OpenShift Container Platform 4.3 Container-native virtualization

Container-native virtualization installation, usage, and release notes
Abstract

This document provides information about how to use container-native virtualization in OpenShift Container Platform
Table of Contents

CHAPTER 1. ABOUT CONTAINER-NATIVE VIRTUALIZATION .. 8
1.1. WHAT YOU CAN DO WITH CONTAINER-NATIVE VIRTUALIZATION 8
1.2. CONTAINER-NATIVE VIRTUALIZATION SUPPORT ... 8

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION RELEASE NOTES 9
2.1. CONTAINER-NATIVE VIRTUALIZATION RELEASE NOTES .. 9
2.1.1. About container-native virtualization 2.2 ... 9
2.1.1.1. What you can do with container-native virtualization 9
2.1.1.2. Container-native virtualization support .. 9
2.1.2. New and changed features .. 9
2.1.3. Resolved issues ... 10
2.1.4. Known issues ... 10

CHAPTER 3. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION 13
3.1. CONFIGURING YOUR CLUSTER FOR CONTAINER-NATIVE VIRTUALIZATION 13
3.2. INSTALLING CONTAINER-NATIVE VIRTUALIZATION .. 13
3.2.1. Preparing to install container-native virtualization ... 13
3.2.2. Subscribing to the Container-native virtualization catalog 14
3.2.3. Deploying container-native virtualization ... 14
3.3. INSTALLING THE VIRTCTL CLIENT ... 15
3.3.1. Enabling container-native virtualization repositories ... 15
3.3.2. Installing the virtctl client ... 15
3.4. UNINSTALLING CONTAINER-NATIVE VIRTUALIZATION ... 16
3.4.1. Deleting the KubeVirt HyperConverged Cluster Operator Deployment custom resource 16
3.4.2. Deleting the Container-native virtualization catalog subscription 16
3.4.3. Deleting a namespace using the web console ... 17

CHAPTER 4. UPGRADING CONTAINER-NATIVE VIRTUALIZATION 18
4.1. ABOUT UPGRADING CONTAINER-NATIVE VIRTUALIZATION 18
4.1.1. How container-native virtualization upgrades work .. 18
4.1.2. How container-native virtualization upgrades affect your cluster 18
4.2. UPGRADING CONTAINER-NATIVE VIRTUALIZATION TO THE NEXT MINOR VERSION 19
4.3. MONITORING UPGRADE STATUS .. 19

CHAPTER 5. USING THE CLI TOOLS ... 21
5.1. VIRTCTL CLIENT COMMANDS .. 21
5.2. OPENSIFT CONTAINER PLATFORM CLIENT COMMANDS .. 21

CHAPTER 6. VIRTUAL MACHINES ... 23
6.1. CREATING VIRTUAL MACHINES .. 23
6.1.1. Running the virtual machine wizard to create a virtual machine 23
6.1.1.1. Virtual machine wizard fields ... 24
6.1.2. Cloud-init fields ... 25
6.1.3. Networking fields ... 26
6.1.4. Storage fields .. 26
6.1.2. Pasting in a pre-configured YAML file to create a virtual machine 27
6.1.3. Using the CLI to create a virtual machine ... 27
6.1.4. Virtual machine storage volume types .. 28
6.2. EDITING VIRTUAL MACHINES .. 29
6.2.1. Editing a virtual machine in the web console .. 29
6.2.2. Editing a virtual machine YAML configuration using the web console 30
6.2.3. Editing a virtual machine YAML configuration using the CLI 30
6.2.4. Adding a virtual disk to a virtual machine
6.2.5. Adding a network interface to a virtual machine
6.2.6. Editing CD-ROMs for Virtual Machines
6.3. DELETING VIRTUAL MACHINES
 6.3.1. Deleting a virtual machine using the web console
 6.3.2. Deleting a virtual machine and its DataVolume using the CLI
6.4. CONTROLLING VIRTUAL MACHINES STATES
 6.4.1. Controlling virtual machines from the web console
 6.4.1.1. Starting a virtual machine
 6.4.1.2. Restarting a virtual machine
 6.4.1.3. Stopping a virtual machine
 6.4.2. CLI reference for controlling virtual machines
 6.4.2.1. start
 6.4.2.2. restart
 6.4.2.3. stop
 6.4.2.4. list
6.5. ACCESSING VIRTUAL MACHINE CONSOLES
 6.5.1. Virtual machine console sessions
 6.5.2. Connecting to the virtual machine with the web console
 6.5.2.1. Connecting to the terminal
 6.5.2.2. Connecting to the serial console
 6.5.2.3. Connecting to the VNC console
 6.5.2.4. Connecting to the RDP console
 6.5.3. Accessing virtual machine consoles by using CLI commands
 6.5.3.1. Accessing a virtual machine instance via SSH
 6.5.3.2. Accessing the serial console of a virtual machine instance
 6.5.3.3. Accessing the graphical console of a virtual machine instances with VNC
 6.5.3.4. Connecting to a Windows virtual machine with an RDP console
6.6. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
 6.6.1. Understanding VirtIO drivers
 6.6.2. Supported VirtIO drivers for Microsoft Windows virtual machines
 6.6.3. Adding VirtIO drivers container disk to a virtual machine
 6.6.4. Installing VirtIO drivers on an existing Windows virtual machine
 6.6.5. Removing the VirtIO container disk from a virtual machine
6.7. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
 6.7.1. Understanding VirtIO drivers
 6.7.2. Supported VirtIO drivers for Microsoft Windows virtual machines
 6.7.3. Adding VirtIO drivers container disk to a virtual machine
 6.7.4. Installing VirtIO drivers during Windows installation
 6.7.5. Removing the VirtIO container disk from a virtual machine
6.8. ADVANCED VIRTUAL MACHINE MANAGEMENT
 6.8.1. Automating management tasks
 6.8.1.1. About Red Hat Ansible Automation
 6.8.1.2. Automating virtual machine creation
 6.8.1.3. Example: Ansible Playbook for creating virtual machines
 6.8.2. Configuring PXE booting for virtual machines
 6.8.2.1. Container-native virtualization networking glossary
 6.8.2.2. PXE booting with a specified MAC address
 6.8.2.3. Template: virtual machine instance configuration file for PXE booting
 6.8.3. Managing guest memory
 6.8.3.1. Configuring guest memory overcommitment
 6.8.3.2. Disabling guest memory overhead accounting
6.9. IMPORTING VIRTUAL MACHINES
6.9.1. TLS certificates for DataVolume imports
6.9.1.1. Adding TLS certificates for authenticating DataVolume imports
6.9.1.2. Example: ConfigMap created from a TLS certificate
6.9.2. Importing virtual machine images with DataVolumes
6.9.2.1. CDI supported operations matrix
6.9.2.2. About DataVolumes
6.9.2.3. Importing a virtual machine image into an object with DataVolumes
6.9.2.4. Template: DataVolume virtual machine configuration file
6.9.2.5. Template: DataVolume import configuration file
6.9.3. Importing virtual machine images to block storage with DataVolumes
6.9.3.1. About DataVolumes
6.9.3.2. About block PersistentVolumes
6.9.3.3. Creating a local block PersistentVolume
6.9.3.4. Importing a virtual machine image to a block PersistentVolume using DataVolumes
6.9.3.5. CDI supported operations matrix
6.9.4. Importing a VMware virtual machine or template
6.9.4.1. Creating a VDDK image
6.9.4.2. Importing a VMware virtual machine or template
6.9.4.3. Updating the imported VMware virtual machine's NIC name
6.9.4.4. Virtual machine wizard fields
6.9.4.4.1. Virtual machine wizard fields
6.9.4.4.2. Cloud-init fields
6.9.4.4.3. Networking fields
6.9.4.4.4. Storage fields
6.10. CLONING VIRTUAL MACHINES
6.10.1. Enabling user permissions to clone DataVolumes across namespaces
6.10.1.1. About DataVolumes
6.10.1.2. Creating RBAC resources for cloning DataVolumes
6.10.2. Cloning a virtual machine disk into a new DataVolume
6.10.2.1. About DataVolumes
6.10.2.2. Cloning the PersistentVolumeClaim of a virtual machine disk into a new DataVolume
6.10.2.3. Template: DataVolume clone configuration file
6.10.2.4. CDI supported operations matrix
6.10.3. Cloning a virtual machine by using a DataVolumeTemplate
6.10.3.1. About DataVolumes
6.10.3.2. Creating a new virtual machine from a cloned PersistentVolumeClaim by using a DataVolumeTemplate
6.10.3.3. Template: DataVolume virtual machine configuration file
6.10.3.4. CDI supported operations matrix
6.10.4. Cloning a virtual machine disk into a new block storage DataVolume
6.10.4.1. About DataVolumes
6.10.4.2. About block PersistentVolumes
6.10.4.3. Creating a local block PersistentVolume
6.10.4.4. Cloning the PersistentVolumeClaim of a virtual machine disk into a new DataVolume
6.10.4.5. CDI supported operations matrix
6.11. VIRTUAL MACHINE NETWORKING
6.11.1. Using the default Pod network for virtual machines
6.11.1.1. Configuring masquerade mode from the command line
6.11.1.2. Selecting binding method
6.11.1.2.1. Networking fields
6.11.1.3. Virtual machine configuration examples for the default network
6.11.1.3.1. Template: virtual machine configuration file
6.11.1.3.2. Template: Windows virtual machine instance configuration file
6.11.2. Attaching a virtual machine to multiple networks
 6.11.2.1. Container-native virtualization networking glossary
 6.11.2.2. Creating a NetworkAttachmentDefinition
 6.11.2.2.1. Creating a Linux bridge NetworkAttachmentDefinition in the web console
 6.11.2.2.2. Creating a Linux bridge NetworkAttachmentDefinition in the CLI
 6.11.2.3. Creating a NIC for a virtual machine
 6.11.2.4. Networking fields
6.11.3. Installing the QEMU guest agent on virtual machines
 6.11.3.1. Installing QEMU guest agent on a Linux virtual machine
 6.11.3.2. Installing QEMU guest agent on a Windows virtual machine
 6.11.3.2.1. Installing VirtIO drivers on an existing Windows virtual machine
 6.11.3.2.2. Installing VirtIO drivers during Windows installation
6.11.4. Viewing the IP address of NICs on a virtual machine
 6.11.4.1. Viewing the IP address of a virtual machine interface in the CLI
 6.11.4.2. Viewing the IP address of a virtual machine interface in the web console
6.12. VIRTUAL MACHINE DISKS
 6.12.1. Configuring local storage for virtual machines
 6.12.1.1. About the hostpath provisioner
 6.12.1.2. Configuring SELinux for the hostpath provisioner on Red Hat Enterprise Linux CoreOS 8
 6.12.1.3. Using the hostpath provisioner to enable local storage
 6.12.1.4. Creating a StorageClass object
 6.12.2. Uploading local disk images by using the virtctl tool
 6.12.2.1. CDI supported operations matrix
 6.12.2.2. Uploading a local disk image to a new PersistentVolumeClaim
 6.12.3. Uploading a local disk image to a block storage DataVolume
 6.12.3.1. About DataVolumes
 6.12.3.2. About block PersistentVolumes
 6.12.3.3. Creating a local block PersistentVolume
 6.12.3.4. Creating an upload DataVolume
 6.12.3.5. Uploading a local disk image to a new DataVolume
 6.12.3.6. CDI supported operations matrix
 6.12.4. Expanding virtual storage by adding blank disk images
 6.12.4.1. About DataVolumes
 6.12.4.2. Creating a blank disk image with DataVolumes
 6.12.4.3. Template: DataVolume configuration file for blank disk images
 6.12.5. Preparing CDI scratch space
 6.12.5.1. About DataVolumes
 6.12.5.2. Understanding scratch space
 Manual provisioning
 6.12.5.3. CDI operations that require scratch space
 6.12.5.4. Defining a StorageClass in the CDI configuration
 6.12.5.5. CDI supported operations matrix

CHAPTER 7. VIRTUAL MACHINE TEMPLATES .. 107
7.1. CREATING VIRTUAL MACHINE TEMPLATES ... 107
 7.1.1. Creating a virtual machine template with the interactive wizard in the web console
 7.1.2. Virtual machine template interactive wizard fields
 7.1.2.1. Virtual machine template wizard fields
 7.1.2.2. Cloud-init fields
 7.1.2.3. Networking fields
 7.1.2.4. Storage fields
7.2. EDITING VIRTUAL MACHINE TEMPLATES ... 110
 7.2.1. Editing a virtual machine template in the web console
7.2.2. Editing virtual machine template YAML configuration in the web console
7.2.3. Adding a virtual disk to a virtual machine template
7.2.4. Adding a network interface to a virtual machine template
7.2.5. Editing CD-ROMs for Virtual Machine Templates

7.3. DELETING A VIRTUAL MACHINE TEMPLATE
7.3.1. Deleting a virtual machine template in the web console

CHAPTER 8. LIVE MIGRATION
8.1. VIRTUAL MACHINE LIVE MIGRATION
8.1.1. Understanding live migration
8.2. LIVE MIGRATION LIMITS AND TIMEOUTS
8.2.1. Configuring live migration limits and timeouts
8.2.2. Cluster-wide live migration limits and timeouts
8.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
8.3.1. Initiating live migration of a virtual machine instance in the web console
8.3.2. Initiating live migration of a virtual machine instance in the CLI
8.4. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
8.4.1. Monitoring live migration of a virtual machine instance in the web console
8.4.2. Monitoring live migration of a virtual machine instance in the CLI
8.5. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
8.5.1. Cancelling live migration of a virtual machine instance in the web console
8.5.2. Cancelling live migration of a virtual machine instance in the CLI
8.6. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY
8.6.1. Configuring custom virtual machines with the LiveMigration eviction strategy

CHAPTER 9. NODE MAINTENANCE
9.1. MANUALLY REFRESHING TLS CERTIFICATES
9.1.1. Refreshing TLS certificates
9.2. NODE MAINTENANCE MODE
9.2.1. Understanding node maintenance mode
9.3. SETTING A NODE TO MAINTENANCE MODE
9.3.1. Understanding node maintenance mode
9.3.2. Setting a node to maintenance mode in the web console
9.3.3. Setting a node to maintenance mode in the CLI
9.4. RESUMING A NODE FROM MAINTENANCE MODE
9.4.1. Resuming a node from maintenance mode in the web console
9.4.2. Resuming a node from maintenance mode in the CLI

CHAPTER 10. LOGGING, EVENTS, AND MONITORING
10.1. VIEWING VIRTUAL MACHINE LOGS
10.1.1. Understanding virtual machine logs
10.1.2. Viewing virtual machine logs in the CLI
10.1.3. Viewing virtual machine logs in the web console
10.2. VIEWING EVENTS
10.2.1. Understanding virtual machine events
10.2.2. Viewing the events for a virtual machine in the web console
10.2.3. Viewing namespace events in the CLI
10.2.4. Viewing resource events in the CLI
10.3. VIEWING INFORMATION ABOUT VIRTUAL MACHINE WORKLOADS
10.3.1. About the Virtual Machines dashboard
10.4. MONITORING VIRTUAL MACHINE HEALTH
10.4.1. About liveness and readiness probes
10.4.2. Define an HTTP liveness probe
10.4.3. Define a TCP liveness probe
10.4.4. Define a readiness probe ...

10.5. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD TO GET CLUSTER INFORMATION ...

10.5.1. About the OpenShift Container Platform dashboards page ...

10.6. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY ...

10.6.1. About OpenShift Container Platform cluster monitoring ...

10.6.2. Cluster logging components ...

10.6.3. About Telemetry ...

10.6.3.1. Information collected by Telemetry ...

10.6.4. CLI troubleshooting and debugging commands ...

10.7. COLLECTING CONTAINER-NATIVE VIRTUALIZATION DATA FOR RED HAT SUPPORT ...

10.7.1. About the must-gather tool ...

10.7.2. About collecting container-native virtualization data ...

10.7.3. Gathering data about specific features ...
CHAPTER 1. ABOUT CONTAINER-NATIVE VIRTUALIZATION

Learn about container-native virtualization’s capabilities and support scope.

1.1. WHAT YOU CAN DO WITH CONTAINER-NATIVE VIRTUALIZATION

Container-native virtualization is an add-on to OpenShift Container Platform that allows you to run and manage virtual machine workloads alongside container workloads.

Container-native virtualization adds new objects into your OpenShift Container Platform cluster via Kubernetes custom resources to enable virtualization tasks. These tasks include:

- Creating and managing Linux and Windows virtual machines
- Connecting to virtual machines through a variety of consoles and CLI tools
- Importing and cloning existing virtual machines
- Managing network interface controllers and storage disks attached to virtual machines
- Live migrating virtual machines between nodes

An enhanced web console provides a graphical portal to manage these virtualized resources alongside the OpenShift Container Platform cluster containers and infrastructure.

1.2. CONTAINER-NATIVE VIRTUALIZATION SUPPORT

IMPORTANT

container-native virtualization is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.
CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION RELEASE NOTES

2.1. CONTAINER-NATIVE VIRTUALIZATION RELEASE NOTES

2.1.1. About container-native virtualization

2.1.1.1. What you can do with container-native virtualization

Container-native virtualization is an add-on to OpenShift Container Platform that allows you to run and manage virtual machine workloads alongside container workloads.

Container-native virtualization adds new objects into your OpenShift Container Platform cluster via Kubernetes custom resources to enable virtualization tasks. These tasks include:

- Creating and managing Linux and Windows virtual machines
- Connecting to virtual machines through a variety of consoles and CLI tools
- Importing and cloning existing virtual machines
- Managing network interface controllers and storage disks attached to virtual machines
- Live migrating virtual machines between nodes

An enhanced web console provides a graphical portal to manage these virtualized resources alongside the OpenShift Container Platform cluster containers and infrastructure.

2.1.1.2. Container-native virtualization support

IMPORTANT

container-native virtualization is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

2.1.2. New and changed features

- Managing virtual machines is simpler and more efficient due to improvements in design and workflow. You can now:
 - Run the virtual machine wizard with less navigation. The wizard now uses a comprehensive in-page style and includes a review page for confirming configuration details before submission.
 - Import a single VMware virtual machine with less navigation.
 - Edit virtual machine templates as well as virtual machine configurations.
Monitor health of virtual machine-backed services as you would for Pod-based services.

- Enable persistent local storage for virtual machine images.
- Add, edit, and view virtual CD-ROM devices attached to a virtual machine.
- Add and view network attachment definitions with a graphical editor.

2.1.3. Resolved issues

- Previously, when you added a disk to a virtual machine via the **Disks** tab in the web console, the added disk had a **Filesystem** volumeMode regardless of the volumeMode set in the **kubevirt-storage-class-default** ConfigMap. This issue has been fixed. ([BZ#1753688](#))

- Previously, when navigating to the **Virtual Machines Console** tab, sometimes no content was displayed. This issue has been fixed. ([BZ#1753606](#))

- Previously, attempting to list all instances of the container-native virtualization operator from a browser resulted in a 404 (page not found) error. This issue has been fixed. ([BZ#1757526](#))

- Previously, if a virtual machine used guaranteed CPUs, it was not scheduled because the label **cpumanager=true** was not automatically set on nodes. This issue has been fixed. ([BZ#1718944](#))

2.1.4. Known issues

- If you have container-native virtualization 2.1.0 deployed, you must first upgrade container-native virtualization to 2.2.0 before upgrading OpenShift Container Platform. Upgrading OpenShift Container Platform before upgrading container-native virtualization might trigger virtual machine deletion. ([BZ#1785661](#))

- The **masquerade** binding method for virtual machines cannot be used in clusters with RHEL 7 compute nodes. ([BZ#1741626](#))

- After migration, a virtual machine is assigned a new IP address. However, the commands `oc get vmi` and `oc describe vmi` still generate output containing the obsolete IP address. ([BZ#1686208](#))

 - As a workaround, view the correct IP address by running the following command:

    ```bash
    $ oc get pod -o wide
    ```

- Some resources are improperly retained when removing container-native virtualization. You must manually remove these resources in order to reinstall container-native virtualization. ([BZ#1712429](#))

- Users without administrator privileges cannot add a network interface to a project in an L2 network using the virtual machine wizard. This issue is caused by missing permissions that allow users to load network attachment definitions. ([BZ#1743985](#))

 - As a workaround, provide the user with permissions to load the network attachment definitions.

 1. Define **ClusterRole** and **ClusterRoleBinding** objects to the YAML configuration file, using the following examples:

    ```yaml
    apiVersion: rbac.authorization.k8s.io/v1
    ```
As a cluster-admin user, run the following command to create the ClusterRole and ClusterRoleBinding objects you defined:

```
$ oc create -f <filename>.yaml
```

Live migration fails when nodes have different CPU models. Even in cases where nodes have the same physical CPU model, differences introduced by microcode updates have the same effect. This is because the default settings trigger host CPU passthrough behavior, which is incompatible with live migration. (BZ#1760028)

As a workaround, set the default CPU model in the `kubevirt-config` ConfigMap, as shown in the following example:

```
NOTE
You must make this change before starting the virtual machines that support live migration.
```

1. Open the `kubevirt-config` ConfigMap for editing by running the following command:

```
$ oc edit configmap kubevirt-config -n openshift-cnv
```

2. Edit the ConfigMap:

```
kind: ConfigMap
metadata:
  name: kubevirt-config
data:
  default-cpu-model: "<cpu-model>" ①
```

Replace `<cpu-model>` with the actual CPU model value. You can determine this value by running `oc describe node <node>` for all nodes and looking at the `cpu-model-<name>` labels. Select the CPU model that is present on all of your nodes.
When running `virtctl image-upload` to upload large VM disk images in `qcow2` format, an end-of-file (EOF) error may be reported after the data is transmitted, even though the upload is either progressing normally or completed. (BZ#1789093)

Run the following command to check the status of an upload on a given PVC:

```
$ oc describe pvc <pvc-name> | grep cdi.kubevirt.io/storage.pod.phase
```

When attempting to create and launch a virtual machine using a Haswell CPU, the launch of the virtual machine can fail due to incorrectly labeled nodes. This is a change in behavior from previous versions of container-native virtualization, where virtual machines could be successfully launched on Haswell hosts. (BZ#1781497)

As a workaround, select a different CPU model, if possible.

If you select a directory that shares space with your operating system, you can potentially exhaust the space on the partition, causing the node to be non-functional. Instead, create a separate partition and point the hostpath provisioner to that partition so it will not interfere with your operating system. (BZ#1793132)

The container-native virtualization upgrade process occasionally fails due to an interruption from the Operator Lifecycle Manager (OLM). This issue is caused by the limitations associated with using a declarative API to track the state of container-native virtualization Operators. Enabling automatic updates during installation decreases the risk of encountering this issue. (BZ#1759612)

Container-native virtualization cannot reliably identify node drains that are triggered by running either `oc adm drain` or `kubectl drain`. Do not run these commands on the nodes of any clusters where container-native virtualization is deployed. The nodes might not drain if there are virtual machines running on top of them. The current solution is to put nodes into maintenance. (BZ#1707427)

If you navigate to the Subscription tab on the Operators → Installed Operators page and click the current upgrade channel to edit it, there might be no visible results. If this occurs, there are no visible errors. (BZ#1796410)

As a workaround, trigger the upgrade process to container-native virtualization 2.2 from the CLI by running the following `oc` patch command:

```
$ TARGET_NAMESPACE=openshift-cnv HCO_CHANNEL=2.2 oc patch -n "$(TARGET_NAMESPACE)" $(oc get subscription -n $(TARGET_NAMESPACE) --no-headers -o name) --type='json' -p='["op": "replace", "path": "/spec/channel", "value": "$HCO_CHANNEL"], ["op": "replace", "path": "/spec/installPlanApproval", "value": "Automatic"]'
```

This command points your subscription to upgrade channel 2.2 and enables automatic updates.
CHAPTER 3. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION

3.1. CONFIGURING YOUR CLUSTER FOR CONTAINER-NATIVE VIRTUALIZATION

To obtain an evaluation version of OpenShift Container Platform, download a trial from the OpenShift Container Platform home page.

