Chapter 1. Creating machine sets

1.1. Creating a machine set on AWS

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on Amazon Web Services (AWS). For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.1.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.1.2. Sample YAML for a machine set custom resource on AWS

This sample YAML defines a machine set that runs in the us-east-1a Amazon Web Services (AWS) zone and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
  name: <infrastructureID>-<role>-<zone> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 3
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<zone> 4
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
        machine.openshift.io/cluster-api-machine-role: <role> 6
        machine.openshift.io/cluster-api-machine-type: <role> 7
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<zone> 8
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: "" 9
      providerSpec:
        value:
          ami:
            id: ami-046fe691f52a953f9 10
          apiVersion: awsproviderconfig.openshift.io/v1beta1
          blockDevices:
            - ebs:
                iops: 0
                volumeSize: 120
                volumeType: gp2
          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: <infrastructureID>-worker-profile 11
          instanceType: m4.large
          kind: AWSMachineProviderConfig
          placement:
            availabilityZone: us-east-1a
            region: us-east-1
          securityGroups:
            - filters:
                - name: tag:Name
                  values:
                    - <infrastructureID>-worker-sg 12
          subnet:
            filters:
              - name: tag:Name
                values:
                  - <infrastructureID>-private-us-east-1a 13
          tags:
            - name: kubernetes.io/cluster/<infrastructureID> 14
              value: owned
          userDataSecret:
            name: worker-user-data
1 3 5 11 12 13 14
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}{"\n"}' \
    get machineset/<infrastructureID>-worker-us-east-1a
2 4 8
Specify the infrastructure ID, node label, and zone.
6 7 9
Specify the node label to add.
10
Specify a valid Red Hat Enterprise Linux CoreOS (RHCOS) AMI for your AWS zone for your OpenShift Container Platform nodes.

1.1.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

Next steps

If you need machine sets in other availability zones, repeat this process to create more machine sets.

1.1.4. Machine sets that deploy machines as Spot Instances

You can save on costs by creating a machine set running on AWS that deploys machines as non-guaranteed Spot Instances. Spot Instances use available AWS EC2 capacity and are less expensive than On-Demand Instances. You can use Spot Instances for workloads that can tolerate interruptions, such as batch or stateless, horizontally scalable workloads.

Important

It is strongly recommended that control plane machines are not created on Spot Instances due to the increased likelihood of the instance being terminated. Manual intervention is required to replace a terminated control plane node.

AWS EC2 can terminate a Spot Instance at any time. AWS gives a two-minute warning to the user when an interruption occurs. OpenShift Container Platform begins to remove the workloads from the affected instances when AWS issues the termination warning.

Interruptions can occur when using Spot Instances for the following reasons:

  • The instance price exceeds your maximum price.
  • The demand for Spot Instances increases.
  • The supply of Spot Instances decreases.

When AWS terminates an instance, a termination handler running on the Spot Instance node deletes the machine resource. To satisfy the machine set replicas quantity, the machine set creates a machine that requests a Spot Instance.

1.1.5. Creating Spot Instances by using machine sets

You can launch a Spot Instance on AWS by adding spotMarketOptions to your machine set YAML file.

Procedure

  • Add the following line under the providerSpec field:

    providerSpec:
      value:
        spotMarketOptions: {}

Optional: You can set the spotMarketOptions.maxPrice field to limit the cost of the Spot Instance. For example, you can set maxPrice: '2.50'.

If the maxPrice is set, this value is used as the hourly maximum spot price. If it is not set, the maximum price defaults to charge up to the On-Demand Instance price.

Note

It is strongly recommended to use the default On-Demand price as the maxPrice value and to not set the maximum price for Spot Instances.

