Menu Close

Chapter 6. Configuring the Ingress Controller

6.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a Secret resource and editing the IngressController custom resource (CR).

Prerequisites

  • You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a trusted certificate authority or by a private trusted certificate authority that you configured in a custom PKI.
  • Your certificate meets the following requirements:

    • The certificate is valid for the ingress domain.
    • The certificate uses the subjectAltName extension to specify a wildcard domain, such as *.apps.ocp4.example.com.
  • You must have an IngressController CR. You may use the default one:

    $ oc --namespace openshift-ingress-operator get ingresscontrollers

    Example output

    NAME      AGE
    default   10m

Note

If you have intermediate certificates, they must be included in the tls.crt file of the secret containing a custom default certificate. Order matters when specifying a certificate; list your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the current working directory. Substitute the actual path names for tls.crt and tls.key. You also may substitute another name for custom-certs-default when creating the Secret resource and referencing it in the IngressController CR.

Note

This action will cause the Ingress Controller to be redeployed, using a rolling deployment strategy.

  1. Create a Secret resource containing the custom certificate in the openshift-ingress namespace using the tls.crt and tls.key files.

    $ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --key=tls.key
  2. Update the IngressController CR to reference the new certificate secret:

    $ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
      --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'
  3. Verify the update was effective:

    $ oc get --namespace openshift-ingress-operator ingresscontrollers/default \
      --output jsonpath='{.spec.defaultCertificate}'

    Example output

    map[name:custom-certs-default]

    The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s deployment to use the custom certificate.

6.2. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as the requirement to increase throughput. oc commands are used to scale the IngressController resource. The following procedure provides an example for scaling up the default IngressController.

Procedure

  1. View the current number of available replicas for the default IngressController:

    $ oc get -n openshift-ingress-operator ingresscontrollers/default -o jsonpath='{$.status.availableReplicas}'

    Example output

    2

  2. Scale the default IngressController to the desired number of replicas using the oc patch command. The following example scales the default IngressController to 3 replicas:

    $ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas": 3}}' --type=merge

    Example output

    ingresscontroller.operator.openshift.io/default patched

  3. Verify that the default IngressController scaled to the number of replicas that you specified:

    $ oc get -n openshift-ingress-operator ingresscontrollers/default -o jsonpath='{$.status.availableReplicas}'

    Example output

    3

Note

Scaling is not an immediate action, as it takes time to create the desired number of replicas.

6.3. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the cluster logging stack’s capacity, or for environments where any logging solution needs to integrate with an existing Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

  • Log in as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

  • To configure Ingress access logging, you must specify a destination using spec.logging.access.destination. To specify logging to a sidecar container, you must specify Container spec.logging.access.destination.type. The following example is an Ingress Controller definition that logs to a Container destination:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      name: default
      namespace: openshift-ingress-operator
    spec:
      replicas: 2
      endpointPublishingStrategy:
        type: NodePortService 1
      logging:
        access:
          destination:
            type: Container
    1
    NodePortService is not required to configure Ingress access logging to a sidecar. Ingress logging is compatible with any endpointPublishingStrategy.
  • When you configure the Ingress Controller to log to a sidecar, the operator creates a container named logs inside the Ingress Controller Pod:

    $ oc -n openshift-ingress logs deployment.apps/router-default -c logs

    Example output

    2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080 0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

Configure Ingress access logging to a Syslog endpoint.

  • To configure Ingress access logging, you must specify a destination using spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you must specify Syslog for spec.logging.access.destination.type. If the destination type is Syslog, you must also specify a destination endpoint using spec.logging.access.destination.syslog.endpoint and you can specify a facility using spec.logging.access.destination.syslog.facility. The following example is an Ingress Controller definition that logs to a Syslog destination:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      name: default
      namespace: openshift-ingress-operator
    spec:
      replicas: 2
      endpointPublishingStrategy:
        type: NodePortService
      logging:
        access:
          destination:
            type: Syslog
            syslog:
              address: 1.2.3.4
              port: 10514
    Note

    The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

  • You can specify spec.logging.access.httpLogFormat to customize the log format. The following example is an Ingress Controller definition that logs to a syslog endpoint with IP address 1.2.3.4 and port 10514:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      name: default
      namespace: openshift-ingress-operator
    spec:
      replicas: 2
      endpointPublishingStrategy:
        type: NodePortService
      logging:
        access:
          destination:
            type: Syslog
            syslog:
              address: 1.2.3.4
              port: 10514
          httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

Disable Ingress access logging.

  • To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      name: default
      namespace: openshift-ingress-operator
    spec:
      replicas: 2
      endpointPublishingStrategy:
        type: NodePortService
      logging:
        access: null

6.4. Ingress Controller sharding

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller, or router, can be significant. As a cluster administrator, you can shard the routes to:

  • Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.
  • Allocate certain routes to have different reliability guarantees than other routes.
  • Allow certain Ingress Controllers to have different policies defined.
  • Allow only specific routes to use additional features.
  • Expose different routes on different addresses so that internal and external users can see different routes, for example.

Ingress Controller can use either route labels or namespace labels as a sharding method.

6.4.1. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to one Ingress Controller and company B to another.

Procedure

  1. Edit the router-internal.yaml file:

    # cat router-internal.yaml
    apiVersion: v1
    items:
    - apiVersion: operator.openshift.io/v1
      kind: IngressController
      metadata:
        name: sharded
        namespace: openshift-ingress-operator
      spec:
        domain: <apps-sharded.basedomain.example.net>
        nodePlacement:
          nodeSelector:
            matchLabels:
              node-role.kubernetes.io/worker: ""
        routeSelector:
          matchLabels:
            type: sharded
      status: {}
    kind: List
    metadata:
      resourceVersion: ""
      selfLink: ""
  2. Apply the Ingress Controller router-internal.yaml file:

    # oc apply -f router-internal.yaml

    The Ingress Controller selects routes in any namespace that have the label type: sharded.

6.4.2. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to one Ingress Controller and company B to another.

Procedure

  1. Edit the router-internal.yaml file:

    # cat router-internal.yaml

    Example output

    apiVersion: v1
    items:
    - apiVersion: operator.openshift.io/v1
      kind: IngressController
      metadata:
        name: sharded
        namespace: openshift-ingress-operator
      spec:
        domain: <apps-sharded.basedomain.example.net>
        nodePlacement:
          nodeSelector:
            matchLabels:
              node-role.kubernetes.io/worker: ""
        namespaceSelector:
          matchLabels:
            type: sharded
      status: {}
    kind: List
    metadata:
      resourceVersion: ""
      selfLink: ""

  2. Apply the Ingress Controller router-internal.yaml file:

    # oc apply -f router-internal.yaml

    The Ingress Controller selects routes in any namespace that is selected by the namespace selector that have the label type: sharded.

6.5. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an internal cloud load balancer.

Warning

If your cloud provider is Microsoft Azure, you must have at least one public load balancer that points to your nodes. If you do not, all of your nodes will lose egress connectivity to the internet.

Important

If you want to change the scope for an IngressController object, you must delete and then recreate that IngressController object. You cannot change the .spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom resource (CR) is created.

See the Kubernetes Services documentation for implementation details.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.

Procedure

  1. Create an IngressController custom resource (CR) in a file named <name>-ingress-controller.yaml, such as in the following example:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      namespace: openshift-ingress-operator
      name: <name> 1
    spec:
      domain: <domain> 2
      endpointPublishingStrategy:
        type: LoadBalancerService
        loadBalancer:
          scope: Internal 3
    1
    Replace <name> with a name for the IngressController object.
    2
    Specify the domain for the application published by the controller.
    3
    Specify a value of Internal to use an internal load balancer.
  2. Create the Ingress Controller defined in the previous step by running the following command:

    $ oc create -f <name>-ingress-controller.yaml 1
    1
    Replace <name> with the name of the IngressController object.
  3. Optional: Confirm that the Ingress Controller was created by running the following command:

    $ oc --all-namespaces=true get ingresscontrollers

6.6. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and recreating it.

Warning

If your cloud provider is Microsoft Azure, you must have at least one public load balancer that points to your nodes. If you do not, all of your nodes will lose egress connectivity to the internet.

Important

If you want to change the scope for an IngressController object, you must delete and then recreate that IngressController object. You cannot change the .spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom resource (CR) is created.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.

Procedure

  1. Configure the default Ingress Controller for your cluster to be internal by deleting and recreating it.

    $ oc replace --force --wait --filename - <<EOF
    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      namespace: openshift-ingress-operator
      name: default
    spec:
      endpointPublishingStrategy:
        type: LoadBalancerService
        loadBalancer:
          scope: Internal
    EOF

6.7. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same domain name. This is for organizations where multiple teams develop microservices that are exposed on the same host name.

Warning

Allowing claims across namespaces should only be enabled for clusters with trust between namespaces, otherwise a malicious user could take over a host name. For this reason, the default admission policy disallows host name claims across namespaces.

Prerequisites

  • Cluster administrator privileges.

Procedure

  • Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the following command:

    $ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

    Sample Ingress Controller configuration

    spec:
      routeAdmission:
        namespaceOwnership: InterNamespaceAllowed
    ...

6.8. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is backwards compatible with existing IngressController resources.

Procedure

  1. Configure the wildcard policy.

    1. Use the following command to edit the IngressController resource:

      $ oc edit IngressController
    2. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

      spec:
        routeAdmission:
          wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

6.9. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is necessary to avoid problems from connection coalescing, where the client re-uses a connection for different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not with insecure or edge-terminated routes.

Important

For non-passthrough routes, the Ingress Controller negotiates its connection to the application independently of the connection from the client. This means a client may connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may then connect to the application, negotiate HTTP/2, and forward the request from the client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the WebSocket protocol, because the Ingress Controller cannot forward WebSocket to HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you have an application that is intended to accept WebSocket connections, it must not allow negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

  • To enable HTTP/2 on an Ingress Controller, enter the oc annotate command:

    $ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name> ingress.operator.openshift.io/default-enable-http2=true

    Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.

Enable HTTP/2 on the entire cluster.

  • To enable HTTP/2 for the entire cluster, enter the oc annotate command:

    $ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

6.10. Additional resources