Container-native virtualization works with OpenShift Container Platform by default, however the following installation configurations are recommended:

- The OpenShift Container Platform cluster is installed on **bare metal**. Manage your Compute nodes in accordance with the number and size of the virtual machines to host in the cluster.
- **Monitoring** is configured in the cluster.

3.2. INSTALLING CONTAINER-NATIVE VIRTUALIZATION

Install container-native virtualization to add virtualization functionality to your OpenShift Container Platform cluster.

You can use the OpenShift Container Platform 4.3 **web console** to subscribe to and deploy the container-native virtualization Operators.

Prerequisites

- OpenShift Container Platform 4.3

IMPORTANT

Container-native virtualization is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

3.2.1. Preparing to install container-native virtualization

Before installing container-native virtualization, create a namespace that is named **openshift-cnv**.

Prerequisites

- User with **cluster-admin** privileges

Procedure

1. From the OpenShift Container Platform web console, navigate to the Administration → Namespaces page.
2. Click **Create Namespace**.

3. In the **Name** field, type **openshift-cnv**.

4. Click **Create**.

3.2.2. Subscribing to the Container-native virtualization catalog

Before you install container-native virtualization, subscribe to the **Container-native virtualization** catalog from the OpenShift Container Platform web console. Subscribing gives the **openshift-cnv** namespace access to the container-native virtualization Operators.

Prerequisites

- Create a namespace that is named **openshift-cnv**.

Procedure

1. Open a browser window and log in to the OpenShift Container Platform web console.

2. Navigate to the **Operators → OperatorHub** page.

3. Search for **Container-native virtualization** and then select it.

4. Read the information about the Operator and click **Install**.

5. On the **Create Operator Subscription** page:

 a. Select **A specific namespace on the cluster** from the **Installation Mode** list and choose the **openshift-cnv** namespace.

 ![WARNING]

 - **All namespaces on the cluster (default)** installs the Operator in the default **openshift-operators** namespace to watch and be made available to all namespaces in the cluster. This option is not supported for use with container-native virtualization. You must only install the Operator in the **openshift-cnv** namespace.

 b. Select **2.2** from the list of available **Update Channel** options.

 c. For **Approval Strategy**, ensure that **Automatic**, which is the default value, is selected. Container-native virtualization automatically updates when a new z-stream release is available.

6. Click **Subscribe** to make the Operator available to the **openshift-cnv** namespace.

3.2.3. Deploying container-native virtualization
After subscribing to the **Container-native virtualization** catalog, create the **KubeVirt HyperConverged Cluster Operator Deployment** custom resource to deploy container-native virtualization.

Prerequisites

- An active subscription to the **Container-native virtualization** catalog in the **openshift-cnv** namespace.

Procedure

1. Navigate to the **Operators → Installed Operators** page.
2. Click **Container-native virtualization**.
3. Click the **KubeVirt HyperConverged Cluster Operator Deployment** tab and click **Create HyperConverged Cluster**.
4. Click **Create** to launch container-native virtualization.
5. Navigate to the **Workloads → Pods** page and monitor the container-native virtualization Pods until they are all **Running**. After all the Pods display the **Running** state, you can access container-native virtualization.

3.3. INSTALLING THE **virtctl** CLIENT

The **virtctl** client is a command-line utility for managing container-native virtualization resources.

Install the client to your system by enabling the container-native virtualization repository and installing the **kubevirt-virtctl** package.

3.3.1. Enabling container-native virtualization repositories

Red Hat offers container-native virtualization repositories for both Red Hat Enterprise Linux 8 and Red Hat Enterprise Linux 7:

- **Red Hat Enterprise Linux 8 repository**: `cnv-2.2-for-rhel-8-x86_64-rpms`
- **Red Hat Enterprise Linux 7 repository**: `rhel-7-server-cnv-2.2-rpms`

The process for enabling the repository in **subscription-manager** is the same in both platforms.

Procedure

- Use **subscription manager** to enable the appropriate container-native virtualization repository for your system:

  ```
  # subscription-manager repos --enable <repository>
  ```

3.3.2. Installing the **virtctl** client

Install the **virtctl** client from the **kubevirt-virtctl** package.

Procedure
- Install the `kubevirt-virtctl` package:

  ```
  # yum install kubevirt-virtctl
  ```

See also: Using the CLI tools for container-native virtualization.

3.4. UNINSTALLING CONTAINER-NATIVE VIRTUALIZATION

You can uninstall container-native virtualization by using the OpenShift Container Platform web console.

Prerequisites

- Container-native virtualization 2.2

3.4.1. Deleting the KubeVirt HyperConverged Cluster Operator Deployment custom resource

To uninstall container-native virtualization, you must first delete the **KubeVirt HyperConverged Cluster Operator Deployment** custom resource.

Prerequisites

- An active **KubeVirt HyperConverged Cluster Operator Deployment** custom resource

Procedure

1. From the OpenShift Container Platform web console, select **openshift-cnv** from the Projects list.
2. Navigate to the **Operators → Installed Operators** page.
3. Click **Container-native virtualization**.
4. Click the **KubeVirt HyperConverged Cluster Operator Deployment** tab.
5. Click the Options menu in the row containing the **kubevirt-hyperconverged** custom resource. In the expanded menu, click **Delete HyperConverged Cluster**.
6. Click **Delete** in the confirmation window.
7. Navigate to the **Workloads → Pods** page to verify that only the Operator Pods are running.
8. Open a terminal window and clean up the remaining resources by running the following command:

   ```
   $ oc delete apiservices v1alpha3.subresources.kubevirt.io -n openshift-cnv
   ```

3.4.2. Deleting the Container-native virtualization catalog subscription

To finish uninstalling container-native virtualization, delete the **Container-native virtualization** catalog subscription.
Prerequisites

- An active subscription to the Container-native virtualization catalog

Procedure

1. Navigate to the Operators → OperatorHub page.
2. Search for Container-native virtualization and then select it.
3. Click Uninstall.

NOTE

You can now delete the openshift-cnv namespace.

3.4.3. Deleting a namespace using the web console

You can delete a namespace by using the OpenShift Container Platform web console.

NOTE

If you do not have permissions to delete the namespace, the Delete Namespace option is not available.

Procedure

1. Navigate to Administration → Namespaces.
2. Locate the namespace that you want to delete in the list of namespaces.
3. On the far right side of the namespace listing, select Delete Namespace from the Options menu.
4. When the Delete Namespace pane opens, enter the name of the namespace that you want to delete in the field.
5. Click Delete.
CHAPTER 4. UPGRADING CONTAINER-NATIVE VIRTUALIZATION

You can manually upgrade to the next minor version of container-native virtualization and monitor the status of an update by using the web console.

IMPORTANT

Container-native virtualization is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

4.1. ABOUT UPGRADING CONTAINER-NATIVE VIRTUALIZATION

4.1.1. How container-native virtualization upgrades work

• You can upgrade to the next minor version of container-native virtualization by using the OpenShift Container Platform web console to change the channel of your Operator subscription.

• You can enable automatic z-stream updates during container-native virtualization installation.

• Updates are delivered via the Marketplace Operator, which is deployed during OpenShift Container Platform installation. The Marketplace Operator makes external Operators available to your cluster.

• The amount of time an update takes to complete depends on your network connection. Most automatic updates complete within fifteen minutes.

4.1.2. How container-native virtualization upgrades affect your cluster

• Upgrading does not interrupt virtual machine workloads.
 • Virtual machine Pods are not restarted or migrated during an upgrade. If you need to update the virt-launcher Pod, you must restart or live migrate the virtual machine.

 NOTE

 Each virtual machine has a virt-launcher Pod that runs the virtual machine instance. The virt-launcher Pod runs an instance of libvirt, which is used to manage the virtual machine process.

• Upgrading does not interrupt network connections.

• DataVolumes and their associated PersistentVolumeClaims are preserved during upgrade.
4.2. UPGRADING CONTAINER-NATIVE VIRTUALIZATION TO THE NEXT MINOR VERSION

You can manually upgrade container-native virtualization to the next minor version by using the OpenShift Container Platform web console to change the channel of your Operator subscription.

Prerequisites

- Access to the cluster as a user with the `cluster-admin` role.

Procedure

1. Access the OpenShift Container Platform web console and navigate to **Operators → Installed Operators**.
2. Click **Container-native virtualization** to open the **Operator Details** page.
3. Click the **Subscription** tab to open the **Subscription Overview** page.
4. In the **Channel** pane, click the pencil icon on the right side of the version number to open the **Change Subscription Update Channel** window.
5. Select the next minor version. For example, if you want to upgrade to container-native virtualization 2.2, select **2.2**.
6. Click **Save**.
7. Check the status of the upgrade by navigating to **Operators → Installed Operators**. You can also check the status by running the following `oc` command:

   ```bash
   $ oc get csv -n openshift-cnv
   ```

4.3. MONITORING UPGRADE STATUS

The best way to monitor container-native virtualization upgrade status is to watch the ClusterServiceVersion (CSV) **PHASE**. You can also monitor the CSV conditions in the web console or by running the command provided here.

NOTE

The **PHASE** and conditions values are approximations that are based on available information.

Prerequisites

- Access to the cluster as a user with the `cluster-admin` role.
- Install the OpenShift Command-line Interface (CLI), commonly known as `oc`.

Procedure

1. Run the following command:

   ```bash
   $ oc get csv
   ```
2. Review the output, checking the **PHASE** field. For example:

<table>
<thead>
<tr>
<th>VERSION</th>
<th>REPLACES</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>kubevirt-hyperconverged-operator.v2.2.0</td>
<td>Installing</td>
</tr>
<tr>
<td>2.2.0</td>
<td></td>
<td>Replacing</td>
</tr>
</tbody>
</table>

3. Optional: Monitor the aggregated status of all container-native virtualization component conditions by running the following command:

```
$ oc get hco -n openshift-cnv kubevirt-hyperconverged -o=jsonpath='{range .status.conditions[*]}{.type}{\t} {.status}{\t} {.message}{\n} {end}'
```

A successful upgrade results in the following output:

- ReconcileComplete True Reconcile completed successfully
- Available True Reconcile completed successfully
- Progressing False Reconcile completed successfully
- Degraded False Reconcile completed successfully
- Upgradeable True Reconcile completed successfully

Additional information

- **ClusterServiceVersions (CSVs)**
CHAPTER 5. USING THE CLI TOOLS

The two primary CLI tools used for managing resources in the cluster are:

- The container-native virtualization **virtctl** client
- The OpenShift Container Platform **oc** client

Prerequisites

- You must install the **virtctl** client.

5.1. VIRTCTL CLIENT COMMANDS

The **virtctl** client is a command-line utility for managing container-native virtualization resources. The following table contains the **virtctl** commands used throughout the container-native virtualization documentation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>virtctl start <vm></td>
<td>Start a virtual machine.</td>
</tr>
<tr>
<td>virtctl stop <vm></td>
<td>Stop a virtual machine.</td>
</tr>
<tr>
<td>virtctl restart <vm></td>
<td>Restart a virtual machine.</td>
</tr>
<tr>
<td>virtctl expose <vm></td>
<td>Create a service that forwards a designated port of a virtual machine or virtual machine instance and expose the service on the specified port of the node.</td>
</tr>
<tr>
<td>virtctl console <vmi></td>
<td>Connect to a serial console of a virtual machine instance.</td>
</tr>
<tr>
<td>virtctl vnc <vmi></td>
<td>Open a VNC connection to a virtual machine instance.</td>
</tr>
<tr>
<td>virtctl image-upload <...></td>
<td>Upload a virtual machine image to a PersistentVolumeClaim.</td>
</tr>
</tbody>
</table>

5.2. OPENSHEIF CONTAINER PLATFORM CLIENT COMMANDS

The OpenShift Container Platform **oc** client is a command-line utility for managing OpenShift Container Platform resources. The following table contains the **oc** commands used throughout the container-native virtualization documentation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oc login -u <user_name></td>
<td>Log in to the OpenShift Container Platform cluster as <user_name>.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>oc get <object_type></code></td>
<td>Display a list of objects for the specified object type in the project.</td>
</tr>
<tr>
<td><code>oc describe <object_type> <resource_name></code></td>
<td>Display details of the specific resource in the project.</td>
</tr>
<tr>
<td><code>oc create -f <object_config></code></td>
<td>Create a resource in the project from a filename or from stdin.</td>
</tr>
<tr>
<td><code>oc edit <object_type> <resource_name></code></td>
<td>Edit a resource in the project.</td>
</tr>
<tr>
<td><code>oc delete <object_type> <resource_name></code></td>
<td>Delete a resource in the project.</td>
</tr>
</tbody>
</table>

For more comprehensive information on `oc` client commands, see the OpenShift Container Platform CLI tools documentation.
6.1. CREATING VIRTUAL MACHINES

Use one of these procedures to create a virtual machine:

- Running the virtual machine wizard
- Pasting a pre-configured YAML file with the virtual machine wizard
- Using the CLI
- Importing a VMware virtual machine or template with the virtual machine wizard

WARNING

Do not create virtual machines in `openshift-*` namespaces. Instead, create a new namespace or use an existing namespace without the `openshift` prefix.

6.1.1. Running the virtual machine wizard to create a virtual machine

The web console features an interactive wizard that guides you through General, Networking, Storage, Advanced, and Review steps to simplify the process of creating virtual machines. All required fields are marked by an * *. When the required fields are completed, you can review and create your virtual machine.

Network Interface Cards (NICs) and storage disks can be created and attached to virtual machines after they have been created.

Bootable Disk

If either URL or Container are selected as the Source in the General step, a rootdisk disk is created and attached to the virtual machine as the Bootable Disk. You can modify the rootdisk but you cannot remove it.

A Bootable Disk is not required for virtual machines provisioned from a PXE source if there are no disks attached to the virtual machine. If one or more disks are attached to the virtual machine, you must select one as the Bootable Disk.

Prerequisites

- When you create your virtual machine using the wizard, your virtual machine’s storage medium must support Read-Write-Many (RWM) PVCs.

Procedure

1. Click Workloads → Virtual Machines from the side menu.
2. Click Create Virtual Machine and select New with Wizard.
3. Fill in all required fields in the **General** step. Selecting a **Template** automatically fills in these fields.

4. Click **Next** to progress to the **Networking** step. A **nic0** NIC is attached by default.
 a. (Optional) Click **Add Network Interface** to create additional NICs.
 b. (Optional) You can remove any or all NICs by clicking the Options menu and selecting **Delete**. A virtual machine does not need a NIC attached to be created. NICs can be created after the virtual machine has been created.

5. Click **Next** to progress to the **Storage** screen.
 a. (Optional) Click **Add Disk** to create additional disks. These disks can be removed by clicking the Options menu and selecting **Delete**.
 b. (Optional) Click the Options menu to edit the disk and save your changes.

6. Click **Review and Create**. The **Results** screen displays the JSON configuration file for the virtual machine.

The virtual machine is listed in **Workloads → Virtual Machines**.

Refer to the virtual machine wizard fields section when running the web console wizard.

6.1.1.1. Virtual machine wizard fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td></td>
<td>Template from which to create the virtual machine. Selecting a template will automatically complete other fields.</td>
</tr>
<tr>
<td>Source</td>
<td>PXE</td>
<td>Provision virtual machine from PXE menu. Requires a PXE-capable NIC in the cluster.</td>
</tr>
<tr>
<td></td>
<td>URL</td>
<td>Provision virtual machine from an image available from an HTTP or S3 endpoint.</td>
</tr>
<tr>
<td></td>
<td>Container</td>
<td>Provision virtual machine from a bootable operating system container located in a registry accessible from the cluster. Example: <code>kubevirt/cirros-registry-disk-demo</code>.</td>
</tr>
<tr>
<td>Name</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Disk</td>
<td></td>
<td>Provision virtual machine from a disk.</td>
</tr>
<tr>
<td>Attach disk</td>
<td></td>
<td>Attach an existing disk that was previously cloned or created and made available in the PersistentVolumeClaims. When this option is selected, you must manually complete the Operating System, Flavor, and Workload Profile fields.</td>
</tr>
<tr>
<td>Operating System</td>
<td></td>
<td>The primary operating system that is selected for the virtual machine.</td>
</tr>
<tr>
<td>Flavor</td>
<td>small, medium, large, tiny, Custom</td>
<td>Presets that determine the amount of CPU and memory allocated to the virtual machine. The presets displayed for Flavor are determined by the operating system.</td>
</tr>
<tr>
<td>Workload Profile</td>
<td>High Performance</td>
<td>A virtual machine configuration that is optimized for high-performance workloads.</td>
</tr>
<tr>
<td></td>
<td>Server</td>
<td>A profile optimized to run server workloads.</td>
</tr>
<tr>
<td></td>
<td>Desktop</td>
<td>A virtual machine configuration for use on a desktop.</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>The name can contain lowercase letters (a-z), numbers (0-9), and hyphens (-), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, periods (.), or special characters.</td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Optional description field.</td>
</tr>
<tr>
<td>Start virtual machine on creation</td>
<td></td>
<td>Select to automatically start the virtual machine upon creation.</td>
</tr>
</tbody>
</table>

6.1.1.2. Cloud-init fields
6.1.1.3. Networking fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name for the Network Interface Card.</td>
</tr>
<tr>
<td>Model</td>
<td>Driver for the Network Interface Card or model for the Network Interface Card.</td>
</tr>
<tr>
<td>Network</td>
<td>List of available NetworkAttachmentDefinition objects.</td>
</tr>
<tr>
<td>Type</td>
<td>List of available binding methods. For the default Pod network, masquerade is the only recommended binding method. For secondary networks, use the bridge binding method. The masquerade method is not supported for non-default networks.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address for the Network Interface Card. If a MAC address is not specified, an ephemeral address is generated for the session.</td>
</tr>
</tbody>
</table>

6.1.1.4. Storage fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Select a blank disk for the virtual machine or choose from the options available: PXE, Container, URL or Disk. To select an existing disk and attach it to the virtual machine, choose Attach Disk from a list of available PersistentVolumeClaims (PVCs) or from a cloned disk.</td>
</tr>
</tbody>
</table>
Name | Description
--- | ---
Name | Name of the disk. The name can contain lowercase letters (a-z), numbers (0-9), hyphens (-), and periods (.), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, or special characters.
Size (GiB) | Size, in GiB, of the disk.
Interface | Name of the interface.
Storage class | Name of the underlying StorageClass.

6.1.2. Pasting in a pre-configured YAML file to create a virtual machine

Create a virtual machine by writing or pasting a YAML configuration file in the web console in the Workloads → Virtual Machines screen. A valid example virtual machine configuration is provided by default whenever you open the YAML edit screen.

If your YAML configuration is invalid when you click Create, an error message indicates the parameter in which the error occurs. Only one error is shown at a time.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the configuration you have made.

Procedure

1. Click Workloads → Virtual Machines from the side menu.
2. Click Create Virtual Machine and select New from YAML.
3. Write or paste your virtual machine configuration in the editable window.
 a. Alternatively, use the example virtual machine provided by default in the YAML screen.
4. (Optional) Click Download to download the YAML configuration file in its present state.
5. Click Create to create the virtual machine.

The virtual machine is listed in Workloads → Virtual Machines.

6.1.3. Using the CLI to create a virtual machine

Procedure

The spec object of the VirtualMachine configuration file references the virtual machine settings, such as the number of cores and the amount of memory, the disk type, and the volumes to use.
1. Attach the virtual machine disk to the virtual machine by referencing the relevant PVC `claimName` as a volume.

2. To create a virtual machine with the OpenShift Container Platform client, run this command:

   ```bash
   $ oc create -f <vm.yaml>
   ```

3. Since virtual machines are created in a **Stopped** state, run a virtual machine instance by starting it.

 NOTE

 A ReplicaSet’s purpose is often used to guarantee the availability of a specified number of identical Pods. ReplicaSet is not currently supported in container-native virtualization.

Table 6.1. Domain settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>The number of cores inside the virtual machine. Must be a value greater than or equal to 1.</td>
</tr>
<tr>
<td>Memory</td>
<td>The amount of RAM that is allocated to the virtual machine by the node. Specify a value in M for Megabyte or Gi for Gigabyte.</td>
</tr>
<tr>
<td>Disks: name</td>
<td>The name of the volume that is referenced. Must match the name of a volume.</td>
</tr>
</tbody>
</table>

Table 6.2. Volume settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the volume, which must be a DNS label and unique within the virtual machine.</td>
</tr>
<tr>
<td>PersistentVolumeClaim</td>
<td>The PVC to attach to the virtual machine. The <code>claimName</code> of the PVC must be in the same project as the virtual machine.</td>
</tr>
</tbody>
</table>

6.1.4. Virtual machine storage volume types

Virtual machine storage volume types are listed, as well as domain and volume settings. See the [kubevirt API Reference](#) for a definitive list of virtual machine settings.

| ephemeral | A local copy-on-write (COW) image that uses a network volume as a read-only backing store. The backing volume must be a `PersistentVolumeClaim`. The ephemeral image is created when the virtual machine starts and stores all writes locally. The ephemeral image is discarded when the virtual machine is stopped, restarted, or deleted. The backing volume (PVC) is not mutated in any way. |
persistentVolumeClaim
Attaches an available PV to a virtual machine. Attaching a PV allows for the virtual machine data to persist between sessions.

Importing an existing virtual machine disk into a PVC by using CDI and attaching the PVC to a virtual machine instance is the recommended method for importing existing virtual machines into OpenShift Container Platform. There are some requirements for the disk to be used within a PVC.

dataVolume
DataVolumes build on the `persistentVolumeClaim` disk type by managing the process of preparing the virtual machine disk via an import, clone, or upload operation. VMs that use this volume type are guaranteed not to start until the volume is ready.

cloudInitNoCloud
Attaches a disk that contains the referenced cloud-init NoCloud data source, providing user data and metadata to the virtual machine. A cloud-init installation is required inside the virtual machine disk.

containerDisk
References an image, such as a virtual machine disk, that is stored in the container image registry. The image is pulled from the registry and embedded in a volume when the virtual machine is created. A `containerDisk` volume is ephemeral. It is discarded when the virtual machine is stopped, restarted, or deleted.

Container disks are not limited to a single virtual machine and are useful for creating large numbers of virtual machine clones that do not require persistent storage.