1.2. Creating a machine set on Azure

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on Microsoft Azure. For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.2.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.2.2. Sample YAML for a machine set custom resource on Azure

This sample YAML defines a machine set that runs in the 1 Microsoft Azure zone in the centralus region and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
    machine.openshift.io/cluster-api-machine-role: <role> 2
    machine.openshift.io/cluster-api-machine-type: <role> 3
  name: <infrastructureID>-<role>-<region> 4
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<region> 6
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 7
        machine.openshift.io/cluster-api-machine-role: <role> 8
        machine.openshift.io/cluster-api-machine-type: <role> 9
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<region> 10
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/<role>: "" 11
      providerSpec:
        value:
          apiVersion: azureproviderconfig.openshift.io/v1beta1
          credentialsSecret:
            name: azure-cloud-credentials
            namespace: openshift-machine-api
          image:
            offer: ""
            publisher: ""
            resourceID: /resourceGroups/<infrastructureID>-rg/providers/Microsoft.Compute/images/<infrastructureID>
            sku: ""
            version: ""
          internalLoadBalancer: ""
          kind: AzureMachineProviderSpec
          location: centralus
          managedIdentity: <infrastructureID>-identity 12
          metadata:
            creationTimestamp: null
          natRule: null
          networkResourceGroup: ""
          osDisk:
            diskSizeGB: 128
            managedDisk:
              storageAccountType: Premium_LRS
            osType: Linux
          publicIP: false
          publicLoadBalancer: ""
          resourceGroup: <infrastructureID>-rg 13
          sshPrivateKey: ""
          sshPublicKey: ""
          subnet: <infrastructureID>-<role>-subnet 14 15
          userDataSecret:
            name: worker-user-data 16
          vmSize: qeci-22538-vnet
          vnet: <infrastructureID>-vnet 17
          zone: "1" 18
1 5 7 12 13 14 17
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

You can obtain the subnet by running the following command:

$  oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.subnet}{"\n"}' \
    get machineset/<infrastructureID>-worker-centralus1

You can obtain the vnet by running the following command:

$  oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.vnet}{"\n"}' \
    get machineset/<infrastructureID>-worker-centralus1
2 3 8 9 11 15 16
Specify the node label to add.
4 6 10
Specify the infrastructure ID, node label, and region.
18
Specify the zone within your region to place Machines on. Be sure that your region supports the zone that you specify.

1.2.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

1.3. Creating a machine set on GCP

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on Google Cloud Platform (GCP). For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.3.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.3.2. Sample YAML for a machine set custom resource on GCP

This sample YAML defines a machine set that runs in Google Cloud Platform (GCP) and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
  name: <infrastructureID>-w-a 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 3
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-w-a 4
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
        machine.openshift.io/cluster-api-machine-role: <role> 6
        machine.openshift.io/cluster-api-machine-type: <role> 7
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-w-a 8
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: "" 9
      providerSpec:
        value:
          apiVersion: gcpprovider.openshift.io/v1beta1
          canIPForward: false
          credentialsSecret:
            name: gcp-cloud-credentials
          deletionProtection: false
          disks:
          - autoDelete: true
            boot: true
            image: <path_to_image> 10
            labels: null
            sizeGb: 128
            type: pd-ssd
          kind: GCPMachineProviderSpec
          machineType: n1-standard-4
          metadata:
            creationTimestamp: null
          networkInterfaces:
          - network: <infrastructureID>-network 11
            subnetwork: <infrastructureID>-worker-subnet 12
          projectID: <project_name> 13
          region: us-central1
          serviceAccounts:
          - email: <infrastructureID>-w@<project_name>.iam.gserviceaccount.com 14 15
            scopes:
            - https://www.googleapis.com/auth/cloud-platform
          tags:
          - <infrastructureID>-worker 16
          userDataSecret:
            name: worker-user-data
          zone: us-central1-a
1 2 3 4 5 8 11 12 14 16
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster
6 7 9
Specify the node label to add.
10
Specify the path to the image that is used in current machine sets. If you have the OpenShift CLI installed, you can obtain the path to the image by running the following command:
$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.disks[0].image}{"\n"}' \
    get machineset/<infrastructureID>-worker-a
13 15
Specify the name of the GCP project that you use for your cluster.

