
							
	
								You installed the jq package.
							

Procedure
	
								To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
							
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the path to the directory that you stored the installation files in.
									

Example output

									

openshift-vw9j6 [image: 1]

								
	[image: 1]
	
										The output of this command is your cluster name and a random string.
									

Exporting common variables for Deployment Manager templates

						You must export a common set of variables that are used with the provided Deployment Manager templates used to assist in completing a user-provided infrastructure install on Google Cloud Platform (GCP).
					
Note

							Specific Deployment Manager templates can also require additional exported variables, which are detailed in their related procedures.
						

Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
							
	
								Generate the Ignition config files for your cluster.
							
	
								Install the jq package.
							

Procedure
	
								Export the following common variables to be used by the provided Deployment Manager templates:
							

$ export BASE_DOMAIN='<base_domain>' [image: 1]
$ export BASE_DOMAIN_ZONE_NAME='<base_domain_zone_name>' [image: 2]
$ export NETWORK_CIDR='10.0.0.0/16'

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 3]
$ export CLUSTER_NAME=`jq -r .clusterName <installation_directory>/metadata.json`
$ export INFRA_ID=`jq -r .infraID <installation_directory>/metadata.json`
$ export PROJECT_NAME=`jq -r .gcp.projectID <installation_directory>/metadata.json`
	[image: 1] [image: 2]
	
								Supply the values for the host project.
							

	[image: 3]
	
								For <installation_directory>, specify the path to the directory that you stored the installation files in.
							

Networking requirements for user-provisioned infrastructure

					All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
				

					You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
				
Table 4.40. All machines to all machines
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									VXLAN and Geneve
								

								
	
									6081
								

								 	
									VXLAN and Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								

Table 4.41. All machines to control plane
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 4.42. Control plane machines to control plane machines
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

Network topology requirements

					The infrastructure that you provision for your cluster must meet the following network topology requirements.
				
Important

						OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
					

Load balancers

					Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
				
	
							API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
								
	
									A stateless load balancing algorithm. The options vary based on the load balancer implementation.
								

Important

								Do not configure session persistence for an API load balancer.
							

							Configure the following ports on both the front and back of the load balancers:
						
Table 4.43. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											6443
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
										

										 	
											X
										

										 	
											X
										

										 	
											Kubernetes API server
										

										
	
											22623
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
										

										 	
											X
										

										 	 	
											Machine config server
										

										

Note

								The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
							

	
							Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
								
	
									A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
								

							Configure the following ports on both the front and back of the load balancers:
						
Table 4.44. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											443
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTPS traffic
										

										
	
											80
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTP traffic
										

										

Tip

					If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
				

Note

						A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
					

Creating load balancers in GCP

					You must configure load balancers in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for the internal load balancer section of this topic and save it as 02_lb_int.py on your computer. This template describes the internal load balancing objects that your cluster requires.
						
	
							For an external cluster, also copy the template from the Deployment Manager template for the external load balancer section of this topic and save it as 02_lb_ext.py on your computer. This template describes the external load balancing objects that your cluster requires.
						
	
							Export the variables that the deployment template uses:
						
	
									Export the cluster network location:
								
$ export CLUSTER_NETWORK=(`gcloud compute networks describe ${HOST_PROJECT_NETWORK} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} --format json | jq -r .selfLink`)

	
									Export the control plane subnet location:
								
$ export CONTROL_SUBNET=(`gcloud compute networks subnets describe ${HOST_PROJECT_CONTROL_SUBNET} --region=${REGION} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} --format json | jq -r .selfLink`)

	
									Export the three zones that the cluster uses:
								
$ export ZONE_0=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[0] | cut -d "/" -f9`)
$ export ZONE_1=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[1] | cut -d "/" -f9`)
$ export ZONE_2=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[2] | cut -d "/" -f9`)

	
							Create a 02_infra.yaml resource definition file:
						
$ cat <<EOF >02_infra.yaml
imports:
- path: 02_lb_ext.py
- path: 02_lb_int.py [image: 1]
resources:
- name: cluster-lb-ext [image: 2]
 type: 02_lb_ext.py
 properties:
 infra_id: '${INFRA_ID}' [image: 3]
 region: '${REGION}' [image: 4]
- name: cluster-lb-int
 type: 02_lb_int.py
 properties:
 cluster_network: '${CLUSTER_NETWORK}'
 control_subnet: '${CONTROL_SUBNET}' [image: 5]
 infra_id: '${INFRA_ID}'
 region: '${REGION}'
 zones: [image: 6]
 - '${ZONE_0}'
 - '${ZONE_1}'
 - '${ZONE_2}'
EOF
	[image: 1] [image: 2]
	
									Required only when deploying an external cluster.
								

	[image: 3]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 4]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 5]
	
									control_subnet is the URI to the control subnet.
								

	[image: 6]
	
									zones are the zones to deploy the control plane instances into, like us-east1-b, us-east1-c, and us-east1-d.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-infra --config 02_infra.yaml

	
							Export the cluster IP address:
						
$ export CLUSTER_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-ip --region=${REGION} --format json | jq -r .address`)

	
							For an external cluster, also export the cluster public IP address:
						
$ export CLUSTER_PUBLIC_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-public-ip --region=${REGION} --format json | jq -r .address`)

Deployment Manager template for the external load balancer

						You can use the following Deployment Manager template to deploy the external load balancer that you need for your OpenShift Container Platform cluster:
					
Example 4.11. 02_lb_ext.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-cluster-public-ip',
 'type': 'compute.v1.address',
 'properties': {
 'region': context.properties['region']
 }
 }, {
 # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver
 'name': context.properties['infra_id'] + '-api-http-health-check',
 'type': 'compute.v1.httpHealthCheck',
 'properties': {
 'port': 6080,
 'requestPath': '/readyz'
 }
 }, {
 'name': context.properties['infra_id'] + '-api-target-pool',
 'type': 'compute.v1.targetPool',
 'properties': {
 'region': context.properties['region'],
 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-http-health-check.selfLink)'],
 'instances': []
 }
 }, {
 'name': context.properties['infra_id'] + '-api-forwarding-rule',
 'type': 'compute.v1.forwardingRule',
 'properties': {
 'region': context.properties['region'],
 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-public-ip.selfLink)',
 'target': '$(ref.' + context.properties['infra_id'] + '-api-target-pool.selfLink)',
 'portRange': '6443'
 }
 }]

 return {'resources': resources}

Deployment Manager template for the internal load balancer

						You can use the following Deployment Manager template to deploy the internal load balancer that you need for your OpenShift Container Platform cluster:
					
Example 4.12. 02_lb_int.py Deployment Manager template
def GenerateConfig(context):

 backends = []
 for zone in context.properties['zones']:
 backends.append({
 'group': '$(ref.' + context.properties['infra_id'] + '-master-' + zone + '-instance-group' + '.selfLink)'
 })

 resources = [{
 'name': context.properties['infra_id'] + '-cluster-ip',
 'type': 'compute.v1.address',
 'properties': {
 'addressType': 'INTERNAL',
 'region': context.properties['region'],
 'subnetwork': context.properties['control_subnet']
 }
 }, {
 # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver
 'name': context.properties['infra_id'] + '-api-internal-health-check',
 'type': 'compute.v1.healthCheck',
 'properties': {
 'httpsHealthCheck': {
 'port': 6443,
 'requestPath': '/readyz'
 },
 'type': "HTTPS"
 }
 }, {
 'name': context.properties['infra_id'] + '-api-internal-backend-service',
 'type': 'compute.v1.regionBackendService',
 'properties': {
 'backends': backends,
 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-internal-health-check.selfLink)'],
 'loadBalancingScheme': 'INTERNAL',
 'region': context.properties['region'],
 'protocol': 'TCP',
 'timeoutSec': 120
 }
 }, {
 'name': context.properties['infra_id'] + '-api-internal-forwarding-rule',
 'type': 'compute.v1.forwardingRule',
 'properties': {
 'backendService': '$(ref.' + context.properties['infra_id'] + '-api-internal-backend-service.selfLink)',
 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-ip.selfLink)',
 'loadBalancingScheme': 'INTERNAL',
 'ports': ['6443','22623'],
 'region': context.properties['region'],
 'subnetwork': context.properties['control_subnet']
 }
 }]

 for zone in context.properties['zones']:
 resources.append({
 'name': context.properties['infra_id'] + '-master-' + zone + '-instance-group',
 'type': 'compute.v1.instanceGroup',
 'properties': {
 'namedPorts': [
 {
 'name': 'ignition',
 'port': 22623
 }, {
 'name': 'https',
 'port': 6443
 }
],
 'network': context.properties['cluster_network'],
 'zone': zone
 }
 })

 return {'resources': resources}

						You will need this template in addition to the 02_lb_ext.py template when you create an external cluster.
					

Creating a private DNS zone in GCP

					You must configure a private DNS zone in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create this component is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for the private DNS section of this topic and save it as 02_dns.py on your computer. This template describes the private DNS objects that your cluster requires.
						
	
							Create a 02_dns.yaml resource definition file:
						
$ cat <<EOF >02_dns.yaml
imports:
- path: 02_dns.py

resources:
- name: cluster-dns
 type: 02_dns.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 cluster_domain: '${CLUSTER_NAME}.${BASE_DOMAIN}' [image: 2]
 cluster_network: '${CLUSTER_NETWORK}' [image: 3]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									cluster_domain is the domain for the cluster, for example openshift.example.com.
								

	[image: 3]
	
									cluster_network is the selfLink URL to the cluster network.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-dns --config 02_dns.yaml --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}

	
							The templates do not create DNS entries due to limitations of Deployment Manager, so you must create them manually:
						
	
									Add the internal DNS entries:
								
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api-int.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}

	
									For an external cluster, also add the external DNS entries:
								
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} dns record-sets transaction add ${CLUSTER_PUBLIC_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}

Deployment Manager template for the private DNS

						You can use the following Deployment Manager template to deploy the private DNS that you need for your OpenShift Container Platform cluster:
					
Example 4.13. 02_dns.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-private-zone',
 'type': 'dns.v1.managedZone',
 'properties': {
 'description': '',
 'dnsName': context.properties['cluster_domain'] + '.',
 'visibility': 'private',
 'privateVisibilityConfig': {
 'networks': [{
 'networkUrl': context.properties['cluster_network']
 }]
 }
 }
 }]

 return {'resources': resources}

Creating firewall rules in GCP

					You must create firewall rules in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for firewall rules section of this topic and save it as 03_firewall.py on your computer. This template describes the security groups that your cluster requires.
						
	
							Create a 03_firewall.yaml resource definition file:
						
$ cat <<EOF >03_firewall.yaml
imports:
- path: 03_firewall.py

resources:
- name: cluster-firewall
 type: 03_firewall.py
 properties:
 allowed_external_cidr: '0.0.0.0/0' [image: 1]
 infra_id: '${INFRA_ID}' [image: 2]
 cluster_network: '${CLUSTER_NETWORK}' [image: 3]
 network_cidr: '${NETWORK_CIDR}' [image: 4]
EOF
	[image: 1]
	
									allowed_external_cidr is the CIDR range that can access the cluster API and SSH to the bootstrap host. For an internal cluster, set this value to ${NETWORK_CIDR}.
								

	[image: 2]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 3]
	
									cluster_network is the selfLink URL to the cluster network.
								

	[image: 4]
	
									network_cidr is the CIDR of the VPC network, for example 10.0.0.0/16.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-firewall --config 03_firewall.yaml --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}

Deployment Manager template for firewall rules

						You can use the following Deployment Manager template to deploy the firewall rues that you need for your OpenShift Container Platform cluster:
					
Example 4.14. 03_firewall.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-bootstrap-in-ssh',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['22']
 }],
 'sourceRanges': [context.properties['allowed_external_cidr']],
 'targetTags': [context.properties['infra_id'] + '-bootstrap']
 }
 }, {
 'name': context.properties['infra_id'] + '-api',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['6443']
 }],
 'sourceRanges': [context.properties['allowed_external_cidr']],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-health-checks',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['6080', '6443', '22624']
 }],
 'sourceRanges': ['35.191.0.0/16', '130.211.0.0/22', '209.85.152.0/22', '209.85.204.0/22'],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-etcd',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['2379-2380']
 }],
 'sourceTags': [context.properties['infra_id'] + '-master'],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-control-plane',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['10257']
 },{
 'IPProtocol': 'tcp',
 'ports': ['10259']
 },{
 'IPProtocol': 'tcp',
 'ports': ['22623']
 }],
 'sourceTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-internal-network',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'icmp'
 },{
 'IPProtocol': 'tcp',
 'ports': ['22']
 }],
 'sourceRanges': [context.properties['network_cidr']],
 'targetTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
]
 }
 }, {
 'name': context.properties['infra_id'] + '-internal-cluster',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'udp',
 'ports': ['4789', '6081']
 },{
 'IPProtocol': 'tcp',
 'ports': ['9000-9999']
 },{
 'IPProtocol': 'udp',
 'ports': ['9000-9999']
 },{
 'IPProtocol': 'tcp',
 'ports': ['10250']
 },{
 'IPProtocol': 'tcp',
 'ports': ['30000-32767']
 },{
 'IPProtocol': 'udp',
 'ports': ['30000-32767']
 }],
 'sourceTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
],
 'targetTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
]
 }
 }]

 return {'resources': resources}

Creating IAM roles in GCP

					You must create IAM roles in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for IAM roles section of this topic and save it as 03_iam.py on your computer. This template describes the IAM roles that your cluster requires.
						
	
							Create a 03_iam.yaml resource definition file:
						
$ cat <<EOF >03_iam.yaml
imports:
- path: 03_iam.py
resources:
- name: cluster-iam
 type: 03_iam.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-iam --config 03_iam.yaml

	
							Export the variable for the master service account:
						
$ export MASTER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-m@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
							Export the variable for the worker service account:
						
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
							Assign the permissions that the installation program requires to the service accounts for the subnets that host the control plane and compute subnets:
						
	
									Grant the networkViewer role of the project that hosts your shared VPC to the master service account:
								
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} projects add-iam-policy-binding ${HOST_PROJECT} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.networkViewer"

	
									Grant the networkUser role to the master service account for the control plane subnet:
								
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} compute networks subnets add-iam-policy-binding "${HOST_PROJECT_CONTROL_SUBNET}" --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.networkUser" --region ${REGION}

	
									Grant the networkUser role to the worker service account for the control plane subnet:
								
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} compute networks subnets add-iam-policy-binding "${HOST_PROJECT_CONTROL_SUBNET}" --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/compute.networkUser" --region ${REGION}

	
									Grant the networkUser role to the master service account for the compute subnet:
								
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} compute networks subnets add-iam-policy-binding "${HOST_PROJECT_COMPUTE_SUBNET}" --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.networkUser" --region ${REGION}

	
									Grant the networkUser role to the worker service account for the compute subnet:
								
$ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} compute networks subnets add-iam-policy-binding "${HOST_PROJECT_COMPUTE_SUBNET}" --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/compute.networkUser" --region ${REGION}

	
							The templates do not create the policy bindings due to limitations of Deployment Manager, so you must create them manually:
						
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.instanceAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.networkAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.securityAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/iam.serviceAccountUser"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/storage.admin"

$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/compute.viewer"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/storage.admin"

	
							Create a service account key and store it locally for later use:
						
$ gcloud iam service-accounts keys create service-account-key.json --iam-account=${MASTER_SERVICE_ACCOUNT}

Deployment Manager template for IAM roles

						You can use the following Deployment Manager template to deploy the IAM roles that you need for your OpenShift Container Platform cluster:
					
Example 4.15. 03_iam.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-master-node-sa',
 'type': 'iam.v1.serviceAccount',
 'properties': {
 'accountId': context.properties['infra_id'] + '-m',
 'displayName': context.properties['infra_id'] + '-master-node'
 }
 }, {
 'name': context.properties['infra_id'] + '-worker-node-sa',
 'type': 'iam.v1.serviceAccount',
 'properties': {
 'accountId': context.properties['infra_id'] + '-w',
 'displayName': context.properties['infra_id'] + '-worker-node'
 }
 }]

 return {'resources': resources}

Creating the RHCOS cluster image for the GCP infrastructure

					You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Google Cloud Platform (GCP) for your OpenShift Container Platform nodes.
				
Procedure
	
							Obtain the RHCOS image from the RHCOS image mirror page.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
							

							The file name contains the OpenShift Container Platform version number in the format rhcos-<version>-<arch>-gcp.<arch>.tar.gz.
						

	
							Create the Google storage bucket:
						
$ gsutil mb gs://<bucket_name>

	
							Upload the RHCOS image to the Google storage bucket:
						
$ gsutil cp <downloaded_image_file_path>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz gs://<bucket_name>

	
							Export the uploaded RHCOS image location as a variable:
						
$ export IMAGE_SOURCE="gs://<bucket_name>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz"

	
							Create the cluster image:
						
$ gcloud compute images create "${INFRA_ID}-rhcos-image" \
 --source-uri="${IMAGE_SOURCE}"

Creating the bootstrap machine in GCP

					You must create the bootstrap machine in Google Cloud Platform (GCP) to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Ensure pyOpenSSL is installed.
						

Procedure
	
							Copy the template from the Deployment Manager template for the bootstrap machine section of this topic and save it as 04_bootstrap.py on your computer. This template describes the bootstrap machine that your cluster requires.
						
	
							Export the location of the Red Hat Enterprise Linux CoreOS (RHCOS) image that the installation program requires:
						
$ export CLUSTER_IMAGE=(`gcloud compute images describe ${INFRA_ID}-rhcos-image --format json | jq -r .selfLink`)

	
							Create a bucket and upload the bootstrap.ign file:
						
$ gsutil mb gs://${INFRA_ID}-bootstrap-ignition
$ gsutil cp <installation_directory>/bootstrap.ign gs://${INFRA_ID}-bootstrap-ignition/

	
							Create a signed URL for the bootstrap instance to use to access the Ignition config. Export the URL from the output as a variable:
						
$ export BOOTSTRAP_IGN=`gsutil signurl -d 1h service-account-key.json gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign | grep "^gs:" | awk '{print $5}'`

	
							Create a 04_bootstrap.yaml resource definition file:
						
$ cat <<EOF >04_bootstrap.yaml
imports:
- path: 04_bootstrap.py

resources:
- name: cluster-bootstrap
 type: 04_bootstrap.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 region: '${REGION}' [image: 2]
 zone: '${ZONE_0}' [image: 3]

 cluster_network: '${CLUSTER_NETWORK}' [image: 4]
 control_subnet: '${CONTROL_SUBNET}' [image: 5]
 image: '${CLUSTER_IMAGE}' [image: 6]
 machine_type: 'n1-standard-4' [image: 7]
 root_volume_size: '128' [image: 8]

 bootstrap_ign: '${BOOTSTRAP_IGN}' [image: 9]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 3]
	
									zone is the zone to deploy the bootstrap instance into, for example us-central1-b.
								

	[image: 4]
	
									cluster_network is the selfLink URL to the cluster network.
								

	[image: 5]
	
									control_subnet is the selfLink URL to the control subnet.
								

	[image: 6]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 7]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 8]
	
									root_volume_size is the boot disk size for the bootstrap machine.
								

	[image: 9]
	
									bootstrap_ign is the URL output when creating a signed URL.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-bootstrap --config 04_bootstrap.yaml

	
							Add the bootstrap instance to the internal load balancer instance group:
						
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-bootstrap-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-bootstrap

	
							Add the bootstrap instance group to the internal load balancer backend service:
						
$ gcloud compute backend-services add-backend ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}

Deployment Manager template for the bootstrap machine

						You can use the following Deployment Manager template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
					
Example 4.16. 04_bootstrap.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-bootstrap-public-ip',
 'type': 'compute.v1.address',
 'properties': {
 'region': context.properties['region']
 }
 }, {
 'name': context.properties['infra_id'] + '-bootstrap',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': '{"ignition":{"config":{"replace":{"source":"' + context.properties['bootstrap_ign'] + '"}},"version":"3.1.0"}}',
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet'],
 'accessConfigs': [{
 'natIP': '$(ref.' + context.properties['infra_id'] + '-bootstrap-public-ip.address)'
 }]
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-bootstrap'
]
 },
 'zone': context.properties['zone']
 }
 }, {
 'name': context.properties['infra_id'] + '-bootstrap-instance-group',
 'type': 'compute.v1.instanceGroup',
 'properties': {
 'namedPorts': [
 {
 'name': 'ignition',
 'port': 22623
 }, {
 'name': 'https',
 'port': 6443
 }
],
 'network': context.properties['cluster_network'],
 'zone': context.properties['zone']
 }
 }]

 return {'resources': resources}

Creating the control plane machines in GCP

					You must create the control plane machines in Google Cloud Platform (GCP) for your cluster to use. One way to create these machines is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						

Procedure
	
							Copy the template from the Deployment Manager template for control plane machines section of this topic and save it as 05_control_plane.py on your computer. This template describes the control plane machines that your cluster requires.
						
	
							Export the following variable required by the resource definition:
						
$ export MASTER_IGNITION=`cat <installation_directory>/master.ign`

	
							Create a 05_control_plane.yaml resource definition file:
						
$ cat <<EOF >05_control_plane.yaml
imports:
- path: 05_control_plane.py

resources:
- name: cluster-control-plane
 type: 05_control_plane.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 zones: [image: 2]
 - '${ZONE_0}'
 - '${ZONE_1}'
 - '${ZONE_2}'

 control_subnet: '${CONTROL_SUBNET}' [image: 3]
 image: '${CLUSTER_IMAGE}' [image: 4]
 machine_type: 'n1-standard-4' [image: 5]
 root_volume_size: '128'
 service_account_email: '${MASTER_SERVICE_ACCOUNT}' [image: 6]

 ignition: '${MASTER_IGNITION}' [image: 7]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									zones are the zones to deploy the control plane instances into, for example us-central1-a, us-central1-b, and us-central1-c.
								

	[image: 3]
	
									control_subnet is the selfLink URL to the control subnet.
								

	[image: 4]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 5]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 6]
	
									service_account_email is the email address for the master service account that you created.
								

	[image: 7]
	
									ignition is the contents of the master.ign file.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-control-plane --config 05_control_plane.yaml

	
							The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the control plane machines manually.
						
	
									Run the following commands to add the control plane machines to the appropriate instance groups:
								
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_0}-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-master-0
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_1}-instance-group --zone=${ZONE_1} --instances=${INFRA_ID}-master-1
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_2}-instance-group --zone=${ZONE_2} --instances=${INFRA_ID}-master-2

	
									For an external cluster, you must also run the following commands to add the control plane machines to the target pools:
								
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-master-0
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_1}" --instances=${INFRA_ID}-master-1
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_2}" --instances=${INFRA_ID}-master-2

Deployment Manager template for control plane machines

						You can use the following Deployment Manager template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
					
Example 4.17. 05_control_plane.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-master-0',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][0] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][0] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][0]
 }
 }, {
 'name': context.properties['infra_id'] + '-master-1',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][1] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][1] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][1]
 }
 }, {
 'name': context.properties['infra_id'] + '-master-2',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][2] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][2] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][2]
 }
 }]

 return {'resources': resources}

Wait for bootstrap completion and remove bootstrap resources in GCP

					After you create all of the required infrastructure in Google Cloud Platform (GCP), wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Change to the directory that contains the installation program and run the following command:
						
$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ [image: 1]
 --log-level info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

							If the command exits without a FATAL warning, your production control plane has initialized.
						

	
							Delete the bootstrap resources:
						
$ gcloud compute backend-services remove-backend ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}
$ gsutil rm gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign
$ gsutil rb gs://${INFRA_ID}-bootstrap-ignition
$ gcloud deployment-manager deployments delete ${INFRA_ID}-bootstrap

Creating additional worker machines in GCP

					You can create worker machines in Google Cloud Platform (GCP) for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
				

					In this example, you manually launch one instance by using the Deployment Manager template. Additional instances can be launched by including additional resources of type 06_worker.py in the file.
				
Note

						If you do not use the provided Deployment Manager template to create your worker machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Copy the template from the Deployment Manager template for worker machines section of this topic and save it as 06_worker.py on your computer. This template describes the worker machines that your cluster requires.
						
	
							Export the variables that the resource definition uses.
						
	
									Export the subnet that hosts the compute machines:
								
$ export COMPUTE_SUBNET=(`gcloud compute networks subnets describe ${HOST_PROJECT_COMPUTE_SUBNET} --region=${REGION} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} --format json | jq -r .selfLink`)

	
									Export the email address for your service account:
								
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
									Export the location of the compute machine Ignition config file:
								
$ export WORKER_IGNITION=`cat <installation_directory>/worker.ign`

	
							Create a 06_worker.yaml resource definition file:
						
$ cat <<EOF >06_worker.yaml
imports:
- path: 06_worker.py

resources:
- name: 'worker-0' [image: 1]
 type: 06_worker.py
 properties:
 infra_id: '${INFRA_ID}' [image: 2]
 zone: '${ZONE_0}' [image: 3]
 compute_subnet: '${COMPUTE_SUBNET}' [image: 4]
 image: '${CLUSTER_IMAGE}' [image: 5]
 machine_type: 'n1-standard-4' [image: 6]
 root_volume_size: '128'
 service_account_email: '${WORKER_SERVICE_ACCOUNT}' [image: 7]
 ignition: '${WORKER_IGNITION}' [image: 8]
- name: 'worker-1'
 type: 06_worker.py
 properties:
 infra_id: '${INFRA_ID}' [image: 9]
 zone: '${ZONE_1}' [image: 10]
 compute_subnet: '${COMPUTE_SUBNET}' [image: 11]
 image: '${CLUSTER_IMAGE}' [image: 12]
 machine_type: 'n1-standard-4' [image: 13]
 root_volume_size: '128'
 service_account_email: '${WORKER_SERVICE_ACCOUNT}' [image: 14]
 ignition: '${WORKER_IGNITION}' [image: 15]
EOF
	[image: 1]
	
									name is the name of the worker machine, for example worker-0.
								

	[image: 2] [image: 9]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 3] [image: 10]
	
									zone is the zone to deploy the worker machine into, for example us-central1-a.
								

	[image: 4] [image: 11]
	
									compute_subnet is the selfLink URL to the compute subnet.
								

	[image: 5] [image: 12]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 6] [image: 13]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 7] [image: 14]
	
									service_account_email is the email address for the worker service account that you created.
								

	[image: 8] [image: 15]
	
									ignition is the contents of the worker.ign file.
								

	
							Optional: If you want to launch additional instances, include additional resources of type 06_worker.py in your 06_worker.yaml resource definition file.
						
	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-worker --config 06_worker.yaml

Deployment Manager template for worker machines

						You can use the following Deployment Manager template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
					
Example 4.18. 06_worker.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-' + context.env['name'],
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['compute_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-worker',
]
 },
 'zone': context.properties['zone']
 }
 }]

 return {'resources': resources}

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Adding the ingress DNS records

					DNS zone configuration is removed when creating Kubernetes manifests and generating Ignition configs. You must manually create DNS records that point at the ingress load balancer. You can create either a wildcard *.apps.{baseDomain}. or specific records. You can use A, CNAME, and other records per your requirements.
				
Prerequisites
	
							Configure a GCP account.
						
	
							Remove the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						
	
							Create the worker machines.
						

Procedure
	
							Wait for the Ingress router to create a load balancer and populate the EXTERNAL-IP field:
						
$ oc -n openshift-ingress get service router-default
Example output

								

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
router-default LoadBalancer 172.30.18.154 35.233.157.184 80:32288/TCP,443:31215/TCP 98

							

	
							Add the A record to your zones:
						
	
									To use A records:
								
	
											Export the variable for the router IP address:
										
$ export ROUTER_IP=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'`

	
											Add the A record to the private zones:
										
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction add ${ROUTER_IP} --name *.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}

	
											For an external cluster, also add the A record to the public zones:
										
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction add ${ROUTER_IP} --name *.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${BASE_DOMAIN_ZONE_NAME} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
$ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}

	
									To add explicit domains instead of using a wildcard, create entries for each of the cluster’s current routes:
								
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output

										

oauth-openshift.apps.your.cluster.domain.example.com
console-openshift-console.apps.your.cluster.domain.example.com
downloads-openshift-console.apps.your.cluster.domain.example.com
alertmanager-main-openshift-monitoring.apps.your.cluster.domain.example.com
grafana-openshift-monitoring.apps.your.cluster.domain.example.com
prometheus-k8s-openshift-monitoring.apps.your.cluster.domain.example.com

									

Adding ingress firewall rules

					The cluster requires several firewall rules. If you do not use a shared VPC, these rules are created by the ingress controller via the GCP cloud provider. When you use a shared VPC, you can either create cluster-wide firewall rules for all services now or create each rule based on events, when the cluster requests access. By creating each rule when the cluster requests access, you know exactly which firewall rules are required. By creating cluster-wide firewall rules, you can apply the same rule set across multiple clusters.
				

					If you choose to create each rule based on events, you must create firewall rules after you provision the cluster and during the life of the cluster when the console notifies you that rules are missing. Events that are similar to the following event are displayed, and you must add the firewall rules that are required:
				
$ oc get events -n openshift-ingress --field-selector="reason=LoadBalancerManualChange"
Example output

						

Firewall change required by security admin: `gcloud compute firewall-rules create k8s-fw-a26e631036a3f46cba28f8df67266d55 --network example-network --description "{\"kubernetes.io/service-name\":\"openshift-ingress/router-default\", \"kubernetes.io/service-ip\":\"35.237.236.234\"}\" --allow tcp:443,tcp:80 --source-ranges 0.0.0.0/0 --target-tags exampl-fqzq7-master,exampl-fqzq7-worker --project example-project`

					

					If you encounter issues when creating these rule-based events, you can configure the cluster-wide firewall rules while your cluster is running.
				
Creating cluster-wide firewall rules for a shared VPC in GCP

						You can create cluster-wide firewall rules to allow the access that the OpenShift Container Platform cluster requires.
					
Warning

							If you do not choose to create firewall rules based on cluster events, you must create cluster-wide firewall rules.
						

Prerequisites
	
								You exported the variables that the Deployment Manager templates require to deploy your cluster.
							
	
								You created the networking and load balancing components in GCP that your cluster requires.
							

Procedure
	
								Add a single firewall rule to allow the Google Cloud Engine health checks to access all of the services. This rule enables the ingress load balancers to determine the health status of their instances.
							
$ gcloud compute firewall-rules create --allow='tcp:30000-32767,udp:30000-32767' --network="${CLUSTER_NETWORK}" --source-ranges='130.211.0.0/22,35.191.0.0/16,209.85.152.0/22,209.85.204.0/22' --target-tags="${INFRA_ID}-master,${INFRA_ID}-worker" ${INFRA_ID}-ingress-hc --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT}

	
								Add a single firewall rule to allow access to all cluster services:
							
	
										For an external cluster:
									
$ gcloud compute firewall-rules create --allow='tcp:80,tcp:443' --network="${CLUSTER_NETWORK}" --source-ranges="0.0.0.0/0" --target-tags="${INFRA_ID}-master,${INFRA_ID}-worker" ${INFRA_ID}-ingress --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT}

	
										For a private cluster:
									
$ gcloud compute firewall-rules create --allow='tcp:80,tcp:443' --network="${CLUSTER_NETWORK}" --source-ranges=${NETWORK_CIDR} --target-tags="${INFRA_ID}-master,${INFRA_ID}-worker" ${INFRA_ID}-ingress --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT}

								Because this rule only allows traffic on TCP ports 80 and 443, ensure that you add all the ports that your services use.
							

Completing a GCP installation on user-provisioned infrastructure

					After you start the OpenShift Container Platform installation on Google Cloud Platform (GCP) user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
				
Prerequisites
	
							Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned GCP infrastructure.
						
	
							Install the oc CLI and log in.
						

Procedure
	
							Complete the cluster installation:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Observe the running state of your cluster.
						
	
									Run the following command to view the current cluster version and status:
								
$ oc get clusterversion
Example output

										

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version False True 24m Working towards 4.5.4: 99% complete

									

	
									Run the following command to view the Operators managed on the control plane by the Cluster Version Operator (CVO):
								
$ oc get clusteroperators
Example output

										

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.5.4 True False False 7m56s
cloud-credential 4.5.4 True False False 31m
cluster-autoscaler 4.5.4 True False False 16m
console 4.5.4 True False False 10m
csi-snapshot-controller 4.5.4 True False False 16m
dns 4.5.4 True False False 22m
etcd 4.5.4 False False False 25s
image-registry 4.5.4 True False False 16m
ingress 4.5.4 True False False 16m
insights 4.5.4 True False False 17m
kube-apiserver 4.5.4 True False False 19m
kube-controller-manager 4.5.4 True False False 20m
kube-scheduler 4.5.4 True False False 20m
kube-storage-version-migrator 4.5.4 True False False 16m
machine-api 4.5.4 True False False 22m
machine-config 4.5.4 True False False 22m
marketplace 4.5.4 True False False 16m
monitoring 4.5.4 True False False 10m
network 4.5.4 True False False 23m
node-tuning 4.5.4 True False False 23m
openshift-apiserver 4.5.4 True False False 17m
openshift-controller-manager 4.5.4 True False False 15m
openshift-samples 4.5.4 True False False 16m
operator-lifecycle-manager 4.5.4 True False False 22m
operator-lifecycle-manager-catalog 4.5.4 True False False 22m
operator-lifecycle-manager-packageserver 4.5.4 True False False 18m
service-ca 4.5.4 True False False 23m
service-catalog-apiserver 4.5.4 True False False 23m
service-catalog-controller-manager 4.5.4 True False False 23m
storage 4.5.4 True False False 17m

									

	
									Run the following command to view your cluster pods:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-member-ip-10-0-3-111.us-east-2.compute.internal 1/1 Running 0 35m
kube-system etcd-member-ip-10-0-3-239.us-east-2.compute.internal 1/1 Running 0 37m
kube-system etcd-member-ip-10-0-3-24.us-east-2.compute.internal 1/1 Running 0 35m
openshift-apiserver-operator openshift-apiserver-operator-6d6674f4f4-h7t2t 1/1 Running 1 37m
openshift-apiserver apiserver-fm48r 1/1 Running 0 30m
openshift-apiserver apiserver-fxkvv 1/1 Running 0 29m
openshift-apiserver apiserver-q85nm 1/1 Running 0 29m
...
openshift-service-ca-operator openshift-service-ca-operator-66ff6dc6cd-9r257 1/1 Running 0 37m
openshift-service-ca apiservice-cabundle-injector-695b6bcbc-cl5hm 1/1 Running 0 35m
openshift-service-ca configmap-cabundle-injector-8498544d7-25qn6 1/1 Running 0 35m
openshift-service-ca service-serving-cert-signer-6445fc9c6-wqdqn 1/1 Running 0 35m
openshift-service-catalog-apiserver-operator openshift-service-catalog-apiserver-operator-549f44668b-b5q2w 1/1 Running 0 32m
openshift-service-catalog-controller-manager-operator openshift-service-catalog-controller-manager-operator-b78cr2lnm 1/1 Running 0 31m

									

							When the current cluster version is AVAILABLE, the installation is complete.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on GCP in a restricted network with user-provisioned infrastructure

				In OpenShift Container Platform version 4.6, you can install a cluster on Google Cloud Platform (GCP) that uses infrastructure that you provide and an internal mirror of the installation release content.
			
Important

					While you can install an OpenShift Container Platform cluster by using mirrored installation release content, your cluster still requires internet access to use the GCP APIs.
				

				The steps for performing a user-provided infrastructure install are outlined here. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods.
			
Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
				

Prerequisites

	
							Create a registry on your mirror host and obtain the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to. While you might need to grant access to more sites, you must grant access to *.googleapis.com and accounts.google.com.
						
	
							If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
						

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Important

						Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
					

Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Configuring your GCP project

					Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.
				
Creating a GCP project

						To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.
					
Procedure
	
								Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
							
Important

									Your GCP project must use the Premium Network Service Tier if you are using installer-provisioned infrastructure. The Standard Network Service Tier is not supported for clusters installed using the installation program. The installation program configures internal load balancing for the api-int.<cluster_name>.<base_domain> URL; the Premium Tier is required for internal load balancing.
								

Enabling API services in GCP

						Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.
					
Prerequisites
	
								You created a project to host your cluster.
							

Procedure
	
								Enable the following required API services in the project that hosts your cluster. See Enabling services in the GCP documentation.
							
Table 4.45. Required API services
	API service	Console service name
	
												Compute Engine API
											

											 	
												compute.googleapis.com
											

											
	
												Google Cloud APIs
											

											 	
												cloudapis.googleapis.com
											

											
	
												Cloud Resource Manager API
											

											 	
												cloudresourcemanager.googleapis.com
											

											
	
												Google DNS API
											

											 	
												dns.googleapis.com
											

											
	
												IAM Service Account Credentials API
											

											 	
												iamcredentials.googleapis.com
											

											
	
												Identity and Access Management (IAM) API
											

											 	
												iam.googleapis.com
											

											
	
												Service Management API
											

											 	
												servicemanagement.googleapis.com
											

											
	
												Service Usage API
											

											 	
												serviceusage.googleapis.com
											

											
	
												Google Cloud Storage JSON API
											

											 	
												storage-api.googleapis.com
											

											
	
												Cloud Storage
											

											 	
												storage-component.googleapis.com
											

											

Configuring DNS for GCP

						To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the same project that you host the OpenShift Container Platform cluster. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.
					
Procedure
	
								Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.
							
Note

									If you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains.
								

	
								Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.
							

								Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.
							

	
								Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.
							

								You typically have four name servers.
							

	
								Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
							
	
								If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
							
	
								If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.
							

GCP account limits

						The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.
					

						A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.
					
Table 4.46. GCP resources used in a default cluster
	Service	Component	Location	Total resources required	Resources removed after bootstrap
	
										Service account
									

									 	
										IAM
									

									 	
										Global
									

									 	
										5
									

									 	
										0
									

									
	
										Firewall rules
									

									 	
										Networking
									

									 	
										Global
									

									 	
										11
									

									 	
										1
									

									
	
										Forwarding rules
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Health checks
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Images
									

									 	
										Compute
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Networks
									

									 	
										Networking
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Routers
									

									 	
										Networking
									

									 	
										Global
									

									 	
										1
									

									 	
										0
									

									
	
										Routes
									

									 	
										Networking
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Subnetworks
									

									 	
										Compute
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									
	
										Target pools
									

									 	
										Networking
									

									 	
										Global
									

									 	
										2
									

									 	
										0
									

									

Note

							If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region.
						

						Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.
					

						If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:
					
	
								asia-east2
							
	
								asia-northeast2
							
	
								asia-south1
							
	
								australia-southeast1
							
	
								europe-north1
							
	
								europe-west2
							
	
								europe-west3
							
	
								europe-west6
							
	
								northamerica-northeast1
							
	
								southamerica-east1
							
	
								us-west2
							

						You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster.
					

Creating a service account in GCP

						OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.
					
Prerequisites
	
								You created a project to host your cluster.
							

Procedure
	
								Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
							
	
								Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the Owner role to it. See Granting roles to a service account for specific resources.
							
Note

									While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
								

	
								Create the service account key in JSON format. See Creating service account keys in the GCP documentation.
							

								The service account key is required to create a cluster.
							

Required GCP permissions

							When you attach the Owner role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform. To deploy an OpenShift Container Platform cluster, the service account requires the following permissions. If you deploy your cluster into an existing VPC, the service account does not require certain networking permissions, which are noted in the following lists:
						
Required roles for the installation program
	
									Compute Admin
								
	
									Security Admin
								
	
									Service Account Admin
								
	
									Service Account User
								
	
									Storage Admin
								

Required roles for creating network resources during installation
	
									DNS Administrator
								

Required roles for user-provisioned GCP infrastructure
	
									Deployment Manager Editor
								
	
									Service Account Key Admin
								

Optional roles

								For the cluster to create new limited credentials for its Operators, add the following role:
							
	
									Service Account Key Admin
								

							The roles are applied to the service accounts that the control plane and compute machines use:
						
Table 4.47. GCP service account permissions
	Account	Roles
	
											Control Plane
										

										 	
											roles/compute.instanceAdmin
										

										
	
											roles/compute.networkAdmin
										

										
	
											roles/compute.securityAdmin
										

										
	
											roles/storage.admin
										

										
	
											roles/iam.serviceAccountUser
										

										
	
											Compute
										

										 	
											roles/compute.viewer
										

										
	
											roles/storage.admin
										

										

Supported GCP regions

						You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:
					
	
								asia-east1 (Changhua County, Taiwan)
							
	
								asia-east2 (Hong Kong)
							
	
								asia-northeast1 (Tokyo, Japan)
							
	
								asia-northeast2 (Osaka, Japan)
							
	
								asia-northeast3 (Seoul, South Korea)
							
	
								asia-south1 (Mumbai, India)
							
	
								asia-southeast1 (Jurong West, Singapore)
							
	
								asia-southeast2 (Jakarta, Indonesia)
							
	
								australia-southeast1 (Sydney, Australia)
							
	
								europe-north1 (Hamina, Finland)
							
	
								europe-west1 (St. Ghislain, Belgium)
							
	
								europe-west2 (London, England, UK)
							
	
								europe-west3 (Frankfurt, Germany)
							
	
								europe-west4 (Eemshaven, Netherlands)
							
	
								europe-west6 (Zürich, Switzerland)
							
	
								northamerica-northeast1 (Montréal, Québec, Canada)
							
	
								southamerica-east1 (São Paulo, Brazil)
							
	
								us-central1 (Council Bluffs, Iowa, USA)
							
	
								us-east1 (Moncks Corner, South Carolina, USA)
							
	
								us-east4 (Ashburn, Northern Virginia, USA)
							
	
								us-west1 (The Dalles, Oregon, USA)
							
	
								us-west2 (Los Angeles, California, USA)
							
	
								us-west3 (Salt Lake City, Utah, USA)
							
	
								us-west4 (Las Vegas, Nevada, USA)
							

Installing and configuring CLI tools for GCP

						To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must install and configure the CLI tools for GCP.
					
Prerequisites
	
								You created a project to host your cluster.
							
	
								You created a service account and granted it the required permissions.
							

Procedure
	
								Install the following binaries in $PATH:
							
	
										gcloud
									
	
										gsutil
									

								See Install the latest Cloud SDK version in the GCP documentation.
							

	
								Authenticate using the gcloud tool with your configured service account.
							

								See Authorizing with a service account in the GCP documentation.
							

Creating the installation files for GCP

					To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.
				
Optional: Creating a separate /var partition

						It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
					

						OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
					
	
								/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
							
	
								/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
							
	
								/var: Holds data that you might want to keep separate for purposes such as auditing.
							

						Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
					

						Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
					
Important

							If you follow the steps to create a separate /var partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
						

Procedure
	
								Create a directory to hold the OpenShift Container Platform installation files:
							
$ mkdir $HOME/clusterconfig

	
								Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
							
$ openshift-install create manifests --dir $HOME/clusterconfig
Example output

									

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift

								

	
								Optional: Confirm that the installation program created manifests in the clusterconfig/openshift directory:
							
$ ls $HOME/clusterconfig/openshift/
Example output

									

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

								

	
								Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
							
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
										The storage device name of the disk that you want to partition.
									

	[image: 2]
	
										When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
									

	[image: 3]
	
										The size of the data partition in mebibytes.
									

	[image: 4]
	
										The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
									

	[image: 5]
	
										The prjquota mount option must be enabled for filesystems used for container storage.
									

Note

									When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
								

	
								Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
							
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

						Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
					

Creating the installation configuration file

						You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
					
Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
							
	
								Have the imageContentSources values that were generated during mirror registry creation.
							
	
								Obtain the contents of the certificate for your mirror registry.
							

Procedure
	
								Create the install-config.yaml file.
							
	
										Change to the directory that contains the installation program and run the following command:
									
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
												For <installation_directory>, specify the directory name to store the files that the installation program creates.
											

Important

											Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
										

	
										At the prompts, provide the configuration details for your cloud:
									
	
												Optional: Select an SSH key to use to access your cluster machines.
											
Note

													For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
												

	
												Select gcp as the platform to target.
											
	
												If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
											
	
												Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
											
	
												Select the region to deploy the cluster to.
											
	
												Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
											
	
												Enter a descriptive name for your cluster.
											
	
												Paste the pull secret from the Red Hat OpenShift Cluster Manager.
											

	
								Edit the install-config.yaml file to provide the additional information that is required for an installation in a restricted network.
							
	
										Update the pullSecret value to contain the authentication information for your registry:
									
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

										For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.
									

	
										Add the additionalTrustBundle parameter and value.
									
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----

										The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
									

	
										Define the network and subnets for the VPC to install the cluster in under the parent platform.gcp field:
									
network: <existing_vpc>
controlPlaneSubnet: <control_plane_subnet>
computeSubnet: <compute_subnet>

										For platform.gcp.network, specify the name for the existing Google VPC. For platform.gcp.controlPlaneSubnet and platform.gcp.computeSubnet, specify the existing subnets to deploy the control plane machines and compute machines, respectively.
									

	
										Add the image content resources, which look like this excerpt:
									
imageContentSources:
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: quay.example.com/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: registry.example.com/ocp/release

										To complete these values, use the imageContentSources that you recorded during mirror registry creation.
									

	
								Make any other modifications to the install-config.yaml file that you require. You can find more information about the available parameters in the Installation configuration parameters section.
							
	
								Back up the install-config.yaml file so that you can use it to install multiple clusters.
							
Important

									The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

						Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
					

						The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
					
Important
	
									The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
								
	
									It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
								

Prerequisites
	
								You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
							
	
								You created the install-config.yaml installation configuration file.
							

Procedure
	
								Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
									

	
								Remove the Kubernetes manifest files that define the control plane machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

								By removing these files, you prevent the cluster from automatically generating control plane machines.
							

	
								Optional: If you do not want the cluster to provision compute machines, remove the Kubernetes manifest files that define the worker machines:
							
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

								Because you create and manage the worker machines yourself, you do not need to initialize these machines.
							

	
								Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
							
	
										Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
									
	
										Locate the mastersSchedulable parameter and ensure that it is set to false.
									
	
										Save and exit the file.
									

	
								Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the privateZone and publicZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:
							
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: [image: 1]
 id: mycluster-100419-private-zone
 publicZone: [image: 2]
 id: example.openshift.com
status: {}
	[image: 1] [image: 2]
	
										Remove this section completely.
									

								If you do so, you must add ingress DNS records manually in a later step.
							

	
								To create the Ignition configuration files, run the following command from the directory that contains the installation program:
							
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the same installation directory.
									

								The following files are generated in the directory:
							
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Additional resources
	
								Optional: Adding the ingress DNS records
							

Exporting common variables

Extracting the infrastructure name

						The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Google Cloud Platform (GCP). The infrastructure name is also used to locate the appropriate GCP resources during an OpenShift Container Platform installation. The provided Deployment Manager templates contain references to this infrastructure name, so you must extract it.
					
Prerequisites
	
								You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
							
	
								You generated the Ignition config files for your cluster.
							
	
								You installed the jq package.
							

Procedure
	
								To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
							
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the path to the directory that you stored the installation files in.
									

Example output

									

openshift-vw9j6 [image: 1]

								
	[image: 1]
	
										The output of this command is your cluster name and a random string.
									

Exporting common variables for Deployment Manager templates

						You must export a common set of variables that are used with the provided Deployment Manager templates used to assist in completing a user-provided infrastructure install on Google Cloud Platform (GCP).
					
Note

							Specific Deployment Manager templates can also require additional exported variables, which are detailed in their related procedures.
						

Prerequisites
	
								Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
							
	
								Generate the Ignition config files for your cluster.
							
	
								Install the jq package.
							

Procedure
	
								Export the following common variables to be used by the provided Deployment Manager templates:
							
$ export BASE_DOMAIN='<base_domain>'
$ export BASE_DOMAIN_ZONE_NAME='<base_domain_zone_name>'
$ export NETWORK_CIDR='10.0.0.0/16'
$ export MASTER_SUBNET_CIDR='10.0.0.0/19'
$ export WORKER_SUBNET_CIDR='10.0.32.0/19'

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
$ export CLUSTER_NAME=`jq -r .clusterName <installation_directory>/metadata.json`
$ export INFRA_ID=`jq -r .infraID <installation_directory>/metadata.json`
$ export PROJECT_NAME=`jq -r .gcp.projectID <installation_directory>/metadata.json`
$ export REGION=`jq -r .gcp.region <installation_directory>/metadata.json`
	[image: 1]
	
										For <installation_directory>, specify the path to the directory that you stored the installation files in.
									

Creating a VPC in GCP

					You must create a VPC in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements. One way to create the VPC is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						

Procedure
	
							Copy the template from the Deployment Manager template for the VPC section of this topic and save it as 01_vpc.py on your computer. This template describes the VPC that your cluster requires.
						
	
							Create a 01_vpc.yaml resource definition file:
						
$ cat <<EOF >01_vpc.yaml
imports:
- path: 01_vpc.py

resources:
- name: cluster-vpc
 type: 01_vpc.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 region: '${REGION}' [image: 2]
 master_subnet_cidr: '${MASTER_SUBNET_CIDR}' [image: 3]
 worker_subnet_cidr: '${WORKER_SUBNET_CIDR}' [image: 4]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 3]
	
									master_subnet_cidr is the CIDR for the master subnet, for example 10.0.0.0/19.
								

	[image: 4]
	
									worker_subnet_cidr is the CIDR for the worker subnet, for example 10.0.32.0/19.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-vpc --config 01_vpc.yaml

Deployment Manager template for the VPC

						You can use the following Deployment Manager template to deploy the VPC that you need for your OpenShift Container Platform cluster:
					
Example 4.19. 01_vpc.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-network',
 'type': 'compute.v1.network',
 'properties': {
 'region': context.properties['region'],
 'autoCreateSubnetworks': False
 }
 }, {
 'name': context.properties['infra_id'] + '-master-subnet',
 'type': 'compute.v1.subnetwork',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'ipCidrRange': context.properties['master_subnet_cidr']
 }
 }, {
 'name': context.properties['infra_id'] + '-worker-subnet',
 'type': 'compute.v1.subnetwork',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'ipCidrRange': context.properties['worker_subnet_cidr']
 }
 }, {
 'name': context.properties['infra_id'] + '-router',
 'type': 'compute.v1.router',
 'properties': {
 'region': context.properties['region'],
 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
 'nats': [{
 'name': context.properties['infra_id'] + '-nat-master',
 'natIpAllocateOption': 'AUTO_ONLY',
 'minPortsPerVm': 7168,
 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
 'subnetworks': [{
 'name': '$(ref.' + context.properties['infra_id'] + '-master-subnet.selfLink)',
 'sourceIpRangesToNat': ['ALL_IP_RANGES']
 }]
 }, {
 'name': context.properties['infra_id'] + '-nat-worker',
 'natIpAllocateOption': 'AUTO_ONLY',
 'minPortsPerVm': 512,
 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
 'subnetworks': [{
 'name': '$(ref.' + context.properties['infra_id'] + '-worker-subnet.selfLink)',
 'sourceIpRangesToNat': ['ALL_IP_RANGES']
 }]
 }]
 }
 }]

 return {'resources': resources}

Networking requirements for user-provisioned infrastructure

					All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
				

					You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
				
Table 4.48. All machines to all machines
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									VXLAN and Geneve
								

								
	
									6081
								

								 	
									VXLAN and Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								

Table 4.49. All machines to control plane
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 4.50. Control plane machines to control plane machines
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

Network topology requirements

					The infrastructure that you provision for your cluster must meet the following network topology requirements.
				
Load balancers

					Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
				
	
							API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
								
	
									A stateless load balancing algorithm. The options vary based on the load balancer implementation.
								

Important

								Do not configure session persistence for an API load balancer.
							

							Configure the following ports on both the front and back of the load balancers:
						
Table 4.51. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											6443
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
										

										 	
											X
										

										 	
											X
										

										 	
											Kubernetes API server
										

										
	
											22623
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
										

										 	
											X
										

										 	 	
											Machine config server
										

										

Note

								The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
							

	
							Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
								
	
									A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
								

							Configure the following ports on both the front and back of the load balancers:
						
Table 4.52. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											443
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTPS traffic
										

										
	
											80
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTP traffic
										

										

Tip

					If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
				

Note

						A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
					

Creating load balancers in GCP

					You must configure load balancers in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for the internal load balancer section of this topic and save it as 02_lb_int.py on your computer. This template describes the internal load balancing objects that your cluster requires.
						
	
							For an external cluster, also copy the template from the Deployment Manager template for the external load balancer section of this topic and save it as 02_lb_ext.py on your computer. This template describes the external load balancing objects that your cluster requires.
						
	
							Export the variables that the deployment template uses:
						
	
									Export the cluster network location:
								
$ export CLUSTER_NETWORK=(`gcloud compute networks describe ${INFRA_ID}-network --format json | jq -r .selfLink`)

	
									Export the control plane subnet location:
								
$ export CONTROL_SUBNET=(`gcloud compute networks subnets describe ${INFRA_ID}-master-subnet --region=${REGION} --format json | jq -r .selfLink`)

	
									Export the three zones that the cluster uses:
								
$ export ZONE_0=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[0] | cut -d "/" -f9`)
$ export ZONE_1=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[1] | cut -d "/" -f9`)
$ export ZONE_2=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[2] | cut -d "/" -f9`)

	
							Create a 02_infra.yaml resource definition file:
						
$ cat <<EOF >02_infra.yaml
imports:
- path: 02_lb_ext.py
- path: 02_lb_int.py [image: 1]
resources:
- name: cluster-lb-ext [image: 2]
 type: 02_lb_ext.py
 properties:
 infra_id: '${INFRA_ID}' [image: 3]
 region: '${REGION}' [image: 4]
- name: cluster-lb-int
 type: 02_lb_int.py
 properties:
 cluster_network: '${CLUSTER_NETWORK}'
 control_subnet: '${CONTROL_SUBNET}' [image: 5]
 infra_id: '${INFRA_ID}'
 region: '${REGION}'
 zones: [image: 6]
 - '${ZONE_0}'
 - '${ZONE_1}'
 - '${ZONE_2}'
EOF
	[image: 1] [image: 2]
	
									Required only when deploying an external cluster.
								

	[image: 3]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 4]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 5]
	
									control_subnet is the URI to the control subnet.
								

	[image: 6]
	
									zones are the zones to deploy the control plane instances into, like us-east1-b, us-east1-c, and us-east1-d.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-infra --config 02_infra.yaml

	
							Export the cluster IP address:
						
$ export CLUSTER_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-ip --region=${REGION} --format json | jq -r .address`)

	
							For an external cluster, also export the cluster public IP address:
						
$ export CLUSTER_PUBLIC_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-public-ip --region=${REGION} --format json | jq -r .address`)

Deployment Manager template for the external load balancer

						You can use the following Deployment Manager template to deploy the external load balancer that you need for your OpenShift Container Platform cluster:
					
Example 4.20. 02_lb_ext.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-cluster-public-ip',
 'type': 'compute.v1.address',
 'properties': {
 'region': context.properties['region']
 }
 }, {
 # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver
 'name': context.properties['infra_id'] + '-api-http-health-check',
 'type': 'compute.v1.httpHealthCheck',
 'properties': {
 'port': 6080,
 'requestPath': '/readyz'
 }
 }, {
 'name': context.properties['infra_id'] + '-api-target-pool',
 'type': 'compute.v1.targetPool',
 'properties': {
 'region': context.properties['region'],
 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-http-health-check.selfLink)'],
 'instances': []
 }
 }, {
 'name': context.properties['infra_id'] + '-api-forwarding-rule',
 'type': 'compute.v1.forwardingRule',
 'properties': {
 'region': context.properties['region'],
 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-public-ip.selfLink)',
 'target': '$(ref.' + context.properties['infra_id'] + '-api-target-pool.selfLink)',
 'portRange': '6443'
 }
 }]

 return {'resources': resources}

Deployment Manager template for the internal load balancer

						You can use the following Deployment Manager template to deploy the internal load balancer that you need for your OpenShift Container Platform cluster:
					
Example 4.21. 02_lb_int.py Deployment Manager template
def GenerateConfig(context):

 backends = []
 for zone in context.properties['zones']:
 backends.append({
 'group': '$(ref.' + context.properties['infra_id'] + '-master-' + zone + '-instance-group' + '.selfLink)'
 })

 resources = [{
 'name': context.properties['infra_id'] + '-cluster-ip',
 'type': 'compute.v1.address',
 'properties': {
 'addressType': 'INTERNAL',
 'region': context.properties['region'],
 'subnetwork': context.properties['control_subnet']
 }
 }, {
 # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver
 'name': context.properties['infra_id'] + '-api-internal-health-check',
 'type': 'compute.v1.healthCheck',
 'properties': {
 'httpsHealthCheck': {
 'port': 6443,
 'requestPath': '/readyz'
 },
 'type': "HTTPS"
 }
 }, {
 'name': context.properties['infra_id'] + '-api-internal-backend-service',
 'type': 'compute.v1.regionBackendService',
 'properties': {
 'backends': backends,
 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-internal-health-check.selfLink)'],
 'loadBalancingScheme': 'INTERNAL',
 'region': context.properties['region'],
 'protocol': 'TCP',
 'timeoutSec': 120
 }
 }, {
 'name': context.properties['infra_id'] + '-api-internal-forwarding-rule',
 'type': 'compute.v1.forwardingRule',
 'properties': {
 'backendService': '$(ref.' + context.properties['infra_id'] + '-api-internal-backend-service.selfLink)',
 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-ip.selfLink)',
 'loadBalancingScheme': 'INTERNAL',
 'ports': ['6443','22623'],
 'region': context.properties['region'],
 'subnetwork': context.properties['control_subnet']
 }
 }]

 for zone in context.properties['zones']:
 resources.append({
 'name': context.properties['infra_id'] + '-master-' + zone + '-instance-group',
 'type': 'compute.v1.instanceGroup',
 'properties': {
 'namedPorts': [
 {
 'name': 'ignition',
 'port': 22623
 }, {
 'name': 'https',
 'port': 6443
 }
],
 'network': context.properties['cluster_network'],
 'zone': zone
 }
 })

 return {'resources': resources}

						You will need this template in addition to the 02_lb_ext.py template when you create an external cluster.
					

Creating a private DNS zone in GCP

					You must configure a private DNS zone in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create this component is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for the private DNS section of this topic and save it as 02_dns.py on your computer. This template describes the private DNS objects that your cluster requires.
						
	
							Create a 02_dns.yaml resource definition file:
						
$ cat <<EOF >02_dns.yaml
imports:
- path: 02_dns.py

resources:
- name: cluster-dns
 type: 02_dns.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 cluster_domain: '${CLUSTER_NAME}.${BASE_DOMAIN}' [image: 2]
 cluster_network: '${CLUSTER_NETWORK}' [image: 3]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									cluster_domain is the domain for the cluster, for example openshift.example.com.
								

	[image: 3]
	
									cluster_network is the selfLink URL to the cluster network.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-dns --config 02_dns.yaml

	
							The templates do not create DNS entries due to limitations of Deployment Manager, so you must create them manually:
						
	
									Add the internal DNS entries:
								
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api-int.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone

	
									For an external cluster, also add the external DNS entries:
								
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction add ${CLUSTER_PUBLIC_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}

Deployment Manager template for the private DNS

						You can use the following Deployment Manager template to deploy the private DNS that you need for your OpenShift Container Platform cluster:
					
Example 4.22. 02_dns.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-private-zone',
 'type': 'dns.v1.managedZone',
 'properties': {
 'description': '',
 'dnsName': context.properties['cluster_domain'] + '.',
 'visibility': 'private',
 'privateVisibilityConfig': {
 'networks': [{
 'networkUrl': context.properties['cluster_network']
 }]
 }
 }
 }]

 return {'resources': resources}

Creating firewall rules in GCP

					You must create firewall rules in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for firewall rules section of this topic and save it as 03_firewall.py on your computer. This template describes the security groups that your cluster requires.
						
	
							Create a 03_firewall.yaml resource definition file:
						
$ cat <<EOF >03_firewall.yaml
imports:
- path: 03_firewall.py

resources:
- name: cluster-firewall
 type: 03_firewall.py
 properties:
 allowed_external_cidr: '0.0.0.0/0' [image: 1]
 infra_id: '${INFRA_ID}' [image: 2]
 cluster_network: '${CLUSTER_NETWORK}' [image: 3]
 network_cidr: '${NETWORK_CIDR}' [image: 4]
EOF
	[image: 1]
	
									allowed_external_cidr is the CIDR range that can access the cluster API and SSH to the bootstrap host. For an internal cluster, set this value to ${NETWORK_CIDR}.
								

	[image: 2]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 3]
	
									cluster_network is the selfLink URL to the cluster network.
								

	[image: 4]
	
									network_cidr is the CIDR of the VPC network, for example 10.0.0.0/16.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-firewall --config 03_firewall.yaml

Deployment Manager template for firewall rules

						You can use the following Deployment Manager template to deploy the firewall rues that you need for your OpenShift Container Platform cluster:
					
Example 4.23. 03_firewall.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-bootstrap-in-ssh',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['22']
 }],
 'sourceRanges': [context.properties['allowed_external_cidr']],
 'targetTags': [context.properties['infra_id'] + '-bootstrap']
 }
 }, {
 'name': context.properties['infra_id'] + '-api',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['6443']
 }],
 'sourceRanges': [context.properties['allowed_external_cidr']],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-health-checks',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['6080', '6443', '22624']
 }],
 'sourceRanges': ['35.191.0.0/16', '130.211.0.0/22', '209.85.152.0/22', '209.85.204.0/22'],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-etcd',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['2379-2380']
 }],
 'sourceTags': [context.properties['infra_id'] + '-master'],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-control-plane',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'tcp',
 'ports': ['10257']
 },{
 'IPProtocol': 'tcp',
 'ports': ['10259']
 },{
 'IPProtocol': 'tcp',
 'ports': ['22623']
 }],
 'sourceTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
],
 'targetTags': [context.properties['infra_id'] + '-master']
 }
 }, {
 'name': context.properties['infra_id'] + '-internal-network',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'icmp'
 },{
 'IPProtocol': 'tcp',
 'ports': ['22']
 }],
 'sourceRanges': [context.properties['network_cidr']],
 'targetTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
]
 }
 }, {
 'name': context.properties['infra_id'] + '-internal-cluster',
 'type': 'compute.v1.firewall',
 'properties': {
 'network': context.properties['cluster_network'],
 'allowed': [{
 'IPProtocol': 'udp',
 'ports': ['4789', '6081']
 },{
 'IPProtocol': 'tcp',
 'ports': ['9000-9999']
 },{
 'IPProtocol': 'udp',
 'ports': ['9000-9999']
 },{
 'IPProtocol': 'tcp',
 'ports': ['10250']
 },{
 'IPProtocol': 'tcp',
 'ports': ['30000-32767']
 },{
 'IPProtocol': 'udp',
 'ports': ['30000-32767']
 }],
 'sourceTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
],
 'targetTags': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-worker'
]
 }
 }]

 return {'resources': resources}

Creating IAM roles in GCP

					You must create IAM roles in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						

Procedure
	
							Copy the template from the Deployment Manager template for IAM roles section of this topic and save it as 03_iam.py on your computer. This template describes the IAM roles that your cluster requires.
						
	
							Create a 03_iam.yaml resource definition file:
						
$ cat <<EOF >03_iam.yaml
imports:
- path: 03_iam.py
resources:
- name: cluster-iam
 type: 03_iam.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-iam --config 03_iam.yaml

	
							Export the variable for the master service account:
						
$ export MASTER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-m@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
							Export the variable for the worker service account:
						
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
							Export the variable for the subnet that hosts the compute machines:
						
$ export COMPUTE_SUBNET=(`gcloud compute networks subnets describe ${INFRA_ID}-worker-subnet --region=${REGION} --format json | jq -r .selfLink`)

	
							The templates do not create the policy bindings due to limitations of Deployment Manager, so you must create them manually:
						
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.instanceAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.networkAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/compute.securityAdmin"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/iam.serviceAccountUser"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${MASTER_SERVICE_ACCOUNT}" --role "roles/storage.admin"

$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/compute.viewer"
$ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SERVICE_ACCOUNT}" --role "roles/storage.admin"

	
							Create a service account key and store it locally for later use:
						
$ gcloud iam service-accounts keys create service-account-key.json --iam-account=${MASTER_SERVICE_ACCOUNT}

Deployment Manager template for IAM roles

						You can use the following Deployment Manager template to deploy the IAM roles that you need for your OpenShift Container Platform cluster:
					
Example 4.24. 03_iam.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-master-node-sa',
 'type': 'iam.v1.serviceAccount',
 'properties': {
 'accountId': context.properties['infra_id'] + '-m',
 'displayName': context.properties['infra_id'] + '-master-node'
 }
 }, {
 'name': context.properties['infra_id'] + '-worker-node-sa',
 'type': 'iam.v1.serviceAccount',
 'properties': {
 'accountId': context.properties['infra_id'] + '-w',
 'displayName': context.properties['infra_id'] + '-worker-node'
 }
 }]

 return {'resources': resources}

Creating the RHCOS cluster image for the GCP infrastructure

					You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Google Cloud Platform (GCP) for your OpenShift Container Platform nodes.
				
Procedure
	
							Obtain the RHCOS image from the RHCOS image mirror page.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
							

							The file name contains the OpenShift Container Platform version number in the format rhcos-<version>-<arch>-gcp.<arch>.tar.gz.
						

	
							Create the Google storage bucket:
						
$ gsutil mb gs://<bucket_name>

	
							Upload the RHCOS image to the Google storage bucket:
						
$ gsutil cp <downloaded_image_file_path>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz gs://<bucket_name>

	
							Export the uploaded RHCOS image location as a variable:
						
$ export IMAGE_SOURCE="gs://<bucket_name>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz"

	
							Create the cluster image:
						
$ gcloud compute images create "${INFRA_ID}-rhcos-image" \
 --source-uri="${IMAGE_SOURCE}"

Creating the bootstrap machine in GCP

					You must create the bootstrap machine in Google Cloud Platform (GCP) to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Ensure pyOpenSSL is installed.
						

Procedure
	
							Copy the template from the Deployment Manager template for the bootstrap machine section of this topic and save it as 04_bootstrap.py on your computer. This template describes the bootstrap machine that your cluster requires.
						
	
							Export the location of the Red Hat Enterprise Linux CoreOS (RHCOS) image that the installation program requires:
						
$ export CLUSTER_IMAGE=(`gcloud compute images describe ${INFRA_ID}-rhcos-image --format json | jq -r .selfLink`)

	
							Create a bucket and upload the bootstrap.ign file:
						
$ gsutil mb gs://${INFRA_ID}-bootstrap-ignition
$ gsutil cp <installation_directory>/bootstrap.ign gs://${INFRA_ID}-bootstrap-ignition/

	
							Create a signed URL for the bootstrap instance to use to access the Ignition config. Export the URL from the output as a variable:
						
$ export BOOTSTRAP_IGN=`gsutil signurl -d 1h service-account-key.json gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign | grep "^gs:" | awk '{print $5}'`

	
							Create a 04_bootstrap.yaml resource definition file:
						
$ cat <<EOF >04_bootstrap.yaml
imports:
- path: 04_bootstrap.py

resources:
- name: cluster-bootstrap
 type: 04_bootstrap.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 region: '${REGION}' [image: 2]
 zone: '${ZONE_0}' [image: 3]

 cluster_network: '${CLUSTER_NETWORK}' [image: 4]
 control_subnet: '${CONTROL_SUBNET}' [image: 5]
 image: '${CLUSTER_IMAGE}' [image: 6]
 machine_type: 'n1-standard-4' [image: 7]
 root_volume_size: '128' [image: 8]

 bootstrap_ign: '${BOOTSTRAP_IGN}' [image: 9]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									region is the region to deploy the cluster into, for example us-central1.
								

	[image: 3]
	
									zone is the zone to deploy the bootstrap instance into, for example us-central1-b.
								

	[image: 4]
	
									cluster_network is the selfLink URL to the cluster network.
								

	[image: 5]
	
									control_subnet is the selfLink URL to the control subnet.
								

	[image: 6]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 7]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 8]
	
									root_volume_size is the boot disk size for the bootstrap machine.
								

	[image: 9]
	
									bootstrap_ign is the URL output when creating a signed URL.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-bootstrap --config 04_bootstrap.yaml

	
							The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the bootstrap machine manually.
						
	
									Add the bootstrap instance to the internal load balancer instance group:
								
$ gcloud compute instance-groups unmanaged add-instances \
 ${INFRA_ID}-bootstrap-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-bootstrap

	
									Add the bootstrap instance group to the internal load balancer backend service:
								
$ gcloud compute backend-services add-backend \
 ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}

Deployment Manager template for the bootstrap machine

						You can use the following Deployment Manager template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
					
Example 4.25. 04_bootstrap.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-bootstrap-public-ip',
 'type': 'compute.v1.address',
 'properties': {
 'region': context.properties['region']
 }
 }, {
 'name': context.properties['infra_id'] + '-bootstrap',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': '{"ignition":{"config":{"replace":{"source":"' + context.properties['bootstrap_ign'] + '"}},"version":"3.1.0"}}',
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet'],
 'accessConfigs': [{
 'natIP': '$(ref.' + context.properties['infra_id'] + '-bootstrap-public-ip.address)'
 }]
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
 context.properties['infra_id'] + '-bootstrap'
]
 },
 'zone': context.properties['zone']
 }
 }, {
 'name': context.properties['infra_id'] + '-bootstrap-instance-group',
 'type': 'compute.v1.instanceGroup',
 'properties': {
 'namedPorts': [
 {
 'name': 'ignition',
 'port': 22623
 }, {
 'name': 'https',
 'port': 6443
 }
],
 'network': context.properties['cluster_network'],
 'zone': context.properties['zone']
 }
 }]

 return {'resources': resources}

Creating the control plane machines in GCP

					You must create the control plane machines in Google Cloud Platform (GCP) for your cluster to use. One way to create these machines is to modify the provided Deployment Manager template.
				
Note

						If you do not use the provided Deployment Manager template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						

Procedure
	
							Copy the template from the Deployment Manager template for control plane machines section of this topic and save it as 05_control_plane.py on your computer. This template describes the control plane machines that your cluster requires.
						
	
							Export the following variable required by the resource definition:
						
$ export MASTER_IGNITION=`cat <installation_directory>/master.ign`

	
							Create a 05_control_plane.yaml resource definition file:
						
$ cat <<EOF >05_control_plane.yaml
imports:
- path: 05_control_plane.py

resources:
- name: cluster-control-plane
 type: 05_control_plane.py
 properties:
 infra_id: '${INFRA_ID}' [image: 1]
 zones: [image: 2]
 - '${ZONE_0}'
 - '${ZONE_1}'
 - '${ZONE_2}'

 control_subnet: '${CONTROL_SUBNET}' [image: 3]
 image: '${CLUSTER_IMAGE}' [image: 4]
 machine_type: 'n1-standard-4' [image: 5]
 root_volume_size: '128'
 service_account_email: '${MASTER_SERVICE_ACCOUNT}' [image: 6]

 ignition: '${MASTER_IGNITION}' [image: 7]
EOF
	[image: 1]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 2]
	
									zones are the zones to deploy the control plane instances into, for example us-central1-a, us-central1-b, and us-central1-c.
								

	[image: 3]
	
									control_subnet is the selfLink URL to the control subnet.
								

	[image: 4]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 5]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 6]
	
									service_account_email is the email address for the master service account that you created.
								

	[image: 7]
	
									ignition is the contents of the master.ign file.
								

	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-control-plane --config 05_control_plane.yaml

	
							The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the control plane machines manually.
						
	
									Run the following commands to add the control plane machines to the appropriate instance groups:
								
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_0}-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-master-0
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_1}-instance-group --zone=${ZONE_1} --instances=${INFRA_ID}-master-1
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_2}-instance-group --zone=${ZONE_2} --instances=${INFRA_ID}-master-2

	
									For an external cluster, you must also run the following commands to add the control plane machines to the target pools:
								
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-master-0
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_1}" --instances=${INFRA_ID}-master-1
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_2}" --instances=${INFRA_ID}-master-2

Deployment Manager template for control plane machines

						You can use the following Deployment Manager template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
					
Example 4.26. 05_control_plane.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-master-0',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][0] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][0] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][0]
 }
 }, {
 'name': context.properties['infra_id'] + '-master-1',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][1] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][1] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][1]
 }
 }, {
 'name': context.properties['infra_id'] + '-master-2',
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'diskType': 'zones/' + context.properties['zones'][2] + '/diskTypes/pd-ssd',
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zones'][2] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['control_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-master',
]
 },
 'zone': context.properties['zones'][2]
 }
 }]

 return {'resources': resources}

Wait for bootstrap completion and remove bootstrap resources in GCP

					After you create all of the required infrastructure in Google Cloud Platform (GCP), wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Change to the directory that contains the installation program and run the following command:
						
$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ [image: 1]
 --log-level info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

							If the command exits without a FATAL warning, your production control plane has initialized.
						

	
							Delete the bootstrap resources:
						
$ gcloud compute backend-services remove-backend ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}
$ gsutil rm gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign
$ gsutil rb gs://${INFRA_ID}-bootstrap-ignition
$ gcloud deployment-manager deployments delete ${INFRA_ID}-bootstrap

Creating additional worker machines in GCP

					You can create worker machines in Google Cloud Platform (GCP) for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
				

					In this example, you manually launch one instance by using the Deployment Manager template. Additional instances can be launched by including additional resources of type 06_worker.py in the file.
				
Note

						If you do not use the provided Deployment Manager template to create your worker machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
					

Prerequisites
	
							Configure a GCP account.
						
	
							Generate the Ignition config files for your cluster.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						

Procedure
	
							Copy the template from the Deployment Manager template for worker machines section of this topic and save it as 06_worker.py on your computer. This template describes the worker machines that your cluster requires.
						
	
							Export the variables that the resource definition uses.
						
	
									Export the subnet that hosts the compute machines:
								
$ export COMPUTE_SUBNET=(`gcloud compute networks subnets describe ${INFRA_ID}-worker-subnet --region=${REGION} --format json | jq -r .selfLink`)

	
									Export the email address for your service account:
								
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)

	
									Export the location of the compute machine Ignition config file:
								
$ export WORKER_IGNITION=`cat <installation_directory>/worker.ign`

	
							Create a 06_worker.yaml resource definition file:
						
$ cat <<EOF >06_worker.yaml
imports:
- path: 06_worker.py

resources:
- name: 'worker-0' [image: 1]
 type: 06_worker.py
 properties:
 infra_id: '${INFRA_ID}' [image: 2]
 zone: '${ZONE_0}' [image: 3]
 compute_subnet: '${COMPUTE_SUBNET}' [image: 4]
 image: '${CLUSTER_IMAGE}' [image: 5]
 machine_type: 'n1-standard-4' [image: 6]
 root_volume_size: '128'
 service_account_email: '${WORKER_SERVICE_ACCOUNT}' [image: 7]
 ignition: '${WORKER_IGNITION}' [image: 8]
- name: 'worker-1'
 type: 06_worker.py
 properties:
 infra_id: '${INFRA_ID}' [image: 9]
 zone: '${ZONE_1}' [image: 10]
 compute_subnet: '${COMPUTE_SUBNET}' [image: 11]
 image: '${CLUSTER_IMAGE}' [image: 12]
 machine_type: 'n1-standard-4' [image: 13]
 root_volume_size: '128'
 service_account_email: '${WORKER_SERVICE_ACCOUNT}' [image: 14]
 ignition: '${WORKER_IGNITION}' [image: 15]
EOF
	[image: 1]
	
									name is the name of the worker machine, for example worker-0.
								

	[image: 2] [image: 9]
	
									infra_id is the INFRA_ID infrastructure name from the extraction step.
								

	[image: 3] [image: 10]
	
									zone is the zone to deploy the worker machine into, for example us-central1-a.
								

	[image: 4] [image: 11]
	
									compute_subnet is the selfLink URL to the compute subnet.
								

	[image: 5] [image: 12]
	
									image is the selfLink URL to the RHCOS image.
								

	[image: 6] [image: 13]
	
									machine_type is the machine type of the instance, for example n1-standard-4.
								

	[image: 7] [image: 14]
	
									service_account_email is the email address for the worker service account that you created.
								

	[image: 8] [image: 15]
	
									ignition is the contents of the worker.ign file.
								

	
							Optional: If you want to launch additional instances, include additional resources of type 06_worker.py in your 06_worker.yaml resource definition file.
						
	
							Create the deployment by using the gcloud CLI:
						
$ gcloud deployment-manager deployments create ${INFRA_ID}-worker --config 06_worker.yaml

Deployment Manager template for worker machines

						You can use the following Deployment Manager template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
					
Example 4.27. 06_worker.py Deployment Manager template
def GenerateConfig(context):

 resources = [{
 'name': context.properties['infra_id'] + '-' + context.env['name'],
 'type': 'compute.v1.instance',
 'properties': {
 'disks': [{
 'autoDelete': True,
 'boot': True,
 'initializeParams': {
 'diskSizeGb': context.properties['root_volume_size'],
 'sourceImage': context.properties['image']
 }
 }],
 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
 'metadata': {
 'items': [{
 'key': 'user-data',
 'value': context.properties['ignition']
 }]
 },
 'networkInterfaces': [{
 'subnetwork': context.properties['compute_subnet']
 }],
 'serviceAccounts': [{
 'email': context.properties['service_account_email'],
 'scopes': ['https://www.googleapis.com/auth/cloud-platform']
 }],
 'tags': {
 'items': [
 context.properties['infra_id'] + '-worker',
]
 },
 'zone': context.properties['zone']
 }
 }]

 return {'resources': resources}

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Disabling the default OperatorHub sources

					Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
				
Procedure
	
							Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
						
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

					Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
				

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Optional: Adding the ingress DNS records

					If you removed the DNS zone configuration when creating Kubernetes manifests and generating Ignition configs, you must manually create DNS records that point at the ingress load balancer. You can create either a wildcard *.apps.{baseDomain}. or specific records. You can use A, CNAME, and other records per your requirements.
				
Prerequisites
	
							Configure a GCP account.
						
	
							Remove the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs.
						
	
							Create and configure a VPC and associated subnets in GCP.
						
	
							Create and configure networking and load balancers in GCP.
						
	
							Create control plane and compute roles.
						
	
							Create the bootstrap machine.
						
	
							Create the control plane machines.
						
	
							Create the worker machines.
						

Procedure
	
							Wait for the Ingress router to create a load balancer and populate the EXTERNAL-IP field:
						
$ oc -n openshift-ingress get service router-default
Example output

								

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
router-default LoadBalancer 172.30.18.154 35.233.157.184 80:32288/TCP,443:31215/TCP 98

							

	
							Add the A record to your zones:
						
	
									To use A records:
								
	
											Export the variable for the router IP address:
										
$ export ROUTER_IP=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'`

	
											Add the A record to the private zones:
										
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction add ${ROUTER_IP} --name *.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${INFRA_ID}-private-zone
$ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone

	
											For an external cluster, also add the A record to the public zones:
										
$ if [-f transaction.yaml]; then rm transaction.yaml; fi
$ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction add ${ROUTER_IP} --name *.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${BASE_DOMAIN_ZONE_NAME}
$ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}

	
									To add explicit domains instead of using a wildcard, create entries for each of the cluster’s current routes:
								
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output

										

oauth-openshift.apps.your.cluster.domain.example.com
console-openshift-console.apps.your.cluster.domain.example.com
downloads-openshift-console.apps.your.cluster.domain.example.com
alertmanager-main-openshift-monitoring.apps.your.cluster.domain.example.com
grafana-openshift-monitoring.apps.your.cluster.domain.example.com
prometheus-k8s-openshift-monitoring.apps.your.cluster.domain.example.com

									

Completing a GCP installation on user-provisioned infrastructure

					After you start the OpenShift Container Platform installation on Google Cloud Platform (GCP) user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
				
Prerequisites
	
							Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned GCP infrastructure.
						
	
							Install the oc CLI and log in.
						

Procedure
	
							Complete the cluster installation:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Observe the running state of your cluster.
						
	
									Run the following command to view the current cluster version and status:
								
$ oc get clusterversion
Example output

										

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version False True 24m Working towards 4.5.4: 99% complete

									

	
									Run the following command to view the Operators managed on the control plane by the Cluster Version Operator (CVO):
								
$ oc get clusteroperators
Example output

										

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.5.4 True False False 7m56s
cloud-credential 4.5.4 True False False 31m
cluster-autoscaler 4.5.4 True False False 16m
console 4.5.4 True False False 10m
csi-snapshot-controller 4.5.4 True False False 16m
dns 4.5.4 True False False 22m
etcd 4.5.4 False False False 25s
image-registry 4.5.4 True False False 16m
ingress 4.5.4 True False False 16m
insights 4.5.4 True False False 17m
kube-apiserver 4.5.4 True False False 19m
kube-controller-manager 4.5.4 True False False 20m
kube-scheduler 4.5.4 True False False 20m
kube-storage-version-migrator 4.5.4 True False False 16m
machine-api 4.5.4 True False False 22m
machine-config 4.5.4 True False False 22m
marketplace 4.5.4 True False False 16m
monitoring 4.5.4 True False False 10m
network 4.5.4 True False False 23m
node-tuning 4.5.4 True False False 23m
openshift-apiserver 4.5.4 True False False 17m
openshift-controller-manager 4.5.4 True False False 15m
openshift-samples 4.5.4 True False False 16m
operator-lifecycle-manager 4.5.4 True False False 22m
operator-lifecycle-manager-catalog 4.5.4 True False False 22m
operator-lifecycle-manager-packageserver 4.5.4 True False False 18m
service-ca 4.5.4 True False False 23m
service-catalog-apiserver 4.5.4 True False False 23m
service-catalog-controller-manager 4.5.4 True False False 23m
storage 4.5.4 True False False 17m

									

	
									Run the following command to view your cluster pods:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-member-ip-10-0-3-111.us-east-2.compute.internal 1/1 Running 0 35m
kube-system etcd-member-ip-10-0-3-239.us-east-2.compute.internal 1/1 Running 0 37m
kube-system etcd-member-ip-10-0-3-24.us-east-2.compute.internal 1/1 Running 0 35m
openshift-apiserver-operator openshift-apiserver-operator-6d6674f4f4-h7t2t 1/1 Running 1 37m
openshift-apiserver apiserver-fm48r 1/1 Running 0 30m
openshift-apiserver apiserver-fxkvv 1/1 Running 0 29m
openshift-apiserver apiserver-q85nm 1/1 Running 0 29m
...
openshift-service-ca-operator openshift-service-ca-operator-66ff6dc6cd-9r257 1/1 Running 0 37m
openshift-service-ca apiservice-cabundle-injector-695b6bcbc-cl5hm 1/1 Running 0 35m
openshift-service-ca configmap-cabundle-injector-8498544d7-25qn6 1/1 Running 0 35m
openshift-service-ca service-serving-cert-signer-6445fc9c6-wqdqn 1/1 Running 0 35m
openshift-service-catalog-apiserver-operator openshift-service-catalog-apiserver-operator-549f44668b-b5q2w 1/1 Running 0 32m
openshift-service-catalog-controller-manager-operator openshift-service-catalog-controller-manager-operator-b78cr2lnm 1/1 Running 0 31m

									

							When the current cluster version is AVAILABLE, the installation is complete.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							Configure image streams for the Cluster Samples Operator and the must-gather tool.
						
	
							Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						
	
							If necessary, you can opt out of remote health reporting.
						

Uninstalling a cluster on GCP

				You can remove a cluster that you deployed to Google Cloud Platform (GCP).
			
Removing a cluster that uses installer-provisioned infrastructure

					You can remove a cluster that uses installer-provisioned infrastructure from your cloud.
				
Note

						After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access. For example, some Google Cloud resources require IAM permissions in shared VPC host projects, or there might be unused health checks that must be deleted.
					

Prerequisites
	
							Have a copy of the installation program that you used to deploy the cluster.
						
	
							Have the files that the installation program generated when you created your cluster.
						

Procedure
	
							From the directory that contains the installation program on the computer that you used to install the cluster, run the following command:
						
$./openshift-install destroy cluster \
--dir <installation_directory> --log-level info [image: 1] [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different details, specify warn, debug, or error instead of info.
								

Note

								You must specify the directory that contains the cluster definition files for your cluster. The installation program requires the metadata.json file in this directory to delete the cluster.
							

	
							Optional: Delete the <installation_directory> directory and the OpenShift Container Platform installation program.
						

Chapter 5. Installing on bare metal

Installing a cluster on bare metal

				In OpenShift Container Platform version 4.6, you can install a cluster on bare metal infrastructure that you provision.
			
Important

					While you might be able to follow this procedure to deploy a cluster on virtualized or cloud environments, you must be aware of additional considerations for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you attempt to install an OpenShift Container Platform cluster in such an environment.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines. If you are running a three-node cluster, running zero compute machines is supported. Running one compute machine is not supported.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 5.1. Minimum resource requirements
	Machine	Operating System	CPU [1]	RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS or RHEL 7.9
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One CPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = CPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 5.2. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 5.3. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 5.4. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 5.5. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 5.6. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 5.7. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 5.1. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 5.2. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 5.8. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 5.9. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 5.10. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Sample install-config.yaml file for bare metal

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths": ...}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for your platform.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								The pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Note

							For bare metal installations, if you do not assign node IP addresses from the range that is specified in the networking.machineNetwork[].cidr field in the install-config.yaml file, you must include them in the proxy.noProxy field.
						

Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Configuring a three-node cluster

					You can optionally install and run three-node clusters in OpenShift Container Platform with no workers. This provides smaller, more resource efficient clusters for cluster administrators and developers to use for development, production, and testing.
				
Procedure
	
							Edit the install-config.yaml file to set the number of compute replicas, which are also known as worker replicas, to 0, as shown in the following compute stanza:
						
compute:
- name: worker
 platform: {}
 replicas: 0

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

Warning

						If you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.
					

					+
				
Important

						When you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become worker nodes.
					

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Additional resources
	
							See Recovering from expired control plane certificates for more information about recovering kubelet certificates.
						

Installing RHCOS and starting the OpenShift Container Platform bootstrap process

					To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.
				

					To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.
				
Note

						The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and planned for removal in a future release of OpenShift Container Platform 4.
					

					You can configure RHCOS during ISO and PXE installations by using the following methods:
				
	
							Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the APPEND parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use special coreos.inst.* arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off.
						
	
							Ignition configs: OpenShift Container Platform Ignition config files (*.ign) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by the coreos-installer to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly.
						
	
							coreos-installer: You can boot the live ISO installer to a shell prompt, which allows you to prepare the permanent system in a variety of ways before first boot. In particular, you can run the coreos-installer command to identify various artifacts to include, work with disk partitions, and set up networking. In some cases, you can configure features on the live system and copy them to the installed system.
						

					Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.
				
Note

						As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.
					

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image

						Before you install a cluster on infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
							

Procedure
	
								Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
							
Important

									The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								ISO file names resemble the following example:
							

								rhcos-<version>-live.<architecture>.iso
							

	
								Use the ISO to start the RHCOS installation. Use one of the following installation options:
							
	
										Burn the ISO image to a disk and boot it directly.
									
	
										Use ISO redirection via a LOM interface.
									

	
								Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the coreos-installer command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk.
							
	
								Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the coreos-installer.
							
	
								Run the coreos-installer command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:
							
$ sudo coreos-installer install \
 --ignition-url=https://host/worker.ign /dev/sda

	
								After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
							
	
								Continue to create the other machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting

						Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Configure suitable PXE or iPXE infrastructure.
							
	
								Have access to an HTTP server that you can access from your computer.
							

Procedure
	
								Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS kernel, initramfs and rootfs files from the RHCOS image mirror page.
							
Important

									The RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								The file names contain the OpenShift Container Platform version number. They resemble the following examples:
							
	
										kernel: rhcos-<version>-live-kernel-<architecture>
									
	
										initramfs: rhcos-<version>-live-initramfs.<architecture>.img
									
	
										rootfs: rhcos-<version>-live-rootfs.<architecture>.img
									

	
								Upload the additional files that are required for your booting method:
							
	
										For traditional PXE, upload the kernel and initramfs files to your TFTP server and the rootfs file to your HTTP server.
									
	
										For iPXE, upload the kernel, initramfs, and rootfs files to your HTTP server.
									
Important

											If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
										

	
								Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
							
	
								Configure PXE or iPXE installation for the RHCOS images.
							

								Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
							
	
										For PXE:
									
DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> [image: 1]
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 2] [image: 3]
	[image: 1]
	
												Specify the location of the live kernel file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the initramfs file, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to the APPEND line to configure networking or other boot options.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
										For iPXE:
									
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 1] [image: 2]
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img [image: 3]
boot
	[image: 1]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify the location of the initramfs file that you uploaded to your HTTP server.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
								If you use PXE UEFI, perform the following actions:
							
	
										Provide the shimx64.efi and grubx64.efi EFI binaries and the grub.cfg file that are required for booting the system.
									
	
												Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the images/efiboot.img file to your host:
											
$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot

	
												From the efiboot.img mount point, copy the EFI/redhat/shimx64.efi and EFI/redhat/grubx64.efi files to your TFTP server:
											
$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso

	
												Copy the EFI/redhat/grub.cfg file that is included in the RHCOS ISO to your TFTP server.
											

	
										Edit the grub.cfg file to include arguments similar to the following:
									
menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os {
	linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign
	initrdefi rhcos-<version>-live-initramfs.<architecture>.img
}

										where:
									
	rhcos-<version>-live-kernel-<architecture>
	
													Specifies the kernel file that you uploaded to your TFTP server.
												
	http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
	
													Specifies the location of the live rootfs image that you uploaded to your HTTP server.
												
	http://<HTTP_server>/bootstrap.ign
	
													Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
												
	rhcos-<version>-live-initramfs.<architecture>.img
	
													Specifies the location of the initramfs file that you uploaded to your TFTP server.
												

Note

											For more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
										

	
								Continue to create the machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Advanced Red Hat Enterprise Linux CoreOS (RHCOS) installation configuration

						A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations that you can do using techniques that include:
					
	
								Passing kernel arguments to the live installer
							
	
								Running coreos-installer manually from the live system
							
	
								Embedding Ignition configs in an ISO
							

						The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.
					
Using advanced networking options for PXE and ISO installations

							Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:
						
	
									Pass special kernel parameters when you boot the live installer.
								
	
									Use a machine config to copy networking files to the installed system.
								
	
									Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.
								

							To configure a PXE or iPXE installation, use one of the following options:
						
	
									See the "Advanced RHCOS installation reference" tables.
								
	
									Use a machine config to copy networking files to the installed system.
								

							To configure an ISO installation, use the following procedure.
						
Procedure
	
									Boot the ISO installer.
								
	
									From the live system shell prompt, configure networking for the live system using available RHEL tools, such as nmcli or nmtui.
								
	
									Run the coreos-installer command to install the system, adding the --copy-network option to copy networking configuration. For example:
								
$ coreos-installer install --copy-network \
 --ignition-url=http://host/worker.ign /dev/sda
Important

										The --copy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.
									

	
									Reboot into the installed system.
								

Disk partitioning

							The disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless the default partitioning configuration is overridden. During the RHCOS installation, the size of the root file system is increased to use the remaining available space on the target device.
						

							However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
						
	
									Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making /var or a subdirectory of /var, such as /var/lib/etcd, a separate partition, but not both.
								
Important

										Kubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
									

	
									Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to coreos-installer that allow you to retain existing data partitions.
								

Creating a separate /var partition

								In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
							

								OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
							
	
										/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
									
	
										/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
									
	
										/var: Holds data that you might want to keep separate for purposes such as auditing.
									

								Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
							

								Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
							
Procedure
	
										Create a directory to hold the OpenShift Container Platform installation files:
									
$ mkdir $HOME/clusterconfig

	
										Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
									
$ openshift-install create manifests --dir $HOME/clusterconfig
? SSH Public Key ...
$ ls $HOME/clusterconfig/openshift/
99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

	
										Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
									
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
												The storage device name of the disk that you want to partition.
											

	[image: 2]
	
												When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
											

	[image: 3]
	
												The size of the data partition in mebibytes.
											

	[image: 4]
	
												The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
											

	[image: 5]
	
												The prjquota mount option must be enabled for filesystems used for container storage.
											

Note

											When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
										

	
										Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
									
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

								Now you can use the Ignition config files as input to the ISO or PXE manual installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
							

Retaining existing partitions

								For an ISO installation, you can add options to the coreos-installer command line that causes the installer to maintain one or more existing partitions. For a PXE installation, you can APPEND coreos.inst.* options to preserve partitions.
							

								Saved partitions might be partitions from an existing OpenShift Container Platform system that has data partitions that you want to keep. Here are a few tips:
							
	
										If you save existing partitions, and those partitions do not leave enough space for RHCOS, installation will fail without damaging the saved partitions.
									
	
										Identify the disk partitions you want to keep either by partition label or by number.
									

For an ISO installation

									This example preserves any partition in which the partition label begins with data (data*):
								
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
 --save-partlabel 'data*' /dev/sda

								The following example illustrates running the coreos-installer in a way that preserves the sixth (6) partition on the disk:
							
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
 --save-partindex 6 /dev/sda

								This example preserves partitions 5 and higher:
							
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign
 --save-partindex 5- /dev/sda

								In the previous examples where partition saving is used, coreos-installer recreates the partition immediately.
							
For a PXE installation

									This APPEND option preserves any partition in which the partition label begins with 'data' ('data*'):
								
coreos.inst.save_partlabel=data*

								This APPEND option preserves partitions 5 and higher:
							
coreos.inst.save_partindex=5-

								This APPEND option preserves partition 6:
							
coreos.inst.save_partindex=6

Identifying Ignition configs

							When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:
						
	
									Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, to carry out the installation.
								
Important

										It is not recommended to modify these files.
									

									For PXE installations, you pass the Ignition configs on the APPEND line using the coreos.inst.ignition_url= option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on the coreos-installer command line with the --ignition-url= option. In both cases, only HTTP and HTTPS protocols are supported.
								

	
									Live install Ignition config: This type must be created manually and should be avoided if possible, as it is not supported by Red Hat. With this method, the Ignition config passes to the live install medium, runs immediately upon booting, and performs setup tasks before and/or after the RHCOS system installs to disk. This method should only be used for performing tasks that must be performed once and not applied again later, such as with advanced partitioning that cannot be done using a machine config.
								

									For PXE or ISO boots, you can create the Ignition config and APPEND the ignition.config.url= option to identify the location of the Ignition config. You also need to append ignition.firstboot ignition.platform.id=metal or the ignition.config.url option will be ignored.
								

Embedding an Ignition config in the RHCOS ISO

								You can embed a live install Ignition config directly in an RHCOS ISO image. When the ISO image is booted, the embedded config will be applied automatically.
							
Procedure
	
										Download the coreos-installer binary from the following image mirror page: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/.
									
	
										Retrieve the RHCOS ISO image and the Ignition config file, and copy them into an accessible directory, such as /mnt:
									
cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/
chmod 644 /mnt/rhcos-<version>-live.x86_64.iso

	
										Run the following command to embed the Ignition config into the ISO:
									
./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \
 /mnt/rhcos-<version>-live.x86_64.iso

										You can now use that ISO to install RHCOS using the specified live install Ignition config.
									
Important

											Using coreos-installer iso ignition embed to embed a file generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, is unsupported and not recommended.
										

	
										To show the contents of the embedded Ignition config and direct it into a file, run:
									
./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
diff -s bootstrap.ign mybootstrap.ign
Example output

											

Files bootstrap.ign and mybootstrap.ign are identical

										

	
										To remove the Ignition config and return the ISO to its pristine state so you can reuse it, run:
									
./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso

										You can now embed another Ignition config into the ISO or use the ISO in its pristine state.
									

Advanced RHCOS installation reference

							This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
						
Routing and bonding options at RHCOS boot prompt

							If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
						
Important

								When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
							

							The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
						
Note

								Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
							

Routing and bonding options for ISO

								The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
							
	Description	Examples
	
											To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

										

										 	
													The node’s IP address to 10.10.10.2

												
	
													The gateway address to 10.10.10.254

												
	
													The netmask to 255.255.255.0

												
	
													The hostname to core0.example.com

												
	
													The DNS server address to 4.4.4.41
												

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

										
	
											Specify multiple network interfaces by specifying multiple ip= entries.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure routes to additional networks by setting an rd.route= value.
										

										
											If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
										

										 	
											To configure the default gateway:
										

										
ip=::10.10.10.254::::

										
											To configure the route for the additional network:
										

										
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

										
	
											Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

										
	
											You can combine DHCP and static IP configurations on systems with multiple network interfaces.
										

										 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
										

										 	
											To configure a VLAN on a network interface and use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

										
											To configure a VLAN on a network interface and to use DHCP:
										

										
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

										
	
											You can provide multiple DNS servers by adding a nameserver= entry for each server.
										

										 	
nameserver=1.1.1.1
nameserver=8.8.8.8

										
	
											Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
										

										 	
													The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
												
	
													name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
												
	
													When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
												

										 	
											To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

										
											To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

										
	
											Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
										

										 	
											To configure the bonded interface with a VLAN and to use DHCP:
										

										
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
											To configure the bonded interface with a VLAN and to use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
	
											Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
										

										 	
													The syntax for configuring a team interface is: team=name[:network_interfaces]
												

													name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
												

										 Note

												Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
											

										 	
											To configure a network team:
										

										
team=team0:em1,em2
ip=team0:dhcp

										

coreos.inst boot options for ISO or PXE install

							While you can pass most standard installation boot arguments to the live installer, there are several arguments that are specific to the RHCOS live installer.
						
	
									For ISO, these options can be added by interrupting the RHCOS installer.
								
	
									For PXE or iPXE, these options must be added to the APPEND line before starting the PXE kernel. You cannot interrupt a live PXE install.
								

							The following table shows the RHCOS live installer boot options for ISO and PXE installs.
						
Table 5.11. coreos.inst boot options
	Argument	Description
	
											coreos.inst.install_dev
										

										 	
											Required. The block device on the system to install to. It is recommended to use the full path, such as /dev/sda, although sda is allowed.
										

										
	
											coreos.inst.ignition_url
										

										 	
											Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded.
										

										
	
											coreos.inst.save_partlabel
										

										 	
											Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist.
										

										
	
											coreos.inst.save_partindex
										

										 	
											Optional: Comma-separated indexes of partitions to preserve during the install. Ranges m-n are permitted, and either m or n can be omitted. The specified partitions do not need to exist.
										

										
	
											coreos.inst.insecure
										

										 	
											Optional: Permits the OS image that is specified by coreos.inst.image_url to be unsigned.
										

										
	
											coreos.inst.image_url
										

										 	
											Optional: Download and install the specified RHCOS image.
										

										 	
													This argument should not be used in production environments and is intended for debugging purposes only.
												
	
													While this argument can be used to install a version of RHCOS that does not match the live media, it is recommended that you instead use the media that matches the version you want to install.
												
	
													If you are using coreos.inst.image_url, you must also use coreos.inst.insecure. This is because the bare-metal media are not GPG-signed for OpenShift Container Platform.
												
	
													Only HTTP and HTTPS protocols are supported.
												

										
	
											coreos.inst.skip_reboot
										

										 	
											Optional: The system will not reboot after installing. Once the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only.
										

										
	
											coreos.inst.platform_id
										

										 	
											Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is metal. This option determines whether or not to request an Ignition config from the cloud provider, such as VMware. For example: coreos.inst.platform_id=vmware.
										

										
	
											ignition.config.url
										

										 	
											Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how coreos-installer is invoked, or to run code before or after the installation. This is different from coreos.inst.ignition_url, which is the Ignition config for the installed system.
										

										

coreos-installer options for ISO install

							You can also install RHCOS by invoking the coreos-installer command directly from the command line. The kernel arguments in the previous table provide a shortcut for automatically invoking coreos-installer at boot time, but you can pass similar arguments directly to coreos-installer when running it from a shell prompt.
						

							The following table shows the options and subcommands you can pass to the coreos-installer command from a shell prompt during a live install.
						
Table 5.12. coreos-installer command-line options, arguments, and subcommands
	
											Command-line options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-u, --image-url <url>
										

										 	
											Specify the image URL manually.
										

										
	
											-f, --image-file <path>
										

										 	
											Specify a local image file manually.
										

										
	
											-i, --ignition-file <path>
										

										 	
											Embed an Ignition config from a file.
										

										
	
											-I, --ignition-url <URL>
										

										 	
											Embed an Ignition config from a URL.
										

										
	
											--ignition-hash <digest>
										

										 	
											Digest type-value of the Ignition config.
										

										
	
											-p, --platform <name>
										

										 	
											Override the Ignition platform ID.
										

										
	
											--append-karg <arg>…​
										

										 	
											Append the default kernel argument.
										

										
	
											--delete-karg <arg>…​
										

										 	
											Delete the default kernel argument.
										

										
	
											-n, --copy-network
										

										 	
											Copy the network configuration from the install environment.
										

										 Important

												The --copy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.
											

										
	
											--network-dir <path>
										

										 	
											For use with -n. Default is /etc/NetworkManager/system-connections/.
										

										
	
											--save-partlabel <lx>..
										

										 	
											Save partitions with this label glob.
										

										
	
											--save-partindex <id>…​
										

										 	
											Save partitions with this number or range.
										

										
	
											--offline
										

										 	
											Force offline installation.
										

										
	
											--insecure
										

										 	
											Skip signature verification.
										

										
	
											--insecure-ignition
										

										 	
											Allow Ignition URL without HTTPS or hash.
										

										
	
											--architecture <name>
										

										 	
											Target CPU architecture. Default is x86_64.
										

										
	
											--preserve-on-error
										

										 	
											Do not clear partition table on error.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										
	
											Command-line argument
										

										
	
											Argument
										

										 	
											Description
										

										
	
											<device>
										

										 	
											The destination device.
										

										
	
											coreos-installer embedded Ignition commands
										

										
	
											Command
										

										 	
											Description
										

										
	
											$ coreos-installer iso ignition embed <options> --ignition-file <file_path> <ISO_image>
										

										 	
											Embed an Ignition config in an ISO image.
										

										
	
											coreos-installer iso ignition show <options> <ISO_image>
										

										 	
											Show the embedded Ignition config from an ISO image.
										

										
	
											coreos-installer iso ignition remove <options> <ISO_image>
										

										 	
											Remove the embedded Ignition config from an ISO image.
										

										
	
											coreos-installer ISO Ignition options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-f, --force
										

										 	
											Overwrite an existing Ignition config.
										

										
	
											-i, --ignition-file <path>
										

										 	
											The Ignition config to be used. Default is stdin.
										

										
	
											-o, --output <path>
										

										 	
											Write the ISO to a new output file.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										
	
											coreos-installer PXE Ignition commands
										

										
	
											Command
										

										 	
											Description
										

										
	
											Note that not all of these options are accepted by all subcommands.
										

										
	
											coreos-installer pxe ignition wrap <options>
										

										 	
											Wrap an Ignition config in an image.
										

										
	
											coreos-installer pxe ignition unwrap <options> <image_name>
										

										 	
											Show the wrapped Ignition config in an image.
										

										
	
											coreos-installer pxe ignition unwrap <options> <initrd_name>
										

										 	
											Show the wrapped Ignition config in an initrd image.
										

										
	
											coreos-installer PXE Ignition options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-i, --ignition-file <path>
										

										 	
											The Ignition config to be used. Default is stdin.
										

										
	
											-o, --output <path>
										

										 	
											Write the ISO to a new output file.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						
	
							Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for bare metal and other manual installations

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS) nodes, such as bare metal.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have 100Gi capacity.
								

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim:

									

									Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
								

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

	
									Ensure that your registry is set to managed to enable building and pushing of images.
								
	
											Run:
										
$ oc edit configs.imageregistry/cluster

											Then, change the line
										
managementState: Removed

											to
										
managementState: Managed

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Configuring block registry storage

							To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only one (1) replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
									Edit the registry configuration so that it references the correct PVC.
								

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on bare metal with network customizations

				In OpenShift Container Platform version 4.6, you can install a cluster on bare metal infrastructure that you provision with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
			

				You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall, you must configure it to access Red Hat Insights.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines. If you are running a three-node cluster, running zero compute machines is supported. Running one compute machine is not supported.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 5.13. Minimum resource requirements
	Machine	Operating System	CPU [1]	RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS or RHEL 7.9
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One CPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = CPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 5.14. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 5.15. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 5.16. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 5.17. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 5.18. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 5.19. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 5.3. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 5.4. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 5.20. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 5.21. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 5.22. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Sample install-config.yaml file for bare metal

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths": ...}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for your platform.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								The pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Network configuration phases

					When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
				
	Phase 1
	
								After entering the openshift-install create install-config command. In the install-config.yaml file, you can customize the following network-related fields:
							
	
										networking.networkType
									
	
										networking.clusterNetwork
									
	
										networking.serviceNetwork
									
	
										networking.machineNetwork
									

										For more information on these fields, refer to "Installation configuration parameters".
									
Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

	Phase 2
	
								After entering the openshift-install create manifests command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
							

					You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.
				

Specifying advanced network configuration

					You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
				
Important

						Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
					

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						
	
							Create the Ignition config files for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and specify the advanced network configuration for your cluster, such as in the following example:
						
Specify a different VXLAN port for the OpenShift SDN network provider

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 openshiftSDNConfig:
 vxlanPort: 4800

							

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Cluster Network Operator configuration

					The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.
				

					The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:
				
	clusterNetwork
	
								IP address pools from which pod IP addresses are allocated.
							
	serviceNetwork
	
								IP address pool for services.
							
	defaultNetwork.type
	
								Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
							

					You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.
				
Cluster Network Operator configuration object

						The fields for the Cluster Network Operator (CNO) are described in the following table:
					
Table 5.23. Cluster Network Operator configuration object
	Field	Type	Description
	
										metadata.name
									

									 	
										string
									

									 	
										The name of the CNO object. This name is always cluster.
									

									
	
										spec.clusterNetwork
									

									 	
										array
									

									 	
										A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
									

									
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.serviceNetwork
									

									 	
										array
									

									 	
										A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:
									

									
spec:
 serviceNetwork:
 - 172.30.0.0/14

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.defaultNetwork
									

									 	
										object
									

									 	
										Configures the Container Network Interface (CNI) cluster network provider for the cluster network.
									

									
	
										spec.kubeProxyConfig
									

									 	
										object
									

									 	
										The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.
									

									

defaultNetwork object configuration

						The values for the defaultNetwork object are defined in the following table:
					
Table 5.24. defaultNetwork object
	Field	Type	Description
	
										type
									

									 	
										string
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.
									

									 Note

											OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.
										

									
	
										openshiftSDNConfig
									

									 	
										object
									

									 	
										This object is only valid for the OpenShift SDN cluster network provider.
									

									
	
										ovnKubernetesConfig
									

									 	
										object
									

									 	
										This object is only valid for the OVN-Kubernetes cluster network provider.
									

									

Configuration for the OpenShift SDN CNI cluster network provider

						The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
					
Table 5.25. openshiftSDNConfig object
	Field	Type	Description
	
										mode
									

									 	
										string
									

									 	
										Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.
									

									
										The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.
									

									
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										vxlanPort
									

									 	
										integer
									

									 	
										The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.
									

									
										If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
									

									
										On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.
									

									

Example OpenShift SDN configuration

							

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

						
Configuration for the OVN-Kubernetes CNI cluster network provider

						The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
					
Table 5.26. ovnKubernetesConfig object
	Field	Type	Description
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										genevePort
									

									 	
										integer
									

									 	
										The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.
									

									

Example OVN-Kubernetes configuration

							

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081

						
kubeProxyConfig object configuration

						The values for the kubeProxyConfig object are defined in the following table:
					
Table 5.27. kubeProxyConfig object
	Field	Type	Description
	
										iptablesSyncPeriod
									

									 	
										string
									

									 	
										The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.
									

									 Note

											Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.
										

									
	
										proxyArguments.iptables-min-sync-period
									

									 	
										array
									

									 	
										The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:
									

									
kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

									

Creating the Ignition config files

					Because you must manually start the cluster machines, you must generate the Ignition config files that the cluster needs to make its machines.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Obtain the Ignition config files:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

Important

								If you created an install-config.yaml file, specify the directory that contains it. Otherwise, specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Installing RHCOS and starting the OpenShift Container Platform bootstrap process

					To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.
				

					To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.
				
Note

						The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and planned for removal in a future release of OpenShift Container Platform 4.
					

					You can configure RHCOS during ISO and PXE installations by using the following methods:
				
	
							Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the APPEND parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use special coreos.inst.* arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off.
						
	
							Ignition configs: OpenShift Container Platform Ignition config files (*.ign) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by the coreos-installer to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly.
						
	
							coreos-installer: You can boot the live ISO installer to a shell prompt, which allows you to prepare the permanent system in a variety of ways before first boot. In particular, you can run the coreos-installer command to identify various artifacts to include, work with disk partitions, and set up networking. In some cases, you can configure features on the live system and copy them to the installed system.
						

					Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.
				
Note

						As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.
					

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image

						Before you install a cluster on infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
							

Procedure
	
								Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
							
Important

									The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								ISO file names resemble the following example:
							

								rhcos-<version>-live.<architecture>.iso
							

	
								Use the ISO to start the RHCOS installation. Use one of the following installation options:
							
	
										Burn the ISO image to a disk and boot it directly.
									
	
										Use ISO redirection via a LOM interface.
									

	
								Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the coreos-installer command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk.
							
	
								Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the coreos-installer.
							
	
								Run the coreos-installer command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:
							
$ sudo coreos-installer install \
 --ignition-url=https://host/worker.ign /dev/sda

	
								After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
							
	
								Continue to create the other machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting

						Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Configure suitable PXE or iPXE infrastructure.
							
	
								Have access to an HTTP server that you can access from your computer.
							

Procedure
	
								Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS kernel, initramfs and rootfs files from the RHCOS image mirror page.
							
Important

									The RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								The file names contain the OpenShift Container Platform version number. They resemble the following examples:
							
	
										kernel: rhcos-<version>-live-kernel-<architecture>
									
	
										initramfs: rhcos-<version>-live-initramfs.<architecture>.img
									
	
										rootfs: rhcos-<version>-live-rootfs.<architecture>.img
									

	
								Upload the additional files that are required for your booting method:
							
	
										For traditional PXE, upload the kernel and initramfs files to your TFTP server and the rootfs file to your HTTP server.
									
	
										For iPXE, upload the kernel, initramfs, and rootfs files to your HTTP server.
									
Important

											If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
										

	
								Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
							
	
								Configure PXE or iPXE installation for the RHCOS images.
							

								Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
							
	
										For PXE:
									
DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> [image: 1]
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 2] [image: 3]
	[image: 1]
	
												Specify the location of the live kernel file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the initramfs file, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to the APPEND line to configure networking or other boot options.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
										For iPXE:
									
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 1] [image: 2]
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img [image: 3]
boot
	[image: 1]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify the location of the initramfs file that you uploaded to your HTTP server.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
								If you use PXE UEFI, perform the following actions:
							
	
										Provide the shimx64.efi and grubx64.efi EFI binaries and the grub.cfg file that are required for booting the system.
									
	
												Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the images/efiboot.img file to your host:
											
$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot

	
												From the efiboot.img mount point, copy the EFI/redhat/shimx64.efi and EFI/redhat/grubx64.efi files to your TFTP server:
											
$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso

	
												Copy the EFI/redhat/grub.cfg file that is included in the RHCOS ISO to your TFTP server.
											

	
										Edit the grub.cfg file to include arguments similar to the following:
									
menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os {
	linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign
	initrdefi rhcos-<version>-live-initramfs.<architecture>.img
}

										where:
									
	rhcos-<version>-live-kernel-<architecture>
	
													Specifies the kernel file that you uploaded to your TFTP server.
												
	http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
	
													Specifies the location of the live rootfs image that you uploaded to your HTTP server.
												
	http://<HTTP_server>/bootstrap.ign
	
													Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
												
	rhcos-<version>-live-initramfs.<architecture>.img
	
													Specifies the location of the initramfs file that you uploaded to your TFTP server.
												

Note

											For more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
										

	
								Continue to create the machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Advanced Red Hat Enterprise Linux CoreOS (RHCOS) installation configuration

						A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations that you can do using techniques that include:
					
	
								Passing kernel arguments to the live installer
							
	
								Running coreos-installer manually from the live system
							
	
								Embedding Ignition configs in an ISO
							

						The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.
					
Using advanced networking options for PXE and ISO installations

							Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:
						
	
									Pass special kernel parameters when you boot the live installer.
								
	
									Use a machine config to copy networking files to the installed system.
								
	
									Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.
								

							To configure a PXE or iPXE installation, use one of the following options:
						
	
									See the "Advanced RHCOS installation reference" tables.
								
	
									Use a machine config to copy networking files to the installed system.
								

							To configure an ISO installation, use the following procedure.
						
Procedure
	
									Boot the ISO installer.
								
	
									From the live system shell prompt, configure networking for the live system using available RHEL tools, such as nmcli or nmtui.
								
	
									Run the coreos-installer command to install the system, adding the --copy-network option to copy networking configuration. For example:
								
$ coreos-installer install --copy-network \
 --ignition-url=http://host/worker.ign /dev/sda
Important

										The --copy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.
									

	
									Reboot into the installed system.
								

Disk partitioning

							The disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless the default partitioning configuration is overridden. During the RHCOS installation, the size of the root file system is increased to use the remaining available space on the target device.
						

							However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
						
	
									Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making /var or a subdirectory of /var, such as /var/lib/etcd, a separate partition, but not both.
								
Important

										Kubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
									

	
									Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to coreos-installer that allow you to retain existing data partitions.
								

Creating a separate /var partition

								In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
							

								OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
							
	
										/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
									
	
										/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
									
	
										/var: Holds data that you might want to keep separate for purposes such as auditing.
									

								Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
							

								Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
							
Procedure
	
										Create a directory to hold the OpenShift Container Platform installation files:
									
$ mkdir $HOME/clusterconfig

	
										Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
									
$ openshift-install create manifests --dir $HOME/clusterconfig
? SSH Public Key ...
$ ls $HOME/clusterconfig/openshift/
99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

	
										Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
									
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
												The storage device name of the disk that you want to partition.
											

	[image: 2]
	
												When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
											

	[image: 3]
	
												The size of the data partition in mebibytes.
											

	[image: 4]
	
												The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
											

	[image: 5]
	
												The prjquota mount option must be enabled for filesystems used for container storage.
											

Note

											When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
										

	
										Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
									
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

								Now you can use the Ignition config files as input to the ISO or PXE manual installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
							

Retaining existing partitions

								For an ISO installation, you can add options to the coreos-installer command line that causes the installer to maintain one or more existing partitions. For a PXE installation, you can APPEND coreos.inst.* options to preserve partitions.
							

								Saved partitions might be partitions from an existing OpenShift Container Platform system that has data partitions that you want to keep. Here are a few tips:
							
	
										If you save existing partitions, and those partitions do not leave enough space for RHCOS, installation will fail without damaging the saved partitions.
									
	
										Identify the disk partitions you want to keep either by partition label or by number.
									

For an ISO installation

									This example preserves any partition in which the partition label begins with data (data*):
								
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
 --save-partlabel 'data*' /dev/sda

								The following example illustrates running the coreos-installer in a way that preserves the sixth (6) partition on the disk:
							
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
 --save-partindex 6 /dev/sda

								This example preserves partitions 5 and higher:
							
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign
 --save-partindex 5- /dev/sda

								In the previous examples where partition saving is used, coreos-installer recreates the partition immediately.
							
For a PXE installation

									This APPEND option preserves any partition in which the partition label begins with 'data' ('data*'):
								
coreos.inst.save_partlabel=data*

								This APPEND option preserves partitions 5 and higher:
							
coreos.inst.save_partindex=5-

								This APPEND option preserves partition 6:
							
coreos.inst.save_partindex=6

Identifying Ignition configs

							When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:
						
	
									Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, to carry out the installation.
								
Important

										It is not recommended to modify these files.
									

									For PXE installations, you pass the Ignition configs on the APPEND line using the coreos.inst.ignition_url= option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on the coreos-installer command line with the --ignition-url= option. In both cases, only HTTP and HTTPS protocols are supported.
								

	
									Live install Ignition config: This type must be created manually and should be avoided if possible, as it is not supported by Red Hat. With this method, the Ignition config passes to the live install medium, runs immediately upon booting, and performs setup tasks before and/or after the RHCOS system installs to disk. This method should only be used for performing tasks that must be performed once and not applied again later, such as with advanced partitioning that cannot be done using a machine config.
								

									For PXE or ISO boots, you can create the Ignition config and APPEND the ignition.config.url= option to identify the location of the Ignition config. You also need to append ignition.firstboot ignition.platform.id=metal or the ignition.config.url option will be ignored.
								

Embedding an Ignition config in the RHCOS ISO

								You can embed a live install Ignition config directly in an RHCOS ISO image. When the ISO image is booted, the embedded config will be applied automatically.
							
Procedure
	
										Download the coreos-installer binary from the following image mirror page: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/.
									
	
										Retrieve the RHCOS ISO image and the Ignition config file, and copy them into an accessible directory, such as /mnt:
									
cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/
chmod 644 /mnt/rhcos-<version>-live.x86_64.iso

	
										Run the following command to embed the Ignition config into the ISO:
									
./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \
 /mnt/rhcos-<version>-live.x86_64.iso

										You can now use that ISO to install RHCOS using the specified live install Ignition config.
									
Important

											Using coreos-installer iso ignition embed to embed a file generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, is unsupported and not recommended.
										

	
										To show the contents of the embedded Ignition config and direct it into a file, run:
									
./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
diff -s bootstrap.ign mybootstrap.ign
Example output

											

Files bootstrap.ign and mybootstrap.ign are identical

										

	
										To remove the Ignition config and return the ISO to its pristine state so you can reuse it, run:
									
./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso

										You can now embed another Ignition config into the ISO or use the ISO in its pristine state.
									

Advanced RHCOS installation reference

							This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
						
Routing and bonding options at RHCOS boot prompt

							If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
						
Important

								When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
							

							The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
						
Note

								Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
							

Routing and bonding options for ISO

								The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
							
	Description	Examples
	
											To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

										

										 	
													The node’s IP address to 10.10.10.2

												
	
													The gateway address to 10.10.10.254

												
	
													The netmask to 255.255.255.0

												
	
													The hostname to core0.example.com

												
	
													The DNS server address to 4.4.4.41
												

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

										
	
											Specify multiple network interfaces by specifying multiple ip= entries.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure routes to additional networks by setting an rd.route= value.
										

										
											If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
										

										 	
											To configure the default gateway:
										

										
ip=::10.10.10.254::::

										
											To configure the route for the additional network:
										

										
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

										
	
											Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

										
	
											You can combine DHCP and static IP configurations on systems with multiple network interfaces.
										

										 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
										

										 	
											To configure a VLAN on a network interface and use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

										
											To configure a VLAN on a network interface and to use DHCP:
										

										
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

										
	
											You can provide multiple DNS servers by adding a nameserver= entry for each server.
										

										 	
nameserver=1.1.1.1
nameserver=8.8.8.8

										
	
											Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
										

										 	
													The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
												
	
													name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
												
	
													When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
												

										 	
											To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

										
											To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

										
	
											Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
										

										 	
											To configure the bonded interface with a VLAN and to use DHCP:
										

										
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
											To configure the bonded interface with a VLAN and to use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
	
											Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
										

										 	
													The syntax for configuring a team interface is: team=name[:network_interfaces]
												

													name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
												

										 Note

												Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
											

										 	
											To configure a network team:
										

										
team=team0:em1,em2
ip=team0:dhcp

										

coreos.inst boot options for ISO or PXE install

							While you can pass most standard installation boot arguments to the live installer, there are several arguments that are specific to the RHCOS live installer.
						
	
									For ISO, these options can be added by interrupting the RHCOS installer.
								
	
									For PXE or iPXE, these options must be added to the APPEND line before starting the PXE kernel. You cannot interrupt a live PXE install.
								

							The following table shows the RHCOS live installer boot options for ISO and PXE installs.
						
Table 5.28. coreos.inst boot options
	Argument	Description
	
											coreos.inst.install_dev
										

										 	
											Required. The block device on the system to install to. It is recommended to use the full path, such as /dev/sda, although sda is allowed.
										

										
	
											coreos.inst.ignition_url
										

										 	
											Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded.
										

										
	
											coreos.inst.save_partlabel
										

										 	
											Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist.
										

										
	
											coreos.inst.save_partindex
										

										 	
											Optional: Comma-separated indexes of partitions to preserve during the install. Ranges m-n are permitted, and either m or n can be omitted. The specified partitions do not need to exist.
										

										
	
											coreos.inst.insecure
										

										 	
											Optional: Permits the OS image that is specified by coreos.inst.image_url to be unsigned.
										

										
	
											coreos.inst.image_url
										

										 	
											Optional: Download and install the specified RHCOS image.
										

										 	
													This argument should not be used in production environments and is intended for debugging purposes only.
												
	
													While this argument can be used to install a version of RHCOS that does not match the live media, it is recommended that you instead use the media that matches the version you want to install.
												
	
													If you are using coreos.inst.image_url, you must also use coreos.inst.insecure. This is because the bare-metal media are not GPG-signed for OpenShift Container Platform.
												
	
													Only HTTP and HTTPS protocols are supported.
												

										
	
											coreos.inst.skip_reboot
										

										 	
											Optional: The system will not reboot after installing. Once the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only.
										

										
	
											coreos.inst.platform_id
										

										 	
											Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is metal. This option determines whether or not to request an Ignition config from the cloud provider, such as VMware. For example: coreos.inst.platform_id=vmware.
										

										
	
											ignition.config.url
										

										 	
											Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how coreos-installer is invoked, or to run code before or after the installation. This is different from coreos.inst.ignition_url, which is the Ignition config for the installed system.
										

										

coreos-installer options for ISO install

							You can also install RHCOS by invoking the coreos-installer command directly from the command line. The kernel arguments in the previous table provide a shortcut for automatically invoking coreos-installer at boot time, but you can pass similar arguments directly to coreos-installer when running it from a shell prompt.
						

							The following table shows the options and subcommands you can pass to the coreos-installer command from a shell prompt during a live install.
						
Table 5.29. coreos-installer command-line options, arguments, and subcommands
	
											Command-line options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-u, --image-url <url>
										

										 	
											Specify the image URL manually.
										

										
	
											-f, --image-file <path>
										

										 	
											Specify a local image file manually.
										

										
	
											-i, --ignition-file <path>
										

										 	
											Embed an Ignition config from a file.
										

										
	
											-I, --ignition-url <URL>
										

										 	
											Embed an Ignition config from a URL.
										

										
	
											--ignition-hash <digest>
										

										 	
											Digest type-value of the Ignition config.
										

										
	
											-p, --platform <name>
										

										 	
											Override the Ignition platform ID.
										

										
	
											--append-karg <arg>…​
										

										 	
											Append the default kernel argument.
										

										
	
											--delete-karg <arg>…​
										

										 	
											Delete the default kernel argument.
										

										
	
											-n, --copy-network
										

										 	
											Copy the network configuration from the install environment.
										

										 Important

												The --copy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.
											

										
	
											--network-dir <path>
										

										 	
											For use with -n. Default is /etc/NetworkManager/system-connections/.
										

										
	
											--save-partlabel <lx>..
										

										 	
											Save partitions with this label glob.
										

										
	
											--save-partindex <id>…​
										

										 	
											Save partitions with this number or range.
										

										
	
											--offline
										

										 	
											Force offline installation.
										

										
	
											--insecure
										

										 	
											Skip signature verification.
										

										
	
											--insecure-ignition
										

										 	
											Allow Ignition URL without HTTPS or hash.
										

										
	
											--architecture <name>
										

										 	
											Target CPU architecture. Default is x86_64.
										

										
	
											--preserve-on-error
										

										 	
											Do not clear partition table on error.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										
	
											Command-line argument
										

										
	
											Argument
										

										 	
											Description
										

										
	
											<device>
										

										 	
											The destination device.
										

										
	
											coreos-installer embedded Ignition commands
										

										
	
											Command
										

										 	
											Description
										

										
	
											$ coreos-installer iso ignition embed <options> --ignition-file <file_path> <ISO_image>
										

										 	
											Embed an Ignition config in an ISO image.
										

										
	
											coreos-installer iso ignition show <options> <ISO_image>
										

										 	
											Show the embedded Ignition config from an ISO image.
										

										
	
											coreos-installer iso ignition remove <options> <ISO_image>
										

										 	
											Remove the embedded Ignition config from an ISO image.
										

										
	
											coreos-installer ISO Ignition options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-f, --force
										

										 	
											Overwrite an existing Ignition config.
										

										
	
											-i, --ignition-file <path>
										

										 	
											The Ignition config to be used. Default is stdin.
										

										
	
											-o, --output <path>
										

										 	
											Write the ISO to a new output file.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										
	
											coreos-installer PXE Ignition commands
										

										
	
											Command
										

										 	
											Description
										

										
	
											Note that not all of these options are accepted by all subcommands.
										

										
	
											coreos-installer pxe ignition wrap <options>
										

										 	
											Wrap an Ignition config in an image.
										

										
	
											coreos-installer pxe ignition unwrap <options> <image_name>
										

										 	
											Show the wrapped Ignition config in an image.
										

										
	
											coreos-installer pxe ignition unwrap <options> <initrd_name>
										

										 	
											Show the wrapped Ignition config in an initrd image.
										

										
	
											coreos-installer PXE Ignition options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-i, --ignition-file <path>
										

										 	
											The Ignition config to be used. Default is stdin.
										

										
	
											-o, --output <path>
										

										 	
											Write the ISO to a new output file.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						
	
							Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					

Configuring block registry storage

						To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
					
Important

							Block storage volumes are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
						

Procedure
	
								To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only one (1) replica:
							
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
								Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
							
	
								Edit the registry configuration so that it references the correct PVC.
							

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on bare metal in a restricted network

				In OpenShift Container Platform version 4.6, you can install a cluster on bare metal infrastructure that you provision in a restricted network.
			
Important

					While you might be able to follow this procedure to deploy a cluster on virtualized or cloud environments, you must be aware of additional considerations for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you attempt to install an OpenShift Container Platform cluster in such an environment.
				

Prerequisites

	
							Create a registry on your mirror host and obtain the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Important

						Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
					

Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines. If you are running a three-node cluster, running zero compute machines is supported. Running one compute machine is not supported.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 5.30. Minimum resource requirements
	Machine	Operating System	CPU [1]	RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS or RHEL 7.9
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One CPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = CPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 5.31. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 5.32. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 5.33. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 5.34. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 5.35. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers. :!restricted:
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 5.36. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 5.5. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 5.6. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						
	
							Obtain the imageContentSources section from the output of the command to mirror the repository.
						
	
							Obtain the contents of the certificate for your mirror registry.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
									Unless you use a registry that RHCOS trusts by default, such as docker.io, you must provide the contents of the certificate for your mirror repository in the additionalTrustBundle section. In most cases, you must provide the certificate for your mirror.
								
	
									You must include the imageContentSources section from the output of the command to mirror the repository.
								

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 5.37. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 5.38. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 5.39. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Sample install-config.yaml file for bare metal

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
additionalTrustBundle: | (16)
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----
imageContentSources: (17)
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for your platform.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(16)
	
								Provide the contents of the certificate file that you used for your mirror registry.
							

	(17)
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Note

							For bare metal installations, if you do not assign node IP addresses from the range that is specified in the networking.machineNetwork[].cidr field in the install-config.yaml file, you must include them in the proxy.noProxy field.
						

Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Configuring a three-node cluster

					You can optionally install and run three-node clusters in OpenShift Container Platform with no workers. This provides smaller, more resource efficient clusters for cluster administrators and developers to use for development, production, and testing.
				
Procedure
	
							Edit the install-config.yaml file to set the number of compute replicas, which are also known as worker replicas, to 0, as shown in the following compute stanza:
						
compute:
- name: worker
 platform: {}
 replicas: 0

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

Warning

						If you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.
					

					+
				
Important

						When you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become worker nodes.
					

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Configuring chrony time service

					You must set the time server and related settings used by the chrony time service (chronyd) by modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine config.
				
Procedure
	
							Create the contents of the chrony.conf file and encode it as base64. For example:
						
$ cat << EOF | base64
 pool 0.rhel.pool.ntp.org iburst [image: 1]
 driftfile /var/lib/chrony/drift
 makestep 1.0 3
 rtcsync
 logdir /var/log/chrony
EOF
	[image: 1]
	
									Specify any valid, reachable time source, such as the one provided by your DHCP server.
								

Example output

								

ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGli
L2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAv
dmFyL2xvZy9jaHJvbnkK

							

	
							Create the MachineConfig object file, replacing the base64 string with the one you just created. This example adds the file to master nodes. You can change it to worker or make an additional MachineConfig for the worker role. Create MachineConfig files for each type of machine that your cluster uses:
						
$ cat << EOF > ./99-masters-chrony-configuration.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 99-masters-chrony-configuration
spec:
 config:
 ignition:
 config: {}
 security:
 tls: {}
 timeouts: {}
 version: 3.1.0
 networkd: {}
 passwd: {}
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-8;base64,ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGliL2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAvdmFyL2xvZy9jaHJvbnkK
 mode: 420 [image: 1]
 overwrite: true
 path: /etc/chrony.conf
 osImageURL: ""
EOF
	[image: 1]
	
									Specify an octal value mode for the mode field in the machine config file. After creating the file and applying the changes, the mode is converted to a decimal value. You can check the YAML file with the command oc get mc <mc-name> -o yaml.
								

	
							Make a backup copy of the configuration files.
						
	
							Apply the configurations in one of two ways:
						
	
									If the cluster is not up yet, after you generate manifest files, add this file to the <installation_directory>/openshift directory, and then continue to create the cluster.
								
	
									If the cluster is already running, apply the file:
								
$ oc apply -f ./99-masters-chrony-configuration.yaml

Installing RHCOS and starting the OpenShift Container Platform bootstrap process

					To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.
				

					To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.
				
Note

						The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and planned for removal in a future release of OpenShift Container Platform 4.
					

					You can configure RHCOS during ISO and PXE installations by using the following methods:
				
	
							Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the APPEND parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use special coreos.inst.* arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off.
						
	
							Ignition configs: OpenShift Container Platform Ignition config files (*.ign) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by the coreos-installer to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly.
						
	
							coreos-installer: You can boot the live ISO installer to a shell prompt, which allows you to prepare the permanent system in a variety of ways before first boot. In particular, you can run the coreos-installer command to identify various artifacts to include, work with disk partitions, and set up networking. In some cases, you can configure features on the live system and copy them to the installed system.
						

					Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.
				
Note

						As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.
					

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image

						Before you install a cluster on infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
							

Procedure
	
								Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
							
Important

									The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								ISO file names resemble the following example:
							

								rhcos-<version>-live.<architecture>.iso
							

	
								Use the ISO to start the RHCOS installation. Use one of the following installation options:
							
	
										Burn the ISO image to a disk and boot it directly.
									
	
										Use ISO redirection via a LOM interface.
									

	
								Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the coreos-installer command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk.
							
	
								Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the coreos-installer.
							
	
								Run the coreos-installer command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:
							
$ sudo coreos-installer install \
 --ignition-url=https://host/worker.ign /dev/sda

	
								After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
							
	
								Continue to create the other machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting

						Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Configure suitable PXE or iPXE infrastructure.
							
	
								Have access to an HTTP server that you can access from your computer.
							

Procedure
	
								Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS kernel, initramfs and rootfs files from the RHCOS image mirror page.
							
Important

									The RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								The file names contain the OpenShift Container Platform version number. They resemble the following examples:
							
	
										kernel: rhcos-<version>-live-kernel-<architecture>
									
	
										initramfs: rhcos-<version>-live-initramfs.<architecture>.img
									
	
										rootfs: rhcos-<version>-live-rootfs.<architecture>.img
									

	
								Upload the additional files that are required for your booting method:
							
	
										For traditional PXE, upload the kernel and initramfs files to your TFTP server and the rootfs file to your HTTP server.
									
	
										For iPXE, upload the kernel, initramfs, and rootfs files to your HTTP server.
									
Important

											If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
										

	
								Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
							
	
								Configure PXE or iPXE installation for the RHCOS images.
							

								Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
							
	
										For PXE:
									
DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> [image: 1]
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 2] [image: 3]
	[image: 1]
	
												Specify the location of the live kernel file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the initramfs file, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to the APPEND line to configure networking or other boot options.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
										For iPXE:
									
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 1] [image: 2]
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img [image: 3]
boot
	[image: 1]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify the location of the initramfs file that you uploaded to your HTTP server.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
								If you use PXE UEFI, perform the following actions:
							
	
										Provide the shimx64.efi and grubx64.efi EFI binaries and the grub.cfg file that are required for booting the system.
									
	
												Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the images/efiboot.img file to your host:
											
$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot

	
												From the efiboot.img mount point, copy the EFI/redhat/shimx64.efi and EFI/redhat/grubx64.efi files to your TFTP server:
											
$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso

	
												Copy the EFI/redhat/grub.cfg file that is included in the RHCOS ISO to your TFTP server.
											

	
										Edit the grub.cfg file to include arguments similar to the following:
									
menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os {
	linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign
	initrdefi rhcos-<version>-live-initramfs.<architecture>.img
}

										where:
									
	rhcos-<version>-live-kernel-<architecture>
	
													Specifies the kernel file that you uploaded to your TFTP server.
												
	http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
	
													Specifies the location of the live rootfs image that you uploaded to your HTTP server.
												
	http://<HTTP_server>/bootstrap.ign
	
													Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
												
	rhcos-<version>-live-initramfs.<architecture>.img
	
													Specifies the location of the initramfs file that you uploaded to your TFTP server.
												

Note

											For more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
										

	
								Continue to create the machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Advanced Red Hat Enterprise Linux CoreOS (RHCOS) installation configuration

						A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations that you can do using techniques that include:
					
	
								Passing kernel arguments to the live installer
							
	
								Running coreos-installer manually from the live system
							
	
								Embedding Ignition configs in an ISO
							

						The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.
					
Using advanced networking options for PXE and ISO installations

							Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:
						
	
									Pass special kernel parameters when you boot the live installer.
								
	
									Use a machine config to copy networking files to the installed system.
								
	
									Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.
								

							To configure a PXE or iPXE installation, use one of the following options:
						
	
									See the "Advanced RHCOS installation reference" tables.
								
	
									Use a machine config to copy networking files to the installed system.
								

							To configure an ISO installation, use the following procedure.
						
Procedure
	
									Boot the ISO installer.
								
	
									From the live system shell prompt, configure networking for the live system using available RHEL tools, such as nmcli or nmtui.
								
	
									Run the coreos-installer command to install the system, adding the --copy-network option to copy networking configuration. For example:
								
$ coreos-installer install --copy-network \
 --ignition-url=http://host/worker.ign /dev/sda
Important

										The --copy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.
									

	
									Reboot into the installed system.
								

Disk partitioning

							The disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless the default partitioning configuration is overridden. During the RHCOS installation, the size of the root file system is increased to use the remaining available space on the target device.
						

							However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
						
	
									Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making /var or a subdirectory of /var, such as /var/lib/etcd, a separate partition, but not both.
								
Important

										Kubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
									

	
									Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to coreos-installer that allow you to retain existing data partitions.
								

Creating a separate /var partition

								In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
							

								OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
							
	
										/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
									
	
										/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
									
	
										/var: Holds data that you might want to keep separate for purposes such as auditing.
									

								Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
							

								Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
							
Procedure
	
										Create a directory to hold the OpenShift Container Platform installation files:
									
$ mkdir $HOME/clusterconfig

	
										Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
									
$ openshift-install create manifests --dir $HOME/clusterconfig
? SSH Public Key ...
$ ls $HOME/clusterconfig/openshift/
99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

	
										Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
									
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
												The storage device name of the disk that you want to partition.
											

	[image: 2]
	
												When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
											

	[image: 3]
	
												The size of the data partition in mebibytes.
											

	[image: 4]
	
												The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
											

	[image: 5]
	
												The prjquota mount option must be enabled for filesystems used for container storage.
											

Note

											When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
										

	
										Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
									
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

								Now you can use the Ignition config files as input to the ISO or PXE manual installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
							

Retaining existing partitions

								For an ISO installation, you can add options to the coreos-installer command line that causes the installer to maintain one or more existing partitions. For a PXE installation, you can APPEND coreos.inst.* options to preserve partitions.
							

								Saved partitions might be partitions from an existing OpenShift Container Platform system that has data partitions that you want to keep. Here are a few tips:
							
	
										If you save existing partitions, and those partitions do not leave enough space for RHCOS, installation will fail without damaging the saved partitions.
									
	
										Identify the disk partitions you want to keep either by partition label or by number.
									

For an ISO installation

									This example preserves any partition in which the partition label begins with data (data*):
								
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
 --save-partlabel 'data*' /dev/sda

								The following example illustrates running the coreos-installer in a way that preserves the sixth (6) partition on the disk:
							
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
 --save-partindex 6 /dev/sda

								This example preserves partitions 5 and higher:
							
coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign
 --save-partindex 5- /dev/sda

								In the previous examples where partition saving is used, coreos-installer recreates the partition immediately.
							
For a PXE installation

									This APPEND option preserves any partition in which the partition label begins with 'data' ('data*'):
								
coreos.inst.save_partlabel=data*

								This APPEND option preserves partitions 5 and higher:
							
coreos.inst.save_partindex=5-

								This APPEND option preserves partition 6:
							
coreos.inst.save_partindex=6

Identifying Ignition configs

							When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:
						
	
									Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, to carry out the installation.
								
Important

										It is not recommended to modify these files.
									

									For PXE installations, you pass the Ignition configs on the APPEND line using the coreos.inst.ignition_url= option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on the coreos-installer command line with the --ignition-url= option. In both cases, only HTTP and HTTPS protocols are supported.
								

	
									Live install Ignition config: This type must be created manually and should be avoided if possible, as it is not supported by Red Hat. With this method, the Ignition config passes to the live install medium, runs immediately upon booting, and performs setup tasks before and/or after the RHCOS system installs to disk. This method should only be used for performing tasks that must be performed once and not applied again later, such as with advanced partitioning that cannot be done using a machine config.
								

									For PXE or ISO boots, you can create the Ignition config and APPEND the ignition.config.url= option to identify the location of the Ignition config. You also need to append ignition.firstboot ignition.platform.id=metal or the ignition.config.url option will be ignored.
								

Embedding an Ignition config in the RHCOS ISO

								You can embed a live install Ignition config directly in an RHCOS ISO image. When the ISO image is booted, the embedded config will be applied automatically.
							
Procedure
	
										Download the coreos-installer binary from the following image mirror page: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/.
									
	
										Retrieve the RHCOS ISO image and the Ignition config file, and copy them into an accessible directory, such as /mnt:
									
cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/
chmod 644 /mnt/rhcos-<version>-live.x86_64.iso

	
										Run the following command to embed the Ignition config into the ISO:
									
./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \
 /mnt/rhcos-<version>-live.x86_64.iso

										You can now use that ISO to install RHCOS using the specified live install Ignition config.
									
Important

											Using coreos-installer iso ignition embed to embed a file generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, is unsupported and not recommended.
										

	
										To show the contents of the embedded Ignition config and direct it into a file, run:
									
./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
diff -s bootstrap.ign mybootstrap.ign
Example output

											

Files bootstrap.ign and mybootstrap.ign are identical

										

	
										To remove the Ignition config and return the ISO to its pristine state so you can reuse it, run:
									
./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso

										You can now embed another Ignition config into the ISO or use the ISO in its pristine state.
									

Advanced RHCOS installation reference

							This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
						
Routing and bonding options at RHCOS boot prompt

							If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
						
Important

								When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
							

							The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
						
Note

								Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
							

Routing and bonding options for ISO

								The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
							
	Description	Examples
	
											To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

										

										 	
													The node’s IP address to 10.10.10.2

												
	
													The gateway address to 10.10.10.254

												
	
													The netmask to 255.255.255.0

												
	
													The hostname to core0.example.com

												
	
													The DNS server address to 4.4.4.41
												

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

										
	
											Specify multiple network interfaces by specifying multiple ip= entries.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure routes to additional networks by setting an rd.route= value.
										

										
											If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
										

										 	
											To configure the default gateway:
										

										
ip=::10.10.10.254::::

										
											To configure the route for the additional network:
										

										
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

										
	
											Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

										
	
											You can combine DHCP and static IP configurations on systems with multiple network interfaces.
										

										 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
										

										 	
											To configure a VLAN on a network interface and use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

										
											To configure a VLAN on a network interface and to use DHCP:
										

										
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

										
	
											You can provide multiple DNS servers by adding a nameserver= entry for each server.
										

										 	
nameserver=1.1.1.1
nameserver=8.8.8.8

										
	
											Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
										

										 	
													The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
												
	
													name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
												
	
													When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
												

										 	
											To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

										
											To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

										
	
											Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
										

										 	
											To configure the bonded interface with a VLAN and to use DHCP:
										

										
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
											To configure the bonded interface with a VLAN and to use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
	
											Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
										

										 	
													The syntax for configuring a team interface is: team=name[:network_interfaces]
												

													name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
												

										 Note

												Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
											

										 	
											To configure a network team:
										

										
team=team0:em1,em2
ip=team0:dhcp

										

coreos.inst boot options for ISO or PXE install

							While you can pass most standard installation boot arguments to the live installer, there are several arguments that are specific to the RHCOS live installer.
						
	
									For ISO, these options can be added by interrupting the RHCOS installer.
								
	
									For PXE or iPXE, these options must be added to the APPEND line before starting the PXE kernel. You cannot interrupt a live PXE install.
								

							The following table shows the RHCOS live installer boot options for ISO and PXE installs.
						
Table 5.40. coreos.inst boot options
	Argument	Description
	
											coreos.inst.install_dev
										

										 	
											Required. The block device on the system to install to. It is recommended to use the full path, such as /dev/sda, although sda is allowed.
										

										
	
											coreos.inst.ignition_url
										

										 	
											Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded.
										

										
	
											coreos.inst.save_partlabel
										

										 	
											Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist.
										

										
	
											coreos.inst.save_partindex
										

										 	
											Optional: Comma-separated indexes of partitions to preserve during the install. Ranges m-n are permitted, and either m or n can be omitted. The specified partitions do not need to exist.
										

										
	
											coreos.inst.insecure
										

										 	
											Optional: Permits the OS image that is specified by coreos.inst.image_url to be unsigned.
										

										
	
											coreos.inst.image_url
										

										 	
											Optional: Download and install the specified RHCOS image.
										

										 	
													This argument should not be used in production environments and is intended for debugging purposes only.
												
	
													While this argument can be used to install a version of RHCOS that does not match the live media, it is recommended that you instead use the media that matches the version you want to install.
												
	
													If you are using coreos.inst.image_url, you must also use coreos.inst.insecure. This is because the bare-metal media are not GPG-signed for OpenShift Container Platform.
												
	
													Only HTTP and HTTPS protocols are supported.
												

										
	
											coreos.inst.skip_reboot
										

										 	
											Optional: The system will not reboot after installing. Once the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only.
										

										
	
											coreos.inst.platform_id
										

										 	
											Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is metal. This option determines whether or not to request an Ignition config from the cloud provider, such as VMware. For example: coreos.inst.platform_id=vmware.
										

										
	
											ignition.config.url
										

										 	
											Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how coreos-installer is invoked, or to run code before or after the installation. This is different from coreos.inst.ignition_url, which is the Ignition config for the installed system.
										

										

coreos-installer options for ISO install

							You can also install RHCOS by invoking the coreos-installer command directly from the command line. The kernel arguments in the previous table provide a shortcut for automatically invoking coreos-installer at boot time, but you can pass similar arguments directly to coreos-installer when running it from a shell prompt.
						

							The following table shows the options and subcommands you can pass to the coreos-installer command from a shell prompt during a live install.
						
Table 5.41. coreos-installer command-line options, arguments, and subcommands
	
											Command-line options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-u, --image-url <url>
										

										 	
											Specify the image URL manually.
										

										
	
											-f, --image-file <path>
										

										 	
											Specify a local image file manually.
										

										
	
											-i, --ignition-file <path>
										

										 	
											Embed an Ignition config from a file.
										

										
	
											-I, --ignition-url <URL>
										

										 	
											Embed an Ignition config from a URL.
										

										
	
											--ignition-hash <digest>
										

										 	
											Digest type-value of the Ignition config.
										

										
	
											-p, --platform <name>
										

										 	
											Override the Ignition platform ID.
										

										
	
											--append-karg <arg>…​
										

										 	
											Append the default kernel argument.
										

										
	
											--delete-karg <arg>…​
										

										 	
											Delete the default kernel argument.
										

										
	
											-n, --copy-network
										

										 	
											Copy the network configuration from the install environment.
										

										 Important

												The --copy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.
											

										
	
											--network-dir <path>
										

										 	
											For use with -n. Default is /etc/NetworkManager/system-connections/.
										

										
	
											--save-partlabel <lx>..
										

										 	
											Save partitions with this label glob.
										

										
	
											--save-partindex <id>…​
										

										 	
											Save partitions with this number or range.
										

										
	
											--offline
										

										 	
											Force offline installation.
										

										
	
											--insecure
										

										 	
											Skip signature verification.
										

										
	
											--insecure-ignition
										

										 	
											Allow Ignition URL without HTTPS or hash.
										

										
	
											--architecture <name>
										

										 	
											Target CPU architecture. Default is x86_64.
										

										
	
											--preserve-on-error
										

										 	
											Do not clear partition table on error.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										
	
											Command-line argument
										

										
	
											Argument
										

										 	
											Description
										

										
	
											<device>
										

										 	
											The destination device.
										

										
	
											coreos-installer embedded Ignition commands
										

										
	
											Command
										

										 	
											Description
										

										
	
											$ coreos-installer iso ignition embed <options> --ignition-file <file_path> <ISO_image>
										

										 	
											Embed an Ignition config in an ISO image.
										

										
	
											coreos-installer iso ignition show <options> <ISO_image>
										

										 	
											Show the embedded Ignition config from an ISO image.
										

										
	
											coreos-installer iso ignition remove <options> <ISO_image>
										

										 	
											Remove the embedded Ignition config from an ISO image.
										

										
	
											coreos-installer ISO Ignition options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-f, --force
										

										 	
											Overwrite an existing Ignition config.
										

										
	
											-i, --ignition-file <path>
										

										 	
											The Ignition config to be used. Default is stdin.
										

										
	
											-o, --output <path>
										

										 	
											Write the ISO to a new output file.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										
	
											coreos-installer PXE Ignition commands
										

										
	
											Command
										

										 	
											Description
										

										
	
											Note that not all of these options are accepted by all subcommands.
										

										
	
											coreos-installer pxe ignition wrap <options>
										

										 	
											Wrap an Ignition config in an image.
										

										
	
											coreos-installer pxe ignition unwrap <options> <image_name>
										

										 	
											Show the wrapped Ignition config in an image.
										

										
	
											coreos-installer pxe ignition unwrap <options> <initrd_name>
										

										 	
											Show the wrapped Ignition config in an initrd image.
										

										
	
											coreos-installer PXE Ignition options
										

										
	
											Option
										

										 	
											Description
										

										
	
											-i, --ignition-file <path>
										

										 	
											The Ignition config to be used. Default is stdin.
										

										
	
											-o, --output <path>
										

										 	
											Write the ISO to a new output file.
										

										
	
											-h, --help
										

										 	
											Print help information.
										

										

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Disabling the default OperatorHub sources

						Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
					
Procedure
	
								Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
							
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

						Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
					

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Changing the image registry’s management state

							To start the image registry, you must change the Image Registry Operator configuration’s managementState from Removed to Managed.
						
Procedure
	
									Change managementState Image Registry Operator configuration from Removed to Managed. For example:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"managementState":"Managed"}}'

Configuring registry storage for bare metal and other manual installations

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS) nodes, such as bare metal.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have 100Gi capacity.
								

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim:

									

									Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
								

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

	
									Ensure that your registry is set to managed to enable building and pushing of images.
								
	
											Run:
										
$ oc edit configs.imageregistry/cluster

											Then, change the line
										
managementState: Removed

											to
										
managementState: Managed

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Configuring block registry storage

							To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only one (1) replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
									Edit the registry configuration so that it references the correct PVC.
								

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

	
							Register your cluster on the Cluster registration page.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							Configure image streams for the Cluster Samples Operator and the must-gather tool.
						
	
							Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						
	
							If necessary, you can opt out of remote health reporting.
						

Chapter 6. Deploying installer-provisioned clusters on bare metal

Overview

				Installer-provisioned installation provides support for installing OpenShift Container Platform on bare metal nodes. This guide provides a methodology to achieving a successful installation.
			

				During installer-provisioned installation on bare metal, the installer on the bare metal node labeled as provisioner creates a bootstrap VM. The role of the bootstrap VM is to assist in the process of deploying an OpenShift Container Platform cluster. The bootstrap VM connects to the baremetal network and to the provisioning network, if present, via the network bridges.
			

				When the installation of OpenShift Container Platform control plane nodes is complete and fully operational, the installer destroys the bootstrap VM automatically and moves the virtual IP addresses (VIPs) to the appropriate nodes accordingly. The API VIP moves to the control plane nodes and the Ingress VIP moves to the worker nodes.
			

Prerequisites

				Installer-provisioned installation of OpenShift Container Platform requires:
			
	
						One provisioner node with Red Hat Enterprise Linux (RHEL) 8.x installed.
					
	
						Three control plane nodes.
					
	
						Baseboard Management Controller (BMC) access to each node.
					
	
						At least one network:
					
	
								One required routable network
							
	
								One optional network for provisioning nodes; and,
							
	
								One optional management network.
							

				Before starting an installer-provisioned installation of OpenShift Container Platform, ensure the hardware environment meets the following requirements.
			
Node requirements

					Installer-provisioned installation involves a number of hardware node requirements:
				
	
							CPU architecture: All nodes must use x86_64 CPU architecture.
						
	
							Similar nodes: Red Hat recommends nodes have an identical configuration per role. That is, Red Hat recommends nodes be the same brand and model with the same CPU, memory, and storage configuration.
						
	
							Baseboard Management Controller: The provisioner node must be able to access the baseboard management controller (BMC) of each OpenShift Container Platform cluster node. You may use IPMI, RedFish, or a proprietary protocol.
						
	
							Latest generation: Nodes must be of the most recent generation. Because the installer-provisioned installation relies on BMC protocols, the hardware must support IPMI cipher suite 17. Additionally, RHEL 8 ships with the most recent drivers for RAID controllers. Ensure that the nodes are recent enough to support RHEL 8 for the provisioner node and RHCOS 8 for the control plane and worker nodes.
						
	
							Registry node: Optional: If setting up a disconnected mirrored registry, it is recommended the registry reside in its own node.
						
	
							Provisioner node: Installer-provisioned installation requires one provisioner node.
						
	
							Control plane: Installer-provisioned installation requires three control plane nodes for high availability.
						
	
							Worker nodes: While not required, a typical production cluster has one or more worker nodes. Smaller clusters are more resource efficient for administrators and developers during development and testing.
						
	
							Network interfaces: Each node must have at least one network interface for the routable baremetal network. Each node must have one network interface for a provisioning network when using the provisioning network for deployment. Using the provisioning network is the default configuration. Network interface naming must be consistent across control plane nodes for the provisioning network. For example, if a control plane node uses the eth0 NIC for the provisioning network, the other control plane nodes must use it as well.
						
	
							Unified Extensible Firmware Interface (UEFI): Installer-provisioned installation requires UEFI boot on all OpenShift Container Platform nodes when using IPv6 addressing on the provisioning network. In addition, UEFI Device PXE Settings must be set to use the IPv6 protocol on the provisioning network NIC, but omitting the provisioning network removes this requirement.
						

Network requirements

					Installer-provisioned installation of OpenShift Container Platform involves several network requirements by default. First, installer-provisioned installation involves a non-routable provisioning network for provisioning the operating system on each bare metal node and a routable baremetal network. Since installer-provisioned installation deploys ironic-dnsmasq, the networks should have no other DHCP servers running on the same broadcast domain. Network administrators must reserve IP addresses for each node in the OpenShift Container Platform cluster.
				
Network Time Protocol (NTP)

						It is recommended that each OpenShift Container Platform node in the cluster have access to a Network Time Protocol (NTP) server that is discoverable using DHCP. While installation without an NTP server is possible, asynchronous server clocks can cause errors. Using an NTP server can prevent this issue.
					
Configuring NICs

						OpenShift Container Platform deploys with two networks:
					
	
							provisioning: The provisioning network is an optional non-routable network used for provisioning the underlying operating system on each node that is a part of the OpenShift Container Platform cluster. When deploying using the provisioning network, the first NIC on each node, such as eth0 or eno1, must interface with the provisioning network.
						
	
							baremetal: The baremetal network is a routable network. When deploying using the provisioning network, the second NIC on each node, such as eth1 or eno2, must interface with the baremetal network. When deploying without a provisioning network, you can use any NIC on each node to interface with the baremetal network.
						

Important

						Each NIC should be on a separate VLAN corresponding to the appropriate network.
					

Configuring the DNS server

						Clients access the OpenShift Container Platform cluster nodes over the baremetal network. A network administrator must configure a subdomain or subzone where the canonical name extension is the cluster name.
					
<cluster-name>.<domain-name>

					For example:
				
test-cluster.example.com
Reserving IP addresses for nodes with the DHCP server

						For the baremetal network, a network administrator must reserve a number of IP addresses, including:
					
	
							Two virtual IP addresses.
						
	
									One IP address for the API endpoint
								
	
									One IP address for the wildcard Ingress endpoint
								

	
							One IP address for the provisioner node.
						
	
							One IP address for each control plane (master) node.
						
	
							One IP address for each worker node, if applicable.
						

					The following table provides an exemplary embodiment of fully-qualified domain names. The API and Nameserver addresses begin with canonical name extensions. The hostnames of the control plane and worker nodes are exemplary, so you can use any host naming convention you prefer.
				
	Usage	Hostname	IP
	
									API
								

								 	
									api.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Ingress LB (apps)
								

								 	
									*.apps.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Provisioner node
								

								 	
									provisioner.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Master-0
								

								 	
									openshift-master-0.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Master-1
								

								 	
									openshift-master-1.<cluster-name>-.<domain>
								

								 	
									<ip>
								

								
	
									Master-2
								

								 	
									openshift-master-2.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Worker-0
								

								 	
									openshift-worker-0.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Worker-1
								

								 	
									openshift-worker-1.<cluster-name>.<domain>
								

								 	
									<ip>
								

								
	
									Worker-n
								

								 	
									openshift-worker-n.<cluster-name>.<domain>
								

								 	
									<ip>
								

								

Additional requirements with no provisioning network

						All installer-provisioned installations require a baremetal network. The baremetal network is a routable network used for external network access to the outside world. In addition to the IP address supplied to the OpenShift Container Platform cluster node, installations without a provisioning network require the following:
					
	
							Setting an available IP address from the baremetal network to the bootstrapProvisioningIP configuration setting within the install-config.yaml configuration file.
						
	
							Setting an available IP address from the baremetal network to the provisioningHostIP configuration setting within the install-config.yaml configuration file.
						
	
							Deploying the OpenShift Container Platform cluster using RedFish Virtual Media/iDRAC Virtual Media.
						

Note

						Configuring additional IP addresses for bootstrapProvisioningIP and provisioningHostIP is not required when using a provisioning network.
					

Port access for the out-of-band management IP address

						The out-of-band management IP address is on a separate network from the node. To ensure that the out-of-band management can communicate with the baremetal node during installation, the out-of-band management IP address address must be granted access to the TCP 6180 port.
					

Configuring nodes

Configuring nodes when using the provisioning network

						Each node in the cluster requires the following configuration for proper installation.
					
Warning

						A mismatch between nodes will cause an installation failure.
					

					While the cluster nodes can contain more than two NICs, the installation process only focuses on the first two NICs:
				
	
									NIC
								

								 	
									Network
								

								 	
									VLAN
								

								
	
									NIC1
								

								 	
									provisioning
								

								 	
									<provisioning-vlan>
								

								
	
									NIC2
								

								 	
									baremetal
								

								 	
									<baremetal-vlan>
								

								

					NIC1 is a non-routable network (provisioning) that is only used for the installation of the OpenShift Container Platform cluster.
				

					The Red Hat Enterprise Linux (RHEL) 8.x installation process on the provisioner node might vary. To install Red Hat Enterprise Linux (RHEL) 8.x using a local Satellite server or a PXE server, PXE-enable NIC2.
				
	
									PXE
								

								 	
									Boot order
								

								
	
									NIC1 PXE-enabled provisioning network
								

								 	
									1
								

								
	
									NIC2 baremetal network. PXE-enabled is optional.
								

								 	
									2
								

								

Note

						Ensure PXE is disabled on all other NICs.
					

					Configure the control plane and worker nodes as follows:
				
	
									PXE
								

								 	
									Boot order
								

								
	
									NIC1 PXE-enabled (provisioning network)
								

								 	
									1
								

								

Configuring nodes without the provisioning network

						The installation process requires one NIC:
					
	
									NIC
								

								 	
									Network
								

								 	
									VLAN
								

								
	
									NICx
								

								 	
									baremetal
								

								 	
									<baremetal-vlan>
								

								

					NICx is a routable network (baremetal) that is used for the installation of the OpenShift Container Platform cluster, and routable to the Internet.
				

Out-of-band management

					Nodes will typically have an additional NIC used by the Baseboard Management Controllers (BMCs). These BMCs must be accessible from the provisioner node.
				

					Each node must be accessible via out-of-band management. When using an out-of-band management network, the provisioner node requires access to the out-of-band management network for a successful OpenShift Container Platform 4 installation.
				

					The out-of-band management setup is out of scope for this document. We recommend setting up a separate management network for out-of-band management. However, using the provisioning network or the baremetal network are valid options.
				

Required data for installation

					Prior to the installation of the OpenShift Container Platform cluster, gather the following information from all cluster nodes:
				
	
							Out-of-band management IP
						
	
									Examples
								
	
											Dell (iDRAC) IP
										
	
											HP (iLO) IP
										

When using the provisioning network
	
							NIC1 (provisioning) MAC address
						
	
							NIC2 (baremetal) MAC address
						

When omitting the provisioning network
	
							NICx (baremetal) MAC address
						

Validation checklist for nodes

When using the provisioning network
	
							❏ NIC1 VLAN is configured for the provisioning network.
						
	
							❏ NIC2 VLAN is configured for the baremetal network.
						
	
							❏ NIC1 is PXE-enabled on the provisioner, control plane (master), and worker nodes.
						
	
							❏ PXE has been disabled on all other NICs.
						
	
							❏ Control plane and worker nodes are configured.
						
	
							❏ All nodes accessible via out-of-band management.
						
	
							❏ A separate management network has been created. (optional)
						
	
							❏ Required data for installation.
						

When omitting the provisioning network
	
							❏ NICx VLAN is configured for the baremetal network.
						
	
							❏ Control plane and worker nodes are configured.
						
	
							❏ All nodes accessible via out-of-band management.
						
	
							❏ A separate management network has been created. (optional)
						
	
							❏ Required data for installation.
						

Setting up the environment for an OpenShift installation

Installing RHEL on the provisioner node

					With the networking configuration complete, the next step is to install RHEL 8.x on the provisioner node. The installer uses the provisioner node as the orchestrator while installing the OpenShift Container Platform cluster. For the purposes of this document, installing RHEL on the provisioner node is out of scope. However, options include but are not limited to using a RHEL Satellite server, PXE, or installation media.
				

Preparing the provisioner node for OpenShift Container Platform installation

					Perform the following steps to prepare the environment.
				
Procedure
	
							Log in to the provisioner node via ssh.
						
	
							Create a non-root user (kni) and provide that user with sudo privileges.
						
useradd kni
passwd kni
echo "kni ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/kni
chmod 0440 /etc/sudoers.d/kni

	
							Create an ssh key for the new user.
						
su - kni -c "ssh-keygen -t ed25519 -f /home/kni/.ssh/id_rsa -N ''"

	
							Log in as the new user on the provisioner node.
						
su - kni
$

	
							Use Red Hat Subscription Manager to register the provisioner node:
						
$ sudo subscription-manager register --username=<user> --password=<pass> --auto-attach
$ sudo subscription-manager repos --enable=rhel-8-for-x86_64-appstream-rpms --enable=rhel-8-for-x86_64-baseos-rpms
Note

								For more information about Red Hat Subscription Manager, see Using and Configuring Red Hat Subscription Manager.
							

	
							Install the following packages.
						
$ sudo dnf install -y libvirt qemu-kvm mkisofs python3-devel jq ipmitool

	
							Modify the user to add the libvirt group to the newly created user.
						
$ sudo usermod --append --groups libvirt <user>

	
							Restart firewalld and enable the http service.
						
$ sudo systemctl start firewalld
$ sudo firewall-cmd --zone=public --add-service=http --permanent
$ sudo firewall-cmd --reload

	
							Start and enable the libvirtd service.
						
$ sudo systemctl enable libvirtd --now

	
							Create the default storage pool and start it.
						
$ sudo virsh pool-define-as --name default --type dir --target /var/lib/libvirt/images
$ sudo virsh pool-start default
$ sudo virsh pool-autostart default

	
							Configure networking.
						
Note

								This step can also be run from the web console.
							

$ export PUB_CONN=<baremetal_nic_name>
$ export PROV_CONN=<prov_nic_name>
$ sudo nohup bash -c "
 nmcli con down \"$PROV_CONN\"
 nmcli con down \"$PUB_CONN\"
 nmcli con delete \"$PROV_CONN\"
 nmcli con delete \"$PUB_CONN\"
 # RHEL 8.1 appends the word \"System\" in front of the connection, delete in case it exists
 nmcli con down \"System $PUB_CONN\"
 nmcli con delete \"System $PUB_CONN\"
 nmcli connection add ifname provisioning type bridge con-name provisioning
 nmcli con add type bridge-slave ifname \"$PROV_CONN\" master provisioning
 nmcli connection add ifname baremetal type bridge con-name baremetal
 nmcli con add type bridge-slave ifname \"$PUB_CONN\" master baremetal
 pkill dhclient;dhclient baremetal
 nmcli connection modify provisioning ipv6.addresses fd00:1101::1/64 ipv6.method manual
 nmcli con down provisioning
 nmcli con up provisioning
"
Note

								The ssh connection might disconnect after executing this step.
							

								The IPv6 address can be any address as long as it is not routable via the baremetal network.
							

								Ensure that UEFI is enabled and UEFI PXE settings are set to the IPv6 protocol when using IPv6 addressing.
							

	
							Configure the IPv4 address on the provisioning network connection.
						
$ nmcli connection modify provisioning ipv4.addresses 172.22.0.254/24 ipv4.method manual

	
							ssh back into the provisioner node (if required).
						
ssh kni@provisioner.<cluster-name>.<domain>

	
							Verify the connection bridges have been properly created.
						
$ sudo nmcli con show
NAME UUID TYPE DEVICE
baremetal 4d5133a5-8351-4bb9-bfd4-3af264801530 bridge baremetal
provisioning 43942805-017f-4d7d-a2c2-7cb3324482ed bridge provisioning
virbr0 d9bca40f-eee1-410b-8879-a2d4bb0465e7 bridge virbr0
bridge-slave-eno1 76a8ed50-c7e5-4999-b4f6-6d9014dd0812 ethernet eno1
bridge-slave-eno2 f31c3353-54b7-48de-893a-02d2b34c4736 ethernet eno2

	
							Create a pull-secret.txt file.
						
$ vim pull-secret.txt

							In a web browser, navigate to Install OpenShift on Bare Metal with installer-provisioned infrastructure, and scroll down to the Downloads section. Click Copy pull secret. Paste the contents into the pull-secret.txt file and save the contents in the kni user’s home directory.
						

Retrieving the OpenShift Container Platform installer

					Use the latest-4.x version of the installer to deploy the latest generally available version of OpenShift Container Platform:
				
$ export VERSION=latest-4.6
export RELEASE_IMAGE=$(curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/release.txt | grep 'Pull From: quay.io' | awk -F ' ' '{print $3}')
Additional resources
	
							See OpenShift Container Platform upgrade channels and releases for an explanation of the different release channels.
						

Extracting the OpenShift Container Platform installer

					After retrieving the installer, the next step is to extract it.
				
Procedure
	
							Set the environment variables:
						
$ export cmd=openshift-baremetal-install
$ export pullsecret_file=~/pull-secret.txt
$ export extract_dir=$(pwd)

	
							Get the oc binary:
						
$ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-linux.tar.gz | tar zxvf - oc

	
							Extract the installer:
						
$ sudo cp oc /usr/local/bin
$ oc adm release extract --registry-config "${pullsecret_file}" --command=$cmd --to "${extract_dir}" ${RELEASE_IMAGE}
$ sudo cp openshift-baremetal-install /usr/local/bin

Creating an RHCOS images cache (optional)

					To employ image caching, you must download two images: the Red Hat Enterprise Linux CoreOS (RHCOS) image used by the bootstrap VM and the RHCOS image used by the installer to provision the different nodes. Image caching is optional, but especially useful when running the installer on a network with limited bandwidth.
				

					If you are running the installer on a network with limited bandwidth and the RHCOS images download takes more than 15 to 20 minutes, the installer will timeout. Caching images on a web server will help in such scenarios.
				

					Use the following steps to install a container that contains the images.
				
	
							Install podman.
						
$ sudo dnf install -y podman

	
							Open firewall port 8080 to be used for RHCOS image caching.
						
$ sudo firewall-cmd --add-port=8080/tcp --zone=public --permanent
$ sudo firewall-cmd --reload

	
							Create a directory to store the bootstraposimage and clusterosimage.
						
$ mkdir /home/kni/rhcos_image_cache

	
							Set the appropriate SELinux context for the newly created directory.
						
$ sudo semanage fcontext -a -t httpd_sys_content_t "/home/kni/rhcos_image_cache(/.*)?"
$ sudo restorecon -Rv rhcos_image_cache/

	
							Get the commit ID from the installer. The ID determines which images the installer needs to download.
						
$ export COMMIT_ID=$(/usr/local/bin/openshift-baremetal-install version | grep '^built from commit' | awk '{print $4}')

	
							Get the URI for the RHCOS image that the installer will deploy on the nodes.
						
$ export RHCOS_OPENSTACK_URI=$(curl -s -S https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.json | jq .images.openstack.path | sed 's/"//g')

	
							Get the URI for the RHCOS image that the installer will deploy on the bootstrap VM.
						
$ export RHCOS_QEMU_URI=$(curl -s -S https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.json | jq .images.qemu.path | sed 's/"//g')

	
							Get the path where the images are published.
						
$ export RHCOS_PATH=$(curl -s -S https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.json | jq .baseURI | sed 's/"//g')

	
							Get the SHA hash for the RHCOS image that will be deployed on the bootstrap VM.
						
$ export RHCOS_QEMU_SHA_UNCOMPRESSED=$(curl -s -S https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.json | jq -r '.images.qemu["uncompressed-sha256"]')

	
							Get the SHA hash for the RHCOS image that will be deployed on the nodes.
						
$ export RHCOS_OPENSTACK_SHA_COMPRESSED=$(curl -s -S https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.json | jq -r '.images.openstack.sha256')

	
							Download the images and place them in the /home/kni/rhcos_image_cache directory.
						
$ curl -L ${RHCOS_PATH}${RHCOS_QEMU_URI} -o /home/kni/rhcos_image_cache/${RHCOS_QEMU_URI}
$ curl -L ${RHCOS_PATH}${RHCOS_OPENSTACK_URI} -o /home/kni/rhcos_image_cache/${RHCOS_OPENSTACK_URI}

	
							Confirm SELinux type is of httpd_sys_content_t for the newly created files.
						
$ ls -Z /home/kni/rhcos_image_cache

	
							Create the pod.
						
$ podman run -d --name rhcos_image_cache \
-v /home/kni/rhcos_image_cache:/var/www/html \
-p 8080:8080/tcp \
quay.io/centos7/httpd-24-centos7:latest

Configuration files

Configuring the install-config.yaml file

						The install-config.yaml file requires some additional details. Most of the information is teaching the installer and the resulting cluster enough about the available hardware so that it is able to fully manage it.
					
	
								Configure install-config.yaml. Change the appropriate variables to match the environment, including pullSecret and sshKey.
							
apiVersion: v1
baseDomain: <domain>
metadata:
 name: <cluster-name>
networking:
 machineCIDR: <public-cidr>
 networkType: OVNKubernetes
compute:
- name: worker
 replicas: 2 [image: 1]
controlPlane:
 name: master
 replicas: 3
 platform:
 baremetal: {}
platform:
 baremetal:
 apiVIP: <api-ip>
 ingressVIP: <wildcard-ip>
 provisioningNetworkInterface: <NIC1>
 provisioningNetworkCIDR: <CIDR>
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: ipmi://<out-of-band-ip> [image: 2]
 username: <user>
 password: <password>
 bootMACAddress: <NIC1-mac-address>
 hardwareProfile: default
 - name: <openshift-master-1>
 role: master
 bmc:
 address: ipmi://<out-of-band-ip> [image: 3]
 username: <user>
 password: <password>
 bootMACAddress: <NIC1-mac-address>
 hardwareProfile: default
 - name: <openshift-master-2>
 role: master
 bmc:
 address: ipmi://<out-of-band-ip> [image: 4]
 username: <user>
 password: <password>
 bootMACAddress: <NIC1-mac-address>
 hardwareProfile: default
 - name: <openshift-worker-0>
 role: worker
 bmc:
 address: ipmi://<out-of-band-ip> [image: 5]
 username: <user>
 password: <password>
 bootMACAddress: <NIC1-mac-address>
 hardwareProfile: unknown
 - name: <openshift-worker-1>
 role: worker
 bmc:
 address: ipmi://<out-of-band-ip>
 username: <user>
 password: <password>
 bootMACAddress: <NIC1-mac-address>
 hardwareProfile: unknown
pullSecret: '<pull_secret>'
sshKey: '<ssh_pub_key>'
	[image: 1]
	
										Scale the worker machines based on the number of worker nodes that are part of the OpenShift Container Platform cluster.
									

	[image: 2] [image: 3] [image: 4] [image: 5]
	
										Refer to the BMC addressing sections for more options.
									

	
								Create a directory to store cluster configs.
							
$ mkdir ~/clusterconfigs
$ cp install-config.yaml ~/clusterconfigs

	
								Ensure all bare metal nodes are powered off prior to installing the OpenShift Container Platform cluster.
							
$ ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power off

	
								Remove old bootstrap resources if any are left over from a previous deployment attempt.
							
for i in $(sudo virsh list | tail -n +3 | grep bootstrap | awk {'print $2'});
do
 sudo virsh destroy $i;
 sudo virsh undefine $i;
 sudo virsh vol-delete $i --pool $i;
 sudo virsh vol-delete $i.ign --pool $i;
 sudo virsh pool-destroy $i;
 sudo virsh pool-undefine $i;
done

Setting proxy settings within the install-config.yaml file (optional)

						To deploy an OpenShift Container Platform cluster using a proxy, make the following changes to the install-config.yaml file.
					
apiVersion: v1
baseDomain: <domain>
proxy:
 httpProxy: http://USERNAME:PASSWORD@proxy.example.com:PORT
 httpsProxy: https://USERNAME:PASSWORD@proxy.example.com:PORT
 noProxy: <WILDCARD_OF_DOMAIN>,<PROVISIONING_NETWORK/CIDR>,<BMC_ADDRESS_RANGE/CIDR>

						The following is an example of noProxy with values.
					
noProxy: .example.com,172.22.0.0/24,10.10.0.0/24

						With a proxy enabled, set the appropriate values of the proxy in the corresponding key/value pair.
					

						Key considerations:
					
	
								If the proxy does not have an HTTPS proxy, change the value of httpsProxy from https:// to http://.
							
	
								If using a provisioning network, include it in the noProxy setting, otherwise the installer will fail.
							
	
								Set all of the proxy settings as environment variables within the provisioner node. For example, HTTP_PROXY, HTTPS_PROXY, and NO_PROXY.
							

Note

							When provisioning with IPv6, you cannot define a CIDR address block in the noProxy settings. You must define each address separately.
						

Modifying the install-config.yaml file for no provisioning network (optional)

						To deploy an OpenShift Container Platform cluster without a provisioning network, make the following changes to the install-config.yaml file.
					
platform:
 baremetal:
 apiVIP: <apiVIP>
 ingressVIP: <ingress/wildcard VIP>
 provisioningNetwork: "Disabled"
 provisioningHostIP: <baremetal_network_IP1>
 bootstrapProvisioningIP: <baremetal_network_IP2>
Note

							Requires providing two IP addresses from the baremetal network for the provisioningHostIP and bootstrapProvisioningIP configuration settings, and removing the provisioningBridge and provisioningNetworkCIDR configuration settings.
						

Additional install-config parameters

						See the following tables for the required parameters, the hosts parameter, and the bmc parameter for the install-config.yaml file.
					
Table 6.1. Required parameters
	Parameters	Default	Description
	
										 baseDomain
									

									 	 	
										The domain name for the cluster. For example, example.com.
									

									
	
										 sshKey
									

									 	 	
										The sshKey configuration setting contains the key in the ~/.ssh/id_rsa.pub file required to access the control plane nodes and worker nodes. Typically, this key is from the provisioner node.
									

									
	
										 pullSecret
									

									 	 	
										The pullSecret configuration setting contains a copy of the pull secret downloaded from the Install OpenShift on Bare Metal page when preparing the provisioner node.
									

									
	
metadata:
 name:

									 	 	
										The name to be given to the OpenShift Container Platform cluster. For example, openshift.
									

									
	
networking:
 machineCIDR:

									 	 	
										The public CIDR (Classless Inter-Domain Routing) of the external network. For example, 10.0.0.0/24 .
									

									
	
compute:
 - name: worker

									 	 	
										The OpenShift Container Platform cluster requires a name be provided for worker (or compute) nodes even if there are zero nodes.
									

									
	
compute:
 replicas: 2

									 	 	
										Replicas sets the number of worker (or compute) nodes in the OpenShift Container Platform cluster.
									

									
	
controlPlane:
 name: master

									 	 	
										The OpenShift Container Platform cluster requires a name for control plane (master) nodes.
									

									
	
controlPlane:
 replicas: 3

									 	 	
										Replicas sets the number of control plane (master) nodes included as part of the OpenShift Container Platform cluster.
									

									
	
										provisioningNetworkInterface
									

									 	 	
										The name of the network interface on control plane nodes connected to the provisioning network.
									

									
	
										defaultMachinePlatform
									

									 	 	
										The default configuration used for machine pools without a platform configuration.
									

									
	
										apiVIP
									

									 	
										api.<clustername.clusterdomain>
									

									 	
										The VIP to use for internal API communication.
									

									
										This setting must either be provided or pre-configured in the DNS so that the default name resolves correctly.
									

									
	
										disableCertificateVerification
									

									 	
										False
									

									 	
										redfish and redfish-virtualmedia need this parameter to manage BMC addresses. The value should be True when using a self-signed certificate for BMC addresses.
									

									
	
										ingressVIP
									

									 	
										test.apps.<clustername.clusterdomain>
									

									 	
										The VIP to use for ingress traffic.
									

									

Table 6.2. Optional Parameters
	Parameters	Default	Description
	
										provisioningDHCPRange
									

									 	
										172.22.0.10,172.22.0.100
									

									 	
										Defines the IP range for nodes on the provisioning network.
									

									
	
										provisioningNetworkCIDR
									

									 	
										172.22.0.0/24
									

									 	
										The CIDR for the network to use for provisioning. This option is required when not using the default address range on the provisioning network.
									

									
	
										clusterProvisioningIP
									

									 	
										The third IP address of the provisioningNetworkCIDR.
									

									 	
										The IP address within the cluster where the provisioning services run. Defaults to the third IP address of the provisioning subnet. For example, 172.22.0.3.
									

									
	
										bootstrapProvisioningIP
									

									 	
										The second IP address of the provisioningNetworkCIDR.
									

									 	
										The IP on the bootstrap VM where the provisioning services run while the installer is deploying the control plane (master) nodes. Defaults to the second IP of the provisioning subnet. For example, 172.22.0.2 .
									

									
										When using no provisioning network, set this value to an IP address that is available on the baremetal network.
									

									
	
										externalBridge
									

									 	
										baremetal
									

									 	
										The name of the baremetal bridge of the hypervisor attached to the baremetal network.
									

									
	
										provisioningBridge
									

									 	
										provisioning
									

									 	
										The name of the provisioning bridge on the provisioner host attached to the provisioning network.
									

									
	
										defaultMachinePlatform
									

									 	 	
										The default configuration used for machine pools without a platform configuration.
									

									
	
										bootstrapOSImage
									

									 	 	
										A URL to override the default operating system image for the bootstrap node. The URL must contain a SHA-256 hash of the image. For example: https://mirror.openshift.com/rhcos-<version>-qemu.qcow2.gz?sha256=<uncompressed_sha256> .
									

									
	
										clusterOSImage
									

									 	 	
										A URL to override the default operating system for cluster nodes. The URL must include a SHA-256 hash of the image. For example, https://mirror.openshift.com/images/rhcos-<version>-openstack.qcow2.gz?sha256=<compressed_sha256>.
									

									
	
										provisioningNetwork
									

									 	 	
										Set this parameter to Disabled to disable the requirement for a provisioning network. User may only do virtual media based provisioning, or bring up the cluster using assisted installation. If using power management, BMC’s must be accessible from the machine networks. User must provide two IP addresses on the external network that are used for the provisioning services. Set this parameter to managed, which is the default, to fully manage the provisioning network, including DHCP, TFTP, and so on.
									

									
										Set this parameter to unmanaged to still enable the provisioning network but take care of manual configuration of DHCP. Virtual Media provisioning is recommended but PXE is still available if required.
									

									
	
										provisioningHostingIp
									

									 	 	
										Set this parameter to an available IP address on the baremetal network when the provisioningNetwork configuration setting is set to Disabled.
									

									
	
										httpProxy
									

									 	 	
										Set this parameter to the appropriate HTTP proxy used within your environment.
									

									
	
										httpsProxy
									

									 	 	
										Set this parameter to the appropriate HTTPS proxy used within your environment.
									

									
	
										noProxy
									

									 	 	
										Set this parameter to the appropriate list of exclusions for proxy usage within your environment.
									

									

Hosts

							The hosts parameter is a list of separate bare metal assets used to build the cluster.
						
	
										Name
									

									 	
										Default
									

									 	
										Description
									

									
	
										name
									

									 	 	
										The name of the BareMetalHost resource to associate with the details. For example, openshift-master-0.
									

									
	
										role
									

									 	 	
										The role of the bare metal node. Either master or worker.
									

									
	
										bmc
									

									 	 	
										Connection details for the baseboard management controller. See the BMC addressing section for additional details.
									

									
	
										bootMACAddress
									

									 	 	
										The MAC address of the NIC the host will use to boot on the provisioning network.
									

									

BMC addressing

						The address field for each bmc entry is a URL for connecting to the OpenShift Container Platform cluster nodes, including the type of controller in the URL scheme and its location on the network.
					
IPMI

							IPMI hosts use ipmi://<out-of-band-ip>:<port> and defaults to port 623 if not specified. The following example demonstrates an IPMI configuration within the install-config.yaml file.
						
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: ipmi://<out-of-band-ip>
 username: <user>
 password: <password>
RedFish for HPE

							To enable RedFish, use redfish:// or redfish+http:// to disable TLS. The installer requires both the hostname or the IP address and the path to the system ID. The following example demonstrates a RedFish configuration within the install-config.yaml file.
						
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
 username: <user>
 password: <password>

						While it is recommended to have a certificate of authority for the out-of-band management addresses, you must include disableCertificateVerification: True in the bmc configuration if using self-signed certificates. The following example demonstrates a RedFish configuration using the disableCertificateVerification: True configuration parameter within the install-config.yaml file.
					
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
 username: <user>
 password: <password>
 disableCertificateVerification: True
RedFish for Dell

							To enable RedFish, use redfish:// or redfish+http:// to disable TLS. The installer requires both the hostname or the IP address and the path to the system ID. The following example demonstrates a RedFish configuration within the install-config.yaml file.
						
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: redfish://<out-of-band-ip>/redfish/v1/Systems/System.Embedded.1
 username: <user>
 password: <password>

						While it is recommended to have a certificate of authority for the out-of-band management addresses, you must include disableCertificateVerification: True in the bmc configuration if using self-signed certificates. The following example demonstrates a RedFish configuration using the disableCertificateVerification: True configuration parameter within the install-config.yaml file.
					
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: redfish://<out-of-band-ip>/redfish/v1/Systems/System.Embedded.1
 username: <user>
 password: <password>
 disableCertificateVerification: True
Note

							Currently RedFish is only supported on Dell with iDRAC firmware version 4.20.20.20 or higher for installer-provisioned installations of OpenShift Container Platform on bare metal deployments.
						

RedFish Virtual Media for HPE

							To enable RedFish Virtual Media for HPE servers, use redfish-virtualmedia:// in the address setting. The following example demonstrates using RedFish Virtual Media within the install-config.yaml file.
						
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: redfish-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/1
 username: <user>
 password: <password>
RedFish Virtual Media for Dell

							For RedFish Virtual Media on Dell servers, use idrac-virtualmedia:// in the address setting.
						
Note

							RedFish Virtual Media on Dell servers has a known issue in OpenShift Container Platform 4.6. The 4.6.1 point release will resolve the issue.
						

						The following example demonstrates using iDRAC Virtual Media within the install-config.yaml file.
					
platform:
 baremetal:
 hosts:
 - name: openshift-master-0
 role: master
 bmc:
 address: idrac-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/System.Embedded.1
 username: <user>
 password: <password>
Note

							idrac-virtualmedia requires iDRAC firmware version 4.20.20.20 or higher.
						

							Ensure the OpenShift Container Platform cluster nodes have AutoAttach Enabled through the iDRAC console. The menu path is: Configuration→Virtual Media→Attach Mode→AutoAttach.
						

Root device hints

						The rootDeviceHints parameter enables the installer to provision the Red Hat Enterprise Linux CoreOS (RHCOS) image to a particular device. The installer examines the devices in the order it discovers them, and compares the discovered values with the hint values. The installer uses the first discovered device that matches the hint value. The configuration can combine multiple hints, but a device must match all hints for the installer to select it.
					
Table 6.3. Subfields
	Subfield	Description
	
										deviceName
									

									 	
										A string containing a Linux device name like /dev/vda. The hint must match the actual value exactly.
									

									
	
										hctl
									

									 	
										A string containing a SCSI bus address like 0:0:0:0. The hint must match the actual value exactly.
									

									
	
										model
									

									 	
										A string containing a vendor-specific device identifier. The hint can be a substring of the actual value.
									

									
	
										vendor
									

									 	
										A string containing the name of the vendor or manufacturer of the device. The hint can be a sub-string of the actual value.
									

									
	
										serialNumber
									

									 	
										A string containing the device serial number. The hint must match the actual value exactly.
									

									
	
										minSizeGigabytes
									

									 	
										An integer representing the minimum size of the device in gigabytes.
									

									
	
										wwn
									

									 	
										A string containing the unique storage identifier. The hint must match the actual value exactly.
									

									
	
										wwnWithExtension
									

									 	
										A string containing the unique storage identifier with the vendor extension appended. The hint must match the actual value exactly.
									

									
	
										wwnVendorExtension
									

									 	
										A string containing the unique vendor storage identifier. The hint must match the actual value exactly.
									

									
	
										rotational
									

									 	
										A boolean indicating whether the device should be a rotating disk (true) or not (false).
									

									

Example usage

							

 - name: master-0
 role: master
 bmc:
 address: ipmi://10.10.0.3:6203
 username: admin
 password: redhat
 bootMACAddress: de:ad:be:ef:00:40
 rootDeviceHints:
 deviceName: "/dev/sda"

						

Creating the OpenShift Container Platform manifests

	
								Create the OpenShift Container Platform manifests.
							
$./openshift-baremetal-install --dir ~/clusterconfigs create manifests
INFO Consuming Install Config from target directory
WARNING Making control-plane schedulable by setting MastersSchedulable to true for Scheduler cluster settings
WARNING Discarding the OpenShift Manifest that was provided in the target directory because its dependencies are dirty and it needs to be regenerated

Creating a disconnected registry (optional)

					In some cases, you might want to install an OpenShift KNI cluster using a local copy of the installation registry. This could be for enhancing network efficiency because the cluster nodes are on a network that does not have access to the internet.
				

					A local, or mirrored, copy of the registry requires the following:
				
	
							A certificate for the registry node. This can be a self-signed certificate.
						
	
							A webserver - this will be served by a container on a system.
						
	
							An updated pull secret that contains the certificate and local repository information.
						

Note

						Creating a disconnected registry on a registry node is optional. The subsequent sections indicate that they are optional since they are steps you need to execute only when creating a disconnected registry on a registry node. You should execute all of the subsequent sub-sections labeled "(optional)" when creating a disconnected registry on a registry node.
					

Preparing the registry node to host the mirrored registry (optional)

						Make the following changes to the registry node.
					
Procedure
	
								Open the firewall port on the registry node.
							
$ sudo firewall-cmd --add-port=5000/tcp --zone=libvirt --permanent
$ sudo firewall-cmd --add-port=5000/tcp --zone=public --permanent
$ sudo firewall-cmd --reload

	
								Install the required packages for the registry node.
							
$ sudo yum -y install python3 podman httpd httpd-tools jq

	
								Create the directory structure where the repository information will be held.
							
$ sudo mkdir -p /opt/registry/{auth,certs,data}

Generating the self-signed certificate (optional)

						Generate a self-signed certificate for the registry node and put it in the /opt/registry/certs directory.
					
Procedure
	
								Adjust the certificate information as appropriate.
							
$ host_fqdn=$(hostname --long)
$ cert_c="<Country Name>" # Country Name (C, 2 letter code)
$ cert_s="<State>" # Certificate State (S)
$ cert_l="<Locality>" # Certificate Locality (L)
$ cert_o="<Organization>" # Certificate Organization (O)
$ cert_ou="<Org Unit>" # Certificate Organizational Unit (OU)
$ cert_cn="${host_fqdn}" # Certificate Common Name (CN)

$ openssl req \
 -newkey rsa:4096 \
 -nodes \
 -sha256 \
 -keyout /opt/registry/certs/domain.key \
 -x509 \
 -days 365 \
 -out /opt/registry/certs/domain.crt \
 -addext "subjectAltName = DNS:${host_fqdn}" \
 -subj "/C=${cert_c}/ST=${cert_s}/L=${cert_l}/O=${cert_o}/OU=${cert_ou}/CN=${cert_cn}"
Note

									When replacing <Country Name>, ensure that it only contains two letters. For example, US.
								

	
								Update the registry node’s ca-trust with the new certificate.
							
$ sudo cp /opt/registry/certs/domain.crt /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Creating the registry podman container (optional)

						The registry container uses the /opt/registry directory for certificates, authentication files, and to store its data files.
					

						The registry container uses httpd and needs an htpasswd file for authentication.
					
Procedure
	
								Create an htpasswd file in /opt/registry/auth for the container to use.
							
$ htpasswd -bBc /opt/registry/auth/htpasswd <user> <passwd>

								Replace <user> with the user name and <passwd> with the password.
							

	
								Create and start the registry container.
							
$ podman create \
 --name ocpdiscon-registry \
 -p 5000:5000 \
 -e "REGISTRY_AUTH=htpasswd" \
 -e "REGISTRY_AUTH_HTPASSWD_REALM=Registry" \
 -e "REGISTRY_HTTP_SECRET=ALongRandomSecretForRegistry" \
 -e "REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd" \
 -e "REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt" \
 -e "REGISTRY_HTTP_TLS_KEY=/certs/domain.key" \
 -e "REGISTRY_COMPATIBILITY_SCHEMA1_ENABLED=true" \
 -v /opt/registry/data:/var/lib/registry:z \
 -v /opt/registry/auth:/auth:z \
 -v /opt/registry/certs:/certs:z \
 docker.io/library/registry:2
$ podman start ocpdiscon-registry

Copy and update the pull-secret (optional)

						Copy the pull secret file from the provisioner node to the registry node and modify it to include the authentication information for the new registry node.
					
Procedure
	
								Copy the pull-secret.txt file.
							
$ scp kni@provisioner:/home/kni/pull-secret.txt pull-secret.txt

	
								Update the host_fqdn environment variable with the fully qualified domain name of the registry node.
							
$ host_fqdn=$(hostname --long)

	
								Update the b64auth environment variable with the base64 encoding of the http credentials used to create the htpasswd file.
							
$ b64auth=$(echo -n '<username>:<passwd>' | openssl base64)

								Replace <username> with the user name and <passwd> with the password.
							

	
								Set the AUTHSTRING environment variable to use the base64 authorization string. The $USER variable is an environment variable containing the name of the current user.
							
$ AUTHSTRING="{\"$host_fqdn:5000\": {\"auth\": \"$b64auth\",\"email\": \"$USER@redhat.com\"}}"

	
								Update the pull-secret.txt file.
							
$ jq ".auths += $AUTHSTRING" < pull-secret.txt > pull-secret-update.txt

Mirroring the repository (optional)

Procedure
	
								Copy the oc binary from the provisioner node to the registry node.
							
$ sudo scp kni@provisioner:/usr/local/bin/oc /usr/local/bin

	
								Set the required environment variables.
							
	
										Set the release version:
									
$ VERSION=<release_version>

										For <release_version>, specify the tag that corresponds to the version of OpenShift Container Platform to install, such as 4.6.
									

	
										Set the local registry name and host port:
									
$ LOCAL_REG='<local_registry_host_name>:<local_registry_host_port>'

										For <local_registry_host_name>, specify the registry domain name for your mirror repository, and for <local_registry_host_port>, specify the port that it serves content on.
									

	
										Set the local repository name:
									
$ LOCAL_REPO='<local_repository_name>'

										For <local_repository_name>, specify the name of the repository to create in your registry, such as ocp4/openshift4.
									

	
								Mirror the remote install images to the local repository.
							
$ /usr/local/bin/oc adm release mirror \
 -a pull-secret-update.txt \
 --from=$UPSTREAM_REPO \
 --to-release-image=$LOCAL_REG/$LOCAL_REPO:${VERSION} \
 --to=$LOCAL_REG/$LOCAL_REPO

Modify the install-config.yaml file to use the disconnected registry (optional)

						On the provisioner node, the install-config.yaml file should use the newly created pull-secret from the pull-secret-update.txt file. The install-config.yaml file must also contain the disconnected registry node’s certificate and registry information.
					
Procedure
	
								Add the disconnected registry node’s certificate to the install-config.yaml file. The certificate should follow the "additionalTrustBundle: |" line and be properly indented, usually by two spaces.
							
$ echo "additionalTrustBundle: |" >> install-config.yaml
$ sed -e 's/^/ /' /opt/registry/certs/domain.crt >> install-config.yaml

	
								Add the mirror information for the registry to the install-config.yaml file.
							
$ echo "imageContentSources:" >> install-config.yaml
$ echo "- mirrors:" >> install-config.yaml
$ echo " - registry.example.com:5000/ocp4/openshift4" >> install-config.yaml
$ echo " source: quay.io/openshift-release-dev/ocp-release" >> install-config.yaml
$ echo "- mirrors:" >> install-config.yaml
$ echo " - registry.example.com:5000/ocp4/openshift4" >> install-config.yaml
$ echo " source: quay.io/openshift-release-dev/ocp-v4.0-art-dev" >> install-config.yaml
Note

									Replace registry.example.com with the registry’s fully qualified domain name.
								

Deploying routers on worker nodes

					During installation, the installer deploys router pods on worker nodes. By default, the installer installs two router pods. If the initial cluster has only one worker node, or if a deployed cluster requires additional routers to handle external traffic loads destined for services within the OpenShift Container Platform cluster, you can create a yaml file to set an appropriate number of router replicas.
				
Note

						By default, the installer deploys two routers. If the cluster has at least two worker nodes, you can skip this section. For more information on the Ingress Operator see: Ingress Operator in OpenShift Container Platform.
					

Note

						If the cluster has no worker nodes, the installer deploys the two routers on the control plane nodes by default. If the cluster has no worker nodes, you can skip this section.
					

Procedure
	
							Create a router-replicas.yaml file.
						
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: <num-of-router-pods>
 endpointPublishingStrategy:
 type: HostNetwork
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
Note

								Replace <num-of-router-pods> with an appropriate value. If working with just one worker node, set replicas: to 1. If working with more than 3 worker nodes, you can increase replicas: from the default value 2 as appropriate.
							

	
							Save and copy the router-replicas.yaml file to the clusterconfigs/openshift directory.
						
cp ~/router-replicas.yaml clusterconfigs/openshift/99_router-replicas.yaml

Validation checklist for installation

	
							❏ OpenShift Container Platform installer has been retrieved.
						
	
							❏ OpenShift Container Platform installer has been extracted.
						
	
							❏ Required parameters for the install-config.yaml have been configured.
						
	
							❏ The hosts parameter for the install-config.yaml has been configured.
						
	
							❏ The bmc parameter for the install-config.yaml has been configured.
						
	
							❏ Conventions for the values configured in the bmc address field have been applied.
						
	
							❏ Created a disconnected registry (optional).
						
	
							❏ (optional) Validate disconnected registry settings if in use.
						
	
							❏ (optional) Deployed routers on worker nodes.
						

Deploying the cluster via the OpenShift Container Platform installer

					Run the OpenShift Container Platform installer:
				
$./openshift-baremetal-install --dir ~/clusterconfigs --log-level debug create cluster

Following the installation

					During the deployment process, you can check the installation’s overall status by issuing the tail command to the .openshift_install.log log file in the install directory folder.
				
$ tail -f /path/to/install-dir/.openshift_install.log

Preparing to reinstall a cluster on bare metal

					Before you reinstall a cluster on bare metal, you must perform cleanup operations.
				
Procedure
	
							Remove or reformat the disks for the bootstrap, control plane (also known as master) node, and worker nodes. If you are working in a hypervisor environment, you must add any disks you removed.
						
	
							Delete the artifacts that the previous installation generated:
						
$ cd ; /bin/rm -rf auth/ bootstrap.ign master.ign worker.ign metadata.json \
.openshift_install.log .openshift_install_state.json

	
							Generate new manifests and Ignition config files. See “Creating the Kubernetes manifest and Ignition config files" for more information.
						
	
							Upload the new bootstrap, control plane, and compute node Ignition config files that the installation program created to your HTTP server. This will overwrite the previous Ignition files.
						

Expanding the cluster

				After deploying an installer-provisioned OpenShift Container Platform cluster, you can use the following procedures to expand the number of worker nodes. Ensure that each prospective worker node meets the prerequisites.
			
Preparing the bare metal node

					Preparing the bare metal node requires executing the following procedure from the provisioner node.
				
Procedure
	
							Get the oc binary, if needed. It should already exist on the provisioner node.
						
$ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp-dev-preview/$VERSION/openshift-client-linux.tar.gz | tar zxvf - oc
$ sudo cp oc /usr/local/bin

	
							Install the ipmitool.
						
$ sudo dnf install -y OpenIPMI ipmitool

	
							Power off the bare metal node and ensure it is off.
						
$ ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power off

							Where <management-server-ip> is the IP address of the bare metal node’s base board management controller.
						
$ ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power status
Chassis Power is off

	
							Retrieve the username and password of the bare metal node’s baseboard management controller. Then, create base64 strings from the username and password. In the following example, the username is root and the password is calvin.
						
$ echo -ne "root" | base64
$ echo -ne "calvin" | base64

	
							Create a configuration file for the bare metal node.
						
$ vim bmh.yaml

apiVersion: v1
kind: Secret
metadata:
 name: openshift-worker-<num>-bmc-secret
type: Opaque
data:
 username: <base64-of-uid>
 password: <base64-of-pwd>

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: openshift-worker-<num>
spec:
 online: true
 bootMACAddress: <NIC1-mac-address>
 bmc:
 address: ipmi://<bmc-ip>
 credentialsName: openshift-worker-<num>-bmc-secret

							Replace <num> for the worker number of bare metal node in two name fields and credentialsName field. Replace <base64-of-uid> with the base64 string of the username. Replace <base64-of-pwd> with the base64 string of the password. Replace <NIC1-mac-address> with the MAC address of the bare metal node’s first NIC. Replace <bmc-ip> with the IP address of the bare metal node’s baseboard management controller.
						

	
							Create the bare metal node.
						
$ oc -n openshift-machine-api create -f bmh.yaml
secret/openshift-worker-<num>-bmc-secret created
baremetalhost.metal3.io/openshift-worker-<num> created

							Where <num> will be the worker number.
						

	
							Power up and inspect the bare metal node.
						
$ oc -n openshift-machine-api get bmh openshift-worker-<num>

							Where <num> is the worker node number.
						
NAME STATUS PROVISIONING STATUS CONSUMER BMC HARDWARE PROFILE ONLINE ERROR
openshift-worker-<num> OK ready ipmi://<out-of-band-ip> unknown true

Provisioning the bare metal node

					Provisioning the bare metal node requires executing the following procedure from the provisioner node.
				
Procedure
	
							Ensure the PROVISIONING STATUS is ready before provisioning the bare metal node.
						
$ oc -n openshift-machine-api get bmh openshift-worker-<num>

							Where <num> is the worker node number.
						
NAME STATUS PROVISIONING STATUS CONSUMER BMC HARDWARE PROFILE ONLINE ERROR
openshift-worker-<num> OK ready ipmi://<out-of-band-ip> unknown true

	
							Get a count of the number of worker nodes.
						
$ oc get nodes
NAME STATUS ROLES AGE VERSION
provisioner.openshift.example.com Ready master 30h v1.16.2
openshift-master-1.openshift.example.com Ready master 30h v1.16.2
openshift-master-2.openshift.example.com Ready master 30h v1.16.2
openshift-master-3.openshift.example.com Ready master 30h v1.16.2
openshift-worker-0.openshift.example.com Ready master 30h v1.16.2
openshift-worker-1.openshift.example.com Ready master 30h v1.16.2

	
							Get the machine set.
						
$ oc get machinesets -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
...
openshift-worker-0.example.com 1 1 1 1 55m
openshift-worker-1.example.com 1 1 1 1 55m

	
							Increase the number of worker nodes by one.
						
$ oc scale --replicas=<num> machineset <machineset> -n openshift-machine-api

							Replace <num> with the new number of worker nodes. Replace <machineset> with the name of the machine set from the previous step.
						

	
							Check the status of the bare metal node.
						
$ oc -n openshift-machine-api get bmh openshift-worker-<num>

							Where <num> is the worker node number. The status changes from ready to provisioning.
						
NAME STATUS PROVISIONING STATUS CONSUMER BMC HARDWARE PROFILE ONLINE ERROR
openshift-worker-<num> OK provisioning openshift-worker-<num>-65tjz ipmi://<out-of-band-ip> unknown true

							The provisioning status remains until the OpenShift Container Platform cluster provisions the node. This can take 30 minutes or more. Once complete, the status will change to provisioned.
						
NAME STATUS PROVISIONING STATUS CONSUMER BMC HARDWARE PROFILE ONLINE ERROR
openshift-worker-<num> OK provisioned openshift-worker-<num>-65tjz ipmi://<out-of-band-ip> unknown true

	
							Once provisioned, ensure the bare metal node is ready.
						
$ oc get nodes
NAME STATUS ROLES AGE VERSION
provisioner.openshift.example.com Ready master 30h v1.16.2
openshift-master-1.openshift.example.com Ready master 30h v1.16.2
openshift-master-2.openshift.example.com Ready master 30h v1.16.2
openshift-master-3.openshift.example.com Ready master 30h v1.16.2
openshift-worker-0.openshift.example.com Ready master 30h v1.16.2
openshift-worker-1.openshift.example.com Ready master 30h v1.16.2
openshift-worker-<num>.openshift.example.com Ready worker 3m27s v1.16.2

							You can also check the kubelet.
						
$ ssh openshift-worker-<num>
[kni@openshift-worker-<num>]$ journalctl -fu kubelet

Troubleshooting

Troubleshooting the installer workflow

					Prior to troubleshooting the installation environment, it is critical to understand the overall flow of the installer-provisioned installation on bare metal. The diagrams below provide a troubleshooting flow with a step-by-step breakdown for the environment.
				

					[image: Flow-Diagram-1]

				

					Workflow 1 of 4 illustrates a troubleshooting workflow when the install-config.yaml file has errors or the Red Hat Enterprise Linux CoreOS (RHCOS) images are inaccessible. Troubleshooting suggestions can be found at Troubleshooting install-config.yaml.
				

					[image: Flow-Diagram-2]

				

					Workflow 2 of 4 illustrates a troubleshooting workflow for bootstrap VM issues, bootstrap VMs that cannot boot up the cluster nodes, and inspecting logs. When installing a OpenShift Container Platform cluster without the provisioning network, this workflow does not apply.
				

					[image: Flow-Diagram-3]

				

					Workflow 3 of 4 illustrates a troubleshooting workflow for cluster nodes that will not PXE boot.
				

					[image: Flow-Diagram-4]

				

					Workflow 4 of 4 illustrates a troubleshooting workflow from a non-accessible API to a validated installation.
				

Troubleshooting install-config.yaml

					The install-config.yaml configuration file represents all of the nodes that are part of the OpenShift Container Platform cluster. The file contains the necessary options consisting of but not limited to apiVersion, baseDomain, imageContentSources and virtual IP addresses. If errors occur early in the deployment of the OpenShift Container Platform cluster, the errors are likely in the install-config.yaml configuration file.
				
Procedure
	
							Use the guidelines in YAML-tips.
						
	
							Verify the YAML syntax is correct using syntax-check.
						
	
							Verify the Red Hat Enterprise Linux CoreOS (RHCOS) QEMU images are properly defined and accessible via the URL provided in the install-config.yaml. For example:
						
$ curl -s -o /dev/null -I -w "%{http_code}\n" http://webserver.example.com:8080/rhcos-44.81.202004250133-0-qemu.x86_64.qcow2.gz?sha256=7d884b46ee54fe87bbc3893bf2aa99af3b2d31f2e19ab5529c60636fbd0f1ce7

							If the output is 200, there is a valid response from the webserver storing the bootstrap VM image.
						

Bootstrap VM issues

					The OpenShift Container Platform installer spawns a bootstrap node virtual machine, which handles provisioning the OpenShift Container Platform cluster nodes.
				
Procedure
	
							About 10 to 15 minutes after triggering the installer, check to ensure the bootstrap VM is operational using the virsh command:
						
$ sudo virsh list
 Id Name State
 --
 12 openshift-xf6fq-bootstrap running
Note

								The name of the bootstrap VM is always the cluster name followed by a random set of characters and ending in the word "bootstrap."
							

							If the bootstrap VM is not running after 10-15 minutes, troubleshoot why it is not running. Possible issues include:
						

	
							Verify libvirtd is running on the system:
						
$ systemctl status libvirtd
● libvirtd.service - Virtualization daemon
 Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled; vendor preset: enabled)
 Active: active (running) since Tue 2020-03-03 21:21:07 UTC; 3 weeks 5 days ago
 Docs: man:libvirtd(8)
 https://libvirt.org
 Main PID: 9850 (libvirtd)
 Tasks: 20 (limit: 32768)
 Memory: 74.8M
 CGroup: /system.slice/libvirtd.service
 ├─ 9850 /usr/sbin/libvirtd

							If the bootstrap VM is operational, log in to it.
						

	
							Use the virsh console command to find the IP address of the bootstrap VM:
						
$ sudo virsh console example.com
Connected to domain example.com
Escape character is ^]

Red Hat Enterprise Linux CoreOS 43.81.202001142154.0 (Ootpa) 4.3
SSH host key: SHA256:BRWJktXZgQQRY5zjuAV0IKZ4WM7i4TiUyMVanqu9Pqg (ED25519)
SSH host key: SHA256:7+iKGA7VtG5szmk2jB5gl/5EZ+SNcJ3a2g23o0lnIio (ECDSA)
SSH host key: SHA256:DH5VWhvhvagOTaLsYiVNse9ca+ZSW/30OOMed8rIGOc (RSA)
ens3: fd35:919d:4042:2:c7ed:9a9f:a9ec:7
ens4: 172.22.0.2 fe80::1d05:e52e:be5d:263f
localhost login:
Important

								When deploying a OpenShift Container Platform cluster without the provisioning network, you must use a public IP address and not a private IP address like 172.22.0.2.
							

	
							Once you obtain the IP address, log in to the bootstrap VM using the ssh command:
						
Note

								In the console output of the previous step, you can use the IPv6 IP address provided by ens3 or the IPv4 IP provided by ens4.
							

$ ssh core@172.22.0.2

					If you are not successful logging in to the bootstrap VM, you have likely encountered one of the following scenarios:
				
	
							You cannot reach the 172.22.0.0/24 network. Verify network connectivity on the provisioner host specifically around the provisioning network bridge. This will not be the issue if you are not using the provisioning network.
						
	
							You cannot reach the bootstrap VM via the public network. When attempting to SSH via baremetal network, verify connectivity on the provisioner host specifically around the baremetal network bridge.
						
	
							You encountered Permission denied (publickey,password,keyboard-interactive). When attempting to access the bootstrap VM, a Permission denied error might occur. Verify that the SSH key for the user attempting to log into the VM is set within the install-config.yaml file.
						

Bootstrap VM cannot boot up the cluster nodes

						During the deployment, it is possible for the bootstrap VM to fail to boot the cluster nodes, which prevents the VM from provisioning the nodes with the RHCOS image. This scenario can arise due to:
					
	
								A problem with the install-config.yaml file.
							
	
								Issues with out-of-band network access via the baremetal network.
							

						To verify the issue, there are three containers related to ironic:
					
	
								ironic-api
							
	
								ironic-conductor
							
	
								ironic-inspector
							

Procedure
	
								Log in to the bootstrap VM:
							
$ ssh core@172.22.0.2

	
								To check the container logs, execute the following:
							
[core@localhost ~]$ sudo podman logs -f <container-name>

								Replace <container-name> with one of ironic-api, ironic-conductor, or ironic-inspector. If you encounter an issue where the control plane nodes are not booting up via PXE, check the ironic-conductor pod. The ironic-conductor pod contains the most detail about the attempt to boot the cluster nodes, because it attempts to log in to the node over IPMI.
							

Potential reason

							The cluster nodes might be in the ON state when deployment started.
						
Solution

							Power off the OpenShift Container Platform cluster nodes before you begin the installation over IPMI:
						
$ ipmitool -I lanplus -U root -P <password> -H <out-of-band-ip> power off

Inspecting logs

						When experiencing issues downloading or accessing the RHCOS images, first verify that the URL is correct in the install-config.yaml configuration file.
					
Example of internal webserver hosting RHCOS images

							

bootstrapOSImage: http://<ip:port>/rhcos-43.81.202001142154.0-qemu.x86_64.qcow2.gz?sha256=9d999f55ff1d44f7ed7c106508e5deecd04dc3c06095d34d36bf1cd127837e0c
clusterOSImage: http://<ip:port>/rhcos-43.81.202001142154.0-openstack.x86_64.qcow2.gz?sha256=a1bda656fa0892f7b936fdc6b6a6086bddaed5dafacedcd7a1e811abb78fe3b0

						

						The ipa-downloader and coreos-downloader containers download resources from a webserver or the external quay.io registry, whichever the install-config.yaml configuration file specifies. Verify the following two containers are up and running and inspect their logs as needed:
					
	
								ipa-downloader
							
	
								coreos-downloader
							

Procedure
	
								Log in to the bootstrap VM:
							
$ ssh core@172.22.0.2

	
								Check the status of the ipa-downloader and coreos-downloader containers within the bootstrap VM:
							
[core@localhost ~]$ sudo podman logs -f ipa-downloader
[core@localhost ~]$ sudo podman logs -f coreos-downloader

								If the bootstrap VM cannot access the URL to the images, use the curl command to verify that the VM can access the images.
							

	
								To inspect the bootkube logs that indicate if all the containers launched during the deployment phase, execute the following:
							
[core@localhost ~]$ journalctl -xe
[core@localhost ~]$ journalctl -b -f -u bootkube.service

	
								Verify all the pods, including dnsmasq, mariadb, httpd, and ironic, are running:
							
[core@localhost ~]$ sudo podman ps

	
								If there are issues with the pods, check the logs of the containers with issues. To check the log of the ironic-api, execute the following:
							
[core@localhost ~]$ sudo podman logs <ironic-api>

Cluster nodes will not PXE boot

					When OpenShift Container Platform cluster nodes will not PXE boot, execute the following checks on the cluster nodes that will not PXE boot. This procedure does not apply when installing a OpenShift Container Platform cluster without the provisioning network.
				
Procedure
	
							Check the network connectivity to the provisioning network.
						
	
							Ensure PXE is enabled on the NIC for the provisioning network and PXE is disabled for all other NICs.
						
	
							Verify that the install-config.yaml configuration file has the proper hardware profile and boot MAC address for the NIC connected to the provisioning network. For example:
						
control plane node settings

								

bootMACAddress: 24:6E:96:1B:96:90 # MAC of bootable provisioning NIC
hardwareProfile: default #control plane node settings

							
Worker node settings

								

bootMACAddress: 24:6E:96:1B:96:90 # MAC of bootable provisioning NIC
hardwareProfile: unknown #worker node settings

							

The API is not accessible

					When the cluster is running and clients cannot access the API, domain name resolution issues might impede access to the API.
				
Procedure
	
							Hostname Resolution: Check the cluster nodes to ensure they have a fully qualified domain name, and not just localhost.localdomain. For example:
						
$ hostname

							If a hostname is not set, set the correct hostname. For example:
						
$ hostnamectl set-hostname <hostname>

	
							Incorrect Name Resolution: Ensure that each node has the correct name resolution in the DNS server using dig and nslookup. For example:
						
$ dig api.<cluster-name>.example.com
; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el8 <<>> api.<cluster-name>.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37551
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 866929d2f8e8563582af23f05ec44203d313e50948d43f60 (good)
;; QUESTION SECTION:
;api.<cluster-name>.example.com. IN A

;; ANSWER SECTION:
api.<cluster-name>.example.com. 10800 IN	A 10.19.13.86

;; AUTHORITY SECTION:
<cluster-name>.example.com. 10800 IN NS	<cluster-name>.example.com.

;; ADDITIONAL SECTION:
<cluster-name>.example.com. 10800 IN A	10.19.14.247

;; Query time: 0 msec
;; SERVER: 10.19.14.247#53(10.19.14.247)
;; WHEN: Tue May 19 20:30:59 UTC 2020
;; MSG SIZE rcvd: 140

							The output in the foregoing example indicates that the appropriate IP address for the api.<cluster-name>.example.com VIP is 10.19.13.86. This IP address should reside on the baremetal network.
						

Cleaning up previous installations

					In the event of a previous failed deployment, remove the artifacts from the failed attempt before attempting to deploy OpenShift Container Platform again.
				
Procedure
	
							Power off all bare metal nodes prior to installing the OpenShift Container Platform cluster:
						
$ ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power off

	
							Remove all old bootstrap resources if any are left over from a previous deployment attempt:
						
for i in $(sudo virsh list | tail -n +3 | grep bootstrap | awk {'print $2'});
do
 sudo virsh destroy $i;
 sudo virsh undefine $i;
 sudo virsh vol-delete $i --pool $i;
 sudo virsh vol-delete $i.ign --pool $i;
 sudo virsh pool-destroy $i;
 sudo virsh pool-undefine $i;
done

	
							Remove the following from the clusterconfigs directory to prevent Terraform from failing:
						
$ rm -rf ~/clusterconfigs/auth ~/clusterconfigs/terraform* ~/clusterconfigs/tls ~/clusterconfigs/metadata.json

Issues with creating the registry

					When creating a disconnected registry, you might encounter a "User Not Authorized" error when attempting to mirror the registry. This error might occur if you fail to append the new authentication to the existing pull-secret.txt file.
				
Procedure
	
							Check to ensure authentication is successful:
						
$ /usr/local/bin/oc adm release mirror \
 -a pull-secret-update.json
 --from=$UPSTREAM_REPO \
 --to-release-image=$LOCAL_REG/$LOCAL_REPO:${VERSION} \
 --to=$LOCAL_REG/$LOCAL_REPO
Note

								Example output of the variables used to mirror the install images:
							
UPSTREAM_REPO=${RELEASE_IMAGE}
LOCAL_REG=<registry_FQDN>:<registry_port>
LOCAL_REPO='ocp4/openshift4'

								The values of RELEASE_IMAGE and VERSION were set during the Retrieving OpenShift Installer step of the Setting up the environment for an OpenShift installation section.
							

	
							After mirroring the registry, confirm that you can access it in your disconnected environment:
						
$ curl -k -u <user>:<password> https://registry.example.com:<registry-port>/v2/_catalog
{"repositories":["<Repo-Name>"]}

Miscellaneous issues

Addressing the runtime network not ready error

						After the deployment of a cluster you might receive the following error:
					
`runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:Network plugin returns error: Missing CNI default network`

						The Cluster Network Operator is responsible for deploying the networking components in response to a special object created by the installer. It runs very early in the installation process, after the control plane (master) nodes have come up, but before the bootstrap control plane has been torn down. It can be indicative of more subtle installer issues, such as long delays in bringing up control plane (master) nodes or issues with apiserver communication.
					
Procedure
	
								Inspect the pods in the openshift-network-operator namespace:
							
$ oc get all -n openshift-network-operator
NAME READY STATUS RESTARTS AGE
pod/network-operator-69dfd7b577-bg89v 0/1 ContainerCreating 0 149m

	
								On the provisioner node, determine that the network configuration exists:
							
$ kubectl get network.config.openshift.io cluster -oyaml
apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 serviceNetwork:
 - 172.30.0.0/16
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN

								If it does not exist, the installer did not create it. To determine why the installer did not create it, execute the following:
							
$ openshift-install create manifests

	
								Check that the network-operator is running:
							
$ kubectl -n openshift-network-operator get pods

	
								Retrieve the logs:
							
$ kubectl -n openshift-network-operator logs -l "name=network-operator"

								On high availability clusters with three or more control plane (master) nodes, the Operator will perform leader election and all other Operators will sleep. For additional details, see Troubleshooting.
							

Cluster nodes not getting the correct IPv6 address over DHCP

						If the cluster nodes are not getting the correct IPv6 address over DHCP, check the following:
					
	
								Ensure the reserved IPv6 addresses reside outside the DHCP range.
							
	
								In the IP address reservation on the DHCP server, ensure the reservation specifies the correct DHCP Unique Identifier (DUID). For example:
							
This is a dnsmasq dhcp reservation, 'id:00:03:00:01' is the client id and '18:db:f2:8c:d5:9f' is the MAC Address for the NIC
id:00:03:00:01:18:db:f2:8c:d5:9f,openshift-master-1,[2620:52:0:1302::6]

	
								Ensure that route announcements are working.
							
	
								Ensure that the DHCP server is listening on the required interfaces serving the IP address ranges.
							

Cluster nodes not getting the correct hostname over DHCP

						During IPv6 deployment, cluster nodes must get their hostname over DHCP. Sometimes the NetworkManager does not assign the hostname immediately. A control plane (master) node might report an error such as:
					
Failed Units: 2
 NetworkManager-wait-online.service
 nodeip-configuration.service

						This error indicates that the cluster node likely booted without first receiving a hostname from the DHCP server, which causes kubelet to boot with a localhost.localdomain hostname. To address the error, force the node to renew the hostname.
					
Procedure
	
								Retrieve the hostname:
							
[core@master-X ~]$ hostname

								If the hostname is localhost, proceed with the following steps.
							
Note

									Where X is the control plane node (also known as the master node) number.
								

	
								Force the cluster node to renew the DHCP lease:
							
[core@master-X ~]$ sudo nmcli con up "<bare-metal-nic>"

								Replace <bare-metal-nic> with the wired connection corresponding to the baremetal network.
							

	
								Check hostname again:
							
[core@master-X ~]$ hostname

	
								If the hostname is still localhost.localdomain, restart NetworkManager:
							
[core@master-X ~]$ sudo systemctl restart NetworkManager

	
								If the hostname is still localhost.localdomain, wait a few minutes and check again. If the hostname remains localhost.localdomain, repeat the previous steps.
							
	
								Restart the nodeip-configuration service:
							
[core@master-X ~]$ sudo systemctl restart nodeip-configuration.service

								This service will reconfigure the kubelet service with the correct hostname references.
							

	
								Reload the unit files definition since the kubelet changed in the previous step:
							
[core@master-X ~]$ sudo systemctl daemon-reload

	
								Restart the kubelet service:
							
[core@master-X ~]$ sudo systemctl restart kubelet.service

	
								Ensure kubelet booted with the correct hostname:
							
[core@master-X ~]$ sudo journalctl -fu kubelet.service

						If the cluster node is not getting the correct hostname over DHCP after the cluster is up and running, such as during a reboot, the cluster will have a pending csr. Do not approve a csr, or other issues might arise.
					
Addressing a csr
	
								Get CSRs on the cluster:
							
$ oc get csr

	
								Verify if a pending csr contains Subject Name: localhost.localdomain:
							
$ oc get csr <pending_csr> -o jsonpath='{.spec.request}' | base64 --decode | openssl req -noout -text

	
								Remove any csr that contains Subject Name: localhost.localdomain:
							
$ oc delete csr <wrong_csr>

Routes do not reach endpoints

						During the installation process, it is possible to encounter a Virtual Router Redundancy Protocol (VRRP) conflict. This conflict might occur if a previously used OpenShift Container Platform node that was once part of a cluster deployment using a specific cluster name is still running but not part of the current OpenShift Container Platform cluster deployment using that same cluster name. For example, a cluster was deployed using the cluster name openshift, deploying three control plane (master) nodes and three worker nodes. Later, a separate install uses the same cluster name openshift, but this redeployment only installed three control plane (master) nodes, leaving the three worker nodes from a previous deployment in an ON state. This might cause a Virtual Router Identifier (VRID) conflict and a VRRP conflict.
					
	
								Get the route:
							
$ oc get route oauth-openshift

	
								Check the service endpoint:
							
$ oc get svc oauth-openshift
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
oauth-openshift ClusterIP 172.30.19.162 <none> 443/TCP 59m

	
								Attempt to reach the service from a control plane (master) node:
							
[core@master0 ~]$ curl -k https://172.30.19.162
{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {
 },
 "status": "Failure",
 "message": "forbidden: User \"system:anonymous\" cannot get path \"/\"",
 "reason": "Forbidden",
 "details": {
 },
 "code": 403

	
								Identify the authentication-operator errors from the provisioner node:
							
$ oc logs deployment/authentication-operator -n openshift-authentication-operator
Event(v1.ObjectReference{Kind:"Deployment", Namespace:"openshift-authentication-operator", Name:"authentication-operator", UID:"225c5bd5-b368-439b-9155-5fd3c0459d98", APIVersion:"apps/v1", ResourceVersion:"", FieldPath:""}): type: 'Normal' reason: 'OperatorStatusChanged' Status for clusteroperator/authentication changed: Degraded message changed from "IngressStateEndpointsDegraded: All 2 endpoints for oauth-server are reporting"

Solution
	
								Ensure that the cluster name for every deployment is unique, ensuring no conflict.
							
	
								Turn off all the rogue nodes which are not part of the cluster deployment that are using the same cluster name. Otherwise, the authentication pod of the OpenShift Container Platform cluster might never start successfully.
							

Failed Ignition during Firstboot

						During the Firstboot, the Ignition configuration may fail.
					
Procedure
	
								Connect to the node where the Ignition configuration failed:
							
Failed Units: 1
 machine-config-daemon-firstboot.service

	
								Restart the machine-config-daemon-firstboot service:
							
[core@worker-X ~]$ sudo systemctl restart machine-config-daemon-firstboot.service

NTP out of sync

						The deployment of OpenShift Container Platform clusters depends on NTP synchronized clocks among the cluster nodes. Without synchronized clocks, the deployment may fail due to clock drift if the time difference is greater than two seconds.
					
Procedure
	
								Check for differences in the AGE of the cluster nodes. For example:
							
$ oc get nodes
NAME STATUS ROLES AGE VERSION
master-0.cloud.example.com Ready master 145m v1.16.2
master-1.cloud.example.com Ready master 135m v1.16.2
master-2.cloud.example.com Ready master 145m v1.16.2
worker-2.cloud.example.com Ready worker 100m v1.16.2

	
								Check for inconsistent timing delays due to clock drift. For example:
							
$ oc get bmh -n openshift-machine-api
master-1 error registering master-1 ipmi://<out-of-band-ip>
$ sudo timedatectl
 Local time: Tue 2020-03-10 18:20:02 UTC
 Universal time: Tue 2020-03-10 18:20:02 UTC
 RTC time: Tue 2020-03-10 18:36:53
 Time zone: UTC (UTC, +0000)
System clock synchronized: no
 NTP service: active
 RTC in local TZ: no

Addressing clock drift in existing clusters
	
								Create a chrony.conf file and encode it as base64 string. For example:
							
$ cat << EOF | base 64
server <NTP-server> iburst[image: 1]
stratumweight 0
driftfile /var/lib/chrony/drift
rtcsync
makestep 10 3
bindcmdaddress 127.0.0.1
bindcmdaddress ::1
keyfile /etc/chrony.keys
commandkey 1
generatecommandkey
noclientlog
logchange 0.5
logdir /var/log/chrony
EOF
	[image: 1]
	
										Replace <NTP-server> with the IP address of the NTP server. Copy the output.
									

[text-in-base-64]

	
								Create a MachineConfig object, replacing the base64 string with the [text-in-base-64] string generated in the output of the previous step. The following example adds the file to the control plane (master) nodes. You can modify the file for worker nodes or make an additional machine config for the worker role.
							
$ cat << EOF > ./99_masters-chrony-configuration.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 creationTimestamp: null
 labels:
 machineconfiguration.openshift.io/role: master
 name: 99-master-etc-chrony-conf
spec:
 config:
 ignition:
 config: {}
 security:
 tls: {}
 timeouts: {}
 version: 3.1.0
 networkd: {}
 passwd: {}
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-8;base64,[text-in-base-64][image: 1]
 group:
 name: root
 mode: 420
 overwrite: true
 path: /etc/chrony.conf
 user:
 name: root
 osImageURL: ""
	[image: 1]
	
										Replace [text-in-base-64] with the base64 string.
									

	
								Make a backup copy of the configuration file. For example:
							
$ cp 99_masters-chrony-configuration.yaml 99_masters-chrony-configuration.yaml.backup

	
								Apply the configuration file:
							
$ oc apply -f ./masters-chrony-configuration.yaml

	
								Ensure the System clock synchronized value is yes:
							
$ sudo timedatectl
 Local time: Tue 2020-03-10 19:10:02 UTC
 Universal time: Tue 2020-03-10 19:10:02 UTC
 RTC time: Tue 2020-03-10 19:36:53
 Time zone: UTC (UTC, +0000)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no

								To setup clock synchronization prior to deployment, generate the manifest files and add this file to the openshift directory. For example:
							
$ cp chrony-masters.yaml ~/clusterconfigs/openshift/99_masters-chrony-configuration.yaml

								Then, continue to create the cluster.
							

Reviewing the installation

					After installation, ensure the installer deployed the nodes and pods successfully.
				
Procedure
	
							When the OpenShift Container Platform cluster nodes are installed appropriately, the following Ready state is seen within the STATUS column:
						
$ oc get nodes
NAME STATUS ROLES AGE VERSION
master-0.example.com Ready master,worker 4h v1.16.2
master-1.example.com Ready master,worker 4h v1.16.2
master-2.example.com Ready master,worker 4h v1.16.2

	
							Confirm the installer deployed all pods successfully. The following command removes any pods that are still running or have completed as part of the output.
						
$ oc get pods --all-namespaces | grep -iv running | grep -iv complete

Chapter 7. Installing on IBM Z and LinuxONE

Installing a cluster on IBM Z and LinuxONE

				In OpenShift Container Platform version 4.6, you can install a cluster on IBM Z or LinuxONE infrastructure that you provision.
			
Note

					While this document refers only to IBM Z, all information in it also applies to LinuxONE.
				

Important

					Additional considerations exist for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you install an OpenShift Container Platform cluster.
				

Prerequisites

	
							Before you begin the installation process, you must clean the installation directory. This ensures that the required installation files are created and updated during the installation process.
						
	
							Provision persistent storage using NFS for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						

Note

						Be sure to also review this site list if you are configuring a proxy.
					

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To improve high availability of your cluster, distribute the control plane machines over different z/VM instances on at least two physical machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. The machines are configured with static IP addresses. No DHCP server is required. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server.
					

IBM Z network connectivity requirements

						To install on IBM Z under z/VM, you require a single z/VM virtual NIC in layer 2 mode. You also need:
					
	
								A direct-attached OSA or RoCE network adapter
							
	
								A z/VM VSwitch set up. For a preferred setup, use OSA link aggregation.
							

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 7.1. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										N/A
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										N/A
									

									
	
										Compute
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										N/A
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							

Minimum IBM Z system environment

						You can install OpenShift Container Platform version 4.6 on the following IBM hardware:
					
	
								IBM z15 (all models), IBM z14 (all models), IBM z13, and IBM z13s
							
	
								LinuxONE, any version
							

Hardware requirements
	
								The equivalent of 6 IFLs, which are SMT2 enabled, for each cluster.
							
	
								At least one network connection to both connect to the LoadBalancer service and to serve data for traffic outside the cluster.
							

Note

							You can use dedicated or shared IFLs to assign sufficient compute resources. Resource sharing is one of the key strengths of IBM Z. However, you must adjust capacity correctly on each hypervisor layer and ensure sufficient resources for every OpenShift Container Platform cluster.
						

Important

							Since the overall performance of the cluster can be impacted, the LPARs that are used to setup the OpenShift Container Platform clusters must provide sufficient compute capacity. In this context, LPAR weight management, entitlements, and CPU shares on the hypervisor level play an important role.
						

Operating system requirements
	
								One instance of z/VM 7.1 or later
							

						On your z/VM instance, set up:
					
	
								3 guest virtual machines for OpenShift Container Platform control plane machines
							
	
								2 guest virtual machines for OpenShift Container Platform compute machines
							
	
								1 guest virtual machine for the temporary OpenShift Container Platform bootstrap machine
							

IBM Z network connectivity requirements

						To install on IBM Z under z/VM, you require a single z/VM virtual NIC in layer 2 mode. You also need:
					
	
								A direct-attached OSA or RoCE network adapter
							
	
								A z/VM VSwitch set up. For a preferred setup, use OSA link aggregation.
							

Disk storage for the z/VM guest virtual machines
	
								FICON attached disk storage (DASDs). These can be z/VM minidisks, fullpack minidisks, or dedicated DASDs, all of which must be formatted as CDL, which is the default. To reach the minimum required DASD size for Red Hat Enterprise Linux CoreOS (RHCOS) installations, you need extended address volumes (EAV). If available, use HyperPAV to ensure optimal performance.
							
	
								FCP attached disk storage
							

Storage / Main Memory
	
								16 GB for OpenShift Container Platform control plane machines
							
	
								8 GB for OpenShift Container Platform compute machines
							
	
								16 GB for the temporary OpenShift Container Platform bootstrap machine
							

Preferred IBM Z system environment

Hardware requirements
	
								3 LPARS that each have the equivalent of 6 IFLs, which are SMT2 enabled, for each cluster.
							
	
								Two network connections to connect to both connect to the LoadBalancer service and to serve data for traffic outside the cluster.
							
	
								HiperSockets, which are attached to a node either directly as a device or by bridging with one z/VM VSWITCH to be transparent to the z/VM guest. To directly connect HiperSockets to a node, you must set up a gateway to the external network via a RHEL 8 guest to bridge to the HiperSockets network.
							

Operating system requirements
	
								2 or 3 instances of z/VM 7.1 or later for high availability
							

						On your z/VM instances, set up:
					
	
								3 guest virtual machines for OpenShift Container Platform control plane machines, one per z/VM instance.
							
	
								At least 6 guest virtual machines for OpenShift Container Platform compute machines, distributed across the z/VM instances.
							
	
								1 guest virtual machine for the temporary OpenShift Container Platform bootstrap machine.
							
	
								To ensure the availability of integral components in an overcommitted environment, increase the priority of the control plane by using the CP command SET SHARE. Do the same for infrastructure nodes, if they exist. See SET SHARE in IBM Documentation.
							

IBM Z network connectivity requirements

						To install on IBM Z under z/VM, you require a single z/VM virtual NIC in layer 2 mode. You also need:
					
	
								A direct-attached OSA or RoCE network adapter
							
	
								A z/VM VSwitch set up. For a preferred setup, use OSA link aggregation.
							

Disk storage for the z/VM guest virtual machines
	
								FICON attached disk storage (DASDs). These can be z/VM minidisks, fullpack minidisks, or dedicated DASDs, all of which must be formatted as CDL, which is the default. To reach the minimum required DASD size for Red Hat Enterprise Linux CoreOS (RHCOS) installations, you need extended address volumes (EAV). If available, use HyperPAV and High Performance FICON (zHPF) to ensure optimal performance.
							
	
								FCP attached disk storage
							

Storage / Main Memory
	
								16 GB for OpenShift Container Platform control plane machines
							
	
								8 GB for OpenShift Container Platform compute machines
							
	
								16 GB for the temporary OpenShift Container Platform bootstrap machine
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					
Additional resources
	
								See Bridging a HiperSockets LAN with a z/VM Virtual Switch in IBM Documentation.
							
	
								See Scaling HyperPAV alias devices on Linux guests on z/VM for performance optimization.
							
	
								See Topics in LPAR performance for LPAR weight management and entitlements.
							

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Set up static IP addresses.
						
	
							Set up an FTP server.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require an FTP server in order to establish a network connection to download their Ignition config files.
					

						Ensure that the machines have persistent IP addresses and host names.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 7.2. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 7.3. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 7.4. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 7.5. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 7.6. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 7.7. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 7.1. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 7.2. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

Important

						Do not skip this procedure in production environments where disaster recovery and debugging is required.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on your provisioning machine.
				
Prerequisites
	
							You have a machine that runs Linux, for example Red Hat Enterprise Linux 8, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 7.8. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 7.9. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										
											If you specify multiple IP kernel arguments, the machineNetwork.cidr value must be the CIDR of the primary network.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 7.10. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Sample install-config.yaml file for IBM Z

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
 architecture : s390x
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
 architecture : s390x
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths": ...}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for IBM Z infrastructure.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								The pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

					Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
				
Prerequisites
	
							You have an existing install-config.yaml file.
						
	
							You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
						
Note

								The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
							

								For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
							

Procedure
	
							Edit your install-config.yaml file and add the proxy settings. For example:
						
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
									A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
								

	[image: 2]
	
									A proxy URL to use for creating HTTPS connections outside the cluster.
								

	[image: 3]
	
									A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
								

	[image: 4]
	
									If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
								

Note

								The installation program does not support the proxy readinessEndpoints field.
							

	
							Save the file and reference it when installing OpenShift Container Platform.
						

					The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
				
Note

						Only the Proxy object named cluster is supported, and no additional proxies can be created.
					

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines

					Before you install a cluster on IBM Z infrastructure that you provision, you must install RHCOS on z/VM guest virtual machines for the cluster to use. Complete the following steps to create the machines.
				
Prerequisites
	
							An FTP server running on your provisioning machine that is accessible to the machines you create.
						

Procedure
	
							Log in to Linux on your provisioning machine.
						
	
							Obtain the Red Hat Enterprise Linux CoreOS (RHCOS) kernel, initramfs, and rootfs files from the RHCOS image mirror.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described in the following procedure.
							

							The file names contain the OpenShift Container Platform version number. They resemble the following examples:
						
	
									kernel: rhcos-<version>-live-kernel-<architecture>
								
	
									initramfs: rhcos-<version>-live-initramfs.<architecture>.img
								
	
									rootfs: rhcos-<version>-live-rootfs.<architecture>.img
								
Note

										The rootfs image is the same for FCP and DASD.
									

	
							Create parameter files. The following parameters are specific for a particular virtual machine:
						
	
									For coreos.inst.install_dev=, specify dasda for a DASD installation, or sda for FCP. Note that FCP requires zfcp.allow_lun_scan=0.
								
	
									For rd.dasd=, specifys the DASD where RHCOS is to be installed.
								
	
									rd.zfcp=<adapter>,<wwpn>,<lun> specifies the FCP disk to install RHCOS on.
								
	
									For ip=, specify the following seven entries:
								
	
											The IP address for the machine.
										
	
											An empty string.
										
	
											The gateway.
										
	
											The netmask.
										
	
											The machine host and domain name in the form hostname.domainname. Omit this value to let RHCOS decide.
										
	
											The network interface name. Omit this value to let RHCOS decide.
										
	
											If you use static IP addresses, an empty string.
										

	
									For coreos.inst.ignition_url=, specify the Ignition file for the machine role. Use bootstrap.ign, master.ign, or worker.ign. Only HTTP and HTTPS protocols are supported.
								
	
									For coreos.live.rootfs_url=, specify the matching rootfs artifact for the kernel and initramfs you are booting. Only HTTP and HTTPS protocols are supported.
								
	
									All other parameters can stay as they are.
								

									Example parameter file, bootstrap-0.parm, for the bootstrap machine:
								
rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=dasda \
coreos.live.rootfs_url=http://cl1.provide.example.com:8080/assets/rhcos-live-rootfs.s390x.img \
coreos.inst.ignition_url=http://cl1.provide.example.com:8080/ignition/bootstrap.ign \
ip=172.18.78.2::172.18.78.1:255.255.255.0:::none nameserver=172.18.78.1 \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
zfcp.allow_lun_scan=0 \
rd.dasd=0.0.3490

									Write all options in the parameter file as a single line and make sure you have no newline characters.
								

	
							Transfer the initramfs, kernel, parameter files, and RHCOS images to z/VM, for example with FTP. For details about how to transfer the files with FTP and boot from the virtual reader, see Installing under Z/VM.
						
	
							Punch the files to the virtual reader of the z/VM guest virtual machine that is to become your bootstrap node.
						

							See PUNCH in IBM Documentation.
						
Tip

							You can use the CP PUNCH command or, if you use Linux, the vmur command to transfer files between two z/VM guest virtual machines.
						

	
							Log in to CMS on the bootstrap machine.
						
	
							IPL the bootstrap machine from the reader:
						
$ ipl c

							See IPL in IBM Documentation.
						

	
							Repeat this procedure for the other machines in the cluster.
						

Advanced RHCOS installation reference

						This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
					
Routing and bonding options at RHCOS boot prompt

						If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
					
Important

							When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
						

						The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
					
Note

							Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
						

Routing and bonding options for ISO

							The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
						
	Description	Examples
	
										To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

									

									 	
												The node’s IP address to 10.10.10.2

											
	
												The gateway address to 10.10.10.254

											
	
												The netmask to 255.255.255.0

											
	
												The hostname to core0.example.com

											
	
												The DNS server address to 4.4.4.41
											

									 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

									
	
										Specify multiple network interfaces by specifying multiple ip= entries.
									

									 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

									
	
										Optional: You can configure routes to additional networks by setting an rd.route= value.
									

									
										If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
									

									 	
										To configure the default gateway:
									

									
ip=::10.10.10.254::::

									
										To configure the route for the additional network:
									

									
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

									
	
										Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
									

									 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

									
	
										You can combine DHCP and static IP configurations on systems with multiple network interfaces.
									

									 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

									
	
										Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
									

									 	
										To configure a VLAN on a network interface and use a static IP address:
									

									
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

									
										To configure a VLAN on a network interface and to use DHCP:
									

									
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

									
	
										You can provide multiple DNS servers by adding a nameserver= entry for each server.
									

									 	
nameserver=1.1.1.1
nameserver=8.8.8.8

									
	
										Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
									

									 	
												The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
											
	
												name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
											
	
												When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
											

									 	
										To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
									

									
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

									
										To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
									

									
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

									
	
										Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
									

									 	
										To configure the bonded interface with a VLAN and to use DHCP:
									

									
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

									
										To configure the bonded interface with a VLAN and to use a static IP address:
									

									
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

									
	
										Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
									

									 	
												The syntax for configuring a team interface is: team=name[:network_interfaces]
											

												name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
											

									 Note

											Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
										

									 	
										To configure a network team:
									

									
team=team0:em1,em2
ip=team0:dhcp

									

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						
	
							Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-mddf5 20m system:node:master-01.example.com Approved,Issued
csr-z5rln 16m system:node:worker-21.example.com Approved,Issued

							

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for IBM Z

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on IBM Z.
								
	
									Persistent storage provisioned for your cluster.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have 100Gi capacity.
								

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim:

									

									Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
								

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

	
									Ensure that your registry is set to managed to enable building and pushing of images.
								
	
											Run:
										
$ oc edit configs.imageregistry/cluster

											Then, change the line
										
managementState: Removed

											to
										
managementState: Managed

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Collecting debugging information

					You can gather debugging information that might help you to troubleshoot and debug certain issues with an OpenShift Container Platform installation on IBM Z.
				
Prerequisites
	
							The oc CLI tool installed.
						

Procedure
	
							Log in to the cluster:
						
$ oc login

	
							On the node you want to gather hardware information about, start a debugging container:
						
$ oc debug node/<nodename>

	
							Change to the /host file system and start toolbox:
						
$ chroot /host
$ toolbox

	
							Collect the dbginfo data:
						
$ dbginfo.sh

	
							You can then retrieve the data, for example, using scp.
						

Additional resources
	
							See How to generate SOSREPORT within OpenShift4 nodes without SSH.
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on IBM Z and LinuxONE in a restricted network

				In OpenShift Container Platform version 4.6, you can install a cluster on IBM Z and LinuxONE infrastructure that you provision in a restricted network.
			
Note

					While this document refers to only IBM Z, all information in it also applies to LinuxONE.
				

Important

					Additional considerations exist for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you install an OpenShift Container Platform cluster.
				

Prerequisites
	
						Create a mirror registry for installation in a restricted network and obtain the imageContentSources data for your version of OpenShift Container Platform.
					
	
						Before you begin the installation process, you must move or remove any existing installation files. This ensures that the required installation files are created and updated during the installation process.
					
Important

							Ensure that installation steps are done from a machine with access to the installation media.
						

	
						Provision persistent storage using NFS for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
					
	
						Review details about the OpenShift Container Platform installation and update processes.
					
	
						If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
					
Note

							Be sure to also review this site list if you are configuring a proxy.
						

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Important

						Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
					

Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To improve high availability of your cluster, distribute the control plane machines over different z/VM instances on at least two physical machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. The machines are configured with static IP addresses. No DHCP server is required. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server.
					

IBM Z network connectivity requirements

						To install on IBM Z under z/VM, you require a single z/VM virtual NIC in layer 2 mode. You also need:
					
	
								A direct-attached OSA or RoCE network adapter
							
	
								A z/VM VSwitch set up. For a preferred setup, use OSA link aggregation.
							

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 7.11. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										N/A
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										N/A
									

									
	
										Compute
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										N/A
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							

Minimum IBM Z system environment

						You can install OpenShift Container Platform version 4.6 on the following IBM hardware:
					
	
								IBM z15 (all models), IBM z14 (all models), IBM z13, and IBM z13s
							
	
								LinuxONE, any version
							

Hardware requirements
	
								The equivalent of 6 IFLs, which are SMT2 enabled, for each cluster.
							
	
								At least one network connection to both connect to the LoadBalancer service and to serve data for traffic outside the cluster.
							

Note

							You can use dedicated or shared IFLs to assign sufficient compute resources. Resource sharing is one of the key strengths of IBM Z. However, you must adjust capacity correctly on each hypervisor layer and ensure sufficient resources for every OpenShift Container Platform cluster.
						

Important

							Since the overall performance of the cluster can be impacted, the LPARs that are used to setup the OpenShift Container Platform clusters must provide sufficient compute capacity. In this context, LPAR weight management, entitlements, and CPU shares on the hypervisor level play an important role.
						

Operating system requirements
	
								One instance of z/VM 7.1 or later
							

						On your z/VM instance, set up:
					
	
								3 guest virtual machines for OpenShift Container Platform control plane machines
							
	
								2 guest virtual machines for OpenShift Container Platform compute machines
							
	
								1 guest virtual machine for the temporary OpenShift Container Platform bootstrap machine
							

IBM Z network connectivity requirements

						To install on IBM Z under z/VM, you require a single z/VM virtual NIC in layer 2 mode. You also need:
					
	
								A direct-attached OSA or RoCE network adapter
							
	
								A z/VM VSwitch set up. For a preferred setup, use OSA link aggregation.
							

Disk storage for the z/VM guest virtual machines
	
								FICON attached disk storage (DASDs). These can be z/VM minidisks, fullpack minidisks, or dedicated DASDs, all of which must be formatted as CDL, which is the default. To reach the minimum required DASD size for Red Hat Enterprise Linux CoreOS (RHCOS) installations, you need extended address volumes (EAV). If available, use HyperPAV to ensure optimal performance.
							
	
								FCP attached disk storage
							

Storage / Main Memory
	
								16 GB for OpenShift Container Platform control plane machines
							
	
								8 GB for OpenShift Container Platform compute machines
							
	
								16 GB for the temporary OpenShift Container Platform bootstrap machine
							

Preferred IBM Z system environment

Hardware requirements
	
								3 LPARS that each have the equivalent of 6 IFLs, which are SMT2 enabled, for each cluster.
							
	
								Two network connections to connect to both connect to the LoadBalancer service and to serve data for traffic outside the cluster.
							
	
								HiperSockets, which are attached to a node either directly as a device or by bridging with one z/VM VSWITCH to be transparent to the z/VM guest. To directly connect HiperSockets to a node, you must set up a gateway to the external network via a RHEL 8 guest to bridge to the HiperSockets network.
							

Operating system requirements
	
								2 or 3 instances of z/VM 7.1 or later for high availability
							

						On your z/VM instances, set up:
					
	
								3 guest virtual machines for OpenShift Container Platform control plane machines, one per z/VM instance.
							
	
								At least 6 guest virtual machines for OpenShift Container Platform compute machines, distributed across the z/VM instances.
							
	
								1 guest virtual machine for the temporary OpenShift Container Platform bootstrap machine.
							
	
								To ensure the availability of integral components in an overcommitted environment, increase the priority of the control plane by using the CP command SET SHARE. Do the same for infrastructure nodes, if they exist. See SET SHARE in IBM Documentation.
							

IBM Z network connectivity requirements

						To install on IBM Z under z/VM, you require a single z/VM virtual NIC in layer 2 mode. You also need:
					
	
								A direct-attached OSA or RoCE network adapter
							
	
								A z/VM VSwitch set up. For a preferred setup, use OSA link aggregation.
							

Disk storage for the z/VM guest virtual machines
	
								FICON attached disk storage (DASDs). These can be z/VM minidisks, fullpack minidisks, or dedicated DASDs, all of which must be formatted as CDL, which is the default. To reach the minimum required DASD size for Red Hat Enterprise Linux CoreOS (RHCOS) installations, you need extended address volumes (EAV). If available, use HyperPAV and High Performance FICON (zHPF) to ensure optimal performance.
							
	
								FCP attached disk storage
							

Storage / Main Memory
	
								16 GB for OpenShift Container Platform control plane machines
							
	
								8 GB for OpenShift Container Platform compute machines
							
	
								16 GB for the temporary OpenShift Container Platform bootstrap machine
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					
Additional resources
	
								See Bridging a HiperSockets LAN with a z/VM Virtual Switch in IBM Documentation.
							
	
								See Scaling HyperPAV alias devices on Linux guests on z/VM for performance optimization.
							
	
								See Topics in LPAR performance for LPAR weight management and entitlements.
							

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 7.12. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 7.13. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 7.14. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 7.15. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 7.16. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers. :!restricted:
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 7.17. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 7.3. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 7.4. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

Important

						Do not skip this procedure in production environments where disaster recovery and debugging is required.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						
	
							Obtain the imageContentSources section from the output of the command to mirror the repository.
						
	
							Obtain the contents of the certificate for your mirror registry.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
									Unless you use a registry that RHCOS trusts by default, such as docker.io, you must provide the contents of the certificate for your mirror repository in the additionalTrustBundle section. In most cases, you must provide the certificate for your mirror.
								
	
									You must include the imageContentSources section from the output of the command to mirror the repository.
								

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 7.18. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 7.19. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										
											If you specify multiple IP kernel arguments, the machineNetwork.cidr value must be the CIDR of the primary network.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 7.20. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Sample install-config.yaml file for IBM Z

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
 architecture : s390x
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
 architecture : s390x
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
additionalTrustBundle: | (16)
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----
imageContentSources: (17)
- mirrors:
 - <local_repository>/ocp4/openshift4
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_repository>/ocp4/openshift4
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for IBM Z infrastructure.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(16)
	
								Add the additionalTrustBundle parameter and value. The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
							

	(17)
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines

					Before you install a cluster on IBM Z infrastructure that you provision, you must install RHCOS on z/VM guest virtual machines for the cluster to use. Complete the following steps to create the machines.
				
Prerequisites
	
							An FTP server running on your provisioning machine that is accessible to the machines you create.
						

Procedure
	
							Log in to Linux on your provisioning machine.
						
	
							Obtain the Red Hat Enterprise Linux CoreOS (RHCOS) kernel, initramfs, and rootfs files from the RHCOS image mirror.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described in the following procedure.
							

							The file names contain the OpenShift Container Platform version number. They resemble the following examples:
						
	
									kernel: rhcos-<version>-live-kernel-<architecture>
								
	
									initramfs: rhcos-<version>-live-initramfs.<architecture>.img
								
	
									rootfs: rhcos-<version>-live-rootfs.<architecture>.img
								
Note

										The rootfs image is the same for FCP and DASD.
									

	
							Create parameter files. The following parameters are specific for a particular virtual machine:
						
	
									For coreos.inst.install_dev=, specify dasda for a DASD installation, or sda for FCP. Note that FCP requires zfcp.allow_lun_scan=0.
								
	
									For rd.dasd=, specifys the DASD where RHCOS is to be installed.
								
	
									rd.zfcp=<adapter>,<wwpn>,<lun> specifies the FCP disk to install RHCOS on.
								
	
									For ip=, specify the following seven entries:
								
	
											The IP address for the machine.
										
	
											An empty string.
										
	
											The gateway.
										
	
											The netmask.
										
	
											The machine host and domain name in the form hostname.domainname. Omit this value to let RHCOS decide.
										
	
											The network interface name. Omit this value to let RHCOS decide.
										
	
											If you use static IP addresses, an empty string.
										

	
									For coreos.inst.ignition_url=, specify the Ignition file for the machine role. Use bootstrap.ign, master.ign, or worker.ign. Only HTTP and HTTPS protocols are supported.
								
	
									For coreos.live.rootfs_url=, specify the matching rootfs artifact for the kernel and initramfs you are booting. Only HTTP and HTTPS protocols are supported.
								
	
									All other parameters can stay as they are.
								

									Example parameter file, bootstrap-0.parm, for the bootstrap machine:
								
rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=dasda \
coreos.live.rootfs_url=http://cl1.provide.example.com:8080/assets/rhcos-live-rootfs.s390x.img \
coreos.inst.ignition_url=http://cl1.provide.example.com:8080/ignition/bootstrap.ign \
ip=172.18.78.2::172.18.78.1:255.255.255.0:::none nameserver=172.18.78.1 \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
zfcp.allow_lun_scan=0 \
rd.dasd=0.0.3490

									Write all options in the parameter file as a single line and make sure you have no newline characters.
								

	
							Transfer the initramfs, kernel, parameter files, and RHCOS images to z/VM, for example with FTP. For details about how to transfer the files with FTP and boot from the virtual reader, see Installing under Z/VM.
						
	
							Punch the files to the virtual reader of the z/VM guest virtual machine that is to become your bootstrap node.
						

							See PUNCH in IBM Documentation.
						
Tip

							You can use the CP PUNCH command or, if you use Linux, the vmur command to transfer files between two z/VM guest virtual machines.
						

	
							Log in to CMS on the bootstrap machine.
						
	
							IPL the bootstrap machine from the reader:
						
$ ipl c

							See IPL in IBM Documentation.
						

	
							Repeat this procedure for the other machines in the cluster.
						

Advanced RHCOS installation reference

						This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
					
Routing and bonding options at RHCOS boot prompt

						If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
					
Important

							When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
						

						The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
					
Note

							Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
						

Routing and bonding options for ISO

							The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
						
	Description	Examples
	
										To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

									

									 	
												The node’s IP address to 10.10.10.2

											
	
												The gateway address to 10.10.10.254

											
	
												The netmask to 255.255.255.0

											
	
												The hostname to core0.example.com

											
	
												The DNS server address to 4.4.4.41
											

									 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

									
	
										Specify multiple network interfaces by specifying multiple ip= entries.
									

									 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

									
	
										Optional: You can configure routes to additional networks by setting an rd.route= value.
									

									
										If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
									

									 	
										To configure the default gateway:
									

									
ip=::10.10.10.254::::

									
										To configure the route for the additional network:
									

									
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

									
	
										Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
									

									 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

									
	
										You can combine DHCP and static IP configurations on systems with multiple network interfaces.
									

									 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

									
	
										Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
									

									 	
										To configure a VLAN on a network interface and use a static IP address:
									

									
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

									
										To configure a VLAN on a network interface and to use DHCP:
									

									
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

									
	
										You can provide multiple DNS servers by adding a nameserver= entry for each server.
									

									 	
nameserver=1.1.1.1
nameserver=8.8.8.8

									
	
										Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
									

									 	
												The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
											
	
												name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
											
	
												When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
											

									 	
										To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
									

									
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

									
										To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
									

									
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

									
	
										Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
									

									 	
										To configure the bonded interface with a VLAN and to use DHCP:
									

									
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

									
										To configure the bonded interface with a VLAN and to use a static IP address:
									

									
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

									
	
										Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
									

									 	
												The syntax for configuring a team interface is: team=name[:network_interfaces]
											

												name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
											

									 Note

											Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
										

									 	
										To configure a network team:
									

									
team=team0:em1,em2
ip=team0:dhcp

									

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Disabling the default OperatorHub sources

						Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
					
Procedure
	
								Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
							
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

						Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
					

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for IBM Z

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on IBM Z.
								
	
									Persistent storage provisioned for your cluster.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have 100Gi capacity.
								

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim:

									

									Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
								

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

	
									Ensure that your registry is set to managed to enable building and pushing of images.
								
	
											Run:
										
$ oc edit configs.imageregistry/cluster

											Then, change the line
										
managementState: Removed

											to
										
managementState: Managed

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

	
							Register your cluster on the Cluster registration page.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Collecting debugging information

					You can gather debugging information that might help you to troubleshoot and debug certain issues with an OpenShift Container Platform installation on IBM Z.
				
Prerequisites
	
							The oc CLI tool installed.
						

Procedure
	
							Log in to the cluster:
						
$ oc login

	
							On the node you want to gather hardware information about, start a debugging container:
						
$ oc debug node/<nodename>

	
							Change to the /host file system and start toolbox:
						
$ chroot /host
$ toolbox

	
							Collect the dbginfo data:
						
$ dbginfo.sh

	
							You can then retrieve the data, for example, using scp.
						

Additional resources
	
							See How to generate SOSREPORT within OpenShift Container Platform version 4 nodes without SSH.
						

Next steps

	
							Customize your cluster.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						

Chapter 8. Installing on IBM Power Systems

Installing a cluster on IBM Power Systems

				In OpenShift Container Platform version 4.6, you can install a cluster on IBM Power Systems infrastructure that you provision.
			
Important

					Additional considerations exist for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you install an OpenShift Container Platform cluster.
				

Prerequisites
	
						Before you begin the installation process, you must clean the installation directory. This ensures that the required installation files are created and updated during the installation process.
					
	
						Provision persistent storage using NFS for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
					
	
						Review details about the OpenShift Container Platform installation and update processes.
					
	
						If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
					
Note

							Be sure to also review this site list if you are configuring a proxy.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 8.1. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 8.2. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 8.3. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 8.4. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 8.5. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 8.6. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 8.7. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 8.1. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 8.2. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Sample install-config.yaml file for IBM Power Systems

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
 architecture : ppc64le
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
 architecture : ppc64le
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths": ...}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for IBM Power Systems infrastructure.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								The pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines

					Before you install a cluster on IBM Power Systems infrastructure that you provision, you must create RHCOS machines for it to use. Follow either the steps to use an ISO image or network PXE booting to create the machines.
				
Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image

						Before you install a cluster on IBM Power Systems infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
							

Procedure
	
								Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
							
Important

									The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								ISO file names resemble the following example:
							

								rhcos-<version>-live.<architecture>.iso
							

	
								Use the ISO to start the RHCOS installation. Use one of the following installation options:
							
	
										Burn the ISO image to a disk and boot it directly.
									
	
										Use ISO redirection via a LOM interface.
									

	
								Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the coreos-installer command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk.
							
	
								Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the coreos-installer.
							
	
								Run the coreos-installer command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:
							
$ sudo coreos-installer install \
 --ignition-url=https://host/worker.ign /dev/sda

	
								After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
							
	
								Continue to create the other machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Advanced RHCOS installation reference

							This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
						
Routing and bonding options at RHCOS boot prompt

							If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
						
Important

								When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
							

							The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
						
Note

								Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
							

Routing and bonding options for ISO

								The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
							
	Description	Examples
	
											To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

										

										 	
													The node’s IP address to 10.10.10.2

												
	
													The gateway address to 10.10.10.254

												
	
													The netmask to 255.255.255.0

												
	
													The hostname to core0.example.com

												
	
													The DNS server address to 4.4.4.41
												

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

										
	
											Specify multiple network interfaces by specifying multiple ip= entries.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure routes to additional networks by setting an rd.route= value.
										

										
											If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
										

										 	
											To configure the default gateway:
										

										
ip=::10.10.10.254::::

										
											To configure the route for the additional network:
										

										
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

										
	
											Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

										
	
											You can combine DHCP and static IP configurations on systems with multiple network interfaces.
										

										 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
										

										 	
											To configure a VLAN on a network interface and use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

										
											To configure a VLAN on a network interface and to use DHCP:
										

										
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

										
	
											You can provide multiple DNS servers by adding a nameserver= entry for each server.
										

										 	
nameserver=1.1.1.1
nameserver=8.8.8.8

										
	
											Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
										

										 	
													The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
												
	
													name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
												
	
													When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
												

										 	
											To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

										
											To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

										
	
											Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
										

										 	
											To configure the bonded interface with a VLAN and to use DHCP:
										

										
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
											To configure the bonded interface with a VLAN and to use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
	
											Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
										

										 	
													The syntax for configuring a team interface is: team=name[:network_interfaces]
												

													name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
												

										 Note

												Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
											

										 	
											To configure a network team:
										

										
team=team0:em1,em2
ip=team0:dhcp

										

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting

						Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Configure suitable PXE or iPXE infrastructure.
							
	
								Have access to an HTTP server that you can access from your computer.
							

Procedure
	
								Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS kernel, initramfs and rootfs files from the RHCOS image mirror page.
							
Important

									The RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								The file names contain the OpenShift Container Platform version number. They resemble the following examples:
							
	
										kernel: rhcos-<version>-live-kernel-<architecture>
									
	
										initramfs: rhcos-<version>-live-initramfs.<architecture>.img
									
	
										rootfs: rhcos-<version>-live-rootfs.<architecture>.img
									

	
								Upload the additional files that are required for your booting method:
							
	
										For traditional PXE, upload the kernel and initramfs files to your TFTP server and the rootfs file to your HTTP server.
									
	
										For iPXE, upload the kernel, initramfs, and rootfs files to your HTTP server.
									
Important

											If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
										

	
								Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
							
	
								Configure PXE or iPXE installation for the RHCOS images.
							

								Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
							
	
										For PXE:
									
DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> [image: 1]
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 2] [image: 3]
	[image: 1]
	
												Specify the location of the live kernel file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the initramfs file, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to the APPEND line to configure networking or other boot options.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
										For iPXE:
									
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 1] [image: 2]
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img [image: 3]
boot
	[image: 1]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify the location of the initramfs file that you uploaded to your HTTP server.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
								If you use PXE UEFI, perform the following actions:
							
	
										Provide the shimx64.efi and grubx64.efi EFI binaries and the grub.cfg file that are required for booting the system.
									
	
												Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the images/efiboot.img file to your host:
											
$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot

	
												From the efiboot.img mount point, copy the EFI/redhat/shimx64.efi and EFI/redhat/grubx64.efi files to your TFTP server:
											
$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso

	
												Copy the EFI/redhat/grub.cfg file that is included in the RHCOS ISO to your TFTP server.
											

	
										Edit the grub.cfg file to include arguments similar to the following:
									
menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os {
	linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign
	initrdefi rhcos-<version>-live-initramfs.<architecture>.img
}

										where:
									
	rhcos-<version>-live-kernel-<architecture>
	
													Specifies the kernel file that you uploaded to your TFTP server.
												
	http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
	
													Specifies the location of the live rootfs image that you uploaded to your HTTP server.
												
	http://<HTTP_server>/bootstrap.ign
	
													Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
												
	rhcos-<version>-live-initramfs.<architecture>.img
	
													Specifies the location of the initramfs file that you uploaded to your TFTP server.
												

Note

											For more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
										

	
								Continue to create the machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						
	
							Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for IBM Power Systems

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on IBM Power Systems.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have 100Gi capacity.
								

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim:

									

									Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
								

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

	
									Ensure that your registry is set to managed to enable building and pushing of images.
								
	
											Run:
										
$ oc edit configs.imageregistry/cluster

											Then, change the line
										
managementState: Removed

											to
										
managementState: Managed

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on IBM Power Systems in a restricted network

				In OpenShift Container Platform version 4.6, you can install a cluster on IBM Power Systems infrastructure that you provision in a restricted network.
			
Important

					Additional considerations exist for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you install an OpenShift Container Platform cluster.
				

Prerequisites
	
						Create a mirror registry for installation in a restricted network and obtain the imageContentSources data for your version of OpenShift Container Platform.
					
	
						Before you begin the installation process, you must move or remove any existing installation files. This ensures that the required installation files are created and updated during the installation process.
					
Important

							Ensure that installation steps are performed on a machine with access to the installation media.
						

	
						Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
					
	
						Review details about the OpenShift Container Platform installation and update processes.
					
	
						If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
					
Note

							Be sure to also review this site list if you are configuring a proxy.
						

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Important

						Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
					

Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 8.8. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 8.9. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 8.10. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 8.11. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 8.12. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 8.13. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers. :!restricted:
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 8.14. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 8.3. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 8.4. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						
	
							Obtain the imageContentSources section from the output of the command to mirror the repository.
						
	
							Obtain the contents of the certificate for your mirror registry.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
									Unless you use a registry that RHCOS trusts by default, such as docker.io, you must provide the contents of the certificate for your mirror repository in the additionalTrustBundle section. In most cases, you must provide the certificate for your mirror.
								
	
									You must include the imageContentSources section from the output of the command to mirror the repository.
								

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Sample install-config.yaml file for IBM Power Systems

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 0 [image: 4]
 architecture : ppc64le
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3 [image: 7]
 architecture : ppc64le
metadata:
 name: test [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14 [image: 9]
 hostPrefix: 23 [image: 10]
 networkType: OpenShiftSDN
 serviceNetwork: [image: 11]
 - 172.30.0.0/16
platform:
 none: {} [image: 12]
fips: false [image: 13]
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' [image: 14]
sshKey: 'ssh-ed25519 AAAA...' [image: 15]
additionalTrustBundle: | (16)
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----
imageContentSources: (17)
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.
							
Note

									Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the hyperthreading parameter has no effect.
								

Important

									If you disable hyperthreading, whether in the BIOS or in the install-config.yaml, ensure that your capacity planning accounts for the dramatically decreased machine performance.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.
							
Note

									Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
								

	[image: 10]
	
								The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 11]
	
								The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
							

	[image: 12]
	
								You must set the platform to none. You cannot provide additional platform configuration variables for IBM Power Systems infrastructure.
							

	[image: 13]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	[image: 14]
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	[image: 15]
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(16)
	
								Provide the contents of the certificate file that you used for your mirror registry.
							

	(17)
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines

					Before you install a cluster on IBM Power Systems infrastructure that you provision, you must create RHCOS machines for it to use. Follow either the steps to use an ISO image or network PXE booting to create the machines.
				
Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image

						Before you install a cluster on IBM Power Systems infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
							

Procedure
	
								Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
							
Important

									The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								ISO file names resemble the following example:
							

								rhcos-<version>-live.<architecture>.iso
							

	
								Use the ISO to start the RHCOS installation. Use one of the following installation options:
							
	
										Burn the ISO image to a disk and boot it directly.
									
	
										Use ISO redirection via a LOM interface.
									

	
								Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the coreos-installer command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk.
							
	
								Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the coreos-installer.
							
	
								Run the coreos-installer command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:
							
$ sudo coreos-installer install \
 --ignition-url=https://host/worker.ign /dev/sda

	
								After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
							
	
								Continue to create the other machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Advanced RHCOS installation reference

							This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.
						
Routing and bonding options at RHCOS boot prompt

							If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
						
Important

								When adding networking arguments, you must also add the rd.neednet=1 kernel argument.
							

							The following table describes how to use ip=, nameserver=, and bond= kernel arguments for live ISO installs.
						
Note

								Ordering is important when adding kernel arguments: ip=, nameserver=, and then bond=.
							

Routing and bonding options for ISO

								The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.
							
	Description	Examples
	
											To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). Then identify the DNS server IP address (nameserver=<dns_ip>) on each node. This example sets:

										

										 	
													The node’s IP address to 10.10.10.2

												
	
													The gateway address to 10.10.10.254

												
	
													The netmask to 255.255.255.0

												
	
													The hostname to core0.example.com

												
	
													The DNS server address to 4.4.4.41
												

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

										
	
											Specify multiple network interfaces by specifying multiple ip= entries.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure routes to additional networks by setting an rd.route= value.
										

										
											If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.
										

										 	
											To configure the default gateway:
										

										
ip=::10.10.10.254::::

										
											To configure the route for the additional network:
										

										
rd.route=20.20.20.0/24:20.20.20.254:enp2s0

										
	
											Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used.
										

										 	
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none

										
	
											You can combine DHCP and static IP configurations on systems with multiple network interfaces.
										

										 	
ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

										
	
											Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.
										

										 	
											To configure a VLAN on a network interface and use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
vlan=enp2s0.100:enp2s0

										
											To configure a VLAN on a network interface and to use DHCP:
										

										
ip=enp2s0.100:dhcp
vlan=enp2s0.100:enp2s0

										
	
											You can provide multiple DNS servers by adding a nameserver= entry for each server.
										

										 	
nameserver=1.1.1.1
nameserver=8.8.8.8

										
	
											Optional: Bonding multiple network interfaces to a single interface is supported using the bond= option. In these two examples:
										

										 	
													The syntax for configuring a bonded interface is: bond=name[:network_interfaces][:options]
												
	
													name is the bonding device name (bond0), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1,em2), and options is a comma-separated list of bonding options. Enter modinfo bonding to see available options.
												
	
													When you create a bonded interface using bond=, you must specify how the IP address is assigned and other information for the bonded interface.
												

										 	
											To configure the bonded interface to use DHCP, set the bond’s IP address to dhcp. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=bond0:dhcp

										
											To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example:
										

										
bond=bond0:em1,em2:mode=active-backup
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none

										
	
											Optional: You can configure VLANs on bonded interfaces by using the vlan= parameter.
										

										 	
											To configure the bonded interface with a VLAN and to use DHCP:
										

										
ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
											To configure the bonded interface with a VLAN and to use a static IP address:
										

										
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

										
	
											Optional: Network teaming can be used as an alternative to bonding by using the team= parameter. In this example:
										

										 	
													The syntax for configuring a team interface is: team=name[:network_interfaces]
												

													name is the team device name (team0) and network_interfaces represents a comma-separated list of physical (ethernet) interfaces (em1, em2).
												

										 Note

												Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article.
											

										 	
											To configure a network team:
										

										
team=team0:em1,em2
ip=team0:dhcp

										

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting

						Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
					
Prerequisites
	
								Obtain the Ignition config files for your cluster.
							
	
								Configure suitable PXE or iPXE infrastructure.
							
	
								Have access to an HTTP server that you can access from your computer.
							

Procedure
	
								Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
							
Important

									You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
								

	
								Obtain the RHCOS kernel, initramfs and rootfs files from the RHCOS image mirror page.
							
Important

									The RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate kernel, initramfs, and rootfs artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.
								

								The file names contain the OpenShift Container Platform version number. They resemble the following examples:
							
	
										kernel: rhcos-<version>-live-kernel-<architecture>
									
	
										initramfs: rhcos-<version>-live-initramfs.<architecture>.img
									
	
										rootfs: rhcos-<version>-live-rootfs.<architecture>.img
									

	
								Upload the additional files that are required for your booting method:
							
	
										For traditional PXE, upload the kernel and initramfs files to your TFTP server and the rootfs file to your HTTP server.
									
	
										For iPXE, upload the kernel, initramfs, and rootfs files to your HTTP server.
									
Important

											If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
										

	
								Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
							
	
								Configure PXE or iPXE installation for the RHCOS images.
							

								Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
							
	
										For PXE:
									
DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> [image: 1]
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 2] [image: 3]
	[image: 1]
	
												Specify the location of the live kernel file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the initramfs file, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to the APPEND line to configure networking or other boot options.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
										For iPXE:
									
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign [image: 1] [image: 2]
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img [image: 3]
boot
	[image: 1]
	
												Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file.
											

	[image: 2]
	
												If you use multiple NICs, specify a single interface in the ip option. For example, to use DHCP on a NIC that is named eno1, set ip=eno1:dhcp.
											

	[image: 3]
	
												Specify the location of the initramfs file that you uploaded to your HTTP server.
											

Note

											This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
										

	
								If you use PXE UEFI, perform the following actions:
							
	
										Provide the shimx64.efi and grubx64.efi EFI binaries and the grub.cfg file that are required for booting the system.
									
	
												Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the images/efiboot.img file to your host:
											
$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot

	
												From the efiboot.img mount point, copy the EFI/redhat/shimx64.efi and EFI/redhat/grubx64.efi files to your TFTP server:
											
$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso

	
												Copy the EFI/redhat/grub.cfg file that is included in the RHCOS ISO to your TFTP server.
											

	
										Edit the grub.cfg file to include arguments similar to the following:
									
menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os {
	linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign
	initrdefi rhcos-<version>-live-initramfs.<architecture>.img
}

										where:
									
	rhcos-<version>-live-kernel-<architecture>
	
													Specifies the kernel file that you uploaded to your TFTP server.
												
	http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
	
													Specifies the location of the live rootfs image that you uploaded to your HTTP server.
												
	http://<HTTP_server>/bootstrap.ign
	
													Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
												
	rhcos-<version>-live-initramfs.<architecture>.img
	
													Specifies the location of the initramfs file that you uploaded to your TFTP server.
												

Note

											For more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
										

	
								Continue to create the machines for your cluster.
							
Important

									You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
								

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Disabling the default OperatorHub sources

						Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
					
Procedure
	
								Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
							
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

						Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
					

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Changing the image registry’s management state

							To start the image registry, you must change the Image Registry Operator configuration’s managementState from Removed to Managed.
						
Procedure
	
									Change managementState Image Registry Operator configuration from Removed to Managed. For example:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"managementState":"Managed"}}'

Configuring registry storage for IBM Power Systems

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on IBM Power Systems.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have 100Gi capacity.
								

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim:

									

									Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
								

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

	
									Ensure that your registry is set to managed to enable building and pushing of images.
								
	
											Run:
										
$ oc edit configs.imageregistry/cluster

											Then, change the line
										
managementState: Removed

											to
										
managementState: Managed

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						

Chapter 9. Installing on OpenStack

Installing a cluster on OpenStack with customizations

				In OpenShift Container Platform version 4.6, you can install a customized cluster on Red Hat OpenStack Platform (RHOSP). To customize the installation, modify parameters in the install-config.yaml before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
									Verify that OpenShift Container Platform 4.6 is compatible with your RHOSP version in the Available platforms section. You can also compare platform support across different versions by viewing the OpenShift Container Platform on RHOSP support matrix.
								

	
							Verify that your network configuration does not rely on a provider network. Provider networks are not supported.
						
	
							Have a storage service installed in RHOSP, like block storage (Cinder) or object storage (Swift). Object storage is the recommended storage technology for OpenShift Container Platform registry cluster deployment. For more information, see Optimizing storage.
						
	
							Have metadata service enabled in RHOSP
						

Resource guidelines for installing OpenShift Container Platform on RHOSP

					To support an OpenShift Container Platform installation, your Red Hat OpenStack Platform (RHOSP) quota must meet the following requirements:
				
Table 9.1. Recommended resources for a default OpenShift Container Platform cluster on RHOSP
	Resource	Value
	
									Floating IP addresses
								

								 	
									3
								

								
	
									Ports
								

								 	
									15
								

								
	
									Routers
								

								 	
									1
								

								
	
									Subnets
								

								 	
									1
								

								
	
									RAM
								

								 	
									112 GB
								

								
	
									vCPUs
								

								 	
									28
								

								
	
									Volume storage
								

								 	
									275 GB
								

								
	
									Instances
								

								 	
									7
								

								
	
									Security groups
								

								 	
									3
								

								
	
									Security group rules
								

								 	
									60
								

								

					A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
				
Important

						If RHOSP object storage (Swift) is available and operated by a user account with the swiftoperator role, it is used as the default backend for the OpenShift Container Platform image registry. In this case, the volume storage requirement is 175 GB. Swift space requirements vary depending on the size of the image registry.
					

Note

						By default, your security group and security group rule quotas might be low. If you encounter problems, run openstack quota set --secgroups 3 --secgroup-rules 60 <project> as an administrator to increase them.
					

					An OpenShift Container Platform deployment comprises control plane machines, compute machines, and a bootstrap machine.
				
Control plane machines

						By default, the OpenShift Container Platform installation process creates three control plane machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Compute machines

						By default, the OpenShift Container Platform installation process creates three compute machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 8 GB memory, 2 vCPUs, and 100 GB storage space
							

Tip

						Compute machines host the applications that you run on OpenShift Container Platform; aim to run as many as you can.
					

Bootstrap machine

						During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
					

						The bootstrap machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Enabling Swift on RHOSP

					Swift is operated by a user account with the swiftoperator role. Add the role to an account before you run the installation program.
				
Important

						If the Red Hat OpenStack Platform (RHOSP) object storage service, commonly known as Swift, is available, OpenShift Container Platform uses it as the image registry storage. If it is unavailable, the installation program relies on the RHOSP block storage service, commonly known as Cinder.
					

						If Swift is present and you want to use it, you must enable access to it. If it is not present, or if you do not want to use it, skip this section.
					

Prerequisites
	
							You have a RHOSP administrator account on the target environment.
						
	
							The Swift service is installed.
						
	
							On Ceph RGW, the account in url option is enabled.
						

Procedure

						To enable Swift on RHOSP:
					
	
							As an administrator in the RHOSP CLI, add the swiftoperator role to the account that will access Swift:
						
$ openstack role add --user <user> --project <project> swiftoperator

					Your RHOSP deployment can now use Swift for the image registry.
				

Verifying external network access

					The OpenShift Container Platform installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Configure OpenStack’s networking service to have DHCP agents forward instances' DNS queries
						

Procedure
	
							Using the RHOSP CLI, verify the name and ID of the 'External' network:
						
$ openstack network list --long -c ID -c Name -c "Router Type"
Example output

								

+--------------------------------------+----------------+-------------+
| ID | Name | Router Type |
+--------------------------------------+----------------+-------------+
| 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External |
+--------------------------------------+----------------+-------------+

							

					A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.
				
Important

						If the external network’s CIDR range overlaps one of the default network ranges, you must change the matching network ranges in the install-config.yaml file before you start the installation process.
					

						The default network ranges are:
					
	Network	Range
	
										machineNetwork
									

									 	
										10.0.0.0/16
									

									
	
										serviceNetwork
									

									 	
										172.30.0.0/16
									

									
	
										clusterNetwork
									

									 	
										10.128.0.0/14
									

									

Warning

						If the installation program finds multiple networks with the same name, it sets one of them at random. To avoid this behavior, create unique names for resources in RHOSP.
					

Note

						If the Neutron trunk service plug-in is enabled, a trunk port is created by default. For more information, see Neutron trunk port.
					

Defining parameters for the installation program

					The OpenShift Container Platform installation program relies on a file that is called clouds.yaml. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
				
Procedure
	
							Create the clouds.yaml file:
						
	
									If your RHOSP distribution includes the Horizon web UI, generate a clouds.yaml file in it.
								
Important

										Remember to add a password to the auth field. You can also keep secrets in a separate file from clouds.yaml.
									

	
									If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml, see Config files in the RHOSP documentation.
								
clouds:
 shiftstack:
 auth:
 auth_url: http://10.10.14.42:5000/v3
 project_name: shiftstack
 username: shiftstack_user
 password: XXX
 user_domain_name: Default
 project_domain_name: Default
 dev-env:
 region_name: RegionOne
 auth:
 username: 'devuser'
 password: XXX
 project_name: 'devonly'
 auth_url: 'https://10.10.14.22:5001/v2.0'

	
							If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
						
	
									Copy the certificate authority file to your machine.
								
	
									Add the machine to the certificate authority trust bundle:
								
$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

	
									Update the trust bundle:
								
$ sudo update-ca-trust extract

	
									Add the cacerts key to the clouds.yaml file. The value must be an absolute, non-root-accessible path to the CA certificate:
								
clouds:
 shiftstack:
 ...
 cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
Tip

									After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the ca-cert.pem key in the cloud-provider-config keymap. On a command line, run:
								
$ oc edit configmap -n openshift-config cloud-provider-config

	
							Place the clouds.yaml file in one of the following locations:
						
	
									The value of the OS_CLIENT_CONFIG_FILE environment variable
								
	
									The current directory
								
	
									A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml
								
	
									A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml
								

									The installation program searches for clouds.yaml in that order.
								

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select openstack as the platform to target.
										
	
											Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
										
	
											Specify the floating IP address to use for external access to the OpenShift API.
										
	
											Specify a RHOSP flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.
										
	
											Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
										
	
											Enter a name for your cluster. The name must be 14 or fewer characters long.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Additional resources

						See Installation configuration parameters section for more information about the available parameters.
					
Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Installation configuration parameters

					Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
				
Note

						After installation, you cannot modify these parameters in the install-config.yaml file.
					

Important

						The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
					

Required configuration parameters

						Required installation configuration parameters are described in the following table:
					
Table 9.2. Required parameters
	Parameter	Description	Values
	
										apiVersion
									

									 	
										The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
									

									 	
										String
									

									
	
										baseDomain
									

									 	
										The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
									

									 	
										A fully-qualified domain or subdomain name, such as example.com.
									

									
	
										metadata
									

									 	
										Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
									

									 	
										Object
									

									
	
										metadata.name
									

									 	
										The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
									

									 	
										String of lowercase letters, hyphens (-), and periods (.), such as dev. The string must be 14 characters or fewer long.
									

									
	
										platform
									

									 	
										The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
									

									 	
										Object
									

									
	
										pullSecret
									

									 	
										Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
									

									 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

									

Network configuration parameters

						You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
					

						Only IPv4 addresses are supported.
					
Table 9.3. Network parameters
	Parameter	Description	Values
	
										networking
									

									 	
										The configuration for the cluster network.
									

									 	
										Object
									

									 Note

											You cannot modify parameters specified by the networking object after installation.
										

									
	
										networking.networkType
									

									 	
										The cluster network provider Container Network Interface (CNI) plug-in to install.
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
									

									
	
										networking.clusterNetwork
									

									 	
										The IP address blocks for pods.
									

									
										The default value is 10.128.0.0/14 with a host prefix of /23.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

									
	
										networking.clusterNetwork.cidr
									

									 	
										Required if you use networking.clusterNetwork. An IP address block.
									

									
										An IPv4 network.
									

									 	
										An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
									

									
	
										networking.clusterNetwork.hostPrefix
									

									 	
										The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
									

									 	
										A subnet prefix.
									

									
										The default value is 23.
									

									
	
										networking.serviceNetwork
									

									 	
										The IP address block for services. The default value is 172.30.0.0/16.
									

									
										The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
									

									 	
										An array with an IP address block in CIDR format. For example:
									

									
networking:
 serviceNetwork:
 - 172.30.0.0/16

									
	
										networking.machineNetwork
									

									 	
										The IP address blocks for machines.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

									
	
										networking.machineNetwork.cidr
									

									 	
										Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
									

									 	
										An IP network block in CIDR notation.
									

									
										For example, 10.0.0.0/16.
									

									 Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

									

Optional configuration parameters

						Optional installation configuration parameters are described in the following table:
					
Table 9.4. Optional parameters
	Parameter	Description	Values
	
										additionalTrustBundle
									

									 	
										A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
									

									 	
										String
									

									
	
										compute
									

									 	
										The configuration for the machines that comprise the compute nodes.
									

									 	
										Array of machine-pool objects. For details, see the following "Machine-pool" table.
									

									
	
										compute.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										compute.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										compute.name
									

									 	
										Required if you use compute. The name of the machine pool.
									

									 	
										worker
									

									
	
										compute.platform
									

									 	
										Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										compute.replicas
									

									 	
										The number of compute machines, which are also known as worker machines, to provision.
									

									 	
										A positive integer greater than or equal to 2. The default value is 3.
									

									
	
										controlPlane
									

									 	
										The configuration for the machines that comprise the control plane.
									

									 	
										Array of MachinePool objects. For details, see the following "Machine-pool" table.
									

									
	
										controlPlane.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										controlPlane.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										controlPlane.name
									

									 	
										Required if you use controlPlane. The name of the machine pool.
									

									 	
										master
									

									
	
										controlPlane.platform
									

									 	
										Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										controlPlane.replicas
									

									 	
										The number of control plane machines to provision.
									

									 	
										The only supported value is 3, which is the default value.
									

									
	
										credentialsMode
									

									 	
										The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
									

									 Note

											Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
										

									 	
										Mint, Passthrough, Manual, or an empty string ("").
									

									
	
										fips
									

									 	
										Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
									

									 Important

											The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
										

									 Note

											If you are using Azure File storage, you cannot enable FIPS mode.
										

									 	
										false or true
									

									
	
										imageContentSources
									

									 	
										Sources and repositories for the release-image content.
									

									 	
										Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
									

									
	
										imageContentSources.source
									

									 	
										Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
									

									 	
										String
									

									
	
										imageContentSources.mirrors
									

									 	
										Specify one or more repositories that may also contain the same images.
									

									 	
										Array of strings
									

									
	
										publish
									

									 	
										How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
									

									 	
										Internal or External. The default value is External.
									

									
										Setting this field to Internal is not supported on non-cloud platforms.
									

									 Important

											If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
										

									
	
										sshKey
									

									 	
										The SSH key or keys to authenticate access your cluster machines.
									

									 Note

											For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
										

									 	
										One or more keys. For example:
									

									
sshKey:
 <key1>
 <key2>
 <key3>

									

Additional Red Hat OpenStack Platform (RHOSP) configuration parameters

						Additional RHOSP configuration parameters are described in the following table:
					
Table 9.5. Additional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.rootVolume.size
									

									 	
										For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										compute.platform.openstack.rootVolume.type
									

									 	
										For compute machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										controlPlane.platform.openstack.rootVolume.size
									

									 	
										For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										controlPlane.platform.openstack.rootVolume.type
									

									 	
										For control plane machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										platform.openstack.cloud
									

									 	
										The name of the RHOSP cloud to use from the list of clouds in the clouds.yaml file.
									

									 	
										String, for example MyCloud.
									

									
	
										platform.openstack.externalNetwork
									

									 	
										The RHOSP external network name to be used for installation.
									

									 	
										String, for example external.
									

									
	
										platform.openstack.computeFlavor
									

									 	
										The RHOSP flavor to use for control plane and compute machines.
									

									 	
										String, for example m1.xlarge.
									

									

Optional RHOSP configuration parameters

						Optional RHOSP configuration parameters are described in the following table:
					
Table 9.6. Optional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										compute.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with compute machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										compute.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										controlPlane.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										controlPlane.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with control plane machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										controlPlane.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										platform.openstack.clusterOSImage
									

									 	
										The location from which the installer downloads the RHCOS image.
									

									
										You must set this parameter to perform an installation in a restricted network.
									

									 	
										An HTTP or HTTPS URL, optionally with an SHA-256 checksum.
									

									
										For example, http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d. The value can also be the name of an existing Glance image, for example my-rhcos.
									

									
	
										platform.openstack.defaultMachinePlatform
									

									 	
										The default machine pool platform configuration.
									

									 	
{
 "type": "ml.large",
 "rootVolume": {
 "size": 30,
 "type": "performance"
 }
}

									
	
										platform.openstack.ingressFloatingIP
									

									 	
										An existing floating IP address to associate with the Ingress port. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.lbFloatingIP
									

									 	
										An existing floating IP address to associate with the API load balancer. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.externalDNS
									

									 	
										IP addresses for external DNS servers that cluster instances use for DNS resolution.
									

									 	
										A list of IP addresses as strings. For example, ["8.8.8.8", "192.168.1.12"].
									

									
	
										platform.openstack.machinesSubnet
									

									 	
										The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet.
									

									
										The first item in networking.machineNetwork must match the value of machinesSubnet.
									

									
										If you deploy to a custom subnet, you cannot specify an external DNS server to the OpenShift Container Platform installer. Instead, add DNS to the subnet in RHOSP.
									

									 	
										A UUID as a string. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									

Custom subnets in RHOSP deployments

						Optionally, you can deploy a cluster on a Red Hat OpenStack Platform (RHOSP) subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet in the install-config.yaml file.
					

						This subnet is used as the cluster’s primary subnet; nodes and ports are created on it.
					

						Before you run the OpenShift Container Platform installer with a custom subnet, verify that:
					
	
								The target network and subnet are available.
							
	
								DHCP is enabled on the target subnet.
							
	
								You can provide installer credentials that have permission to create ports on the target network.
							
	
								If your network configuration requires a router, it is created in RHOSP. Some configurations rely on routers for floating IP address translation.
							
	
								Your network configuration does not rely on a provider network. Provider networks are not supported.
							

Note

							By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values, set values for platform.openstack.apiVIP and platform.openstack.ingressVIP that are outside of the DHCP allocation pool.
						

Sample customized install-config.yaml file for RHOSP

						This sample install-config.yaml demonstrates all of the possible Red Hat OpenStack Platform (RHOSP) customization options.
					
Important

							This sample file is provided for reference only. You must obtain your install-config.yaml file by using the installation program.
						

apiVersion: v1
baseDomain: example.com
clusterID: os-test
controlPlane:
 name: master
 platform: {}
 replicas: 3
compute:
- name: worker
 platform:
 openstack:
 type: ml.large
 replicas: 3
metadata:
 name: example
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 serviceNetwork:
 - 172.30.0.0/16
 networkType: OpenShiftSDN
platform:
 openstack:
 cloud: mycloud
 externalNetwork: external
 computeFlavor: m1.xlarge
 lbFloatingIP: 128.0.0.1
fips: false
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

Setting compute machine affinity

					Optionally, you can set the affinity policy for compute machines during installation. The installer does not select an affinity policy for compute machines by default.
				

					You can also create machine sets that use particular RHOSP server groups after installation.
				
Note

						Control plane machines are created with a soft-anti-affinity policy.
					

Tip

					You can learn more about RHOSP instance scheduling and placement in the RHOSP documentation.
				

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Using the RHOSP command-line interface, create a server group for your compute machines. For example:
						
$ openstack \
 --os-compute-api-version=2.15 \
 server group create \
 --policy anti-affinity \
 my-openshift-worker-group

							For more information, see the server group create command documentation.
						

	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir=<installation_directory>

							where:
						
	installation_directory
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Open manifests/99_openshift-cluster-api_worker-machineset-0.yaml, the MachineSet definition file.
						
	
							Add the property serverGroupID to the definition beneath the spec.template.spec.providerSpec.value property. For example:
						
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machine-role: <node_role>
 machine.openshift.io/cluster-api-machine-type: <node_role>
 name: <infrastructure_ID>-<node_role>
 namespace: openshift-machine-api
spec:
 replicas: <number_of_replicas>
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machine-role: <node_role>
 machine.openshift.io/cluster-api-machine-type: <node_role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
 spec:
 providerSpec:
 value:
 apiVersion: openstackproviderconfig.openshift.io/v1alpha1
 cloudName: openstack
 cloudsSecret:
 name: openstack-cloud-credentials
 namespace: openshift-machine-api
 flavor: <nova_flavor>
 image: <glance_image_name_or_location>
 serverGroupID: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee [image: 1]
 kind: OpenstackProviderSpec
 networks:
 - filter: {}
 subnets:
 - filter:
 name: <subnet_name>
 tags: openshiftClusterID=<infrastructure_ID>
 securityGroups:
 - filter: {}
 name: <infrastructure_ID>-<node_role>
 serverMetadata:
 Name: <infrastructure_ID>-<node_role>
 openshiftClusterID: <infrastructure_ID>
 tags:
 - openshiftClusterID=<infrastructure_ID>
 trunk: true
 userDataSecret:
 name: <node_role>-user-data
 availabilityZone: <optional_openstack_availability_zone>
	[image: 1]
	
									Add the UUID of your server group here.
								

	
							Optional: Back up the manifests/99_openshift-cluster-api_worker-machineset-0.yaml file. The installation program deletes the manifests/ directory when creating the cluster.
						

					When you install the cluster, the installer uses the MachineSet definition that you modified to create compute machines within your RHOSP server group.
				

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Enabling access to the environment

					At deployment, all OpenShift Container Platform machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
				

					You can configure OpenShift Container Platform API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
				
Enabling access with floating IP addresses

						Create floating IP (FIP) addresses for external access to the OpenShift Container Platform API and cluster applications.
					
Procedure
	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
							
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>

	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
							
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>

	
								Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
							
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
Note

									If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your /etc/hosts file:
								
	
											<api_floating_ip> api.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> grafana-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> oauth-openshift.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
										
	
											application_floating_ip integrated-oauth-server-openshift-authentication.apps.<cluster_name>.<base_domain>
										

									The cluster domain names in the /etc/hosts file grant access to the web console and the monitoring interface of your cluster locally. You can also use the kubectl or oc. You can access the user applications by using the additional entries pointing to the <application_floating_ip>. This action makes the API and applications accessible to only you, which is not suitable for production deployment, but does allow installation for development and testing.
								

	
								Add the FIPs to the install-config.yaml file as the values of the following parameters:
							
	
										platform.openstack.ingressFloatingIP
									
	
										platform.openstack.lbFloatingIP
									

						If you use these values, you must also enter an external network as the value of the platform.openstack.externalNetwork parameter in the install-config.yaml file.
					
Tip

						You can make OpenShift Container Platform resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration.
					

Completing installation without floating IP addresses

						You can install OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
					

						In the install-config.yaml file, do not define the following parameters:
					
	
								platform.openstack.ingressFloatingIP
							
	
								platform.openstack.lbFloatingIP
							

						If you cannot provide an external network, you can also leave platform.openstack.externalNetwork blank. If you do not provide a value for platform.openstack.externalNetwork, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. You must configure external connectivity on your own.
					

						If you run the installer from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
					
Note

							You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
						
api.<cluster_name>.<base_domain>. IN A <api_port_IP>
*.apps.<cluster_name>.<base_domain>. IN A <ingress_port_IP>

							If you do not control the DNS server, you can add the record to your /etc/hosts file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Verifying cluster status

					You can verify your OpenShift Container Platform cluster’s status during or after installation.
				
Procedure
	
							In the cluster environment, export the administrator’s kubeconfig file:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

							The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
						

	
							View the control plane and compute machines created after a deployment:
						
$ oc get nodes

	
							View your cluster’s version:
						
$ oc get clusterversion

	
							View your Operators' status:
						
$ oc get clusteroperator

	
							View all running pods in the cluster:
						
$ oc get pods -A

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If you need to enable external access to node ports, configure ingress cluster traffic by using a node port.
						
	
							If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.
						

Installing a cluster on OpenStack with Kuryr

				In OpenShift Container Platform version 4.6, you can install a customized cluster on Red Hat OpenStack Platform (RHOSP) that uses Kuryr SDN. To customize the installation, modify parameters in the install-config.yaml before you install the cluster.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
									Verify that OpenShift Container Platform 4.6 is compatible with your RHOSP version in the Available platforms section. You can also compare platform support across different versions by viewing the OpenShift Container Platform on RHOSP support matrix.
								

	
							Verify that your network configuration does not rely on a provider network. Provider networks are not supported.
						
	
							Have a storage service installed in RHOSP, like block storage (Cinder) or object storage (Swift). Object storage is the recommended storage technology for OpenShift Container Platform registry cluster deployment. For more information, see Optimizing storage.
						

About Kuryr SDN

					Kuryr is a container network interface (CNI) plug-in solution that uses the Neutron and Octavia Red Hat OpenStack Platform (RHOSP) services to provide networking for pods and Services.
				

					Kuryr and OpenShift Container Platform integration is primarily designed for OpenShift Container Platform clusters running on RHOSP VMs. Kuryr improves the network performance by plugging OpenShift Container Platform pods into RHOSP SDN. In addition, it provides interconnectivity between pods and RHOSP virtual instances.
				

					Kuryr components are installed as pods in OpenShift Container Platform using the openshift-kuryr namespace:
				
	
							kuryr-controller - a single service instance installed on a master node. This is modeled in OpenShift Container Platform as a Deployment object.
						
	
							kuryr-cni - a container installing and configuring Kuryr as a CNI driver on each OpenShift Container Platform node. This is modeled in OpenShift Container Platform as a DaemonSet object.
						

					The Kuryr controller watches the OpenShift Container Platform API server for pod, service, and namespace create, update, and delete events. It maps the OpenShift Container Platform API calls to corresponding objects in Neutron and Octavia. This means that every network solution that implements the Neutron trunk port functionality can be used to back OpenShift Container Platform via Kuryr. This includes open source solutions such as Open vSwitch (OVS) and Open Virtual Network (OVN) as well as Neutron-compatible commercial SDNs.
				

					Kuryr is recommended for OpenShift Container Platform deployments on encapsulated RHOSP tenant networks to avoid double encapsulation, such as running an encapsulated OpenShift Container Platform SDN over an RHOSP network.
				

					If you use provider networks or tenant VLANs, you do not need to use Kuryr to avoid double encapsulation. The performance benefit is negligible. Depending on your configuration, though, using Kuryr to avoid having two overlays might still be beneficial.
				

					Kuryr is not recommended in deployments where all of the following criteria are true:
				
	
							The RHOSP version is less than 16.
						
	
							The deployment uses UDP services, or a large number of TCP services on few hypervisors.
						

					or
				
	
							The ovn-octavia Octavia driver is disabled.
						
	
							The deployment uses a large number of TCP services on few hypervisors.
						

Resource guidelines for installing OpenShift Container Platform on RHOSP with Kuryr

					When using Kuryr SDN, the pods, services, namespaces, and network policies are using resources from the RHOSP quota; this increases the minimum requirements. Kuryr also has some additional requirements on top of what a default install requires.
				

					Use the following quota to satisfy a default cluster’s minimum requirements:
				
Table 9.7. Recommended resources for a default OpenShift Container Platform cluster on RHOSP with Kuryr
	Resource	Value
	
									Floating IP addresses
								

								 	
									3 - plus the expected number of Services of LoadBalancer type
								

								
	
									Ports
								

								 	
									1500 - 1 needed per Pod
								

								
	
									Routers
								

								 	
									1
								

								
	
									Subnets
								

								 	
									250 - 1 needed per Namespace/Project
								

								
	
									Networks
								

								 	
									250 - 1 needed per Namespace/Project
								

								
	
									RAM
								

								 	
									112 GB
								

								
	
									vCPUs
								

								 	
									28
								

								
	
									Volume storage
								

								 	
									275 GB
								

								
	
									Instances
								

								 	
									7
								

								
	
									Security groups
								

								 	
									250 - 1 needed per Service and per NetworkPolicy
								

								
	
									Security group rules
								

								 	
									1000
								

								
	
									Load balancers
								

								 	
									100 - 1 needed per Service
								

								
	
									Load balancer listeners
								

								 	
									500 - 1 needed per Service-exposed port
								

								
	
									Load balancer pools
								

								 	
									500 - 1 needed per Service-exposed port
								

								

					A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
				
Important

						If RHOSP object storage (Swift) is available and operated by a user account with the swiftoperator role, it is used as the default backend for the OpenShift Container Platform image registry. In this case, the volume storage requirement is 175 GB. Swift space requirements vary depending on the size of the image registry.
					

Important

						If you are using Red Hat OpenStack Platform (RHOSP) version 16 with the Amphora driver rather than the OVN Octavia driver, security groups are associated with service accounts instead of user projects.
					

					Take the following notes into consideration when setting resources:
				
	
							The number of ports that are required is larger than the number of pods. Kuryr uses ports pools to have pre-created ports ready to be used by pods and speed up the pods' booting time.
						
	
							Each network policy is mapped into an RHOSP security group, and depending on the NetworkPolicy spec, one or more rules are added to the security group.
						
	
							Each service is mapped to an RHOSP load balancer. Consider this requirement when estimating the number of security groups required for the quota.
						

							If you are using RHOSP version 15 or earlier, or the ovn-octavia driver, each load balancer has a security group with the user project.
						

	
							The quota does not account for load balancer resources (such as VM resources), but you must consider these resources when you decide the RHOSP deployment’s size. The default installation will have more than 50 load balancers; the clusters must be able to accommodate them.
						

							If you are using RHOSP version 16 with the OVN Octavia driver enabled, only one load balancer VM is generated; services are load balanced through OVN flows.
						

					An OpenShift Container Platform deployment comprises control plane machines, compute machines, and a bootstrap machine.
				

					To enable Kuryr SDN, your environment must meet the following requirements:
				
	
							Run RHOSP 13+.
						
	
							Have Overcloud with Octavia.
						
	
							Use Neutron Trunk ports extension.
						
	
							Use openvswitch firewall driver if ML2/OVS Neutron driver is used instead of ovs-hybrid.
						

Increasing quota

						When using Kuryr SDN, you must increase quotas to satisfy the Red Hat OpenStack Platform (RHOSP) resources used by pods, services, namespaces, and network policies.
					
Procedure
	
								Increase the quotas for a project by running the following command:
							
$ sudo openstack quota set --secgroups 250 --secgroup-rules 1000 --ports 1500 --subnets 250 --networks 250 <project>

Configuring Neutron

						Kuryr CNI leverages the Neutron Trunks extension to plug containers into the Red Hat OpenStack Platform (RHOSP) SDN, so you must use the trunks extension for Kuryr to properly work.
					

						In addition, if you leverage the default ML2/OVS Neutron driver, the firewall must be set to openvswitch instead of ovs_hybrid so that security groups are enforced on trunk subports and Kuryr can properly handle network policies.
					

Configuring Octavia

						Kuryr SDN uses Red Hat OpenStack Platform (RHOSP)'s Octavia LBaaS to implement OpenShift Container Platform services. Thus, you must install and configure Octavia components in RHOSP to use Kuryr SDN.
					

						To enable Octavia, you must include the Octavia service during the installation of the RHOSP Overcloud, or upgrade the Octavia service if the Overcloud already exists. The following steps for enabling Octavia apply to both a clean install of the Overcloud or an Overcloud update.
					
Note

							The following steps only capture the key pieces required during the deployment of RHOSP when dealing with Octavia. It is also important to note that registry methods vary.
						

							This example uses the local registry method.
						

Procedure
	
								If you are using the local registry, create a template to upload the images to the registry. For example:
							
(undercloud) $ openstack overcloud container image prepare \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
--namespace=registry.access.redhat.com/rhosp13 \
--push-destination=<local-ip-from-undercloud.conf>:8787 \
--prefix=openstack- \
--tag-from-label {version}-{release} \
--output-env-file=/home/stack/templates/overcloud_images.yaml \
--output-images-file /home/stack/local_registry_images.yaml

	
								Verify that the local_registry_images.yaml file contains the Octavia images. For example:
							
...
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44
 push_destination: <local-ip-from-undercloud.conf>:8787
Note

									The Octavia container versions vary depending upon the specific RHOSP release installed.
								

	
								Pull the container images from registry.redhat.io to the Undercloud node:
							
(undercloud) $ sudo openstack overcloud container image upload \
 --config-file /home/stack/local_registry_images.yaml \
 --verbose

								This may take some time depending on the speed of your network and Undercloud disk.
							

	
								Since an Octavia load balancer is used to access the OpenShift Container Platform API, you must increase their listeners' default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout to 20 minutes by passing the following file to the Overcloud deploy command:
							
(undercloud) $ cat octavia_timeouts.yaml
parameter_defaults:
 OctaviaTimeoutClientData: 1200000
 OctaviaTimeoutMemberData: 1200000
Note

									This is not needed for RHOSP 13.0.13+.
								

	
								Install or update your Overcloud environment with Octavia:
							
$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
 -e octavia_timeouts.yaml
Note

									This command only includes the files associated with Octavia; it varies based on your specific installation of RHOSP. See the RHOSP documentation for further information. For more information on customizing your Octavia installation, see installation of Octavia using Director.
								

Note

									When leveraging Kuryr SDN, the Overcloud installation requires the Neutron trunk extension. This is available by default on director deployments. Use the openvswitch firewall instead of the default ovs-hybrid when the Neutron backend is ML2/OVS. There is no need for modifications if the backend is ML2/OVN.
								

	
								In RHOSP versions earlier than 13.0.13, add the project ID to the octavia.conf configuration file after you create the project.
							
	
										To enforce network policies across services, like when traffic goes through the Octavia load balancer, you must ensure Octavia creates the Amphora VM security groups on the user project.
									

										This change ensures that required load balancer security groups belong to that project, and that they can be updated to enforce services isolation.
									
Note

											This task is unnecessary in RHOSP version 13.0.13 or later.
										

											Octavia implements a new ACL API that restricts access to the load balancers VIP.
										

	
												Get the project ID
											
$ openstack project show <project>
Example output

													

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	
domain_id	default
enabled	True
id	PROJECT_ID
is_domain	False
name	*<project>*
parent_id	default
tags	[]
+-------------+----------------------------------+

												

	
												Add the project ID to octavia.conf for the controllers.
											
	
														Source the stackrc file:
													
$ source stackrc # Undercloud credentials

	
														List the Overcloud controllers:
													
$ openstack server list
Example output

															

+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| ID | Name | Status | Networks
| Image | Flavor |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| 6bef8e73-2ba5-4860-a0b1-3937f8ca7e01 | controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | controller |
│
| dda3173a-ab26-47f8-a2dc-8473b4a67ab9 | compute-0 | ACTIVE |
ctlplane=192.168.24.6 | overcloud-full | compute |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+

														

	
														SSH into the controller(s).
													
$ ssh heat-admin@192.168.24.8

	
														Edit the octavia.conf file to add the project into the list of projects where Amphora security groups are on the user’s account.
													
List of project IDs that are allowed to have Load balancer security groups
belonging to them.
amp_secgroup_allowed_projects = PROJECT_ID

	
												Restart the Octavia worker so the new configuration loads.
											
controller-0$ sudo docker restart octavia_worker

Note

							Depending on your RHOSP environment, Octavia might not support UDP listeners. If you use Kuryr SDN on RHOSP version 13.0.13 or earlier, UDP services are not supported. RHOSP version 16 or later support UDP.
						

The Octavia OVN Driver

							Octavia supports multiple provider drivers through the Octavia API.
						

							To see all available Octavia provider drivers, on a command line, enter:
						
$ openstack loadbalancer provider list
Example output

								

+---------+---+
| name | description |
+---------+---+
amphora	The Octavia Amphora driver.
octavia	Deprecated alias of the Octavia Amphora driver.
ovn	Octavia OVN driver.
+---------+---+

							

							Beginning with RHOSP version 16, the Octavia OVN provider driver (ovn) is supported on OpenShift Container Platform on RHOSP deployments.
						

							ovn is an integration driver for the load balancing that Octavia and OVN provide. It supports basic load balancing capabilities, and is based on OpenFlow rules. The driver is automatically enabled in Octavia by Director on deployments that use OVN Neutron ML2.
						

							The Amphora provider driver is the default driver. If ovn is enabled, however, Kuryr uses it.
						

							If Kuryr uses ovn instead of Amphora, it offers the following benefits:
						
	
									Decreased resource requirements. Kuryr does not require a load balancer VM for each service.
								
	
									Reduced network latency.
								
	
									Increased service creation speed by using OpenFlow rules instead of a VM for each service.
								
	
									Distributed load balancing actions across all nodes instead of centralized on Amphora VMs.
								

							You can configure your cluster to use the Octavia OVN driver after your RHOSP cloud is upgraded from version 13 to version 16.
						

Known limitations of installing with Kuryr

						Using OpenShift Container Platform with Kuryr SDN has several known limitations.
					
RHOSP general limitations

						OpenShift Container Platform with Kuryr SDN does not support Service objects with type NodePort.
					

						If the machines subnet is not connected to a router, or if the subnet is connected, but the router has no external gateway set, Kuryr cannot create floating IPs for Service objects with type LoadBalancer.
					
	
								Configuring the sessionAffinity=ClientIP property on Service objects does not have an effect. Kuryr does not support this setting.
							

RHOSP version limitations

						Using OpenShift Container Platform with Kuryr SDN has several limitations that depend on the RHOSP version.
					
	
								RHOSP versions before 16 use the default Octavia load balancer driver (Amphora). This driver requires that one Amphora load balancer VM is deployed per OpenShift Container Platform service. Creating too many services can cause you to run out of resources.
							

								Deployments of later versions of RHOSP that have the OVN Octavia driver disabled also use the Amphora driver. They are subject to the same resource concerns as earlier versions of RHOSP.
							

	
								Octavia RHOSP versions before 13.0.13 do not support UDP listeners. Therefore, OpenShift Container Platform UDP services are not supported.
							
	
								Octavia RHOSP versions before 13.0.13 cannot listen to multiple protocols on the same port. Services that expose the same port to different protocols, like TCP and UDP, are not supported.
							
	
								Kuryr SDN does not support automatic unidling by a service.
							

RHOSP environment limitations

						There are limitations when using Kuryr SDN that depend on your deployment environment.
					

						Because of Octavia’s lack of support for the UDP protocol and multiple listeners, if the RHOSP version is earlier than 13.0.13, Kuryr forces pods to use TCP for DNS resolution.
					

						In Go versions 1.12 and earlier, applications that are compiled with CGO support disabled use UDP only. In this case, the native Go resolver does not recognize the use-vc option in resolv.conf, which controls whether TCP is forced for DNS resolution. As a result, UDP is still used for DNS resolution, which fails.
					

						To ensure that TCP forcing is allowed, compile applications either with the environment variable CGO_ENABLED set to 1, i.e. CGO_ENABLED=1, or ensure that the variable is absent.
					

						In Go versions 1.13 and later, TCP is used automatically if DNS resolution using UDP fails.
					
Note

							musl-based containers, including Alpine-based containers, do not support the use-vc option.
						

RHOSP upgrade limitations

						As a result of the RHOSP upgrade process, the Octavia API might be changed, and upgrades to the Amphora images that are used for load balancers might be required.
					

						You can address API changes on an individual basis.
					

						If the Amphora image is upgraded, the RHOSP operator can handle existing load balancer VMs in two ways:
					
	
								Upgrade each VM by triggering a load balancer failover.
							
	
								Leave responsibility for upgrading the VMs to users.
							

						If the operator takes the first option, there might be short downtimes during failovers.
					

						If the operator takes the second option, the existing load balancers will not support upgraded Octavia API features, like UDP listeners. In this case, users must recreate their Services to use these features.
					
Important

							If OpenShift Container Platform detects a new Octavia version that supports UDP load balancing, it recreates the DNS service automatically. The service recreation ensures that the service default supports UDP load balancing.
						

							The recreation causes the DNS service approximately one minute of downtime.
						

Control plane machines

						By default, the OpenShift Container Platform installation process creates three control plane machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Compute machines

						By default, the OpenShift Container Platform installation process creates three compute machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 8 GB memory, 2 vCPUs, and 100 GB storage space
							

Tip

						Compute machines host the applications that you run on OpenShift Container Platform; aim to run as many as you can.
					

Bootstrap machine

						During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
					

						The bootstrap machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Enabling Swift on RHOSP

					Swift is operated by a user account with the swiftoperator role. Add the role to an account before you run the installation program.
				
Important

						If the Red Hat OpenStack Platform (RHOSP) object storage service, commonly known as Swift, is available, OpenShift Container Platform uses it as the image registry storage. If it is unavailable, the installation program relies on the RHOSP block storage service, commonly known as Cinder.
					

						If Swift is present and you want to use it, you must enable access to it. If it is not present, or if you do not want to use it, skip this section.
					

Prerequisites
	
							You have a RHOSP administrator account on the target environment.
						
	
							The Swift service is installed.
						
	
							On Ceph RGW, the account in url option is enabled.
						

Procedure

						To enable Swift on RHOSP:
					
	
							As an administrator in the RHOSP CLI, add the swiftoperator role to the account that will access Swift:
						
$ openstack role add --user <user> --project <project> swiftoperator

					Your RHOSP deployment can now use Swift for the image registry.
				

Verifying external network access

					The OpenShift Container Platform installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Configure OpenStack’s networking service to have DHCP agents forward instances' DNS queries
						

Procedure
	
							Using the RHOSP CLI, verify the name and ID of the 'External' network:
						
$ openstack network list --long -c ID -c Name -c "Router Type"
Example output

								

+--------------------------------------+----------------+-------------+
| ID | Name | Router Type |
+--------------------------------------+----------------+-------------+
| 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External |
+--------------------------------------+----------------+-------------+

							

					A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.
				
Important

						If the external network’s CIDR range overlaps one of the default network ranges, you must change the matching network ranges in the install-config.yaml file before you start the installation process.
					

						The default network ranges are:
					
	Network	Range
	
										machineNetwork
									

									 	
										10.0.0.0/16
									

									
	
										serviceNetwork
									

									 	
										172.30.0.0/16
									

									
	
										clusterNetwork
									

									 	
										10.128.0.0/14
									

									

Warning

						If the installation program finds multiple networks with the same name, it sets one of them at random. To avoid this behavior, create unique names for resources in RHOSP.
					

Note

						If the Neutron trunk service plug-in is enabled, a trunk port is created by default. For more information, see Neutron trunk port.
					

Defining parameters for the installation program

					The OpenShift Container Platform installation program relies on a file that is called clouds.yaml. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
				
Procedure
	
							Create the clouds.yaml file:
						
	
									If your RHOSP distribution includes the Horizon web UI, generate a clouds.yaml file in it.
								
Important

										Remember to add a password to the auth field. You can also keep secrets in a separate file from clouds.yaml.
									

	
									If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml, see Config files in the RHOSP documentation.
								
clouds:
 shiftstack:
 auth:
 auth_url: http://10.10.14.42:5000/v3
 project_name: shiftstack
 username: shiftstack_user
 password: XXX
 user_domain_name: Default
 project_domain_name: Default
 dev-env:
 region_name: RegionOne
 auth:
 username: 'devuser'
 password: XXX
 project_name: 'devonly'
 auth_url: 'https://10.10.14.22:5001/v2.0'

	
							If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
						
	
									Copy the certificate authority file to your machine.
								
	
									Add the machine to the certificate authority trust bundle:
								
$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

	
									Update the trust bundle:
								
$ sudo update-ca-trust extract

	
									Add the cacerts key to the clouds.yaml file. The value must be an absolute, non-root-accessible path to the CA certificate:
								
clouds:
 shiftstack:
 ...
 cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
Tip

									After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the ca-cert.pem key in the cloud-provider-config keymap. On a command line, run:
								
$ oc edit configmap -n openshift-config cloud-provider-config

	
							Place the clouds.yaml file in one of the following locations:
						
	
									The value of the OS_CLIENT_CONFIG_FILE environment variable
								
	
									The current directory
								
	
									A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml
								
	
									A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml
								

									The installation program searches for clouds.yaml in that order.
								

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select openstack as the platform to target.
										
	
											Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
										
	
											Specify the floating IP address to use for external access to the OpenShift API.
										
	
											Specify a RHOSP flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.
										
	
											Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
										
	
											Enter a name for your cluster. The name must be 14 or fewer characters long.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Installation configuration parameters

					Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
				
Note

						After installation, you cannot modify these parameters in the install-config.yaml file.
					

Important

						The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
					

Required configuration parameters

						Required installation configuration parameters are described in the following table:
					
Table 9.8. Required parameters
	Parameter	Description	Values
	
										apiVersion
									

									 	
										The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
									

									 	
										String
									

									
	
										baseDomain
									

									 	
										The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
									

									 	
										A fully-qualified domain or subdomain name, such as example.com.
									

									
	
										metadata
									

									 	
										Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
									

									 	
										Object
									

									
	
										metadata.name
									

									 	
										The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
									

									 	
										String of lowercase letters, hyphens (-), and periods (.), such as dev. The string must be 14 characters or fewer long.
									

									
	
										platform
									

									 	
										The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
									

									 	
										Object
									

									
	
										pullSecret
									

									 	
										Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
									

									 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

									

Network configuration parameters

						You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
					

						Only IPv4 addresses are supported.
					
Table 9.9. Network parameters
	Parameter	Description	Values
	
										networking
									

									 	
										The configuration for the cluster network.
									

									 	
										Object
									

									 Note

											You cannot modify parameters specified by the networking object after installation.
										

									
	
										networking.networkType
									

									 	
										The cluster network provider Container Network Interface (CNI) plug-in to install.
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
									

									
	
										networking.clusterNetwork
									

									 	
										The IP address blocks for pods.
									

									
										The default value is 10.128.0.0/14 with a host prefix of /23.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

									
	
										networking.clusterNetwork.cidr
									

									 	
										Required if you use networking.clusterNetwork. An IP address block.
									

									
										An IPv4 network.
									

									 	
										An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
									

									
	
										networking.clusterNetwork.hostPrefix
									

									 	
										The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
									

									 	
										A subnet prefix.
									

									
										The default value is 23.
									

									
	
										networking.serviceNetwork
									

									 	
										The IP address block for services. The default value is 172.30.0.0/16.
									

									
										The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
									

									 	
										An array with an IP address block in CIDR format. For example:
									

									
networking:
 serviceNetwork:
 - 172.30.0.0/16

									
	
										networking.machineNetwork
									

									 	
										The IP address blocks for machines.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

									
	
										networking.machineNetwork.cidr
									

									 	
										Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
									

									 	
										An IP network block in CIDR notation.
									

									
										For example, 10.0.0.0/16.
									

									 Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

									

Optional configuration parameters

						Optional installation configuration parameters are described in the following table:
					
Table 9.10. Optional parameters
	Parameter	Description	Values
	
										additionalTrustBundle
									

									 	
										A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
									

									 	
										String
									

									
	
										compute
									

									 	
										The configuration for the machines that comprise the compute nodes.
									

									 	
										Array of machine-pool objects. For details, see the following "Machine-pool" table.
									

									
	
										compute.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										compute.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										compute.name
									

									 	
										Required if you use compute. The name of the machine pool.
									

									 	
										worker
									

									
	
										compute.platform
									

									 	
										Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										compute.replicas
									

									 	
										The number of compute machines, which are also known as worker machines, to provision.
									

									 	
										A positive integer greater than or equal to 2. The default value is 3.
									

									
	
										controlPlane
									

									 	
										The configuration for the machines that comprise the control plane.
									

									 	
										Array of MachinePool objects. For details, see the following "Machine-pool" table.
									

									
	
										controlPlane.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										controlPlane.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										controlPlane.name
									

									 	
										Required if you use controlPlane. The name of the machine pool.
									

									 	
										master
									

									
	
										controlPlane.platform
									

									 	
										Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										controlPlane.replicas
									

									 	
										The number of control plane machines to provision.
									

									 	
										The only supported value is 3, which is the default value.
									

									
	
										credentialsMode
									

									 	
										The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
									

									 Note

											Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
										

									 	
										Mint, Passthrough, Manual, or an empty string ("").
									

									
	
										fips
									

									 	
										Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
									

									 Important

											The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
										

									 Note

											If you are using Azure File storage, you cannot enable FIPS mode.
										

									 	
										false or true
									

									
	
										imageContentSources
									

									 	
										Sources and repositories for the release-image content.
									

									 	
										Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
									

									
	
										imageContentSources.source
									

									 	
										Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
									

									 	
										String
									

									
	
										imageContentSources.mirrors
									

									 	
										Specify one or more repositories that may also contain the same images.
									

									 	
										Array of strings
									

									
	
										publish
									

									 	
										How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
									

									 	
										Internal or External. The default value is External.
									

									
										Setting this field to Internal is not supported on non-cloud platforms.
									

									 Important

											If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
										

									
	
										sshKey
									

									 	
										The SSH key or keys to authenticate access your cluster machines.
									

									 Note

											For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
										

									 	
										One or more keys. For example:
									

									
sshKey:
 <key1>
 <key2>
 <key3>

									

Additional Red Hat OpenStack Platform (RHOSP) configuration parameters

						Additional RHOSP configuration parameters are described in the following table:
					
Table 9.11. Additional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.rootVolume.size
									

									 	
										For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										compute.platform.openstack.rootVolume.type
									

									 	
										For compute machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										controlPlane.platform.openstack.rootVolume.size
									

									 	
										For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										controlPlane.platform.openstack.rootVolume.type
									

									 	
										For control plane machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										platform.openstack.cloud
									

									 	
										The name of the RHOSP cloud to use from the list of clouds in the clouds.yaml file.
									

									 	
										String, for example MyCloud.
									

									
	
										platform.openstack.externalNetwork
									

									 	
										The RHOSP external network name to be used for installation.
									

									 	
										String, for example external.
									

									
	
										platform.openstack.computeFlavor
									

									 	
										The RHOSP flavor to use for control plane and compute machines.
									

									 	
										String, for example m1.xlarge.
									

									

Optional RHOSP configuration parameters

						Optional RHOSP configuration parameters are described in the following table:
					
Table 9.12. Optional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										compute.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with compute machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										compute.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										controlPlane.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										controlPlane.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with control plane machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										controlPlane.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										platform.openstack.clusterOSImage
									

									 	
										The location from which the installer downloads the RHCOS image.
									

									
										You must set this parameter to perform an installation in a restricted network.
									

									 	
										An HTTP or HTTPS URL, optionally with an SHA-256 checksum.
									

									
										For example, http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d. The value can also be the name of an existing Glance image, for example my-rhcos.
									

									
	
										platform.openstack.defaultMachinePlatform
									

									 	
										The default machine pool platform configuration.
									

									 	
{
 "type": "ml.large",
 "rootVolume": {
 "size": 30,
 "type": "performance"
 }
}

									
	
										platform.openstack.ingressFloatingIP
									

									 	
										An existing floating IP address to associate with the Ingress port. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.lbFloatingIP
									

									 	
										An existing floating IP address to associate with the API load balancer. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.externalDNS
									

									 	
										IP addresses for external DNS servers that cluster instances use for DNS resolution.
									

									 	
										A list of IP addresses as strings. For example, ["8.8.8.8", "192.168.1.12"].
									

									
	
										platform.openstack.machinesSubnet
									

									 	
										The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet.
									

									
										The first item in networking.machineNetwork must match the value of machinesSubnet.
									

									
										If you deploy to a custom subnet, you cannot specify an external DNS server to the OpenShift Container Platform installer. Instead, add DNS to the subnet in RHOSP.
									

									 	
										A UUID as a string. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									

Custom subnets in RHOSP deployments

						Optionally, you can deploy a cluster on a Red Hat OpenStack Platform (RHOSP) subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet in the install-config.yaml file.
					

						This subnet is used as the cluster’s primary subnet; nodes and ports are created on it.
					

						Before you run the OpenShift Container Platform installer with a custom subnet, verify that:
					
	
								The target network and subnet are available.
							
	
								DHCP is enabled on the target subnet.
							
	
								You can provide installer credentials that have permission to create ports on the target network.
							
	
								If your network configuration requires a router, it is created in RHOSP. Some configurations rely on routers for floating IP address translation.
							
	
								Your network configuration does not rely on a provider network. Provider networks are not supported.
							

Note

							By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values, set values for platform.openstack.apiVIP and platform.openstack.ingressVIP that are outside of the DHCP allocation pool.
						

Sample customized install-config.yaml file for RHOSP with Kuryr

						To deploy with Kuryr SDN instead of the default OpenShift SDN, you must modify the install-config.yaml file to include Kuryr as the desired networking.networkType and proceed with the default OpenShift Container Platform SDN installation steps. This sample install-config.yaml demonstrates all of the possible Red Hat OpenStack Platform (RHOSP) customization options.
					
Important

							This sample file is provided for reference only. You must obtain your install-config.yaml file by using the installation program.
						

apiVersion: v1
baseDomain: example.com
clusterID: os-test
controlPlane:
 name: master
 platform: {}
 replicas: 3
compute:
- name: worker
 platform:
 openstack:
 type: ml.large
 replicas: 3
metadata:
 name: example
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 serviceNetwork:
 - 172.30.0.0/16 [image: 1]
 networkType: Kuryr
platform:
 openstack:
 cloud: mycloud
 externalNetwork: external
 computeFlavor: m1.xlarge
 lbFloatingIP: 128.0.0.1
 trunkSupport: true [image: 2]
 octaviaSupport: true [image: 3]
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
	[image: 1]
	
								The Amphora Octavia driver creates two ports per load balancer. As a result, the service subnet that the installer creates is twice the size of the CIDR that is specified as the value of the serviceNetwork property. The larger range is required to prevent IP address conflicts.
							

	[image: 2] [image: 3]
	
								Both trunkSupport and octaviaSupport are automatically discovered by the installer, so there is no need to set them. But if your environment does not meet both requirements, Kuryr SDN will not properly work. Trunks are needed to connect the pods to the RHOSP network and Octavia is required to create the OpenShift Container Platform services.
							

Kuryr ports pools

						A Kuryr ports pool maintains a number of ports on standby for pod creation.
					

						Keeping ports on standby minimizes pod creation time. Without ports pools, Kuryr must explicitly request port creation or deletion whenever a pod is created or deleted.
					

						The Neutron ports that Kuryr uses are created in subnets that are tied to namespaces. These pod ports are also added as subports to the primary port of OpenShift Container Platform cluster nodes.
					

						Because Kuryr keeps each namespace in a separate subnet, a separate ports pool is maintained for each namespace-worker pair.
					

						Prior to installing a cluster, you can set the following parameters in the cluster-network-03-config.yml manifest file to configure ports pool behavior:
					
	
								The enablePortPoolsPrepopulation parameter controls pool prepopulation, which forces Kuryr to add ports to the pool when it is created, such as when a new host is added, or a new namespace is created. The default value is false.
							
	
								The poolMinPorts parameter is the minimum number of free ports that are kept in the pool. The default value is 1.
							
	
								The poolMaxPorts parameter is the maximum number of free ports that are kept in the pool. A value of 0 disables that upper bound. This is the default setting.
							

								If your OpenStack port quota is low, or you have a limited number of IP addresses on the pod network, consider setting this option to ensure that unneeded ports are deleted.
							

	
								The poolBatchPorts parameter defines the maximum number of Neutron ports that can be created at once. The default value is 3.
							

Adjusting Kuryr ports pools during installation

						During installation, you can configure how Kuryr manages Red Hat OpenStack Platform (RHOSP) Neutron ports to control the speed and efficiency of pod creation.
					
Prerequisites
	
								Create and modify the install-config.yaml file.
							

Procedure
	
								From a command line, create the manifest files:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the name of the directory that contains the install-config.yaml file for your cluster.
									

	
								Create a file that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
							
$ touch <installation_directory>/manifests/cluster-network-03-config.yml [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the directory name that contains the manifests/ directory for your cluster.
									

								After creating the file, several network configuration files are in the manifests/ directory, as shown:
							
$ ls <installation_directory>/manifests/cluster-network-*
Example output

									

cluster-network-01-crd.yml
cluster-network-02-config.yml
cluster-network-03-config.yml

								

	
								Open the cluster-network-03-config.yml file in an editor, and enter a custom resource (CR) that describes the Cluster Network Operator configuration that you want:
							
$ oc edit networks.operator.openshift.io cluster

	
								Edit the settings to meet your requirements. The following file is provided as an example:
							
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork:
 - 172.30.0.0/16
 defaultNetwork:
 type: Kuryr
 kuryrConfig:
 enablePortPoolsPrepopulation: false [image: 1]
 poolMinPorts: 1 [image: 2]
 poolBatchPorts: 3 [image: 3]
 poolMaxPorts: 5 [image: 4]
 openstackServiceNetwork: 172.30.0.0/15 [image: 5]
	[image: 1]
	
										Set the value of enablePortPoolsPrepopulation to true to make Kuryr create new Neutron ports after a namespace is created or a new node is added to the cluster. This setting raises the Neutron ports quota but can reduce the time that is required to spawn pods. The default value is false.
									

	[image: 2]
	
										Kuryr creates new ports for a pool if the number of free ports in that pool is lower than the value of poolMinPorts. The default value is 1.
									

	[image: 3]
	
										poolBatchPorts controls the number of new ports that are created if the number of free ports is lower than the value of poolMinPorts. The default value is 3.
									

	[image: 4]
	
										If the number of free ports in a pool is higher than the value of poolMaxPorts, Kuryr deletes them until the number matches that value. Setting this value to 0 disables this upper bound, preventing pools from shrinking. The default value is 0.
									

	[image: 5]
	
										The openStackServiceNetwork parameter defines the CIDR range of the network from which IP addresses are allocated to RHOSP Octavia’s LoadBalancers.
									

								If this parameter is used with the Amphora driver, Octavia takes two IP addresses from this network for each load balancer: one for OpenShift and the other for VRRP connections. Because these IP addresses are managed by OpenShift Container Platform and Neutron respectively, they must come from different pools. Therefore, the value of openStackServiceNetwork must be at least twice the size of the value of serviceNetwork, and the value of serviceNetwork must overlap entirely with the range that is defined by openStackServiceNetwork.
							

								The CNO verifies that VRRP IP addresses that are taken from the range that is defined by this parameter do not overlap with the range that is defined by the serviceNetwork parameter.
							

								If this parameter is not set, the CNO uses an expanded value of serviceNetwork that is determined by decrementing the prefix size by 1.
							

	
								Save the cluster-network-03-config.yml file, and exit the text editor.
							
	
								Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory while creating the cluster.
							

Setting compute machine affinity

					Optionally, you can set the affinity policy for compute machines during installation. The installer does not select an affinity policy for compute machines by default.
				

					You can also create machine sets that use particular RHOSP server groups after installation.
				
Note

						Control plane machines are created with a soft-anti-affinity policy.
					

Tip

					You can learn more about RHOSP instance scheduling and placement in the RHOSP documentation.
				

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Using the RHOSP command-line interface, create a server group for your compute machines. For example:
						
$ openstack \
 --os-compute-api-version=2.15 \
 server group create \
 --policy anti-affinity \
 my-openshift-worker-group

							For more information, see the server group create command documentation.
						

	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir=<installation_directory>

							where:
						
	installation_directory
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Open manifests/99_openshift-cluster-api_worker-machineset-0.yaml, the MachineSet definition file.
						
	
							Add the property serverGroupID to the definition beneath the spec.template.spec.providerSpec.value property. For example:
						
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machine-role: <node_role>
 machine.openshift.io/cluster-api-machine-type: <node_role>
 name: <infrastructure_ID>-<node_role>
 namespace: openshift-machine-api
spec:
 replicas: <number_of_replicas>
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machine-role: <node_role>
 machine.openshift.io/cluster-api-machine-type: <node_role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
 spec:
 providerSpec:
 value:
 apiVersion: openstackproviderconfig.openshift.io/v1alpha1
 cloudName: openstack
 cloudsSecret:
 name: openstack-cloud-credentials
 namespace: openshift-machine-api
 flavor: <nova_flavor>
 image: <glance_image_name_or_location>
 serverGroupID: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee [image: 1]
 kind: OpenstackProviderSpec
 networks:
 - filter: {}
 subnets:
 - filter:
 name: <subnet_name>
 tags: openshiftClusterID=<infrastructure_ID>
 securityGroups:
 - filter: {}
 name: <infrastructure_ID>-<node_role>
 serverMetadata:
 Name: <infrastructure_ID>-<node_role>
 openshiftClusterID: <infrastructure_ID>
 tags:
 - openshiftClusterID=<infrastructure_ID>
 trunk: true
 userDataSecret:
 name: <node_role>-user-data
 availabilityZone: <optional_openstack_availability_zone>
	[image: 1]
	
									Add the UUID of your server group here.
								

	
							Optional: Back up the manifests/99_openshift-cluster-api_worker-machineset-0.yaml file. The installation program deletes the manifests/ directory when creating the cluster.
						

					When you install the cluster, the installer uses the MachineSet definition that you modified to create compute machines within your RHOSP server group.
				

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Enabling access to the environment

					At deployment, all OpenShift Container Platform machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
				

					You can configure OpenShift Container Platform API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
				
Enabling access with floating IP addresses

						Create floating IP (FIP) addresses for external access to the OpenShift Container Platform API and cluster applications.
					
Procedure
	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
							
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>

	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
							
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>

	
								Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
							
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
Note

									If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your /etc/hosts file:
								
	
											<api_floating_ip> api.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> grafana-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> oauth-openshift.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
										
	
											application_floating_ip integrated-oauth-server-openshift-authentication.apps.<cluster_name>.<base_domain>
										

									The cluster domain names in the /etc/hosts file grant access to the web console and the monitoring interface of your cluster locally. You can also use the kubectl or oc. You can access the user applications by using the additional entries pointing to the <application_floating_ip>. This action makes the API and applications accessible to only you, which is not suitable for production deployment, but does allow installation for development and testing.
								

	
								Add the FIPs to the install-config.yaml file as the values of the following parameters:
							
	
										platform.openstack.ingressFloatingIP
									
	
										platform.openstack.lbFloatingIP
									

						If you use these values, you must also enter an external network as the value of the platform.openstack.externalNetwork parameter in the install-config.yaml file.
					
Tip

						You can make OpenShift Container Platform resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration.
					

Completing installation without floating IP addresses

						You can install OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
					

						In the install-config.yaml file, do not define the following parameters:
					
	
								platform.openstack.ingressFloatingIP
							
	
								platform.openstack.lbFloatingIP
							

						If you cannot provide an external network, you can also leave platform.openstack.externalNetwork blank. If you do not provide a value for platform.openstack.externalNetwork, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. You must configure external connectivity on your own.
					

						If you run the installer from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
					
Note

							You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
						
api.<cluster_name>.<base_domain>. IN A <api_port_IP>
*.apps.<cluster_name>.<base_domain>. IN A <ingress_port_IP>

							If you do not control the DNS server, you can add the record to your /etc/hosts file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Verifying cluster status

					You can verify your OpenShift Container Platform cluster’s status during or after installation.
				
Procedure
	
							In the cluster environment, export the administrator’s kubeconfig file:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

							The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
						

	
							View the control plane and compute machines created after a deployment:
						
$ oc get nodes

	
							View your cluster’s version:
						
$ oc get clusterversion

	
							View your Operators' status:
						
$ oc get clusteroperator

	
							View all running pods in the cluster:
						
$ oc get pods -A

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If you need to enable external access to node ports, configure ingress cluster traffic by using a node port.
						
	
							If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.
						

Installing a cluster on OpenStack on your own infrastructure

				In OpenShift Container Platform version 4.6, you can install a cluster on Red Hat OpenStack Platform (RHOSP) that runs on user-provisioned infrastructure.
			

				Using your own infrastructure allows you to integrate your cluster with existing infrastructure and modifications. The process requires more labor on your part than installer-provisioned installations, because you must create all RHOSP resources, like Nova servers, Neutron ports, and security groups. However, Red Hat provides Ansible playbooks to help you in the deployment process.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
									Verify that OpenShift Container Platform 4.6 is compatible with your RHOSP version in the Available platforms section. You can also compare platform support across different versions by viewing the OpenShift Container Platform on RHOSP support matrix.
								

	
							Verify that your network configuration does not rely on a provider network. Provider networks are not supported.
						
	
							Have an RHOSP account where you want to install OpenShift Container Platform.
						
	
							On the machine from which you run the installation program, have:
						
	
									A single directory in which you can keep the files you create during the installation process
								
	
									Python 3
								

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Resource guidelines for installing OpenShift Container Platform on RHOSP

					To support an OpenShift Container Platform installation, your Red Hat OpenStack Platform (RHOSP) quota must meet the following requirements:
				
Table 9.13. Recommended resources for a default OpenShift Container Platform cluster on RHOSP
	Resource	Value
	
									Floating IP addresses
								

								 	
									3
								

								
	
									Ports
								

								 	
									15
								

								
	
									Routers
								

								 	
									1
								

								
	
									Subnets
								

								 	
									1
								

								
	
									RAM
								

								 	
									112 GB
								

								
	
									vCPUs
								

								 	
									28
								

								
	
									Volume storage
								

								 	
									275 GB
								

								
	
									Instances
								

								 	
									7
								

								
	
									Security groups
								

								 	
									3
								

								
	
									Security group rules
								

								 	
									60
								

								

					A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
				
Important

						If RHOSP object storage (Swift) is available and operated by a user account with the swiftoperator role, it is used as the default backend for the OpenShift Container Platform image registry. In this case, the volume storage requirement is 175 GB. Swift space requirements vary depending on the size of the image registry.
					

Note

						By default, your security group and security group rule quotas might be low. If you encounter problems, run openstack quota set --secgroups 3 --secgroup-rules 60 <project> as an administrator to increase them.
					

					An OpenShift Container Platform deployment comprises control plane machines, compute machines, and a bootstrap machine.
				
Control plane machines

						By default, the OpenShift Container Platform installation process creates three control plane machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Compute machines

						By default, the OpenShift Container Platform installation process creates three compute machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 8 GB memory, 2 vCPUs, and 100 GB storage space
							

Tip

						Compute machines host the applications that you run on OpenShift Container Platform; aim to run as many as you can.
					

Bootstrap machine

						During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
					

						The bootstrap machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Downloading playbook dependencies

					The Ansible playbooks that simplify the installation process on user-provisioned infrastructure require several Python modules. On the machine where you will run the installer, add the modules' repositories and then download them.
				
Note

						These instructions assume that you are using Red Hat Enterprise Linux (RHEL) 8.
					

Prerequisites
	
							Python 3 is installed on your machine.
						

Procedure
	
							On a command line, add the repositories:
						
	
									Register with Red Hat Subscription Manager:
								
$ sudo subscription-manager register # If not done already

	
									Pull the latest subscription data:
								
$ sudo subscription-manager attach --pool=$YOUR_POOLID # If not done already

	
									Disable the current repositories:
								
$ sudo subscription-manager repos --disable=* # If not done already

	
									Add the required repositories:
								
$ sudo subscription-manager repos \
 --enable=rhel-8-for-x86_64-baseos-rpms \
 --enable=openstack-16-tools-for-rhel-8-x86_64-rpms \
 --enable=ansible-2.9-for-rhel-8-x86_64-rpms \
 --enable=rhel-8-for-x86_64-appstream-rpms

	
							Install the modules:
						
$ sudo yum install python3-openstackclient ansible python3-openstacksdk python3-netaddr

	
							Ensure that the python command points to python3:
						
$ sudo alternatives --set python /usr/bin/python3

Downloading the installation playbooks

					Download Ansible playbooks that you can use to install OpenShift Container Platform on your own Red Hat OpenStack Platform (RHOSP) infrastructure.
				
Prerequisites
	
							The curl command-line tool is available on your machine.
						

Procedure
	
							To download the playbooks to your working directory, run the following script from a command line:
						
$ xargs -n 1 curl -O <<< '
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/bootstrap.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/common.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/compute-nodes.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/control-plane.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/inventory.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/network.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/security-groups.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-bootstrap.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-compute-nodes.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-control-plane.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-load-balancers.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-network.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-security-groups.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-containers.yaml'

					The playbooks are downloaded to your machine.
				
Important

						During the installation process, you can modify the playbooks to configure your deployment.
					

						Retain all playbooks for the life of your cluster. You must have the playbooks to remove your OpenShift Container Platform cluster from RHOSP.
					

Important

						You must match any edits you make in the bootstrap.yaml, compute-nodes.yaml, control-plane.yaml, network.yaml, and security-groups.yaml files to the corresponding playbooks that are prefixed with down-. For example, edits to the bootstrap.yaml file must be reflected in the down-bootstrap.yaml file, too. If you do not edit both files, the supported cluster removal process will fail.
					

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Creating the Red Hat Enterprise Linux CoreOS (RHCOS) image

					The OpenShift Container Platform installation program requires that a Red Hat Enterprise Linux CoreOS (RHCOS) image be present in the Red Hat OpenStack Platform (RHOSP) cluster. Retrieve the latest RHCOS image, then upload it using the RHOSP CLI.
				
Prerequisites
	
							The RHOSP CLI is installed.
						

Procedure
	
							Log in to the Red Hat Customer Portal’s Product Downloads page.
						
	
							Under Version, select the most recent release of OpenShift Container Platform 4.6 for Red Hat Enterprise Linux (RHEL) 8.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available.
							

	
							Download the Red Hat Enterprise Linux CoreOS (RHCOS) - OpenStack Image (QCOW).
						
	
							Decompress the image.
						
Note

								You must decompress the RHOSP image before the cluster can use it. The name of the downloaded file might not contain a compression extension, like .gz or .tgz. To find out if or how the file is compressed, in a command line, enter:
							
$ file <name_of_downloaded_file>

	
							From the image that you downloaded, create an image that is named rhcos in your cluster by using the RHOSP CLI:
						
$ openstack image create --container-format=bare --disk-format=qcow2 --file rhcos-${RHCOS_VERSION}-openstack.qcow2 rhcos
Important

								Depending on your RHOSP environment, you might be able to upload the image in either .raw or .qcow2 formats. If you use Ceph, you must use the .raw format.
							

Warning

								If the installation program finds multiple images with the same name, it chooses one of them at random. To avoid this behavior, create unique names for resources in RHOSP.
							

					After you upload the image to RHOSP, it is usable in the installation process.
				

Verifying external network access

					The OpenShift Container Platform installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Configure OpenStack’s networking service to have DHCP agents forward instances' DNS queries
						

Procedure
	
							Using the RHOSP CLI, verify the name and ID of the 'External' network:
						
$ openstack network list --long -c ID -c Name -c "Router Type"
Example output

								

+--------------------------------------+----------------+-------------+
| ID | Name | Router Type |
+--------------------------------------+----------------+-------------+
| 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External |
+--------------------------------------+----------------+-------------+

							

					A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.
				
Note

						If the Neutron trunk service plug-in is enabled, a trunk port is created by default. For more information, see Neutron trunk port.
					

Enabling access to the environment

					At deployment, all OpenShift Container Platform machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
				

					You can configure OpenShift Container Platform API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
				
Enabling access with floating IP addresses

						Create floating IP (FIP) addresses for external access to the OpenShift Container Platform API, cluster applications, and the bootstrap process.
					
Procedure
	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
							
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>

	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
							
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>

	
								By using the Red Hat OpenStack Platform (RHOSP) CLI, create the bootstrap FIP:
							
$ openstack floating ip create --description "bootstrap machine" <external_network>

	
								Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
							
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
Note

									If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your /etc/hosts file:
								
	
											<api_floating_ip> api.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> grafana-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> oauth-openshift.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
										
	
											application_floating_ip integrated-oauth-server-openshift-authentication.apps.<cluster_name>.<base_domain>
										

									The cluster domain names in the /etc/hosts file grant access to the web console and the monitoring interface of your cluster locally. You can also use the kubectl or oc. You can access the user applications by using the additional entries pointing to the <application_floating_ip>. This action makes the API and applications accessible to only you, which is not suitable for production deployment, but does allow installation for development and testing.
								

	
								Add the FIPs to the inventory.yaml file as the values of the following variables:
							
	
										os_api_fip
									
	
										os_bootstrap_fip
									
	
										os_ingress_fip
									

						If you use these values, you must also enter an external network as the value of the os_external_network variable in the inventory.yaml file.
					
Tip

						You can make OpenShift Container Platform resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration.
					

Completing installation without floating IP addresses

						You can install OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
					

						In the inventory.yaml file, do not define the following variables:
					
	
								os_api_fip
							
	
								os_bootstrap_fip
							
	
								os_ingress_fip
							

						If you cannot provide an external network, you can also leave os_external_network blank. If you do not provide a value for os_external_network, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. Later in the installation process, when you create network resources, you must configure external connectivity on your own.
					

						If you run the installer with the wait-for command from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
					
Note

							You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
						
api.<cluster_name>.<base_domain>. IN A <api_port_IP>
*.apps.<cluster_name>.<base_domain>. IN A <ingress_port_IP>

							If you do not control the DNS server, you can add the record to your /etc/hosts file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.
						

Defining parameters for the installation program

					The OpenShift Container Platform installation program relies on a file that is called clouds.yaml. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
				
Procedure
	
							Create the clouds.yaml file:
						
	
									If your RHOSP distribution includes the Horizon web UI, generate a clouds.yaml file in it.
								
Important

										Remember to add a password to the auth field. You can also keep secrets in a separate file from clouds.yaml.
									

	
									If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml, see Config files in the RHOSP documentation.
								
clouds:
 shiftstack:
 auth:
 auth_url: http://10.10.14.42:5000/v3
 project_name: shiftstack
 username: shiftstack_user
 password: XXX
 user_domain_name: Default
 project_domain_name: Default
 dev-env:
 region_name: RegionOne
 auth:
 username: 'devuser'
 password: XXX
 project_name: 'devonly'
 auth_url: 'https://10.10.14.22:5001/v2.0'

	
							If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
						
	
									Copy the certificate authority file to your machine.
								
	
									Add the machine to the certificate authority trust bundle:
								
$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

	
									Update the trust bundle:
								
$ sudo update-ca-trust extract

	
									Add the cacerts key to the clouds.yaml file. The value must be an absolute, non-root-accessible path to the CA certificate:
								
clouds:
 shiftstack:
 ...
 cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
Tip

									After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the ca-cert.pem key in the cloud-provider-config keymap. On a command line, run:
								
$ oc edit configmap -n openshift-config cloud-provider-config

	
							Place the clouds.yaml file in one of the following locations:
						
	
									The value of the OS_CLIENT_CONFIG_FILE environment variable
								
	
									The current directory
								
	
									A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml
								
	
									A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml
								

									The installation program searches for clouds.yaml in that order.
								

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select openstack as the platform to target.
										
	
											Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
										
	
											Specify the floating IP address to use for external access to the OpenShift API.
										
	
											Specify a RHOSP flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.
										
	
											Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
										
	
											Enter a name for your cluster. The name must be 14 or fewer characters long.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

					You now have the file install-config.yaml in the directory that you specified.
				

Installation configuration parameters

					Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
				
Note

						After installation, you cannot modify these parameters in the install-config.yaml file.
					

Important

						The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
					

Required configuration parameters

						Required installation configuration parameters are described in the following table:
					
Table 9.14. Required parameters
	Parameter	Description	Values
	
										apiVersion
									

									 	
										The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
									

									 	
										String
									

									
	
										baseDomain
									

									 	
										The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
									

									 	
										A fully-qualified domain or subdomain name, such as example.com.
									

									
	
										metadata
									

									 	
										Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
									

									 	
										Object
									

									
	
										metadata.name
									

									 	
										The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
									

									 	
										String of lowercase letters, hyphens (-), and periods (.), such as dev. The string must be 14 characters or fewer long.
									

									
	
										platform
									

									 	
										The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
									

									 	
										Object
									

									
	
										pullSecret
									

									 	
										Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
									

									 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

									

Network configuration parameters

						You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
					

						Only IPv4 addresses are supported.
					
Table 9.15. Network parameters
	Parameter	Description	Values
	
										networking
									

									 	
										The configuration for the cluster network.
									

									 	
										Object
									

									 Note

											You cannot modify parameters specified by the networking object after installation.
										

									
	
										networking.networkType
									

									 	
										The cluster network provider Container Network Interface (CNI) plug-in to install.
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
									

									
	
										networking.clusterNetwork
									

									 	
										The IP address blocks for pods.
									

									
										The default value is 10.128.0.0/14 with a host prefix of /23.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

									
	
										networking.clusterNetwork.cidr
									

									 	
										Required if you use networking.clusterNetwork. An IP address block.
									

									
										An IPv4 network.
									

									 	
										An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
									

									
	
										networking.clusterNetwork.hostPrefix
									

									 	
										The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
									

									 	
										A subnet prefix.
									

									
										The default value is 23.
									

									
	
										networking.serviceNetwork
									

									 	
										The IP address block for services. The default value is 172.30.0.0/16.
									

									
										The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
									

									 	
										An array with an IP address block in CIDR format. For example:
									

									
networking:
 serviceNetwork:
 - 172.30.0.0/16

									
	
										networking.machineNetwork
									

									 	
										The IP address blocks for machines.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

									
	
										networking.machineNetwork.cidr
									

									 	
										Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
									

									 	
										An IP network block in CIDR notation.
									

									
										For example, 10.0.0.0/16.
									

									 Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

									

Optional configuration parameters

						Optional installation configuration parameters are described in the following table:
					
Table 9.16. Optional parameters
	Parameter	Description	Values
	
										additionalTrustBundle
									

									 	
										A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
									

									 	
										String
									

									
	
										compute
									

									 	
										The configuration for the machines that comprise the compute nodes.
									

									 	
										Array of machine-pool objects. For details, see the following "Machine-pool" table.
									

									
	
										compute.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										compute.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										compute.name
									

									 	
										Required if you use compute. The name of the machine pool.
									

									 	
										worker
									

									
	
										compute.platform
									

									 	
										Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										compute.replicas
									

									 	
										The number of compute machines, which are also known as worker machines, to provision.
									

									 	
										A positive integer greater than or equal to 2. The default value is 3.
									

									
	
										controlPlane
									

									 	
										The configuration for the machines that comprise the control plane.
									

									 	
										Array of MachinePool objects. For details, see the following "Machine-pool" table.
									

									
	
										controlPlane.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										controlPlane.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										controlPlane.name
									

									 	
										Required if you use controlPlane. The name of the machine pool.
									

									 	
										master
									

									
	
										controlPlane.platform
									

									 	
										Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										controlPlane.replicas
									

									 	
										The number of control plane machines to provision.
									

									 	
										The only supported value is 3, which is the default value.
									

									
	
										credentialsMode
									

									 	
										The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
									

									 Note

											Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
										

									 	
										Mint, Passthrough, Manual, or an empty string ("").
									

									
	
										fips
									

									 	
										Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
									

									 Important

											The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
										

									 Note

											If you are using Azure File storage, you cannot enable FIPS mode.
										

									 	
										false or true
									

									
	
										imageContentSources
									

									 	
										Sources and repositories for the release-image content.
									

									 	
										Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
									

									
	
										imageContentSources.source
									

									 	
										Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
									

									 	
										String
									

									
	
										imageContentSources.mirrors
									

									 	
										Specify one or more repositories that may also contain the same images.
									

									 	
										Array of strings
									

									
	
										publish
									

									 	
										How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
									

									 	
										Internal or External. The default value is External.
									

									
										Setting this field to Internal is not supported on non-cloud platforms.
									

									 Important

											If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
										

									
	
										sshKey
									

									 	
										The SSH key or keys to authenticate access your cluster machines.
									

									 Note

											For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
										

									 	
										One or more keys. For example:
									

									
sshKey:
 <key1>
 <key2>
 <key3>

									

Additional Red Hat OpenStack Platform (RHOSP) configuration parameters

						Additional RHOSP configuration parameters are described in the following table:
					
Table 9.17. Additional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.rootVolume.size
									

									 	
										For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										compute.platform.openstack.rootVolume.type
									

									 	
										For compute machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										controlPlane.platform.openstack.rootVolume.size
									

									 	
										For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										controlPlane.platform.openstack.rootVolume.type
									

									 	
										For control plane machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										platform.openstack.cloud
									

									 	
										The name of the RHOSP cloud to use from the list of clouds in the clouds.yaml file.
									

									 	
										String, for example MyCloud.
									

									
	
										platform.openstack.externalNetwork
									

									 	
										The RHOSP external network name to be used for installation.
									

									 	
										String, for example external.
									

									
	
										platform.openstack.computeFlavor
									

									 	
										The RHOSP flavor to use for control plane and compute machines.
									

									 	
										String, for example m1.xlarge.
									

									

Optional RHOSP configuration parameters

						Optional RHOSP configuration parameters are described in the following table:
					
Table 9.18. Optional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										compute.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with compute machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										compute.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										controlPlane.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										controlPlane.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with control plane machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										controlPlane.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										platform.openstack.clusterOSImage
									

									 	
										The location from which the installer downloads the RHCOS image.
									

									
										You must set this parameter to perform an installation in a restricted network.
									

									 	
										An HTTP or HTTPS URL, optionally with an SHA-256 checksum.
									

									
										For example, http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d. The value can also be the name of an existing Glance image, for example my-rhcos.
									

									
	
										platform.openstack.defaultMachinePlatform
									

									 	
										The default machine pool platform configuration.
									

									 	
{
 "type": "ml.large",
 "rootVolume": {
 "size": 30,
 "type": "performance"
 }
}

									
	
										platform.openstack.ingressFloatingIP
									

									 	
										An existing floating IP address to associate with the Ingress port. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.lbFloatingIP
									

									 	
										An existing floating IP address to associate with the API load balancer. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.externalDNS
									

									 	
										IP addresses for external DNS servers that cluster instances use for DNS resolution.
									

									 	
										A list of IP addresses as strings. For example, ["8.8.8.8", "192.168.1.12"].
									

									
	
										platform.openstack.machinesSubnet
									

									 	
										The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet.
									

									
										The first item in networking.machineNetwork must match the value of machinesSubnet.
									

									
										If you deploy to a custom subnet, you cannot specify an external DNS server to the OpenShift Container Platform installer. Instead, add DNS to the subnet in RHOSP.
									

									 	
										A UUID as a string. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									

Custom subnets in RHOSP deployments

						Optionally, you can deploy a cluster on a Red Hat OpenStack Platform (RHOSP) subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet in the install-config.yaml file.
					

						This subnet is used as the cluster’s primary subnet; nodes and ports are created on it.
					

						Before you run the OpenShift Container Platform installer with a custom subnet, verify that:
					
	
								The target network and subnet are available.
							
	
								DHCP is enabled on the target subnet.
							
	
								You can provide installer credentials that have permission to create ports on the target network.
							
	
								If your network configuration requires a router, it is created in RHOSP. Some configurations rely on routers for floating IP address translation.
							
	
								Your network configuration does not rely on a provider network. Provider networks are not supported.
							

Note

							By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values, set values for platform.openstack.apiVIP and platform.openstack.ingressVIP that are outside of the DHCP allocation pool.
						

Sample customized install-config.yaml file for RHOSP

						This sample install-config.yaml demonstrates all of the possible Red Hat OpenStack Platform (RHOSP) customization options.
					
Important

							This sample file is provided for reference only. You must obtain your install-config.yaml file by using the installation program.
						

apiVersion: v1
baseDomain: example.com
clusterID: os-test
controlPlane:
 name: master
 platform: {}
 replicas: 3
compute:
- name: worker
 platform:
 openstack:
 type: ml.large
 replicas: 3
metadata:
 name: example
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 serviceNetwork:
 - 172.30.0.0/16
 networkType: OpenShiftSDN
platform:
 openstack:
 cloud: mycloud
 externalNetwork: external
 computeFlavor: m1.xlarge
 lbFloatingIP: 128.0.0.1
fips: false
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

Setting a custom subnet for machines

						The IP range that the installation program uses by default might not match the Neutron subnet that you create when you install OpenShift Container Platform. If necessary, update the CIDR value for new machines by editing the installation configuration file.
					
Prerequisites
	
								You have the install-config.yaml file that was generated by the OpenShift Container Platform installation program.
							

Procedure
	
								On a command line, browse to the directory that contains install-config.yaml.
							
	
								From that directory, either run a script to edit the install-config.yaml file or update the file manually:
							
	
										To set the value by using a script, run:
									
$ python -c '
import yaml;
path = "install-config.yaml";
data = yaml.safe_load(open(path));
data["networking"]["machineNetwork"] = [{"cidr": "192.168.0.0/18"}]; [image: 1]
open(path, "w").write(yaml.dump(data, default_flow_style=False))'
	[image: 1]
	
												Insert a value that matches your intended Neutron subnet, e.g. 192.0.2.0/24.
											

	
										To set the value manually, open the file and set the value of networking.machineCIDR to something that matches your intended Neutron subnet.
									

Emptying compute machine pools

						To proceed with an installation that uses your own infrastructure, set the number of compute machines in the installation configuration file to zero. Later, you create these machines manually.
					
Prerequisites
	
								You have the install-config.yaml file that was generated by the OpenShift Container Platform installation program.
							

Procedure
	
								On a command line, browse to the directory that contains install-config.yaml.
							
	
								From that directory, either run a script to edit the install-config.yaml file or update the file manually:
							
	
										To set the value by using a script, run:
									
$ python -c '
import yaml;
path = "install-config.yaml";
data = yaml.safe_load(open(path));
data["compute"][0]["replicas"] = 0;
open(path, "w").write(yaml.dump(data, default_flow_style=False))'

	
										To set the value manually, open the file and set the value of compute.<first entry>.replicas to 0.
									

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:
						
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

							Because you create and manage these resources yourself, you do not have to initialize them.
						
	
									You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

	
							Export the metadata file’s infraID key as an environment variable:
						
$ export INFRA_ID=$(jq -r .infraID metadata.json)

Tip

					Extract the infraID key from metadata.json and use it as a prefix for all of the RHOSP resources that you create. By doing so, you avoid name conflicts when making multiple deployments in the same project.
				

Preparing the bootstrap Ignition files

					The OpenShift Container Platform installation process relies on bootstrap machines that are created from a bootstrap Ignition configuration file.
				

					Edit the file and upload it. Then, create a secondary bootstrap Ignition configuration file that Red Hat OpenStack Platform (RHOSP) uses to download the primary file.
				
Prerequisites
	
							You have the bootstrap Ignition file that the installer program generates, bootstrap.ign.
						
	
							The infrastructure ID from the installer’s metadata file is set as an environment variable ($INFRA_ID).
						
	
									If the variable is not set, see Creating the Kubernetes manifest and Ignition config files.
								

	
							You have an HTTP(S)-accessible way to store the bootstrap Ignition file.
						
	
									The documented procedure uses the RHOSP image service (Glance), but you can also use the RHOSP storage service (Swift), Amazon S3, an internal HTTP server, or an ad hoc Nova server.
								

Procedure
	
							Run the following Python script. The script modifies the bootstrap Ignition file to set the hostname and, if available, CA certificate file when it runs:
						
import base64
import json
import os

with open('bootstrap.ign', 'r') as f:
 ignition = json.load(f)

files = ignition['storage'].get('files', [])

infra_id = os.environ.get('INFRA_ID', 'openshift').encode()
hostname_b64 = base64.standard_b64encode(infra_id + b'-bootstrap\n').decode().strip()
files.append(
{
 'path': '/etc/hostname',
 'mode': 420,
 'contents': {
 'source': 'data:text/plain;charset=utf-8;base64,' + hostname_b64
 }
})

ca_cert_path = os.environ.get('OS_CACERT', '')
if ca_cert_path:
 with open(ca_cert_path, 'r') as f:
 ca_cert = f.read().encode()
 ca_cert_b64 = base64.standard_b64encode(ca_cert).decode().strip()

 files.append(
 {
 'path': '/opt/openshift/tls/cloud-ca-cert.pem',
 'mode': 420,
 'contents': {
 'source': 'data:text/plain;charset=utf-8;base64,' + ca_cert_b64
 }
 })

ignition['storage']['files'] = files;

with open('bootstrap.ign', 'w') as f:
 json.dump(ignition, f)

	
							Using the RHOSP CLI, create an image that uses the bootstrap Ignition file:
						
$ openstack image create --disk-format=raw --container-format=bare --file bootstrap.ign <image_name>

	
							Get the image’s details:
						
$ openstack image show <image_name>

							Make a note of the file value; it follows the pattern v2/images/<image_ID>/file.
						
Note

								Verify that the image you created is active.
							

	
							Retrieve the image service’s public address:
						
$ openstack catalog show image

	
							Combine the public address with the image file value and save the result as the storage location. The location follows the pattern <image_service_public_URL>/v2/images/<image_ID>/file.
						
	
							Generate an auth token and save the token ID:
						
$ openstack token issue -c id -f value

	
							Insert the following content into a file called $INFRA_ID-bootstrap-ignition.json and edit the placeholders to match your own values:
						
{
 "ignition": {
 "config": {
 "merge": [{
 "source": "<storage_url>", [image: 1]
 "httpHeaders": [{
 "name": "X-Auth-Token", [image: 2]
 "value": "<token_ID>" [image: 3]
 }]
 }]
 },
 "security": {
 "tls": {
 "certificateAuthorities": [{
 "source": "data:text/plain;charset=utf-8;base64,<base64_encoded_certificate>" [image: 4]
 }]
 }
 },
 "version": "3.1.0"
 }
}
	[image: 1]
	
									Replace the value of ignition.config.merge.source with the bootstrap Ignition file storage URL.
								

	[image: 2]
	
									Set name in httpHeaders to "X-Auth-Token".
								

	[image: 3]
	
									Set value in httpHeaders to your token’s ID.
								

	[image: 4]
	
									If the bootstrap Ignition file server uses a self-signed certificate, include the base64-encoded certificate.
								

	
							Save the secondary Ignition config file.
						

					The bootstrap Ignition data will be passed to RHOSP during installation.
				
Warning

						The bootstrap Ignition file contains sensitive information, like clouds.yaml credentials. Ensure that you store it in a secure place, and delete it after you complete the installation process.
					

Creating control plane Ignition config files on RHOSP

					Installing OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) on your own infrastructure requires control plane Ignition config files. You must create multiple config files.
				
Note

						As with the bootstrap Ignition configuration, you must explicitly define a hostname for each control plane machine.
					

Prerequisites
	
							The infrastructure ID from the installation program’s metadata file is set as an environment variable ($INFRA_ID).
						
	
									If the variable is not set, see "Creating the Kubernetes manifest and Ignition config files."
								

Procedure
	
							On a command line, run the following Python script:
						
$ for index in $(seq 0 2); do
 MASTER_HOSTNAME="$INFRA_ID-master-$index\n"
 python -c "import base64, json, sys;
ignition = json.load(sys.stdin);
storage = ignition.get('storage', {});
files = storage.get('files', []);
files.append({'path': '/etc/hostname', 'mode': 420, 'contents': {'source': 'data:text/plain;charset=utf-8;base64,' + base64.standard_b64encode(b'$MASTER_HOSTNAME').decode().strip(), 'verification': {}}, 'filesystem': 'root'});
storage['files'] = files;
ignition['storage'] = storage
json.dump(ignition, sys.stdout)" <master.ign >"$INFRA_ID-master-$index-ignition.json"
done

							You now have three control plane Ignition files: <INFRA_ID>-master-0-ignition.json, <INFRA_ID>-master-1-ignition.json, and <INFRA_ID>-master-2-ignition.json.
						

Creating network resources on RHOSP

					Create the network resources that an OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) installation on your own infrastructure requires. To save time, run supplied Ansible playbooks that generate security groups, networks, subnets, routers, and ports.
				
Prerequisites
	
							Python 3 is installed on your machine.
						
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						

Procedure
	
							Optional: Add an external network value to the inventory.yaml playbook:
						
Example external network value in the inventory.yaml Ansible playbook

								

...
 # The public network providing connectivity to the cluster. If not
 # provided, the cluster external connectivity must be provided in another
 # way.

 # Required for os_api_fip, os_ingress_fip, os_bootstrap_fip.
 os_external_network: 'external'
...

							
Important

								If you did not provide a value for os_external_network in the inventory.yaml file, you must ensure that VMs can access Glance and an external connection yourself.
							

	
							Optional: Add external network and floating IP (FIP) address values to the inventory.yaml playbook:
						
Example FIP values in the inventory.yaml Ansible playbook

								

...
 # OpenShift API floating IP address. If this value is non-empty, the
 # corresponding floating IP will be attached to the Control Plane to
 # serve the OpenShift API.
 os_api_fip: '203.0.113.23'

 # OpenShift Ingress floating IP address. If this value is non-empty, the
 # corresponding floating IP will be attached to the worker nodes to serve
 # the applications.
 os_ingress_fip: '203.0.113.19'

 # If this value is non-empty, the corresponding floating IP will be
 # attached to the bootstrap machine. This is needed for collecting logs
 # in case of install failure.
 os_bootstrap_fip: '203.0.113.20'

							
Important

								If you do not define values for os_api_fip and os_ingress_fip, you must perform post-installation network configuration.
							

								If you do not define a value for os_bootstrap_fip, the installer cannot download debugging information from failed installations.
							

								See "Enabling access to the environment" for more information.
							

	
							On a command line, create security groups by running the security-groups.yaml playbook:
						
$ ansible-playbook -i inventory.yaml security-groups.yaml

	
							On a command line, create a network, subnet, and router by running the network.yaml playbook:
						
$ ansible-playbook -i inventory.yaml network.yaml

	
							Optional: If you want to control the default resolvers that Nova servers use, run the RHOSP CLI command:
						
$ openstack subnet set --dns-nameserver <server_1> --dns-nameserver <server_2> "$INFRA_ID-nodes"

Creating the bootstrap machine on RHOSP

					Create a bootstrap machine and give it the network access it needs to run on Red Hat OpenStack Platform (RHOSP). Red Hat provides an Ansible playbook that you run to simplify this process.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The inventory.yaml, common.yaml, and bootstrap.yaml Ansible playbooks are in a common directory.
						
	
							The metadata.json file that the installation program created is in the same directory as the Ansible playbooks.
						

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							On a command line, run the bootstrap.yaml playbook:
						
$ ansible-playbook -i inventory.yaml bootstrap.yaml

	
							After the bootstrap server is active, view the logs to verify that the Ignition files were received:
						
$ openstack console log show "$INFRA_ID-bootstrap"

Creating the control plane machines on RHOSP

					Create three control plane machines by using the Ignition config files that you generated. Red Hat provides an Ansible playbook that you run to simplify this process.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The infrastructure ID from the installation program’s metadata file is set as an environment variable ($INFRA_ID).
						
	
							The inventory.yaml, common.yaml, and control-plane.yaml Ansible playbooks are in a common directory.
						
	
							You have the three Ignition files that were created in "Creating control plane Ignition config files."
						

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							If the control plane Ignition config files aren’t already in your working directory, copy them into it.
						
	
							On a command line, run the control-plane.yaml playbook:
						
$ ansible-playbook -i inventory.yaml control-plane.yaml

	
							Run the following command to monitor the bootstrapping process:
						
$ openshift-install wait-for bootstrap-complete

							You will see messages that confirm that the control plane machines are running and have joined the cluster:
						
INFO API v1.14.6+f9b5405 up
INFO Waiting up to 30m0s for bootstrapping to complete...
...
INFO It is now safe to remove the bootstrap resources

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Deleting bootstrap resources from RHOSP

					Delete the bootstrap resources that you no longer need.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The inventory.yaml, common.yaml, and down-bootstrap.yaml Ansible playbooks are in a common directory.
						
	
							The control plane machines are running.
						
	
									If you do not know the status of the machines, see "Verifying cluster status."
								

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							On a command line, run the down-bootstrap.yaml playbook:
						
$ ansible-playbook -i inventory.yaml down-bootstrap.yaml

					The bootstrap port, server, and floating IP address are deleted.
				
Warning

						If you did not disable the bootstrap Ignition file URL earlier, do so now.
					

Creating compute machines on RHOSP

					After standing up the control plane, create compute machines. Red Hat provides an Ansible playbook that you run to simplify this process.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The inventory.yaml, common.yaml, and compute-nodes.yaml Ansible playbooks are in a common directory.
						
	
							The metadata.json file that the installation program created is in the same directory as the Ansible playbooks.
						
	
							The control plane is active.
						

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							On a command line, run the playbook:
						
$ ansible-playbook -i inventory.yaml compute-nodes.yaml

Next steps
	
							Approve the certificate signing requests for the machines.
						

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Verifying a successful installation

					Verify that the OpenShift Container Platform installation is complete.
				
Prerequisites
	
							You have the installation program (openshift-install)
						

Procedure
	
							On a command line, enter:
						
$ openshift-install --log-level debug wait-for install-complete

					The program outputs the console URL, as well as the administrator’s login information.
				

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If you need to enable external access to node ports, configure ingress cluster traffic by using a node port.
						
	
							If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.
						

Installing a cluster on OpenStack with Kuryr on your own infrastructure

				In OpenShift Container Platform version 4.6, you can install a cluster on Red Hat OpenStack Platform (RHOSP) that runs on user-provisioned infrastructure.
			

				Using your own infrastructure allows you to integrate your cluster with existing infrastructure and modifications. The process requires more labor on your part than installer-provisioned installations, because you must create all RHOSP resources, like Nova servers, Neutron ports, and security groups. However, Red Hat provides Ansible playbooks to help you in the deployment process.
			
Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
									Verify that OpenShift Container Platform 4.6 is compatible with your RHOSP version in the Available platforms section. You can also compare platform support across different versions by viewing the OpenShift Container Platform on RHOSP support matrix.
								

	
							Verify that your network configuration does not rely on a provider network. Provider networks are not supported.
						
	
							Have an RHOSP account where you want to install OpenShift Container Platform.
						
	
							On the machine from which you run the installation program, have:
						
	
									A single directory in which you can keep the files you create during the installation process
								
	
									Python 3
								

About Kuryr SDN

					Kuryr is a container network interface (CNI) plug-in solution that uses the Neutron and Octavia Red Hat OpenStack Platform (RHOSP) services to provide networking for pods and Services.
				

					Kuryr and OpenShift Container Platform integration is primarily designed for OpenShift Container Platform clusters running on RHOSP VMs. Kuryr improves the network performance by plugging OpenShift Container Platform pods into RHOSP SDN. In addition, it provides interconnectivity between pods and RHOSP virtual instances.
				

					Kuryr components are installed as pods in OpenShift Container Platform using the openshift-kuryr namespace:
				
	
							kuryr-controller - a single service instance installed on a master node. This is modeled in OpenShift Container Platform as a Deployment object.
						
	
							kuryr-cni - a container installing and configuring Kuryr as a CNI driver on each OpenShift Container Platform node. This is modeled in OpenShift Container Platform as a DaemonSet object.
						

					The Kuryr controller watches the OpenShift Container Platform API server for pod, service, and namespace create, update, and delete events. It maps the OpenShift Container Platform API calls to corresponding objects in Neutron and Octavia. This means that every network solution that implements the Neutron trunk port functionality can be used to back OpenShift Container Platform via Kuryr. This includes open source solutions such as Open vSwitch (OVS) and Open Virtual Network (OVN) as well as Neutron-compatible commercial SDNs.
				

					Kuryr is recommended for OpenShift Container Platform deployments on encapsulated RHOSP tenant networks to avoid double encapsulation, such as running an encapsulated OpenShift Container Platform SDN over an RHOSP network.
				

					If you use provider networks or tenant VLANs, you do not need to use Kuryr to avoid double encapsulation. The performance benefit is negligible. Depending on your configuration, though, using Kuryr to avoid having two overlays might still be beneficial.
				

					Kuryr is not recommended in deployments where all of the following criteria are true:
				
	
							The RHOSP version is less than 16.
						
	
							The deployment uses UDP services, or a large number of TCP services on few hypervisors.
						

					or
				
	
							The ovn-octavia Octavia driver is disabled.
						
	
							The deployment uses a large number of TCP services on few hypervisors.
						

Resource guidelines for installing OpenShift Container Platform on RHOSP with Kuryr

					When using Kuryr SDN, the pods, services, namespaces, and network policies are using resources from the RHOSP quota; this increases the minimum requirements. Kuryr also has some additional requirements on top of what a default install requires.
				

					Use the following quota to satisfy a default cluster’s minimum requirements:
				
Table 9.19. Recommended resources for a default OpenShift Container Platform cluster on RHOSP with Kuryr
	Resource	Value
	
									Floating IP addresses
								

								 	
									3 - plus the expected number of Services of LoadBalancer type
								

								
	
									Ports
								

								 	
									1500 - 1 needed per Pod
								

								
	
									Routers
								

								 	
									1
								

								
	
									Subnets
								

								 	
									250 - 1 needed per Namespace/Project
								

								
	
									Networks
								

								 	
									250 - 1 needed per Namespace/Project
								

								
	
									RAM
								

								 	
									112 GB
								

								
	
									vCPUs
								

								 	
									28
								

								
	
									Volume storage
								

								 	
									275 GB
								

								
	
									Instances
								

								 	
									7
								

								
	
									Security groups
								

								 	
									250 - 1 needed per Service and per NetworkPolicy
								

								
	
									Security group rules
								

								 	
									1000
								

								
	
									Load balancers
								

								 	
									100 - 1 needed per Service
								

								
	
									Load balancer listeners
								

								 	
									500 - 1 needed per Service-exposed port
								

								
	
									Load balancer pools
								

								 	
									500 - 1 needed per Service-exposed port
								

								

					A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
				
Important

						If RHOSP object storage (Swift) is available and operated by a user account with the swiftoperator role, it is used as the default backend for the OpenShift Container Platform image registry. In this case, the volume storage requirement is 175 GB. Swift space requirements vary depending on the size of the image registry.
					

Important

						If you are using Red Hat OpenStack Platform (RHOSP) version 16 with the Amphora driver rather than the OVN Octavia driver, security groups are associated with service accounts instead of user projects.
					

					Take the following notes into consideration when setting resources:
				
	
							The number of ports that are required is larger than the number of pods. Kuryr uses ports pools to have pre-created ports ready to be used by pods and speed up the pods' booting time.
						
	
							Each network policy is mapped into an RHOSP security group, and depending on the NetworkPolicy spec, one or more rules are added to the security group.
						
	
							Each service is mapped to an RHOSP load balancer. Consider this requirement when estimating the number of security groups required for the quota.
						

							If you are using RHOSP version 15 or earlier, or the ovn-octavia driver, each load balancer has a security group with the user project.
						

	
							The quota does not account for load balancer resources (such as VM resources), but you must consider these resources when you decide the RHOSP deployment’s size. The default installation will have more than 50 load balancers; the clusters must be able to accommodate them.
						

							If you are using RHOSP version 16 with the OVN Octavia driver enabled, only one load balancer VM is generated; services are load balanced through OVN flows.
						

					An OpenShift Container Platform deployment comprises control plane machines, compute machines, and a bootstrap machine.
				

					To enable Kuryr SDN, your environment must meet the following requirements:
				
	
							Run RHOSP 13+.
						
	
							Have Overcloud with Octavia.
						
	
							Use Neutron Trunk ports extension.
						
	
							Use openvswitch firewall driver if ML2/OVS Neutron driver is used instead of ovs-hybrid.
						

Increasing quota

						When using Kuryr SDN, you must increase quotas to satisfy the Red Hat OpenStack Platform (RHOSP) resources used by pods, services, namespaces, and network policies.
					
Procedure
	
								Increase the quotas for a project by running the following command:
							
$ sudo openstack quota set --secgroups 250 --secgroup-rules 1000 --ports 1500 --subnets 250 --networks 250 <project>

Configuring Neutron

						Kuryr CNI leverages the Neutron Trunks extension to plug containers into the Red Hat OpenStack Platform (RHOSP) SDN, so you must use the trunks extension for Kuryr to properly work.
					

						In addition, if you leverage the default ML2/OVS Neutron driver, the firewall must be set to openvswitch instead of ovs_hybrid so that security groups are enforced on trunk subports and Kuryr can properly handle network policies.
					

Configuring Octavia

						Kuryr SDN uses Red Hat OpenStack Platform (RHOSP)'s Octavia LBaaS to implement OpenShift Container Platform services. Thus, you must install and configure Octavia components in RHOSP to use Kuryr SDN.
					

						To enable Octavia, you must include the Octavia service during the installation of the RHOSP Overcloud, or upgrade the Octavia service if the Overcloud already exists. The following steps for enabling Octavia apply to both a clean install of the Overcloud or an Overcloud update.
					
Note

							The following steps only capture the key pieces required during the deployment of RHOSP when dealing with Octavia. It is also important to note that registry methods vary.
						

							This example uses the local registry method.
						

Procedure
	
								If you are using the local registry, create a template to upload the images to the registry. For example:
							
(undercloud) $ openstack overcloud container image prepare \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
--namespace=registry.access.redhat.com/rhosp13 \
--push-destination=<local-ip-from-undercloud.conf>:8787 \
--prefix=openstack- \
--tag-from-label {version}-{release} \
--output-env-file=/home/stack/templates/overcloud_images.yaml \
--output-images-file /home/stack/local_registry_images.yaml

	
								Verify that the local_registry_images.yaml file contains the Octavia images. For example:
							
...
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44
 push_destination: <local-ip-from-undercloud.conf>:8787
Note

									The Octavia container versions vary depending upon the specific RHOSP release installed.
								

	
								Pull the container images from registry.redhat.io to the Undercloud node:
							
(undercloud) $ sudo openstack overcloud container image upload \
 --config-file /home/stack/local_registry_images.yaml \
 --verbose

								This may take some time depending on the speed of your network and Undercloud disk.
							

	
								Since an Octavia load balancer is used to access the OpenShift Container Platform API, you must increase their listeners' default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout to 20 minutes by passing the following file to the Overcloud deploy command:
							
(undercloud) $ cat octavia_timeouts.yaml
parameter_defaults:
 OctaviaTimeoutClientData: 1200000
 OctaviaTimeoutMemberData: 1200000
Note

									This is not needed for RHOSP 13.0.13+.
								

	
								Install or update your Overcloud environment with Octavia:
							
$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
 -e octavia_timeouts.yaml
Note

									This command only includes the files associated with Octavia; it varies based on your specific installation of RHOSP. See the RHOSP documentation for further information. For more information on customizing your Octavia installation, see installation of Octavia using Director.
								

Note

									When leveraging Kuryr SDN, the Overcloud installation requires the Neutron trunk extension. This is available by default on director deployments. Use the openvswitch firewall instead of the default ovs-hybrid when the Neutron backend is ML2/OVS. There is no need for modifications if the backend is ML2/OVN.
								

	
								In RHOSP versions earlier than 13.0.13, add the project ID to the octavia.conf configuration file after you create the project.
							
	
										To enforce network policies across services, like when traffic goes through the Octavia load balancer, you must ensure Octavia creates the Amphora VM security groups on the user project.
									

										This change ensures that required load balancer security groups belong to that project, and that they can be updated to enforce services isolation.
									
Note

											This task is unnecessary in RHOSP version 13.0.13 or later.
										

											Octavia implements a new ACL API that restricts access to the load balancers VIP.
										

	
												Get the project ID
											
$ openstack project show <project>
Example output

													

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	
domain_id	default
enabled	True
id	PROJECT_ID
is_domain	False
name	*<project>*
parent_id	default
tags	[]
+-------------+----------------------------------+

												

	
												Add the project ID to octavia.conf for the controllers.
											
	
														Source the stackrc file:
													
$ source stackrc # Undercloud credentials

	
														List the Overcloud controllers:
													
$ openstack server list
Example output

															

+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| ID | Name | Status | Networks
| Image | Flavor |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| 6bef8e73-2ba5-4860-a0b1-3937f8ca7e01 | controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | controller |
│
| dda3173a-ab26-47f8-a2dc-8473b4a67ab9 | compute-0 | ACTIVE |
ctlplane=192.168.24.6 | overcloud-full | compute |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+

														

	
														SSH into the controller(s).
													
$ ssh heat-admin@192.168.24.8

	
														Edit the octavia.conf file to add the project into the list of projects where Amphora security groups are on the user’s account.
													
List of project IDs that are allowed to have Load balancer security groups
belonging to them.
amp_secgroup_allowed_projects = PROJECT_ID

	
												Restart the Octavia worker so the new configuration loads.
											
controller-0$ sudo docker restart octavia_worker

Note

							Depending on your RHOSP environment, Octavia might not support UDP listeners. If you use Kuryr SDN on RHOSP version 13.0.13 or earlier, UDP services are not supported. RHOSP version 16 or later support UDP.
						

The Octavia OVN Driver

							Octavia supports multiple provider drivers through the Octavia API.
						

							To see all available Octavia provider drivers, on a command line, enter:
						
$ openstack loadbalancer provider list
Example output

								

+---------+---+
| name | description |
+---------+---+
amphora	The Octavia Amphora driver.
octavia	Deprecated alias of the Octavia Amphora driver.
ovn	Octavia OVN driver.
+---------+---+

							

							Beginning with RHOSP version 16, the Octavia OVN provider driver (ovn) is supported on OpenShift Container Platform on RHOSP deployments.
						

							ovn is an integration driver for the load balancing that Octavia and OVN provide. It supports basic load balancing capabilities, and is based on OpenFlow rules. The driver is automatically enabled in Octavia by Director on deployments that use OVN Neutron ML2.
						

							The Amphora provider driver is the default driver. If ovn is enabled, however, Kuryr uses it.
						

							If Kuryr uses ovn instead of Amphora, it offers the following benefits:
						
	
									Decreased resource requirements. Kuryr does not require a load balancer VM for each service.
								
	
									Reduced network latency.
								
	
									Increased service creation speed by using OpenFlow rules instead of a VM for each service.
								
	
									Distributed load balancing actions across all nodes instead of centralized on Amphora VMs.
								

Known limitations of installing with Kuryr

						Using OpenShift Container Platform with Kuryr SDN has several known limitations.
					
RHOSP general limitations

						OpenShift Container Platform with Kuryr SDN does not support Service objects with type NodePort.
					

						If the machines subnet is not connected to a router, or if the subnet is connected, but the router has no external gateway set, Kuryr cannot create floating IPs for Service objects with type LoadBalancer.
					
	
								Configuring the sessionAffinity=ClientIP property on Service objects does not have an effect. Kuryr does not support this setting.
							

RHOSP version limitations

						Using OpenShift Container Platform with Kuryr SDN has several limitations that depend on the RHOSP version.
					
	
								RHOSP versions before 16 use the default Octavia load balancer driver (Amphora). This driver requires that one Amphora load balancer VM is deployed per OpenShift Container Platform service. Creating too many services can cause you to run out of resources.
							

								Deployments of later versions of RHOSP that have the OVN Octavia driver disabled also use the Amphora driver. They are subject to the same resource concerns as earlier versions of RHOSP.
							

	
								Octavia RHOSP versions before 13.0.13 do not support UDP listeners. Therefore, OpenShift Container Platform UDP services are not supported.
							
	
								Octavia RHOSP versions before 13.0.13 cannot listen to multiple protocols on the same port. Services that expose the same port to different protocols, like TCP and UDP, are not supported.
							
	
								Kuryr SDN does not support automatic unidling by a service.
							

RHOSP environment limitations

						There are limitations when using Kuryr SDN that depend on your deployment environment.
					

						Because of Octavia’s lack of support for the UDP protocol and multiple listeners, if the RHOSP version is earlier than 13.0.13, Kuryr forces pods to use TCP for DNS resolution.
					

						In Go versions 1.12 and earlier, applications that are compiled with CGO support disabled use UDP only. In this case, the native Go resolver does not recognize the use-vc option in resolv.conf, which controls whether TCP is forced for DNS resolution. As a result, UDP is still used for DNS resolution, which fails.
					

						To ensure that TCP forcing is allowed, compile applications either with the environment variable CGO_ENABLED set to 1, i.e. CGO_ENABLED=1, or ensure that the variable is absent.
					

						In Go versions 1.13 and later, TCP is used automatically if DNS resolution using UDP fails.
					
Note

							musl-based containers, including Alpine-based containers, do not support the use-vc option.
						

RHOSP upgrade limitations

						As a result of the RHOSP upgrade process, the Octavia API might be changed, and upgrades to the Amphora images that are used for load balancers might be required.
					

						You can address API changes on an individual basis.
					

						If the Amphora image is upgraded, the RHOSP operator can handle existing load balancer VMs in two ways:
					
	
								Upgrade each VM by triggering a load balancer failover.
							
	
								Leave responsibility for upgrading the VMs to users.
							

						If the operator takes the first option, there might be short downtimes during failovers.
					

						If the operator takes the second option, the existing load balancers will not support upgraded Octavia API features, like UDP listeners. In this case, users must recreate their Services to use these features.
					
Important

							If OpenShift Container Platform detects a new Octavia version that supports UDP load balancing, it recreates the DNS service automatically. The service recreation ensures that the service default supports UDP load balancing.
						

							The recreation causes the DNS service approximately one minute of downtime.
						

Control plane machines

						By default, the OpenShift Container Platform installation process creates three control plane machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Compute machines

						By default, the OpenShift Container Platform installation process creates three compute machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 8 GB memory, 2 vCPUs, and 100 GB storage space
							

Tip

						Compute machines host the applications that you run on OpenShift Container Platform; aim to run as many as you can.
					

Bootstrap machine

						During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
					

						The bootstrap machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Downloading playbook dependencies

					The Ansible playbooks that simplify the installation process on user-provisioned infrastructure require several Python modules. On the machine where you will run the installer, add the modules' repositories and then download them.
				
Note

						These instructions assume that you are using Red Hat Enterprise Linux (RHEL) 8.
					

Prerequisites
	
							Python 3 is installed on your machine.
						

Procedure
	
							On a command line, add the repositories:
						
	
									Register with Red Hat Subscription Manager:
								
$ sudo subscription-manager register # If not done already

	
									Pull the latest subscription data:
								
$ sudo subscription-manager attach --pool=$YOUR_POOLID # If not done already

	
									Disable the current repositories:
								
$ sudo subscription-manager repos --disable=* # If not done already

	
									Add the required repositories:
								
$ sudo subscription-manager repos \
 --enable=rhel-8-for-x86_64-baseos-rpms \
 --enable=openstack-16-tools-for-rhel-8-x86_64-rpms \
 --enable=ansible-2.9-for-rhel-8-x86_64-rpms \
 --enable=rhel-8-for-x86_64-appstream-rpms

	
							Install the modules:
						
$ sudo yum install python3-openstackclient ansible python3-openstacksdk python3-netaddr

	
							Ensure that the python command points to python3:
						
$ sudo alternatives --set python /usr/bin/python3

Downloading the installation playbooks

					Download Ansible playbooks that you can use to install OpenShift Container Platform on your own Red Hat OpenStack Platform (RHOSP) infrastructure.
				
Prerequisites
	
							The curl command-line tool is available on your machine.
						

Procedure
	
							To download the playbooks to your working directory, run the following script from a command line:
						
$ xargs -n 1 curl -O <<< '
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/bootstrap.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/common.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/compute-nodes.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/control-plane.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/inventory.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/network.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/security-groups.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-bootstrap.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-compute-nodes.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-control-plane.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-load-balancers.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-network.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-security-groups.yaml
 https://raw.githubusercontent.com/openshift/installer/release-4.6/upi/openstack/down-containers.yaml'

					The playbooks are downloaded to your machine.
				
Important

						During the installation process, you can modify the playbooks to configure your deployment.
					

						Retain all playbooks for the life of your cluster. You must have the playbooks to remove your OpenShift Container Platform cluster from RHOSP.
					

Important

						You must match any edits you make in the bootstrap.yaml, compute-nodes.yaml, control-plane.yaml, network.yaml, and security-groups.yaml files to the corresponding playbooks that are prefixed with down-. For example, edits to the bootstrap.yaml file must be reflected in the down-bootstrap.yaml file, too. If you do not edit both files, the supported cluster removal process will fail.
					

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Creating the Red Hat Enterprise Linux CoreOS (RHCOS) image

					The OpenShift Container Platform installation program requires that a Red Hat Enterprise Linux CoreOS (RHCOS) image be present in the Red Hat OpenStack Platform (RHOSP) cluster. Retrieve the latest RHCOS image, then upload it using the RHOSP CLI.
				
Prerequisites
	
							The RHOSP CLI is installed.
						

Procedure
	
							Log in to the Red Hat Customer Portal’s Product Downloads page.
						
	
							Under Version, select the most recent release of OpenShift Container Platform 4.6 for Red Hat Enterprise Linux (RHEL) 8.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available.
							

	
							Download the Red Hat Enterprise Linux CoreOS (RHCOS) - OpenStack Image (QCOW).
						
	
							Decompress the image.
						
Note

								You must decompress the RHOSP image before the cluster can use it. The name of the downloaded file might not contain a compression extension, like .gz or .tgz. To find out if or how the file is compressed, in a command line, enter:
							
$ file <name_of_downloaded_file>

	
							From the image that you downloaded, create an image that is named rhcos in your cluster by using the RHOSP CLI:
						
$ openstack image create --container-format=bare --disk-format=qcow2 --file rhcos-${RHCOS_VERSION}-openstack.qcow2 rhcos
Important

								Depending on your RHOSP environment, you might be able to upload the image in either .raw or .qcow2 formats. If you use Ceph, you must use the .raw format.
							

Warning

								If the installation program finds multiple images with the same name, it chooses one of them at random. To avoid this behavior, create unique names for resources in RHOSP.
							

					After you upload the image to RHOSP, it is usable in the installation process.
				

Verifying external network access

					The OpenShift Container Platform installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Configure OpenStack’s networking service to have DHCP agents forward instances' DNS queries
						

Procedure
	
							Using the RHOSP CLI, verify the name and ID of the 'External' network:
						
$ openstack network list --long -c ID -c Name -c "Router Type"
Example output

								

+--------------------------------------+----------------+-------------+
| ID | Name | Router Type |
+--------------------------------------+----------------+-------------+
| 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External |
+--------------------------------------+----------------+-------------+

							

					A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.
				
Note

						If the Neutron trunk service plug-in is enabled, a trunk port is created by default. For more information, see Neutron trunk port.
					

Enabling access to the environment

					At deployment, all OpenShift Container Platform machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
				

					You can configure OpenShift Container Platform API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
				
Enabling access with floating IP addresses

						Create floating IP (FIP) addresses for external access to the OpenShift Container Platform API, cluster applications, and the bootstrap process.
					
Procedure
	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
							
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>

	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
							
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>

	
								By using the Red Hat OpenStack Platform (RHOSP) CLI, create the bootstrap FIP:
							
$ openstack floating ip create --description "bootstrap machine" <external_network>

	
								Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
							
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
Note

									If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your /etc/hosts file:
								
	
											<api_floating_ip> api.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> grafana-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> oauth-openshift.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
										
	
											application_floating_ip integrated-oauth-server-openshift-authentication.apps.<cluster_name>.<base_domain>
										

									The cluster domain names in the /etc/hosts file grant access to the web console and the monitoring interface of your cluster locally. You can also use the kubectl or oc. You can access the user applications by using the additional entries pointing to the <application_floating_ip>. This action makes the API and applications accessible to only you, which is not suitable for production deployment, but does allow installation for development and testing.
								

	
								Add the FIPs to the inventory.yaml file as the values of the following variables:
							
	
										os_api_fip
									
	
										os_bootstrap_fip
									
	
										os_ingress_fip
									

						If you use these values, you must also enter an external network as the value of the os_external_network variable in the inventory.yaml file.
					
Tip

						You can make OpenShift Container Platform resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration.
					

Completing installation without floating IP addresses

						You can install OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
					

						In the inventory.yaml file, do not define the following variables:
					
	
								os_api_fip
							
	
								os_bootstrap_fip
							
	
								os_ingress_fip
							

						If you cannot provide an external network, you can also leave os_external_network blank. If you do not provide a value for os_external_network, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. Later in the installation process, when you create network resources, you must configure external connectivity on your own.
					

						If you run the installer with the wait-for command from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
					
Note

							You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
						
api.<cluster_name>.<base_domain>. IN A <api_port_IP>
*.apps.<cluster_name>.<base_domain>. IN A <ingress_port_IP>

							If you do not control the DNS server, you can add the record to your /etc/hosts file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.
						

Defining parameters for the installation program

					The OpenShift Container Platform installation program relies on a file that is called clouds.yaml. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
				
Procedure
	
							Create the clouds.yaml file:
						
	
									If your RHOSP distribution includes the Horizon web UI, generate a clouds.yaml file in it.
								
Important

										Remember to add a password to the auth field. You can also keep secrets in a separate file from clouds.yaml.
									

	
									If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml, see Config files in the RHOSP documentation.
								
clouds:
 shiftstack:
 auth:
 auth_url: http://10.10.14.42:5000/v3
 project_name: shiftstack
 username: shiftstack_user
 password: XXX
 user_domain_name: Default
 project_domain_name: Default
 dev-env:
 region_name: RegionOne
 auth:
 username: 'devuser'
 password: XXX
 project_name: 'devonly'
 auth_url: 'https://10.10.14.22:5001/v2.0'

	
							If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
						
	
									Copy the certificate authority file to your machine.
								
	
									Add the machine to the certificate authority trust bundle:
								
$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

	
									Update the trust bundle:
								
$ sudo update-ca-trust extract

	
									Add the cacerts key to the clouds.yaml file. The value must be an absolute, non-root-accessible path to the CA certificate:
								
clouds:
 shiftstack:
 ...
 cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
Tip

									After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the ca-cert.pem key in the cloud-provider-config keymap. On a command line, run:
								
$ oc edit configmap -n openshift-config cloud-provider-config

	
							Place the clouds.yaml file in one of the following locations:
						
	
									The value of the OS_CLIENT_CONFIG_FILE environment variable
								
	
									The current directory
								
	
									A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml
								
	
									A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml
								

									The installation program searches for clouds.yaml in that order.
								

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select openstack as the platform to target.
										
	
											Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
										
	
											Specify the floating IP address to use for external access to the OpenShift API.
										
	
											Specify a RHOSP flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.
										
	
											Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
										
	
											Enter a name for your cluster. The name must be 14 or fewer characters long.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

					You now have the file install-config.yaml in the directory that you specified.
				

Installation configuration parameters

					Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
				
Note

						After installation, you cannot modify these parameters in the install-config.yaml file.
					

Important

						The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
					

Required configuration parameters

						Required installation configuration parameters are described in the following table:
					
Table 9.20. Required parameters
	Parameter	Description	Values
	
										apiVersion
									

									 	
										The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
									

									 	
										String
									

									
	
										baseDomain
									

									 	
										The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
									

									 	
										A fully-qualified domain or subdomain name, such as example.com.
									

									
	
										metadata
									

									 	
										Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
									

									 	
										Object
									

									
	
										metadata.name
									

									 	
										The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
									

									 	
										String of lowercase letters, hyphens (-), and periods (.), such as dev. The string must be 14 characters or fewer long.
									

									
	
										platform
									

									 	
										The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
									

									 	
										Object
									

									
	
										pullSecret
									

									 	
										Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
									

									 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

									

Network configuration parameters

						You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
					

						Only IPv4 addresses are supported.
					
Table 9.21. Network parameters
	Parameter	Description	Values
	
										networking
									

									 	
										The configuration for the cluster network.
									

									 	
										Object
									

									 Note

											You cannot modify parameters specified by the networking object after installation.
										

									
	
										networking.networkType
									

									 	
										The cluster network provider Container Network Interface (CNI) plug-in to install.
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
									

									
	
										networking.clusterNetwork
									

									 	
										The IP address blocks for pods.
									

									
										The default value is 10.128.0.0/14 with a host prefix of /23.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

									
	
										networking.clusterNetwork.cidr
									

									 	
										Required if you use networking.clusterNetwork. An IP address block.
									

									
										An IPv4 network.
									

									 	
										An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
									

									
	
										networking.clusterNetwork.hostPrefix
									

									 	
										The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
									

									 	
										A subnet prefix.
									

									
										The default value is 23.
									

									
	
										networking.serviceNetwork
									

									 	
										The IP address block for services. The default value is 172.30.0.0/16.
									

									
										The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
									

									 	
										An array with an IP address block in CIDR format. For example:
									

									
networking:
 serviceNetwork:
 - 172.30.0.0/16

									
	
										networking.machineNetwork
									

									 	
										The IP address blocks for machines.
									

									
										If you specify multiple IP address blocks, the blocks must not overlap.
									

									 	
										An array of objects. For example:
									

									
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

									
	
										networking.machineNetwork.cidr
									

									 	
										Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
									

									 	
										An IP network block in CIDR notation.
									

									
										For example, 10.0.0.0/16.
									

									 Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

									

Optional configuration parameters

						Optional installation configuration parameters are described in the following table:
					
Table 9.22. Optional parameters
	Parameter	Description	Values
	
										additionalTrustBundle
									

									 	
										A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
									

									 	
										String
									

									
	
										compute
									

									 	
										The configuration for the machines that comprise the compute nodes.
									

									 	
										Array of machine-pool objects. For details, see the following "Machine-pool" table.
									

									
	
										compute.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										compute.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										compute.name
									

									 	
										Required if you use compute. The name of the machine pool.
									

									 	
										worker
									

									
	
										compute.platform
									

									 	
										Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										compute.replicas
									

									 	
										The number of compute machines, which are also known as worker machines, to provision.
									

									 	
										A positive integer greater than or equal to 2. The default value is 3.
									

									
	
										controlPlane
									

									 	
										The configuration for the machines that comprise the control plane.
									

									 	
										Array of MachinePool objects. For details, see the following "Machine-pool" table.
									

									
	
										controlPlane.architecture
									

									 	
										Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
									

									 	
										String
									

									
	
										controlPlane.hyperthreading
									

									 	
										Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
									

									 Important

											If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
										

									 	
										Enabled or Disabled
									

									
	
										controlPlane.name
									

									 	
										Required if you use controlPlane. The name of the machine pool.
									

									 	
										master
									

									
	
										controlPlane.platform
									

									 	
										Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
									

									 	
										aws, azure, gcp, openstack, ovirt, vsphere, or {}
									

									
	
										controlPlane.replicas
									

									 	
										The number of control plane machines to provision.
									

									 	
										The only supported value is 3, which is the default value.
									

									
	
										credentialsMode
									

									 	
										The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
									

									 Note

											Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
										

									 	
										Mint, Passthrough, Manual, or an empty string ("").
									

									
	
										fips
									

									 	
										Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
									

									 Important

											The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
										

									 Note

											If you are using Azure File storage, you cannot enable FIPS mode.
										

									 	
										false or true
									

									
	
										imageContentSources
									

									 	
										Sources and repositories for the release-image content.
									

									 	
										Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
									

									
	
										imageContentSources.source
									

									 	
										Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
									

									 	
										String
									

									
	
										imageContentSources.mirrors
									

									 	
										Specify one or more repositories that may also contain the same images.
									

									 	
										Array of strings
									

									
	
										publish
									

									 	
										How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
									

									 	
										Internal or External. The default value is External.
									

									
										Setting this field to Internal is not supported on non-cloud platforms.
									

									 Important

											If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
										

									
	
										sshKey
									

									 	
										The SSH key or keys to authenticate access your cluster machines.
									

									 Note

											For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
										

									 	
										One or more keys. For example:
									

									
sshKey:
 <key1>
 <key2>
 <key3>

									

Additional Red Hat OpenStack Platform (RHOSP) configuration parameters

						Additional RHOSP configuration parameters are described in the following table:
					
Table 9.23. Additional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.rootVolume.size
									

									 	
										For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										compute.platform.openstack.rootVolume.type
									

									 	
										For compute machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										controlPlane.platform.openstack.rootVolume.size
									

									 	
										For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
									

									 	
										Integer, for example 30.
									

									
	
										controlPlane.platform.openstack.rootVolume.type
									

									 	
										For control plane machines, the root volume’s type.
									

									 	
										String, for example performance.
									

									
	
										platform.openstack.cloud
									

									 	
										The name of the RHOSP cloud to use from the list of clouds in the clouds.yaml file.
									

									 	
										String, for example MyCloud.
									

									
	
										platform.openstack.externalNetwork
									

									 	
										The RHOSP external network name to be used for installation.
									

									 	
										String, for example external.
									

									
	
										platform.openstack.computeFlavor
									

									 	
										The RHOSP flavor to use for control plane and compute machines.
									

									 	
										String, for example m1.xlarge.
									

									

Optional RHOSP configuration parameters

						Optional RHOSP configuration parameters are described in the following table:
					
Table 9.24. Optional RHOSP parameters
	Parameter	Description	Values
	
										compute.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										compute.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with compute machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										compute.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										controlPlane.platform.openstack.additionalNetworkIDs
									

									 	
										Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks.
									

									 	
										A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									
	
										controlPlane.platform.openstack.additionalSecurityGroupIDs
									

									 	
										Additional security groups that are associated with control plane machines.
									

									 	
										A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
									

									
	
										controlPlane.platform.openstack.zones
									

									 	
										RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
									

									
										On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
									

									 	
										A list of strings. For example, ["zone-1", "zone-2"].
									

									
	
										platform.openstack.clusterOSImage
									

									 	
										The location from which the installer downloads the RHCOS image.
									

									
										You must set this parameter to perform an installation in a restricted network.
									

									 	
										An HTTP or HTTPS URL, optionally with an SHA-256 checksum.
									

									
										For example, http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d. The value can also be the name of an existing Glance image, for example my-rhcos.
									

									
	
										platform.openstack.defaultMachinePlatform
									

									 	
										The default machine pool platform configuration.
									

									 	
{
 "type": "ml.large",
 "rootVolume": {
 "size": 30,
 "type": "performance"
 }
}

									
	
										platform.openstack.ingressFloatingIP
									

									 	
										An existing floating IP address to associate with the Ingress port. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.lbFloatingIP
									

									 	
										An existing floating IP address to associate with the API load balancer. To use this property, you must also define the platform.openstack.externalNetwork property.
									

									 	
										An IP address, for example 128.0.0.1.
									

									
	
										platform.openstack.externalDNS
									

									 	
										IP addresses for external DNS servers that cluster instances use for DNS resolution.
									

									 	
										A list of IP addresses as strings. For example, ["8.8.8.8", "192.168.1.12"].
									

									
	
										platform.openstack.machinesSubnet
									

									 	
										The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet.
									

									
										The first item in networking.machineNetwork must match the value of machinesSubnet.
									

									
										If you deploy to a custom subnet, you cannot specify an external DNS server to the OpenShift Container Platform installer. Instead, add DNS to the subnet in RHOSP.
									

									 	
										A UUID as a string. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
									

									

Custom subnets in RHOSP deployments

						Optionally, you can deploy a cluster on a Red Hat OpenStack Platform (RHOSP) subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet in the install-config.yaml file.
					

						This subnet is used as the cluster’s primary subnet; nodes and ports are created on it.
					

						Before you run the OpenShift Container Platform installer with a custom subnet, verify that:
					
	
								The target network and subnet are available.
							
	
								DHCP is enabled on the target subnet.
							
	
								You can provide installer credentials that have permission to create ports on the target network.
							
	
								If your network configuration requires a router, it is created in RHOSP. Some configurations rely on routers for floating IP address translation.
							
	
								Your network configuration does not rely on a provider network. Provider networks are not supported.
							

Note

							By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values, set values for platform.openstack.apiVIP and platform.openstack.ingressVIP that are outside of the DHCP allocation pool.
						

Sample customized install-config.yaml file for RHOSP with Kuryr

						To deploy with Kuryr SDN instead of the default OpenShift SDN, you must modify the install-config.yaml file to include Kuryr as the desired networking.networkType and proceed with the default OpenShift Container Platform SDN installation steps. This sample install-config.yaml demonstrates all of the possible Red Hat OpenStack Platform (RHOSP) customization options.
					
Important

							This sample file is provided for reference only. You must obtain your install-config.yaml file by using the installation program.
						

apiVersion: v1
baseDomain: example.com
clusterID: os-test
controlPlane:
 name: master
 platform: {}
 replicas: 3
compute:
- name: worker
 platform:
 openstack:
 type: ml.large
 replicas: 3
metadata:
 name: example
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 serviceNetwork:
 - 172.30.0.0/16 [image: 1]
 networkType: Kuryr
platform:
 openstack:
 cloud: mycloud
 externalNetwork: external
 computeFlavor: m1.xlarge
 lbFloatingIP: 128.0.0.1
 trunkSupport: true [image: 2]
 octaviaSupport: true [image: 3]
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
	[image: 1]
	
								The Amphora Octavia driver creates two ports per load balancer. As a result, the service subnet that the installer creates is twice the size of the CIDR that is specified as the value of the serviceNetwork property. The larger range is required to prevent IP address conflicts.
							

	[image: 2] [image: 3]
	
								Both trunkSupport and octaviaSupport are automatically discovered by the installer, so there is no need to set them. But if your environment does not meet both requirements, Kuryr SDN will not properly work. Trunks are needed to connect the pods to the RHOSP network and Octavia is required to create the OpenShift Container Platform services.
							

Kuryr ports pools

						A Kuryr ports pool maintains a number of ports on standby for pod creation.
					

						Keeping ports on standby minimizes pod creation time. Without ports pools, Kuryr must explicitly request port creation or deletion whenever a pod is created or deleted.
					

						The Neutron ports that Kuryr uses are created in subnets that are tied to namespaces. These pod ports are also added as subports to the primary port of OpenShift Container Platform cluster nodes.
					

						Because Kuryr keeps each namespace in a separate subnet, a separate ports pool is maintained for each namespace-worker pair.
					

						Prior to installing a cluster, you can set the following parameters in the cluster-network-03-config.yml manifest file to configure ports pool behavior:
					
	
								The enablePortPoolsPrepopulation parameter controls pool prepopulation, which forces Kuryr to add ports to the pool when it is created, such as when a new host is added, or a new namespace is created. The default value is false.
							
	
								The poolMinPorts parameter is the minimum number of free ports that are kept in the pool. The default value is 1.
							
	
								The poolMaxPorts parameter is the maximum number of free ports that are kept in the pool. A value of 0 disables that upper bound. This is the default setting.
							

								If your OpenStack port quota is low, or you have a limited number of IP addresses on the pod network, consider setting this option to ensure that unneeded ports are deleted.
							

	
								The poolBatchPorts parameter defines the maximum number of Neutron ports that can be created at once. The default value is 3.
							

Adjusting Kuryr ports pools during installation

						During installation, you can configure how Kuryr manages Red Hat OpenStack Platform (RHOSP) Neutron ports to control the speed and efficiency of pod creation.
					
Prerequisites
	
								Create and modify the install-config.yaml file.
							

Procedure
	
								From a command line, create the manifest files:
							
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the name of the directory that contains the install-config.yaml file for your cluster.
									

	
								Create a file that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
							
$ touch <installation_directory>/manifests/cluster-network-03-config.yml [image: 1]
	[image: 1]
	
										For <installation_directory>, specify the directory name that contains the manifests/ directory for your cluster.
									

								After creating the file, several network configuration files are in the manifests/ directory, as shown:
							
$ ls <installation_directory>/manifests/cluster-network-*
Example output

									

cluster-network-01-crd.yml
cluster-network-02-config.yml
cluster-network-03-config.yml

								

	
								Open the cluster-network-03-config.yml file in an editor, and enter a custom resource (CR) that describes the Cluster Network Operator configuration that you want:
							
$ oc edit networks.operator.openshift.io cluster

	
								Edit the settings to meet your requirements. The following file is provided as an example:
							
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork:
 - 172.30.0.0/16
 defaultNetwork:
 type: Kuryr
 kuryrConfig:
 enablePortPoolsPrepopulation: false [image: 1]
 poolMinPorts: 1 [image: 2]
 poolBatchPorts: 3 [image: 3]
 poolMaxPorts: 5 [image: 4]
 openstackServiceNetwork: 172.30.0.0/15 [image: 5]
	[image: 1]
	
										Set the value of enablePortPoolsPrepopulation to true to make Kuryr create new Neutron ports after a namespace is created or a new node is added to the cluster. This setting raises the Neutron ports quota but can reduce the time that is required to spawn pods. The default value is false.
									

	[image: 2]
	
										Kuryr creates new ports for a pool if the number of free ports in that pool is lower than the value of poolMinPorts. The default value is 1.
									

	[image: 3]
	
										poolBatchPorts controls the number of new ports that are created if the number of free ports is lower than the value of poolMinPorts. The default value is 3.
									

	[image: 4]
	
										If the number of free ports in a pool is higher than the value of poolMaxPorts, Kuryr deletes them until the number matches that value. Setting this value to 0 disables this upper bound, preventing pools from shrinking. The default value is 0.
									

	[image: 5]
	
										The openStackServiceNetwork parameter defines the CIDR range of the network from which IP addresses are allocated to RHOSP Octavia’s LoadBalancers.
									

								If this parameter is used with the Amphora driver, Octavia takes two IP addresses from this network for each load balancer: one for OpenShift and the other for VRRP connections. Because these IP addresses are managed by OpenShift Container Platform and Neutron respectively, they must come from different pools. Therefore, the value of openStackServiceNetwork must be at least twice the size of the value of serviceNetwork, and the value of serviceNetwork must overlap entirely with the range that is defined by openStackServiceNetwork.
							

								The CNO verifies that VRRP IP addresses that are taken from the range that is defined by this parameter do not overlap with the range that is defined by the serviceNetwork parameter.
							

								If this parameter is not set, the CNO uses an expanded value of serviceNetwork that is determined by decrementing the prefix size by 1.
							

	
								Save the cluster-network-03-config.yml file, and exit the text editor.
							
	
								Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory while creating the cluster.
							

Setting a custom subnet for machines

						The IP range that the installation program uses by default might not match the Neutron subnet that you create when you install OpenShift Container Platform. If necessary, update the CIDR value for new machines by editing the installation configuration file.
					
Prerequisites
	
								You have the install-config.yaml file that was generated by the OpenShift Container Platform installation program.
							

Procedure
	
								On a command line, browse to the directory that contains install-config.yaml.
							
	
								From that directory, either run a script to edit the install-config.yaml file or update the file manually:
							
	
										To set the value by using a script, run:
									
$ python -c '
import yaml;
path = "install-config.yaml";
data = yaml.safe_load(open(path));
data["networking"]["machineNetwork"] = [{"cidr": "192.168.0.0/18"}]; [image: 1]
open(path, "w").write(yaml.dump(data, default_flow_style=False))'
	[image: 1]
	
												Insert a value that matches your intended Neutron subnet, e.g. 192.0.2.0/24.
											

	
										To set the value manually, open the file and set the value of networking.machineCIDR to something that matches your intended Neutron subnet.
									

Emptying compute machine pools

						To proceed with an installation that uses your own infrastructure, set the number of compute machines in the installation configuration file to zero. Later, you create these machines manually.
					
Prerequisites
	
								You have the install-config.yaml file that was generated by the OpenShift Container Platform installation program.
							

Procedure
	
								On a command line, browse to the directory that contains install-config.yaml.
							
	
								From that directory, either run a script to edit the install-config.yaml file or update the file manually:
							
	
										To set the value by using a script, run:
									
$ python -c '
import yaml;
path = "install-config.yaml";
data = yaml.safe_load(open(path));
data["compute"][0]["replicas"] = 0;
open(path, "w").write(yaml.dump(data, default_flow_style=False))'

	
										To set the value manually, open the file and set the value of compute.<first entry>.replicas to 0.
									

Modifying the network type

						By default, the installation program selects the OpenShiftSDN network type. To use Kuryr instead, change the value in the installation configuration file that the program generated.
					
Prerequisites
	
								You have the file install-config.yaml that was generated by the OpenShift Container Platform installation program
							

Procedure
	
								In a command prompt, browse to the directory that contains install-config.yaml.
							
	
								From that directory, either run a script to edit the install-config.yaml file or update the file manually:
							
	
										To set the value by using a script, run:
									
$ python -c '
import yaml;
path = "install-config.yaml";
data = yaml.safe_load(open(path));
data["networking"]["networkType"] = "Kuryr";
open(path, "w").write(yaml.dump(data, default_flow_style=False))'

	
										To set the value manually, open the file and set networking.networkType to "Kuryr".
									

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:
						
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

							Because you create and manage these resources yourself, you do not have to initialize them.
						
	
									You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

	
							Export the metadata file’s infraID key as an environment variable:
						
$ export INFRA_ID=$(jq -r .infraID metadata.json)

Tip

					Extract the infraID key from metadata.json and use it as a prefix for all of the RHOSP resources that you create. By doing so, you avoid name conflicts when making multiple deployments in the same project.
				

Preparing the bootstrap Ignition files

					The OpenShift Container Platform installation process relies on bootstrap machines that are created from a bootstrap Ignition configuration file.
				

					Edit the file and upload it. Then, create a secondary bootstrap Ignition configuration file that Red Hat OpenStack Platform (RHOSP) uses to download the primary file.
				
Prerequisites
	
							You have the bootstrap Ignition file that the installer program generates, bootstrap.ign.
						
	
							The infrastructure ID from the installer’s metadata file is set as an environment variable ($INFRA_ID).
						
	
									If the variable is not set, see Creating the Kubernetes manifest and Ignition config files.
								

	
							You have an HTTP(S)-accessible way to store the bootstrap Ignition file.
						
	
									The documented procedure uses the RHOSP image service (Glance), but you can also use the RHOSP storage service (Swift), Amazon S3, an internal HTTP server, or an ad hoc Nova server.
								

Procedure
	
							Run the following Python script. The script modifies the bootstrap Ignition file to set the hostname and, if available, CA certificate file when it runs:
						
import base64
import json
import os

with open('bootstrap.ign', 'r') as f:
 ignition = json.load(f)

files = ignition['storage'].get('files', [])

infra_id = os.environ.get('INFRA_ID', 'openshift').encode()
hostname_b64 = base64.standard_b64encode(infra_id + b'-bootstrap\n').decode().strip()
files.append(
{
 'path': '/etc/hostname',
 'mode': 420,
 'contents': {
 'source': 'data:text/plain;charset=utf-8;base64,' + hostname_b64
 }
})

ca_cert_path = os.environ.get('OS_CACERT', '')
if ca_cert_path:
 with open(ca_cert_path, 'r') as f:
 ca_cert = f.read().encode()
 ca_cert_b64 = base64.standard_b64encode(ca_cert).decode().strip()

 files.append(
 {
 'path': '/opt/openshift/tls/cloud-ca-cert.pem',
 'mode': 420,
 'contents': {
 'source': 'data:text/plain;charset=utf-8;base64,' + ca_cert_b64
 }
 })

ignition['storage']['files'] = files;

with open('bootstrap.ign', 'w') as f:
 json.dump(ignition, f)

	
							Using the RHOSP CLI, create an image that uses the bootstrap Ignition file:
						
$ openstack image create --disk-format=raw --container-format=bare --file bootstrap.ign <image_name>

	
							Get the image’s details:
						
$ openstack image show <image_name>

							Make a note of the file value; it follows the pattern v2/images/<image_ID>/file.
						
Note

								Verify that the image you created is active.
							

	
							Retrieve the image service’s public address:
						
$ openstack catalog show image

	
							Combine the public address with the image file value and save the result as the storage location. The location follows the pattern <image_service_public_URL>/v2/images/<image_ID>/file.
						
	
							Generate an auth token and save the token ID:
						
$ openstack token issue -c id -f value

	
							Insert the following content into a file called $INFRA_ID-bootstrap-ignition.json and edit the placeholders to match your own values:
						
{
 "ignition": {
 "config": {
 "merge": [{
 "source": "<storage_url>", [image: 1]
 "httpHeaders": [{
 "name": "X-Auth-Token", [image: 2]
 "value": "<token_ID>" [image: 3]
 }]
 }]
 },
 "security": {
 "tls": {
 "certificateAuthorities": [{
 "source": "data:text/plain;charset=utf-8;base64,<base64_encoded_certificate>" [image: 4]
 }]
 }
 },
 "version": "3.1.0"
 }
}
	[image: 1]
	
									Replace the value of ignition.config.merge.source with the bootstrap Ignition file storage URL.
								

	[image: 2]
	
									Set name in httpHeaders to "X-Auth-Token".
								

	[image: 3]
	
									Set value in httpHeaders to your token’s ID.
								

	[image: 4]
	
									If the bootstrap Ignition file server uses a self-signed certificate, include the base64-encoded certificate.
								

	
							Save the secondary Ignition config file.
						

					The bootstrap Ignition data will be passed to RHOSP during installation.
				
Warning

						The bootstrap Ignition file contains sensitive information, like clouds.yaml credentials. Ensure that you store it in a secure place, and delete it after you complete the installation process.
					

Creating control plane Ignition config files on RHOSP

					Installing OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) on your own infrastructure requires control plane Ignition config files. You must create multiple config files.
				
Note

						As with the bootstrap Ignition configuration, you must explicitly define a hostname for each control plane machine.
					

Prerequisites
	
							The infrastructure ID from the installation program’s metadata file is set as an environment variable ($INFRA_ID).
						
	
									If the variable is not set, see "Creating the Kubernetes manifest and Ignition config files."
								

Procedure
	
							On a command line, run the following Python script:
						
$ for index in $(seq 0 2); do
 MASTER_HOSTNAME="$INFRA_ID-master-$index\n"
 python -c "import base64, json, sys;
ignition = json.load(sys.stdin);
storage = ignition.get('storage', {});
files = storage.get('files', []);
files.append({'path': '/etc/hostname', 'mode': 420, 'contents': {'source': 'data:text/plain;charset=utf-8;base64,' + base64.standard_b64encode(b'$MASTER_HOSTNAME').decode().strip(), 'verification': {}}, 'filesystem': 'root'});
storage['files'] = files;
ignition['storage'] = storage
json.dump(ignition, sys.stdout)" <master.ign >"$INFRA_ID-master-$index-ignition.json"
done

							You now have three control plane Ignition files: <INFRA_ID>-master-0-ignition.json, <INFRA_ID>-master-1-ignition.json, and <INFRA_ID>-master-2-ignition.json.
						

Creating network resources on RHOSP

					Create the network resources that an OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) installation on your own infrastructure requires. To save time, run supplied Ansible playbooks that generate security groups, networks, subnets, routers, and ports.
				
Prerequisites
	
							Python 3 is installed on your machine.
						
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						

Procedure
	
							Optional: Add an external network value to the inventory.yaml playbook:
						
Example external network value in the inventory.yaml Ansible playbook

								

...
 # The public network providing connectivity to the cluster. If not
 # provided, the cluster external connectivity must be provided in another
 # way.

 # Required for os_api_fip, os_ingress_fip, os_bootstrap_fip.
 os_external_network: 'external'
...

							
Important

								If you did not provide a value for os_external_network in the inventory.yaml file, you must ensure that VMs can access Glance and an external connection yourself.
							

	
							Optional: Add external network and floating IP (FIP) address values to the inventory.yaml playbook:
						
Example FIP values in the inventory.yaml Ansible playbook

								

...
 # OpenShift API floating IP address. If this value is non-empty, the
 # corresponding floating IP will be attached to the Control Plane to
 # serve the OpenShift API.
 os_api_fip: '203.0.113.23'

 # OpenShift Ingress floating IP address. If this value is non-empty, the
 # corresponding floating IP will be attached to the worker nodes to serve
 # the applications.
 os_ingress_fip: '203.0.113.19'

 # If this value is non-empty, the corresponding floating IP will be
 # attached to the bootstrap machine. This is needed for collecting logs
 # in case of install failure.
 os_bootstrap_fip: '203.0.113.20'

							
Important

								If you do not define values for os_api_fip and os_ingress_fip, you must perform post-installation network configuration.
							

								If you do not define a value for os_bootstrap_fip, the installer cannot download debugging information from failed installations.
							

								See "Enabling access to the environment" for more information.
							

	
							On a command line, create security groups by running the security-groups.yaml playbook:
						
$ ansible-playbook -i inventory.yaml security-groups.yaml

	
							On a command line, create a network, subnet, and router by running the network.yaml playbook:
						
$ ansible-playbook -i inventory.yaml network.yaml

	
							Optional: If you want to control the default resolvers that Nova servers use, run the RHOSP CLI command:
						
$ openstack subnet set --dns-nameserver <server_1> --dns-nameserver <server_2> "$INFRA_ID-nodes"

Creating the bootstrap machine on RHOSP

					Create a bootstrap machine and give it the network access it needs to run on Red Hat OpenStack Platform (RHOSP). Red Hat provides an Ansible playbook that you run to simplify this process.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The inventory.yaml, common.yaml, and bootstrap.yaml Ansible playbooks are in a common directory.
						
	
							The metadata.json file that the installation program created is in the same directory as the Ansible playbooks.
						

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							On a command line, run the bootstrap.yaml playbook:
						
$ ansible-playbook -i inventory.yaml bootstrap.yaml

	
							After the bootstrap server is active, view the logs to verify that the Ignition files were received:
						
$ openstack console log show "$INFRA_ID-bootstrap"

Creating the control plane machines on RHOSP

					Create three control plane machines by using the Ignition config files that you generated. Red Hat provides an Ansible playbook that you run to simplify this process.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The infrastructure ID from the installation program’s metadata file is set as an environment variable ($INFRA_ID).
						
	
							The inventory.yaml, common.yaml, and control-plane.yaml Ansible playbooks are in a common directory.
						
	
							You have the three Ignition files that were created in "Creating control plane Ignition config files."
						

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							If the control plane Ignition config files aren’t already in your working directory, copy them into it.
						
	
							On a command line, run the control-plane.yaml playbook:
						
$ ansible-playbook -i inventory.yaml control-plane.yaml

	
							Run the following command to monitor the bootstrapping process:
						
$ openshift-install wait-for bootstrap-complete

							You will see messages that confirm that the control plane machines are running and have joined the cluster:
						
INFO API v1.14.6+f9b5405 up
INFO Waiting up to 30m0s for bootstrapping to complete...
...
INFO It is now safe to remove the bootstrap resources

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Deleting bootstrap resources from RHOSP

					Delete the bootstrap resources that you no longer need.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The inventory.yaml, common.yaml, and down-bootstrap.yaml Ansible playbooks are in a common directory.
						
	
							The control plane machines are running.
						
	
									If you do not know the status of the machines, see "Verifying cluster status."
								

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							On a command line, run the down-bootstrap.yaml playbook:
						
$ ansible-playbook -i inventory.yaml down-bootstrap.yaml

					The bootstrap port, server, and floating IP address are deleted.
				
Warning

						If you did not disable the bootstrap Ignition file URL earlier, do so now.
					

Creating compute machines on RHOSP

					After standing up the control plane, create compute machines. Red Hat provides an Ansible playbook that you run to simplify this process.
				
Prerequisites
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You downloaded the playbooks in "Downloading the installation playbooks."
						
	
							The inventory.yaml, common.yaml, and compute-nodes.yaml Ansible playbooks are in a common directory.
						
	
							The metadata.json file that the installation program created is in the same directory as the Ansible playbooks.
						
	
							The control plane is active.
						

Procedure
	
							On a command line, change the working directory to the location of the playbooks.
						
	
							On a command line, run the playbook:
						
$ ansible-playbook -i inventory.yaml compute-nodes.yaml

Next steps
	
							Approve the certificate signing requests for the machines.
						

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Verifying a successful installation

					Verify that the OpenShift Container Platform installation is complete.
				
Prerequisites
	
							You have the installation program (openshift-install)
						

Procedure
	
							On a command line, enter:
						
$ openshift-install --log-level debug wait-for install-complete

					The program outputs the console URL, as well as the administrator’s login information.
				

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							If you need to enable external access to node ports, configure ingress cluster traffic by using a node port.
						
	
							If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.
						

Installing a cluster on OpenStack in a restricted network

				In OpenShift Container Platform 4.6, you can install a cluster on Red Hat OpenStack Platform (RHOSP) in a restricted network by creating an internal mirror of the installation release content.
			
Note

					Installing in a restricted network is supported only for installer-provisioned installations.
				

Prerequisites
	
						Create a registry on your mirror host and obtain the imageContentSources data for your version of OpenShift Container Platform.
					
Important

							Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
						

	
						Review details about the OpenShift Container Platform installation and update processes.
					
	
								Verify that OpenShift Container Platform 4.6 is compatible with your RHOSP version by consulting the architecture documentation’s list of available platforms. You can also compare platform support across different versions by viewing the OpenShift Container Platform on RHOSP support matrix.
							

	
						Verify that your network configuration does not rely on a provider network. Provider networks are not supported.
					
	
						Have the metadata service enabled in RHOSP.
					

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Resource guidelines for installing OpenShift Container Platform on RHOSP

					To support an OpenShift Container Platform installation, your Red Hat OpenStack Platform (RHOSP) quota must meet the following requirements:
				
Table 9.25. Recommended resources for a default OpenShift Container Platform cluster on RHOSP
	Resource	Value
	
									Floating IP addresses
								

								 	
									3
								

								
	
									Ports
								

								 	
									15
								

								
	
									Routers
								

								 	
									1
								

								
	
									Subnets
								

								 	
									1
								

								
	
									RAM
								

								 	
									112 GB
								

								
	
									vCPUs
								

								 	
									28
								

								
	
									Volume storage
								

								 	
									275 GB
								

								
	
									Instances
								

								 	
									7
								

								
	
									Security groups
								

								 	
									3
								

								
	
									Security group rules
								

								 	
									60
								

								

					A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
				
Important

						If RHOSP object storage (Swift) is available and operated by a user account with the swiftoperator role, it is used as the default backend for the OpenShift Container Platform image registry. In this case, the volume storage requirement is 175 GB. Swift space requirements vary depending on the size of the image registry.
					

Note

						By default, your security group and security group rule quotas might be low. If you encounter problems, run openstack quota set --secgroups 3 --secgroup-rules 60 <project> as an administrator to increase them.
					

					An OpenShift Container Platform deployment comprises control plane machines, compute machines, and a bootstrap machine.
				
Control plane machines

						By default, the OpenShift Container Platform installation process creates three control plane machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Compute machines

						By default, the OpenShift Container Platform installation process creates three compute machines.
					

						Each machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 8 GB memory, 2 vCPUs, and 100 GB storage space
							

Tip

						Compute machines host the applications that you run on OpenShift Container Platform; aim to run as many as you can.
					

Bootstrap machine

						During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
					

						The bootstrap machine requires:
					
	
								An instance from the RHOSP quota
							
	
								A port from the RHOSP quota
							
	
								A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Enabling Swift on RHOSP

					Swift is operated by a user account with the swiftoperator role. Add the role to an account before you run the installation program.
				
Important

						If the Red Hat OpenStack Platform (RHOSP) object storage service, commonly known as Swift, is available, OpenShift Container Platform uses it as the image registry storage. If it is unavailable, the installation program relies on the RHOSP block storage service, commonly known as Cinder.
					

						If Swift is present and you want to use it, you must enable access to it. If it is not present, or if you do not want to use it, skip this section.
					

Prerequisites
	
							You have a RHOSP administrator account on the target environment.
						
	
							The Swift service is installed.
						
	
							On Ceph RGW, the account in url option is enabled.
						

Procedure

						To enable Swift on RHOSP:
					
	
							As an administrator in the RHOSP CLI, add the swiftoperator role to the account that will access Swift:
						
$ openstack role add --user <user> --project <project> swiftoperator

					Your RHOSP deployment can now use Swift for the image registry.
				

Defining parameters for the installation program

					The OpenShift Container Platform installation program relies on a file that is called clouds.yaml. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
				
Procedure
	
							Create the clouds.yaml file:
						
	
									If your RHOSP distribution includes the Horizon web UI, generate a clouds.yaml file in it.
								
Important

										Remember to add a password to the auth field. You can also keep secrets in a separate file from clouds.yaml.
									

	
									If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml, see Config files in the RHOSP documentation.
								
clouds:
 shiftstack:
 auth:
 auth_url: http://10.10.14.42:5000/v3
 project_name: shiftstack
 username: shiftstack_user
 password: XXX
 user_domain_name: Default
 project_domain_name: Default
 dev-env:
 region_name: RegionOne
 auth:
 username: 'devuser'
 password: XXX
 project_name: 'devonly'
 auth_url: 'https://10.10.14.22:5001/v2.0'

	
							If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
						
	
									Copy the certificate authority file to your machine.
								
	
									Add the machine to the certificate authority trust bundle:
								
$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

	
									Update the trust bundle:
								
$ sudo update-ca-trust extract

	
									Add the cacerts key to the clouds.yaml file. The value must be an absolute, non-root-accessible path to the CA certificate:
								
clouds:
 shiftstack:
 ...
 cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
Tip

									After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the ca-cert.pem key in the cloud-provider-config keymap. On a command line, run:
								
$ oc edit configmap -n openshift-config cloud-provider-config

	
							Place the clouds.yaml file in one of the following locations:
						
	
									The value of the OS_CLIENT_CONFIG_FILE environment variable
								
	
									The current directory
								
	
									A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml
								
	
									A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml
								

									The installation program searches for clouds.yaml in that order.
								

Creating the RHCOS image for restricted network installations

					Download the Red Hat Enterprise Linux CoreOS (RHCOS) image to install OpenShift Container Platform on a restricted network Red Hat OpenStack Platform (RHOSP) environment.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program. For a restricted network installation, the program is on your mirror registry host.
						

Procedure
	
							Log in to the Red Hat Customer Portal’s Product Downloads page.
						
	
							Under Version, select the most recent release of OpenShift Container Platform 4.6 for RHEL 8.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available.
							

	
							Download the Red Hat Enterprise Linux CoreOS (RHCOS) - OpenStack Image (QCOW) image.
						
	
							Decompress the image.
						
Note

								You must decompress the image before the cluster can use it. The name of the downloaded file might not contain a compression extension, like .gz or .tgz. To find out if or how the file is compressed, in a command line, enter:
							
$ file <name_of_downloaded_file>

	
							Upload the image that you decompressed to a location that is accessible from the bastion server, like Glance. For example:
						
$ openstack image create --file rhcos-44.81.202003110027-0-openstack.x86_64.qcow2 --disk-format qcow2 rhcos-${RHCOS_VERSION}
Important

								Depending on your RHOSP environment, you might be able to upload the image in either .raw or .qcow2 formats. If you use Ceph, you must use the .raw format.
							

Warning

								If the installation program finds multiple images with the same name, it chooses one of them at random. To avoid this behavior, create unique names for resources in RHOSP.
							

					The image is now available for a restricted installation. Note the image name or location for use in OpenShift Container Platform deployment.
				

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Red Hat OpenStack Platform (RHOSP).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
						
	
							Have the imageContentSources values that were generated during mirror registry creation.
						
	
							Obtain the contents of the certificate for your mirror registry.
						
	
							Retrieve a Red Hat Enterprise Linux CoreOS (RHCOS) image and upload it to an accessible location.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select openstack as the platform to target.
										
	
											Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
										
	
											Specify the floating IP address to use for external access to the OpenShift API.
										
	
											Specify a RHOSP flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.
										
	
											Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
										
	
											Enter a name for your cluster. The name must be 14 or fewer characters long.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							In the install-config.yaml file, set the value of platform.openstack.clusterOSImage to the image location or name. For example:
						
platform:
 openstack:
 clusterOSImage: http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d

	
							Edit the install-config.yaml file to provide the additional information that is required for an installation in a restricted network.
						
	
									Update the pullSecret value to contain the authentication information for your registry:
								
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

									For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.
								

	
									Add the additionalTrustBundle parameter and value.
								
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----

									The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
								

	
									Add the image content resources, which look like this excerpt:
								
imageContentSources:
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: quay.example.com/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: registry.example.com/ocp/release

									To complete these values, use the imageContentSources that you recorded during mirror registry creation.
								

	
							Make any other modifications to the install-config.yaml file that you require. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 9.26. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev. The string must be 14 characters or fewer long.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 9.27. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 9.28. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Red Hat OpenStack Platform (RHOSP) configuration parameters

							Additional RHOSP configuration parameters are described in the following table:
						
Table 9.29. Additional RHOSP parameters
	Parameter	Description	Values
	
											compute.platform.openstack.rootVolume.size
										

										 	
											For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
										

										 	
											Integer, for example 30.
										

										
	
											compute.platform.openstack.rootVolume.type
										

										 	
											For compute machines, the root volume’s type.
										

										 	
											String, for example performance.
										

										
	
											controlPlane.platform.openstack.rootVolume.size
										

										 	
											For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.
										

										 	
											Integer, for example 30.
										

										
	
											controlPlane.platform.openstack.rootVolume.type
										

										 	
											For control plane machines, the root volume’s type.
										

										 	
											String, for example performance.
										

										
	
											platform.openstack.cloud
										

										 	
											The name of the RHOSP cloud to use from the list of clouds in the clouds.yaml file.
										

										 	
											String, for example MyCloud.
										

										
	
											platform.openstack.externalNetwork
										

										 	
											The RHOSP external network name to be used for installation.
										

										 	
											String, for example external.
										

										
	
											platform.openstack.computeFlavor
										

										 	
											The RHOSP flavor to use for control plane and compute machines.
										

										 	
											String, for example m1.xlarge.
										

										

Optional RHOSP configuration parameters

							Optional RHOSP configuration parameters are described in the following table:
						
Table 9.30. Optional RHOSP parameters
	Parameter	Description	Values
	
											compute.platform.openstack.additionalNetworkIDs
										

										 	
											Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks.
										

										 	
											A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
										

										
	
											compute.platform.openstack.additionalSecurityGroupIDs
										

										 	
											Additional security groups that are associated with compute machines.
										

										 	
											A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
										

										
	
											compute.platform.openstack.zones
										

										 	
											RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
										

										
											On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
										

										 	
											A list of strings. For example, ["zone-1", "zone-2"].
										

										
	
											controlPlane.platform.openstack.additionalNetworkIDs
										

										 	
											Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks.
										

										 	
											A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
										

										
	
											controlPlane.platform.openstack.additionalSecurityGroupIDs
										

										 	
											Additional security groups that are associated with control plane machines.
										

										 	
											A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.
										

										
	
											controlPlane.platform.openstack.zones
										

										 	
											RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured.
										

										
											On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OpenShift Container Platform services that rely on Amphora VMs, are not created according to the value of this property.
										

										 	
											A list of strings. For example, ["zone-1", "zone-2"].
										

										
	
											platform.openstack.clusterOSImage
										

										 	
											The location from which the installer downloads the RHCOS image.
										

										
											You must set this parameter to perform an installation in a restricted network.
										

										 	
											An HTTP or HTTPS URL, optionally with an SHA-256 checksum.
										

										
											For example, http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d. The value can also be the name of an existing Glance image, for example my-rhcos.
										

										
	
											platform.openstack.defaultMachinePlatform
										

										 	
											The default machine pool platform configuration.
										

										 	
{
 "type": "ml.large",
 "rootVolume": {
 "size": 30,
 "type": "performance"
 }
}

										
	
											platform.openstack.ingressFloatingIP
										

										 	
											An existing floating IP address to associate with the Ingress port. To use this property, you must also define the platform.openstack.externalNetwork property.
										

										 	
											An IP address, for example 128.0.0.1.
										

										
	
											platform.openstack.lbFloatingIP
										

										 	
											An existing floating IP address to associate with the API load balancer. To use this property, you must also define the platform.openstack.externalNetwork property.
										

										 	
											An IP address, for example 128.0.0.1.
										

										
	
											platform.openstack.externalDNS
										

										 	
											IP addresses for external DNS servers that cluster instances use for DNS resolution.
										

										 	
											A list of IP addresses as strings. For example, ["8.8.8.8", "192.168.1.12"].
										

										
	
											platform.openstack.machinesSubnet
										

										 	
											The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet.
										

										
											The first item in networking.machineNetwork must match the value of machinesSubnet.
										

										
											If you deploy to a custom subnet, you cannot specify an external DNS server to the OpenShift Container Platform installer. Instead, add DNS to the subnet in RHOSP.
										

										 	
											A UUID as a string. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.
										

										

Sample customized install-config.yaml file for restricted OpenStack installations

						This sample install-config.yaml demonstrates all of the possible Red Hat OpenStack Platform (RHOSP) customization options.
					
Important

							This sample file is provided for reference only. You must obtain your install-config.yaml file by using the installation program.
						

apiVersion: v1
baseDomain: example.com
clusterID: os-test
controlPlane:
 name: master
 platform: {}
 replicas: 3
compute:
- name: worker
 platform:
 openstack:
 type: ml.large
 replicas: 3
metadata:
 name: example
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineCIDR: 10.0.0.0/16
 serviceNetwork:
 - 172.30.0.0/16
 networkType: OpenShiftSDN
platform:
 openstack:
 region: region1
 cloud: mycloud
 externalNetwork: external
 computeFlavor: m1.xlarge
 lbFloatingIP: 128.0.0.1
fips: false
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
additionalTrustBundle: |

 -----BEGIN CERTIFICATE-----

 ZZ

 -----END CERTIFICATE-----

imageContentSources:
- mirrors:
 - <mirror_registry>/<repo_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_registry>/<repo_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

Setting compute machine affinity

					Optionally, you can set the affinity policy for compute machines during installation. The installer does not select an affinity policy for compute machines by default.
				

					You can also create machine sets that use particular RHOSP server groups after installation.
				
Note

						Control plane machines are created with a soft-anti-affinity policy.
					

Tip

					You can learn more about RHOSP instance scheduling and placement in the RHOSP documentation.
				

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Using the RHOSP command-line interface, create a server group for your compute machines. For example:
						
$ openstack \
 --os-compute-api-version=2.15 \
 server group create \
 --policy anti-affinity \
 my-openshift-worker-group

							For more information, see the server group create command documentation.
						

	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir=<installation_directory>

							where:
						
	installation_directory
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Open manifests/99_openshift-cluster-api_worker-machineset-0.yaml, the MachineSet definition file.
						
	
							Add the property serverGroupID to the definition beneath the spec.template.spec.providerSpec.value property. For example:
						
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machine-role: <node_role>
 machine.openshift.io/cluster-api-machine-type: <node_role>
 name: <infrastructure_ID>-<node_role>
 namespace: openshift-machine-api
spec:
 replicas: <number_of_replicas>
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
 machine.openshift.io/cluster-api-machine-role: <node_role>
 machine.openshift.io/cluster-api-machine-type: <node_role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
 spec:
 providerSpec:
 value:
 apiVersion: openstackproviderconfig.openshift.io/v1alpha1
 cloudName: openstack
 cloudsSecret:
 name: openstack-cloud-credentials
 namespace: openshift-machine-api
 flavor: <nova_flavor>
 image: <glance_image_name_or_location>
 serverGroupID: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee [image: 1]
 kind: OpenstackProviderSpec
 networks:
 - filter: {}
 subnets:
 - filter:
 name: <subnet_name>
 tags: openshiftClusterID=<infrastructure_ID>
 securityGroups:
 - filter: {}
 name: <infrastructure_ID>-<node_role>
 serverMetadata:
 Name: <infrastructure_ID>-<node_role>
 openshiftClusterID: <infrastructure_ID>
 tags:
 - openshiftClusterID=<infrastructure_ID>
 trunk: true
 userDataSecret:
 name: <node_role>-user-data
 availabilityZone: <optional_openstack_availability_zone>
	[image: 1]
	
									Add the UUID of your server group here.
								

	
							Optional: Back up the manifests/99_openshift-cluster-api_worker-machineset-0.yaml file. The installation program deletes the manifests/ directory when creating the cluster.
						

					When you install the cluster, the installer uses the MachineSet definition that you modified to create compute machines within your RHOSP server group.
				

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Enabling access to the environment

					At deployment, all OpenShift Container Platform machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
				

					You can configure OpenShift Container Platform API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
				
Enabling access with floating IP addresses

						Create floating IP (FIP) addresses for external access to the OpenShift Container Platform API and cluster applications.
					
Procedure
	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
							
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>

	
								Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
							
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>

	
								Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
							
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
Note

									If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your /etc/hosts file:
								
	
											<api_floating_ip> api.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> grafana-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> oauth-openshift.apps.<cluster_name>.<base_domain>
										
	
											<application_floating_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
										
	
											application_floating_ip integrated-oauth-server-openshift-authentication.apps.<cluster_name>.<base_domain>
										

									The cluster domain names in the /etc/hosts file grant access to the web console and the monitoring interface of your cluster locally. You can also use the kubectl or oc. You can access the user applications by using the additional entries pointing to the <application_floating_ip>. This action makes the API and applications accessible to only you, which is not suitable for production deployment, but does allow installation for development and testing.
								

	
								Add the FIPs to the install-config.yaml file as the values of the following parameters:
							
	
										platform.openstack.ingressFloatingIP
									
	
										platform.openstack.lbFloatingIP
									

						If you use these values, you must also enter an external network as the value of the platform.openstack.externalNetwork parameter in the install-config.yaml file.
					
Tip

						You can make OpenShift Container Platform resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration.
					

Completing installation without floating IP addresses

						You can install OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
					

						In the install-config.yaml file, do not define the following parameters:
					
	
								platform.openstack.ingressFloatingIP
							
	
								platform.openstack.lbFloatingIP
							

						If you cannot provide an external network, you can also leave platform.openstack.externalNetwork blank. If you do not provide a value for platform.openstack.externalNetwork, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. You must configure external connectivity on your own.
					

						If you run the installer from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
					
Note

							You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
						
api.<cluster_name>.<base_domain>. IN A <api_port_IP>
*.apps.<cluster_name>.<base_domain>. IN A <ingress_port_IP>

							If you do not control the DNS server, you can add the record to your /etc/hosts file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Verifying cluster status

					You can verify your OpenShift Container Platform cluster’s status during or after installation.
				
Procedure
	
							In the cluster environment, export the administrator’s kubeconfig file:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

							The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
						

	
							View the control plane and compute machines created after a deployment:
						
$ oc get nodes

	
							View your cluster’s version:
						
$ oc get clusterversion

	
							View your Operators' status:
						
$ oc get clusteroperator

	
							View all running pods in the cluster:
						
$ oc get pods -A

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Disabling the default OperatorHub sources

					Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
				
Procedure
	
							Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
						
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

					Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
				

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Configure image streams for the Cluster Samples Operator and the must-gather tool.
						
	
							Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
						
	
							If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.
						

Uninstalling a cluster on OpenStack

				You can remove a cluster that you deployed to Red Hat OpenStack Platform (RHOSP).
			
Removing a cluster that uses installer-provisioned infrastructure

					You can remove a cluster that uses installer-provisioned infrastructure from your cloud.
				
Note

						After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access.
					

Prerequisites
	
							Have a copy of the installation program that you used to deploy the cluster.
						
	
							Have the files that the installation program generated when you created your cluster.
						

Procedure
	
							From the directory that contains the installation program on the computer that you used to install the cluster, run the following command:
						
$./openshift-install destroy cluster \
--dir <installation_directory> --log-level info [image: 1] [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different details, specify warn, debug, or error instead of info.
								

Note

								You must specify the directory that contains the cluster definition files for your cluster. The installation program requires the metadata.json file in this directory to delete the cluster.
							

	
							Optional: Delete the <installation_directory> directory and the OpenShift Container Platform installation program.
						

Uninstalling a cluster on RHOSP from your own infrastructure

				You can remove a cluster that you deployed to Red Hat OpenStack Platform (RHOSP) on user-provisioned infrastructure.
			
Downloading playbook dependencies

					The Ansible playbooks that simplify the removal process on user-provisioned infrastructure require several Python modules. On the machine where you will run the process, add the modules' repositories and then download them.
				
Note

						These instructions assume that you are using Red Hat Enterprise Linux (RHEL) 8.
					

Prerequisites
	
							Python 3 is installed on your machine.
						

Procedure
	
							On a command line, add the repositories:
						
	
									Register with Red Hat Subscription Manager:
								
$ sudo subscription-manager register # If not done already

	
									Pull the latest subscription data:
								
$ sudo subscription-manager attach --pool=$YOUR_POOLID # If not done already

	
									Disable the current repositories:
								
$ sudo subscription-manager repos --disable=* # If not done already

	
									Add the required repositories:
								
$ sudo subscription-manager repos \
 --enable=rhel-8-for-x86_64-baseos-rpms \
 --enable=openstack-16-tools-for-rhel-8-x86_64-rpms \
 --enable=ansible-2.9-for-rhel-8-x86_64-rpms \
 --enable=rhel-8-for-x86_64-appstream-rpms

	
							Install the modules:
						
$ sudo yum install python3-openstackclient ansible python3-openstacksdk

	
							Ensure that the python command points to python3:
						
$ sudo alternatives --set python /usr/bin/python3

Removing a cluster from RHOSP that uses your own infrastructure

					You can remove an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP) that uses your own infrastructure. To complete the removal process quickly, run several Ansible playbooks.
				
Prerequisites
	
							Python 3 is installed on your machine.
						
	
							You downloaded the modules in "Downloading playbook dependencies."
						
	
							You have the playbooks that you used to install the cluster.
						
	
							You modified the playbooks that are prefixed with down- to reflect any changes that you made to their corresponding installation playbooks. For example, changes to the bootstrap.yaml file are reflected in the down-bootstrap.yaml file.
						
	
							All of the playbooks are in a common directory.
						

Procedure
	
							On a command line, run the playbooks that you downloaded:
						
$ ansible-playbook -i inventory.yaml \
	down-bootstrap.yaml \
	down-control-plane.yaml \
	down-compute-nodes.yaml \
	down-load-balancers.yaml \
	down-network.yaml \
	down-security-groups.yaml

	
							Remove any DNS record changes you made for the OpenShift Container Platform installation.
						

					OpenShift Container Platform is removed from your infrastructure.
				

Chapter 10. Installing on RHV

Installing a cluster quickly on RHV

				You can quickly install a default, non-customized, OpenShift Container Platform cluster on a Red Hat Virtualization (RHV) cluster, similar to the one shown in the following diagram.
			
[image: Diagram of an OpenShift Container Platform cluster on a RHV cluster]

				The installation program uses installer-provisioned infrastructure to automate creating and deploying the cluster.
			

				To install a default cluster, you prepare the environment, run the installation program and answer its prompts. Then, the installation program creates the OpenShift Container Platform cluster.
			

				For an alternative to installing a default cluster, see Installing a cluster with customizations.
			
Note

					This installation program is available for Linux and macOS only.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							You have a supported combination of versions in the Support Matrix for OpenShift Container Platform on Red Hat Virtualization (RHV).
						
	
							If you use a firewall, configure it to allow the sites that your cluster requires access to.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Requirements for the RHV environment

					To install and run an OpenShift Container Platform cluster, the RHV environment must meet the following requirements.
				

					Not meeting these requirements can cause the installation or process to fail. Additionally, not meeting these requirements can cause the OpenShift Container Platform cluster to fail days or weeks after installation.
				

					The following requirements for CPU, memory, and storage resources are based on default values multiplied by the default number of virtual machines the installation program creates. These resources must be available in addition to what the RHV environment uses for non-OpenShift Container Platform operations.
				

					By default, the installation program creates seven virtual machines during the installation process. First, it creates a bootstrap virtual machine to provide temporary services and a control plane while it creates the rest of the OpenShift Container Platform cluster. When the installation program finishes creating the cluster, deleting the bootstrap machine frees up its resources.
				

					If you increase the number of virtual machines in the RHV environment, you must increase the resources accordingly.
				
Requirements
	
							The RHV environment has one data center whose state is Up.
						
	
							The RHV data center contains an RHV cluster.
						
	
							The RHV cluster has the following resources exclusively for the OpenShift Container Platform cluster:
						
	
									Minimum 28 vCPUs: four for each of the seven virtual machines created during installation.
								
	
									112 GiB RAM or more, including:
								
	
											16 GiB or more for the bootstrap machine, which provides the temporary control plane.
										
	
											16 GiB or more for each of the three control plane machines which provide the control plane.
										
	
											16 GiB or more for each of the three compute machines, which run the application workloads.
										

	
							The RHV storage domain must meet these etcd backend performance requirements.
						
	
							In production environments, each virtual machine must have 120 GiB or more. Therefore, the storage domain must provide 840 GiB or more for the default OpenShift Container Platform cluster. In resource-constrained or non-production environments, each virtual machine must have 32 GiB or more, so the storage domain must have 230 GiB or more for the default OpenShift Container Platform cluster.
						
	
							To download images from the Red Hat Ecosystem Catalog during installation and update procedures, the RHV cluster must have access to an internet connection. The Telemetry service also needs an internet connection to simplify the subscription and entitlement process.
						
	
							The RHV cluster must have a virtual network with access to the REST API on the RHV Manager. Ensure that DHCP is enabled on this network, because the VMs that the installer creates obtain their IP address by using DHCP.
						
	
							A user account and group with the following least privileges for installing and managing an OpenShift Container Platform cluster on the target RHV cluster:
						
	
									DiskOperator
								
	
									DiskCreator
								
	
									UserTemplateBasedVm
								
	
									TemplateOwner
								
	
									TemplateCreator
								
	
									ClusterAdmin on the target cluster
								

Warning

						Apply the principle of least privilege: Avoid using an administrator account with SuperUser privileges on RHV during the installation process. The installation program saves the credentials you provide to a temporary ovirt-config.yaml file that might be compromised.
					

Verifying the requirements for the RHV environment

					Verify that the RHV environment meets the requirements to install and run an OpenShift Container Platform cluster. Not meeting these requirements can cause failures.
				
Important

						These requirements are based on the default resources the installation program uses to create control plane and compute machines. These resources include vCPUs, memory, and storage. If you change these resources or increase the number of OpenShift Container Platform machines, adjust these requirements accordingly.
					

Procedure
	
							Check the RHV version.
						
	
									In the RHV Administration Portal, click the ? help icon in the upper-right corner and select About.
								
	
									In the window that opens, make a note of the RHV Software Version.
								
	
									Confirm that version 4.6 of OpenShift Container Platform and the version of RHV you noted are one of the supported combinations in the Support Matrix for OpenShift Container Platform on RHV.
								

	
							Inspect the data center, cluster, and storage.
						
	
									In the RHV Administration Portal, click Compute → Data Centers.
								
	
									Confirm that the data center where you plan to install OpenShift Container Platform is accessible.
								
	
									Click the name of that data center.
								
	
									In the data center details, on the Storage tab, confirm the storage domain where you plan to install OpenShift Container Platform is Active.
								
	
									Record the Domain Name for use later on.
								
	
									Confirm Free Space has at least 230 GiB.
								
	
									Confirm that the storage domain meets these etcd backend performance requirements, which you can measure by using the fio performance benchmarking tool.
								
	
									In the data center details, click the Clusters tab.
								
	
									Find the RHV cluster where you plan to install OpenShift Container Platform. Record the cluster name for use later on.
								

	
							Inspect the RHV host resources.
						
	
									In the RHV Administration Portal, click Compute > Clusters.
								
	
									Click the cluster where you plan to install OpenShift Container Platform.
								
	
									In the cluster details, click the Hosts tab.
								
	
									Inspect the hosts and confirm they have a combined total of at least 28 Logical CPU Cores available exclusively for the OpenShift Container Platform cluster.
								
	
									Record the number of available Logical CPU Cores for use later on.
								
	
									Confirm that these CPU cores are distributed so that each of the seven virtual machines created during installation can have four cores.
								
	
									Confirm that, all together, the hosts have 112 GiB of Max free Memory for scheduling new virtual machines distributed to meet the requirements for each of the following OpenShift Container Platform machines:
								
	
											16 GiB required for the bootstrap machine
										
	
											16 GiB required for each of the three control plane machines
										
	
											16 GiB for each of the three compute machines
										

	
									Record the amount of Max free Memory for scheduling new virtual machines for use later on.
								

	
							Verify that the virtual network for installing OpenShift Container Platform has access to the RHV Manager’s REST API. From a virtual machine on this network, use curl to reach the RHV Manager’s REST API:
						
$ curl -k -u <username>@<profile>:<password> \ [image: 1]
https://<engine-fqdn>/ovirt-engine/api [image: 2]
	[image: 1]
	
									For <username>, specify the user name of an RHV account with privileges to create and manage an OpenShift Container Platform cluster on RHV. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. For <password>, specify the password for that user name.
								

	[image: 2]
	
									For <engine-fqdn>, specify the fully qualified domain name of the RHV environment.
								

							For example:
						
$ curl -k -u ocpadmin@internal:pw123 \
https://rhv-env.virtlab.example.com/ovirt-engine/api

Preparing the network environment on RHV

					Configure two static IP addresses for the OpenShift Container Platform cluster and create DNS entries using these addresses.
				
Procedure
	
							Reserve two static IP addresses
						
	
									On the network where you plan to install OpenShift Container Platform, identify two static IP addresses that are outside the DHCP lease pool.
								
	
									Connect to a host on this network and verify that each of the IP addresses is not in use. For example, use Address Resolution Protocol (ARP) to check that none of the IP addresses have entries:
								
$ arp 10.35.1.19
Example output

										

10.35.1.19 (10.35.1.19) -- no entry

									

	
									Reserve two static IP addresses following the standard practices for your network environment.
								
	
									Record these IP addresses for future reference.
								

	
							Create DNS entries for the OpenShift Container Platform REST API and apps domain names using this format:
						
api.<cluster-name>.<base-domain> <ip-address> [image: 1]
*.apps.<cluster-name>.<base-domain> <ip-address> [image: 2]
	[image: 1]
	
									For <cluster-name>, <base-domain>, and <ip-address>, specify the cluster name, base domain, and static IP address of your OpenShift Container Platform API.
								

	[image: 2]
	
									Specify the cluster name, base domain, and static IP address of your OpenShift Container Platform apps for Ingress and the load balancer.
								

							For example:
						
api.my-cluster.virtlab.example.com	10.35.1.19
*.apps.my-cluster.virtlab.example.com	10.35.1.20

Setting up the CA certificate for RHV

					Download the CA certificate from the Red Hat Virtualization (RHV) Manager and set it up on the installation machine.
				

					You can download the certificate from a webpage on the RHV Manager or by using a curl command.
				

					Later, you provide the certificate to the installation program.
				
Procedure
	
							Use either of these two methods to download the CA certificate:
						
	
									Go to the Manager’s webpage, https://<engine-fqdn>/ovirt-engine/. Then, under Downloads, click the CA Certificate link.
								
	
									Run the following command:
								
$ curl -k 'https://<engine-fqdn>/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA' -o /tmp/ca.pem [image: 1]
	[image: 1]
	
											For <engine-fqdn>, specify the fully qualified domain name of the RHV Manager, such as rhv-env.virtlab.example.com.
										

	
							Configure the CA file to grant rootless user access to the Manager. Set the CA file permissions to have an octal value of 0644 (symbolic value: -rw-r—​r--):
						
$ sudo chmod 0644 /tmp/ca.pem

	
							For Linux, copy the CA certificate to the directory for server certificates. Use -p to preserve the permissions:
						
$ sudo cp -p /tmp/ca.pem /etc/pki/ca-trust/source/anchors/ca.pem

	
							Add the certificate to the certificate manager for your operating system:
						
	
									For macOS, double-click the certificate file and use the Keychain Access utility to add the file to the System keychain.
								
	
									For Linux, update the CA trust:
								
$ sudo update-ca-trust
Note

										If you use your own certificate authority, make sure the system trusts it.
									

Additional resources
	
							To learn more, see Authentication and Security in the RHV documentation.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Open the ovirt-imageio port to the Manager from the machine running the installer. By default, the port is 54322.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Important

								Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							Respond to the installation program prompts.
						
	
									Optional: For SSH Public Key, select a password-less public key, such as ~/.ssh/id_rsa.pub. This key authenticates connections with the new OpenShift Container Platform cluster.
								
Note

										For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, select an SSH key that your ssh-agent process uses.
									

	
									For Platform, select ovirt.
								
	
									For Engine FQDN[:PORT], enter the fully qualified domain name (FQDN) of the RHV environment.
								

									For example:
								
rhv-env.virtlab.example.com:443

	
									The installer automatically generates a CA certificate. For Would you like to use the above certificate to connect to the Manager?, answer y or N. If you answer N, you must install OpenShift Container Platform in insecure mode.
								
	
									For Engine username, enter the user name and profile of the RHV administrator using this format:
								
<username>@<profile> [image: 1]
	[image: 1]
	
											For <username>, specify the user name of an RHV administrator. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. For example: admin@internal.
										

	
									For Engine password, enter the RHV admin password.
								
	
									For Cluster, select the RHV cluster for installing OpenShift Container Platform.
								
	
									For Storage domain, select the storage domain for installing OpenShift Container Platform.
								
	
									For Network, select a virtual network that has access to the RHV Manager REST API.
								
	
									For Internal API Virtual IP, enter the static IP address you set aside for the cluster’s REST API.
								
	
									For Ingress virtual IP, enter the static IP address you reserved for the wildcard apps domain.
								
	
									For Base Domain, enter the base domain of the OpenShift Container Platform cluster. If this cluster is exposed to the outside world, this must be a valid domain recognized by DNS infrastructure. For example, enter: virtlab.example.com
								
	
									For Cluster Name, enter the name of the cluster. For example, my-cluster. Use cluster name from the externally registered/resolvable DNS entries you created for the OpenShift Container Platform REST API and apps domain names. The installation program also gives this name to the cluster in the RHV environment.
								
	
									For Pull Secret, copy the pull secret from the pull-secret.txt file you downloaded earlier and paste it here. You can also get a copy of the same pull secret from the Red Hat OpenShift Cluster Manager.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Important

						You have completed the steps required to install the cluster. The remaining steps show you how to verify the cluster and troubleshoot the installation.
					

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

						To learn more, see Getting started with the OpenShift CLI.
					

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Additional resources
	
							See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
						

Verifying cluster status

					You can verify your OpenShift Container Platform cluster’s status during or after installation.
				
Procedure
	
							In the cluster environment, export the administrator’s kubeconfig file:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

							The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
						

	
							View the control plane and compute machines created after a deployment:
						
$ oc get nodes

	
							View your cluster’s version:
						
$ oc get clusterversion

	
							View your Operators' status:
						
$ oc get clusteroperator

	
							View all running pods in the cluster:
						
$ oc get pods -A

Troubleshooting

						If the installation fails, the installation program times out and displays an error message. To learn more, see Troubleshooting installation issues.
					

Accessing the OpenShift Container Platform web console on RHV

					After the OpenShift Container Platform cluster initializes, you can log in to the OpenShift Container Platform web console.
				
Procedure
	
							Optional: In the Red Hat Virtualization (RHV) Administration Portal, open Compute → Cluster.
						
	
							Verify that the installation program creates the virtual machines.
						
	
							Return to the command line where the installation program is running. When the installation program finishes, it displays the user name and temporary password for logging into the OpenShift Container Platform web console.
						
	
							In a browser, open the URL of the OpenShift Container Platform web console. The URL uses this format:
						
console-openshift-console.apps.<clustername>.<basedomain> [image: 1]
	[image: 1]
	
									For <clustername>.<basedomain>, specify the cluster name and base domain.
								

							For example:
						
console-openshift-console.apps.my-cluster.virtlab.example.com

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Troubleshooting common issues with installing on Red Hat Virtualization (RHV)

					Here are some common issues you might encounter, along with proposed causes and solutions.
				
CPU load increases and nodes go into a Not Ready state

	
								Symptom: CPU load increases significantly and nodes start going into a Not Ready state.
							
	
								Cause: The storage domain latency might be too high, especially for control plane nodes (also known as the master nodes).
							
	
								Solution:
							

								Make the nodes ready again by restarting the kubelet service:
							
$ systemctl restart kubelet

								Inspect the OpenShift Container Platform metrics service, which automatically gathers and reports on some valuable data such as the etcd disk sync duration. If the cluster is operational, use this data to help determine whether storage latency or throughput is the root issue. If so, consider using a storage resource that has lower latency and higher throughput.
							

								To get raw metrics, enter the following command as kubeadmin or user with cluster-admin privileges:
							
$ oc get --insecure-skip-tls-verify --server=https://localhost:<port> --raw=/metrics

								To learn more, see Exploring Application Endpoints for the purposes of Debugging with OpenShift 4.x
							

Trouble connecting the OpenShift Container Platform cluster API

	
								Symptom: The installation program completes but the OpenShift Container Platform cluster API is not available. The bootstrap virtual machine remains up after the bootstrap process is complete. When you enter the following command, the response will time out.
							
$ oc login -u kubeadmin -p *** <apiurl>

	
								Cause: The bootstrap VM was not deleted by the installation program and has not released the cluster’s API IP address.
							
	
								Solution: Use the wait-for subcommand to be notified when the bootstrap process is complete:
							
$./openshift-install wait-for bootstrap-complete

								When the bootstrap process is complete, delete the bootstrap virtual machine:
							
$./openshift-install destroy bootstrap

Post-installation tasks

					After the OpenShift Container Platform cluster initializes, you can perform the following tasks.
				
	
							Optional: After deployment, add or replace SSH keys using the Machine Config Operator (MCO) in OpenShift Container Platform.
						
	
							Optional: Remove the kubeadmin user. Instead, use the authentication provider to create a user with cluster-admin privileges.
						

Installing a cluster on RHV with customizations

				You can customize and install an OpenShift Container Platform cluster on Red Hat Virtualization (RHV), similar to the one shown in the following diagram.
			
[image: Diagram of an OpenShift Container Platform cluster on a RHV cluster]

				The installation program uses installer-provisioned infrastructure to automate creating and deploying the cluster.
			

				To install a customized cluster, you prepare the environment and perform the following steps:
			
	
						Create an installation configuration file, the install-config.yaml file, by running the installation program and answering its prompts.
					
	
						Inspect and modify parameters in the install-config.yaml file.
					
	
						Make a working copy of the install-config.yaml file.
					
	
						Run the installation program with a copy of the install-config.yaml file.
					

				Then, the installation program creates the OpenShift Container Platform cluster.
			

				For an alternative to installing a customized cluster, see Installing a default cluster.
			
Note

					This installation program is available for Linux and macOS only.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							You have a supported combination of versions in the Support Matrix for OpenShift Container Platform on Red Hat Virtualization (RHV).
						
	
							If you use a firewall, configure it to allow the sites that your cluster requires access to.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Requirements for the RHV environment

					To install and run an OpenShift Container Platform cluster, the RHV environment must meet the following requirements.
				

					Not meeting these requirements can cause the installation or process to fail. Additionally, not meeting these requirements can cause the OpenShift Container Platform cluster to fail days or weeks after installation.
				

					The following requirements for CPU, memory, and storage resources are based on default values multiplied by the default number of virtual machines the installation program creates. These resources must be available in addition to what the RHV environment uses for non-OpenShift Container Platform operations.
				

					By default, the installation program creates seven virtual machines during the installation process. First, it creates a bootstrap virtual machine to provide temporary services and a control plane while it creates the rest of the OpenShift Container Platform cluster. When the installation program finishes creating the cluster, deleting the bootstrap machine frees up its resources.
				

					If you increase the number of virtual machines in the RHV environment, you must increase the resources accordingly.
				
Requirements
	
							The RHV environment has one data center whose state is Up.
						
	
							The RHV data center contains an RHV cluster.
						
	
							The RHV cluster has the following resources exclusively for the OpenShift Container Platform cluster:
						
	
									Minimum 28 vCPUs: four for each of the seven virtual machines created during installation.
								
	
									112 GiB RAM or more, including:
								
	
											16 GiB or more for the bootstrap machine, which provides the temporary control plane.
										
	
											16 GiB or more for each of the three control plane machines which provide the control plane.
										
	
											16 GiB or more for each of the three compute machines, which run the application workloads.
										

	
							The RHV storage domain must meet these etcd backend performance requirements.
						
	
							In production environments, each virtual machine must have 120 GiB or more. Therefore, the storage domain must provide 840 GiB or more for the default OpenShift Container Platform cluster. In resource-constrained or non-production environments, each virtual machine must have 32 GiB or more, so the storage domain must have 230 GiB or more for the default OpenShift Container Platform cluster.
						
	
							To download images from the Red Hat Ecosystem Catalog during installation and update procedures, the RHV cluster must have access to an internet connection. The Telemetry service also needs an internet connection to simplify the subscription and entitlement process.
						
	
							The RHV cluster must have a virtual network with access to the REST API on the RHV Manager. Ensure that DHCP is enabled on this network, because the VMs that the installer creates obtain their IP address by using DHCP.
						
	
							A user account and group with the following least privileges for installing and managing an OpenShift Container Platform cluster on the target RHV cluster:
						
	
									DiskOperator
								
	
									DiskCreator
								
	
									UserTemplateBasedVm
								
	
									TemplateOwner
								
	
									TemplateCreator
								
	
									ClusterAdmin on the target cluster
								

Warning

						Apply the principle of least privilege: Avoid using an administrator account with SuperUser privileges on RHV during the installation process. The installation program saves the credentials you provide to a temporary ovirt-config.yaml file that might be compromised.
					

Verifying the requirements for the RHV environment

					Verify that the RHV environment meets the requirements to install and run an OpenShift Container Platform cluster. Not meeting these requirements can cause failures.
				
Important

						These requirements are based on the default resources the installation program uses to create control plane and compute machines. These resources include vCPUs, memory, and storage. If you change these resources or increase the number of OpenShift Container Platform machines, adjust these requirements accordingly.
					

Procedure
	
							Check the RHV version.
						
	
									In the RHV Administration Portal, click the ? help icon in the upper-right corner and select About.
								
	
									In the window that opens, make a note of the RHV Software Version.
								
	
									Confirm that version 4.6 of OpenShift Container Platform and the version of RHV you noted are one of the supported combinations in the Support Matrix for OpenShift Container Platform on RHV.
								

	
							Inspect the data center, cluster, and storage.
						
	
									In the RHV Administration Portal, click Compute → Data Centers.
								
	
									Confirm that the data center where you plan to install OpenShift Container Platform is accessible.
								
	
									Click the name of that data center.
								
	
									In the data center details, on the Storage tab, confirm the storage domain where you plan to install OpenShift Container Platform is Active.
								
	
									Record the Domain Name for use later on.
								
	
									Confirm Free Space has at least 230 GiB.
								
	
									Confirm that the storage domain meets these etcd backend performance requirements, which you can measure by using the fio performance benchmarking tool.
								
	
									In the data center details, click the Clusters tab.
								
	
									Find the RHV cluster where you plan to install OpenShift Container Platform. Record the cluster name for use later on.
								

	
							Inspect the RHV host resources.
						
	
									In the RHV Administration Portal, click Compute > Clusters.
								
	
									Click the cluster where you plan to install OpenShift Container Platform.
								
	
									In the cluster details, click the Hosts tab.
								
	
									Inspect the hosts and confirm they have a combined total of at least 28 Logical CPU Cores available exclusively for the OpenShift Container Platform cluster.
								
	
									Record the number of available Logical CPU Cores for use later on.
								
	
									Confirm that these CPU cores are distributed so that each of the seven virtual machines created during installation can have four cores.
								
	
									Confirm that, all together, the hosts have 112 GiB of Max free Memory for scheduling new virtual machines distributed to meet the requirements for each of the following OpenShift Container Platform machines:
								
	
											16 GiB required for the bootstrap machine
										
	
											16 GiB required for each of the three control plane machines
										
	
											16 GiB for each of the three compute machines
										

	
									Record the amount of Max free Memory for scheduling new virtual machines for use later on.
								

	
							Verify that the virtual network for installing OpenShift Container Platform has access to the RHV Manager’s REST API. From a virtual machine on this network, use curl to reach the RHV Manager’s REST API:
						
$ curl -k -u <username>@<profile>:<password> \ [image: 1]
https://<engine-fqdn>/ovirt-engine/api [image: 2]
	[image: 1]
	
									For <username>, specify the user name of an RHV account with privileges to create and manage an OpenShift Container Platform cluster on RHV. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. For <password>, specify the password for that user name.
								

	[image: 2]
	
									For <engine-fqdn>, specify the fully qualified domain name of the RHV environment.
								

							For example:
						
$ curl -k -u ocpadmin@internal:pw123 \
https://rhv-env.virtlab.example.com/ovirt-engine/api

Preparing the network environment on RHV

					Configure two static IP addresses for the OpenShift Container Platform cluster and create DNS entries using these addresses.
				
Procedure
	
							Reserve two static IP addresses
						
	
									On the network where you plan to install OpenShift Container Platform, identify two static IP addresses that are outside the DHCP lease pool.
								
	
									Connect to a host on this network and verify that each of the IP addresses is not in use. For example, use Address Resolution Protocol (ARP) to check that none of the IP addresses have entries:
								
$ arp 10.35.1.19
Example output

										

10.35.1.19 (10.35.1.19) -- no entry

									

	
									Reserve two static IP addresses following the standard practices for your network environment.
								
	
									Record these IP addresses for future reference.
								

	
							Create DNS entries for the OpenShift Container Platform REST API and apps domain names using this format:
						
api.<cluster-name>.<base-domain> <ip-address> [image: 1]
*.apps.<cluster-name>.<base-domain> <ip-address> [image: 2]
	[image: 1]
	
									For <cluster-name>, <base-domain>, and <ip-address>, specify the cluster name, base domain, and static IP address of your OpenShift Container Platform API.
								

	[image: 2]
	
									Specify the cluster name, base domain, and static IP address of your OpenShift Container Platform apps for Ingress and the load balancer.
								

							For example:
						
api.my-cluster.virtlab.example.com	10.35.1.19
*.apps.my-cluster.virtlab.example.com	10.35.1.20

Setting up the CA certificate for RHV

					Download the CA certificate from the Red Hat Virtualization (RHV) Manager and set it up on the installation machine.
				

					You can download the certificate from a webpage on the RHV Manager or by using a curl command.
				

					Later, you provide the certificate to the installation program.
				
Procedure
	
							Use either of these two methods to download the CA certificate:
						
	
									Go to the Manager’s webpage, https://<engine-fqdn>/ovirt-engine/. Then, under Downloads, click the CA Certificate link.
								
	
									Run the following command:
								
$ curl -k 'https://<engine-fqdn>/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA' -o /tmp/ca.pem [image: 1]
	[image: 1]
	
											For <engine-fqdn>, specify the fully qualified domain name of the RHV Manager, such as rhv-env.virtlab.example.com.
										

	
							Configure the CA file to grant rootless user access to the Manager. Set the CA file permissions to have an octal value of 0644 (symbolic value: -rw-r—​r--):
						
$ sudo chmod 0644 /tmp/ca.pem

	
							For Linux, copy the CA certificate to the directory for server certificates. Use -p to preserve the permissions:
						
$ sudo cp -p /tmp/ca.pem /etc/pki/ca-trust/source/anchors/ca.pem

	
							Add the certificate to the certificate manager for your operating system:
						
	
									For macOS, double-click the certificate file and use the Keychain Access utility to add the file to the System keychain.
								
	
									For Linux, update the CA trust:
								
$ sudo update-ca-trust
Note

										If you use your own certificate authority, make sure the system trusts it.
									

Additional resources
	
							To learn more, see Authentication and Security in the RHV documentation.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on Red Hat Virtualization (RHV).
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									Respond to the installation program prompts.
								
	
											For SSH Public Key, select a password-less public key, such as ~/.ssh/id_rsa.pub. This key authenticates connections with the new OpenShift Container Platform cluster.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, select an SSH key that your ssh-agent process uses.
											

	
											For Platform, select ovirt.
										
	
											For Enter oVirt’s API endpoint URL, enter the URL of the RHV API using this format:
										
https://<engine-fqdn>/ovirt-engine/api [image: 1]
	[image: 1]
	
													For <engine-fqdn>, specify the fully qualified domain name of the RHV environment.
												

											For example:
										
$ curl -k -u ocpadmin@internal:pw123 \
https://rhv-env.virtlab.example.com/ovirt-engine/api

	
											For Is the oVirt CA trusted locally?, enter Yes since you have already set up a CA certificate. Otherwise, enter No.
										
	
											For oVirt’s CA bundle, if you entered Yes for the preceding question, copy the certificate content from /etc/pki/ca-trust/source/anchors/ca.pem and paste it here. Then, press Enter twice. Otherwise, if you entered No for the preceding question, this question does not appear.
										
	
											For oVirt engine username, enter the user name and profile of the RHV administrator using this format:
										
<username>@<profile> [image: 1]
	[image: 1]
	
													For <username>, specify the user name of an RHV administrator. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. Together, the user name and profile should look similar to this example:
												

ocpadmin@internal

	
											For oVirt engine password, enter the RHV admin password.
										
	
											For oVirt cluster, select the cluster for installing OpenShift Container Platform.
										
	
											For oVirt storage domain, select the storage domain for installing OpenShift Container Platform.
										
	
											For oVirt network, select a virtual network that has access to the Manager REST API.
										
	
											For Internal API Virtual IP, enter the static IP address you set aside for the cluster’s REST API.
										
	
											For Ingress virtual IP, enter the static IP address you reserved for the wildcard apps domain.
										
	
											For Base Domain, enter the base domain of the OpenShift Container Platform cluster. If this cluster is exposed to the outside world, this must be a valid domain recognized by DNS infrastructure. For example, enter: virtlab.example.com
										
	
											For Cluster Name, enter the name of the cluster. For example, my-cluster. Use cluster name from the externally registered/resolvable DNS entries you created for the OpenShift Container Platform REST API and apps domain names. The installation program also gives this name to the cluster in the RHV environment.
										
	
											For Pull Secret, copy the pull secret from the pull-secret.txt file you downloaded earlier and paste it here. You can also get a copy of the same pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Example install-config.yaml files for Red Hat Virtualization (RHV)

						You can customize the OpenShift Container Platform cluster the installation program creates by changing the parameters and parameter values in the install-config.yaml file.
					

						The following example is specific to installing OpenShift Container Platform on RHV.
					

						This file is located in the <installation_directory> you specified when you ran the following command.
					
$./openshift-install create install-config --dir <installation_directory>
Note
	
									These example files are provided for reference only. You must obtain your install-config.yaml file by using the installation program.
								
	
									Changing the install-config.yaml file can increase the resources your cluster requires. Verify that your RHV environment has those additional resources. Otherwise, the installation or cluster will fail.
								

Example: This is the default install-config.yaml file

							

apiVersion: v1
baseDomain: example.com
compute:
- architecture: amd64
 hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 3
controlPlane:
 architecture: amd64
 hyperthreading: Enabled
 name: master
 platform: {}
 replicas: 3
metadata:
 creationTimestamp: null
 name: my-cluster
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 ovirt:
 api_vip: 10.46.8.230
 ingress_vip: 192.168.1.5
 ovirt_cluster_id: 68833f9f-e89c-4891-b768-e2ba0815b76b
 ovirt_storage_domain_id: ed7b0f4e-0e96-492a-8fff-279213ee1468
 ovirt_network_name: ovirtmgmt
 vnicProfileID: 3fa86930-0be5-4052-b667-b79f0a729692
publish: External
pullSecret: '{"auths": ...}'
sshKey: ssh-ed12345 AAAA...

						
Example: A minimal install-config.yaml file

							

apiVersion: v1
baseDomain: example.com
metadata:
 name: test-cluster
platform:
 ovirt:
 api_vip: 10.46.8.230
 ingress_vip: 10.46.8.232
 ovirt_cluster_id: 68833f9f-e89c-4891-b768-e2ba0815b76b
 ovirt_storage_domain_id: ed7b0f4e-0e96-492a-8fff-279213ee1468
 ovirt_network_name: ovirtmgmt
 vnicProfileID: 3fa86930-0be5-4052-b667-b79f0a729692
pullSecret: '{"auths": ...}'
sshKey: ssh-ed12345 AAAA...

						
Example: Custom machine pools in an install-config.yaml file

							

apiVersion: v1
baseDomain: example.com
controlPlane:
 name: master
 platform:
 ovirt:
 cpu:
 cores: 4
 sockets: 2
 memoryMB: 65536
 osDisk:
 sizeGB: 100
 vmType: server
 replicas: 3
compute:
- name: worker
 platform:
 ovirt:
 cpu:
 cores: 4
 sockets: 4
 memoryMB: 65536
 osDisk:
 sizeGB: 200
 vmType: server
 replicas: 5
metadata:
 name: test-cluster
platform:
 ovirt:
 api_vip: 10.46.8.230
 ingress_vip: 10.46.8.232
 ovirt_cluster_id: 68833f9f-e89c-4891-b768-e2ba0815b76b
 ovirt_storage_domain_id: ed7b0f4e-0e96-492a-8fff-279213ee1468
 ovirt_network_name: ovirtmgmt
 vnicProfileID: 3fa86930-0be5-4052-b667-b79f0a729692
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

						

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 10.1. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters, hyphens (-), and periods (.), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 10.2. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 10.3. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional Red Hat Virtualization (RHV) configuration parameters

							Additional RHV configuration parameters are described in the following table:
						
Table 10.4. Additional RHV parameters for clusters
	Parameter	Description	Values
	
											platform.ovirt.ovirt_cluster_id
										

										 	
											Required. The Cluster where the VMs will be created.
										

										 	
											String. For example: 68833f9f-e89c-4891-b768-e2ba0815b76b
										

										
	
											platform.ovirt.ovirt_storage_domain_id
										

										 	
											Required. The Storage Domain ID where the VM disks will be created.
										

										 	
											String. For example: ed7b0f4e-0e96-492a-8fff-279213ee1468
										

										
	
											platform.ovirt.ovirt_network_name
										

										 	
											Required. The network name where the VM nics will be created.
										

										 	
											String. For example: ocpcluster
										

										
	
											platform.ovirt.vnicProfileID
										

										 	
											Required. The vNIC profile ID of the VM network interfaces. This can be inferred if the cluster network has a single profile.
										

										 	
											String. For example: 3fa86930-0be5-4052-b667-b79f0a729692
										

										
	
											platform.ovirt.api_vip
										

										 	
											Required. An IP address on the machine network that will be assigned to the API virtual IP (VIP). You can access the OpenShift API at this endpoint.
										

										 	
											String. Example: 10.46.8.230
										

										
	
											platform.ovirt.ingress_vip
										

										 	
											Required. An IP address on the machine network that will be assigned to the Ingress virtual IP (VIP).
										

										 	
											String. Example: 10.46.8.232
										

										

Additional RHV parameters for machine pools

							Additional RHV configuration parameters for machine pools are described in the following table:
						
Table 10.5. Additional RHV parameters for machine pools
	Parameter	Description	Values
	
											<machine-pool>.platform.ovirt.cpu
										

										 	
											Optional. Defines the CPU of the VM.
										

										 	
											Object
										

										
	
											<machine-pool>.platform.ovirt.cpu.cores
										

										 	
											Required if you use <machine-pool>.platform.ovirt.cpu. The number of cores. Total virtual CPUs (vCPUs) is cores * sockets.
										

										 	
											Integer
										

										
	
											<machine-pool>.platform.ovirt.cpu.sockets
										

										 	
											Required if you use <machine-pool>.platform.ovirt.cpu. The number of sockets per core. Total virtual CPUs (vCPUs) is cores * sockets.
										

										 	
											Integer
										

										
	
											<machine-pool>.platform.ovirt.memoryMB
										

										 	
											Optional. Memory of the VM in MiB.
										

										 	
											Integer
										

										
	
											<machine-pool>.platform.ovirt.instanceTypeID
										

										 	
											Optional. An instance type UUID, such as 00000009-0009-0009-0009-0000000000f1, which you can get from the https://<engine-fqdn>/ovirt-engine/api/instancetypes endpoint.
										

										 	
											String of UUID
										

										
	
											<machine-pool>.platform.ovirt.osDisk
										

										 	
											Optional. Defines the first and bootable disk of the VM.
										

										 	
											String
										

										
	
											<machine-pool>.platform.ovirt.osDisk.sizeGB
										

										 	
											Required if you use <machine-pool>.platform.ovirt.osDisk. Size of the disk in GiB.
										

										 	
											Number
										

										
	
											<machine-pool>.platform.ovirt.vmType
										

										 	
											Optional. The VM workload type, such as high-performance, server, or desktop.
										

										 	
											String
										

										

Note

								You can replace <machine-pool> with controlPlane or compute.
							

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Open the ovirt-imageio port to the Manager from the machine running the installer. By default, the port is 54322.
						
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Note

								If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
							

							When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						
Example output

								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

							
Note

								The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
							

Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

Important

								You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
							

Important

						You have completed the steps required to install the cluster. The remaining steps show you how to verify the cluster and troubleshoot the installation.
					

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

					To learn more, see Getting started with the OpenShift CLI.
				

Verifying cluster status

					You can verify your OpenShift Container Platform cluster’s status during or after installation.
				
Procedure
	
							In the cluster environment, export the administrator’s kubeconfig file:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

							The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
						

	
							View the control plane and compute machines created after a deployment:
						
$ oc get nodes

	
							View your cluster’s version:
						
$ oc get clusterversion

	
							View your Operators' status:
						
$ oc get clusteroperator

	
							View all running pods in the cluster:
						
$ oc get pods -A

Troubleshooting

						If the installation fails, the installation program times out and displays an error message. To learn more, see Troubleshooting installation issues.
					

Accessing the OpenShift Container Platform web console on RHV

					After the OpenShift Container Platform cluster initializes, you can log in to the OpenShift Container Platform web console.
				
Procedure
	
							Optional: In the Red Hat Virtualization (RHV) Administration Portal, open Compute → Cluster.
						
	
							Verify that the installation program creates the virtual machines.
						
	
							Return to the command line where the installation program is running. When the installation program finishes, it displays the user name and temporary password for logging into the OpenShift Container Platform web console.
						
	
							In a browser, open the URL of the OpenShift Container Platform web console. The URL uses this format:
						
console-openshift-console.apps.<clustername>.<basedomain> [image: 1]
	[image: 1]
	
									For <clustername>.<basedomain>, specify the cluster name and base domain.
								

							For example:
						
console-openshift-console.apps.my-cluster.virtlab.example.com

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Troubleshooting common issues with installing on Red Hat Virtualization (RHV)

					Here are some common issues you might encounter, along with proposed causes and solutions.
				
CPU load increases and nodes go into a Not Ready state

	
								Symptom: CPU load increases significantly and nodes start going into a Not Ready state.
							
	
								Cause: The storage domain latency might be too high, especially for control plane nodes (also known as the master nodes).
							
	
								Solution:
							

								Make the nodes ready again by restarting the kubelet service:
							
$ systemctl restart kubelet

								Inspect the OpenShift Container Platform metrics service, which automatically gathers and reports on some valuable data such as the etcd disk sync duration. If the cluster is operational, use this data to help determine whether storage latency or throughput is the root issue. If so, consider using a storage resource that has lower latency and higher throughput.
							

								To get raw metrics, enter the following command as kubeadmin or user with cluster-admin privileges:
							
$ oc get --insecure-skip-tls-verify --server=https://localhost:<port> --raw=/metrics

								To learn more, see Exploring Application Endpoints for the purposes of Debugging with OpenShift 4.x
							

Trouble connecting the OpenShift Container Platform cluster API

	
								Symptom: The installation program completes but the OpenShift Container Platform cluster API is not available. The bootstrap virtual machine remains up after the bootstrap process is complete. When you enter the following command, the response will time out.
							
$ oc login -u kubeadmin -p *** <apiurl>

	
								Cause: The bootstrap VM was not deleted by the installation program and has not released the cluster’s API IP address.
							
	
								Solution: Use the wait-for subcommand to be notified when the bootstrap process is complete:
							
$./openshift-install wait-for bootstrap-complete

								When the bootstrap process is complete, delete the bootstrap virtual machine:
							
$./openshift-install destroy bootstrap

Post-installation tasks

					After the OpenShift Container Platform cluster initializes, you can perform the following tasks.
				
	
							Optional: After deployment, add or replace SSH keys using the Machine Config Operator (MCO) in OpenShift Container Platform.
						
	
							Optional: Remove the kubeadmin user. Instead, use the authentication provider to create a user with cluster-admin privileges.
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						

Installing a cluster on RHV with user-provisioned infrastructure

				In OpenShift Container Platform version 4.6, you can install a customized OpenShift Container Platform cluster on Red Hat Virtualization (RHV) and other infrastructure that you provide. The OpenShift Container Platform documentation uses the term user-provisioned infrastructure to refer to this infrastructure type.
			

				The following diagram shows an example of a potential OpenShift Container Platform cluster running on a RHV cluster.
			
[image: Diagram of an OpenShift Container Platform cluster on a RHV cluster]

				The RHV hosts run virtual machines that contain both control plane and compute pods. One of the hosts also runs a Manager virtual machine and a bootstrap virtual machine that contains a temporary control plane pod.]
			
Prerequisites

					The following items are required to install an OpenShift Container Platform cluster on a RHV environment.
				
	
							You have a supported combination of versions in the Support Matrix for OpenShift Container Platform on Red Hat Virtualization (RHV).
						
	
							You are familiar with the OpenShift Container Platform installation and update processes.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

Requirements for the RHV environment

					To install and run an OpenShift Container Platform cluster, the RHV environment must meet the following requirements.
				

					Not meeting these requirements can cause the installation or process to fail. Additionally, not meeting these requirements can cause the OpenShift Container Platform cluster to fail days or weeks after installation.
				

					The following requirements for CPU, memory, and storage resources are based on default values multiplied by the default number of virtual machines the installation program creates. These resources must be available in addition to what the RHV environment uses for non-OpenShift Container Platform operations.
				

					By default, the installation program creates seven virtual machines during the installation process. First, it creates a bootstrap virtual machine to provide temporary services and a control plane while it creates the rest of the OpenShift Container Platform cluster. When the installation program finishes creating the cluster, deleting the bootstrap machine frees up its resources.
				

					If you increase the number of virtual machines in the RHV environment, you must increase the resources accordingly.
				
Requirements
	
							The RHV environment has one data center whose state is Up.
						
	
							The RHV data center contains an RHV cluster.
						
	
							The RHV cluster has the following resources exclusively for the OpenShift Container Platform cluster:
						
	
									Minimum 28 vCPUs: four for each of the seven virtual machines created during installation.
								
	
									112 GiB RAM or more, including:
								
	
											16 GiB or more for the bootstrap machine, which provides the temporary control plane.
										
	
											16 GiB or more for each of the three control plane machines which provide the control plane.
										
	
											16 GiB or more for each of the three compute machines, which run the application workloads.
										

	
							The RHV storage domain must meet these etcd backend performance requirements.
						
	
							In production environments, each virtual machine must have 120 GiB or more. Therefore, the storage domain must provide 840 GiB or more for the default OpenShift Container Platform cluster. In resource-constrained or non-production environments, each virtual machine must have 32 GiB or more, so the storage domain must have 230 GiB or more for the default OpenShift Container Platform cluster.
						
	
							To download images from the Red Hat Ecosystem Catalog during installation and update procedures, the RHV cluster must have access to an internet connection. The Telemetry service also needs an internet connection to simplify the subscription and entitlement process.
						
	
							The RHV cluster must have a virtual network with access to the REST API on the RHV Manager. Ensure that DHCP is enabled on this network, because the VMs that the installer creates obtain their IP address by using DHCP.
						
	
							A user account and group with the following least privileges for installing and managing an OpenShift Container Platform cluster on the target RHV cluster:
						
	
									DiskOperator
								
	
									DiskCreator
								
	
									UserTemplateBasedVm
								
	
									TemplateOwner
								
	
									TemplateCreator
								
	
									ClusterAdmin on the target cluster
								

Warning

						Apply the principle of least privilege: Avoid using an administrator account with SuperUser privileges on RHV during the installation process. The installation program saves the credentials you provide to a temporary ovirt-config.yaml file that might be compromised.
					

Verifying the requirements for the RHV environment

					Verify that the RHV environment meets the requirements to install and run an OpenShift Container Platform cluster. Not meeting these requirements can cause failures.
				
Important

						These requirements are based on the default resources the installation program uses to create control plane and compute machines. These resources include vCPUs, memory, and storage. If you change these resources or increase the number of OpenShift Container Platform machines, adjust these requirements accordingly.
					

Procedure
	
							Check the RHV version.
						
	
									In the RHV Administration Portal, click the ? help icon in the upper-right corner and select About.
								
	
									In the window that opens, make a note of the RHV Software Version.
								
	
									Confirm that version 4.6 of OpenShift Container Platform and the version of RHV you noted are one of the supported combinations in the Support Matrix for OpenShift Container Platform on RHV.
								

	
							Inspect the data center, cluster, and storage.
						
	
									In the RHV Administration Portal, click Compute → Data Centers.
								
	
									Confirm that the data center where you plan to install OpenShift Container Platform is accessible.
								
	
									Click the name of that data center.
								
	
									In the data center details, on the Storage tab, confirm the storage domain where you plan to install OpenShift Container Platform is Active.
								
	
									Record the Domain Name for use later on.
								
	
									Confirm Free Space has at least 230 GiB.
								
	
									Confirm that the storage domain meets these etcd backend performance requirements, which you can measure by using the fio performance benchmarking tool.
								
	
									In the data center details, click the Clusters tab.
								
	
									Find the RHV cluster where you plan to install OpenShift Container Platform. Record the cluster name for use later on.
								

	
							Inspect the RHV host resources.
						
	
									In the RHV Administration Portal, click Compute > Clusters.
								
	
									Click the cluster where you plan to install OpenShift Container Platform.
								
	
									In the cluster details, click the Hosts tab.
								
	
									Inspect the hosts and confirm they have a combined total of at least 28 Logical CPU Cores available exclusively for the OpenShift Container Platform cluster.
								
	
									Record the number of available Logical CPU Cores for use later on.
								
	
									Confirm that these CPU cores are distributed so that each of the seven virtual machines created during installation can have four cores.
								
	
									Confirm that, all together, the hosts have 112 GiB of Max free Memory for scheduling new virtual machines distributed to meet the requirements for each of the following OpenShift Container Platform machines:
								
	
											16 GiB required for the bootstrap machine
										
	
											16 GiB required for each of the three control plane machines
										
	
											16 GiB for each of the three compute machines
										

	
									Record the amount of Max free Memory for scheduling new virtual machines for use later on.
								

	
							Verify that the virtual network for installing OpenShift Container Platform has access to the RHV Manager’s REST API. From a virtual machine on this network, use curl to reach the RHV Manager’s REST API:
						
$ curl -k -u <username>@<profile>:<password> \ [image: 1]
https://<engine-fqdn>/ovirt-engine/api [image: 2]
	[image: 1]
	
									For <username>, specify the user name of an RHV account with privileges to create and manage an OpenShift Container Platform cluster on RHV. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. For <password>, specify the password for that user name.
								

	[image: 2]
	
									For <engine-fqdn>, specify the fully qualified domain name of the RHV environment.
								

							For example:
						
$ curl -k -u ocpadmin@internal:pw123 \
https://rhv-env.virtlab.example.com/ovirt-engine/api

Networking requirements for user-provisioned infrastructure

					All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
				

					During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
				

					It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
				

					The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
				

					You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
				
Firewall

						Configure your firewall so your cluster has access to required sites.
					

					See also:
				
	
							Red Hat Virtualization Manager firewall requirements
						
	
							Host firewall requirements
						

Load balancers

						Configure one or preferably two layer-4 load balancers:
					
	
							Provide load balancing for ports 6443 and 22623 on the control plane and bootstrap machines. Port 6443 provides access to the Kubernetes API server and must be reachable both internally and externally. Port 22623 must be accessible to nodes within the cluster.
						
	
							Provide load balancing for port 443 and 80 for machines that run the Ingress router, which are usually compute nodes in the default configuration. Both ports must be accessible from within and outside the cluster.
						

DNS

						Configure infrastructure-provided DNS to allow the correct resolution of the main components and services. If you use only one load balancer, these DNS records can point to the same IP address.
					
	
							Create DNS records for api.<cluster_name>.<base_domain> (internal and external resolution) and api-int.<cluster_name>.<base_domain> (internal resolution) that point to the load balancer for the control plane machines.
						
	
							Create a DNS record for *.apps.<cluster_name>.<base_domain> that points to the load balancer for the Ingress router. For example, ports 443 and 80 of the compute machines.
						

Table 10.6. All machines to all machines
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									VXLAN and Geneve
								

								
	
									6081
								

								 	
									VXLAN and Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								

Table 10.7. All machines to control plane
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 10.8. Control plane machines to control plane machines
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

Network topology requirements

					The infrastructure that you provision for your cluster must meet the following network topology requirements.
				
Important

						OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
					

Load balancers

					Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
				
	
							API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
								
	
									A stateless load balancing algorithm. The options vary based on the load balancer implementation.
								

Important

								Do not configure session persistence for an API load balancer.
							

							Configure the following ports on both the front and back of the load balancers:
						
Table 10.9. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											6443
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
										

										 	
											X
										

										 	
											X
										

										 	
											Kubernetes API server
										

										
	
											22623
										

										 	
											Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
										

										 	
											X
										

										 	 	
											Machine config server
										

										

Note

								The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
							

	
							Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
						
	
									Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
								
	
									A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
								

							Configure the following ports on both the front and back of the load balancers:
						
Table 10.10. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
											443
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTPS traffic
										

										
	
											80
										

										 	
											The machines that run the Ingress router pods, compute, or worker, by default.
										

										 	
											X
										

										 	
											X
										

										 	
											HTTP traffic
										

										

Tip

					If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
				

Note

						A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
					

NTP configuration

					OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
				

					If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
				

Setting up the installation machine

					To run the binary openshift-install installation program and Ansible scripts, set up the RHV Manager or an Red Hat Enterprise Linux (RHEL) computer with network access to the RHV environment and the REST API on the Manager.
				
Procedure
	
							Update or install Python3 and Ansible. For example:
						
dnf update python3 ansible

	
							Install the python3-ovirt-engine-sdk4 package to get the Python Software Development Kit.
						
	
							Install the ovirt.image-template Ansible role. On the RHV Manager and other Red Hat Enterprise Linux (RHEL) machines, this role is distributed as the ovirt-ansible-image-template package. For example, enter:
						
dnf install ovirt-ansible-image-template

	
							Install the ovirt.vm-infra Ansible role. On the RHV Manager and other RHEL machines, this role is distributed as the ovirt-ansible-vm-infra package.
						
dnf install ovirt-ansible-vm-infra

	
							Create an environment variable and assign an absolute or relative path to it. For example, enter:
						
$ export ASSETS_DIR=./wrk
Note

								The installation program uses this variable to create a directory where it saves important installation-related files. Later, the installation process reuses this variable to locate those asset files. Avoid deleting this assets directory; it is required for uninstalling the cluster.
							

Setting up the CA certificate for RHV

					Download the CA certificate from the Red Hat Virtualization (RHV) Manager and set it up on the installation machine.
				

					You can download the certificate from a webpage on the RHV Manager or by using a curl command.
				

					Later, you provide the certificate to the installation program.
				
Procedure
	
							Use either of these two methods to download the CA certificate:
						
	
									Go to the Manager’s webpage, https://<engine-fqdn>/ovirt-engine/. Then, under Downloads, click the CA Certificate link.
								
	
									Run the following command:
								
$ curl -k 'https://<engine-fqdn>/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA' -o /tmp/ca.pem [image: 1]
	[image: 1]
	
											For <engine-fqdn>, specify the fully qualified domain name of the RHV Manager, such as rhv-env.virtlab.example.com.
										

	
							Configure the CA file to grant rootless user access to the Manager. Set the CA file permissions to have an octal value of 0644 (symbolic value: -rw-r—​r--):
						
$ sudo chmod 0644 /tmp/ca.pem

	
							For Linux, copy the CA certificate to the directory for server certificates. Use -p to preserve the permissions:
						
$ sudo cp -p /tmp/ca.pem /etc/pki/ca-trust/source/anchors/ca.pem

	
							Add the certificate to the certificate manager for your operating system:
						
	
									For macOS, double-click the certificate file and use the Keychain Access utility to add the file to the System keychain.
								
	
									For Linux, update the CA trust:
								
$ sudo update-ca-trust
Note

										If you use your own certificate authority, make sure the system trusts it.
									

Additional resources
	
							To learn more, see Authentication and Security in the RHV documentation.
						

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Downloading the Ansible playbooks

					Download the Ansible playbooks for installing OpenShift Container Platform version 4.6 on RHV.
				
Procedure
	
							On your installation machine, run the following commands:
						
$ mkdir playbooks
$ cd playbooks
$ curl -s -L -X GET https://api.github.com/repos/openshift/installer/contents/upi/ovirt?ref=release-4.6 |
grep 'download_url.*\.yml' |
awk '{ print $2 }' | sed -r 's/("|",)//g' |
xargs -n 1 curl -O

Next steps
	
							After you download these Ansible playbooks, you must also create the environment variable for the assets directory and customize the inventory.yml file before you create an installation configuration file by running the installation program.
						

The inventory.yml file

					You use the inventory.yml file to define and create elements of the OpenShift Container Platform cluster you are installing. This includes elements such as the Red Hat Enterprise Linux CoreOS (RHCOS) image, virtual machine templates, bootstrap machine, control plane nodes, and worker nodes. You also use inventory.yml to destroy the cluster.
				

					The following inventory.yml example shows you the parameters and their default values. The quantities and numbers in these default values meet the requirements for running a production OpenShift Container Platform cluster in a RHV environment.
				
Example inventory.yml file

all:
 vars:

 ovirt_cluster: "Default"
 ocp:
 assets_dir: "{{ lookup('env', 'ASSETS_DIR') }}"
 ovirt_config_path: "{{ lookup('env', 'HOME') }}/.ovirt/ovirt-config.yaml"

 # ---
 # {op-system} section
 # ---
 rhcos:
 image_url: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.6/latest/rhcos-openstack.x86_64.qcow2.gz"
 local_cmp_image_path: "/tmp/rhcos.qcow2.gz"
 local_image_path: "/tmp/rhcos.qcow2"

 # ---
 # Profiles section
 # ---
 control_plane:
 cluster: "{{ ovirt_cluster }}"
 memory: 16GiB
 sockets: 4
 cores: 1
 template: rhcos_tpl
 operating_system: "rhcos_x64"
 type: high_performance
 graphical_console:
 headless_mode: false
 protocol:
 - spice
 - vnc
 disks:
 - size: 120GiB
 name: os
 interface: virtio_scsi
 storage_domain: depot_nvme
 nics:
 - name: nic1
 network: lab
 profile: lab

 compute:
 cluster: "{{ ovirt_cluster }}"
 memory: 16GiB
 sockets: 4
 cores: 1
 template: worker_rhcos_tpl
 operating_system: "rhcos_x64"
 type: high_performance
 graphical_console:
 headless_mode: false
 protocol:
 - spice
 - vnc
 disks:
 - size: 120GiB
 name: os
 interface: virtio_scsi
 storage_domain: depot_nvme
 nics:
 - name: nic1
 network: lab
 profile: lab

 # ---
 # Virtual machines section
 # ---
 vms:
 - name: "{{ metadata.infraID }}-bootstrap"
 ocp_type: bootstrap
 profile: "{{ control_plane }}"
 type: server
 - name: "{{ metadata.infraID }}-master0"
 ocp_type: master
 profile: "{{ control_plane }}"
 - name: "{{ metadata.infraID }}-master1"
 ocp_type: master
 profile: "{{ control_plane }}"
 - name: "{{ metadata.infraID }}-master2"
 ocp_type: master
 profile: "{{ control_plane }}"
 - name: "{{ metadata.infraID }}-worker0"
 ocp_type: worker
 profile: "{{ compute }}"
 - name: "{{ metadata.infraID }}-worker1"
 ocp_type: worker
 profile: "{{ compute }}"
 - name: "{{ metadata.infraID }}-worker2"
 ocp_type: worker
 profile: "{{ compute }}"

					
Important

						Enter values for parameters whose descriptions begin with "Enter." Otherwise, you can use the default value or replace it with a new value.
					

General section
	
							ovirt_cluster: Enter the name of an existing RHV cluster in which to install the OpenShift Container Platform cluster.
						
	
							ocp.assets_dir: The path of a directory the openshift-install installation program creates to store the files that it generates.
						
	
							ocp.ovirt_config_path: The path of the ovirt-config.yaml file the installation program generates, for example, ./wrk/install-config.yaml. This file contains the credentials required to interact with the REST API of the Manager.
						

Red Hat Enterprise Linux CoreOS (RHCOS) section
	
							image_url: Enter the URL of the RHCOS image you specified for download.
						
	
							local_cmp_image_path: The path of a local download directory for the compressed RHCOS image.
						
	
							local_image_path: The path of a local directory for the extracted RHCOS image.
						

Profiles section

						This section consists of two profiles:
					
	
							control_plane: The profile of the bootstrap and control plane nodes.
						
	
							compute: The profile of workers nodes in the compute plane.
						

					These profiles have the following parameters. The default values of the parameters meet the minimum requirements for running a production cluster. You can increase or customize these values to meet your workload requirements.
				
	
							cluster: The value gets the cluster name from ovirt_cluster in the General Section.
						
	
							memory: The amount of memory, in GB, for the virtual machine.
						
	
							sockets: The number of sockets for the virtual machine.
						
	
							cores: The number of cores for the virtual machine.
						
	
							template: The name of the virtual machine template. If plan to install multiple clusters, and these clusters use templates that contain different specifications, prepend the template name with the ID of the cluster.
						
	
							operating_system: The type of guest operating system in the virtual machine. With oVirt/RHV version 4.4, this value must be rhcos_x64 so the value of Ignition script can be passed to the VM.
						
	
							type: Enter server as the type of the virtual machine.
						
Important

								You must change the value of the type parameter from high_performance to server.
							

	
							disks: The disk specifications. The control_plane and compute nodes can have different storage domains.
						
	
							size: The minimum disk size.
						
	
							name: Enter the name of a disk connected to the target cluster in RHV.
						
	
							interface: Enter the interface type of the disk you specified.
						
	
							storage_domain: Enter the storage domain of the disk you specified.
						
	
							nics: Enter the name and network the virtual machines use. You can also specify the virtual network interface profile. By default, NICs obtain their MAC addresses from the oVirt/RHV MAC pool.
						

Virtual machines section

						This final section, vms, defines the virtual machines you plan to create and deploy in the cluster. By default, it provides the minimum number of control plane and worker nodes for a production environment.
					

					vms contains three required elements:
				
	
							name: The name of the virtual machine. In this case, metadata.infraID prepends the virtual machine name with the infrastructure ID from the metadata.yml file.
						
	
							ocp_type: The role of the virtual machine in the OCP cluster. Possible values are bootstrap, master, worker.
						
	
							profile: The name of the profile from which each virtual machine inherits specifications. Possible values in this example are control_plane or compute.
						

							You can override the value a virtual machine inherits from its profile. To do this, you add the name of the profile attribute to the virtual machine in inventory.yml and assign it an overriding value. To see an example of this, examine the name: "{{ metadata.infraID }}-bootstrap" virtual machine in the preceding inventory.yml example: It has a type attribute whose value, server, overrides the value of the type attribute this virtual machine would otherwise inherit from the control_plane profile.
						

Metadata variables

						For virtual machines, metadata.infraID prepends the name of the virtual machine with the infrastructure ID from the metadata.json file you create when you build the Ignition files.
					

					The playbooks use the following code to read infraID from the specific file located in the ocp.assets_dir.

- name: include metadata.json vars
 include_vars:
 file: "{{ ocp.assets_dir }}/metadata.json"
 name: metadata

 ...

Specifying the RHCOS image settings

					Update the Red Hat Enterprise Linux CoreOS (RHCOS) image settings of the inventory.yml file. Later, when you run this file one of the playbooks, it downloads a compressed Red Hat Enterprise Linux CoreOS (RHCOS) image from the image_url URL to the local_cmp_image_path directory. The playbook then uncompresses the image to the local_image_path directory and uses it to create oVirt/RHV templates.
				
Procedure
	
							Locate the RHCOS image download page for the version of OpenShift Container Platform you are installing, such as Index of /pub/openshift-v4/dependencies/rhcos/latest/latest.
						
	
							From that download page, copy the URL of an OpenStack qcow2 image, such as https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.6/latest/rhcos-openstack.x86_64.qcow2.gz.
						
	
							Edit the inventory.yml playbook you downloaded earlier. In it, paste the URL as the value for image_url. For example:
						
rhcos:
 "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.6/latest/rhcos-openstack.x86_64.qcow2.gz"

Creating the install config file

					You create an installation configuration file by running the installation program, openshift-install, and responding to its prompts with information you specified or gathered earlier.
				

					When you finish responding to the prompts, the installation program creates an initial version of the install-config.yaml file in the assets directory you specified earlier, for example, ./wrk/install-config.yaml
				

					The installation program also creates a file, $HOME/.ovirt/ovirt-config.yaml, that contains all the connection parameters that are required to reach the Manager and use its REST API.
				

					NOTE: The installation process does not use values you supply for some parameters, such as Internal API virtual IP and Ingress virtual IP, because you have already configured them in your infrastructure DNS.
				

					It also uses the values you supply for parameters in inventory.yml, like the ones for oVirt cluster, oVirt storage, and oVirt network. And uses a script to remove or replace these same values from install-config.yaml with the previously mentioned virtual IPs.
				
Procedure
	
							Run the installation program:
						
$ openshift-install create install-config --dir $ASSETS_DIR

	
							Respond to the installation program’s prompts with information about your system.
						
Example output

								

? SSH Public Key /home/user/.ssh/id_dsa.pub
? Platform <ovirt>
? Engine FQDN[:PORT] [? for help] <engine.fqdn>
? Enter ovirt-engine username <ocpadmin@internal>
? Enter password <******>
? oVirt cluster <cluster>
? oVirt storage <storage>
? oVirt network <net>
? Internal API virtual IP <172.16.0.252>
? Ingress virtual IP <172.16.0.251>
? Base Domain <example.org>
? Cluster Name <ocp4>
? Pull Secret [? for help] <********>

							

? SSH Public Key /home/user/.ssh/id_dsa.pub
? Platform <ovirt>
? Engine FQDN[:PORT] [? for help] <engine.fqdn>
? Enter ovirt-engine username <ocpadmin@internal>
? Enter password <******>
? oVirt cluster <cluster>
? oVirt storage <storage>
? oVirt network <net>
? Internal API virtual IP <172.16.0.252>
? Ingress virtual IP <172.16.0.251>
? Base Domain <example.org>
? Cluster Name <ocp4>
? Pull Secret [? for help] <********>

					For Internal API virtual IP and Ingress virtual IP, supply the IP addresses you specified when you configured the DNS service.
				

					Together, the values you enter for the oVirt cluster and Base Domain prompts form the FQDN portion of URLs for the REST API and any applications you create, such as https://api.ocp4.example.org:6443/ and https://console-openshift-console.apps.ocp4.example.org.
				

					You can get the pull secret from the Red Hat OpenShift Cluster Manager.
				

Customizing install-config.yaml

					Here, you use three Python scripts to override some of the installation program’s default behaviors:
				
	
							By default, the installation program uses the machine API to create nodes. To override this default behavior, you set the number of compute nodes to zero replicas. Later, you use Ansible playbooks to create the compute nodes.
						
	
							By default, the installation program sets the IP range of the machine network for nodes. To override this default behavior, you set the IP range to match your infrastructure.
						
	
							By default, the installation program sets the platform to ovirt. However, installing a cluster on user-provisioned infrastructure is more similar to installing a cluster on bare metal. Therefore, you delete the ovirt platform section from install-config.yaml and change the platform to none. Instead, you use inventory.yml to specify all of the required settings.
						

Note

						These snippets work with Python 3 and Python 2.
					

Procedure
	
							Set the number of compute nodes to zero replicas:
						
$ python3 -c 'import os, yaml
path = "%s/install-config.yaml" % os.environ["ASSETS_DIR"]
conf = yaml.safe_load(open(path))
conf["compute"][0]["replicas"] = 0
open(path, "w").write(yaml.dump(conf, default_flow_style=False))'

	
							Set the IP range of the machine network. For example, to set the range to 172.16.0.0/16, enter:
						
$ python3 -c 'import os, yaml
path = "%s/install-config.yaml" % os.environ["ASSETS_DIR"]
conf = yaml.safe_load(open(path))
conf["networking"]["machineNetwork"][0]["cidr"] = "172.16.0.0/16"
open(path, "w").write(yaml.dump(conf, default_flow_style=False))'

	
							Remove the ovirt section and change the platform to none:
						
$ python3 -c 'import os, yaml
path = "%s/install-config.yaml" % os.environ["ASSETS_DIR"]
conf = yaml.safe_load(open(path))
platform = conf["platform"]
del platform["ovirt"]
platform["none"] = {}
open(path, "w").write(yaml.dump(conf, default_flow_style=False))'

Generate manifest files

					Use the installation program to generate a set of manifest files in the assets directory.
				

					The command to generate the manifest files displays a warning message before it consumes the install-config.yaml file.
				

					If you plan to reuse the install-config.yaml file, create a backup copy of it before you back it up before you generate the manifest files.
				
Procedure
	
							Optional: Create a backup copy of the install-config.yaml file:
						
$ cp install-config.yaml install-config.yaml.backup

	
							Generate a set of manifests in your assets directory:
						
$ openshift-install create manifests --dir $ASSETS_DIR

							This command displays the following messages.
						
Example output

								

INFO Consuming Install Config from target directory
WARNING Making control-plane schedulable by setting MastersSchedulable to true for Scheduler cluster settings

							

							The command generates the following manifest files:
						
Example output

								

$ tree
.
└── wrk
 ├── manifests
 │ ├── 04-openshift-machine-config-operator.yaml
 │ ├── cluster-config.yaml
 │ ├── cluster-dns-02-config.yml
 │ ├── cluster-infrastructure-02-config.yml
 │ ├── cluster-ingress-02-config.yml
 │ ├── cluster-network-01-crd.yml
 │ ├── cluster-network-02-config.yml
 │ ├── cluster-proxy-01-config.yaml
 │ ├── cluster-scheduler-02-config.yml
 │ ├── cvo-overrides.yaml
 │ ├── etcd-ca-bundle-configmap.yaml
 │ ├── etcd-client-secret.yaml
 │ ├── etcd-host-service-endpoints.yaml
 │ ├── etcd-host-service.yaml
 │ ├── etcd-metric-client-secret.yaml
 │ ├── etcd-metric-serving-ca-configmap.yaml
 │ ├── etcd-metric-signer-secret.yaml
 │ ├── etcd-namespace.yaml
 │ ├── etcd-service.yaml
 │ ├── etcd-serving-ca-configmap.yaml
 │ ├── etcd-signer-secret.yaml
 │ ├── kube-cloud-config.yaml
 │ ├── kube-system-configmap-root-ca.yaml
 │ ├── machine-config-server-tls-secret.yaml
 │ └── openshift-config-secret-pull-secret.yaml
 └── openshift
 ├── 99_kubeadmin-password-secret.yaml
 ├── 99_openshift-cluster-api_master-user-data-secret.yaml
 ├── 99_openshift-cluster-api_worker-user-data-secret.yaml
 ├── 99_openshift-machineconfig_99-master-ssh.yaml
 ├── 99_openshift-machineconfig_99-worker-ssh.yaml
 └── openshift-install-manifests.yaml

							

Next steps
	
							Make control plane nodes non-schedulable.
						

Making control-plane nodes non-schedulable

					Because you are manually creating and deploying the control plane machines, you must configure a manifest file to make the control plane nodes non-schedulable.
				
Procedure
	
							To make the control plane nodes non-schedulable, enter:
						
$ python3 -c 'import os, yaml
path = "%s/manifests/cluster-scheduler-02-config.yml" % os.environ["ASSETS_DIR"]
data = yaml.safe_load(open(path))
data["spec"]["mastersSchedulable"] = False
open(path, "w").write(yaml.dump(data, default_flow_style=False))'

Building the Ignition files

					To build the Ignition files from the manifest files you just generated and modified, you run the installation program. This action creates a Red Hat Enterprise Linux CoreOS (RHCOS) machine, initramfs, which fetches the Ignition files and performs the configurations needed to create a node.
				

					In addition to the Ignition files, the installation program generates the following:
				
	
							An auth directory that contains the admin credentials for connecting to the cluster with the oc and kubectl utilities.
						
	
							A metadata.json file that contains information such as the OpenShift Container Platform cluster name, cluster ID, and infrastructure ID for the current installation.
						

					The Ansible playbooks for this installation process use the value of infraID as a prefix for the virtual machines they create. This prevents naming conflicts when there are multiple installations in the same oVirt/RHV cluster.
				
Note

						Certificates in Ignition configuration files expire after 24 hours. Complete the cluster installation and keep the cluster running in a non-degraded state for 24 hours so that the first certificate rotation can finish.
					

Procedure
	
							To build the Ignition files, enter:
						
$ openshift-install create ignition-configs --dir $ASSETS_DIR
Example output

								

$ tree
.
└── wrk
 ├── auth
 │ ├── kubeadmin-password
 │ └── kubeconfig
 ├── bootstrap.ign
 ├── master.ign
 ├── metadata.json
 └── worker.ign

							

Creating templates and virtual machines

					After confirming the variables in the inventory.yml, you run the first Ansible provisioning playbook, create-templates-and-vms.yml.
				

					This playbook uses the connection parameters for the RHV Manager from $HOME/.ovirt/ovirt-config.yaml and reads metadata.json in the assets directory.
				

					If a local Red Hat Enterprise Linux CoreOS (RHCOS) image is not already present, the playbook downloads one from the URL you specified for image_url in inventory.yml. It extracts the image and uploads it to RHV to create templates.
				

					The playbook creates a template based on the control_plane and compute profiles in the inventory.yml file. If these profiles have different names, it creates two templates.
				

					When the playbook finishes, the virtual machines it creates are stopped. You can get information from them to help configure other infrastructure elements. For example, you can get the virtual machines' MAC addresses to configure DHCP to assign permanent IP addresses to the virtual machines.
				
Procedure
	
							In inventory.yml, under the control_plane and compute variables, change both instances of type: high_performance to type: server.
						
	
							Optional: If you plan to perform multiple installations to the same cluster, create different templates for each OCP installation. In the inventory.yml file, prepend the value of template with infraID. For example:
						
 control_plane:
 cluster: "{{ ovirt_cluster }}"
 memory: 16GiB
 sockets: 4
 cores: 1
 template: "{{ metadata.infraID }}-rhcos_tpl"
 operating_system: "rhcos_x64"
 ...

	
							Create the templates and virtual machines:
						
$ ansible-playbook -i inventory.yml create-templates-and-vms.yml

Creating the bootstrap machine

					You create a bootstrap machine by running the bootstrap.yml playbook. This playbook starts the bootstrap virtual machine, and passes it the bootstrap.ign Ignition file from the assets directory. The bootstrap node configures itself so it can serve Ignition files to the control plane nodes.
				

					To monitor the bootstrap process, you use the console in the RHV Administration Portal or connect to the virtual machine by using SSH.
				
Procedure
	
							Create the bootstrap machine:
						
$ ansible-playbook -i inventory.yml bootstrap.yml

	
							Connect to the bootstrap machine using a console in the Administration Portal or SSH. Replace <bootstrap_ip> with the bootstrap node IP address. To use SSH, enter:
						
$ ssh core@<boostrap.ip>

	
							Collect bootkube.service journald unit logs for the release image service from the bootstrap node:
						
[core@ocp4-lk6b4-bootstrap ~]$ journalctl -b -f -u release-image.service -u bootkube.service
Note

								The bootkube.service log on the bootstrap node outputs etcd connection refused errors, indicating that the bootstrap server is unable to connect to etcd on control plane nodes (also known as the master nodes). After etcd has started on each control plane node and the nodes have joined the cluster, the errors should stop.
							

Creating the control plane nodes

					You create the control plane nodes by running the masters.yml playbook. This playbook passes the master.ign Ignition file to each of the virtual machines. The Ignition file contains a directive for the control plane node to get the Ignition from a URL such as https://api-int.ocp4.example.org:22623/config/master. The port number in this URL is managed by the load balancer, and is accessible only inside the cluster.
				
Procedure
	
							Create the control plane nodes:
						
$ ansible-playbook -i inventory.yml masters.yml

	
							While the playbook creates your control plane, monitor the bootstrapping process:
						
$ openshift-install wait-for bootstrap-complete --dir $ASSETS_DIR
Example output

								

INFO API v1.18.3+b74c5ed up
INFO Waiting up to 40m0s for bootstrapping to complete...

							

	
							When all the pods on the control plane nodes and etcd are up and running, the installation program displays the following output.
						
Example output

								

INFO It is now safe to remove the bootstrap resources

							

Verifying cluster status

					You can verify your OpenShift Container Platform cluster’s status during or after installation.
				
Procedure
	
							In the cluster environment, export the administrator’s kubeconfig file:
						
$ export KUBECONFIG=$ASSETS_DIR/auth/kubeconfig

							The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
						

	
							View the control plane and compute machines created after a deployment:
						
$ oc get nodes

	
							View your cluster’s version:
						
$ oc get clusterversion

	
							View your Operators' status:
						
$ oc get clusteroperator

	
							View all running pods in the cluster:
						
$ oc get pods -A

Removing the bootstrap machine

					After the wait-for command shows that the bootstrap process is complete, you must remove the bootstrap virtual machine to free up compute, memory, and storage resources. Also, remove settings for the bootstrap machine from the load balancer directives.
				
Procedure
	
							To remove the bootstrap machine from the cluster, enter:
						
$ ansible-playbook -i inventory.yml retire-bootstrap.yml

	
							Remove settings for the bootstrap machine from the load balancer directives.
						

Creating the worker nodes and completing the installation

					Creating worker nodes is similar to creating control plane nodes. However, worker nodes workers do not automatically join the cluster. To add them to the cluster, you review and approve the workers' pending CSRs (Certificate Signing Requests).
				

					After approving the first requests, you continue approving CSR until all of the worker nodes are approved. When you complete this process, the worker nodes become Ready and can have pods scheduled to run on them.
				

					Finally, monitor the command line to see when the installation process completes.
				
Procedure
	
							Create the worker nodes:
						
$ ansible-playbook -i inventory.yml workers.yml

	
							To list all of the CSRs, enter:
						
$ oc get csr -A

							Eventually, this command displays one CSR per node. For example:
						
Example output

								

NAME AGE SIGNERNAME REQUESTOR CONDITION
csr-2lnxd 63m kubernetes.io/kubelet-serving system:node:ocp4-lk6b4-master0.ocp4.example.org Approved,Issued
csr-hff4q 64m kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
csr-hsn96 60m kubernetes.io/kubelet-serving system:node:ocp4-lk6b4-master2.ocp4.example.org Approved,Issued
csr-m724n 6m2s kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-p4dz2 60m kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
csr-t9vfj 60m kubernetes.io/kubelet-serving system:node:ocp4-lk6b4-master1.ocp4.example.org Approved,Issued
csr-tggtr 61m kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
csr-wcbrf 7m6s kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending

							

	
							To filter the list and see only pending CSRs, enter:
						
$ watch "oc get csr -A | grep pending -i"

							This command refreshes the output every two seconds and displays only pending CSRs. For example:
						
Example output

								

Every 2.0s: oc get csr -A | grep pending -i

csr-m724n 10m kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-wcbrf 11m kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending

							

	
							Inspect each pending request. For example:
						
Example output

								

$ oc describe csr csr-m724n

							
Example output

								

Name: csr-m724n
Labels: <none>
Annotations: <none>
CreationTimestamp: Sun, 19 Jul 2020 15:59:37 +0200
Requesting User: system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
Signer: kubernetes.io/kube-apiserver-client-kubelet
Status: Pending
Subject:
 Common Name: system:node:ocp4-lk6b4-worker1.ocp4.example.org
 Serial Number:
 Organization: system:nodes
Events: <none>

							

	
							If the CSR information is correct, approve the request:
						
$ oc adm certificate approve csr-m724n

	
							Wait for the installation process to finish:
						
$ openshift-install wait-for install-complete --dir $ASSETS_DIR --log-level debug

							When the installation completes, the command line displays the URL of the OpenShift Container Platform web console and the administrator user name and password.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Uninstalling a cluster on RHV

				You can remove an OpenShift Container Platform cluster from Red Hat Virtualization (RHV).
			
Removing a cluster that uses installer-provisioned infrastructure

					You can remove a cluster that uses installer-provisioned infrastructure from your cloud.
				
Note

						After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access.
					

Prerequisites
	
							Have a copy of the installation program that you used to deploy the cluster.
						
	
							Have the files that the installation program generated when you created your cluster.
						

Procedure
	
							From the directory that contains the installation program on the computer that you used to install the cluster, run the following command:
						
$./openshift-install destroy cluster \
--dir <installation_directory> --log-level info [image: 1] [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different details, specify warn, debug, or error instead of info.
								

Note

								You must specify the directory that contains the cluster definition files for your cluster. The installation program requires the metadata.json file in this directory to delete the cluster.
							

	
							Optional: Delete the <installation_directory> directory and the OpenShift Container Platform installation program.
						

Removing a cluster that uses user-provisioned infrastructure

					When you are finished using the cluster, you can remove a cluster that uses user-provisioned infrastructure from your cloud.
				
Prerequisites
	
							Have the original playbook files, assets directory and files, and $ASSETS_DIR environment variable that you used to you install the cluster. Typically, you can achieve this by using the same computer you used when you installed the cluster.
						

Procedure
	
							To remove the cluster, enter:
						
$ ansible-playbook -i inventory.yml \
 retire-bootstrap.yml \
 retire-masters.yml \
 retire-workers.yml

	
							Remove any configurations you added to DNS, load balancers, and any other infrastructure for this cluster.
						

Chapter 11. Installing on vSphere

Installing a cluster on vSphere

				In OpenShift Container Platform version 4.6, you can install a cluster on your VMware vSphere instance by using installer-provisioned infrastructure.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Prerequisites

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							The OpenShift Container Platform installer requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.
						
	
							If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.1. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Network connectivity requirements

					You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate.
				

					Review the following details about the required network ports.
				
Table 11.2. Ports used for all-machine to all-machine communications
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									virtual extensible LAN (VXLAN)
								

								
	
									6081
								

								 	
									Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									500
								

								 	
									IPsec IKE packets
								

								
	
									4500
								

								 	
									IPsec NAT-T packets
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								
	
									ESP
								

								 	
									N/A
								

								 	
									IPsec Encapsulating Security Payload (ESP)
								

								

Table 11.3. Ports used for all-machine to control plane communications
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 11.4. Ports used for control plane machine to control plane machine communications
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

vCenter requirements

					Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.
				
Required vCenter account privileges

					To install an OpenShift Container Platform cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.
				

					If you cannot use an account with global administrative privileges, you must create roles to grant the privileges necessary for OpenShift Container Platform cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OpenShift Container Platform cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.
				

					An additional role is required if the installation program is to create a vSphere virtual machine folder.
				
Example 11.1. Roles and privileges required for installation
	vSphere object for role	When required	Required privileges
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										Cns.Searchable
InventoryService.Tagging.AttachTag
InventoryService.Tagging.CreateCategory
InventoryService.Tagging.CreateTag
InventoryService.Tagging.DeleteCategory
InventoryService.Tagging.DeleteTag
InventoryService.Tagging.EditCategory
InventoryService.Tagging.EditTag
Sessions.ValidateSession
StorageProfile.View
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk
									

									
	
										vSphere Datastore
									

									 	
										Always
									

									 	
										Datastore.AllocateSpace
Datastore.Browse
Datastore.FileManagement
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										Network.Assign
									

									
	
										Virtual Machine Folder
									

									 	
										Always
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
									

									
	
										vSphere vCenter Datacenter
									

									 	
										If the installation program creates the virtual machine folder
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
Folder.Create
Folder.Delete
									

									

					Additionally, the user requires some ReadOnly permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.
				
Example 11.2. Required permissions and propagation settings
	vSphere object	Folder type	Propagate to children	Permissions required
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datacenter
									

									 	
										Existing folder
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										Installation program creates the folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datastore
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere Switch
									

									 	
										Always
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Virtual Machine Folder
									

									 	
										Existing folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									

					For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.
				
Using OpenShift Container Platform with vMotion

					If you intend on using vMotion in your vSphere environment, consider the following before installing a OpenShift Container Platform cluster.
				
	
							OpenShift Container Platform generally supports compute-only vMotion. Using Storage vMotion can cause issues and is not supported.
						

							To help ensure the uptime of your compute and control plane nodes, it is recommended that you follow the VMware best practices for vMotion. It is also recommended to use VMware anti-affinity rules to improve the availability of OpenShift Container Platform during maintenance or hardware issues.
						

							For more information about vMotion and anti-affinity rules, see the VMware vSphere documentation for vMotion networking requirements and VM anti-affinity rules.
						

	
							If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or through Storage vMotion causes, invalid references within OpenShift Container Platform persistent volume (PV) objects. These references prevent affected pods from starting up and can result in data loss.
						
	
							Similarly, OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.
						

Cluster resources

					When you deploy an OpenShift Container Platform cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.
				

					A standard OpenShift Container Platform installation creates the following vCenter resources:
				
	
							1 Folder
						
	
							1 Tag category
						
	
							1 Tag
						
	
							Virtual machines:
						
	
									1 template
								
	
									1 temporary bootstrap node
								
	
									3 control plane nodes
								
	
									3 compute machines
								

					Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.
				

					If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.
				
Cluster limits

					Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.
				
Networking requirements

					You must use DHCP for the network and ensure that the DHCP server is configured to provide persistent IP addresses to the cluster machines.
				
Note

						Persistent IP addresses are not available before the installation begins. Allocate a DHCP range and, after installation, manually replace the allocation with the persistent IP addresses.
					

					Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:
				
Note

						It is recommended that each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server that is discoverable via DHCP. Installation is possible without an NTP server. However, asynchronous server clocks will cause errors, which NTP server prevents.
					

Required IP Addresses

					An installer-provisioned vSphere installation requires these static IP addresses:
				
	
							The API address is used to access the cluster API.
						
	
							The Ingress address is used for cluster ingress traffic.
						
	
							The control plane node addresses are used when upgrading a cluster from version 4.5 to 4.6.
						

					You must provide these IP addresses to the installation program when you install the OpenShift Container Platform cluster.
				
DNS records

					You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
				
Table 11.5. Required DNS records
	Component	Record	Description
	
									API VIP
								

								 	
									api.<cluster_name>.<base_domain>.
								

								 	
									This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								
	
									Ingress VIP
								

								 	
									*.apps.<cluster_name>.<base_domain>.
								

								 	
									A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Adding vCenter root CA certificates to your system trust

					Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OpenShift Container Platform cluster.
				
Procedure
	
							From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The <vCenter>/certs/download.zip file downloads.
						
	
							Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:
						
certs
├── lin
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
├── mac
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
└── win
 ├── 108f4d17.0.crt
 ├── 108f4d17.r1.crl
 ├── 7e757f6a.0.crt
 ├── 8e4f8471.0.crt
 └── 8e4f8471.r0.crl

3 directories, 15 files

	
							Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:
						
cp certs/lin/* /etc/pki/ca-trust/source/anchors

	
							Update your system trust. For example, on a Fedora operating system, run the following command:
						
update-ca-trust extract

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Important

								Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							Provide values at the prompts:
						
	
									Optional: Select an SSH key to use to access your cluster machines.
								
Note

										For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
									

	
									Select vsphere as the platform to target.
								
	
									Specify the name of your vCenter instance.
								
	
									Specify the user name and password for the vCenter account that has the required permissions to create the cluster.
								

									The installation program connects to your vCenter instance.
								

	
									Select the datacenter in your vCenter instance to connect to.
								
	
									Select the default vCenter datastore to use.
								
Note

										Datastore and cluster names cannot exceed 60 characters; therefore, ensure the combined string length does not exceed the 60 character limit.
									

	
									Select the vCenter cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
								
	
									Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
								
	
									Enter the virtual IP address that you configured for control plane API access.
								
	
									Enter the virtual IP address that you configured for cluster ingress.
								
	
									Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.
								
	
									Enter a descriptive name for your cluster. The cluster name must be the same one that you used in the DNS records that you configured.
								
Note

										Datastore and cluster names cannot exceed 60 characters; therefore, ensure the combined string length does not exceed the 60 character limit.
									

	
									Paste the pull secret from the Red Hat OpenShift Cluster Manager.
								

							+ When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
						

							+ .Example output
						

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

					+
				
Note

						The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
					

					+
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

					+
				
Important

						You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
					

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Creating registry storage

					After you install the cluster, you must create storage for the registry Operator.
				
Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for VMware vSphere

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on VMware vSphere.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have "100Gi" capacity.
								

Important

								Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
							

								Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
							

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
										

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

Configuring block registry storage for VMware vSphere

							To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only 1 replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
											Create a pvc.yaml file with the following contents to define a VMware vSphere PersistentVolumeClaim object:
										
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage [image: 1]
 namespace: openshift-image-registry [image: 2]
spec:
 accessModes:
 - ReadWriteOnce [image: 3]
 resources:
 requests:
 storage: 100Gi [image: 4]
	[image: 1]
	
													A unique name that represents the PersistentVolumeClaim object.
												

	[image: 2]
	
													The namespace for the PersistentVolumeClaim object, which is openshift-image-registry.
												

	[image: 3]
	
													The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
												

	[image: 4]
	
													The size of the persistent volume claim.
												

	
											Create the PersistentVolumeClaim object from the file:
										
$ oc create -f pvc.yaml -n openshift-image-registry

	
									Edit the registry configuration so that it references the correct PVC:
								
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Creating a custom PVC allows you to leave the claim field blank for the default automatic creation of an image-registry-storage PVC.
										

							For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
						

Backing up VMware vSphere volumes

					OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
				
Procedure

						To create a backup of persistent volumes:
					
	
							Stop the application that is using the persistent volume.
						
	
							Clone the persistent volume.
						
	
							Restart the application.
						
	
							Create a backup of the cloned volume.
						
	
							Delete the cloned volume.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on vSphere with customizations

				In OpenShift Container Platform version 4.6, you can install a cluster on your VMware vSphere instance by using installer-provisioned infrastructure. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Prerequisites

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							The OpenShift Container Platform installer requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.
						
	
							If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.6. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Network connectivity requirements

					You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate.
				

					Review the following details about the required network ports.
				
Table 11.7. Ports used for all-machine to all-machine communications
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									virtual extensible LAN (VXLAN)
								

								
	
									6081
								

								 	
									Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									500
								

								 	
									IPsec IKE packets
								

								
	
									4500
								

								 	
									IPsec NAT-T packets
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								
	
									ESP
								

								 	
									N/A
								

								 	
									IPsec Encapsulating Security Payload (ESP)
								

								

Table 11.8. Ports used for all-machine to control plane communications
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 11.9. Ports used for control plane machine to control plane machine communications
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

vCenter requirements

					Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.
				
Required vCenter account privileges

					To install an OpenShift Container Platform cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.
				

					If you cannot use an account with global administrative privileges, you must create roles to grant the privileges necessary for OpenShift Container Platform cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OpenShift Container Platform cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.
				

					An additional role is required if the installation program is to create a vSphere virtual machine folder.
				
Example 11.3. Roles and privileges required for installation
	vSphere object for role	When required	Required privileges
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										Cns.Searchable
InventoryService.Tagging.AttachTag
InventoryService.Tagging.CreateCategory
InventoryService.Tagging.CreateTag
InventoryService.Tagging.DeleteCategory
InventoryService.Tagging.DeleteTag
InventoryService.Tagging.EditCategory
InventoryService.Tagging.EditTag
Sessions.ValidateSession
StorageProfile.View
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk
									

									
	
										vSphere Datastore
									

									 	
										Always
									

									 	
										Datastore.AllocateSpace
Datastore.Browse
Datastore.FileManagement
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										Network.Assign
									

									
	
										Virtual Machine Folder
									

									 	
										Always
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
									

									
	
										vSphere vCenter Datacenter
									

									 	
										If the installation program creates the virtual machine folder
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
Folder.Create
Folder.Delete
									

									

					Additionally, the user requires some ReadOnly permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.
				
Example 11.4. Required permissions and propagation settings
	vSphere object	Folder type	Propagate to children	Permissions required
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datacenter
									

									 	
										Existing folder
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										Installation program creates the folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datastore
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere Switch
									

									 	
										Always
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Virtual Machine Folder
									

									 	
										Existing folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									

					For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.
				
Using OpenShift Container Platform with vMotion

					If you intend on using vMotion in your vSphere environment, consider the following before installing a OpenShift Container Platform cluster.
				
	
							OpenShift Container Platform generally supports compute-only vMotion. Using Storage vMotion can cause issues and is not supported.
						

							To help ensure the uptime of your compute and control plane nodes, it is recommended that you follow the VMware best practices for vMotion. It is also recommended to use VMware anti-affinity rules to improve the availability of OpenShift Container Platform during maintenance or hardware issues.
						

							For more information about vMotion and anti-affinity rules, see the VMware vSphere documentation for vMotion networking requirements and VM anti-affinity rules.
						

	
							If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or through Storage vMotion causes, invalid references within OpenShift Container Platform persistent volume (PV) objects. These references prevent affected pods from starting up and can result in data loss.
						
	
							Similarly, OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.
						

Cluster resources

					When you deploy an OpenShift Container Platform cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.
				

					A standard OpenShift Container Platform installation creates the following vCenter resources:
				
	
							1 Folder
						
	
							1 Tag category
						
	
							1 Tag
						
	
							Virtual machines:
						
	
									1 template
								
	
									1 temporary bootstrap node
								
	
									3 control plane nodes
								
	
									3 compute machines
								

					Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.
				

					If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.
				
Cluster limits

					Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.
				
Networking requirements

					You must use DHCP for the network and ensure that the DHCP server is configured to provide persistent IP addresses to the cluster machines.
				
Note

						Persistent IP addresses are not available before the installation begins. Allocate a DHCP range and, after installation, manually replace the allocation with the persistent IP addresses.
					

					Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:
				
Note

						It is recommended that each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server that is discoverable via DHCP. Installation is possible without an NTP server. However, asynchronous server clocks will cause errors, which NTP server prevents.
					

Required IP Addresses

					An installer-provisioned vSphere installation requires these static IP addresses:
				
	
							The API address is used to access the cluster API.
						
	
							The Ingress address is used for cluster ingress traffic.
						
	
							The control plane node addresses are used when upgrading a cluster from version 4.5 to 4.6.
						

					You must provide these IP addresses to the installation program when you install the OpenShift Container Platform cluster.
				
DNS records

					You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
				
Table 11.10. Required DNS records
	Component	Record	Description
	
									API VIP
								

								 	
									api.<cluster_name>.<base_domain>.
								

								 	
									This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								
	
									Ingress VIP
								

								 	
									*.apps.<cluster_name>.<base_domain>.
								

								 	
									A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Adding vCenter root CA certificates to your system trust

					Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OpenShift Container Platform cluster.
				
Procedure
	
							From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The <vCenter>/certs/download.zip file downloads.
						
	
							Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:
						
certs
├── lin
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
├── mac
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
└── win
 ├── 108f4d17.0.crt
 ├── 108f4d17.r1.crl
 ├── 7e757f6a.0.crt
 ├── 8e4f8471.0.crt
 └── 8e4f8471.r0.crl

3 directories, 15 files

	
							Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:
						
cp certs/lin/* /etc/pki/ca-trust/source/anchors

	
							Update your system trust. For example, on a Fedora operating system, run the following command:
						
update-ca-trust extract

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on VMware vSphere.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select vsphere as the platform to target.
										
	
											Specify the name of your vCenter instance.
										
	
											Specify the user name and password for the vCenter account that has the required permissions to create the cluster.
										

											The installation program connects to your vCenter instance.
										

	
											Select the datacenter in your vCenter instance to connect to.
										
	
											Select the default vCenter datastore to use.
										
	
											Select the vCenter cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
										
	
											Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
										
	
											Enter the virtual IP address that you configured for control plane API access.
										
	
											Enter the virtual IP address that you configured for cluster ingress.
										
	
											Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.
										
	
											Enter a descriptive name for your cluster. The cluster name must be the same one that you used in the DNS records that you configured.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 11.11. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters and hyphens (-), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 11.12. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 11.13. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional VMware vSphere configuration parameters

							Additional VMware vSphere configuration parameters are described in the following table:
						
Table 11.14. Additional VMware vSphere cluster parameters
	Parameter	Description	Values
	
											platform.vsphere.vCenter
										

										 	
											The fully-qualified hostname or IP address of the vCenter server.
										

										 	
											String
										

										
	
											platform.vsphere.username
										

										 	
											The user name to use to connect to the vCenter instance with. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
										

										 	
											String
										

										
	
											platform.vsphere.password
										

										 	
											The password for the vCenter user name.
										

										 	
											String
										

										
	
											platform.vsphere.datacenter
										

										 	
											The name of the datacenter to use in the vCenter instance.
										

										 	
											String
										

										
	
											platform.vsphere.defaultDatastore
										

										 	
											The name of the default datastore to use for provisioning volumes.
										

										 	
											String
										

										
	
											platform.vsphere.folder
										

										 	
											Optional. The absolute path of an existing folder where the installation program creates the virtual machines. If you do not provide this value, the installation program creates a folder that is named with the infrastructure ID in the datacenter virtual machine folder.
										

										 	
											String, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>.
										

										
	
											platform.vsphere.network
										

										 	
											The network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
										

										 	
											String
										

										
	
											platform.vsphere.cluster
										

										 	
											The vCenter cluster to install the OpenShift Container Platform cluster in.
										

										 	
											String
										

										
	
											platform.vsphere.apiVIP
										

										 	
											The virtual IP (VIP) address that you configured for control plane API access.
										

										 	
											An IP address, for example 128.0.0.1.
										

										
	
											platform.vsphere.ingressVIP
										

										 	
											The virtual IP (VIP) address that you configured for cluster ingress.
										

										 	
											An IP address, for example 128.0.0.1.
										

										

Optional VMware vSphere machine pool configuration parameters

							Optional VMware vSphere machine pool configuration parameters are described in the following table:
						
Table 11.15. Optional VMware vSphere machine pool parameters
	Parameter	Description	Values
	
											platform.vsphere.clusterOSImage
										

										 	
											The location from which the installer downloads the RHCOS image. You must set this parameter to perform an installation in a restricted network.
										

										 	
											An HTTP or HTTPS URL, optionally with a SHA-256 checksum. For example, https://mirror.openshift.com/images/rhcos-<version>-vmware.<architecture>.ova.
										

										
	
											platform.vsphere.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes.
										

										 	
											Integer
										

										
	
											platform.vsphere.cpus
										

										 	
											The total number of virtual processor cores to assign a virtual machine.
										

										 	
											Integer
										

										
	
											platform.vsphere.coresPerSocket
										

										 	
											The number of cores per socket in a virtual machine. The number of virtual sockets on the virtual machine is platform.vsphere.cpus/platform.vsphere.coresPerSocket. The default value is 1
										

										 	
											Integer
										

										
	
											platform.vsphere.memoryMB
										

										 	
											The size of a virtual machine’s memory in megabytes.
										

										 	
											Integer
										

										

Sample install-config.yaml file for an installer-provisioned VMware vSphere cluster

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 3
 platform:
 vsphere: [image: 4]
 cpus: 2
 coresPerSocket: 2
 memoryMB: 8192
 osDisk:
 diskSizeGB: 120
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3
 platform:
 vsphere: [image: 7]
 cpus: 4
 coresPerSocket: 2
 memoryMB: 16384
 osDisk:
 diskSizeGB: 120
metadata:
 name: cluster [image: 8]
platform:
 vsphere:
 vcenter: your.vcenter.server
 username: username
 password: password
 datacenter: datacenter
 defaultDatastore: datastore
 folder: folder
 network: VM_Network
 cluster: vsphere_cluster_name [image: 9]
 apiVIP: api_vip
 ingressVIP: ingress_vip
fips: false
pullSecret: '{"auths": ...}'
sshKey: 'ssh-ed25519 AAAA...'
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
								

	[image: 4] [image: 7]
	
								Optional: Provide additional configuration for the machine pool parameters for the compute and control plane machines.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								The vSphere cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

									When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

					+
				
Note

						The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
					

					+
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

					+
				
Important

						You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
					

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Creating registry storage

					After you install the cluster, you must create storage for the registry Operator.
				
Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for VMware vSphere

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on VMware vSphere.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have "100Gi" capacity.
								

Important

								Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
							

								Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
							

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
										

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

Configuring block registry storage for VMware vSphere

							To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only 1 replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
											Create a pvc.yaml file with the following contents to define a VMware vSphere PersistentVolumeClaim object:
										
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage [image: 1]
 namespace: openshift-image-registry [image: 2]
spec:
 accessModes:
 - ReadWriteOnce [image: 3]
 resources:
 requests:
 storage: 100Gi [image: 4]
	[image: 1]
	
													A unique name that represents the PersistentVolumeClaim object.
												

	[image: 2]
	
													The namespace for the PersistentVolumeClaim object, which is openshift-image-registry.
												

	[image: 3]
	
													The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
												

	[image: 4]
	
													The size of the persistent volume claim.
												

	
											Create the PersistentVolumeClaim object from the file:
										
$ oc create -f pvc.yaml -n openshift-image-registry

	
									Edit the registry configuration so that it references the correct PVC:
								
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Creating a custom PVC allows you to leave the claim field blank for the default automatic creation of an image-registry-storage PVC.
										

							For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
						

Backing up VMware vSphere volumes

					OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
				
Procedure

						To create a backup of persistent volumes:
					
	
							Stop the application that is using the persistent volume.
						
	
							Clone the persistent volume.
						
	
							Restart the application.
						
	
							Create a backup of the cloned volume.
						
	
							Delete the cloned volume.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on vSphere with network customizations

				In OpenShift Container Platform version 4.6, you can install a cluster on your VMware vSphere instance by using installer-provisioned infrastructure with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
			

				You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Prerequisites

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							The OpenShift Container Platform installer requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.
						
	
							If you use a firewall, confirm with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.16. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Network connectivity requirements

					You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate.
				

					Review the following details about the required network ports.
				
Table 11.17. Ports used for all-machine to all-machine communications
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									virtual extensible LAN (VXLAN)
								

								
	
									6081
								

								 	
									Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									500
								

								 	
									IPsec IKE packets
								

								
	
									4500
								

								 	
									IPsec NAT-T packets
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								
	
									ESP
								

								 	
									N/A
								

								 	
									IPsec Encapsulating Security Payload (ESP)
								

								

Table 11.18. Ports used for all-machine to control plane communications
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 11.19. Ports used for control plane machine to control plane machine communications
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

vCenter requirements

					Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.
				
Required vCenter account privileges

					To install an OpenShift Container Platform cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.
				

					If you cannot use an account with global administrative privileges, you must create roles to grant the privileges necessary for OpenShift Container Platform cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OpenShift Container Platform cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.
				

					An additional role is required if the installation program is to create a vSphere virtual machine folder.
				
Example 11.5. Roles and privileges required for installation
	vSphere object for role	When required	Required privileges
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										Cns.Searchable
InventoryService.Tagging.AttachTag
InventoryService.Tagging.CreateCategory
InventoryService.Tagging.CreateTag
InventoryService.Tagging.DeleteCategory
InventoryService.Tagging.DeleteTag
InventoryService.Tagging.EditCategory
InventoryService.Tagging.EditTag
Sessions.ValidateSession
StorageProfile.View
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk
									

									
	
										vSphere Datastore
									

									 	
										Always
									

									 	
										Datastore.AllocateSpace
Datastore.Browse
Datastore.FileManagement
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										Network.Assign
									

									
	
										Virtual Machine Folder
									

									 	
										Always
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
									

									
	
										vSphere vCenter Datacenter
									

									 	
										If the installation program creates the virtual machine folder
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
Folder.Create
Folder.Delete
									

									

					Additionally, the user requires some ReadOnly permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.
				
Example 11.6. Required permissions and propagation settings
	vSphere object	Folder type	Propagate to children	Permissions required
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datacenter
									

									 	
										Existing folder
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										Installation program creates the folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datastore
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere Switch
									

									 	
										Always
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Virtual Machine Folder
									

									 	
										Existing folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									

					For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.
				
Using OpenShift Container Platform with vMotion

					If you intend on using vMotion in your vSphere environment, consider the following before installing a OpenShift Container Platform cluster.
				
	
							OpenShift Container Platform generally supports compute-only vMotion. Using Storage vMotion can cause issues and is not supported.
						

							To help ensure the uptime of your compute and control plane nodes, it is recommended that you follow the VMware best practices for vMotion. It is also recommended to use VMware anti-affinity rules to improve the availability of OpenShift Container Platform during maintenance or hardware issues.
						

							For more information about vMotion and anti-affinity rules, see the VMware vSphere documentation for vMotion networking requirements and VM anti-affinity rules.
						

	
							If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or through Storage vMotion causes, invalid references within OpenShift Container Platform persistent volume (PV) objects. These references prevent affected pods from starting up and can result in data loss.
						
	
							Similarly, OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.
						

Cluster resources

					When you deploy an OpenShift Container Platform cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.
				

					A standard OpenShift Container Platform installation creates the following vCenter resources:
				
	
							1 Folder
						
	
							1 Tag category
						
	
							1 Tag
						
	
							Virtual machines:
						
	
									1 template
								
	
									1 temporary bootstrap node
								
	
									3 control plane nodes
								
	
									3 compute machines
								

					Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.
				

					If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.
				
Cluster limits

					Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.
				
Networking requirements

					You must use DHCP for the network and ensure that the DHCP server is configured to provide persistent IP addresses to the cluster machines.
				
Note

						Persistent IP addresses are not available before the installation begins. Allocate a DHCP range and, after installation, manually replace the allocation with the persistent IP addresses.
					

					Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:
				
Note

						It is recommended that each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server that is discoverable via DHCP. Installation is possible without an NTP server. However, asynchronous server clocks will cause errors, which NTP server prevents.
					

Required IP Addresses

					An installer-provisioned vSphere installation requires these static IP addresses:
				
	
							The API address is used to access the cluster API.
						
	
							The Ingress address is used for cluster ingress traffic.
						
	
							The control plane node addresses are used when upgrading a cluster from version 4.5 to 4.6.
						

					You must provide these IP addresses to the installation program when you install the OpenShift Container Platform cluster.
				
DNS records

					You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
				
Table 11.20. Required DNS records
	Component	Record	Description
	
									API VIP
								

								 	
									api.<cluster_name>.<base_domain>.
								

								 	
									This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								
	
									Ingress VIP
								

								 	
									*.apps.<cluster_name>.<base_domain>.
								

								 	
									A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Adding vCenter root CA certificates to your system trust

					Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OpenShift Container Platform cluster.
				
Procedure
	
							From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The <vCenter>/certs/download.zip file downloads.
						
	
							Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:
						
certs
├── lin
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
├── mac
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
└── win
 ├── 108f4d17.0.crt
 ├── 108f4d17.r1.crl
 ├── 7e757f6a.0.crt
 ├── 8e4f8471.0.crt
 └── 8e4f8471.r0.crl

3 directories, 15 files

	
							Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:
						
cp certs/lin/* /etc/pki/ca-trust/source/anchors

	
							Update your system trust. For example, on a Fedora operating system, run the following command:
						
update-ca-trust extract

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on VMware vSphere.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select vsphere as the platform to target.
										
	
											Specify the name of your vCenter instance.
										
	
											Specify the user name and password for the vCenter account that has the required permissions to create the cluster.
										

											The installation program connects to your vCenter instance.
										

	
											Select the datacenter in your vCenter instance to connect to.
										
	
											Select the default vCenter datastore to use.
										
	
											Select the vCenter cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
										
	
											Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
										
	
											Enter the virtual IP address that you configured for control plane API access.
										
	
											Enter the virtual IP address that you configured for cluster ingress.
										
	
											Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.
										
	
											Enter a descriptive name for your cluster. The cluster name must be the same one that you used in the DNS records that you configured.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							Modify the install-config.yaml file. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 11.21. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters and hyphens (-), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 11.22. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 11.23. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional VMware vSphere configuration parameters

							Additional VMware vSphere configuration parameters are described in the following table:
						
Table 11.24. Additional VMware vSphere cluster parameters
	Parameter	Description	Values
	
											platform.vsphere.vCenter
										

										 	
											The fully-qualified hostname or IP address of the vCenter server.
										

										 	
											String
										

										
	
											platform.vsphere.username
										

										 	
											The user name to use to connect to the vCenter instance with. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
										

										 	
											String
										

										
	
											platform.vsphere.password
										

										 	
											The password for the vCenter user name.
										

										 	
											String
										

										
	
											platform.vsphere.datacenter
										

										 	
											The name of the datacenter to use in the vCenter instance.
										

										 	
											String
										

										
	
											platform.vsphere.defaultDatastore
										

										 	
											The name of the default datastore to use for provisioning volumes.
										

										 	
											String
										

										
	
											platform.vsphere.folder
										

										 	
											Optional. The absolute path of an existing folder where the installation program creates the virtual machines. If you do not provide this value, the installation program creates a folder that is named with the infrastructure ID in the datacenter virtual machine folder.
										

										 	
											String, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>.
										

										
	
											platform.vsphere.network
										

										 	
											The network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
										

										 	
											String
										

										
	
											platform.vsphere.cluster
										

										 	
											The vCenter cluster to install the OpenShift Container Platform cluster in.
										

										 	
											String
										

										
	
											platform.vsphere.apiVIP
										

										 	
											The virtual IP (VIP) address that you configured for control plane API access.
										

										 	
											An IP address, for example 128.0.0.1.
										

										
	
											platform.vsphere.ingressVIP
										

										 	
											The virtual IP (VIP) address that you configured for cluster ingress.
										

										 	
											An IP address, for example 128.0.0.1.
										

										

Optional VMware vSphere machine pool configuration parameters

							Optional VMware vSphere machine pool configuration parameters are described in the following table:
						
Table 11.25. Optional VMware vSphere machine pool parameters
	Parameter	Description	Values
	
											platform.vsphere.clusterOSImage
										

										 	
											The location from which the installer downloads the RHCOS image. You must set this parameter to perform an installation in a restricted network.
										

										 	
											An HTTP or HTTPS URL, optionally with a SHA-256 checksum. For example, https://mirror.openshift.com/images/rhcos-<version>-vmware.<architecture>.ova.
										

										
	
											platform.vsphere.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes.
										

										 	
											Integer
										

										
	
											platform.vsphere.cpus
										

										 	
											The total number of virtual processor cores to assign a virtual machine.
										

										 	
											Integer
										

										
	
											platform.vsphere.coresPerSocket
										

										 	
											The number of cores per socket in a virtual machine. The number of virtual sockets on the virtual machine is platform.vsphere.cpus/platform.vsphere.coresPerSocket. The default value is 1
										

										 	
											Integer
										

										
	
											platform.vsphere.memoryMB
										

										 	
											The size of a virtual machine’s memory in megabytes.
										

										 	
											Integer
										

										

Sample install-config.yaml file for an installer-provisioned VMware vSphere cluster

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 3
 platform:
 vsphere: [image: 4]
 cpus: 2
 coresPerSocket: 2
 memoryMB: 8192
 osDisk:
 diskSizeGB: 120
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3
 platform:
 vsphere: [image: 7]
 cpus: 4
 coresPerSocket: 2
 memoryMB: 16384
 osDisk:
 diskSizeGB: 120
metadata:
 name: cluster [image: 8]
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 vsphere:
 vcenter: your.vcenter.server
 username: username
 password: password
 datacenter: datacenter
 defaultDatastore: datastore
 folder: folder
 network: VM_Network
 cluster: vsphere_cluster_name [image: 9]
 apiVIP: api_vip
 ingressVIP: ingress_vip
fips: false
pullSecret: '{"auths": ...}'
sshKey: 'ssh-ed25519 AAAA...'
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
								

	[image: 4] [image: 7]
	
								Optional: Provide additional configuration for the machine pool parameters for the compute and control plane machines.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								The vSphere cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Network configuration phases

					When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
				
	Phase 1
	
								After entering the openshift-install create install-config command. In the install-config.yaml file, you can customize the following network-related fields:
							
	
										networking.networkType
									
	
										networking.clusterNetwork
									
	
										networking.serviceNetwork
									
	
										networking.machineNetwork
									

										For more information on these fields, refer to "Installation configuration parameters".
									
Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

	Phase 2
	
								After entering the openshift-install create manifests command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
							

					You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.
				

Specifying advanced network configuration

					You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
				
Important

						Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
					

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and specify the advanced network configuration for your cluster, such as in the following example:
						
Specify a different VXLAN port for the OpenShift SDN network provider

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 openshiftSDNConfig:
 vxlanPort: 4800

							

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						

Cluster Network Operator configuration

					The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.
				

					The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:
				
	clusterNetwork
	
								IP address pools from which pod IP addresses are allocated.
							
	serviceNetwork
	
								IP address pool for services.
							
	defaultNetwork.type
	
								Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
							

					You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.
				
Cluster Network Operator configuration object

						The fields for the Cluster Network Operator (CNO) are described in the following table:
					
Table 11.26. Cluster Network Operator configuration object
	Field	Type	Description
	
										metadata.name
									

									 	
										string
									

									 	
										The name of the CNO object. This name is always cluster.
									

									
	
										spec.clusterNetwork
									

									 	
										array
									

									 	
										A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
									

									
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.serviceNetwork
									

									 	
										array
									

									 	
										A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:
									

									
spec:
 serviceNetwork:
 - 172.30.0.0/14

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.defaultNetwork
									

									 	
										object
									

									 	
										Configures the Container Network Interface (CNI) cluster network provider for the cluster network.
									

									
	
										spec.kubeProxyConfig
									

									 	
										object
									

									 	
										The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.
									

									

defaultNetwork object configuration

						The values for the defaultNetwork object are defined in the following table:
					
Table 11.27. defaultNetwork object
	Field	Type	Description
	
										type
									

									 	
										string
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.
									

									 Note

											OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.
										

									
	
										openshiftSDNConfig
									

									 	
										object
									

									 	
										This object is only valid for the OpenShift SDN cluster network provider.
									

									
	
										ovnKubernetesConfig
									

									 	
										object
									

									 	
										This object is only valid for the OVN-Kubernetes cluster network provider.
									

									

Configuration for the OpenShift SDN CNI cluster network provider

						The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
					
Table 11.28. openshiftSDNConfig object
	Field	Type	Description
	
										mode
									

									 	
										string
									

									 	
										Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.
									

									
										The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.
									

									
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										vxlanPort
									

									 	
										integer
									

									 	
										The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.
									

									
										If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
									

									
										On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.
									

									

Example OpenShift SDN configuration

							

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

						
Configuration for the OVN-Kubernetes CNI cluster network provider

						The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
					
Table 11.29. ovnKubernetesConfig object
	Field	Type	Description
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										genevePort
									

									 	
										integer
									

									 	
										The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.
									

									

Example OVN-Kubernetes configuration

							

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081

						
kubeProxyConfig object configuration

						The values for the kubeProxyConfig object are defined in the following table:
					
Table 11.30. kubeProxyConfig object
	Field	Type	Description
	
										iptablesSyncPeriod
									

									 	
										string
									

									 	
										The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.
									

									 Note

											Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.
										

									
	
										proxyArguments.iptables-min-sync-period
									

									 	
										array
									

									 	
										The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:
									

									
kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

									

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

									When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

					+
				
Note

						The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
					

					+
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

					+
				
Important

						You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
					

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Creating registry storage

					After you install the cluster, you must create storage for the registry Operator.
				
Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for VMware vSphere

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on VMware vSphere.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have "100Gi" capacity.
								

Important

								Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
							

								Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
							

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
										

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

Configuring block registry storage for VMware vSphere

							To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only 1 replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
											Create a pvc.yaml file with the following contents to define a VMware vSphere PersistentVolumeClaim object:
										
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage [image: 1]
 namespace: openshift-image-registry [image: 2]
spec:
 accessModes:
 - ReadWriteOnce [image: 3]
 resources:
 requests:
 storage: 100Gi [image: 4]
	[image: 1]
	
													A unique name that represents the PersistentVolumeClaim object.
												

	[image: 2]
	
													The namespace for the PersistentVolumeClaim object, which is openshift-image-registry.
												

	[image: 3]
	
													The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
												

	[image: 4]
	
													The size of the persistent volume claim.
												

	
											Create the PersistentVolumeClaim object from the file:
										
$ oc create -f pvc.yaml -n openshift-image-registry

	
									Edit the registry configuration so that it references the correct PVC:
								
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Creating a custom PVC allows you to leave the claim field blank for the default automatic creation of an image-registry-storage PVC.
										

							For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
						

Backing up VMware vSphere volumes

					OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
				
Procedure

						To create a backup of persistent volumes:
					
	
							Stop the application that is using the persistent volume.
						
	
							Clone the persistent volume.
						
	
							Restart the application.
						
	
							Create a backup of the cloned volume.
						
	
							Delete the cloned volume.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on vSphere with user-provisioned infrastructure

				In OpenShift Container Platform version 4.6, you can install a cluster on VMware vSphere infrastructure that you provision.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.
				

Prerequisites

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Completing the installation requires that you upload the Red Hat Enterprise Linux CoreOS (RHCOS) OVA on vSphere hosts. The machine from which you complete this process requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.
						
	
							If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.31. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					
Important

							All virtual machines must reside in the same datastore and in the same folder as the installer.
						

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 11.32. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS or RHEL 7.9
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 11.33. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 11.34. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 11.35. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 11.36. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 11.37. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

Ethernet adaptor hardware address requirements

						When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
					
	
								00:05:69:00:00:00 to 00:05:69:FF:FF:FF
							
	
								00:0c:29:00:00:00 to 00:0c:29:FF:FF:FF
							
	
								00:1c:14:00:00:00 to 00:1c:14:FF:FF:FF
							
	
								00:50:56:00:00:00 to 00:50:56:FF:FF:FF
							

						If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
					
NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 11.38. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 11.7. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 11.8. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Sample install-config.yaml file for VMware vSphere

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute:
- hyperthreading: Enabled [image: 2] [image: 3]
 name: worker
 replicas: 0 [image: 4]
controlPlane:
 hyperthreading: Enabled [image: 5] [image: 6]
 name: master
 replicas: 3 [image: 7]
metadata:
 name: test [image: 8]
platform:
 vsphere:
 vcenter: your.vcenter.server [image: 9]
 username: username [image: 10]
 password: password [image: 11]
 datacenter: datacenter [image: 12]
 defaultDatastore: datastore [image: 13]
 folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" [image: 14]
fips: false [image: 15]
pullSecret: '{"auths": ...}' (16)
sshKey: 'ssh-ed25519 AAAA...' (17)
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								The fully-qualified hostname or IP address of the vCenter server.
							

	[image: 10]
	
								The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
							

	[image: 11]
	
								The password associated with the vSphere user.
							

	[image: 12]
	
								The vSphere datacenter.
							

	[image: 13]
	
								The default vSphere datastore to use.
							

	[image: 14]
	
								Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								The pull secret that you obtained from OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
							

	(17)
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:
						
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

							Because you create and manage these resources yourself, you do not have to initialize them.
						
	
									You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Extracting the infrastructure name

					The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in VMware vSphere. If you plan to use the cluster identifier as the name of your virtual machine folder, you must extract it.
				
Prerequisites
	
							You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You installed the jq package.
						

Procedure
	
							To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
						
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

openshift-vw9j6 [image: 1]

							
	[image: 1]
	
									The output of this command is your cluster name and a random string.
								

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere

					Before you install a cluster that contains user-provisioned infrastructure on VMware vSphere, you must create RHCOS machines on vSphere hosts for it to use.
				
Prerequisites
	
							You have obtained the Ignition config files for your cluster.
						
	
							You have access to an HTTP server that you can access from your computer and that the machines that you create can access.
						
	
							You have created a vSphere cluster.
						

Procedure
	
							Upload the bootstrap Ignition config file, which is named <installation_directory>/bootstrap.ign, that the installation program created to your HTTP server. Note the URL of this file.
						
	
							Save the following secondary Ignition config file for your bootstrap node to your computer as <installation_directory>/merge-bootstrap.ign:
						
{
 "ignition": {
 "config": {
 "merge": [
 {
 "source": "<bootstrap_ignition_config_url>", [image: 1]
 "verification": {}
 }
]
 },
 "timeouts": {},
 "version": "3.1.0"
 },
 "networkd": {},
 "passwd": {},
 "storage": {},
 "systemd": {}
}
	[image: 1]
	
									Specify the URL of the bootstrap Ignition config file that you hosted.
								

							When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.
						

	
							Locate the following Ignition config files that the installation program created:
						
	
									<installation_directory>/master.ign
								
	
									<installation_directory>/worker.ign
								
	
									<installation_directory>/merge-bootstrap.ign
								

	
							Convert the Ignition config files to Base64 encoding. Later in this procedure, you must add these files to the extra configuration parameter guestinfo.ignition.config.data in your VM.
						

							For example, if you use a Linux operating system, you can use the base64 command to encode the files.
						
$ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
$ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
$ base64 -w0 <installation_directory>/merge-bootstrap.ign > <installation_directory>/merge-bootstrap.64
Important

								If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
							

	
							Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
							

							The filename contains the OpenShift Container Platform version number in the format rhcos-vmware.<architecture>.ova.
						

	
							In the vSphere Client, create a folder in your datacenter to store your VMs.
						
	
									Click the VMs and Templates view.
								
	
									Right-click the name of your datacenter.
								
	
									Click New Folder → New VM and Template Folder.
								
	
									In the window that is displayed, enter the folder name. If you did not specify an existing folder in the install-config.yaml file, then create a folder with the same name as the infrastructure ID. You use this folder name so vCenter dynamically provisions storage in the appropriate location for its Workspace configuration.
								

	
							In the vSphere Client, create a template for the OVA image and then clone the template as needed.
						
Note

								In the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs.
							

	
									From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.
								
	
									On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.
								
	
									On the Select a name and folder tab, set a Virtual machine name for your template, such as Template-RHCOS. Click the name of your vSphere cluster and select the folder you created in the previous step.
								
	
									On the Select a compute resource tab, click the name of your vSphere cluster.
								
	
									On the Select storage tab, configure the storage options for your VM.
								
	
											Select Thin Provision or Thick Provision, based on your storage preferences.
										
	
											Select the datastore that you specified in your install-config.yaml file.
										

	
									On the Select network tab, specify the network that you configured for the cluster, if available.
								
	
									When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.
								
Important

										Do not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to.
									

	
							After the template deploys, deploy a VM for a machine in the cluster.
						
	
									Right-click the template name and click Clone → Clone to Virtual Machine.
								
	
									On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as control-plane-0 or compute-1.
								
	
									On the Select a name and folder tab, select the name of the folder that you created for the cluster.
								
	
									On the Select a compute resource tab, select the name of a host in your datacenter.
								

									For a bootstrap machine, specify the URL of the bootstrap Ignition config file that you hosted.
								

	
									Optional: On the Select storage tab, customize the storage options.
								
	
									On the Select clone options, select Customize this virtual machine’s hardware.
								
	
									On the Customize hardware tab, click VM Options → Advanced.
								
	
											Optional: Override default DHCP networking in vSphere. To enable static IP networking:
										
	
													Set your static IP configuration:
												
$ export IPCFG="ip=<ip>::<gateway>:<netmask>:<hostname>:<iface>:none nameserver=srv1 [nameserver=srv2 [nameserver=srv3 [...]]]"
Example command

														

$ export IPCFG="ip=192.168.100.101::192.168.100.254:255.255.255.0:::none nameserver=8.8.8.8"

													

	
													Set the guestinfo.afterburn.initrd.network-kargs property before booting a VM from an OVA in vSphere:
												
$ govc vm.change -vm "<vm_name>" -e "guestinfo.afterburn.initrd.network-kargs=${IPCFG}"

	
											Optional: In the event of cluster performance issues, from the Latency Sensitivity list, select High. Ensure that your VM’s CPU and memory reservation have the following values:
										
	
													Memory reservation value must be equal to its configured memory size.
												
	
													CPU reservation value must be at least the number of low latency virtual CPUs multiplied by the measured physical CPU speed.
												

	
											Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
										
	
													guestinfo.ignition.config.data: Locate the base-64 encoded files that you created previously in this procedure, and paste the contents of the base64-encoded Ignition config file for this machine type.
												
	
													guestinfo.ignition.config.data.encoding: Specify base64.
												
	
													disk.EnableUUID: Specify TRUE.
												

	
									In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.
								
	
									Complete the configuration and power on the VM.
								

	
							Create the rest of the machines for your cluster by following the preceding steps for each machine.
						
Important

								You must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster.
							

Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere

					You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
				
Prerequisites
	
							Obtain the base64-encoded Ignition file for your compute machines.
						
	
							You have access to the vSphere template that you created for your cluster.
						

Procedure
	
							After the template deploys, deploy a VM for a machine in the cluster.
						
	
									Right-click the template’s name and click Clone → Clone to Virtual Machine.
								
	
									On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as compute-1.
								
	
									On the Select a name and folder tab, select the name of the folder that you created for the cluster.
								
	
									On the Select a compute resource tab, select the name of a host in your datacenter.
								
	
									Optional: On the Select storage tab, customize the storage options.
								
	
									On the Select clone options, select Customize this virtual machine’s hardware.
								
	
									On the Customize hardware tab, click VM Options → Advanced.
								
	
											From the Latency Sensitivity list, select High.
										
	
											Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
										
	
													guestinfo.ignition.config.data: Paste the contents of the base64-encoded compute Ignition config file for this machine type.
												
	
													guestinfo.ignition.config.data.encoding: Specify base64.
												
	
													disk.EnableUUID: Specify TRUE.
												

	
									In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
								
	
									Complete the configuration and power on the VM.
								

	
							Continue to create more compute machines for your cluster.
						

Disk partitioning

					In most cases, data partitions are originally created by installing RHCOS, rather than by installing another operating system. In such cases, the OpenShift Container Platform installer should be allowed to configure your disk partitions.
				

					However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
				
	
							Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making /var or a subdirectory of /var, such as /var/lib/etcd, a separate partition, but not both.
						
Important

								Kubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
							

	
							Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to coreos-installer that allow you to retain existing data partitions.
						

Creating a separate /var partition

					In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
				

					OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
				
	
							/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
						
	
							/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
						
	
							/var: Holds data that you might want to keep separate for purposes such as auditing.
						

					Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
				

					Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
				
Procedure
	
							Create a directory to hold the OpenShift Container Platform installation files:
						
$ mkdir $HOME/clusterconfig

	
							Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
						
$ openshift-install create manifests --dir $HOME/clusterconfig
? SSH Public Key ...
$ ls $HOME/clusterconfig/openshift/
99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

	
							Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
						
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
									The storage device name of the disk that you want to partition.
								

	[image: 2]
	
									When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
								

	[image: 3]
	
									The size of the data partition in mebibytes.
								

	[image: 4]
	
									The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
								

	[image: 5]
	
									The prjquota mount option must be enabled for filesystems used for container storage.
								

Note

								When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
							

	
							Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
						
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

					Now you can use the Ignition config files as input to the vSphere installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
				

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						
	
							Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

					After the control plane initializes, you must immediately configure some Operators so that they all become available.
				
Prerequisites
	
							Your control plane has initialized.
						

Procedure
	
							Watch the cluster components come online:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

	
							Configure the Operators that are not available.
						

Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for VMware vSphere

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on VMware vSphere.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have "100Gi" capacity.
								

Important

								Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
							

								Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
							

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
										

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

Configuring storage for the image registry in non-production clusters

							You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
						
Procedure
	
									To set the image registry storage to an empty directory:
								
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
Warning

										Configure this option for only non-production clusters.
									

									If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:
								
Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

									Wait a few minutes and run the command again.
								

Configuring block registry storage for VMware vSphere

							To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only 1 replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
											Create a pvc.yaml file with the following contents to define a VMware vSphere PersistentVolumeClaim object:
										
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage [image: 1]
 namespace: openshift-image-registry [image: 2]
spec:
 accessModes:
 - ReadWriteOnce [image: 3]
 resources:
 requests:
 storage: 100Gi [image: 4]
	[image: 1]
	
													A unique name that represents the PersistentVolumeClaim object.
												

	[image: 2]
	
													The namespace for the PersistentVolumeClaim object, which is openshift-image-registry.
												

	[image: 3]
	
													The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
												

	[image: 4]
	
													The size of the persistent volume claim.
												

	
											Create the PersistentVolumeClaim object from the file:
										
$ oc create -f pvc.yaml -n openshift-image-registry

	
									Edit the registry configuration so that it references the correct PVC:
								
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Creating a custom PVC allows you to leave the claim field blank for the default automatic creation of an image-registry-storage PVC.
										

							For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
						

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

					You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.
				

Backing up VMware vSphere volumes

					OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
				
Procedure

						To create a backup of persistent volumes:
					
	
							Stop the application that is using the persistent volume.
						
	
							Clone the persistent volume.
						
	
							Restart the application.
						
	
							Create a backup of the cloned volume.
						
	
							Delete the cloned volume.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on vSphere with network customizations

				In OpenShift Container Platform version 4.6, you can install a cluster on VMware vSphere infrastructure that you provision with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
			

				You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.
				

Prerequisites

	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Completing the installation requires that you upload the Red Hat Enterprise Linux CoreOS (RHCOS) OVA on vSphere hosts. The machine from which you complete this process requires access to port 443 on the vCenter and ESXi hosts. Verify that port 443 is accessible.
						
	
							If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall, you must configure it to access Red Hat Insights.
						

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.39. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					
Important

							All virtual machines must reside in the same datastore and in the same folder as the installer.
						

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 11.40. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS or RHEL 7.9
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 11.41. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 11.42. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 11.43. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 11.44. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 11.45. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

Ethernet adaptor hardware address requirements

						When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
					
	
								00:05:69:00:00:00 to 00:05:69:FF:FF:FF
							
	
								00:0c:29:00:00:00 to 00:0c:29:FF:FF:FF
							
	
								00:1c:14:00:00:00 to 00:1c:14:FF:FF:FF
							
	
								00:50:56:00:00:00 to 00:50:56:FF:FF:FF
							

						If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
					
NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 11.46. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 11.9. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 11.10. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Obtaining the installation program

					Before you install OpenShift Container Platform, download the installation file on a local computer.
				
Prerequisites
	
							You have a computer that runs Linux or macOS, with 500 MB of local disk space
						

Procedure
	
							Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
						
	
							Select your infrastructure provider.
						
	
							Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
						
Important

								The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
							

Important

								Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
							

	
							Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
						
$ tar xvf openshift-install-linux.tar.gz

	
							Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
						

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Sample install-config.yaml file for VMware vSphere

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute:
- hyperthreading: Enabled [image: 2] [image: 3]
 name: worker
 replicas: 0 [image: 4]
controlPlane:
 hyperthreading: Enabled [image: 5] [image: 6]
 name: master
 replicas: 3 [image: 7]
metadata:
 name: test [image: 8]
platform:
 vsphere:
 vcenter: your.vcenter.server [image: 9]
 username: username [image: 10]
 password: password [image: 11]
 datacenter: datacenter [image: 12]
 defaultDatastore: datastore [image: 13]
 folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" [image: 14]
fips: false [image: 15]
pullSecret: '{"auths": ...}' (16)
sshKey: 'ssh-ed25519 AAAA...' (17)
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								The fully-qualified hostname or IP address of the vCenter server.
							

	[image: 10]
	
								The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
							

	[image: 11]
	
								The password associated with the vSphere user.
							

	[image: 12]
	
								The vSphere datacenter.
							

	[image: 13]
	
								The default vSphere datastore to use.
							

	[image: 14]
	
								Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								The pull secret that you obtained from OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
							

	(17)
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Network configuration phases

					When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
				
	Phase 1
	
								After entering the openshift-install create install-config command. In the install-config.yaml file, you can customize the following network-related fields:
							
	
										networking.networkType
									
	
										networking.clusterNetwork
									
	
										networking.serviceNetwork
									
	
										networking.machineNetwork
									

										For more information on these fields, refer to "Installation configuration parameters".
									
Note

											Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
										

	Phase 2
	
								After entering the openshift-install create manifests command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
							

					You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.
				

Specifying advanced network configuration

					You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
				
Important

						Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
					

Prerequisites
	
							Create the install-config.yaml file and complete any modifications to it.
						
	
							Create the Ignition config files for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and create the manifests:
						
$./openshift-install create manifests --dir <installation_directory>

							where:
						
	<installation_directory>
	
										Specifies the name of the directory that contains the install-config.yaml file for your cluster.
									

	
							Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:
						
$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

							where:
						
	<installation_directory>
	
										Specifies the directory name that contains the manifests/ directory for your cluster.
									

	
							Open the cluster-network-03-config.yml file in an editor and specify the advanced network configuration for your cluster, such as in the following example:
						
Specify a different VXLAN port for the OpenShift SDN network provider

								

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 openshiftSDNConfig:
 vxlanPort: 4800

							

	
							Save the cluster-network-03-config.yml file and quit the text editor.
						
	
							Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
						
	
							Remove the Kubernetes manifest files that define the control plane machines and compute machineSets:
						
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

							Because you create and manage these resources yourself, you do not have to initialize them.
						
	
									You can preserve the MachineSet files to create compute machines by using the machine API, but you must update references to them to match your environment.
								

Cluster Network Operator configuration

					The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.
				

					The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:
				
	clusterNetwork
	
								IP address pools from which pod IP addresses are allocated.
							
	serviceNetwork
	
								IP address pool for services.
							
	defaultNetwork.type
	
								Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
							

					You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.
				
Cluster Network Operator configuration object

						The fields for the Cluster Network Operator (CNO) are described in the following table:
					
Table 11.47. Cluster Network Operator configuration object
	Field	Type	Description
	
										metadata.name
									

									 	
										string
									

									 	
										The name of the CNO object. This name is always cluster.
									

									
	
										spec.clusterNetwork
									

									 	
										array
									

									 	
										A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
									

									
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.serviceNetwork
									

									 	
										array
									

									 	
										A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:
									

									
spec:
 serviceNetwork:
 - 172.30.0.0/14

									
										This value is ready-only and specified in the install-config.yaml file.
									

									
	
										spec.defaultNetwork
									

									 	
										object
									

									 	
										Configures the Container Network Interface (CNI) cluster network provider for the cluster network.
									

									
	
										spec.kubeProxyConfig
									

									 	
										object
									

									 	
										The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.
									

									

defaultNetwork object configuration

						The values for the defaultNetwork object are defined in the following table:
					
Table 11.48. defaultNetwork object
	Field	Type	Description
	
										type
									

									 	
										string
									

									 	
										Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.
									

									 Note

											OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.
										

									
	
										openshiftSDNConfig
									

									 	
										object
									

									 	
										This object is only valid for the OpenShift SDN cluster network provider.
									

									
	
										ovnKubernetesConfig
									

									 	
										object
									

									 	
										This object is only valid for the OVN-Kubernetes cluster network provider.
									

									

Configuration for the OpenShift SDN CNI cluster network provider

						The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
					
Table 11.49. openshiftSDNConfig object
	Field	Type	Description
	
										mode
									

									 	
										string
									

									 	
										Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.
									

									
										The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.
									

									
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										vxlanPort
									

									 	
										integer
									

									 	
										The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.
									

									
										If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
									

									
										On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.
									

									

Example OpenShift SDN configuration

							

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

						
Configuration for the OVN-Kubernetes CNI cluster network provider

						The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
					
Table 11.50. ovnKubernetesConfig object
	Field	Type	Description
	
										mtu
									

									 	
										integer
									

									 	
										The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
									

									
										If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
									

									
										If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.
									

									
										This value cannot be changed after cluster installation.
									

									
	
										genevePort
									

									 	
										integer
									

									 	
										The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.
									

									

Example OVN-Kubernetes configuration

							

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081

						
kubeProxyConfig object configuration

						The values for the kubeProxyConfig object are defined in the following table:
					
Table 11.51. kubeProxyConfig object
	Field	Type	Description
	
										iptablesSyncPeriod
									

									 	
										string
									

									 	
										The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.
									

									 Note

											Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.
										

									
	
										proxyArguments.iptables-min-sync-period
									

									 	
										array
									

									 	
										The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:
									

									
kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

									

Creating the Ignition config files

					Because you must manually start the cluster machines, you must generate the Ignition config files that the cluster needs to make its machines.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Obtain the Ignition config files:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the directory name to store the files that the installation program creates.
								

Important

								If you created an install-config.yaml file, specify the directory that contains it. Otherwise, specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Extracting the infrastructure name

					The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in VMware vSphere. If you plan to use the cluster identifier as the name of your virtual machine folder, you must extract it.
				
Prerequisites
	
							You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
						
	
							You generated the Ignition config files for your cluster.
						
	
							You installed the jq package.
						

Procedure
	
							To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
						
$ jq -r .infraID <installation_directory>/metadata.json [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

openshift-vw9j6 [image: 1]

							
	[image: 1]
	
									The output of this command is your cluster name and a random string.
								

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere

					Before you install a cluster that contains user-provisioned infrastructure on VMware vSphere, you must create RHCOS machines on vSphere hosts for it to use.
				
Prerequisites
	
							You have obtained the Ignition config files for your cluster.
						
	
							You have access to an HTTP server that you can access from your computer and that the machines that you create can access.
						
	
							You have created a vSphere cluster.
						

Procedure
	
							Upload the bootstrap Ignition config file, which is named <installation_directory>/bootstrap.ign, that the installation program created to your HTTP server. Note the URL of this file.
						
	
							Save the following secondary Ignition config file for your bootstrap node to your computer as <installation_directory>/merge-bootstrap.ign:
						
{
 "ignition": {
 "config": {
 "merge": [
 {
 "source": "<bootstrap_ignition_config_url>", [image: 1]
 "verification": {}
 }
]
 },
 "timeouts": {},
 "version": "3.1.0"
 },
 "networkd": {},
 "passwd": {},
 "storage": {},
 "systemd": {}
}
	[image: 1]
	
									Specify the URL of the bootstrap Ignition config file that you hosted.
								

							When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.
						

	
							Locate the following Ignition config files that the installation program created:
						
	
									<installation_directory>/master.ign
								
	
									<installation_directory>/worker.ign
								
	
									<installation_directory>/merge-bootstrap.ign
								

	
							Convert the Ignition config files to Base64 encoding. Later in this procedure, you must add these files to the extra configuration parameter guestinfo.ignition.config.data in your VM.
						

							For example, if you use a Linux operating system, you can use the base64 command to encode the files.
						
$ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
$ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
$ base64 -w0 <installation_directory>/merge-bootstrap.ign > <installation_directory>/merge-bootstrap.64
Important

								If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
							

	
							Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
							

							The filename contains the OpenShift Container Platform version number in the format rhcos-vmware.<architecture>.ova.
						

	
							In the vSphere Client, create a folder in your datacenter to store your VMs.
						
	
									Click the VMs and Templates view.
								
	
									Right-click the name of your datacenter.
								
	
									Click New Folder → New VM and Template Folder.
								
	
									In the window that is displayed, enter the folder name. If you did not specify an existing folder in the install-config.yaml file, then create a folder with the same name as the infrastructure ID. You use this folder name so vCenter dynamically provisions storage in the appropriate location for its Workspace configuration.
								

	
							In the vSphere Client, create a template for the OVA image and then clone the template as needed.
						
Note

								In the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs.
							

	
									From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.
								
	
									On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.
								
	
									On the Select a name and folder tab, set a Virtual machine name for your template, such as Template-RHCOS. Click the name of your vSphere cluster and select the folder you created in the previous step.
								
	
									On the Select a compute resource tab, click the name of your vSphere cluster.
								
	
									On the Select storage tab, configure the storage options for your VM.
								
	
											Select Thin Provision or Thick Provision, based on your storage preferences.
										
	
											Select the datastore that you specified in your install-config.yaml file.
										

	
									On the Select network tab, specify the network that you configured for the cluster, if available.
								
	
									When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.
								
Important

										Do not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to.
									

	
							After the template deploys, deploy a VM for a machine in the cluster.
						
	
									Right-click the template name and click Clone → Clone to Virtual Machine.
								
	
									On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as control-plane-0 or compute-1.
								
	
									On the Select a name and folder tab, select the name of the folder that you created for the cluster.
								
	
									On the Select a compute resource tab, select the name of a host in your datacenter.
								

									For a bootstrap machine, specify the URL of the bootstrap Ignition config file that you hosted.
								

	
									Optional: On the Select storage tab, customize the storage options.
								
	
									On the Select clone options, select Customize this virtual machine’s hardware.
								
	
									On the Customize hardware tab, click VM Options → Advanced.
								
	
											Optional: Override default DHCP networking in vSphere. To enable static IP networking:
										
	
													Set your static IP configuration:
												
$ export IPCFG="ip=<ip>::<gateway>:<netmask>:<hostname>:<iface>:none nameserver=srv1 [nameserver=srv2 [nameserver=srv3 [...]]]"
Example command

														

$ export IPCFG="ip=192.168.100.101::192.168.100.254:255.255.255.0:::none nameserver=8.8.8.8"

													

	
													Set the guestinfo.afterburn.initrd.network-kargs property before booting a VM from an OVA in vSphere:
												
$ govc vm.change -vm "<vm_name>" -e "guestinfo.afterburn.initrd.network-kargs=${IPCFG}"

	
											Optional: In the event of cluster performance issues, from the Latency Sensitivity list, select High. Ensure that your VM’s CPU and memory reservation have the following values:
										
	
													Memory reservation value must be equal to its configured memory size.
												
	
													CPU reservation value must be at least the number of low latency virtual CPUs multiplied by the measured physical CPU speed.
												

	
											Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
										
	
													guestinfo.ignition.config.data: Locate the base-64 encoded files that you created previously in this procedure, and paste the contents of the base64-encoded Ignition config file for this machine type.
												
	
													guestinfo.ignition.config.data.encoding: Specify base64.
												
	
													disk.EnableUUID: Specify TRUE.
												

	
									In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.
								
	
									Complete the configuration and power on the VM.
								

	
							Create the rest of the machines for your cluster by following the preceding steps for each machine.
						
Important

								You must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster.
							

Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere

					You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
				
Prerequisites
	
							Obtain the base64-encoded Ignition file for your compute machines.
						
	
							You have access to the vSphere template that you created for your cluster.
						

Procedure
	
							After the template deploys, deploy a VM for a machine in the cluster.
						
	
									Right-click the template’s name and click Clone → Clone to Virtual Machine.
								
	
									On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as compute-1.
								
	
									On the Select a name and folder tab, select the name of the folder that you created for the cluster.
								
	
									On the Select a compute resource tab, select the name of a host in your datacenter.
								
	
									Optional: On the Select storage tab, customize the storage options.
								
	
									On the Select clone options, select Customize this virtual machine’s hardware.
								
	
									On the Customize hardware tab, click VM Options → Advanced.
								
	
											From the Latency Sensitivity list, select High.
										
	
											Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
										
	
													guestinfo.ignition.config.data: Paste the contents of the base64-encoded compute Ignition config file for this machine type.
												
	
													guestinfo.ignition.config.data.encoding: Specify base64.
												
	
													disk.EnableUUID: Specify TRUE.
												

	
									In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
								
	
									Complete the configuration and power on the VM.
								

	
							Continue to create more compute machines for your cluster.
						

Disk partitioning

					In most cases, data partitions are originally created by installing RHCOS, rather than by installing another operating system. In such cases, the OpenShift Container Platform installer should be allowed to configure your disk partitions.
				

					However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
				
	
							Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making /var or a subdirectory of /var, such as /var/lib/etcd, a separate partition, but not both.
						
Important

								Kubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
							

	
							Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to coreos-installer that allow you to retain existing data partitions.
						

Creating a separate /var partition

					In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
				

					OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:
				
	
							/var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
						
	
							/var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
						
	
							/var: Holds data that you might want to keep separate for purposes such as auditing.
						

					Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
				

					Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.
				
Procedure
	
							Create a directory to hold the OpenShift Container Platform installation files:
						
$ mkdir $HOME/clusterconfig

	
							Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:
						
$ openshift-install create manifests --dir $HOME/clusterconfig
? SSH Public Key ...
$ ls $HOME/clusterconfig/openshift/
99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

	
							Create a MachineConfig object and add it to a file in the openshift directory. For example, name the file 98-var-partition.yaml, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:
						
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 disks:
 - device: /dev/<device_name> [image: 1]
 partitions:
 - label: var
 startMiB: <partition_start_offset> [image: 2]
 sizeMiB: <partition_size> [image: 3]
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 systemd:
 units:
 - name: var.mount [image: 4]
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target
 [Mount]
 What=/dev/disk/by-partlabel/var
 Where=/var
 Options=defaults,prjquota [image: 5]
 [Install]
 WantedBy=local-fs.target
	[image: 1]
	
									The storage device name of the disk that you want to partition.
								

	[image: 2]
	
									When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
								

	[image: 3]
	
									The size of the data partition in mebibytes.
								

	[image: 4]
	
									The name of the mount unit must match the directory specified in the Where= directive. For example, for a filesystem mounted on /var/lib/containers, the unit must be named var-lib-containers.mount.
								

	[image: 5]
	
									The prjquota mount option must be enabled for filesystems used for container storage.
								

Note

								When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.
							

	
							Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:
						
$ openshift-install create ignition-configs --dir $HOME/clusterconfig
$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

					Now you can use the Ignition config files as input to the vSphere installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
				

Creating the cluster

					To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
				
Prerequisites
	
							Create the required infrastructure for the cluster.
						
	
							You obtained the installation program and generated the Ignition config files for your cluster.
						
	
							You used the Ignition config files to create RHCOS machines for your cluster.
						
	
							Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
						

Procedure
	
							Monitor the bootstrap process:
						
$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

Example output

								

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.19.0 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources

							

							The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
						

	
							After bootstrap process is complete, remove the bootstrap machine from the load balancer.
						
Important

								You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
							

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Approving the certificate signing requests for your machines

					When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
				
Prerequisites
	
							You added machines to your cluster.
						

Procedure
	
							Confirm that the cluster recognizes the machines:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.19.0
master-1 Ready master 63m v1.19.0
master-2 Ready master 64m v1.19.0

							

							The output lists all of the machines that you created.
						
Note

								The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
							

	
							Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

							

							In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
						

	
							If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:
						
Note

								Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.
							

Note

								For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.
							

	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Note

										Some Operators might not become available until some CSRs are approved.
									

	
							Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
						
$ oc get csr
Example output

								

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...

							

	
							If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:
						
	
									To approve them individually, run the following command for each valid CSR:
								
$ oc adm certificate approve <csr_name> [image: 1]
	[image: 1]
	
											<csr_name> is the name of a CSR from the list of current CSRs.
										

	
									To approve all pending CSRs, run the following command:
								
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve

	
							After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:
						
$ oc get nodes
Example output

								

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0

							
Note

								It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.
							

Additional information
	
							For more information on CSRs, see Certificate Signing Requests.
						

Initial Operator configuration

						After the control plane initializes, you must immediately configure some Operators so that they all become available.
					
Prerequisites
	
								Your control plane has initialized.
							

Procedure
	
								Watch the cluster components come online:
							
$ watch -n5 oc get clusteroperators
Example output

									

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

								

	
								Configure the Operators that are not available.
							

Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring block registry storage for VMware vSphere

							To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate rollout strategy.
						
Important

								Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
							

Procedure
	
									To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy and runs with only 1 replica:
								
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'

	
									Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
								
	
											Create a pvc.yaml file with the following contents to define a VMware vSphere PersistentVolumeClaim object:
										
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage [image: 1]
 namespace: openshift-image-registry [image: 2]
spec:
 accessModes:
 - ReadWriteOnce [image: 3]
 resources:
 requests:
 storage: 100Gi [image: 4]
	[image: 1]
	
													A unique name that represents the PersistentVolumeClaim object.
												

	[image: 2]
	
													The namespace for the PersistentVolumeClaim object, which is openshift-image-registry.
												

	[image: 3]
	
													The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
												

	[image: 4]
	
													The size of the persistent volume claim.
												

	
											Create the PersistentVolumeClaim object from the file:
										
$ oc create -f pvc.yaml -n openshift-image-registry

	
									Edit the registry configuration so that it references the correct PVC:
								
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Creating a custom PVC allows you to leave the claim field blank for the default automatic creation of an image-registry-storage PVC.
										

							For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
						

Completing installation on user-provisioned infrastructure

					After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
				
Prerequisites
	
							Your control plane has initialized.
						
	
							You have completed the initial Operator configuration.
						

Procedure
	
							Confirm that all the cluster components are online with the following command:
						
$ watch -n5 oc get clusteroperators
Example output

								

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.6.0 True False False 3h56m
cloud-credential 4.6.0 True False False 29h
cluster-autoscaler 4.6.0 True False False 29h
config-operator 4.6.0 True False False 6h39m
console 4.6.0 True False False 3h59m
csi-snapshot-controller 4.6.0 True False False 4h12m
dns 4.6.0 True False False 4h15m
etcd 4.6.0 True False False 29h
image-registry 4.6.0 True False False 3h59m
ingress 4.6.0 True False False 4h30m
insights 4.6.0 True False False 29h
kube-apiserver 4.6.0 True False False 29h
kube-controller-manager 4.6.0 True False False 29h
kube-scheduler 4.6.0 True False False 29h
kube-storage-version-migrator 4.6.0 True False False 4h2m
machine-api 4.6.0 True False False 29h
machine-approver 4.6.0 True False False 6h34m
machine-config 4.6.0 True False False 3h56m
marketplace 4.6.0 True False False 4h2m
monitoring 4.6.0 True False False 6h31m
network 4.6.0 True False False 29h
node-tuning 4.6.0 True False False 4h30m
openshift-apiserver 4.6.0 True False False 3h56m
openshift-controller-manager 4.6.0 True False False 4h36m
openshift-samples 4.6.0 True False False 4h30m
operator-lifecycle-manager 4.6.0 True False False 29h
operator-lifecycle-manager-catalog 4.6.0 True False False 29h
operator-lifecycle-manager-packageserver 4.6.0 True False False 3h59m
service-ca 4.6.0 True False False 29h
storage 4.6.0 True False False 4h30m

							

							Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
						
$./openshift-install --dir <installation_directory> wait-for install-complete [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

Example output

								

INFO Waiting up to 30m0s for the cluster to initialize...

							

							The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
						
Important
	
										The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
									
	
										It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
									

	
							Confirm that the Kubernetes API server is communicating with the pods.
						
	
									To view a list of all pods, use the following command:
								
$ oc get pods --all-namespaces
Example output

										

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...

									

	
									View the logs for a pod that is listed in the output of the previous command by using the following command:
								
$ oc logs <pod_name> -n <namespace> [image: 1]
	[image: 1]
	
											Specify the pod name and namespace, as shown in the output of the previous command.
										

									If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
								

					You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.
				

Backing up VMware vSphere volumes

					OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
				
Procedure

						To create a backup of persistent volumes:
					
	
							Stop the application that is using the persistent volume.
						
	
							Clone the persistent volume.
						
	
							Restart the application.
						
	
							Create a backup of the cloned volume.
						
	
							Delete the cloned volume.
						

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on vSphere in a restricted network

				In OpenShift Container Platform 4.6, you can install a cluster on VMware vSphere infrastructure in a restricted network by creating an internal mirror of the installation release content.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Prerequisites

	
							Create a registry on your mirror host and obtain the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide the ReadWriteMany access mode.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							The OpenShift Container Platform installer requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.
						
	
							If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
						
Note

								If you are configuring a proxy, be sure to also review this site list.
							

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.52. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Network connectivity requirements

					You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate.
				

					Review the following details about the required network ports.
				
Table 11.53. Ports used for all-machine to all-machine communications
	Protocol	Port	Description
	
									ICMP
								

								 	
									N/A
								

								 	
									Network reachability tests
								

								
	
									TCP
								

								 	
									1936
								

								 	
									Metrics
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
								

								
	
									10250-10259
								

								 	
									The default ports that Kubernetes reserves
								

								
	
									10256
								

								 	
									openshift-sdn
								

								
	
									UDP
								

								 	
									4789
								

								 	
									virtual extensible LAN (VXLAN)
								

								
	
									6081
								

								 	
									Geneve
								

								
	
									9000-9999
								

								 	
									Host level services, including the node exporter on ports 9100-9101.
								

								
	
									500
								

								 	
									IPsec IKE packets
								

								
	
									4500
								

								 	
									IPsec NAT-T packets
								

								
	
									TCP/UDP
								

								 	
									30000-32767
								

								 	
									Kubernetes node port
								

								
	
									ESP
								

								 	
									N/A
								

								 	
									IPsec Encapsulating Security Payload (ESP)
								

								

Table 11.54. Ports used for all-machine to control plane communications
	Protocol	Port	Description
	
									TCP
								

								 	
									6443
								

								 	
									Kubernetes API
								

								

Table 11.55. Ports used for control plane machine to control plane machine communications
	Protocol	Port	Description
	
									TCP
								

								 	
									2379-2380
								

								 	
									etcd server and peer ports
								

								

vCenter requirements

					Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.
				
Required vCenter account privileges

					To install an OpenShift Container Platform cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.
				

					If you cannot use an account with global administrative privileges, you must create roles to grant the privileges necessary for OpenShift Container Platform cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OpenShift Container Platform cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.
				

					An additional role is required if the installation program is to create a vSphere virtual machine folder.
				
Example 11.11. Roles and privileges required for installation
	vSphere object for role	When required	Required privileges
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										Cns.Searchable
InventoryService.Tagging.AttachTag
InventoryService.Tagging.CreateCategory
InventoryService.Tagging.CreateTag
InventoryService.Tagging.DeleteCategory
InventoryService.Tagging.DeleteTag
InventoryService.Tagging.EditCategory
InventoryService.Tagging.EditTag
Sessions.ValidateSession
StorageProfile.View
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk
									

									
	
										vSphere Datastore
									

									 	
										Always
									

									 	
										Datastore.AllocateSpace
Datastore.Browse
Datastore.FileManagement
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										Network.Assign
									

									
	
										Virtual Machine Folder
									

									 	
										Always
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
									

									
	
										vSphere vCenter Datacenter
									

									 	
										If the installation program creates the virtual machine folder
									

									 	
										Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
Folder.Create
Folder.Delete
									

									

					Additionally, the user requires some ReadOnly permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.
				
Example 11.12. Required permissions and propagation settings
	vSphere object	Folder type	Propagate to children	Permissions required
	
										vSphere vCenter
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datacenter
									

									 	
										Existing folder
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										Installation program creates the folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Cluster
									

									 	
										Always
									

									 	
										True
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Datastore
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere Switch
									

									 	
										Always
									

									 	
										False
									

									 	
										ReadOnly permission
									

									
	
										vSphere Port Group
									

									 	
										Always
									

									 	
										False
									

									 	
										Listed required privileges
									

									
	
										vSphere vCenter Virtual Machine Folder
									

									 	
										Existing folder
									

									 	
										True
									

									 	
										Listed required privileges
									

									

					For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.
				
Using OpenShift Container Platform with vMotion

					If you intend on using vMotion in your vSphere environment, consider the following before installing a OpenShift Container Platform cluster.
				
	
							OpenShift Container Platform generally supports compute-only vMotion. Using Storage vMotion can cause issues and is not supported.
						

							To help ensure the uptime of your compute and control plane nodes, it is recommended that you follow the VMware best practices for vMotion. It is also recommended to use VMware anti-affinity rules to improve the availability of OpenShift Container Platform during maintenance or hardware issues.
						

							For more information about vMotion and anti-affinity rules, see the VMware vSphere documentation for vMotion networking requirements and VM anti-affinity rules.
						

	
							If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or through Storage vMotion causes, invalid references within OpenShift Container Platform persistent volume (PV) objects. These references prevent affected pods from starting up and can result in data loss.
						
	
							Similarly, OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.
						

Cluster resources

					When you deploy an OpenShift Container Platform cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.
				

					A standard OpenShift Container Platform installation creates the following vCenter resources:
				
	
							1 Folder
						
	
							1 Tag category
						
	
							1 Tag
						
	
							Virtual machines:
						
	
									1 template
								
	
									1 temporary bootstrap node
								
	
									3 control plane nodes
								
	
									3 compute machines
								

					Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.
				

					If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.
				
Cluster limits

					Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.
				
Networking requirements

					You must use DHCP for the network and ensure that the DHCP server is configured to provide persistent IP addresses to the cluster machines.
				
Note

						Persistent IP addresses are not available before the installation begins. Allocate a DHCP range and, after installation, manually replace the allocation with the persistent IP addresses.
					

					The VM in your restricted network must have access to vCenter so that it can provision and manage nodes, persistent volume claims (PVCs), and other resources. Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:
				
Note

						It is recommended that each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server that is discoverable via DHCP. Installation is possible without an NTP server. However, asynchronous server clocks will cause errors, which NTP server prevents.
					

Required IP Addresses

					An installer-provisioned vSphere installation requires these static IP addresses:
				
	
							The API address is used to access the cluster API.
						
	
							The Ingress address is used for cluster ingress traffic.
						
	
							The control plane node addresses are used when upgrading a cluster from version 4.5 to 4.6.
						

					You must provide these IP addresses to the installation program when you install the OpenShift Container Platform cluster.
				
DNS records

					You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
				
Table 11.56. Required DNS records
	Component	Record	Description
	
									API VIP
								

								 	
									api.<cluster_name>.<base_domain>.
								

								 	
									This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								
	
									Ingress VIP
								

								 	
									*.apps.<cluster_name>.<base_domain>.
								

								 	
									A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
								

								

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program.
						

Adding vCenter root CA certificates to your system trust

					Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OpenShift Container Platform cluster.
				
Procedure
	
							From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The <vCenter>/certs/download.zip file downloads.
						
	
							Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:
						
certs
├── lin
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
├── mac
│ ├── 108f4d17.0
│ ├── 108f4d17.r1
│ ├── 7e757f6a.0
│ ├── 8e4f8471.0
│ └── 8e4f8471.r0
└── win
 ├── 108f4d17.0.crt
 ├── 108f4d17.r1.crl
 ├── 7e757f6a.0.crt
 ├── 8e4f8471.0.crt
 └── 8e4f8471.r0.crl

3 directories, 15 files

	
							Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:
						
cp certs/lin/* /etc/pki/ca-trust/source/anchors

	
							Update your system trust. For example, on a Fedora operating system, run the following command:
						
update-ca-trust extract

Creating the RHCOS image for restricted network installations

					Download the Red Hat Enterprise Linux CoreOS (RHCOS) image to install OpenShift Container Platform on a restricted network VMware vSphere environment.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program. For a restricted network installation, the program is on your mirror registry host.
						

Procedure
	
							Log in to the Red Hat Customer Portal’s Product Downloads page.
						
	
							Under Version, select the most recent release of OpenShift Container Platform 4.6 for RHEL 8.
						
Important

								The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available.
							

	
							Download the Red Hat Enterprise Linux CoreOS (RHCOS) - vSphere image.
						
	
							Upload the image you downloaded to a location that is accessible from the bastion server.
						

					The image is now available for a restricted installation. Note the image name or location for use in OpenShift Container Platform deployment.
				

Creating the installation configuration file

					You can customize the OpenShift Container Platform cluster you install on VMware vSphere.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
						
	
							Have the imageContentSources values that were generated during mirror registry creation.
						
	
							Obtain the contents of the certificate for your mirror registry.
						
	
							Retrieve a Red Hat Enterprise Linux CoreOS (RHCOS) image and upload it to an accessible location.
						

Procedure
	
							Create the install-config.yaml file.
						
	
									Change to the directory that contains the installation program and run the following command:
								
$./openshift-install create install-config --dir <installation_directory> [image: 1]
	[image: 1]
	
											For <installation_directory>, specify the directory name to store the files that the installation program creates.
										

Important

										Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
									

	
									At the prompts, provide the configuration details for your cloud:
								
	
											Optional: Select an SSH key to use to access your cluster machines.
										
Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

	
											Select vsphere as the platform to target.
										
	
											Specify the name of your vCenter instance.
										
	
											Specify the user name and password for the vCenter account that has the required permissions to create the cluster.
										

											The installation program connects to your vCenter instance.
										

	
											Select the datacenter in your vCenter instance to connect to.
										
	
											Select the default vCenter datastore to use.
										
	
											Select the vCenter cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
										
	
											Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
										
	
											Enter the virtual IP address that you configured for control plane API access.
										
	
											Enter the virtual IP address that you configured for cluster ingress.
										
	
											Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.
										
	
											Enter a descriptive name for your cluster. The cluster name must be the same one that you used in the DNS records that you configured.
										
	
											Paste the pull secret from the Red Hat OpenShift Cluster Manager.
										

	
							In the install-config.yaml file, set the value of platform.vsphere.clusterOSImage to the image location or name. For example:
						
platform:
 vsphere:
 clusterOSImage: http://mirror.example.com/images/rhcos-43.81.201912131630.0-vmware.x86_64.ova?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d

	
							Edit the install-config.yaml file to provide the additional information that is required for an installation in a restricted network.
						
	
									Update the pullSecret value to contain the authentication information for your registry:
								
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

									For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.
								

	
									Add the additionalTrustBundle parameter and value.
								
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----

									The value must be the contents of the certificate file that you used for your mirror registry, which can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
								

	
									Add the image content resources, which look like this excerpt:
								
imageContentSources:
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: quay.example.com/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: registry.example.com/ocp/release

									To complete these values, use the imageContentSources that you recorded during mirror registry creation.
								

	
							Make any other modifications to the install-config.yaml file that you require. You can find more information about the available parameters in the Installation configuration parameters section.
						
	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.
							

Installation configuration parameters

						Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.
					
Note

							After installation, you cannot modify these parameters in the install-config.yaml file.
						

Important

							The openshift-install command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
						

Required configuration parameters

							Required installation configuration parameters are described in the following table:
						
Table 11.57. Required parameters
	Parameter	Description	Values
	
											apiVersion
										

										 	
											The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.
										

										 	
											String
										

										
	
											baseDomain
										

										 	
											The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.
										

										 	
											A fully-qualified domain or subdomain name, such as example.com.
										

										
	
											metadata
										

										 	
											Kubernetes resource ObjectMeta, from which only the name parameter is consumed.
										

										 	
											Object
										

										
	
											metadata.name
										

										 	
											The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.
										

										 	
											String of lowercase letters and hyphens (-), such as dev.
										

										
	
											platform
										

										 	
											The configuration for the specific platform upon which to perform the installation: aws, baremetal, azure, openstack, ovirt, vsphere. For additional information about platform.<platform> parameters, consult the following table for your specific platform.
										

										 	
											Object
										

										
	
											pullSecret
										

										 	
											Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.
										

										 	
{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

										

Network configuration parameters

							You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
						

							Only IPv4 addresses are supported.
						
Table 11.58. Network parameters
	Parameter	Description	Values
	
											networking
										

										 	
											The configuration for the cluster network.
										

										 	
											Object
										

										 Note

												You cannot modify parameters specified by the networking object after installation.
											

										
	
											networking.networkType
										

										 	
											The cluster network provider Container Network Interface (CNI) plug-in to install.
										

										 	
											Either OpenShiftSDN or OVNKubernetes. The default value is OpenShiftSDN.
										

										
	
											networking.clusterNetwork
										

										 	
											The IP address blocks for pods.
										

										
											The default value is 10.128.0.0/14 with a host prefix of /23.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

										
	
											networking.clusterNetwork.cidr
										

										 	
											Required if you use networking.clusterNetwork. An IP address block.
										

										
											An IPv4 network.
										

										 	
											An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.
										

										
	
											networking.clusterNetwork.hostPrefix
										

										 	
											The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.
										

										 	
											A subnet prefix.
										

										
											The default value is 23.
										

										
	
											networking.serviceNetwork
										

										 	
											The IP address block for services. The default value is 172.30.0.0/16.
										

										
											The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.
										

										 	
											An array with an IP address block in CIDR format. For example:
										

										
networking:
 serviceNetwork:
 - 172.30.0.0/16

										
	
											networking.machineNetwork
										

										 	
											The IP address blocks for machines.
										

										
											If you specify multiple IP address blocks, the blocks must not overlap.
										

										 	
											An array of objects. For example:
										

										
networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

										
	
											networking.machineNetwork.cidr
										

										 	
											Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.
										

										 	
											An IP network block in CIDR notation.
										

										
											For example, 10.0.0.0/16.
										

										 Note

												Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.
											

										

Optional configuration parameters

							Optional installation configuration parameters are described in the following table:
						
Table 11.59. Optional parameters
	Parameter	Description	Values
	
											additionalTrustBundle
										

										 	
											A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.
										

										 	
											String
										

										
	
											compute
										

										 	
											The configuration for the machines that comprise the compute nodes.
										

										 	
											Array of machine-pool objects. For details, see the following "Machine-pool" table.
										

										
	
											compute.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											compute.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											compute.name
										

										 	
											Required if you use compute. The name of the machine pool.
										

										 	
											worker
										

										
	
											compute.platform
										

										 	
											Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											compute.replicas
										

										 	
											The number of compute machines, which are also known as worker machines, to provision.
										

										 	
											A positive integer greater than or equal to 2. The default value is 3.
										

										
	
											controlPlane
										

										 	
											The configuration for the machines that comprise the control plane.
										

										 	
											Array of MachinePool objects. For details, see the following "Machine-pool" table.
										

										
	
											controlPlane.architecture
										

										 	
											Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are amd64 (the default).
										

										 	
											String
										

										
	
											controlPlane.hyperthreading
										

										 	
											Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.
										

										 Important

												If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.
											

										 	
											Enabled or Disabled
										

										
	
											controlPlane.name
										

										 	
											Required if you use controlPlane. The name of the machine pool.
										

										 	
											master
										

										
	
											controlPlane.platform
										

										 	
											Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.
										

										 	
											aws, azure, gcp, openstack, ovirt, vsphere, or {}
										

										
	
											controlPlane.replicas
										

										 	
											The number of control plane machines to provision.
										

										 	
											The only supported value is 3, which is the default value.
										

										
	
											credentialsMode
										

										 	
											The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
										

										 Note

												Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
											

										 	
											Mint, Passthrough, Manual, or an empty string ("").
										

										
	
											fips
										

										 	
											Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
										

										 Important

												The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
											

										 Note

												If you are using Azure File storage, you cannot enable FIPS mode.
											

										 	
											false or true
										

										
	
											imageContentSources
										

										 	
											Sources and repositories for the release-image content.
										

										 	
											Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.
										

										
	
											imageContentSources.source
										

										 	
											Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.
										

										 	
											String
										

										
	
											imageContentSources.mirrors
										

										 	
											Specify one or more repositories that may also contain the same images.
										

										 	
											Array of strings
										

										
	
											publish
										

										 	
											How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.
										

										 	
											Internal or External. The default value is External.
										

										
											Setting this field to Internal is not supported on non-cloud platforms.
										

										 Important

												If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.
											

										
	
											sshKey
										

										 	
											The SSH key or keys to authenticate access your cluster machines.
										

										 Note

												For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
											

										 	
											One or more keys. For example:
										

										
sshKey:
 <key1>
 <key2>
 <key3>

										

Additional VMware vSphere configuration parameters

							Additional VMware vSphere configuration parameters are described in the following table:
						
Table 11.60. Additional VMware vSphere cluster parameters
	Parameter	Description	Values
	
											platform.vsphere.vCenter
										

										 	
											The fully-qualified hostname or IP address of the vCenter server.
										

										 	
											String
										

										
	
											platform.vsphere.username
										

										 	
											The user name to use to connect to the vCenter instance with. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
										

										 	
											String
										

										
	
											platform.vsphere.password
										

										 	
											The password for the vCenter user name.
										

										 	
											String
										

										
	
											platform.vsphere.datacenter
										

										 	
											The name of the datacenter to use in the vCenter instance.
										

										 	
											String
										

										
	
											platform.vsphere.defaultDatastore
										

										 	
											The name of the default datastore to use for provisioning volumes.
										

										 	
											String
										

										
	
											platform.vsphere.folder
										

										 	
											Optional. The absolute path of an existing folder where the installation program creates the virtual machines. If you do not provide this value, the installation program creates a folder that is named with the infrastructure ID in the datacenter virtual machine folder.
										

										 	
											String, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>.
										

										
	
											platform.vsphere.network
										

										 	
											The network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
										

										 	
											String
										

										
	
											platform.vsphere.cluster
										

										 	
											The vCenter cluster to install the OpenShift Container Platform cluster in.
										

										 	
											String
										

										
	
											platform.vsphere.apiVIP
										

										 	
											The virtual IP (VIP) address that you configured for control plane API access.
										

										 	
											An IP address, for example 128.0.0.1.
										

										
	
											platform.vsphere.ingressVIP
										

										 	
											The virtual IP (VIP) address that you configured for cluster ingress.
										

										 	
											An IP address, for example 128.0.0.1.
										

										

Optional VMware vSphere machine pool configuration parameters

							Optional VMware vSphere machine pool configuration parameters are described in the following table:
						
Table 11.61. Optional VMware vSphere machine pool parameters
	Parameter	Description	Values
	
											platform.vsphere.clusterOSImage
										

										 	
											The location from which the installer downloads the RHCOS image. You must set this parameter to perform an installation in a restricted network.
										

										 	
											An HTTP or HTTPS URL, optionally with a SHA-256 checksum. For example, https://mirror.openshift.com/images/rhcos-<version>-vmware.<architecture>.ova.
										

										
	
											platform.vsphere.osDisk.diskSizeGB
										

										 	
											The size of the disk in gigabytes.
										

										 	
											Integer
										

										
	
											platform.vsphere.cpus
										

										 	
											The total number of virtual processor cores to assign a virtual machine.
										

										 	
											Integer
										

										
	
											platform.vsphere.coresPerSocket
										

										 	
											The number of cores per socket in a virtual machine. The number of virtual sockets on the virtual machine is platform.vsphere.cpus/platform.vsphere.coresPerSocket. The default value is 1
										

										 	
											Integer
										

										
	
											platform.vsphere.memoryMB
										

										 	
											The size of a virtual machine’s memory in megabytes.
										

										 	
											Integer
										

										

Sample install-config.yaml file for an installer-provisioned VMware vSphere cluster

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute: [image: 2]
- hyperthreading: Enabled [image: 3]
 name: worker
 replicas: 3
 platform:
 vsphere: [image: 4]
 cpus: 2
 coresPerSocket: 2
 memoryMB: 8192
 osDisk:
 diskSizeGB: 120
controlPlane: [image: 5]
 hyperthreading: Enabled [image: 6]
 name: master
 replicas: 3
 platform:
 vsphere: [image: 7]
 cpus: 4
 coresPerSocket: 2
 memoryMB: 16384
 osDisk:
 diskSizeGB: 120
metadata:
 name: cluster [image: 8]
platform:
 vsphere:
 vcenter: your.vcenter.server
 username: username
 password: password
 datacenter: datacenter
 defaultDatastore: datastore
 folder: folder
 network: VM_Network
 cluster: vsphere_cluster_name [image: 9]
 apiVIP: api_vip
 ingressVIP: ingress_vip
 clusterOSImage: http://mirror.example.com/images/rhcos-48.83.202103221318-0-vmware.x86_64.ova [image: 10]
fips: false
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' [image: 11]
sshKey: 'ssh-ed25519 AAAA...'
additionalTrustBundle: | [image: 12]
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----
imageContentSources: [image: 13]
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
								

	[image: 4] [image: 7]
	
								Optional: Provide additional configuration for the machine pool parameters for the compute and control plane machines.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								The vSphere cluster to install the OpenShift Container Platform cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.
							

	[image: 10]
	
								The location of the Red Hat Enterprise Linux CoreOS (RHCOS) image that is accessible from the bastion server.
							

	[image: 11]
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	[image: 12]
	
								Provide the contents of the certificate file that you used for your mirror registry.
							

	[image: 13]
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Deploying the cluster

					You can install OpenShift Container Platform on a compatible cloud platform.
				
Important

						You can run the create cluster command of the installation program only once, during initial installation.
					

Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
						

Procedure
	
							Change to the directory that contains the installation program and initialize the cluster deployment:
						
$./openshift-install create cluster --dir <installation_directory> \ [image: 1]
 --log-level=info [image: 2]
	[image: 1]
	
									For <installation_directory>, specify the location of your customized ./install-config.yaml file.
								

	[image: 2]
	
									To view different installation details, specify warn, debug, or error instead of info.
								

									When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.
								

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s

					+
				
Note

						The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.
					

					+
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

					+
				
Important

						You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
					

Installing the OpenShift CLI by downloading the binary

					You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
				
Important

						If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc.
					

Installing the OpenShift CLI on Linux

						You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
							
	
								Unpack the archive:
							
$ tar xvzf <file>

	
								Place the oc binary in a directory that is on your PATH.
							

								To check your PATH, execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Installing the OpenShift CLI on Windows

						You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
							
	
								Unzip the archive with a ZIP program.
							
	
								Move the oc binary to a directory that is on your PATH.
							

								To check your PATH, open the command prompt and execute the following command:
							
C:\> path

						After you install the OpenShift CLI, it is available using the oc command:
					
C:\> oc <command>

Installing the OpenShift CLI on macOS

						You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
					
Procedure
	
								Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
							
	
								Select the appropriate version in the Version drop-down menu.
							
	
								Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
							
	
								Unpack and unzip the archive.
							
	
								Move the oc binary to a directory on your PATH.
							

								To check your PATH, open a terminal and execute the following command:
							
$ echo $PATH

						After you install the OpenShift CLI, it is available using the oc command:
					
$ oc <command>

Logging in to the cluster by using the CLI

					You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
				
Prerequisites
	
							You deployed an OpenShift Container Platform cluster.
						
	
							You installed the oc CLI.
						

Procedure
	
							Export the kubeadmin credentials:
						
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the path to the directory that you stored the installation files in.
								

	
							Verify you can run oc commands successfully using the exported configuration:
						
$ oc whoami
Example output

								

system:admin

							

Disabling the default OperatorHub sources

					Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
				
Procedure
	
							Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:
						
$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Tip

					Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Global Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources.
				

Creating registry storage

					After you install the cluster, you must create storage for the Registry Operator.
				
Image registry removed during installation

						On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed. This allows openshift-installer to complete installations on these platform types.
					

						After installation, you must edit the Image Registry Operator configuration to switch the managementState from Removed to Managed.
					
Note

							The Prometheus console provides an ImageRegistryRemoved alert, for example:
						

							"Image Registry has been removed. ImageStreamTags, BuildConfigs and DeploymentConfigs which reference ImageStreamTags may not work as expected. Please configure storage and update the config to Managed state by editing configs.imageregistry.operator.openshift.io."
						

Image registry storage configuration

						The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
					

						Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
					

						Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.
					
Configuring registry storage for VMware vSphere

							As a cluster administrator, following installation you must configure your registry to use storage.
						
Prerequisites
	
									Cluster administrator permissions.
								
	
									A cluster on VMware vSphere.
								
	
									Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
								
Important

										OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.
									

	
									Must have "100Gi" capacity.
								

Important

								Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
							

								Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
							

Procedure
	
									To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.
								
Note

										When using shared storage, review your security settings to prevent outside access.
									

	
									Verify that you do not have a registry pod:
								
$ oc get pod -n openshift-image-registry
Note

										If the storage type is emptyDIR, the replica number cannot be greater than 1.
									

	
									Check the registry configuration:
								
$ oc edit configs.imageregistry.operator.openshift.io
Example output

										

storage:
 pvc:
 claim: [image: 1]

									
	[image: 1]
	
											Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.
										

	
									Check the clusteroperator status:
								
$ oc get clusteroperator image-registry

Telemetry access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
				

					After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
				
Additional resources
	
							See About remote health monitoring for more information about the Telemetry service
						

Next steps

	
							Customize your cluster.
						
	
							If necessary, you can opt out of remote health reporting.
						
	
							Set up your registry and configure registry storage.
						

Installing a cluster on vSphere in a restricted network with user-provisioned infrastructure

				In OpenShift Container Platform version 4.6, you can install a cluster on VMware vSphere infrastructure that you provision in a restricted network.
			
Note

					OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.
				

Important

					The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.
				

Prerequisites

	
							Create a registry on your mirror host and obtain the imageContentSources data for your version of OpenShift Container Platform.
						
Important

								Because the installation media is on the mirror host, you can use that computer to complete all installation steps.
							

	
							Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
						
	
							Review details about the OpenShift Container Platform installation and update processes.
						
	
							Completing the installation requires that you upload the Red Hat Enterprise Linux CoreOS (RHCOS) OVA on vSphere hosts. The machine from which you complete this process requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.
						
	
							If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.
						
	
							If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
						
Note

								Be sure to also review this site list if you are configuring a proxy.
							

About installations in restricted networks

					In OpenShift Container Platform 4.6, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
				

					If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
				

					To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
				
Important

						Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
					

Additional limits

						Clusters in restricted networks have the following additional limitations and restrictions:
					
	
								The ClusterVersion status includes an Unable to retrieve available updates error.
							
	
								By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
							

Internet access for OpenShift Container Platform

					In OpenShift Container Platform 4.6, you require access to the Internet to obtain the images that are necessary to install your cluster.
				

					You must have Internet access to:
				
	
							Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
						
	
							Access Quay.io to obtain the packages that are required to install your cluster.
						
	
							Obtain the packages that are required to perform cluster updates.
						

Important

						If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
					

VMware vSphere infrastructure requirements

					You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 or 7 instance that meets the requirements for the components that you use.
				
Table 11.62. Minimum supported vSphere version for VMware components
	Component	Minimum supported versions	Description
	
									Hypervisor
								

								 	
									vSphere 6.5 and later with HW version 13
								

								 	
									This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list.
								

								
	
									Storage with in-tree drivers
								

								 	
									vSphere 6.5 and later
								

								 	
									This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.
								

								
	
									Optional: Networking (NSX-T)
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2 and later
								

								 	
									vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.6 and NSX-T 3.x+.
								

								

					If you use a vSphere version 6.5 instance, consider upgrading to 6.7U3 or 7.0 before you install OpenShift Container Platform.
				
Important

						You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
					

Machine requirements for a cluster with user-provisioned infrastructure

					For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
				
Required machines

						The smallest OpenShift Container Platform clusters require the following hosts:
					
	
								One temporary bootstrap machine
							
	
								Three control plane, or master, machines
							
	
								At least two compute machines, which are also known as worker machines.
							

Note

							The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
						

Important

							To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
						

						The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
					

						Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
					
Important

							All virtual machines must reside in the same datastore and in the same folder as the installer.
						

Network connectivity requirements

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					

Minimum resource requirements

						Each cluster machine must meet the following minimum requirements:
					
Table 11.63. Minimum resource requirements
	Machine	Operating System	vCPU [1]	Virtual RAM	Storage	IOPS [2]
	
										Bootstrap
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Control plane
									

									 	
										RHCOS
									

									 	
										4
									

									 	
										16 GB
									

									 	
										100 GB
									

									 	
										300
									

									
	
										Compute
									

									 	
										RHCOS or RHEL 7.9
									

									 	
										2
									

									 	
										8 GB
									

									 	
										100 GB
									

									 	
										300
									

									

	
								One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
							
	
								OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
							

Certificate signing requests management

						Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
					

Creating the user-provisioned infrastructure

					Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
				
Prerequisites
	
							Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
						

Procedure
	
							Configure DHCP or set static IP addresses on each node.
						
	
							Provision the required load balancers.
						
	
							Configure the ports for your machines.
						
	
							Configure DNS.
						
	
							Ensure network connectivity.
						

Networking requirements for user-provisioned infrastructure

						All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs during boot to fetch Ignition config from the machine config server.
					

						During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
					

						It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
					

						The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
					

						You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
					
Table 11.64. All machines to all machines
	Protocol	Port	Description
	
										ICMP
									

									 	
										N/A
									

									 	
										Network reachability tests
									

									
	
										TCP
									

									 	
										1936
									

									 	
										Metrics
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.
									

									
	
										10250-10259
									

									 	
										The default ports that Kubernetes reserves
									

									
	
										10256
									

									 	
										openshift-sdn
									

									
	
										UDP
									

									 	
										4789
									

									 	
										VXLAN and Geneve
									

									
	
										6081
									

									 	
										VXLAN and Geneve
									

									
	
										9000-9999
									

									 	
										Host level services, including the node exporter on ports 9100-9101.
									

									
	
										TCP/UDP
									

									 	
										30000-32767
									

									 	
										Kubernetes node port
									

									

Table 11.65. All machines to control plane
	Protocol	Port	Description
	
										TCP
									

									 	
										6443
									

									 	
										Kubernetes API
									

									

Table 11.66. Control plane machines to control plane machines
	Protocol	Port	Description
	
										TCP
									

									 	
										2379-2380
									

									 	
										etcd server and peer ports
									

									

Network topology requirements

						The infrastructure that you provision for your cluster must meet the following network topology requirements.
					
Important

							OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
						

Load balancers

						Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
					
	
								API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
									
	
										A stateless load balancing algorithm. The options vary based on the load balancer implementation.
									

Important

									Do not configure session persistence for an API load balancer.
								

								Configure the following ports on both the front and back of the load balancers:
							
Table 11.67. API load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												6443
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.
											

											 	
												X
											

											 	
												X
											

											 	
												Kubernetes API server
											

											
	
												22623
											

											 	
												Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
											

											 	
												X
											

											 	 	
												Machine config server
											

											

Note

									The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.
								

	
								Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
							
	
										Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
									
	
										A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
									

								Configure the following ports on both the front and back of the load balancers:
							
Table 11.68. Application Ingress load balancer
	Port	Back-end machines (pool members)	Internal	External	Description
	
												443
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTPS traffic
											

											
	
												80
											

											 	
												The machines that run the Ingress router pods, compute, or worker, by default.
											

											 	
												X
											

											 	
												X
											

											 	
												HTTP traffic
											

											

Tip

						If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
					

Note

							A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
						

Ethernet adaptor hardware address requirements

						When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
					
	
								00:05:69:00:00:00 to 00:05:69:FF:FF:FF
							
	
								00:0c:29:00:00:00 to 00:0c:29:FF:FF:FF
							
	
								00:1c:14:00:00:00 to 00:1c:14:FF:FF:FF
							
	
								00:50:56:00:00:00 to 00:50:56:FF:FF:FF
							

						If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
					
NTP configuration

						OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
					

						If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
					
Additional resources
	
								Configuring chrony time service
							

User-provisioned DNS requirements

						DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
					

						The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..
					
Table 11.69. Required DNS records
	Component	Record	Description
	
										Kubernetes API
									

									 	
										api.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										api-int.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
									

									 Important

											The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.
										

									
	
										Routes
									

									 	
										*.apps.<cluster_name>.<base_domain>.
									

									 	
										Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
									

									
	
										Bootstrap
									

									 	
										bootstrap.<cluster_name>.<base_domain>.
									

									 	
										Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
									

									
	
										Master hosts
									

									 	
										<master><n>.<cluster_name>.<base_domain>.
									

									 	
										DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster.
									

									
	
										Worker hosts
									

									 	
										<worker><n>.<cluster_name>.<base_domain>.
									

									 	
										Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.
									

									

Tip

						You can use the nslookup <hostname> command to verify name resolution. You can use the dig -x <ip_address> command to verify reverse name resolution for the PTR records.
					

						The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
					
Example 11.13. Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1	IN	A	192.168.1.5
smtp	IN	A	192.168.1.5
;
helper	IN	A	192.168.1.5
helper.ocp4	IN	A	192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4		IN	A	192.168.1.5
api-int.ocp4		IN	A	192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4		IN	A	192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4	IN	A	192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4		IN	A	192.168.1.97
master1.ocp4		IN	A	192.168.1.98
master2.ocp4		IN	A	192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4		IN	A	192.168.1.11
worker1.ocp4		IN	A	192.168.1.7
;
;EOF

						The following example BIND zone file shows sample PTR records for reverse name resolution.
					
Example 11.14. Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W)		; minimum (1 week)
	IN	NS	ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97	IN	PTR	master0.ocp4.example.com.
98	IN	PTR	master1.ocp4.example.com.
99	IN	PTR	master2.ocp4.example.com.
;
96	IN	PTR	bootstrap.ocp4.example.com.
;
5	IN	PTR	api.ocp4.example.com.
5	IN	PTR	api-int.ocp4.example.com.
;
11	IN	PTR	worker0.ocp4.example.com.
7	IN	PTR	worker1.ocp4.example.com.
;
;EOF

Generating an SSH private key and adding it to the agent

					If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
				
Note

						In a production environment, you require disaster recovery and debugging.
					

					You can use this key to SSH into the master nodes as the user core. When you deploy the cluster, the key is added to the core user’s ~/.ssh/authorized_keys list.
				
Note

						You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
					

Procedure
	
							If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
						
$ ssh-keygen -t ed25519 -N '' \
 -f <path>/<file_name> [image: 1]
	[image: 1]
	
									Specify the path and file name, such as ~/.ssh/id_rsa, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
								

							Running this command generates an SSH key that does not require a password in the location that you specified.
						
Note

								If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.
							

	
							Start the ssh-agent process as a background task:
						
$ eval "$(ssh-agent -s)"
Example output

								

Agent pid 31874

							
Note

								If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
							

	
							Add your SSH private key to the ssh-agent:
						
$ ssh-add <path>/<file_name> [image: 1]
Example output

								

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

							
	[image: 1]
	
									Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
								

Next steps
	
							When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
						

Manually creating the installation configuration file

					For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
				
Prerequisites
	
							Obtain the OpenShift Container Platform installation program and the access token for your cluster.
						
	
							Obtain the imageContentSources section from the output of the command to mirror the repository.
						
	
							Obtain the contents of the certificate for your mirror registry.
						

Procedure
	
							Create an installation directory to store your required installation assets in:
						
$ mkdir <installation_directory>
Important

								You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
							

	
							Customize the following install-config.yaml file template and save it in the <installation_directory>.
						
Note

								You must name this configuration file install-config.yaml.
							

	
									Unless you use a registry that RHCOS trusts by default, such as docker.io, you must provide the contents of the certificate for your mirror repository in the additionalTrustBundle section. In most cases, you must provide the certificate for your mirror.
								
	
									You must include the imageContentSources section from the output of the command to mirror the repository.
								

	
							Back up the install-config.yaml file so that you can use it to install multiple clusters.
						
Important

								The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.
							

Sample install-config.yaml file for VMware vSphere

						You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
					
apiVersion: v1
baseDomain: example.com [image: 1]
compute:
- hyperthreading: Enabled [image: 2] [image: 3]
 name: worker
 replicas: 0 [image: 4]
controlPlane:
 hyperthreading: Enabled [image: 5] [image: 6]
 name: master
 replicas: 3 [image: 7]
metadata:
 name: test [image: 8]
platform:
 vsphere:
 vcenter: your.vcenter.server [image: 9]
 username: username [image: 10]
 password: password [image: 11]
 datacenter: datacenter [image: 12]
 defaultDatastore: datastore [image: 13]
 folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" [image: 14]
fips: false [image: 15]
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (16)
sshKey: 'ssh-ed25519 AAAA...' (17)
additionalTrustBundle: | (18)
 -----BEGIN CERTIFICATE-----
 ZZ
 -----END CERTIFICATE-----
imageContentSources: (19)
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
	[image: 1]
	
								The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
							

	[image: 2] [image: 5]
	
								The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used.
							

	[image: 3] [image: 6]
	
								Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
							
Important

									If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
								

	[image: 4]
	
								You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
							

	[image: 7]
	
								The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
							

	[image: 8]
	
								The cluster name that you specified in your DNS records.
							

	[image: 9]
	
								The fully-qualified hostname or IP address of the vCenter server.
							

	[image: 10]
	
								The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
							

	[image: 11]
	
								The password associated with the vSphere user.
							

	[image: 12]
	
								The vSphere datacenter.
							

	[image: 13]
	
								The default vSphere datastore to use.
							

	[image: 14]
	
								Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter.
							

	[image: 15]
	
								Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
							
Important

									The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.
								

	(16)
	
								For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
							

	(17)
	
								The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).
							
Note

									For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.
								

	(18)
	
								Provide the contents of the certificate file that you used for your mirror registry.
							

	(19)
	
								Provide the imageContentSources section from the output of the command to mirror the repository.
							

Configuring the cluster-wide proxy during installation

						Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
					
Prerequisites
	
								You have an existing install-config.yaml file.
							
	
								You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.
							
Note

									The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.
								

									For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).
								

Procedure
	
								Edit your install-config.yaml file and add the proxy settings. For example:
							
apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> [image: 1]
 httpsProxy: https://<username>:<pswd>@<ip>:<port> [image: 2]
 noProxy: example.com [image: 3]
additionalTrustBundle: | [image: 4]
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...
	[image: 1]
	
										A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
									

	[image: 2]
	
										A proxy URL to use for creating HTTPS connections outside the cluster.
									

	[image: 3]
	
										A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
									

	[image: 4]
	
										If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the RHCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
									

Note

									The installation program does not support the proxy readinessEndpoints field.
								

	
								Save the file and reference it when installing OpenShift Container Platform.
							

						The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
					
Note

							Only the Proxy object named cluster is supported, and no additional proxies can be created.
						

Creating the Kubernetes manifest and Ignition config files

					Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
				

					The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
				
Important
	
								The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
							
	
								It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
							

Prerequisites
	
							You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
						
	
							You created the install-config.yaml installation configuration file.
						

Procedure
	
							Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
						
$./openshift-install create manifests --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
								

	
							Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:
						
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

							Because you create and manage these resources yourself, you do not have to initialize them.
						
	
									You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.
								

	
							Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
						
	
									Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
								
	
									Locate the mastersSchedulable parameter and ensure that it is set to false.
								
	
									Save and exit the file.
								

	
							To create the Ignition configuration files, run the following command from the directory that contains the installation program:
						
$./openshift-install create ignition-configs --dir <installation_directory> [image: 1]
	[image: 1]
	
									For <installation_directory>, specify the same installation directory.
								

							The following files are generated in the directory:
						
.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Configuring chrony time service

					You must set the time server and related settings used by the chrony time