Only RAW and QCOW2 formats are supported disk types for the container image registry. QCOW2 is recommended for reduced image size.

emptyDisk
Creates an additional sparse QCOW2 disk that is tied to the life-cycle of the virtual machine interface. The data survives guest-initiated reboots in the virtual machine but is discarded when the virtual machine stops or is restarted from the web console. The empty disk is used to store application dependencies and data that otherwise exceeds the limited temporary file system of an ephemeral disk.

The disk `capacity` size must also be provided.

See the [kubevirt API Reference](#) for a definitive list of virtual machine settings.

6.2. EDITING VIRTUAL MACHINES

You can update a virtual machine configuration using either the YAML editor in the web console or the OpenShift client on the command line. You can also update a subset of the parameters in the [Virtual Machine Overview](#) of the web console.

6.2.1. Editing a virtual machine in the web console
Edit select values of a virtual machine in the Virtual Machine Overview screen of the web console by clicking on the pencil icon next to the relevant field. Other values can be edited using the CLI.

Procedure

1. Click Workloads → Virtual Machines from the side menu.
2. Select a virtual machine to open the Virtual Machine Overview screen.
3. Click the pencil icon to make that field editable.
4. Make the relevant changes and click Save.

If the virtual machine is running, changes will not take effect until you reboot the virtual machine.

6.2.2. Editing a virtual machine YAML configuration using the web console

Using the web console, edit the YAML configuration of a virtual machine.

Not all parameters can be updated. If you edit values that cannot be changed and click Save, an error message indicates the parameter that was not able to be updated.

The YAML configuration can be edited while the virtual machine is Running, however the changes will only take effect after the virtual machine has been stopped and started again.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the configuration you have made.

Procedure

1. Click Workloads → Virtual Machine from the side menu.
2. Select a virtual machine.
3. Click the YAML tab to display the editable configuration.
4. Optional: You can click Download to download the YAML file locally in its current state.
5. Edit the file and click Save.

A confirmation message shows that the modification has been successful and includes the updated version number for the object.

6.2.3. Editing a virtual machine YAML configuration using the CLI

Use this procedure to edit a virtual machine YAML configuration using the CLI.

Prerequisites

- You configured a virtual machine with a YAML object configuration file.
- You installed the oc CLI.
Procedure

1. Run the following command to update the virtual machine configuration.

 `$ oc edit <object_type> <object_ID>`

2. Open the object configuration.

3. Edit the YAML.

4. If you edit a running virtual machine, you need to do one of the following:
 - Restart the virtual machine
 - Run the following command for the new configuration to take effect.

 `$ oc apply <object_type> <object_ID>`

6.2.4. Adding a virtual disk to a virtual machine

Use this procedure to add a virtual disk to a virtual machine.

Procedure

1. From the Virtual Machines tab, select your virtual machine.

2. Select the Disks tab.

3. Click Add Disks to open the Add Disk window.

4. In the Add Disk window, specify Source, Name, Size, Interface, and Storage Class.

5. Use the drop-down lists and check boxes to edit the disk configuration.

6. Click OK.

6.2.5. Adding a network interface to a virtual machine

Use this procedure to add a network interface to a virtual machine.

Procedure

1. From the Virtual Machines tab, select the virtual machine.

2. Select the Network Interfaces tab.

3. Click Add Network Interface.

4. In the Add Network Interface window, specify the Name, Model, Network, Type, and MAC Address of the network interface.

5. Click Add to add the network interface.

6. Restart the virtual machine to enable access.
7. Edit the drop-down lists and check boxes to configure the network interface.

8. Click **Save Changes**.

9. Click **OK**.

The new network interface displays at the top of the **Create Network Interface** list until the user restarts it.

The new network interface has a **Pending VM restart** Link State until you restart the virtual machine. Hover over the Link State to display more detailed information.

The **Link State** is set to **Up** by default when the network interface card is defined on the virtual machine and connected to the network.

6.2.6. Editing CD-ROMs for Virtual Machines

Use the following procedure to configure CD-ROMs for virtual machines.

Procedure

1. From the **Virtual Machines** tab, select your virtual machine.

2. Select the **Overview** tab.

3. Click the pencil icon to the right of the **CD-ROMs** label to open the **Edit CD-ROM** window.

 - If no CD-ROMs are available for editing, the CD label initially displays **blank**.
 - If there are CD-ROMs available, you can eject the CD-ROM by clicking **Eject CD-ROM** or remove it by clicking `-`.

4. In the **Edit CD-ROM** window, do the following:

 a. Select the type of CD-ROM configuration in the **Media Type** field.

 - On Windows systems, **Windows guest tools** is attached by default in the **Media Type** field.

 b. Complete the required information for each **Media Type**.

 c. Click **Add CD-ROM**.

5. When all CD-ROMs are added, click **Save**.

6.3. DELETING VIRTUAL MACHINES

Use one of these procedures to delete a virtual machine:

- Using the web console
- Using the CLI

6.3.1. Deleting a virtual machine using the web console

Deleting a virtual machine permanently removes it from the cluster.
Delete a virtual machine using the button of the virtual machine in the Workloads → Virtual Machines list, or using the Actions control of the Virtual Machine Details screen.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines from the side menu.
2. Click the button of the virtual machine to delete and select Delete Virtual Machine
 - Alternatively, click the virtual machine name to open the Virtual Machine Details screen and click Actions → Delete Virtual Machine
3. In the confirmation pop-up window, click Delete to permanently delete the virtual machine.

6.3.2. Deleting a virtual machine and its DataVolume using the CLI

When you delete a virtual machine, the DataVolume it uses is not automatically deleted.

Deleting the DataVolume is recommended in order to maintain a clean environment and avoid possible confusion.

Procedure

Run these commands to delete the virtual machine and the DataVolume.

NOTE

You can delete objects only in the project you are currently working in, unless you specify the -n <project_name> option.

1. Run the following command to delete the virtual machine:

 $ oc delete vm <fedora-vm>

2. Run the following command to delete the DataVolume:

 $ oc delete dv <datavolume-name>

6.4. CONTROLLING VIRTUAL MACHINES STATES

With container-native virtualization, you can stop, start, and restart virtual machines from both the web console and the command-line interface (CLI).

6.4.1. Controlling virtual machines from the web console

You can also stop, start, and restart virtual machines from the web console.

6.4.1.1. Starting a virtual machine

You can start a virtual machine from the web console.

Procedure
1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Start the virtual machine from this screen, which makes it easier to perform actions on multiple virtual machines in the one screen, or from the Virtual Machine Details screen where you can view comprehensive details of the selected virtual machine:
 - Click the Options menu at the end of virtual machine and select Start Virtual Machine.
 - Click the virtual machine name to open the Virtual Machine Details screen and click Actions and select Start Virtual Machine.

3. In the confirmation window, click Start to start the virtual machine.

NOTE

When you start virtual machine that is provisioned from a URL source for the first time, the virtual machine is in the Importing state while container-native virtualization imports the container from the URL endpoint. Depending on the size of the image, this process might take several minutes.

6.4.1.2. Restarting a virtual machine

You can restart a running virtual machine from the web console.

IMPORTANT

Do not restart a virtual machine while it has a status of Importing. Restarting the virtual machine causes an error for it.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Restart the virtual machine from this screen, which makes it easier to perform actions on multiple virtual machines in the one screen, or from the Virtual Machine Details screen where you can view comprehensive details of the selected virtual machine:
 - Click the Options menu at the end of virtual machine and select Restart Virtual Machine.
 - Click the virtual machine name to open the Virtual Machine Details screen and click Actions and select Restart Virtual Machine.

3. In the confirmation window, click Restart to restart the virtual machine.

6.4.1.3. Stopping a virtual machine

You can stop a virtual machine from the web console.

Procedure
1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Stop the virtual machine from this screen, which makes it easier to perform actions on multiple virtual machines in the one screen, or from the Virtual Machine Details screen where you can view comprehensive details of the selected virtual machine:

 - Click the Options menu at the end of virtual machine and select Stop Virtual Machine.
 - Click the virtual machine name to open the Virtual Machine Details screen and click Actions and select Stop Virtual Machine.

3. In the confirmation window, click Stop to stop the virtual machine.

6.4.2. CLI reference for controlling virtual machines

Use the following virtctl client utility and oc commands to change the state of the virtual machines and display lists of the virtual machines and the virtual machine instances that represent them.

NOTE

When you run virtctl commands, you modify the virtual machines themselves, not the virtual machine instances that represent them in the web console.

6.4.2.1. start

Start a virtual machine.

Example: Start a virtual machine in the current project

```
$ virtctl start <example-vm>
```

Example: Start a virtual machine in a specific project

```
$ virtctl start <example-vm> -n <project_name>
```

6.4.2.2. restart

Restart a running virtual machine.

Example: Restart a virtual machine in the current project

```
$ virtctl restart <example-vm>
```

Example: Restart a virtual machine in a specific project

```
$ virtctl restart <example-vm> -n <project_name>
```

6.4.2.3. stop

Stop a running virtual machine.
Example: Stop a virtual machine in the current project

$ virtctl stop <example-vm>

Example: Stop a virtual machine in a specific project

$ virtctl stop <example-vm> -n <project_name>

6.4.2.4. list

List the virtual machines or virtual machine instances in a project. The virtual machine instances are abstractions that represent the virtual machines themselves.

Example: List the virtual machines in the current project

$ oc get vm

Example: List the virtual machines in a specific project

$ oc get vm -n <project_name>

Example: List the running virtual machine instances in the current project

$ oc get vmi

Example: List the running virtual machine instances in a specific project

$ oc get vmi -n <project_name>

6.5. ACCESSING VIRTUAL MACHINE CONSOLES

Container-native virtualization provides different virtual machine consoles that you can use to accomplish different product tasks. You can access these consoles through the web console and by using CLI commands.

6.5.1. Virtual machine console sessions

You can connect to the VNC and serial consoles of a running virtual machine from the Consoles tab in the Virtual Machine Details screen of the web console.

There are two consoles available: the graphical VNC Console and the Serial Console. The VNC Console opens by default whenever you navigate to the Consoles tab. You can switch between the consoles using the VNC Console Serial Console list.

Console sessions remain active in the background unless they are disconnected. When the Disconnect before switching checkbox is active and you switch consoles, the current console session is disconnected and a new session with the selected console connects to the virtual machine. This ensures only one console session is open at a time.

Options for the VNC Console

The Send Key button lists key combinations to send to the virtual machine.
Options for the Serial Console

Use the Disconnect button to manually disconnect the Serial Console session from the virtual machine. Use the Reconnect button to manually open a Serial Console session to the virtual machine.

6.5.2. Connecting to the virtual machine with the web console

6.5.2.1. Connecting to the terminal

You can connect to a virtual machine by using the web console.

Procedure

1. Ensure you are in the correct project. If not, click the Project list and select the appropriate project.
2. Click Workloads → Virtual Machines to display the virtual machines in the project.
3. Select a virtual machine.
4. In the Overview tab, click the virt-launcher-<vm-name> Pod.
5. Click the Terminal tab. If the terminal is blank, select the terminal and press any key to initiate connection.

6.5.2.2. Connecting to the serial console

Connect to the Serial Console of a running virtual machine from the Consoles tab in the Virtual Machine Details screen of the web console.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.
2. Select a virtual machine.
3. Click Consoles. The VNC console opens by default.
4. Click the VNC Console drop-down list and select Serial Console.

6.5.2.3. Connecting to the VNC console

Connect to the VNC console of a running virtual machine from the Consoles tab in the Virtual Machine Details screen of the web console.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.
2. Select a virtual machine.
3. Click Consoles. The VNC console opens by default.

6.5.2.4. Connecting to the RDP console
The desktop viewer console, which utilizes the Remote Desktop Protocol (RDP), provides a better console experience for connecting to Windows virtual machines.

To connect to a Windows virtual machine with RDP, download the `console.rdp` file for the virtual machine from the Consoles tab in the Virtual Machine Details screen of the web console and supply it to your preferred RDP client.

Prerequisites

- A running Windows virtual machine with the QEMU guest agent installed. The `qemu-guest-agent` is included in the VirtIO drivers.
- A layer-2 NIC attached to the virtual machine.
- An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.
2. Select a Windows virtual machine.
3. Click the Consoles tab.
4. Click the Consoles list and select Desktop Viewer.
5. In the Network Interface list, select the layer-2 NIC.
6. Click Launch Remote Desktop to download the `console.rdp` file.
7. Open an RDP client and reference the `console.rdp` file. For example, using `remmina`:

 `$ remmina --connect /path/to/console.rdp`
8. Enter the Administrator user name and password to connect to the Windows virtual machine.

6.5.3. Accessing virtual machine consoles by using CLI commands

6.5.3.1. Accessing a virtual machine instance via SSH

You can use SSH to access a virtual machine after you expose port 22 on it.

The `virtctl expose` command forwards a virtual machine instance port to a node port and creates a service for enabled access. The following example creates the `fedora-vm-ssh` service that forwards port 22 of the `<fedora-vm>` virtual machine to a port on the node:

Prerequisites

- The virtual machine instance you want to access must be connected to the default Pod network by using the `masquerade` binding method.
- The virtual machine instance you want to access must be running.
- Install the OpenShift Command-line Interface (CLI), commonly known as `oc`.
Procedure

1. Run the following command to create the `fedora-vm-ssh` service:

   ```
   $ virtctl expose vm <fedora-vm> --port=20022 --target-port=22 --name=fedora-vm-ssh --type=NodePort
   ```

 `<fedora-vm>` is the name of the virtual machine that you run the `fedora-vm-ssh` service on.

2. Check the service to find out which port the service acquired:

   ```
   $ oc get svc
   NAME            TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)           AGE
   fedora-vm-ssh   NodePort   127.0.0.1      <none>        20022:32551/TCP   6s
   ```

 In this example, the service acquired the 32551 port.

3. Log in to the virtual machine instance via SSH. Use the ipAddress of the node and the port that you found in the previous step:

   ```
   $ ssh username@<node_IP_address> -p 32551
   ```

6.5.3.2. Accessing the serial console of a virtual machine instance

The `virtctl console` command opens a serial console to the specified virtual machine instance.

Prerequisites

- The `virt-viewer` package must be installed.
- The virtual machine instance you want to access must be running.

Procedure

- Connect to the serial console with `virtctl`:

  ```
  $ virtctl console <VMI>
  ```

6.5.3.3. Accessing the graphical console of a virtual machine instance with VNC

The `virtctl` client utility can use the `remote-viewer` function to open a graphical console to a running virtual machine instance. This capability is included in the `virt-viewer` package.

Prerequisites

- The `virt-viewer` package must be installed.
- The virtual machine instance you want to access must be running.
NOTE
If you use `virtctl` via SSH on a remote machine, you must forward the X session to your machine.

Procedure

1. Connect to the graphical interface with the `virtctl` utility:

   ```bash
   $ virtctl vnc <VMI>
   ```

2. If the command failed, try using the `-v` flag to collect troubleshooting information:

   ```bash
   $ virtctl vnc <VMI> -v 4
   ```

6.5.3.4. Connecting to a Windows virtual machine with an RDP console

The Remote Desktop Protocol (RDP) provides a better console experience for connecting to Windows virtual machines.

To connect to a Windows virtual machine with RDP, specify the IP address of the attached L2 NIC to your RDP client.

Prerequisites

- A running Windows virtual machine with the QEMU guest agent installed. The `qemu-guest-agent` is included in the VirtIO drivers.
- A layer 2 NIC attached to the virtual machine.
- An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

1. Log in to the container-native virtualization cluster through the `oc` CLI tool as a user with an access token.

   ```bash
   $ oc login -u <user> https://<cluster.example.com>:8443
   ```

2. Use `oc describe vmi` to display the configuration of the running Windows virtual machine.

   ```bash
   $ oc describe vmi <windows-vmi-name>
   ```

   ```yaml
   ...,
   spec:
     networks:
     - name: default
       pod: {}
     - multus:
       networkName: cnv-bridge
       name: bridge-net
   ...,
   status:
     interfaces:
   ```
3. Identify and copy the IP address of the layer 2 network interface. This is 192.0.2.0 in the above example, or 2001:db8:: if you prefer IPv6.

4. Open an RDP client and use the IP address copied in the previous step for the connection.

5. Enter the **Administrator** user name and password to connect to the Windows virtual machine.

6.6. Installing VirtIO Driver on an Existing Windows Virtual Machine

6.6.1. Understanding VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run in container-native virtualization. The supported drivers are available in the `container-native-virtualization/virtio-win` container disk of the Red Hat Container Catalog.

The `container-native-virtualization/virtio-win` container disk must be attached to the virtual machine as a SATA CD drive to enable driver installation. You can install VirtIO drivers during Windows installation on the virtual machine or added to an existing Windows installation.

After the drivers are installed, the `container-native-virtualization/virtio-win` container disk can be removed from the virtual machine.

See also: Installing Virtio drivers on a new Windows virtual machine.

6.6.2. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 6.3. Supported drivers

<table>
<thead>
<tr>
<th>Driver name</th>
<th>Hardware ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>viostor</td>
<td>VEN_1AF4&DEV_1001</td>
<td>The block driver. Sometimes displays as an SCSI Controller in the Other devices group.</td>
</tr>
<tr>
<td></td>
<td>VEN_1AF4&DEV_1042</td>
<td></td>
</tr>
</tbody>
</table>
6.6.3. Adding VirtIO drivers container disk to a virtual machine

Container-native virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which is available from the Red Hat Container Catalog. To install these drivers to a Windows virtual machine, attach the `container-native-virtualization/virtio-win` container disk to the virtual machine as a SATA CD drive in the virtual machine configuration file.

Prerequisites

- Download the `container-native-virtualization/virtio-win` container disk from the Red Hat Container Catalog. This is not mandatory, because the container disk will be downloaded from the Red Hat registry if it is not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the `container-native-virtualization/virtio-win` container disk as a `cdrom` disk in the Windows virtual machine configuration file. The container disk will be downloaded from the registry if it is not already present in the cluster.

   ```yaml
   spec:
      domain:
         devices:
            disks:
               - name: virtiocontainerdisk
                 bootOrder: 2
                 cdrom:
                   bus: sata
            volumes:
               - containerDisk:
                   image: container-native-virtualization/virtio-win
                   name: virtiocontainerdisk
   ```

 Container-native virtualization boots virtual machine disks in the order defined in the `VirtualMachine` configuration file. You can either define other disks for the virtual machine before the `container-native-virtualization/virtio-win` container disk or use the optional `bootOrder` parameter to ensure the virtual machine boots from the correct disk. If you specify the `bootOrder` for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:
If you add the container disk to a running virtual machine, use `oc apply -f <vm.yaml>` in the CLI or reboot the virtual machine for the changes to take effect.

If the virtual machine is not running, use `virtctl start <vm>`.

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD drive.

6.6.4. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might differ slightly between versions of Windows. Refer to the installation documentation for your version of Windows for specific installation steps.

Procedure

1. Start the virtual machine and connect to a graphical console.
2. Log in to a Windows user session.
3. Open Device Manager and expand Other devices to list any Unknown device.
 a. Open the Device Properties to identify the unknown device. Right-click the device and select Properties.
 b. Click the Details tab and select Hardware IDs in the Property list.
 c. Compare the Value for the Hardware IDs with the supported VirtIO drivers.
4. Right-click the device and select Update Driver Software.
5. Click Browse my computer for driver software and browse to the attached SATA CD drive, where the VirtIO drivers are located. The drivers are arranged hierarchically according to their driver type, operating system, and CPU architecture.
6. Click Next to install the driver.
7. Repeat this process for all the necessary VirtIO drivers.
8. After the driver installs, click Close to close the window.
9. Reboot the virtual machine to complete the driver installation.

6.6.5. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the container-native-virtualization/virtio-win container disk no longer needs to be attached to the virtual machine. Remove the container-native-virtualization/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the **disk** and the **volume**.
6.7. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE

Prerequisites

- Windows installation media accessible by the virtual machine, such as importing an ISO into a data volume and attaching it to the virtual machine.

6.7.1. Understanding VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run in container-native virtualization. The supported drivers are available in the container-native-virtualization/virtio-win container disk of the Red Hat Container Catalog.

The container-native-virtualization/virtio-win container disk must be attached to the virtual machine as a SATA CD drive to enable driver installation. You can install VirtIO drivers during Windows installation on the virtual machine or added to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be removed from the virtual machine.

See also: Installing VirtIO driver on an existing Windows virtual machine.

6.7.2. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 6.4. Supported drivers

<table>
<thead>
<tr>
<th>Driver name</th>
<th>Hardware ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>viostor</td>
<td>VEN_1AF4&DEV_1001 VEN_1AF4&DEV_1042</td>
<td>The block driver. Sometimes displays as an SCSI Controller in the Other devices group.</td>
</tr>
</tbody>
</table>
6.7.3. Adding VirtIO drivers container disk to a virtual machine

Container-native virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which is available from the [Red Hat Container Catalog](https://www.redhat.com). To install these drivers to a Windows virtual machine, attach the `container-native-virtualization/virtio-win` container disk to the virtual machine as a SATA CD drive in the virtual machine configuration file.

Prerequisites

- Download the `container-native-virtualization/virtio-win` container disk from the [Red Hat Container Catalog](https://www.redhat.com). This is not mandatory, because the container disk will be downloaded from the Red Hat registry if it is not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the `container-native-virtualization/virtio-win` container disk as a `cdrom` disk in the Windows virtual machine configuration file. The container disk will be downloaded from the registry if it is not already present in the cluster.

   ```
   spec:
   domain:
   devices:
   disks:
   - name: virtiocontainerdisk
     bootOrder: 2
     cdrom:
     bus: sata
   volumes:
   - containerDisk:
     image: container-native-virtualization/virtio-win
     name: virtiocontainerdisk
   ```

 Container-native virtualization boots virtual machine disks in the order defined in the VirtualMachine configuration file. You can either define other disks for the virtual machine before the `container-native-virtualization/virtio-win` container disk or use the optional `bootOrder` parameter to ensure the virtual machine boots from the correct disk. If you specify the `bootOrder` for a disk, it must be specified for all disks in the configuration.
2. The disk is available once the virtual machine has started:
 - If you add the container disk to a running virtual machine, use `oc apply -f <vm.yaml>` in the CLI or reboot the virtual machine for the changes to take effect.
 - If the virtual machine is not running, use `virtctl start <vm>.

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD drive.

6.7.4. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation method might differ between versions of Windows. Refer to the documentation for the version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.
2. Begin the Windows installation process.
3. Select the Advanced installation.
4. The storage destination will not be recognized until the driver is loaded. Click Load driver.
5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage driver to load. The drivers are arranged hierarchically according to their driver type, operating system, and CPU architecture.
6. Repeat the previous two steps for all required drivers.
7. Complete the Windows installation.

6.7.5. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the `container-nativeirtualization/virtio-win` container disk no longer needs to be attached to the virtual machine. Remove the `container-nativeirtualization/virtio-win` container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

   ```
   $ oc edit vm <vm-name>
   ```

   ```yaml
   spec:
     domain:
       devices:
         disks:
           - name: virtiocontainerdisk
   ```
6.8. ADVANCED VIRTUAL MACHINE MANAGEMENT

6.8.1. Automating management tasks

You can automate container-native virtualization management tasks by using Red Hat Ansible Automation Platform. Learn the basics by using an Ansible Playbook to create a new virtual machine.