1.3.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

1.4. Creating a machine set on OpenStack

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP). For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.4.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.4.2. Sample YAML for a machine set custom resource on RHOSP

This sample YAML defines a machine set that runs on Red Hat OpenStack Platform (RHOSP) and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, infrastructure_ID is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and node_role is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 1
    machine.openshift.io/cluster-api-machine-role: <node_role> 2
    machine.openshift.io/cluster-api-machine-type: <node_role> 3
  name: <infrastructure_ID>-<node_role> 4
  namespace: openshift-machine-api
spec:
  replicas: <number_of_replicas>
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role> 6
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 7
        machine.openshift.io/cluster-api-machine-role: <node_role> 8
        machine.openshift.io/cluster-api-machine-type: <node_role> 9
        machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role> 10
    spec:
      providerSpec:
        value:
          apiVersion: openstackproviderconfig.openshift.io/v1alpha1
          cloudName: openstack
          cloudsSecret:
            name: openstack-cloud-credentials
            namespace: openshift-machine-api
          flavor: <nova_flavor>
          image: <glance_image_name_or_location>
          serverGroupID: <optional_UUID_of_server_group> 11
          kind: OpenstackProviderSpec
          networks: 12
          - filter: {}
            subnets:
            - filter:
                name: <subnet_name>
                tags: openshiftClusterID=<infrastructure_ID>
          primarySubnet: <rhosp_subnet_UUID> 13
          securityGroups:
          - filter: {}
            name: <infrastructure_ID>-worker
          serverMetadata:
            Name: <infrastructure_ID>-worker
            openshiftClusterID: <infrastructure_ID>
          tags:
          - openshiftClusterID=<infrastructure_ID>
          trunk: true
          userDataSecret:
            name: worker-user-data 14
          availabilityZone: <optional_openstack_availability_zone>
1 5 7
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster
2 3 8 9 14
Specify the node label to add.
4 6 10
Specify the infrastructure ID and node label.
11
To set a server group policy for the MachineSet, enter the value that is returned from creating a server group. For most deployments, anti-affinity or soft-anti-affinity policies are recommended.
12
Required for deployments to multiple networks. If deploying to multiple networks, this list must include the network that is used as the primarySubnet value.
13
Specify the RHOSP subnet that you want the endpoints of nodes to be published on. Usually, this is the same subnet that is used as the value of machinesSubnet in the install-config.yaml file.

1.4.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

1.5. Creating a machine set on RHV

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on Red Hat Virtualization (RHV). For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.5.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.5.2. Sample YAML for a machine set custom resource on RHV

This sample YAML defines a machine set that runs on RHV and creates nodes that are labeled with node-role.kubernetes.io/<node_role>: "".