6.8.1.1. About Red Hat Ansible Automation

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates. Ansible includes support for container-native virtualization, and Ansible modules enable you to automate cluster management tasks such as template, persistent volume claim, and virtual machine operations.

Ansible provides a way to automate container-native virtualization management, which you can also accomplish by using the `oc` CLI tool or APIs. Ansible is unique because it allows you to integrate KubeVirt modules with other Ansible modules.

6.8.1.2. Automating virtual machine creation

You can use the `kubevirt_vm` Ansible Playbook to create virtual machines in your OpenShift Container Platform cluster using Red Hat Ansible Automation Platform.

Prerequisites

- **Red Hat Ansible Engine** version 2.8 or newer

Procedure

1. Edit an Ansible Playbook YAML file so that it includes the `kubevirt_vm` task:

   ```yaml
   kubevirt_vm:
     namespace:
     name:
     cpu_cores:
     memory:
     disks:
       - name:
         volume:
           containerDisk:
             image:
             disk:
             bus:
   ```

2. Reboot the virtual machine for the changes to take effect.
NOTE
This snippet only includes the `kubevirt_vm` portion of the playbook.

2. Edit the values to reflect the virtual machine you want to create, including the `namespace`, the number of `cpu_cores`, the `memory`, and the `disks`. For example:

```yaml
kubevirt_vm:
  namespace: default
  name: vm1
  cpu_cores: 1
  memory: 64Mi
  disks:
    - name: containerdisk
      volume:
        containerDisk:
          image: kubevirt/cirros-container-disk-demo:latest
          disk:
            bus: virtio
```

3. If you want the virtual machine to boot immediately after creation, add `state: running` to the YAML file. For example:

```yaml
kubevirt_vm:
  namespace: default
  name: vm1
  state: running
  cpu_cores: 1
```

 1 Changing this value to `state: absent` deletes the virtual machine, if it already exists.

4. Run the `ansible-playbook` command, using your playbook’s file name as the only argument:

   ```
   $ ansible-playbook create-vm.yaml
   ```

5. Review the output to determine if the play was successful:

   ```
   (...)
   TASK [Create my first VM] *****************************************************
   changed: [localhost]
   PLAY RECAP
   ************************************************************************
   localhost          : ok=2    changed=1    unreachable=0    failed=0    skipped=0
                        rescued=0    ignored=0
   ```

6. If you did not include `state: running` in your playbook file and you want to boot the VM now, edit the file so that it includes `state: running` and run the playbook again:

   ```
   $ ansible-playbook create-vm.yaml
   ```

To verify that the virtual machine was created, try to access the VM console.
6.8.1.3. Example: Ansible Playbook for creating virtual machines

You can use the **kubevirt_vm** Ansible Playbook to automate virtual machine creation.

The following YAML file is an example of the **kubevirt_vm** playbook. It includes sample values that you must replace with your own information if you run the playbook.

```yaml
---
- name: Ansible Playbook 1
  hosts: localhost
  connection: local
  tasks:
  - name: Create my first VM
    kubevirt_vm:
      namespace: default
      name: vm1
      cpu_cores: 1
      memory: 64Mi
      disks:
        - name: containerdisk
          volume:
            containerDisk:
              image: kubevirt/cirros-container-disk-demo:latest
              disk:
                bus: virtio
```

Additional information

- [Intro to Playbooks](#)
- [Tools for Validating Playbooks](#)

6.8.2. Configuring PXE booting for virtual machines

PXE booting, or network booting, is available in container-native virtualization. Network booting allows a computer to boot and load an operating system or other program without requiring a locally attached storage device. For example, you can use it to choose your desired OS image from a PXE server when deploying a new host.

Prerequisites

- A Linux bridge must be **connected**.
- The PXE server must be connected to the same VLAN as the bridge.

6.8.2.1. Container-native virtualization networking glossary

Container-native virtualization provides advanced networking functionality by using custom resources and plug-ins.

The following terms are used throughout container-native virtualization documentation:

Container Network Interface (CNI)
a Cloud Native Computing Foundation project, focused on container network connectivity. Container-native virtualization uses CNI plug-ins to build upon the basic Kubernetes networking functionality.

Multus

a "meta" CNI plug-in that allows multiple CNIs to exist so that a Pod or virtual machine can use the interfaces it needs.

Custom Resource Definition (CRD)

a Kubernetes API resource that allows you to define custom resources, or an object defined by using the CRD API resource.

NetworkAttachmentDefinition

a CRD introduced by the Multus project that allows you to attach Pods, virtual machines, and virtual machine instances to one or more networks.

Preboot eXecution Environment (PXE)

an interface that enables an administrator to boot a client machine from a server over the network. Network booting allows you to remotely load operating systems and other software onto the client.

6.8.2.2. PXE booting with a specified MAC address

As an administrator, you can boot a client over the network by first creating a NetworkAttachmentDefinition object for your PXE network. Then, reference the NetworkAttachmentDefinition in your virtual machine instance configuration file before you start the virtual machine instance. You can also specify a MAC address in the virtual machine instance configuration file, if required by the PXE server.

Prerequisites

- A Linux bridge must be connected.
- The PXE server must be connected to the same VLAN as the bridge.

Procedure

1. Configure a PXE network on the cluster:

 a. Create the NetworkAttachmentDefinition file for PXE network `pxe-net-conf`:

   ```yaml
   apiVersion: "k8s.cni.cncf.io/v1"
   kind: NetworkAttachmentDefinition
   metadata:
     name: pxe-net-conf
   spec:
     config: '{
       "cniVersion": "0.3.1",
       "name": "pxe-net-conf",
       "plugins": [
         {
           "type": "cnv-bridge",
           "bridge": "br1"
         },
         {
           "type": "cnv-tuning"
         }
       ]
     }
   '``
The `cnv-tuning` plug-in provides support for custom MAC addresses.

**NOTE**

The virtual machine instance will be attached to the bridge `br1` through an access port with the requested VLAN.

2. Create the `NetworkAttachmentDefinition` object by using the file you created in the previous step:

   ```bash
 $ oc create -f pxe-net-conf.yaml
   ```

3. Edit the virtual machine instance configuration file to include the details of the interface and network.

   a. Specify the network and MAC address, if required by the PXE server. If the MAC address is not specified, a value is assigned automatically. However, note that at this time, MAC addresses assigned automatically are not persistent. Ensure that `bootOrder` is set to 1 so that the interface boots first. In this example, the interface is connected to a network called `<pxe-net>`:

   ```yaml
 interfaces:
 - masquerade: {}
 name: default
 - bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1
   ```

   **NOTE**

   Boot order is global for interfaces and disks.

   b. Assign a boot device number to the disk to ensure proper booting after operating system provisioning. Set the disk `bootOrder` value to 2:

   ```yaml
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2
   ```

   c. Specify that the network is connected to the previously created `NetworkAttachmentDefinition`. In this scenario, `<pxe-net>` is connected to the `NetworkAttachmentDefinition` called `<pxe-net-conf>`.
networks:
- name: default
  pod: {}
- name: pxe-net
  multus:
    networkName: pxe-net-conf

4. Create the virtual machine instance:

   $ oc create -f vmi-pxe-boot.yaml
   virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

5. Wait for the virtual machine instance to run:

   $ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
   phase: Running

6. View the virtual machine instance using VNC:

   $ virtctl vnc vmi-pxe-boot

7. Watch the boot screen to verify that the PXE boot is successful.

8. Log in to the virtual machine instance:

   $ virtctl console vmi-pxe-boot

9. Verify the interfaces and MAC address on the virtual machine and that the interface connected to the bridge has the specified MAC address. In this case, we used eth1 for the PXE boot, without an IP address. The other interface, eth0, got an IP address from OpenShift Container Platform.

   $ ip addr
   ...
   3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
      link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

6.8.2.3. Template: virtual machine instance configuration file for PXE booting

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
  creationTimestamp: null
labels:
  special: vmi-pxe-boot
name: vmi-pxe-boot
spec:
domain:
devices:
disks:
- disk:
  bus: virtio
6.8.3. Managing guest memory

If you want to adjust guest memory settings to suit a specific use case, you can do so by editing the guest’s YAML configuration file. Container-native virtualization allows you to configure guest memory overcommitment and disable guest memory overhead accounting. Both of these procedures carry some degree of risk. Proceed only if you are an experienced administrator.

6.8.3.1. Configuring guest memory overcommitment

If your virtual workload requires more memory than available, you can use memory overcommitment to allocate all or most of the host’s memory to your virtual machine instances. Enabling memory overcommitment means you can maximize resources that are normally reserved for the host.

For example, if the host has 32 GB RAM, you can use memory overcommitment to fit 8 virtual machines with 4 GB RAM each. This allocation works under the assumption that the virtual machines will not use all of their memory at the same time.

Procedure

```yaml
name: containerdisk
bootOrder: 2
- disk:
 bus: virtio
name: cloudinitdisk
interfaces:
- masquerade: {}
 name: default
- bridge: {}
 name: pxe-net
macAddress: de:00:00:00:00:de
bootOrder: 1
machine:
 type: ""
 resources:
 requests:
 memory: 1024M
networks:
- name: default
 pod: {}
- multus:
 networkName: pxe-net-conf
 name: pxe-net
terminationGracePeriodSeconds: 0
volumes:
- name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - cloudInitNoCloud:
 userData: |
 #!/bin/bash
echo "fedora" | passwd fedora --stdin
name: cloudinitdisk
status: {}
```
1. To explicitly tell the virtual machine instance that it has more memory available than was requested from the cluster, edit the virtual machine configuration file and set `spec.domain.memory.guest` to a higher value than `spec.domain.resources.requests.memory`. This process is called memory overcommitment. In this example, 1024M is requested from the cluster, but the virtual machine instance is told that it has 2048M available. As long as there is enough free memory available on the node, the virtual machine instance will consume up to 2048M.

```yaml
kind: VirtualMachine
spec:
template:
domain:
resources:
 requests:
 memory: 1024M
memory:
 guest: 2048M
```

NOTE
The same eviction rules as those for Pods apply to the virtual machine instance if the node is under memory pressure.

2. Create the virtual machine:

```
$ oc create -f <file name>.yaml
```

6.8.3.2. Disabling guest memory overhead accounting

WARNING
This procedure is only useful in certain use-cases and must only be attempted by advanced users.

A small amount of memory is requested by each virtual machine instance in addition to the amount that you request. This additional memory is used for the infrastructure that wraps each VirtualMachineInstance process.

Though it is not usually advisable, it is possible to increase the virtual machine instance density on the node by disabling guest memory overhead accounting.

Procedure

1. To disable guest memory overhead accounting, edit the YAML configuration file and set the `overcommitGuestOverhead` value to `true`. This parameter is disabled by default.

```yaml
kind: VirtualMachine
spec:
```
If `overcommitGuestOverhead` is enabled, it adds the guest overhead to memory limits, if present.

2. Create the virtual machine:

```bash
$ oc create -f <file name>.yaml
```

## 6.9. IMPORTING VIRTUAL MACHINES

### 6.9.1. TLS certificates for DataVolume imports

#### 6.9.1.1. Adding TLS certificates for authenticating DataVolume imports

TLS certificates for registry or HTTPS endpoints must be added to a ConfigMap in order to import data from these sources. This ConfigMap must be present in the namespace of the destination DataVolume.

Create the ConfigMap by referencing the relative file path for the TLS certificate.

**Procedure**

1. Ensure you are in the correct namespace. The ConfigMap can only be referenced by DataVolumes if it is in the same namespace.

   ```bash
 $ oc get ns
 ``

2. Create the ConfigMap:

   ```bash
   $ oc create configmap <configmap-name> --from-file=</path/to/file/ca.pem>
   ``

#### 6.9.1.2. Example: ConfigMap created from a TLS certificate

The following example is of a ConfigMap created from `ca.pem` TLS certificate.

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: tls-certs
data:
 ca.pem:
 -----BEGIN CERTIFICATE-----
 ...
 <base64 encoded cert>
 ...
 -----END CERTIFICATE-----
```
6.9.2. Importing virtual machine images with DataVolumes

You can import an existing virtual machine image into your OpenShift Container Platform cluster. Container-native virtualization uses DataVolumes to automate the import of data and the creation of an underlying PersistentVolumeClaim (PVC).

**CAUTION**

When you import a disk image into a PVC, the disk image is expanded to use the full storage capacity that is requested in the PVC. To use this space, the disk partitions and file system(s) in the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system installed on the VM. Refer to the operating system documentation for details.

**Prerequisites**

- If the endpoint requires a TLS certificate, the certificate must be included in a ConfigMap in the same namespace as the DataVolume and referenced in the DataVolume configuration.
- You may need to define a StorageClass or prepare CDI scratch space for this operation to complete successfully.

### 6.9.2.1. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt(QCOW2)</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2*</td>
</tr>
<tr>
<td></td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>GZ</td>
<td>GZ*</td>
</tr>
<tr>
<td></td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>XZ</td>
<td>XZ*</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW*</td>
<td>✓ RAW*</td>
</tr>
<tr>
<td></td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>GZ</td>
<td>GZ*</td>
</tr>
<tr>
<td></td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>XZ</td>
<td>XZ*</td>
</tr>
<tr>
<td>Archive+</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>□ TAR</td>
<td>□ TAR</td>
</tr>
</tbody>
</table>

✓ Supported operation
☐ Unsupported operation
* Requires scratch space
** Requires scratch space if a custom certificate authority is required
+ Archive does not support block mode DVs

### 6.9.2.2. About DataVolumes
DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.9.2.3. Importing a virtual machine image into an object with DataVolumes

To create a virtual machine from an imported image, specify the image location in the VirtualMachine configuration file before you create the virtual machine.

Prerequisites

- Install the OpenShift Container Platform Command-line Interface (CLI), commonly known as oc
- A virtual machine disk image, in RAW, ISO, or QCOW2 format, optionally compressed by using xz or gz
- An HTTP endpoint where the image is hosted, along with any authentication credentials needed to access the data source
- At least one available PersistentVolume

Procedure

1. Identify an HTTP file server that hosts the virtual disk image that you want to import. You need the complete URL in the correct format:

   - http://www.example.com/path/to/data

2. If your data source requires authentication credentials, edit the endpoint-secret.yaml file, and apply the updated configuration to the cluster:

   ```yaml
 apiVersion: v1
 kind: Secret
 metadata:
 name: <endpoint-secret>
 labels:
 - app: containerized-data-importer
 type: Opaque
 data:
 accessKeyId: ""
 secretKey: ""

 1 Optional: your key or user name, base64 encoded
 2 Optional: your secret or password, base64 encoded

 $ oc apply -f endpoint-secret.yaml

3. Edit the virtual machine configuration file, specifying the data source for the image you want to import. In this example, a Fedora image is imported:

   ```yaml
   apiVersion: kubevirt.io/v1alpha3
   kind: VirtualMachine
   ```
metadata:
 creationTimestamp: null
labels:
 - kubevirt.io/vm: vm-fedora-datavolume
spec:
 dataVolumeTemplates:
 - metadata:
 creationTimestamp: null
 name: fedora-dv
 - pvc:
 accessModes:
 - ReadWriteOnce
 spec:
 storage: 2Gi
 storageClassName: local
 source:
 http:
 url:
 https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora-Cloud-Base-28-1.1.x86_64.qcow2
 secretRef: ""
 certConfigMap: ""
status: {}
running: false

template:
 metadata:
 creationTimestamp: null
 labels:
 - kubevirt.io/vm: vm-fedora-datavolume
 spec:
 domain:
 devices:
 - disks:
 - disk:
 bus: virtio
 name: datavolumedisk1
 machine:
 type: ""
 resources:
 requests:
 memory: 64M
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: fedora-dv
 name: datavolumedisk1
status: {}

1. The **HTTP** source of the image you want to import.
2. The **secretRef** parameter is optional.
3. The **certConfigMap** is only required if the endpoint requires authentication. The
4. Create the virtual machine:

```
$ oc create -f vm-<name>-datavolume.yaml
```

NOTE

The `oc create` command creates the DataVolume and the virtual machine. The CDI controller creates an underlying PVC with the correct annotation, and the import process begins. When the import completes, the DataVolume status changes to **Succeeded**, and the virtual machine is allowed to start.

DataVolume provisioning happens in the background, so there is no need to monitor it. You can start the virtual machine, and it will not run until the import is complete.

Optional verification steps

1. Run `oc get pods` and look for the importer Pod. This Pod downloads the image from the specified URL and stores it on the provisioned PV.

2. Monitor the DataVolume status until it shows **Succeeded**.

```
$ oc describe dv <data-label>  
```

1. The data label for the DataVolume specified in the virtual machine configuration file.

3. To verify that provisioning is complete and that the VMI has started, try accessing its serial console:

```
$ virtctl console <vm-fedora-datavolume>
```

6.9.2.4. Template: DataVolume virtual machine configuration file

example-dv-vm.yaml

```yaml
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
  labels:
    kubevirt.io/vm: example-vm
name: example-vm
spec:
dataVolumeTemplates:
- metadata:
  name: example-dv
spec:
pvc:
  accessModes:
  - ReadWriteOnce
resources:
  requests:
    storage: 1G
source:
```
The **HTTP** source of the image you want to import, if applicable.

6.9.2.5. Template: DataVolume import configuration file

example-import-dv.yaml

```
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
  name: "example-import-dv"
spec:
  source:
    http:
      url: ""
      secretRef: ""
pvc:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: "1G"
```

1 The **HTTP** source of the image you want to import.

2 The **secretRef** parameter is optional.
6.9.3. Importing virtual machine images to block storage with DataVolumes

You can import an existing virtual machine image into your OpenShift Container Platform cluster. Container-native virtualization uses DataVolumes to automate the import of data and the creation of an underlying PersistentVolumeClaim (PVC).

CAUTION

When you import a disk image into a PVC, the disk image is expanded to use the full storage capacity that is requested in the PVC. To use this space, the disk partitions and file system(s) in the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system that is installed on the virtual machine. Refer to the operating system documentation for details.

Prerequisites

- If you require scratch space according to the CDI supported operations matrix, you must first define a StorageClass or prepare CDI scratch space for this operation to complete successfully.

6.9.3.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.9.3.2. About block PersistentVolumes

A block PersistentVolume (PV) is a PV that is backed by a raw block device. These volumes do not have a filesystem and can provide performance benefits for virtual machines that either write to the disk directly or implement their own storage service.

Raw block volumes are provisioned by specifying `volumeMode: Block` in the PV and PersistentVolumeClaim (PVC) specification.

6.9.3.3. Creating a local block PersistentVolume

Create a local block PersistentVolume (PV) on a node by populating a file and mounting it as a loop device. You can then reference this loop device in a PV configuration as a Block volume and use it as a block device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The following example creates a file `loop10` with a size of 2Gb (20 100Mb blocks):

   ```
   $ dd if=/dev/zero of=<loop10> bs=100M count=20
   ```

3. Mount the `loop10` file as a loop device.
```bash
$ losetup </dev/loop10>d3 <loop10>  
```

1. File path where the loop device is mounted.
2. The file created in the previous step to be mounted as the loop device.

4. Create a `PersistentVolume` configuration that references the mounted loop device.

```yaml
kind: PersistentVolume
apiVersion: v1
metadata:
  name: <local-block-pv10>
annotations:
spec:
  local:
    path: </dev/loop10>  
  capacity:
    storage: <2Gi>
  volumeMode: Block
  storageClassName: local
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Delete
nodeAffinity:
  required:
    nodeSelectorTerms:
      - matchExpressions:
          - key: kubernetes.io/hostname
            operator: In
            values:
              - <node01>
```

1. The path of the loop device on the node.
2. Specifies it is a block PV.
3. Optional: Set a StorageClass for the PV. If you omit it, the cluster default is used.
4. The node on which the block device was mounted.

5. Create the block PV.

```bash
# oc create -f <local-block-pv10.yaml>  
```

1. The filename of the PersistentVolume created in the previous step.

6.9.3.4. Importing a virtual machine image to a block PersistentVolume using DataVolumes

You can import an existing virtual machine image into your OpenShift Container Platform cluster. Container-native virtualization uses DataVolumes to automate the importing data and the creation of an underlying PersistentVolumeClaim (PVC). You can then reference the DataVolume in a virtual machine configuration.
Prerequisites

- A virtual machine disk image, in RAW, ISO, or QCow2 format, optionally compressed by using *xz* or *gz*.
- An HTTP or s3 endpoint where the image is hosted, along with any authentication credentials needed to access the data source.
- At least one available block PV.

Procedure

1. If your data source requires authentication credentials, edit the `endpoint-secret.yaml` file, and apply the updated configuration to the cluster.
 a. Edit the `endpoint-secret.yaml` file with your preferred text editor:

   ```yaml
   apiVersion: v1
   kind: Secret
   metadata:
     name: <endpoint-secret>
     labels:
       app: containerized-data-importer
     type: Opaque
   data:
     accessKeyId: "" 1
     secretKey: "" 2
   
   1 Optional: your key or user name, base64 encoded
   2 Optional: your secret or password, base64 encoded
   
   b. Update the secret:
   
   ```bash
 $ oc apply -f endpoint-secret.yaml
   ```

2. Create a DataVolume configuration that specifies the data source for the image you want to import and `volumeMode: Block` so that an available block PV is used.

```yaml
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: <import-pv-datavolume> 1
spec:
 storageClassName: local 2
 source:
 http:
 url: <http://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora-Cloud-Base-28-1.1.x86_64.qcow2> 3
 secretRef: <endpoint-secret> 4
 pvc:
 volumeMode: Block 5
 accessModes:
```

[63]
- ReadWriteOnce
  resources:
  requests:
  storage: <2Gi>

1. The name of the DataVolume.
2. Optional: Set the storage class or omit it to accept the cluster default.
3. The HTTP source of the image to import.
4. Only required if the data source requires authentication.
5. Required for importing to a block PV.

3. Create the DataVolume to import the virtual machine image.

   $ oc create -f <import-pv-datavolume.yaml>  

1. The filename DataVolume created in the previous step.

### 6.9.3.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt(QCOW2)</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2**</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2*</td>
</tr>
<tr>
<td></td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>□ GZ</td>
<td>✓ GZ*</td>
</tr>
<tr>
<td></td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>□ XZ</td>
<td>✓ XZ*</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW*</td>
<td>✓ RAW*</td>
<td>✓ RAW*</td>
</tr>
<tr>
<td></td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>□ GZ</td>
<td>✓ GZ*</td>
</tr>
<tr>
<td></td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>□ XZ</td>
<td>✓ XZ*</td>
</tr>
<tr>
<td>Archive+</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>□ TAR</td>
<td>□ TAR</td>
</tr>
</tbody>
</table>

✓ Supported operation

☐ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

### 6.9.4. Importing a VMware virtual machine or template
You can import a single VMware virtual machine or template using the virtual machine wizard.

If you import a VMware template, the wizard creates a virtual machine based on the template.

**IMPORTANT**

Importing a VMware virtual machine or template is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [https://access.redhat.com/support/offerings/techpreview/](https://access.redhat.com/support/offerings/techpreview/).

### 6.9.4.1. Creating a VDDK image

The VMware Virtual Disk Development Kit (VDDK) SDK is used to copy VMware virtual disks.

You can download VDDK, convert it into an image, push the image to a private container repository, and add it to the `v2v-vmware` ConfigMap.

**Prerequisites**

- You must have a VMware account to download VDDK.
- You must be logged in to your private container repository.
  Storing the VDDK image in a public repository may violate the terms of the VMware license.

**Procedure**

1. Create a temporary directory for VDDK:
   ```
 $ mkdir /tmp/my_vddk && cd /tmp/my_vddk
   ```

2. In a browser, navigate to VMware Documentation.

3. Click VMware SDK & API Product Documentation→ VMware Virtual Disk Development Kit (VDDK).

4. Select the latest VDDK release and click Download SDKs.

5. Extract the archive within your temporary directory:
   ```
 $ tar -xzf VMware-vix-disklib-<version>.x86_64.tar.gz
   ```

6. Create a Dockerfile:
   ```
 $ cat > Dockerfile <<EOF
 FROM busybox:latest
 COPY vmware-vix-disklib-distrib /vmware-vix-disklib-distrib
 EOF
   ```
RUN mkdir -p /opt
ENTRYPOINT ["cp", "/-r", "/vmware-vix-disklib-distrib", "/opt"]
EOF

7. Build the image:

$ docker build -f Dockerfile -t <server/username/reponame:tag>

Specify your repository details.

8. Push the image to your repository:

$ docker push <server/username/reponame:tag>

Specify your repository details.

9. Ensure that the image is accessible to your container-native virtualization environment.

10. Edit the v2v-vmware ConfigMap in the openshift-cnv project:

$ oc edit configmap v2v-vmware -n openshift-cnv

11. Add the vddk-init-image parameter to the data stanza:

... data:
  vddk-init-image: <server/username/reponame:tag>

Specify your repository details.

6.9.4.2. Importing a VMware virtual machine or template

You can import a VMware virtual machine or template using the virtual machine wizard.

Prerequisites

- You must create a VDDK image, push it to a private container repository, and add it to the v2v-vmware ConfigMap.
- There must be sufficient storage space for the imported disk.
If you try to import a virtual machine whose disk size is larger than the available storage space, the operation will not complete. You will not be able to import another virtual machine or to delete PVCs or PVs because the Ceph storage will not have sufficient resources for object deletion. You must add more Ceph OSDs to clean up the storage.

- The VMware virtual machine must be powered off.

Procedure

1. In the container-native virtualization web console, click **Workloads → Virtual Machines**.
2. Click **Create Virtual Machine** and select **Import with Wizard**.
3. In the **General** screen, perform the following steps:
   a. Select **VMware** from the **Provider** list.
   b. Select **Connect to New Instance** or a saved vCenter instance from the **vCenter instance** list.
      - If you select **Connect to New Instance**, fill in the **vCenter hostname**, **Username**, and **Password**.
      - If you select a saved vCenter instance, the wizard connects to the vCenter instance using the saved credentials.
   c. Select a virtual machine or a template to import from the **VM or Template to Import** list.
   d. Select an operating system.
   e. Select an existing flavor or **Custom** from the **Flavor** list.
      - If you select **Custom**, specify the **Memory (GB)** and the **CPUs**.
   f. Select a **Workload Profile**.
   g. If the virtual machine name is already being used by another virtual machine in the namespace, update the name.
   h. Click **Next**.
4. In the **Networking** screen, perform the following steps:
   a. Click the Options menu of a network interface and select **Edit**.
b. Enter a valid network interface name.
   The name can contain lowercase letters (a-z), numbers (0-9), and hyphens (-), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, periods (.), or special characters.

c. Select the network interface model.

d. Select the network definition.

e. Select the network interface type.

f. Enter the MAC address.

g. Click **Save** and then click **Next**.

5. In the **Storage** screen, perform the following steps:

   a. Click the Options menu of a disk and select **Edit**.

   b. Enter a valid name.
      The name can contain lowercase letters (a-z), numbers (0-9), and hyphens (-), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, periods (.), or special characters.

   c. Select the interface type.

   d. Select the storage class.
      If you do not select a storage class, container-native virtualization uses the default storage class to create the virtual machine.

   e. Click **Save** and then click **Next**.

6. In the **Advanced** screen, enter the **Hostname** and **Authorized SSH Keys** if you are using **cloud-init**.
   You must edit the virtual machine’s YAML configuration after importing it:

   a. Click **Workloads → Virtual Machine** from the side menu.

   b. Select the virtual machine that you imported.

   c. Click the **YAML** tab to display the editable configuration.

   d. In the **cloudInitNoCloud** stanza, under **userData**, change **ssh-authorized-keys** to **ssh_authorized_keys**:

   ```yaml
 - cloudInitNoCloud:
 userData: |
 #cloud-config
 name: default
 hostname: myhostname
 ssh-authorized-keys:
   ```

   e. Restart the virtual machine.
   See **BZ#1786350** for details.
7. Click Next.

8. Review your settings and click Create Virtual Machine. A Successfully created virtual machine message and a list of resources created for the virtual machine are displayed. The powered off virtual machine appears in Workloads → Virtual Machines.

9. Click See virtual machine details to view the dashboard of the imported virtual machine. If an error occurs, perform the following steps:
   a. Click Workloads → Pods.
   b. Click the Conversion Pod, for example, kubevirt-v2v-conversion-rhel7-mini-1-27b9h.
   c. Click Logs and check for error messages.

Refer to the virtual machine wizard fields section for more information on the wizard fields.

6.9.4.3. Updating the imported VMware virtual machine’s NIC name

You must update the NIC name of a virtual machine imported from VMware to conform to container-native virtualization naming conventions.

Procedure

1. Log in to the virtual machine.

2. Go to the /etc/sysconfig/network-scripts directory.

3. Change the network configuration file name to ifcfg-eth0:

   $ mv vmnic0 ifcfg-eth0

   Additional network configuration files are numbered sequentially, for example, ifcfg-eth1, ifcfg-eth2.

4. Update the NAME and DEVICE parameters in the network configuration file:

   NAME=eth0
   DEVICE=eth0

5. Restart the network:

   $ systemctl restart network

6.9.4.4. Virtual machine wizard fields

6.9.4.4.1. Virtual machine wizard fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Template</td>
<td></td>
<td>Template from which to create the virtual machine. Selecting a template will automatically complete other fields.</td>
</tr>
<tr>
<td>Source</td>
<td>PXE</td>
<td>Provision virtual machine from PXE menu. Requires a PXE-capable NIC in the cluster.</td>
</tr>
<tr>
<td></td>
<td>URL</td>
<td>Provision virtual machine from an image available from an HTTP or S3 endpoint.</td>
</tr>
<tr>
<td></td>
<td>Container</td>
<td>Provision virtual machine from a bootable operating system container located in a registry accessible from the cluster. Example: <code>kubevirt/cirros-registry-disk-demo</code>.</td>
</tr>
<tr>
<td></td>
<td>Disk</td>
<td>Provision virtual machine from a disk.</td>
</tr>
<tr>
<td>Attach disk</td>
<td></td>
<td>Attach an existing disk that was previously cloned or created and made available in the PersistentVolumeClaims. When this option is selected, you must manually complete the Operating System, Flavor, and Workload Profile fields.</td>
</tr>
<tr>
<td>Operating System</td>
<td></td>
<td>The primary operating system that is selected for the virtual machine.</td>
</tr>
<tr>
<td>Flavor</td>
<td>small, medium, large, tiny, Custom</td>
<td>Presets that determine the amount of CPU and memory allocated to the virtual machine. The presets displayed for Flavor are determined by the operating system.</td>
</tr>
<tr>
<td>Workload Profile</td>
<td>High Performance</td>
<td>A virtual machine configuration that is optimized for high-performance workloads.</td>
</tr>
</tbody>
</table>
### 6.9.4.4.2. Cloud-init fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>Sets a specific host name for the virtual machine.</td>
</tr>
<tr>
<td>Authenticated SSH Keys</td>
<td>The user’s public key that is copied to <code>~/.ssh/authorized_keys</code> on the virtual machine.</td>
</tr>
<tr>
<td>Use custom script</td>
<td>Replaces other options with a field in which you paste a custom cloud-init script.</td>
</tr>
</tbody>
</table>

### 6.9.4.4.3. Networking fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name for the Network Interface Card.</td>
</tr>
<tr>
<td>Model</td>
<td>Driver for the Network Interface Card or model for the Network Interface Card.</td>
</tr>
<tr>
<td>Network</td>
<td>List of available NetworkAttachmentDefinition objects.</td>
</tr>
</tbody>
</table>
### 6.9.4.4.4. Storage fields

<table>
<thead>
<tr>
<th><strong>Name</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source</strong></td>
<td>Select a blank disk for the virtual machine or choose from the options available: PXE, Container, URL or Disk. To select an existing disk and attach it to the virtual machine, choose Attach Disk from a list of available PersistentVolumeClaims (PVCs) or from a cloned disk.</td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>Name of the disk. The name can contain lowercase letters (a-z), numbers (0-9), hyphens (-), and periods (,), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, or special characters.</td>
</tr>
<tr>
<td><strong>Size (GiB)</strong></td>
<td>Size, in GiB, of the disk.</td>
</tr>
<tr>
<td><strong>Interface</strong></td>
<td>Name of the interface.</td>
</tr>
<tr>
<td><strong>Storage class</strong></td>
<td>Name of the underlying StorageClass.</td>
</tr>
</tbody>
</table>

### 6.10. CLONING VIRTUAL MACHINES

#### 6.10.1. Enabling user permissions to clone DataVolumes across namespaces

The isolating nature of namespaces means that users cannot by default clone resources between namespaces.

To enable a user to clone a virtual machine to another namespace, a user with the `cluster-admin` role must create a new ClusterRole. Bind this ClusterRole to a user to enable them to clone virtual machines to the destination namespace.

**Prerequisites**
6.10.1.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.10.1.2. Creating RBAC resources for cloning DataVolumes

Create a new ClusterRole that enables permissions for all actions for the datavolumes resource.

Procedure

1. Create a ClusterRole manifest:

   ```yaml
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: <datavolume-cloner>
 rules:
 - apiGroups: ["cdi.kubevirt.io"]
 resources: ["datavolumes/source"]
 verbs: ["*"]
   ```
   
   1 Unique name for the ClusterRole.

2. Create the ClusterRole in the cluster:

   ```bash
 $ oc create -f <datavolume-cloner.yaml>
   ```
   
   1 The file name of the ClusterRole manifest created in the previous step.

3. Create a RoleBinding manifest that applies to both the source and destination namespaces and references the ClusterRole created in the previous step.

   ```yaml
 apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 name: <allow-clone-to-user>
 namespace: <Source namespace>
 subjects:
 - kind: ServiceAccount
 name: default
 namespace: <Destination namespace>
 roleRef:
 kind: ClusterRole
 name: datavolume-cloner
 apiGroup: rbac.authorization.k8s.io
   ```
   
   1 Unique name for the RoleBinding.
The namespace for the source DataVolume.

The namespace to which the DataVolume is cloned.

The name of the ClusterRole created in the previous step.

4. Create the RoleBinding in the cluster:

   $ oc create -f <datavolume-cloner.yaml>  

   The file name of the RoleBinding manifest created in the previous step.

6.10.2. Cloning a virtual machine disk into a new DataVolume

You can clone the PersistentVolumeClaim (PVC) of a virtual machine disk into a new DataVolume by referencing the source PVC in your DataVolume configuration file.

**Prerequisites**

- You may need to define a StorageClass or prepare CDI scratch space for this operation to complete successfully. The CDI supported operations matrix shows the conditions that require scratch space.

- Users need additional permissions to clone the PVC of a virtual machine disk into another namespace.

6.10.2.1. About DataVolumes

**DataVolume** objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.10.2.2. Cloning the PersistentVolumeClaim of a virtual machine disk into a new DataVolume

You can clone a PersistentVolumeClaim (PVC) of an existing virtual machine disk into a new DataVolume. The new DataVolume can then be used for a new virtual machine.

**NOTE**

When a DataVolume is created independently of a virtual machine, the lifecycle of the DataVolume is independent of the virtual machine. If the virtual machine is deleted, neither the DataVolume nor its associated PVC is deleted.

**Prerequisites**

- Determine the PVC of an existing virtual machine disk to use. You must power down the virtual machine that is associated with the PVC before you can clone it.

- Install the OpenShift Command-line Interface (CLI), commonly known as `oc`. 
Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the associated PVC.

2. Create a YAML file for a DataVolume object that specifies the name of the new DataVolume, the name and namespace of the source PVC, and the size of the new DataVolume. For example:

```yaml
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: <cloner-datavolume> 1
spec:
 source:
 pvc:
 namespace: "<source-namespace>" 2
 name: "<my-favorite-vm-disk>" 3
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <2Gi> 4
```

1. The name of the new DataVolume.
2. The namespace where the source PVC exists.
3. The name of the source PVC.
4. The size of the new DataVolume. You must allocate enough space, or the cloning operation fails. The size must be the same as or larger than the source PVC.

3. Start cloning the PVC by creating the DataVolume:

   ```bash
 $ oc create -f <cloner-datavolume>.yaml
   ```

   **NOTE**

   DataVolumes prevent a virtual machine from starting before the PVC is prepared, so you can create a virtual machine that references the new DataVolume while the PVC clones.

6.10.2.3. Template: DataVolume clone configuration file

`example-clone-dv.yaml`

```yaml
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: "example-clone-dv"
spec:
```

6.10.2.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt(QCOW2)</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2*</td>
</tr>
<tr>
<td></td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
</tr>
<tr>
<td></td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW*</td>
<td>✓ RAW*</td>
</tr>
<tr>
<td></td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
</tr>
<tr>
<td></td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
</tr>
<tr>
<td>Archive+</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>□ TAR</td>
<td>□ TAR</td>
</tr>
</tbody>
</table>

- Supported operation
- Unsupported operation
- * Requires scratch space
- ** Requires scratch space if a custom certificate authority is required
- + Archive does not support block mode DVs

6.10.3. Cloning a virtual machine by using a DataVolumeTemplate

You can create a new virtual machine by cloning the PersistentVolumeClaim (PVC) of an existing VM. By including a dataVolumeTemplate in your virtual machine configuration file, you create a new DataVolume from the original PVC.

**Prerequisites**

- You may need to define a StorageClass or prepare CDI scratch space for this operation to complete successfully. The CDI supported operations matrix shows the conditions that require scratch space.
- Users need additional permissions to clone the PVC of a virtual machine disk into another namespace.
6.10.3.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.10.3.2. Creating a new virtual machine from a cloned PersistentVolumeClaim by using a DataVolumeTemplate

You can create a virtual machine that clones the PersistentVolumeClaim (PVC) of an existing virtual machine into a DataVolume. By referencing a dataVolumeTemplate in the virtual machine spec, the source PVC is cloned to a DataVolume, which is then automatically used for the creation of the virtual machine.

**NOTE**

When a DataVolume is created as part of the DataVolumeTemplate of a virtual machine, the lifecycle of the DataVolume is then dependent on the virtual machine. If the virtual machine is deleted, the DataVolume and associated PVC are also deleted.

Prerequisites

- Determine the PVC of an existing virtual machine disk to use. You must power down the virtual machine that is associated with the PVC before you can clone it.

- Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Procedure

1. Examine the virtual machine you want to clone to identify the name and namespace of the associated PVC.

2. Create a YAML file for a VirtualMachine object. The following virtual machine example clones my-favorite-vm-disk, which is located in the source-namespace namespace. The 2Gi DataVolume called favorite-clone is created from my-favorite-vm-disk.

For example:

```yaml
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
name: vm-dv-clone
spec:
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 spec:
 domain:
 devices:
 disks:
```
The virtual machine to create.

3. Create the virtual machine with the PVC-cloned DataVolume:

```bash
$ oc create -f <vm-clone-datavolumetemplate>.yaml
```

### 6.10.3.3. Template: DataVolume virtual machine configuration file

**example-dv-vm.yaml**

```yaml
apiVersion: kubevirt.io/v1alpha3
class: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: example-vm
name: example-vm
spec:
dataVolumeTemplates:
 - metadata:
 name: example-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G
 source:
 http:
 url: ""
```
6.10.3.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt(QCOW2)</td>
<td>✓ QCOW2 ✓ GZ* ✓ XZ*</td>
<td>✓ QCOW2** ✓ GZ* ✓ XZ*</td>
<td>✓ QCOW2 ✓ GZ* ✓ XZ*</td>
<td>✓ QCOW2* □ GZ □ XZ</td>
<td>✓ QCOW2* ✓ GZ* ✓ XZ*</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>✓ RAW ✓ GZ ✓ XZ</td>
<td>✓ RAW ✓ GZ ✓ XZ</td>
<td>✓ RAW ✓ GZ ✓ XZ</td>
<td>✓ RAW* □ GZ □ XZ</td>
<td>✓ RAW* ✓ GZ* ✓ XZ*</td>
</tr>
<tr>
<td>Archive+</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>□ TAR</td>
<td>□ TAR</td>
</tr>
</tbody>
</table>

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required
6.10.4. Cloning a virtual machine disk into a new block storage DataVolume

You can clone the PersistentVolumeClaim (PVC) of a virtual machine disk into a new block DataVolume by referencing the source PVC in your DataVolume configuration file.

Prerequisites

- If you require scratch space according to the **CDI supported operations matrix**, you must first define a StorageClass or prepare CDI scratch space for this operation to complete successfully.
- Users need **additional permissions** to clone the PVC of a virtual machine disk into another namespace.

6.10.4.1. About DataVolumes

**DataVolume** objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.10.4.2. About block PersistentVolumes

A block PersistentVolume (PV) is a PV that is backed by a raw block device. These volumes do not have a filesystem and can provide performance benefits for virtual machines that either write to the disk directly or implement their own storage service.

Raw block volumes are provisioned by specifying **volumeMode: Block** in the PV and PersistentVolumeClaim (PVC) specification.

6.10.4.3. Creating a local block PersistentVolume

Create a local block PersistentVolume (PV) on a node by populating a file and mounting it as a loop device. You can then reference this loop device in a PV configuration as a **Block** volume and use it as a block device for a virtual machine image.

Procedure

1. Log in as **root** to the node on which to create the local PV. This procedure uses **node01** for its examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The following example creates a file **loop10** with a size of 2Gb (20 100Mb blocks):

   ```
 $ dd if=/dev/zero of=loop10 bs=100M count=20
   ```

3. Mount the **loop10** file as a loop device.

   ```
 $ losetup /dev/loop10 d3 loop10
   ```

   1. File path where the loop device is mounted.
   2. The file created in the previous step to be mounted as the loop device.
4. Create a **PersistentVolume** configuration that references the mounted loop device.

```yaml
kind: PersistentVolume
apiVersion: v1
metadata:
 name: <local-block-pv10>
annotations:
spec:
 local:
 path: </dev/loop10>
 capacity:
 storage: <2Gi>
 volumeMode: Block
storageClassName: local
accessModes:
 - ReadWriteOnce
persistentVolumeReclaimPolicy: Delete
nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <node01>

1. The path of the loop device on the node.
2. Specifies it is a block PV.
3. Optional: Set a StorageClass for the PV. If you omit it, the cluster default is used.
4. The node on which the block device was mounted.

5. Create the block PV.

```bash
# oc create -f <local-block-pv10.yaml>  
```

1. The filename of the PersistentVolume created in the previous step.

6.10.4.4. Cloning the PersistentVolumeClaim of a virtual machine disk into a new DataVolume

You can clone a PersistentVolumeClaim (PVC) of an existing virtual machine disk into a new DataVolume. The new DataVolume can then be used for a new virtual machine.

NOTE

When a DataVolume is created independently of a virtual machine, the lifecycle of the DataVolume is independent of the virtual machine. If the virtual machine is deleted, neither the DataVolume nor its associated PVC is deleted.
Prerequisites

- Determine the PVC of an existing virtual machine disk to use. You must power down the virtual machine that is associated with the PVC before you can clone it.

- Install the OpenShift Command-line Interface (CLI), commonly known as **oc**.

- At least one available block PersistentVolume (PV) that is the same size as or larger than the source PVC.

Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the associated PVC.

2. Create a YAML file for a DataVolume object that specifies the name of the new DataVolume, the name and namespace of the source PVC, **volumeMode: Block** so that an available block PV is used, and the size of the new DataVolume. For example:

   ```yaml
   apiVersion: cdi.kubevirt.io/v1alpha1
   kind: DataVolume
   metadata:
     name: <cloner-datavolume>  
   spec:
     source:
       pvc:
         namespace: "<source-namespace>"  
         name: "<my-favorite-vm-disk>"
       pvc:
         accessModes:
           - ReadWriteOnce
         resources:
           requests:
             storage: <2Gi>
         volumeMode: Block
   
   1 The name of the new DataVolume.
   2 The namespace where the source PVC exists.
   3 The name of the source PVC.
   4 The size of the new DataVolume. You must allocate enough space, or the cloning operation fails. The size must be the same as or larger than the source PVC.
   5 Specifies that the destination is a block PV

3. Start cloning the PVC by creating the DataVolume:

   ```bash
 $ oc create -f <cloner-datavolume>.yaml
   ```
NOTE
DataVolumes prevent a virtual machine from starting before the PVC is prepared, so you can create a virtual machine that references the new DataVolume while the PVC clones.

6.10.4.5. CDI supported operations matrix
This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt(QCOW2)</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2</td>
<td>✓ QCOW2</td>
</tr>
<tr>
<td></td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
<td>✓ GZ*</td>
</tr>
<tr>
<td></td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
<td>✓ XZ*</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
<td>✓ RAW</td>
</tr>
<tr>
<td></td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
<td>✓ GZ</td>
</tr>
<tr>
<td></td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
<td>✓ XZ</td>
</tr>
<tr>
<td>Archive+</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
<td>✓ TAR</td>
</tr>
</tbody>
</table>

✓ Supported operation
□ Unsupported operation
* Requires scratch space
** Requires scratch space if a custom certificate authority is required
+ Archive does not support block mode DVs

6.11. VIRTUAL MACHINE NETWORKING

6.11.1. Using the default Pod network for virtual machines
You can use the default Pod network with container-native virtualization. To do so, you must use the masquerade binding method. It is the only recommended binding method for use with the default Pod network. Do not use masquerade mode with non-default networks.

NOTE
For secondary networks, use the bridge binding method.

6.11.1.1. Configuring masquerade mode from the command line
You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the Pod IP address. Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the Pod network backend through a Linux bridge.
Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine configuration file.

**Prerequisites**

- The virtual machine must be configured to use DHCP to acquire IPv4 addresses. The examples below are configured to use DHCP.