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
    machine.openshift.io/cluster-api-machine-role: <role> 2
    machine.openshift.io/cluster-api-machine-type: <role> 3
  name: <infrastructure_id>-<role> 4
  namespace: openshift-machine-api
spec:
  replicas: <number_of_replicas> 5
  Selector: 6
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 7
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 8
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 9
        machine.openshift.io/cluster-api-machine-role: <role> 10
        machine.openshift.io/cluster-api-machine-type: <role> 11
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 12
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: "" 13
      providerSpec:
        value:
          apiVersion: ovirtproviderconfig.machine.openshift.io/v1beta1
          cluster_id: <ovirt_cluster_id> 14
          template_name: <ovirt_template_name> 15
          instance_type_id: <instance_type_id> 16
          cpu: 17
            sockets: <number_of_sockets> 18
            cores: <number_of_cores> 19
            threads: <number_of_threads> 20
          memory_mb: <memory_size> 21
          os_disk: 22
            size_gb: <disk_size> 23
          network_interfaces: 24
            vnic_profile_id:  <vnic_profile_id> 25
          credentialsSecret:
            name: ovirt-credentials 26
          kind: OvirtMachineProviderSpec
          type: <workload_type> 27
          userDataSecret:
            name: worker-user-data
1 7 9
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the infrastructure ID by running the following command:
$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster
2 3 10 11 13
Specify the node label to add.
4 8 12
Specify the infrastructure ID and node label. These two strings together cannot be longer than 35 characters.
5
Specify the number of machines to create.
6
Selector for the machines.
14
Specify the UUID for the RHV cluster to which this VM instance belongs.
15
Specify the RHV VM template to use to create the machine.
16
Optional: Specify the VM instance type. If you include this parameter, you do not need to specify the hardware parameters of the VM including CPU and memory because this parameter overrides all hardware parameters.
17
Optional: The CPU field contains the CPU’s configuration, including sockets, cores, and threads.
18
Optional: Specify the number of sockets for a VM.
19
Optional: Specify the number of cores per socket.
20
Optional: Specify the number of threads per core.
21
Optional: Specify the size of a VM’s memory in MiB.
22
Optional: Root disk of the node.
23
Optional: Specify the size of the bootable disk in GiB.
24
Optional: List of the network interfaces of the VM. If you include this parameter, OpenShift Container Platform discards all network interfaces from the template and creates new ones.
25
Optional: Specify the vNIC profile ID.
26
Specify the name of the secret that holds the RHV credentials.
27
Optional: Specify the workload type for which the instance is optimized. This value affects the RHV VM parameter. Supported values: desktop, server, high_performance.
Note

Because RHV uses a template when creating a VM, if you do not specify a value for an optional parameter, RHV uses the value for that parameter that is specified in the template.

1.5.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

1.6. Creating a machine set on vSphere

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on VMware vSphere. For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.6.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.6.2. Sample YAML for a machine set custom resource on vSphere

This sample YAML defines a machine set that runs on VMware vSphere and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-<role> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 4
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
        machine.openshift.io/cluster-api-machine-role: <role> 6
        machine.openshift.io/cluster-api-machine-type: <role> 7
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 8
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/<role>: "" 9
      providerSpec:
        value:
          apiVersion: vsphereprovider.openshift.io/v1beta1
          credentialsSecret:
            name: vsphere-cloud-credentials
          diskGiB: 120
          kind: VSphereMachineProviderSpec
          memoryMiB: 8192
          metadata:
            creationTimestamp: null
          network:
            devices:
            - networkName: "<vm_network_name>" 10
          numCPUs: 4
          numCoresPerSocket: 1
          snapshot: ""
          template: <vm_template_name> 11
          userDataSecret:
            name: worker-user-data
          workspace:
            datacenter: <vcenter_datacenter_name> 12
            datastore: <vcenter_datastore_name> 13
            folder: <vcenter_vm_folder_path> 14
            resourcepool: <vsphere_resource_pool> 15
            server: <vcenter_server_ip> 16
1 3 5
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the infrastructure ID by running the following command:
$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster
2 4 8
Specify the infrastructure ID and node label.
6 7 9
Specify the node label to add.
10
Specify the vSphere VM network to deploy the machine set to.
11
Specify the vSphere VM clone of the template to use, such as user-5ddjd-rhcos.
Important

Do not specify the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to.

12
Specify the vCenter Datacenter to deploy the machine set on.
13
Specify the vCenter Datastore to deploy the machine set on.
14
Specify the path to the vSphere VM folder in vCenter, such as /dc1/vm/user-inst-5ddjd.
15
Specify the vSphere resource pool for your VMs.
16
Specify the vCenter server IP or fully qualified domain name.

1.6.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.
  • Create a tag inside your vCenter instance based on the cluster API name. This tag is utilized by the machine set to associate the OpenShift Container Platform nodes to the provisioned virtual machines (VM). For directions on creating tags in vCenter, see the VMware documentation for vSphere Tags and Attributes.
  • Have the necessary permissions to deploy VMs in your vCenter instance and have the required access to the datastore specified.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.