**Procedure**

1. Edit the `interfaces` spec of your virtual machine configuration file:

   ```yaml
 kind: VirtualMachine
 spec:
 domain:
 devices:
 interfaces:
 - name: red
 masquerade: {} # 1
 ports:
 - port: 80 # 2
 networks:
 - name: red
 pod: {}

 # Connect using masquerade mode
 # Allow incoming traffic on port 80

 2. Create the virtual machine:

   ```bash
   $ oc create -f <vm-name>.yaml
   ```

6.11.1.2. Selecting binding method

If you create a virtual machine from the container-native virtualization web console wizard, select the required binding method from the Networking screen.

6.11.1.2.1. Networking fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name for the Network Interface Card.</td>
</tr>
<tr>
<td>Model</td>
<td>Driver for the Network Interface Card or model for the Network Interface Card.</td>
</tr>
<tr>
<td>Network</td>
<td>List of available NetworkAttachmentDefinition objects.</td>
</tr>
</tbody>
</table>
List of available binding methods

For the default Pod network, **masquerade** is the only recommended binding method. For secondary networks, use the **bridge** binding method. The **masquerade** method is not supported for non-default networks.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>List of available binding methods.</td>
</tr>
<tr>
<td></td>
<td>For the default Pod network, masquerade is the only recommended binding</td>
</tr>
<tr>
<td></td>
<td>method. For secondary networks, use the bridge binding method.</td>
</tr>
<tr>
<td></td>
<td>The masquerade method is not supported for non-default networks.</td>
</tr>
</tbody>
</table>

| MAC Address | MAC address for the Network Interface Card. If a MAC address is not specified, an ephemeral address is generated for the session. |

6.11.1.3. Virtual machine configuration examples for the default network

6.11.1.3.1. Template: virtual machine configuration file

```yaml
apiVersion: kubevirt.io/v1alpha3
class: VirtualMachine
metadata:
  name: example-vm
  namespace: default
spec:
  running: false
template:
  spec:
    domain:
      devices:
        disks:
        - name: containerdisk
disk:
  bus: virtio
        - name: cloudinitdisk
disk:
  bus: virtio
    interfaces:
    - masquerade: {}
      name: default
    resources:
      requests:
        memory: 1024M
    networks:
    - name: default
      pod:
      volumes:
      - name: containerdisk
        containerDisk:
          image: kubevirt/fedora-cloud-container-disk-demo
      - name: cloudinitdisk
        cloudInitNoCloud:
```
```
userData: |
#!/bin/bash
   echo "fedora" | passwd fedora --stdin
```

6.11.1.3.2. Template: Windows virtual machine instance configuration file

```yaml
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
  labels:
    special: vmi-windows
name: vmi-windows
spec:
domain:
clock:
timer:
  hpet:
    present: false
  hyperv: {}
  pit:
    tickPolicy: delay
  rtc:
    tickPolicy: catchup
utc: {}
cpu:
  cores: 2
devices:
disks:
  - disk:
      bus: sata
      name: pvcdisk
interfaces:
  - masquerade: {}
model: e1000
name: default
features:
  acpi: {}
  apic: {}
  hyperv:
    relaxed: {}
  spinlocks:
    spinlocks: 8191
  vapic: {}
firmware:
  uuid: 5d307ca9-b3ef-428c-8861-06e72d69f223
machine:
  type: q35
resources:
  requests:
    memory: 2Gi
networks:
  - name: default
    pod: {}
terminationGracePeriodSeconds: 0
volumes:
```
6.11.2. Attaching a virtual machine to multiple networks

Container-native virtualization provides layer-2 networking capabilities that allow you to connect virtual machines to multiple networks. You can import virtual machines with existing workloads that depend on access to multiple interfaces. You can also configure a PXE network so that you can boot machines over the network.

To get started, a network administrator configures a bridge NetworkAttachmentDefinition for a namespace in the web console or CLI. Users can then create a NIC to attach Pods and virtual machines in that namespace to the bridge network.

6.11.2.1. Container-native virtualization networking glossary

Container-native virtualization provides advanced networking functionality by using custom resources and plug-ins.

The following terms are used throughout container-native virtualization documentation:

- **Container Network Interface (CNI)**
 - a Cloud Native Computing Foundation project, focused on container network connectivity.
 - Container-native virtualization uses CNI plug-ins to build upon the basic Kubernetes networking functionality.

- **Multus**
 - a "meta" CNI plug-in that allows multiple CNIs to exist so that a Pod or virtual machine can use the interfaces it needs.

- **Custom Resource Definition (CRD)**
 - a Kubernetes API resource that allows you to define custom resources, or an object defined by using the CRD API resource.

- **NetworkAttachmentDefinition**
 - a CRD introduced by the Multus project that allows you to attach Pods, virtual machines, and virtual machine instances to one or more networks.

- **Preboot eXecution Environment (PXE)**
 - an interface that enables an administrator to boot a client machine from a server over the network. Network booting allows you to remotely load operating systems and other software onto the client.

6.11.2.2. Creating a NetworkAttachmentDefinition

6.11.2.2.1. Creating a Linux bridge NetworkAttachmentDefinition in the web console

The NetworkAttachmentDefinition is a custom resource that exposes layer-2 devices to a specific namespace in your container-native virtualization cluster.

Network administrators can create NetworkAttachmentDefinitions to provide existing layer-2 networking to Pods and virtual machines.

Prerequisites

```yaml
- name: pvcdisk
  persistentVolumeClaim:
    claimName: disk-windows
```
• Container-native virtualization 2.2 or above installed on your cluster.

• A Linux bridge must be configured and attached to the correct Network Interface Card (NIC) on every node.

• If you use VLANs, **vlan_filtering** must be enabled on the bridge.

• The NIC must be tagged to all relevant VLANs.
 - For example: **bridge vlan add dev bond0 vid 1-4095 master**

Procedure

1. In the web console, click **Networking → Network Attachment Definitions**

2. Click **Create Network Attachment Definition**.

3. Enter a unique **Name** and optional **Description**.

4. Click the **Network Type** list and select **CNV Linux bridge**.

5. Enter the name of the bridge in the **Bridge Name** field.

6. (Optional) If the resource has VLAN IDs configured, enter the ID numbers in the **VLAN Tag Number** field.

7. Click **Create**.

6.11.2.2.2. Creating a Linux bridge NetworkAttachmentDefinition in the CLI

As a network administrator, you can configure a NetworkAttachmentDefinition of type **cnv-bridge** to provide Layer-2 networking to Pods and virtual machines.

Prerequisites

• Container-native virtualization 2.0 or newer

• A Linux bridge must be configured and attached to the correct Network Interface Card on every node.

• If you use VLANs, **vlan_filtering** must be enabled on the bridge.

• The NIC must be tagged to all relevant VLANs.
 - For example: **bridge vlan add dev bond0 vid 1-4095 master**

Procedure

1. Create a new file for the NetworkAttachmentDefinition in any local directory. The file must have the following contents, modified to match your configuration:

```yaml
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name: a-bridge-network
annotations:
```

88
If you add this annotation to your NetworkAttachmentDefinition, your virtual machine instances will only run on nodes that have the br0 bridge connected.

Required. A name for the configuration.

The actual name of the Container Network Interface (CNI) plug-in that provides the network for this NetworkAttachmentDefinition. Do not change this field unless you want to use a different CNI.

You must substitute the actual name value from the NetworkAttachmentDefinition.

Required. This allows the MAC pool manager to assign a unique MAC address to the connection.

```
$ oc create -f <resource_spec.yaml>
```

2. Edit the configuration file of a virtual machine or virtual machine instance that you want to connect to the bridge network:

```
apiVersion: v1
kind: VirtualMachine
metadata:
  name: example-vm
annotations:
  k8s.v1.cni.cncf.io/networks: a-bridge-network
spec:
  ...  
```

You must substitute the actual name value from the NetworkAttachmentDefinition.

In this example, the NetworkAttachmentDefinition and Pod are in the same namespace.

To specify a different namespace, use the following syntax:

```
...  
  annotations:  
    k8s.v1.cni.cncf.io/networks: <namespace>/a-bridge-network
```
3. Apply the configuration file to the resource:

$ oc create -f <local/path/to/network-attachment-definition.yaml>

NOTE

When defining the NIC in the next section, ensure that the `NETWORK` value is the bridge network name from the `NetworkAttachmentDefinition` you created in the previous section.

6.11.2.3. Creating a NIC for a virtual machine

Create and attach additional NICs to a virtual machine from the web console.

Procedure

1. In the correct project in the container-native virtualization console, click `Workloads` → `Virtual Machines`.

2. Select a virtual machine.

3. Click `Network Interfaces` to display the NICs already attached to the virtual machine.

4. Click `Create Network Interface` to create a new slot in the list.

5. Fill in the `Name`, `Model`, `Network`, `Type`, and `MAC Address` for the new NIC.

6. Click the ✓ button to save and attach the NIC to the virtual machine.

6.11.2.4. Networking fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name for the Network Interface Card.</td>
</tr>
<tr>
<td>Model</td>
<td>Driver for the Network Interface Card or model for the Network Interface Card.</td>
</tr>
<tr>
<td>Network</td>
<td>List of available <code>NetworkAttachmentDefinition</code> objects.</td>
</tr>
<tr>
<td>Type</td>
<td>List of available binding methods. For the default Pod network, masquerade is the only recommended binding method. For secondary networks, use the bridge binding method. The masquerade method is not supported for non-default networks.</td>
</tr>
</tbody>
</table>
MAC Address | MAC address for the Network Interface Card. If a MAC address is not specified, an ephemeral address is generated for the session.
--- | ---

Install the optional QEMU guest agent on the virtual machine so that the host can display relevant information about the additional networks.

6.11.3. Installing the QEMU guest agent on virtual machines

The QEMU guest agent is a daemon that runs on the virtual machine. The agent passes network information on the virtual machine, notably the IP address of additional networks, to the host.

Prerequisites

- Verify that the guest agent is installed and running by entering the following command:

  ```bash
  $ systemctl status qemu-guest-agent
  ```

6.11.3.1. Installing QEMU guest agent on a Linux virtual machine

The `qemu-guest-agent` is widely available and available by default in Red Hat virtual machines. Install the agent and start the service

Procedure

1. Access the virtual machine command line through one of the consoles or by SSH.
2. Install the QEMU guest agent on the virtual machine:

   ```bash
   $ yum install -y qemu-guest-agent
   ```
3. Start the QEMU guest agent service:

   ```bash
   $ systemctl start qemu-guest-agent
   ```
4. Ensure the service is persistent:

   ```bash
   $ systemctl enable qemu-guest-agent
   ```

You can also install and start the QEMU guest agent by using the `custom script` field in the `cloud-init` section of the wizard when creating either virtual machines or virtual machines templates in the web console.

6.11.3.2. Installing QEMU guest agent on a Windows virtual machine

For Windows virtual machines, the QEMU guest agent is included in the VirtIO drivers, which can be installed using one of the following procedures:

6.11.3.2.1. Installing VirtIO drivers on an existing Windows virtual machine
Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE
This procedure uses a generic approach to adding drivers to Windows. The process might differ slightly between versions of Windows. Refer to the installation documentation for your version of Windows for specific installation steps.

Procedure

1. Start the virtual machine and connect to a graphical console.
2. Log in to a Windows user session.
3. Open **Device Manager** and expand **Other devices** to list any **Unknown device**.
 a. Open the **Device Properties** to identify the unknown device. Right-click the device and select **Properties**.
 b. Click the **Details** tab and select **Hardware Ids** in the **Property** list.
 c. Compare the **Value** for the **Hardware Ids** with the supported VirtIO drivers.
4. Right-click the device and select **Update Driver Software**.
5. Click **Browse my computer for driver software** and browse to the attached SATA CD drive, where the VirtIO drivers are located. The drivers are arranged hierarchically according to their driver type, operating system, and CPU architecture.
6. Click **Next** to install the driver.
7. Repeat this process for all the necessary VirtIO drivers.
8. After the driver installs, click **Close** to close the window.
9. Reboot the virtual machine to complete the driver installation.

6.11.3.2.2. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE
This procedure uses a generic approach to the Windows installation and the installation method might differ between versions of Windows. Refer to the documentation for the version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.
2. Begin the Windows installation process.
3. Select the **Advanced** installation.
4. The storage destination will not be recognized until the driver is loaded. Click **Load driver**.
5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage driver to load. The drivers are arranged hierarchically according to their driver type, operating system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

6.11.4. Viewing the IP address of NICs on a virtual machine

The QEMU guest agent runs on the virtual machine and passes the IP address of attached NICs to the host, allowing you to view the IP address from both the web console and the oc client.

Prerequisites

1. Verify that the guest agent is installed and running by entering the following command:

 $ systemctl status qemu-guest-agent

2. If the guest agent is not installed and running, install and run the guest agent on the virtual machine.

6.11.4.1. Viewing the IP address of a virtual machine interface in the CLI

The network interface configuration is included in the oc describe vmi <vmi_name> command.

You can also view the IP address information by running ip addr on the virtual machine, or by running oc get vmi <vmi_name> -o yaml.

Procedure

- Use the oc describe command to display the virtual machine interface configuration:

 $ oc describe vmi <vmi_name>

 ...

 Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
 Interface Name: v2
 Ip Address: 1.1.1.7/24
 Ip Addresses:
 1.1.1.7/24
 fe80::f4d9:70ff:fe13:9089/64
 Interface Name: v1
 Ip Address: 1.1.1.1/24
 Ip Addresses:
 1.1.1.1/24
 1.1.1.2/24
6.11.4.2. Viewing the IP address of a virtual machine interface in the web console

The IP information displays in the Virtual Machine Overview screen for the virtual machine.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.
2. Click the virtual machine name to open the Virtual Machine Overview screen.

The information for each attached NIC is displayed under IP ADDRESSES.

6.12. VIRTUAL MACHINE DISKS

6.12.1. Configuring local storage for virtual machines

You can configure local storage for your virtual machines by using the hostpath provisioner feature.

6.12.1.1. About the hostpath provisioner

The hostpath provisioner is a local storage provisioner designed for container-native virtualization. If you want to configure local storage for virtual machines, you must enable the hostpath provisioner first.

When you install the container-native virtualization Operator, the hostpath provisioner Operator is automatically installed. To use it, you must:

- Configure SELinux:
 - If you use Red Hat Enterprise Linux CoreOS 8 workers, you must create a MachineConfig object on each node.
 - Otherwise, apply the SELinux label container_file_t to the PersistentVolume (PV) backing directory on each node.

- Create a HostPathProvisioner custom resource.

- Create a StorageClass object for the hostpath provisioner.

The hostpath provisioner Operator deploys the provisioner as a DaemonSet on each node when you create its custom resource. In the custom resource file, you specify the backing directory for the PersistentVolumes that the hostpath provisioner creates.

6.12.1.2. Configuring SELinux for the hostpath provisioner on Red Hat Enterprise Linux CoreOS 8

You must configure SELinux before you create the HostPathProvisioner custom resource. To configure SELinux on Red Hat Enterprise Linux CoreOS 8 workers, you must create a MachineConfig object on each node.
NOTE

If you do not use Red Hat Enterprise Linux CoreOS workers, skip this procedure.

Prerequisites

- Create a backing directory on each node for the PersistentVolumes (PVs) that the hostpath provisioner creates.

WARNING

If you select a directory that shares space with your operating system, you can exhaust the space on that partition, causing the node to stop functioning. To avoid this issue, create a separate partition and point the hostpath provisioner to that directory.

Procedure

1. Create the MachineConfig file. For example:

   ```bash
   $ touch machineconfig.yaml
   ```

2. Edit the file, ensuring that you include the directory where you want the hostpath provisioner to create PVs. For example:

   ```yaml
   apiVersion: machineconfiguration.openshift.io/v1
   kind: MachineConfig
   metadata:
     name: 50-set-selinux-for-hostpath-provisioner
     labels:
       machineconfiguration.openshift.io/role: worker
   spec:
     config:
       ignition:
         version: 2.2.0
       systemd:
         units:
           - contents:
             [Unit]
             Description=Set SELinux chcon for hostpath provisioner
             Before=kubelet.service
             [Service]
             ExecStart=/usr/bin/chcon -Rt container_file_t <path/to/backing/directory>
             [Install]
             WantedBy=multi-user.target
             enabled: true
             name: hostpath-provisioner.service
   ```
Specify the backing directory where you want the provisioner to create PVs.

3. Create the MachineConfig object:

```bash
$ oc create -f machineconfig.yaml -n <namespace>
```

6.12.1.3. Using the hostpath provisioner to enable local storage

To deploy the hostpath provisioner and enable your virtual machines to use local storage, first create a HostPathProvisioner custom resource.

Prerequisites

- Create a backing directory on each node for the PersistentVolumes (PVs) that the hostpath provisioner creates.

WARNING

If you select a directory that shares space with your operating system, you can exhaust the space on that partition, causing the node to stop functioning. To avoid this issue, create a separate partition and point the hostpath provisioner to that directory.

- Apply the SELinux context `container_file_t` to the PV backing directory on each node. For example:

  ```bash
  $ sudo chcon -t container_file_t -R </path/to/backing/directory>
  ```

NOTE

If you use Red Hat Enterprise Linux CoreOS 8 workers, you must configure SELinux by using a MachineConfig manifest instead.

Procedure

1. Create the HostPathProvisioner custom resource file. For example:

   ```bash
   $ touch hostpathprovisioner_cr.yaml
   ```

2. Edit the file, ensuring that the `spec.pathConfig.path` value is the directory where you want the hostpath provisioner to create PVs. For example:

   ```yaml
   apiVersion: hostpathprovisioner.kubevirt.io/v1alpha1
   kind: HostPathProvisioner
   metadata:
     name: hostpath-provisioner
   spec:
   ```
Specify the backing directory where you want the provisioner to create PVs.

Change this value to `true` if you want to use the name of the PersistentVolumeClaim (PVC) that is bound to the created PV as the prefix of the directory name.

NOTE

If you did not create the backing directory, the provisioner attempts to create it for you. If you did not apply the `container_file_t` SELinux context, this can cause `Permission denied` errors.

3. Create the custom resource in the `openshift-cnv` namespace:

   ```
   $ oc create -f hostpathprovisioner_cr.yaml -n openshift-cnv
   ```

6.12.1.4. Creating a StorageClass object

When you create a StorageClass object, you set parameters that affect the dynamic provisioning of PersistentVolumes (PVs) that belong to that storage class.

NOTE

You cannot update a StorageClass object’s parameters after you create it.

Procedure

1. Create a YAML file for defining the storage class. For example:

   ```
   $ touch storageclass.yaml
   ```

2. Edit the file. For example:

   ```yaml
   apiVersion: storage.k8s.io/v1
   kind: StorageClass
   metadata:
     name: hostpath-provisioner
   provisioner: kubevirt.io/hostpath-provisioner
   reclaimPolicy: Delete
   volumeBindingMode: WaitForFirstConsumer
   ```

 - You can optionally rename the storage class by changing this value.
 - The two possible `reclaimPolicy` values are `Delete` and `Retain`. If you do not specify a value, the storage class defaults to `Delete`.
 - The `volumeBindingMode` value determines when dynamic provisioning and volume
3. Create the StorageClass object:

```bash
$ oc create -f storageclass.yaml
```

Additional information

- **Storage Classes**

6.12.2. Uploading local disk images by using the `virtctl` tool

You can upload a disk image that is stored locally by using the `virtctl` command-line utility.

Prerequisites

- Install the `kubevirt-virtctl` package
- You may need to define a StorageClass or prepare CDI scratch space for this operation to complete successfully.

6.12.2.1. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt (QCOW2)</td>
<td>✓ QCOW2 ✓</td>
<td>✓ QCOW2** ✓</td>
<td>✓ QCOW2 ✓</td>
<td>✓ QCOW2*</td>
<td>✓ QCOW2* ✓</td>
</tr>
<tr>
<td></td>
<td>✓ GZ* ✓</td>
<td>✓ GZ* ✓</td>
<td>✓ GZ* ✓</td>
<td>GZ ✓</td>
<td>GZ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ XZ* ✓</td>
<td>✓ XZ* ✓</td>
<td>✓ XZ* ✓</td>
<td>XZ ✓</td>
<td>XZ ✓</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>✓ RAW ✓</td>
<td>✓ RAW ✓</td>
<td>✓ RAW ✓</td>
<td>RAW* ✓</td>
<td>RAW* ✓</td>
</tr>
<tr>
<td></td>
<td>✓ GZ ✓</td>
<td>✓ GZ ✓</td>
<td>✓ GZ ✓</td>
<td>GZ ✓</td>
<td>GZ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ XZ ✓</td>
<td>✓ XZ ✓</td>
<td>✓ XZ ✓</td>
<td>XZ ✓</td>
<td>XZ ✓</td>
</tr>
<tr>
<td>Archive+</td>
<td>✓ TAR ✓</td>
<td>✓ TAR ✓</td>
<td>✓ TAR ✓</td>
<td>TAR ✓</td>
<td>TAR ✓</td>
</tr>
</tbody>
</table>

✓ Supported operation

☐ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

6.12.2.2. Uploading a local disk image to a new PersistentVolumeClaim

You can use the `virtctl` CLI utility to upload a virtual machine disk image from a client machine to your cluster. Uploading the disk image creates a PersistentVolumeClaim (PVC) that you can associate with a virtual machine.
Prerequisites

- A virtual machine disk image, in RAW, ISO, or QCOW2 format, optionally compressed by using
 \texttt{xz} or \texttt{gz}.
- The \texttt{kubevirt-virtctl} package must be installed on the client machine.
- The client machine must be configured to trust the OpenShift Container Platform router’s certificate.

Procedure

1. Identify the following items:
 - File location of the VM disk image you want to upload
 - Name and size required for the resulting PVC

2. Run the \texttt{virtctl image-upload} command to upload your VM image. You must specify the PVC name, PVC size, and file location. For example:

 \begin{verbatim}
 $ virtctl image-upload --pvc-name=<upload-fedora-pvc> --pvc-size=<2Gi> --image-path=<images/fedora.qcow2>
 \end{verbatim}

 \textbf{CAUTION}

 To allow insecure server connections when using HTTPS, use the \texttt{--insecure} parameter. Be aware that when you use the \texttt{--insecure} flag, the authenticity of the upload endpoint is not verified.

3. To verify that the PVC was created, view all PVC objects:

 \begin{verbatim}
 $ oc get pvc
 \end{verbatim}

6.12.3. Uploading a local disk image to a block storage DataVolume

You can upload a local disk image into a block DataVolume by using the \texttt{virtctl} command-line utility.

In this workflow, you create a local block device to use as a PersistentVolume, associate this block volume with an upload DataVolume, and use \texttt{virtctl} to upload the local disk image into the DataVolume.

Prerequisites

- If you require scratch space according to the CDI supported operations matrix, you must first define a StorageClass or prepare CDI scratch space for this operation to complete successfully.

6.12.3.1. About DataVolumes

\textbf{DataVolume} objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.12.3.2. About block PersistentVolumes
A block PersistentVolume (PV) is a PV that is backed by a raw block device. These volumes do not have a filesystem and can provide performance benefits for virtual machines that either write to the disk directly or implement their own storage service.

Raw block volumes are provisioned by specifying `volumeMode: Block` in the PV and PersistentVolumeClaim (PVC) specification.

6.12.3.3. Creating a local block PersistentVolume

Create a local block PersistentVolume (PV) on a node by populating a file and mounting it as a loop device. You can then reference this loop device in a PV configuration as a **Block** volume and use it as a block device for a virtual machine image.

Procedure

1. Log in as `root` to the node on which to create the local PV. This procedure uses `node01` for its examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The following example creates a file `loop10` with a size of 2Gb (20 100Mb blocks):

   ```
   $ dd if=/dev/zero of=<loop10> bs=100M count=20
   ```

3. Mount the `loop10` file as a loop device.

   ```
   $ losetup </dev/loop10>d3 <loop10>
   ```

 1 File path where the loop device is mounted.

 2 The file created in the previous step to be mounted as the loop device.

4. Create a **PersistentVolume** configuration that references the mounted loop device.

   ```
   kind: PersistentVolume
   apiVersion: v1
   metadata:
     name: <local-block-pv10>
   spec:
     local:
       path: </dev/loop10>  
     capacity:
       storage: <2Gi>
   volumeMode: Block  
   storageClassName: local
   accessModes:
     - ReadWriteOnce
   persistentVolumeReclaimPolicy: Delete
   nodeAffinity:
     required:
       nodeSelectorTerms:
         - key: kubernetes.io/hostname
   ```
operator: In
values:
- <node01> 4

1. The path of the loop device on the node.
2. Specifies it is a block PV.
3. Optional: Set a StorageClass for the PV. If you omit it, the cluster default is used.
4. The node on which the block device was mounted.

5. Create the block PV.

```bash
# oc create -f <local-block-pv10.yaml> 1
```

1. The filename of the PersistentVolume created in the previous step.

6.12.3.4. Creating an upload DataVolume

Create a DataVolume with an **upload** data source to use for uploading local disk images.

Procedure

1. Create a DataVolume configuration that specifies `spec: source: upload{}`:

```yaml
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
  name: <upload-datavolume> 1
spec:
  source:
    upload: {}
pvc:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: <2Gi> 2
```

1. The name of the DataVolume
2. The size of the DataVolume

2. Create the DataVolume:

```bash
$ oc create -f <upload-datavolume>.yaml
```

6.12.3.5. Uploading a local disk image to a new DataVolume
You can use the `virtctl` CLI utility to upload a virtual machine disk image from a client machine to a DataVolume (DV) in your cluster. After you upload the image, you can add it to a virtual machine.

Prerequisites

- A virtual machine disk image, in RAW, ISO, or QCOW2 format, optionally compressed by using `xz` or `gz`.
- The `kubevirt-virtctl` package must be installed on the client machine.
- The client machine must be configured to trust the OpenShift Container Platform router’s certificate.
- A spare DataVolume that is the same size or larger than the disk that you are uploading.

Procedure

1. Identify the following items:
 - File location of the VM disk image that you want to upload
 - Name of the DataVolume

2. Run the `virtctl image-upload` command to upload your disk image. You must specify the DV name and file location. For example:

   ```
   $ virtctl image-upload --dv-name=<upload-datavolume> --image-path=/images/fedora.qcow2
   ```

 - The name of the DataVolume that you are creating.
 - The filepath of the virtual machine disk image you are uploading.

 CAUTION

 To allow insecure server connections when using HTTPS, use the `--insecure` parameter. Be aware that when you use the `--insecure` flag, the authenticity of the upload endpoint is **not** verified.

3. To verify that the DV was created, view all DV objects:

   ```
   $ oc get dvs
   ```

6.12.3.6. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.
6.12.4. Expanding virtual storage by adding blank disk images

You can increase your storage capacity or create new data partitions by adding blank disk images to container-native virtualization.

6.12.4.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.12.4.2. Creating a blank disk image with DataVolumes

You can create a new blank disk image in a PersistentVolumeClaim by customizing and deploying a DataVolume configuration file.

Prerequisites

- At least one available PersistentVolume
- Install the OpenShift Command-line Interface (CLI), commonly known as oc

Procedure

1. Edit the DataVolume configuration file:

```yaml
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
```
2. Create the blank disk image by running the following command:

```
$ oc create -f <blank-image-datavolume>.yaml
```

6.12.4.3. Template: DataVolume configuration file for blank disk images

```
blank-image-datavolume.yaml
```

```yaml
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
  name: blank-image-datavolume
spec:
  source:
    blank: {}
  pvc:
    # Optional: Set the storage class or omit to accept the default
    # storageClassName: "hostpath"
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 500Mi
```

6.12.5. Preparing CDI scratch space

6.12.5.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI) project. DataVolumes orchestrate import, clone, and upload operations that are associated with an underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent a virtual machine from being started before the PVC has been prepared.

6.12.5.2. Understanding scratch space

The Containerized Data Importer (CDI) requires scratch space (temporary storage) to complete some operations, such as importing and uploading virtual machine images. During this process, the CDI provisions a scratch space PVC equal to the size of the PVC backing the destination DataVolume (DV). The scratch space PVC is deleted after the operation completes or aborts.
The CDIConfig object allows you to define which StorageClass to use to bind the scratch space PVC by setting the `scratchSpaceStorageClass` in the `spec:` section of the CDIConfig object.

If the defined StorageClass does not match a StorageClass in the cluster, then the default StorageClass defined for the cluster is used. If there is no default StorageClass defined in the cluster, the StorageClass used to provision the original DV or PVC is used.

NOTE

The CDI requires requesting scratch space with a *file* volume mode, regardless of the PVC backing the origin DataVolume. If the origin PVC is backed by *block* volume mode, you must define a StorageClass capable of provisioning *file* volume mode PVCs.

Manual provisioning

If there are no storage classes, the CDI will use any PVCs in the project that match the size requirements for the image. If there are no PVCs that match these requirements, the CDI import Pod will remain in a *Pending* state until an appropriate PVC is made available or until a timeout function kills the Pod.

6.12.5.3. CDI operations that require scratch space

<table>
<thead>
<tr>
<th>Type</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registry imports</td>
<td>The CDI must download the image to a scratch space and extract the layers to find the image file. The image file is then passed to QEMU-IMG for conversion to a raw disk.</td>
</tr>
<tr>
<td>Upload image</td>
<td>QEMU-IMG does not accept input from STDIN. Instead, the image to upload is saved in scratch space before it can be passed to QEMU-IMG for conversion.</td>
</tr>
<tr>
<td>HTTP imports of archived images</td>
<td>QEMU-IMG does not know how to handle the archive formats CDI supports. Instead, the image is unarchived and saved into scratch space before it is passed to QEMU-IMG.</td>
</tr>
<tr>
<td>HTTP imports of authenticated images</td>
<td>QEMU-IMG inadequately handles authentication. Instead, the image is saved to scratch space and authenticated before it is passed to QEMU-IMG.</td>
</tr>
<tr>
<td>HTTP imports of custom certificates</td>
<td>QEMU-IMG inadequately handles custom certificates of HTTPS endpoints. Instead, the CDI downloads the image to scratch space before passing the file to QEMU-IMG.</td>
</tr>
</tbody>
</table>

6.12.5.4. Defining a StorageClass in the CDI configuration

Define a StorageClass in the CDI configuration to dynamically provision scratch space for CDI operations.

Procedure
- Use the `oc` client to edit the `cdiconfig/config` and add or edit the `spec: scratchSpaceStorageClass` to match a StorageClass in the cluster.

```bash
$ oc edit cdiconfig/config
```

API Version: `cdi.kubevirt.io/v1alpha1`
kind: CDIConfig
metadata:
 name: config
...spec:
 scratchSpaceStorageClass: "<storage_class>"
...

6.12.5.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these operations requires scratch space.

<table>
<thead>
<tr>
<th>Content types</th>
<th>HTTP</th>
<th>HTTPS</th>
<th>HTTP basic auth</th>
<th>Registry</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KubeVirt(QCOW2)</td>
<td>QCOW2 ✓</td>
<td>QCOW2 ✓</td>
<td>QCOW2 ✓</td>
<td>QCOW2 ✓</td>
<td>QCOW2 ✓</td>
</tr>
<tr>
<td></td>
<td>GZ* ✓</td>
<td>GZ* ✓</td>
<td>GZ* ✓</td>
<td>GZ* ✓</td>
<td>GZ* ✓</td>
</tr>
<tr>
<td></td>
<td>XZ* ✓</td>
<td>XZ* ✓</td>
<td>XZ* ✓</td>
<td>XZ* ✓</td>
<td>XZ* ✓</td>
</tr>
<tr>
<td>KubeVirt (RAW)</td>
<td>RAW ✓</td>
<td>RAW ✓</td>
<td>RAW ✓</td>
<td>RAW ✓</td>
<td>RAW ✓</td>
</tr>
<tr>
<td></td>
<td>GZ ✓</td>
<td>GZ ✓</td>
<td>GZ ✓</td>
<td>GZ ✓</td>
<td>GZ ✓</td>
</tr>
<tr>
<td></td>
<td>XZ ✓</td>
<td>XZ ✓</td>
<td>XZ ✓</td>
<td>XZ ✓</td>
<td>XZ ✓</td>
</tr>
<tr>
<td>Archive+</td>
<td>TAR ✓</td>
<td>TAR ✓</td>
<td>TAR ✓</td>
<td>TAR ✓</td>
<td>TAR ✓</td>
</tr>
</tbody>
</table>

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

Additional resources

- See the [Dynamic provisioning](#) section for more information on StorageClasses and how these are defined in the cluster.
CHAPTER 7. VIRTUAL MACHINE TEMPLATES

7.1. CREATING VIRTUAL MACHINE TEMPLATES

Using virtual machines templates is an easy way to create multiple virtual machines with similar configuration. After a template is created, reference the template when creating virtual machines.

7.1.1. Creating a virtual machine template with the interactive wizard in the web console

The web console features an interactive wizard that guides you through the General, Networking, Storage, Advanced, and Review steps to simplify the process of creating virtual machine templates. All required fields are marked with an *. The wizard prevents you from moving to the next step until you provide values in the required fields.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machine Templates.

2. Click Create Template and select New with Wizard.

3. Fill in all required fields in the General step.

4. Click Next to progress to the Networking screen. A NIC that is named nic0 is attached by default.
 a. Optional: Click Add Network Interface to create additional NICs.
 b. Optional: You can remove any or all NICs by clicking the Options menu and selecting Delete. Virtual machines created from a template do not need a NIC attached. NICs can be created after a virtual machine has been created.

5. Click Next to progress to the Storage screen.
 a. Optional: Click Add Disk to create additional disks.
 b. Optional: Click a disk to modify available fields. Click the ✓ button to save the changes.
 c. Optional: Click Disk to choose an available disk from the Select Storage list.

 NOTE

 If either URL or Container are selected as the Source in the General step, a rootdisk disk is created and attached to virtual machines as the Bootable Disk. You can modify the rootdisk but you cannot remove it.

 A Bootable Disk is not required for virtual machines provisioned from a PXE source if there are no disks attached to the virtual machine. If one or more disks are attached to the virtual machine, you must select one as the Bootable Disk.

6. Click Create Virtual Machine Template > The Results screen displays the JSON configuration file for the virtual machine template.
The template is listed in Workloads → Virtual Machine Templates

7.1.2. Virtual machine template interactive wizard fields

The following tables describe the fields for the Basic Settings, Networking, and Storage panes in the Create Virtual Machine Template interactive wizard.

7.1.2.1. Virtual machine template wizard fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>PXE</td>
<td>Provision virtual machine from PXE menu. Requires a PXE-capable NIC in the cluster.</td>
</tr>
<tr>
<td></td>
<td>URL</td>
<td>Provision virtual machine from an image available from an HTTP or S3 endpoint.</td>
</tr>
<tr>
<td></td>
<td>Container</td>
<td>Provision virtual machine from a bootable operating system container located in a registry accessible from the cluster. Example: kubevirt/cirros-registry-disk-demo.</td>
</tr>
<tr>
<td>Disk</td>
<td></td>
<td>Provision virtual machine from a disk.</td>
</tr>
<tr>
<td>Attach disk</td>
<td></td>
<td>Attach an existing disk that was previously cloned or created and made available in the PersistentVolumeClaims. When this option is selected, you must manually complete the Operating System, Flavor, and Workload Profile fields.</td>
</tr>
<tr>
<td>Operating System</td>
<td></td>
<td>The primary operating system that is selected for the virtual machine.</td>
</tr>
<tr>
<td>Flavor</td>
<td>small, medium, large, tiny, Custom</td>
<td>Presets that determine the amount of CPU and memory allocated to the virtual machine. The presets displayed for Flavor are determined by the operating system.</td>
</tr>
<tr>
<td>Name</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Workload Profile</td>
<td>High Performance</td>
<td>A virtual machine configuration that is optimized for high-performance workloads.</td>
</tr>
<tr>
<td>Server</td>
<td></td>
<td>A profile optimized to run server workloads.</td>
</tr>
<tr>
<td>Desktop</td>
<td></td>
<td>A virtual machine configuration for use on a desktop.</td>
</tr>
</tbody>
</table>

Name

The name can contain lowercase letters (a-z), numbers (0-9), and hyphens (-), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, periods (.), or special characters.

Description

Optional description field.

7.1.2.2. Cloud-init fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>Sets a specific host name for the virtual machine.</td>
</tr>
<tr>
<td>Authenticated SSH Keys</td>
<td>The user’s public key that is copied to ~/.ssh/authorized_keys on the virtual machine.</td>
</tr>
<tr>
<td>Use custom script</td>
<td>Replaces other options with a field in which you paste a custom cloud-init script.</td>
</tr>
</tbody>
</table>

7.1.2.3. Networking fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name for the Network Interface Card.</td>
</tr>
<tr>
<td>Model</td>
<td>Driver for the Network Interface Card or model for the Network Interface Card.</td>
</tr>
<tr>
<td>Network</td>
<td>List of available NetworkAttachmentDefinition objects.</td>
</tr>
</tbody>
</table>
7.1.2.4. Storage fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Select a blank disk for the virtual machine or choose from the options available: PXE, Container, URL or Disk. To select an existing disk and attach it to the virtual machine, choose Attach Disk from a list of available PersistentVolumeClaims (PVCs) or from a cloned disk.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the disk. The name can contain lowercase letters (a-z), numbers (0-9), hyphens (-), and periods (.), up to a maximum of 253 characters. The first and last characters must be alphanumeric. The name must not contain uppercase letters, spaces, or special characters.</td>
</tr>
<tr>
<td>Size (GiB)</td>
<td>Size, in GiB, of the disk.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>Storage class</td>
<td>Name of the underlying StorageClass.</td>
</tr>
</tbody>
</table>

7.2. EDITING VIRTUAL MACHINE TEMPLATES

You can update a virtual machine template in the web console, either by editing the full configuration in the YAML editor or by editing a subset of the parameters in the Virtual Machine Template Overview screen.

7.2.1. Editing a virtual machine template in the web console
Edit select values of a virtual machine template in the Virtual Machine Template Overview screen of the web console by clicking on the pencil icon next to the relevant field. Other values can be edited using the CLI.

Procedure
1. Click **Workloads → Virtual Machine Templates** from the side menu.
2. Select a virtual machine template to open the Virtual Machine Template Overview screen.
3. Click the pencil icon to make that field editable.
4. Make the relevant changes and click **Save**.

Editing a virtual machine template will not affect virtual machines already created from that template.

7.2.2. Editing virtual machine template YAML configuration in the web console

You can edit the YAML configuration of a virtual machine template from the web console.

Not all parameters can be modified. If you click **Save** with an invalid configuration, an error message indicates the parameter that cannot be modified.

NOTE
Navigating away from the YAML screen while editing cancels any changes to the configuration that you made.

Procedure
1. In the container-native virtualization console, click **Workloads → Virtual Machine Templates**.
2. Select a template.
3. Click the **YAML** tab to display the editable configuration.
4. Edit the file and click **Save**.

A confirmation message, which includes the updated version number for the object, shows the modification has been successful.

7.2.3. Adding a virtual disk to a virtual machine template

Use this procedure to add a virtual disk to a virtual machine template.

Procedure
1. From the **Virtual Machine Templates** tab, select your virtual machine template.
2. Select the **Disks** tab.
3. Click **Add Disks** to open the **Add Disk** window.
4. In the **Add Disk** window, specify **Source, Name, Size, Interface**, and **Storage Class**.
5. Use the drop-down lists and check boxes to edit the disk configuration.
6. Click OK.

7.2.4. Adding a network interface to a virtual machine template

Use this procedure to add a network interface to a virtual machine template.

Procedure

1. From the Virtual Machine Templates tab, select the virtual machine template.
2. Select the Network Interfaces tab.
3. Click Add Network Interface.
4. In the Add Network Interface window, specify the Name, Model, Network, Type, and MAC Address of the network interface.
5. Click Add to add the network interface.
6. Restart the virtual machine to enable access.
7. Edit the drop-down lists and check boxes to configure the network interface.
8. Click Save Changes.
9. Click OK.

The new network interface displays at the top of the Create Network Interface list until the user restarts it.

The new network interface has a Pending VM restart Link State until you restart the virtual machine. Hover over the Link State to display more detailed information.

The Link State is set to Up by default when the network interface card is defined on the virtual machine and connected to the network.

7.2.5. Editing CD-ROMs for Virtual Machine Templates

Use the following procedure to configure CD-ROMs for virtual machines.

Procedure

1. From the Virtual Machine Templates tab, select your virtual machine template.
2. Select the Overview tab.
3. Click the pencil icon to the right of the CD-ROMs label to open the Edit CD-ROM window.
 - If no CD-ROMs are available for editing, the CD label initially displays blank.
 - If there are CD-ROMs available, you can eject the CD-ROM by clicking Eject CD-ROM or remove it by clicking –.
4. In the Edit CD-ROM window, do the following:
 a. Select the type of CD-ROM configuration in the Media Type field.
• On Windows systems, Windows guest tools is attached by default in the Media Type field.

b. Complete the required information for each Media Type.

c. Click Add CD-ROM.

5. When all CD-ROMs are added, click Save.

7.3. DELETING A VIRTUAL MACHINE TEMPLATE

You can delete a virtual machine template in the web console.

7.3.1. Deleting a virtual machine template in the web console

Deleting a virtual machine template permanently removes it from the cluster.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machine Templates

2. You can delete the virtual machine template from this pane, which makes it easier to perform actions on multiple templates in the one pane, or from the Virtual Machine Template Details pane where you can view comprehensive details of the selected template:

 - Click the Options menu of the template to delete and select Delete Template.

 - Click the template name to open the Virtual Machine Template Details pane and click Actions → Delete Template.

3. In the confirmation pop-up window, click Delete to permanently delete the template.
CHAPTER 8. LIVE MIGRATION

8.1. VIRTUAL MACHINE LIVE MIGRATION

8.1.1. Understanding live migration

Live migration is the process of moving a running virtual machine instance to another node in the cluster without interruption to the virtual workload or access. This can be a manual process, if you select a virtual machine instance to migrate to another node, or an automatic process, if the virtual machine instance has a `LiveMigrate` eviction strategy and the node on which it is running is placed into maintenance.

IMPORTANT
Virtual machines must have a PersistentVolumeClaim (PVC) with a shared ReadWriteMany (RWX) access mode to be live migrated.

Additional resources:
- Migrating a virtual machine instance to another node
- Node maintenance mode
- Live migration limiting

8.2. LIVE MIGRATION LIMITS AND TIMEOUTS

Live migration limits and timeouts are applied so that migration processes do not overwhelm the cluster. Configure these settings by editing the `kubevirt-config` configuration file.

8.2.1. Configuring live migration limits and timeouts

Configure live migration limits and timeouts for the cluster by adding updated key:value fields to the `kubevirt-config` configuration file, which is located in the `openshift-cnv` namespace.

Procedure

- Edit the `kubevirt-config` configuration file and add the necessary live migration parameters. The following example shows the default values:

```bash
$ oc edit configmap kubevirt-config -n openshift-cnv

apiVersion: v1
kind: ConfigMap
metadata:
  name: kubevirt-config
  namespace: kubevirt
labels:
  kubevirt.io: ""
data:
  feature-gates: "LiveMigration"
migrations: |-
```
8.2.2. Cluster-wide live migration limits and timeouts

Table 8.1. Migration parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallelMigrationsPerCluster</td>
<td>Number of migrations running in parallel in the cluster.</td>
<td>5</td>
</tr>
<tr>
<td>parallelOutboundMigrationsPerNode</td>
<td>Maximum number of outbound migrations per node.</td>
<td>2</td>
</tr>
<tr>
<td>bandwidthPerMigration</td>
<td>Bandwidth limit of each migration, in MiB/s.</td>
<td>64Mi</td>
</tr>
<tr>
<td>completionTimeoutPerGiB</td>
<td>The migration will be canceled if it has not completed in this time, in seconds per GiB of memory. For example, a virtual machine instance with 6GiB memory will timeout if it has not completed migration in 4800 seconds. If the Migration Method is BlockMigration, the size of the migrating disks is included in the calculation.</td>
<td>800</td>
</tr>
<tr>
<td>progressTimeout</td>
<td>The migration will be canceled if memory copy fails to make progress in this time, in seconds.</td>
<td>150</td>
</tr>
</tbody>
</table>

8.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE

Manually initiate a live migration of a virtual machine instance to another node using either the web console or the CLI.

8.3.1. Initiating live migration of a virtual machine instance in the web console

Migrate a running virtual machine instance to a different node in the cluster.

NOTE

The Migrate Virtual Machine action is visible to all users but only admin users can initiate a virtual machine migration.
Procedure

1. In the container-native virtualization console, click **Workloads → Virtual Machines**.

2. You can initiate the migration from this screen, which makes it easier to perform actions on multiple virtual machines in the one screen, or from the **Virtual Machine Details** screen where you can view comprehensive details of the selected virtual machine:

 - Click the Options menu at the end of virtual machine and select **Migrate Virtual Machine**.
 - Click the virtual machine name to open the **Virtual Machine Details** screen and click **Actions → Migrate Virtual Machine**

3. Click **Migrate** to migrate the virtual machine to another node.

8.3.2. Initiating live migration of a virtual machine instance in the CLI

Initiate a live migration of a running virtual machine instance by creating a **VirtualMachineInstanceMigration** object in the cluster and referencing the name of the virtual machine instance.

Procedure

1. Create a **VirtualMachineInstanceMigration** configuration file for the virtual machine instance to migrate. For example, **vmi-migrate.yaml**:

   ```yaml
   apiVersion: kubevirt.io/v1alpha3
   kind: VirtualMachineInstanceMigration
   metadata:
     name: migration-job
   spec:
     vmiName: vmi-fedora
   ```

2. Create the object in the cluster:

   ```bash
   $ oc create -f vmi-migrate.yaml
   ```

 The **VirtualMachineInstanceMigration** object triggers a live migration of the virtual machine instance. This object exists in the cluster for as long as the virtual machine instance is running, unless manually deleted.

Additional resources:

- Monitoring live migration of a virtual machine instance
- Cancelling the live migration of a virtual machine instance

8.4. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE

You can monitor the progress of a live migration of a virtual machine instance from either the web console or the CLI.
8.4.1. Monitoring live migration of a virtual machine instance in the web console

For the duration of the migration, the virtual machine has a status of **Migrating**. This status is displayed in the **Virtual Machines** list or in the **Virtual Machine Details** screen for the migrating virtual machine.

Procedure

- In the container-native virtualization console, click **Workloads → Virtual Machines**.

8.4.2. Monitoring live migration of a virtual machine instance in the CLI

The status of the virtual machine migration is stored in the **Status** component of the **VirtualMachineInstance** configuration.

Procedure

- Use the `oc describe` command on the migrating virtual machine instance:

  ```bash
  $ oc describe vmi vmi-fedora
  ...
  Status:
  Conditions:
    Last Probe Time:       <nil>
    Last Transition Time:  <nil>
  Status:                True
  Type:                  LiveMigratable
  Migration Method:      LiveMigration
  Migration State:
    Completed: true
  End Timestamp:         2018-12-24T06:19:42Z
  Migration UID:         d78c8962-0743-11e9-a540-fa163e0c69f1
  Source Node:           node2.example.com
  Start Timestamp:       2018-12-24T06:19:35Z
  Target Node:           node1.example.com
  Target Node Address:   10.9.0.18:43891
  Target Node Domain Detected: true
  ```

8.5. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE

Cancel the live migration so that the virtual machine instance remains on the original node.

You can cancel a live migration from either the web console or the CLI.

8.5.1. Cancelling live migration of a virtual machine instance in the web console

A live migration of the virtual machine instance can be cancelled using the Options menu found on each virtual machine in the **Workloads → Virtual Machines** screen, or from the **Actions** menu on the **Virtual Machine Details** screen.
Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. You can cancel the migration from this screen, which makes it easier to perform actions on multiple virtual machines in the one screen, or from the Virtual Machine Details screen where you can view comprehensive details of the selected virtual machine:

 - Click the Options menu at the end of virtual machine and select Cancel Virtual Machine Migration.

 - Click the virtual machine name to open the Virtual Machine Details screen and click Actions → Cancel Virtual Machine Migration

3. Click Cancel Migration to cancel the virtual machine live migration.

8.5.2. Cancelling live migration of a virtual machine instance in the CLI

Cancel the live migration of a virtual machine instance by deleting the VirtualMachineInstanceMigration object associated with the migration.

Procedure

- Delete the VirtualMachineInstanceMigration object that triggered the live migration, migration-job in this example:

 $ oc delete vmim migration-job

8.6. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY

The LiveMigrate eviction strategy ensures that a virtual machine instance is not interrupted if the node is placed into maintenance or drained. Virtual machines instances with this eviction strategy will be live migrated to another node.

8.6.1. Configuring custom virtual machines with the LiveMigration eviction strategy

You only need to configure the LiveMigration eviction strategy on custom virtual machines. Common templates have this eviction strategy configured by default.

Procedure

1. Add the evictionStrategy: LiveMigrate option to the spec section in the virtual machine configuration file. This example uses oc edit to update the relevant snippet of the VirtualMachine configuration file:

 $ oc edit vm <custom-vm> -n <my-namespace>

   ```yaml
   apiVersion: kubevirt.io/v1alpha3
   kind: VirtualMachine
   metadata:
     name: custom-vm
   spec:
   ```
Restart the virtual machine for the update to take effect:

```bash
$ virtctl restart <custom-vm> -n <my-namespace>
```
CHAPTER 9. NODE MAINTENANCE

9.1. MANUALLY REFRESHING TLS CERTIFICATES

The TLS certificates for container-native virtualization components are created at the time of installation and are valid for one year. You must manually refresh these certificates before they expire.

9.1.1. Refreshing TLS certificates

To refresh the TLS certificates for container-native virtualization, download and run the rotate-certs script. This script is available from the kubevirt/hyperconverged-cluster-operator repository on GitHub.

IMPORTANT

When refreshing the certificates, the following operations are impacted:

- Migrations are canceled
- Image uploads are canceled
- VNC and console connections are closed

Prerequisites

- Ensure that you are logged in to the cluster as a user with cluster-admin privileges. The script uses your active session to the cluster to refresh certificates in the openshift-cnv namespace.

Procedure

1. Download the rotate-certs.sh script from GitHub:

2. Ensure the script is executable:

 $ chmod +x rotate-certs.sh

3. Run the script:

 $./rotate-certs.sh -n openshift-cnv

The TLS certificates are refreshed and valid for one year.

9.2. NODE MAINTENANCE MODE

9.2.1. Understanding node maintenance mode

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines and pods from it. Virtual machine instances that have a LiveMigrate eviction strategy are live migrated to another node without loss of service. This eviction strategy is configured by default in virtual machine
Virtual machine instances without an eviction strategy will be deleted on the node and recreated on another node.

IMPORTANT

Virtual machines must have a PersistentVolumeClaim (PVC) with a shared ReadWriteMany (RWX) access mode to be live migrated.

Additional resources:
- Virtual machine live migration
- Configuring virtual machine eviction strategy

9.3. SETTING A NODE TO MAINTENANCE MODE

9.3.1. Understanding node maintenance mode

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines and pods from it. Virtual machine instances that have a `LiveMigrate` eviction strategy are live migrated to another node without loss of service. This eviction strategy is configured by default in virtual machine created from common templates but must be configured manually for custom virtual machines.

Virtual machine instances without an eviction strategy will be deleted on the node and recreated on another node.

IMPORTANT

Virtual machines must have a PersistentVolumeClaim (PVC) with a shared ReadWriteMany (RWX) access mode to be live migrated.

Place a node into maintenance from either the web console or the CLI.

9.3.2. Setting a node to maintenance mode in the web console

Set a node to maintenance mode using the Options menu found on each node in the Compute → Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. In the container-native virtualization console, click Compute → Nodes.
2. You can set the node to maintenance from this screen, which makes it easier to perform actions on multiple nodes in the one screen or from the Node Details screen where you can view comprehensive details of the selected node:
 - Click the Options menu at the end of the node and select Start Maintenance.
3. Click **Start Maintenance** in the confirmation window.

The node will live migrate virtual machine instances that have the `liveMigration` eviction strategy, and the node is no longer schedulable. All other pods and virtual machines on the node are deleted and recreated on another node.

9.3.3. Setting a node to maintenance mode in the CLI

Set a node to maintenance mode by creating a **NodeMaintenance** Custom Resource (CR) object that references the node name and the reason for setting it to maintenance mode.

Procedure

1. Create the node maintenance CR configuration. This example uses a CR that is called **node02-maintenance.yaml**:

   ```yaml
   apiVersion: kubevirt.io/v1alpha1
   kind: NodeMaintenance
   metadata:
     name: node02-maintenance
   spec:
     nodeName: node02
     reason: "Replacing node02"
   
   $ oc apply -f <node02-maintenance.yaml>
   ``

   The node live migrates virtual machine instances that have the `liveMigration` eviction strategy, and taint the node so that it is no longer schedulable. All other pods and virtual machines on the node are deleted and recreated on another node.

**Additional resources:**

- [Resuming a node from maintenance mode](#)

### 9.4. RESUMING A NODE FROM MAINTENANCE MODE

Resuming a node brings it out of maintenance mode and schedulable again.

Resume a node from maintenance from either the web console or the CLI.

#### 9.4.1. Resuming a node from maintenance mode in the web console

Resume a node from maintenance mode using the Options menu found on each node in the **Compute → Nodes** list, or using the **Actions** control of the **Node Details** screen.

**Procedure**
1. In the container-native virtualization console, click **Compute → Nodes**.

2. You can resume the node from this screen, which makes it easier to perform actions on multiple nodes in the one screen, or from the **Node Details** screen where you can view comprehensive details of the selected node:

   - Click the Options menu at the end of the node and select **Stop Maintenance**.
   - Click the node name to open the **Node Details** screen and click **Actions → Stop Maintenance**.

3. Click **Stop Maintenance** in the confirmation window.

The node becomes schedulable, but virtual machine instances that were running on the node prior to maintenance will not automatically migrate back to this node.

### 9.4.2. Resuming a node from maintenance mode in the CLI

Resume a node from maintenance mode and make it schedulable again by deleting the **NodeMaintenance** object for the node.

**Procedure**

1. Find the **NodeMaintenance** object:

   ```
 $ oc get nodemaintenance
   ```

2. Optional: Inspect the **NodeMaintenance** object to ensure it is associated with the correct node:

   ```
 $ oc describe nodemaintenance <node02-maintenance>
   ```

   Name: node02-maintenance

   Namespace:

   Labels:

   Annotations:

   API Version: kubevirt.io/v1alpha1

   Kind: NodeMaintenance

   Spec:

   Node Name: node02

   Reason: Replacing node02

3. Delete the **NodeMaintenance** object:

   ```
 $ oc delete nodemaintenance <node02-maintenance>
   ```
CHAPTER 10. LOGGING, EVENTS, AND MONITORING

10.1. VIEWING VIRTUAL MACHINE LOGS

10.1.1. Understanding virtual machine logs

Logs are collected for OpenShift Container Platform Builds, Deployments, and Pods. In container-native virtualization, virtual machine logs can be retrieved from the virtual machine launcher Pod in either the web console or the CLI.

The `-f` option follows the log output in real time, which is useful for monitoring progress and error checking.

If the launcher Pod is failing to start, use the `--previous` option to see the logs of the last attempt.

WARNING

`ErrImagePull` and `ImagePullBackOff` errors can be caused by an incorrect Deployment configuration or problems with the images that are referenced.

10.1.2. Viewing virtual machine logs in the CLI

Get virtual machine logs from the virtual machine launcher Pod.

Procedure

- Use the following command:

  ```bash
 $ oc logs <virt-launcher-name>
  ```

10.1.3. Viewing virtual machine logs in the web console

Get virtual machine logs from the associated virtual machine launcher Pod.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.
2. Click the virtual machine to open the Virtual Machine Details panel.
3. In the Overview tab, click the `virt-launcher-<name>` Pod in the POD section.
4. Click Logs.

10.2. VIEWING EVENTS

10.2.1. Understanding virtual machine events
OpenShift Container Platform events are records of important life-cycle information in a namespace and are useful for monitoring and troubleshooting resource scheduling, creation, and deletion issues.

Container-native virtualization adds events for virtual machines and virtual machine instances. These can be viewed from either the web console or the CLI.

See also: Viewing system event information in an OpenShift Container Platform cluster.

10.2.2. Viewing the events for a virtual machine in the web console

You can view the stream events for a running a virtual machine from the Virtual Machine Details panel of the web console.

The ■ button pauses the events stream. The ▶ button continues a paused events stream.

Procedure

1. Click Workloads → Virtual Machines from the side menu.
2. Select a Virtual Machine.
3. Click Events to view all events for the virtual machine.

10.2.3. Viewing namespace events in the CLI

Use the OpenShift Container Platform client to get the events for a namespace.

Procedure

- In the namespace, use the `oc get` command:

  ```
 $ oc get events
  ```

10.2.4. Viewing resource events in the CLI

Events are included in the resource description, which you can get using the OpenShift Container Platform client.

Procedure

- In the namespace, use the `oc describe` command. The following example shows how to get the events for a virtual machine, a virtual machine instance, and the virt-launcher Pod for a virtual machine:

  ```
 $ oc describe vm <vm>
 $ oc describe vmi <vmi>
 $ oc describe pod virt-launcher-<name>
  ```

10.3. VIEWING INFORMATION ABOUT VIRTUAL MACHINE WORKLOADS
You can view high-level information about your virtual machines by using the Virtual Machines dashboard in the OpenShift Container Platform web console.

10.3.1. About the Virtual Machines dashboard

Access the Virtual Machines dashboard from the OpenShift Container Platform web console by navigating to the Workloads → Virtual Machines page and selecting a virtual machine.

The dashboard includes the following cards:

- **Details** provides identifying information about the virtual machine, including:
  - Name
  - Namespace
  - Date of creation
  - Node name
  - IP address

- **Inventory** lists the virtual machine’s resources, including:
  - Network interface controllers (NICs)
  - Disks

- **Status** includes:
  - The current status of the virtual machine
  - A note indicating whether or not the QEMU guest agent is installed on the virtual machine

- **Utilization** includes charts that display usage data for:
  - CPU
  - Memory
  - Filesystem
  - Network transfer

**NOTE**

Use the drop-down list to choose a duration for the utilization data. The available options are 1 Hour, 6 Hours, and 24 Hours.

- **Events** lists messages about virtual machine activity over the past hour. To view additional events, click View all.

10.4. MONITORING VIRTUAL MACHINE HEALTH

Use this procedure to create liveness and readiness probes to monitor virtual machine health.
10.4.1. About liveness and readiness probes

When a VirtualMachineInstance (VMI) fails, liveness probes stop the VMI. Controllers such as VirtualMachine then spawn other VMIs, restoring virtual machine responsiveness.

Readiness probes tell services and endpoints that the VirtualMachineInstance is ready to receive traffic from services. If readiness probes fail, the VirtualMachineInstance is removed from applicable endpoints until the probe recovers.

10.4.2. Define an HTTP liveness probe

This procedure provides an example configuration file for defining HTTP liveness probes.

Procedure

1. Customize a YAML configuration file to create an HTTP liveness probe, using the following code block as an example. In this example:

   - You configure a probe using `spec.livenessProbe.httpGet`, which queries port 1500 of the VirtualMachineInstance, after an initial delay of 120 seconds.

   - The VirtualMachineInstance installs and runs a minimal HTTP server on port 1500 using cloud-init.

```yaml
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-fedora
 name: vmi-fedora
spec:
domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
resources:
 requests:
 memory: 1024M
livenessProbe:
 initialDelaySeconds: 120
 periodSeconds: 20
 httpGet:
 port: 1500
 timeoutSeconds: 10
 terminationGracePeriodSeconds: 0
 volumes:
 - name: containerdisk
 registryDisk:
 image: kubevirt/fedora-cloud-registry-disk-demo
 cloudInitNoCloud:
 userData: |
```

Procedure

1. Customize a YAML configuration file to create a TCP liveness probe, using this code block as an example. In this example:

   - You configure a probe using `spec.livenessProbe.tcpSocket`, which queries port 1500 of the VirtualMachineInstance, after an initial delay of 120 seconds.
   
   - The VirtualMachineInstance installs and runs a minimal HTTP server on port 1500 using `cloud-init`.

```yaml
#cloud-config
password: fedora
chpasswd: { expire: false }
bootcmd:
 - setenforce 0
 - dnf install -y nmap-ncat
 - systemctl-run --unit=httpserver nc -l -p 1500 -e '/usr/bin/echo -e HTTP/1.1 200 OK\n\nHello World!'
name: cloudinitdisk

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-fedora
 name: vmi-fedora
spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 resources:
 requests:
 memory: 1024M
 livenessProbe:
 initialDelaySeconds: 120
 periodSeconds: 20
 tcpSocket:
 port: 1500
 timeoutSeconds: 10
 terminationGracePeriodSeconds: 0
```

2. Create the VirtualMachineInstance by running the following command:

   ```bash
 $ oc create -f <file name>.yaml
   ```

10.4.3. Define a TCP liveness probe

This procedure provides an example configuration file for defining TCP liveness probes.
Create the VirtualMachineInstance by running the following command:

```bash
$ oc create -f <file name>.yaml
```

10.4.4. Define a readiness probe

This procedure provides an example configuration file for defining readiness probes.

Procedure

1. Customize a YAML configuration file to create a readiness probe. Readiness probes are configured in a similar manner to liveness probes. However, note the following differences in this example:

   - Readiness probes are saved using a different spec name. For example, you create a readiness probe as `spec.readinessProbe` instead of as `spec.livenessProbe.<type-of-probe>`.
   - When creating a readiness probe, you optionally set a `failureThreshold` and a `successThreshold` to switch between `ready` and `non-ready` states, should the probe succeed or fail multiple times.

```yaml
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-fedora
 name: vmi-fedora
spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
resources:
```
2. Create the VirtualMachineInstance by running the following command:

   `$ oc create -f <file name>.yaml`

10.5. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD TO GET CLUSTER INFORMATION

Access the OpenShift Container Platform dashboard, which captures high-level information about the cluster, by clicking **Home > Dashboards > Overview** from the OpenShift Container Platform web console.

The OpenShift Container Platform dashboard provides various cluster information, captured in individual dashboard **cards**.

10.5.1. About the OpenShift Container Platform dashboards page

The OpenShift Container Platform dashboard consists of the following cards:

- **Details** provides a brief overview of informational cluster details. Status include **ok**, **error**, **warning**, **in progress**, and **unknown**. Resources can add custom status names.
  - Cluster ID
  - Provider
  - Version
• **Cluster Inventory** details number of resources and associated statuses. It is helpful when intervention is required to resolve problems, including information about:
  - Number of nodes
  - Number of Pods
  - Persistent storage volume claims
  - Virtual machines (available if container-native virtualization is installed)
  - Bare metal hosts in the cluster, listed according to their state (only available in metal3 environment).

• **Cluster Health** summarizes the current health of the cluster as a whole, including relevant alerts and descriptions. If container-native virtualization is installed, the overall health of container-native virtualization is diagnosed as well. If more than one subsystem is present, click **See All** to view the status of each subsystem.

• **Cluster Capacity** charts help administrators understand when additional resources are required in the cluster. The charts contain an inner ring that displays current consumption, while an outer ring displays thresholds configured for the resource, including information about:
  - CPU time
  - Memory allocation
  - Storage consumed
  - Network resources consumed

• **Cluster Utilization** shows the capacity of various resources over a specified period of time, to help administrators understand the scale and frequency of high resource consumption.

• **Events** lists messages related to recent activity in the cluster, such as Pod creation or virtual machine migration to another host.

• **Top Consumers** helps administrators understand how cluster resources are consumed. Click on a resource to jump to a detailed page listing Pods and nodes that consume the largest amount of the specified cluster resource (CPU, memory, or storage).

## 10.6. OPENSIGHT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY

OpenShift Container Platform provides various resources for monitoring at the cluster level.

### 10.6.1. About OpenShift Container Platform cluster monitoring

OpenShift Container Platform includes a pre-configured, pre-installed, and self-updating monitoring stack that is based on the Prometheus open source project and its wider eco-system. It provides monitoring of cluster components and includes a set of alerts to immediately notify the cluster administrator about any occurring problems and a set of Grafana dashboards. The cluster monitoring stack is only supported for monitoring OpenShift Container Platform clusters.
**IMPORTANT**

To ensure compatibility with future OpenShift Container Platform updates, configuring only the specified monitoring stack options is supported.

### 10.6.2. Cluster logging components

The cluster logging components are based upon Elasticsearch, Fluentd, and Kibana (EFK). The collector, Fluentd, is deployed to each node in the OpenShift Container Platform cluster. It collects all node and container logs and writes them to Elasticsearch (ES). Kibana is the centralized, web UI where users and administrators can create rich visualizations and dashboards with the aggregated data.

There are currently 5 different types of cluster logging components:

- **logStore** - This is where the logs will be stored. The current implementation is Elasticsearch.
- **collection** - This is the component that collects logs from the node, formats them, and stores them in the logStore. The current implementation is Fluentd.
- **visualization** - This is the UI component used to view logs, graphs, charts, and so forth. The current implementation is Kibana.
- **curation** - This is the component that trims logs by age. The current implementation is Curator.
- **event routing** - This is the component forwards OpenShift Container Platform events to cluster logging. The current implementation is Event Router.

For more information on cluster logging, see the OpenShift Container Platform cluster logging documentation.

### 10.6.3. About Telemetry

Telemetry sends a carefully chosen subset of the cluster monitoring metrics to Red Hat. These metrics are sent continuously and describe:

- The size of an OpenShift Container Platform cluster
- The health and status of OpenShift Container Platform components
- The health and status of any upgrade being performed
- Limited usage information about OpenShift Container Platform components and features
- Summary info about alerts reported by the cluster monitoring component

This continuous stream of data is used by Red Hat to monitor the health of clusters in real time and to react as necessary to problems that impact our customers. It also allows Red Hat to roll out OpenShift Container Platform upgrades to customers so as to minimize service impact and continuously improve the upgrade experience.

This debugging information is available to Red Hat Support and engineering teams with the same restrictions as accessing data reported via support cases. All connected cluster information is used by Red Hat to help make OpenShift Container Platform better and more intuitive to use. None of the information is shared with third parties.

### 10.6.3.1. Information collected by Telemetry
Primary information collected by Telemetry includes:

- The number of updates available per cluster
- Channel and image repository used for an update
- The number of errors that occurred during an update
- Progress information of running updates
- The number of machines per cluster
- The number of CPU cores and size of RAM of the machines
- The number of members in the etcd cluster and number of objects currently stored in the etcd cluster
- The number of CPU cores and RAM used per machine type - infra or master
- The number of CPU cores and RAM used per cluster
- The number of running virtual machine instances in the cluster
- Use of OpenShift Container Platform framework components per cluster
- The version of the OpenShift Container Platform cluster
- Health, condition, and status for any OpenShift Container Platform framework component that is installed on the cluster, for example Cluster Version Operator, Cluster Monitoring, Image Registry, and Elasticsearch for Logging
- A unique random identifier that is generated during installation
- The name of the platform that OpenShift Container Platform is deployed on, such as Amazon Web Services

Telemetry does not collect identifying information such as user names, passwords, or the names or addresses of user resources.

10.6.4. CLI troubleshooting and debugging commands

For a list of the `oc` client troubleshooting and debugging commands, see the OpenShift Container Platform CLI tools documentation.

10.7. COLLECTING CONTAINER-NATIVE VIRTUALIZATION DATA FOR RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red Hat Support.

The `must-gather` tool enables you to collect diagnostic information about your OpenShift Container Platform cluster, including virtual machines and other data related to container-native virtualization.

For prompt support, supply diagnostic information for both OpenShift Container Platform and container-native virtualization.
IMPORTANT

Container-native virtualization is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

10.7.1. About the must-gather tool

The `oc adm must-gather` CLI command collects the information from your cluster that is most likely needed for debugging issues, such as:

- Resource definitions
- Audit logs
- Service logs

You can specify one or more images when you run the command by including the `--image` argument. When you specify an image, the tool collects data related to that feature or product.

When you run `oc adm must-gather`, a new Pod is created on the cluster. The data is collected on that Pod and saved in a new directory that starts with `must-gather.local`. This directory is created in the current working directory.

10.7.2. About collecting container-native virtualization data

You can use the `oc adm must-gather` CLI command to collect information about your cluster, including features and objects associated with container-native virtualization:

- The Hyperconverged Cluster Operator namespaces (and child objects)
- All namespaces (and their child objects) that belong to any container-native virtualization resources
- All container-native virtualization Custom Resource Definitions (CRDs)
- All namespaces that contain virtual machines
- All virtual machine definitions

To collect container-native virtualization data with `must-gather`, you must specify the container-native virtualization image: `--image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8`.

10.7.3. Gathering data about specific features

You can gather debugging information about specific features by using the `oc adm must-gather` CLI command with the `--image` or `--image-stream` argument. The `must-gather` tool supports multiple images, so you can gather data about more than one feature by running a single command.

Prerequisites
• Access to the cluster as a user with the `cluster-admin` role.
• The OpenShift Container Platform CLI (`oc`) installed.

**Procedure**

1. Navigate to the directory where you want to store the `must-gather` data.

2. Run the `oc adm must-gather` command with one or more `--image` or `--image-stream` arguments. For example, the following command gathers both the default cluster data and information specific to container-native virtualization:

   ```bash
 $ oc adm must-gather \
 --image-stream=openshift/must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8
   ```

   1. Default OpenShift Container Platform must-gather image
   2. Container-native virtualization must-gather image

3. Create a compressed file from the `must-gather` directory that was just created in your working directory. For example, on a computer that uses a Linux operating system, run the following command:

   ```bash
 $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/
   ```

   1. Make sure to replace `must-gather-local.5421342344627712289/` with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal.