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CHAPTER 1. OPENSHIFT CONTAINER PLATFORM
ARCHITECTURE

1.1. INTRODUCTION TO OPENSHIFT CONTAINER PLATFORM

OpenShift Container Platform is a platform for developing and running containerized applications. It is
designed to allow applications and the data centers that support them to expand from just a few
machines and applications to thousands of machines that serve millions of clients.

With its foundation in Kubernetes, OpenShift Container Platform incorporates the same technology
that serves as the engine for massive telecommunications, streaming video, gaming, banking, and other
applications. Its implementation in open Red Hat technologies lets you extend your containerized
applications beyond a single cloud to on-premise and multi-cloud environments.

1.1.1. About Kubernetes

Although container images and the containers that run from them are the primary building blocks for
modern application development, to run them at scale requires a reliable and flexible distribution system.
Kubernetes is the defacto standard for orchestrating containers.

Kubernetes is an open source container orchestration engine for automating deployment, scaling, and
management of containerized applications. The general concept of Kubernetes is fairly simple:

® Start with one or more worker nodes to run the container workloads.
® Manage the deployment of those workloads from one or more master nodes.

® Wrap containers in a deployment unit called a Pod. Using Pods provides extra metadata with the
container and offers the ability to group several containers in a single deployment entity.

® Create special kinds of assets. For example, services are represented by a set of Pods and a
policy that defines how they are accessed. This policy allows containers to connect to the
services that they need even if they do not have the specific IP addresses for the services.
Replication controllers are another special asset that indicates how many Pod Replicas are
required to run at a time. You can use this capability to automatically scale your application to
adapt to its current demand.

In only a few years, Kubernetes has seen massive cloud and on-premise adoption. The open source
development model allows many people to extend Kubernetes by implementing different technologies
for components such as networking, storage, and authentication.

1.1.2. The benefits of containerized applications

Using containerized applications offers many advantages over using traditional deployment methods.
Where applications were once expected to be installed on operating systems that included all their
dependencies, containers let an application carry their dependencies with them. Creating containerized
applications offers many benefits.

1.1.2.1. Operating system benefits

Containers use small, dedicated Linux operating systems without a kernel. Their file system, networking,
cgroups, process tables, and namespaces are separate from the host Linux system, but the containers
can integrate with the hosts seamlessly when necessary. Being based on Linux allows containers to use
all the advantages that come with the open source development model of rapid innovation.
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Because each container uses a dedicated operating system, you can deploy applications that require
conflicting software dependencies on the same host. Each container carries its own dependent software
and manages its own interfaces, such as networking and file systems, so applications never need to
compete for those assets.

1.1.2.2. Deployment and scaling benefits

If you employ rolling upgrades between major releases of your application, you can continuously
improve your applications without downtime and still maintain compatibility with the current release.

You can also deploy and test a new version of an application alongside the existing version. Deploy the
new application version in addition to the current version. If the container passes your tests, simply
deploy more new containers and remove the old ones.

Since all the software dependencies for an application are resolved within the container itself, you can
use a generic operating system on each host in your data center. You do not need to configure a specific
operating system for each application host. When your data center needs more capacity, you can deploy
another generic host system.

Similarly, scaling containerized applications is simple. OpenShift Container Platform offers a simple,
standard way of scaling any containerized service. For example, if you build applications as a set of
microservices rather than large, monolithic applications, you can scale the individual microservices
individually to meet demand. This capability allows you to scale only the required services instead of the
entire application, which can allow you to meet application demands while using minimal resources.

1.1.3. OpenShift Container Platform overview

OpenShift Container Platform provides enterprise-ready enhancements to Kubernetes, including the
following enhancements:

® Hybrid cloud deployments. You can deploy OpenShift Container Platform clusters to variety of
public cloud platforms or in your data center.

® |ntegrated Red Hat technology. Major components in OpenShift Container Platform come from
Red Hat Enterprise Linux and related Red Hat technologies. OpenShift Container Platform
benefits from the intense testing and certification initiatives for Red Hat's enterprise quality
software.

® Open source development model. Development is completed in the open, and the source code
is available from public software repositories. This open collaboration fosters rapid innovation
and development.

Although Kubernetes excels at managing your applications, it does not specify or manage platform-level
requirements or deployment processes. Powerful and flexible platform management tools and
processes are important benefits that OpenShift Container Platform 4.3 offers. The following sections
describe some unique features and benefits of OpenShift Container Platform.

1.1.3.1. Custom operating system

OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS), a container-oriented
operating system that combines some of the best features and functions of the CoreOS and Red Hat
Atomic Host operating systems. RHCOS is specifically designed for running containerized applications
from OpenShift Container Platform and works with new tools to provide fast installation, Operator-
based management, and simplified upgrades.

RHCOS includes:
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® |[gnition, which OpenShift Container Platform uses as a firstboot system configuration for
initially bringing up and configuring machines.

® CRI-O, a Kubernetes native container runtime implementation that integrates closely with the
operating system to deliver an efficient and optimized Kubernetes experience. CRI-O provides
facilities for running, stopping, and restarting containers. It fully replaces the Docker Container
Engine , which was used in OpenShift Container Platform 3.

e Kubelet, the primary node agent for Kubernetes that is responsible for launching and monitoring
containers.

In OpenShift Container Platform 4.3, you must use RHCOS for all control plane machines, but you can
use Red Hat Enterprise Linux (RHEL) as the operating system for compute machines, which are also
known as worker machines. If you choose to use RHEL workers, you must perform more system
maintenance than if you use RHCOS for all of the cluster machines.

1.1.3.2. Simplified installation and update process

With OpenShift Container Platform 4.3, if you have an account with the right permissions, you can
deploy a production cluster in supported clouds by running a single command and providing a few values.
You can also customize your cloud installation or install your cluster in your data center if you use a
supported platform.

For clusters that use RHCOS for all machines, updating, or upgrading, OpenShift Container Platform is a
simple, highly-automated process. Because OpenShift Container Platform completely controls the
systems and services that run on each machine, including the operating system itself, from a central
control plane, upgrades are designed to become automatic events. If your cluster contains RHEL worker
machines, the control plane benefits from the streamlined update process, but you must perform more
tasks to upgrade the RHEL machines.

1.1.3.3. Other key features

Operators are both the fundamental unit of the OpenShift Container Platform 4.3 code base and a
convenient way to deploy applications and software components for your applications to use. In
OpenShift Container Platform, Operators serve as the platform foundation and remove the need for
manual upgrades of operating systems and control plane applications. OpenShift Container Platform
Operators such as the Cluster Version Operator and Machine Config Operator allow simplified, cluster-
wide management of those critical components.

Operator Lifecycle Manager (OLM) and the OperatorHub provide facilities for storing and distributing
Operators to people developing and deploying applications.

The Red Hat Quay Container Registry is a Quay.io container registry that serves most of the container
images and Operators to OpenShift Container Platform clusters. Quay.io is a public registry version of
Red Hat Quay that stores millions of images and tags.

Other enhancements to Kubernetes in OpenShift Container Platform include improvements in software
defined networking (SDN), authentication, log aggregation, monitoring, and routing. OpenShift

Container Platform also offers a comprehensive web console and the custom OpenShift CLI (o¢)
interface.

1.1.3.4. OpenShift Container Platform lifecycle

The following figure illustrates the basic OpenShift Container Platform lifecycle:

® Creating an OpenShift Container Platform cluster
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® Managing the cluster
® Developing and deploying applications
® Scaling up applications
Figure 1.1. High level OpenShift Container Platform overview
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1.1.4. Internet and Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.3, you require access to the internet to install and entitle your cluster.
The Telemetry service, which runs by default to provide metrics about cluster health and the success of
updates, also requires internet access. If your cluster is connected to the internet, Telemetry runs
automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager. From there, you
can allocate entitlements to your cluster.

You must have internet access to:

® Access the Red Hat OpenShift Cluster Manager page to download the installation program and
perform subscription management and entitlement. If the cluster has internet access and you
do not disable Telemetry, that service automatically entitles your cluster. If the Telemetry
service cannot entitle your cluster, you must manually entitle it on the Cluster registration page.

® Access Quay.io to obtain the packages that are required to install your cluster.

® Obtain the packages that are required to perform cluster updates.

IMPORTANT

If your cluster cannot have direct internet access, you can perform a restricted network
installation on some types of infrastructure that you provision. During that process, you
download the content that is required and use it to populate a mirror registry with the
packages that you need to install a cluster and generate the installation program. With
some installation types, the environment that you install your cluster in will not require
internet access. Before you update the cluster, you update the content of the mirror
registry.
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CHAPTER 2. INSTALLATION AND UPDATE

2.1. OPENSHIFT CONTAINER PLATFORM INSTALLATION OVERVIEW

The OpenShift Container Platform installation program offers you flexibility. You can use the installation
program to deploy a cluster on infrastructure that the installation program provisions and the cluster
maintains or deploy a cluster on infrastructure that you prepare and maintain.

These two basic types of OpenShift Container Platform clusters are frequently called installer-
provisioned infrastructure clusters and user-provisioned infrastructure clusters.

Both types of clusters have the following characteristics:
e Highly available infrastructure with no single points of failure is available by default
® Administrators maintain control over what updates are applied and when

You use the same installation program to deploy both types of clusters. The main assets generated by
the installation program are the Ignition config files for the bootstrap, master, and worker machines.
With these three configurations and correctly configured infrastructure, you can start an OpenShift
Container Platform cluster.

The OpenShift Container Platform installation program uses a set of targets and dependencies to
manage cluster installation. The installation program has a set of targets that it must achieve, and each
target has a set of dependencies. Because each target is only concerned with its own dependencies, the
installation program can act to achieve multiple targets in parallel. The ultimate target is a running
cluster. By meeting dependencies instead of running commands, the installation program is able to
recognize and use existing components instead of running the commands to create them again.

The following diagram shows a subset of the installation targets and dependencies:

Figure 2.1. OpenShift Container Platform installation targets and dependencies
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After installation, each cluster machine uses Red Hat Enterprise Linux CoreOS (RHCOS) as the
operating system. RHCOS is the immutable container host version of Red Hat Enterprise Linux (RHEL)
and features a RHEL kernel with SELinux enabled by default. It includes the kubelet, which is the
Kubernetes node agent, and the CRI-O container runtime, which is optimized for Kubernetes.

Every control plane machine in an OpenShift Container Platform 4.3 cluster must use RHCOS, which
includes a critical first-boot provisioning tool called Ignition. This tool enables the cluster to configure
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the machines. Operating system updates are delivered as an Atomic OSTree repository that is
embedded in a container image that is rolled out across the cluster by an Operator. Actual operating
system changes are made in-place on each machine as an atomic operation by using rpm-ostree.
Together, these technologies enable OpenShift Container Platform to manage the operating system
like it manages any other application on the cluster, via in-place upgrades that keep the entire platform
up-to-date. These in-place updates can reduce the burden on operations teams.

If you use RHCOS as the operating system for all cluster machines, the cluster manages all aspects of its
components and machines, including the operating system. Because of this, only the installation
program and the Machine Config Operator can change machines. The installation program uses Ignition
config files to set the exact state of each machine, and the Machine Config Operator completes more
changes to the machines, such as the application of new certificates or keys, after installation.

2.1.1. Available platforms

In OpenShift Container Platform 4.3, you can install a cluster that uses installer-provisioned
infrastructure on the following platforms:

® Amazon Web Services (AWS)
® Google Cloud Platform (GCP)
® Microsoft Azure

® Red Hat OpenStack Platform (RHOSP) version 13, 15, and 16

o The latest OpenShift Container Platform release supports both the latest RHOSP long-life
release and intermediate release

Red Hat Virtualization (RHV)

For these clusters, all machines, including the computer that you run the installation process on, must
have direct internet access to pull images for platform containers and provide telemetry data to Red
Hat.

In OpenShift Container Platform 4.3, you can install a cluster that uses user-provisioned infrastructure
on the following platforms:

e AWS

e GCP

® VMware vSphere
® Bare metal

With installations on user-provisioned infrastructure, each machine can have full internet access, you
can place your cluster behind a proxy, or you can perform a restricted network installation. In a restricted
network installation, you can download the images that are required to install a cluster, place themin a
mirror registry, and use that data to install your cluster. While you require internet access to pull images
for platform containers, with a restricted network installation on vSphere or bare metal infrastructure,
your cluster machines do not require direct internet access.

The OpenShift Container Platform 4.x Tested Integrations page contains details about integration
testing for different platforms.


https://access.redhat.com/articles/4128421

OpenShift Container Platform 4.3 Architecture

2.1.2. Installation process

When you install an OpenShift Container Platform cluster, you download the installation program from
the appropriate Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site. This site
manages:

® REST API for accounts
® Registry tokens, which are the pull secrets that you use to obtain the required components

e Cluster registration, which associates the cluster identity to your Red Hat account to facilitate
the gathering of usage metrics

In OpenShift Container Platform 4.3, the installation program is a Go binary file that performs a series
of file transformations on a set of assets. The way you interact with the installation program differs
depending on your installation type.

® For clusters with installer-provisioned infrastructure, you delegate the infrastructure
bootstrapping and provisioning to the installation program instead of doing it yourself. The
installation program creates all of the networking, machines, and operating systems that are
required to support the cluster.

e |f you provision and manage the infrastructure for your cluster, you must provide all of the
cluster infrastructure and resources, including the bootstrap machine, networking, load
balancing, storage, and individual cluster machines. You cannot use the advanced machine
management and scaling capabilities that an installer-provisioned infrastructure cluster offers.

You use three sets of files during installation: an installation configuration file that is named install-
config.yaml, Kubernetes manifests, and Ignition config files for your machine types.

IMPORTANT

Itis possible to modify Kubernetes and the Ignition config files that control the
underlying RHCOS operating system during installation. However, no validation is
available to confirm the suitability of any modifications that you make to these objects. If
you modify these objects, you might render your cluster non-functional. Because of this
risk, modifying Kubernetes and Ignition config files is not supported unless you are
following documented procedures or are instructed to do so by Red Hat support.

The installation configuration file is transformed into Kubernetes manifests, and then the manifests are
wrapped into Ignition config files. The installation program uses these Ignition config files to create the
cluster.

The installation configuration files are all pruned when you run the installation program, so be sure to
back up all configuration files that you want to use again.

IMPORTANT

You cannot modify the parameters that you set during installation, but you can modify
many cluster attributes after installation.

The installation process with installer-provisioned infrastructure

The default installation type uses installer-provisioned infrastructure. By default, the installation
program acts as an installation wizard, prompting you for values that it cannot determine on its own and
providing reasonable default values for the remaining parameters. You can also customize the

10


https://cloud.redhat.com/openshift/install

CHAPTER 2. INSTALLATION AND UPDATE

installation process to support advanced infrastructure scenarios. The installation program provisions
the underlying infrastructure for the cluster.

You can install either a standard cluster or a customized cluster. With a standard cluster, you provide
minimum details that are required to install the cluster. With a customized cluster, you can specify more
details about the platform, such as the number of machines that the control plane uses, the type of
virtual machine that the cluster deploys, or the CIDR range for the Kubernetes service network.

If possible, use this feature to avoid having to provision and maintain the cluster infrastructure. In all
other environments, you use the installation program to generate the assets that you require to
provision your cluster infrastructure.

With installer-provisioned infrastructure clusters, OpenShift Container Platform manages all aspects of
the cluster, including the operating system itself. Each machine boots with a configuration that
references resources hosted in the cluster that it joins. This configuration allows the cluster to manage
itself as updates are applied.

The installation process with user-provisioned infrastructure

You can also install OpenShift Container Platform on infrastructure that you provide. You use the
installation program to generate the assets that you require to provision the cluster infrastructure,
create the cluster infrastructure, and then deploy the cluster to the infrastructure that you provided.

If you do not use infrastructure that the installation program provisioned, you must manage and
maintain the cluster resources yourself, including:

® The control plane and compute machines that make up the cluster
® | oad balancers

® Cluster networking, including the DNS records and required subnets
® Storage for the cluster infrastructure and applications

If your cluster uses user-provisioned infrastructure, you have the option of adding RHEL worker
machines to your cluster.

Installation process details

Because each machine in the cluster requires information about the cluster when it is provisioned,
OpenShift Container Platform uses a temporary bootstrap machine during initial configuration to
provide the required information to the permanent control plane. It boots by using an Ignition config file
that describes how to create the cluster. The bootstrap machine creates the master machines that make
up the control plane. The control plane machines then create the compute machines, which are also
known as worker machines. The following figure illustrates this process:

1



OpenShift Container Platform 4.3 Architecture

Figure 2.2. Creating the bootstrap, master, and worker machines
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After the cluster machines initialize, the bootstrap machine is destroyed. All clusters use the bootstrap
process to initialize the cluster, but if you provision the infrastructure for your cluster, you must complete

many of the steps manually.

IMPORTANT

has finished.

Bootstrapping a cluster involves the following steps:

The Ignition config files that the installation program generates contain certificates that
expire after 24 hours. You must complete your cluster installation and keep the cluster
running for 24 hours in a non-degraded state to ensure that the first certificate rotation

1. The bootstrap machine boots and starts hosting the remote resources required for the master

machines to boot. (Requires manual intervention if you provision the infrastructure)

2. The master machines fetch the remote resources from the bootstrap machine and finish
booting. (Requires manual intervention if you provision the infrastructure)

3. The master machines use the bootstrap machine to form an etcd cluster.

4. The bootstrap machine starts a temporary Kubernetes control plane using the new etcd cluster.

5. The temporary control plane schedules the production control plane to the master machines.

6. The temporary control plane shuts down and passes control to the production control plane.

7. The bootstrap machine injects OpenShift Container Platform components into the production

control plane.

8. The installation program shuts down the bootstrap machine. (Requires manual intervention if

you provision the infrastructure)
9. The control plane sets up the worker nodes.

10. The control plane installs additional services in the form of a set of Operators.

The result of this bootstrapping process is a fully running OpenShift Container Platform cluster. The
cluster then downloads and configures remaining components needed for the day-to-day operation,

including the creation of worker machines in supported environments.

12
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Installation process details

Installation scope

The scope of the OpenShift Container Platform installation program is intentionally narrow. It is
designed for simplicity and ensured success. You can complete many more configuration tasks after
installation completes.

2.2. ABOUT THE OPENSHIFT CONTAINER PLATFORM UPDATE
SERVICE

The OpenShift Container Platform update service is the hosted service that provides over-the-air
updates to both OpenShift Container Platform and Red Hat Enterprise Linux CoreOS (RHCOS). It
provides a graph, or diagram that contain vertices and the edges that connect them, of component
Operators. The edges in the graph show which versions you can safely update to, and the vertices are
update payloads that specify the intended state of the managed cluster components.

The Cluster Version Operator (CVO) in your cluster checks with the OpenShift Container Platform
update service to see the valid updates and update paths based on current component versions and
information in the graph. When you request an update, the OpenShift Container Platform CVO uses the
release image for that update to upgrade your cluster. The release artifacts are hosted in Quay as
container images.

To allow the OpenShift Container Platform update service to provide only compatible updates, a release
verification pipeline exists to drive automation. Each release artifact is verified for compatibility with
supported cloud platforms and system architectures as well as other component packages. After the
pipeline confirms the suitability of a release, the OpenShift Container Platform update service notifies
you that it is available.

IMPORTANT

Because the update service displays all valid updates, you must not force an update to a
version that the update service does not display.

During continuous update mode, two controllers run. One continuously updates the payload manifests,
applies them to the cluster, and outputs the status of the controlled rollout of the Operators, whether
they are available, upgrading, or failed. The second controller polls the OpenShift Container Platform
update service to determine if updates are available.

IMPORTANT

Reverting your cluster to a previous version, or a rollback, is not supported. Only
upgrading to a newer version is supported.

During the upgrade process, the Machine Config Operator (MCO) applies the new configuration to your
cluster machines. It cordons the number of nodes that is specified by the maxUnavailable field on the
machine configuration pool and marks them as unavailable. By default, this value is set to 1. It then
applies the new configuration and reboots the machine. If you use Red Hat Enterprise Linux (RHEL)
machines as workers, the MCO does not update the kubelet on these machines because you must
update the OpenShift APl on them first. Because the specification for the new version is applied to the
old kubelet, the RHEL machine cannot return to the Ready state. You cannot complete the update until
the machines are available. However, the maximum number of nodes that are unavailable is set to
ensure that normal cluster operations are likely to continue with that number of machines out of service.

13
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CHAPTER 3. THE OPENSHIFT CONTAINER PLATFORM
CONTROL PLANE

3.1. UNDERSTANDING THE OPENSHIFT CONTAINER PLATFORM
CONTROL PLANE

The control plane, which is composed of master machines, manages the OpenShift Container Platform
cluster. The control plane machines manage workloads on the compute machines, which are also known
as worker machines. The cluster itself manages all upgrades to the machines by the actions of the
Cluster Version Operator, the Machine Config Operator, and set of individual Operators.

3.1.1. Machine roles in OpenShift Container Platform

OpenShift Container Platform assigns hosts different roles. These roles define the function of the
machine within the cluster. The cluster contains definitions for the standard master and worker role
types.

NOTE

The cluster also contains the definition for the bootstrap role. Because the bootstrap
machine is used only during cluster installation, its function is explained in the cluster
installation documentation.

3.1.1.1. Cluster workers

In a Kubernetes cluster, the worker nodes are where the actual workloads requested by Kubernetes
users run and are managed. The worker nodes advertise their capacity and the scheduler, which is part
of the master services, determines on which nodes to start containers and Pods. Important services run
on each worker node, including CRI-O, which is the container engine, Kubelet, which is the service that
accepts and fulfills requests for running and stopping container workloads, and a service proxy, which
manages communication for pods across workers.

In OpenShift Container Platform, MachineSets control the worker machines. Machines with the worker
role drive compute workloads that are governed by a specific machine pool that autoscales them.
Because OpenShift Container Platform has the capacity to support multiple machine types, the worker
machines are classed as compute machines. In this release, the terms "worker machine" and "compute
machine" are used interchangeably because the only default type of compute machine is the worker
machine. In future versions of OpenShift Container Platform, different types of compute machines, such
as infrastructure machines, might be used by default.

3.1.1.2. Cluster masters

In a Kubernetes cluster, the master nodes run services that are required to control the Kubernetes
cluster. In OpenShift Container Platform, the master machines are the control plane. They contain more
than just the Kubernetes services for managing the OpenShift Container Platform cluster. Because all of
the machines with the control plane role are master machines, the terms master and control plane are
used interchangeably to describe them. Instead of being grouped into a MachineSet, master machines
are defined by a series of standalone machine API resources. Extra controls apply to master machines to
prevent you from deleting all master machines and breaking your cluster.
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NOTE

Use three master nodes. Although you can theoretically use any number of master nodes,
the number is constrained by etcd quorum due to master static Pods and etcd static
Pods working on the same hosts.

Services that fall under the Kubernetes category on the master include the API server, etcd, controller
manager server, and HAProxy services.

Table 3.1. Kubernetes services that run on the control plane

Component Description

API Server The Kubernetes API server validates and configures
the data for Pods, Services, and replication
controllers. It also provides a focal point for cluster’s
shared state.

etcd etcd stores the persistent master state while other
components watch etcd for changes to bring
themselves into the specified state.

Controller Manager Server The Controller Manager Server watches etcd for
changes to objects such as replication, namespace,
and serviceaccount controller objects, and then uses
the API to enforce the specified state. Several such
processes create a cluster with one active leader at a
time.

Some of these services on the master machines run as systemd services, while others run as static Pods.

Systemd services are appropriate for services that you need to always come up on that particular
system shortly after it starts. For master machines, those include sshd, which allows remote login. It also
includes services such as:

® The CRI-O container engine (crio), which runs and manages the containers. OpenShift
Container Platform 4.3 uses CRI-O instead of the Docker Container Engine.

e Kubelet (kubelet), which accepts requests for managing containers on the machine from master
services.

CRI-O and Kubelet must run directly on the host as systemd services because they need to be running
before you can run other containers.

3.1.2. Operators in OpenShift Container Platform

In OpenShift Container Platform, Operators are the preferred method of packaging, deploying, and
managing services on the control plane. They also provide advantages to applications that users run.
Operators integrate with Kubernetes APIs and CLI tools such as kubectl and oc commands. They
provide the means of watching over an application, performing health checks, managing over-the-air
updates, and ensuring that the applications remain in your specified state.

Because CRI-O and the Kubelet run on every node, almost every other cluster function can be managed
on the control plane by using Operators. Operators are among the most important components of
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OpenShift Container Platform 4.3. Components that are added to the control plane by using Operators
include critical networking and credential services.

The Operator that manages the other Operators in an OpenShift Container Platform cluster is the
Cluster Version Operator.

OpenShift Container Platform 4.3 uses different classes of Operators to perform cluster operations and
run services on the cluster for your applications to use.

3.1.2.1. Platform Operators in OpenShift Container Platform

In OpenShift Container Platform 4.3, all cluster functions are divided into a series of platform Operators.
Platform Operators manage a particular area of cluster functionality, such as cluster-wide application
logging, management of the Kubernetes control plane, or the machine provisioning system.

Each Operator provides you with a simple API for determining cluster functionality. The Operator hides
the details of managing the lifecycle of that component. Operators can manage a single component or
tens of components, but the end goal is always to reduce operational burden by automating common
actions. Operators also offer a more granular configuration experience. You configure each component
by modifying the API that the Operator exposes instead of modifying a global configuration file.

3.1.2.2. Operators managed by OLM

The Cluster Operator Lifecycle Management (OLM) component manages Operators that are available
for use in applications. It does not manage the Operators that comprise OpenShift Container Platform.
OLM is a framework that manages Kubernetes-native applications as Operators. Instead of managing
Kubernetes manifests, it manages Kubernetes Operators. OLM manages two classes of Operators, Red
Hat Operators and certified Operators.

Some Red Hat Operators drive the cluster functions, like the scheduler and problem detectors. Others
are provided for you to manage yourself and use in your applications, like etcd. OpenShift Container
Platform also offers certified Operators, which the community built and maintains. These certified
Operators provide an API layer to traditional applications so you can manage the application through
Kubernetes constructs.

3.1.2.3. About the OpenShift Container Platform update service

The OpenShift Container Platform update service is the hosted service that provides over-the-air
updates to both OpenShift Container Platform and Red Hat Enterprise Linux CoreOS (RHCOS). It
provides a graph, or diagram that contain vertices and the edges that connect them, of component
Operators. The edges in the graph show which versions you can safely update to, and the vertices are
update payloads that specify the intended state of the managed cluster components.

The Cluster Version Operator (CVO) in your cluster checks with the OpenShift Container Platform
update service to see the valid updates and update paths based on current component versions and
information in the graph. When you request an update, the OpenShift Container Platform CVO uses the
release image for that update to upgrade your cluster. The release artifacts are hosted in Quay as
container images.

To allow the OpenShift Container Platform update service to provide only compatible updates, a release
verification pipeline exists to drive automation. Each release artifact is verified for compatibility with
supported cloud platforms and system architectures as well as other component packages. After the
pipeline confirms the suitability of a release, the OpenShift Container Platform update service notifies
you that it is available.
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IMPORTANT

Because the update service displays all valid updates, you must not force an update to a
version that the update service does not display.

During continuous update mode, two controllers run. One continuously updates the payload manifests,
applies them to the cluster, and outputs the status of the controlled rollout of the Operators, whether
they are available, upgrading, or failed. The second controller polls the OpenShift Container Platform
update service to determine if updates are available.

IMPORTANT

Reverting your cluster to a previous version, or a rollback, is not supported. Only
upgrading to a newer version is supported.

During the upgrade process, the Machine Config Operator (MCO) applies the new configuration to your
cluster machines. It cordons the number of nodes that is specified by the maxUnavailable field on the
machine configuration pool and marks them as unavailable. By default, this value is set to 1. It then
applies the new configuration and reboots the machine. If you use Red Hat Enterprise Linux (RHEL)
machines as workers, the MCO does not update the kubelet on these machines because you must
update the OpenShift APl on them first. Because the specification for the new version is applied to the
old kubelet, the RHEL machine cannot return to the Ready state. You cannot complete the update until
the machines are available. However, the maximum number of nodes that are unavailable is set to
ensure that normal cluster operations are likely to continue with that number of machines out of service.

3.1.2.4. Understanding the Machine Config Operator

OpenShift Container Platform 4.3 integrates both operating system and cluster management. Because
the cluster manages its own updates, including updates to Red Hat Enterprise Linux CoreOS (RHCOS)
on cluster nodes, OpenShift Container Platform provides an opinionated lifecycle management
experience that simplifies the orchestration of node upgrades.

OpenShift Container Platform employs three DaemonSets and controllers to simplify node
management. These DaemonSets orchestrate operating system updates and configuration changes to
the hosts by using standard Kubernetes-style constructs. They include:

e The machine-config-controller, which coordinates machine upgrades from the control plane. It
monitors all of the cluster nodes and orchestrates their configuration updates.

® The machine-config-daemon DaemonSet, which runs on each node in the cluster and updates
a machine to configuration defined by MachineConfig as instructed by the
MachineConfigController. When the node sees a change, it drains off its pods, applies the
update, and reboots. These changes come in the form of Ignition configuration files that apply
the specified machine configuration and control kubelet configuration. The update itself is
delivered in a container. This process is key to the success of managing OpenShift Container
Platform and RHCOS updates together.

e The machine-config-server DaemonSet, which provides the Ignition config files to master
nodes as they join the cluster.

The machine configuration is a subset of the Ignition configuration. The machine-config-daemon reads
the machine configuration to see if it needs to do an OSTree update or if it must apply a series of
systemd kubelet file changes, configuration changes, or other changes to the operating system or
OpenShift Container Platform configuration.
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When you perform node management operations, you create or modify a KubeletConfig Custom
Resource (CR).
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CHAPTER 4. UNDERSTANDING OPENSHIFT CONTAINER
PLATFORM DEVELOPMENT

To fully leverage the capability of containers when developing and running enterprise-quality
applications, ensure your environment is supported by tools that allow containers to be:

® Created as discrete microservices that can be connected to other containerized, and non-
containerized, services. For example, you might want to join your application with a database or

attach a monitoring application to it.

® Resilient, so if a server crashes or needs to go down for maintenance or to be decommissioned,
containers can start on another machine.

® Automated to pick up code changes automatically and then start and deploy new versions of
themselves.

® Scaled up, or replicated, to have more instances serving clients as demand increases and then
spun down to fewer instances as demand declines.

® Run in different ways, depending on the type of application. For example, one application might
run once a month to produce a report and then exit. Another application might need to run
constantly and be highly available to clients.

® Managed so you can watch the state of your application and react when something goes wrong.

Containers’ widespread acceptance, and the resulting requirements for tools and methods to make
them enterprise-ready, resulted in many options for them.

The rest of this section explains options for assets you can create when you build and deploy

containerized Kubernetes applications in OpenShift Container Platform. It also describes which
approaches you might use for different kinds of applications and development requirements.

4.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
You can approach application development with containers in many ways, and different approaches
might be more appropriate for different situations. To illustrate some of this variety, the series of
approaches that is presented starts with developing a single container and ultimately deploys that
container as a mission-critical application for a large enterprise. These approaches show different tools,
formats, and methods that you can employ with containerized application development. This topic
describes:

® Building a simple container and storing it in a registry

® Creating a Kubernetes manifest and saving it to a Git repository

® Making an Operator to share your application with others

4.2. BUILDING A SIMPLE CONTAINER
You have an idea for an application and you want to containerize it.

First you require a tool for building a container, like buildah or docker, and a file that describes what goes
in your container, which is typically a Dockerfile.

19


https://docs.docker.com/engine/reference/builder/

OpenShift Container Platform 4.3 Architecture

Next, you require a location to push the resulting container image so you can pull it to run anywhere you
want it to run. This location is a container registry.

Some examples of each of these components are installed by default on most Linux operating systems,
except for the Dockerfile, which you provide yourself.

The following diagram displays the process of building and pushing an image:

Figure 4.1. Create a simple containerized application and push it to a registry
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If you use a computer that runs Red Hat Enterprise Linux (RHEL) as the operating system, the process
of creating a containerized application requires the following steps:

1.

Install container build tools: RHEL contains a set of tools that includes podman, buildah, and
skopeo that you use to build and manage containers.

Create a Dockerfile to combine base image and software: Information about building your
container goes into a file that is named Dockerfile. In that file, you identify the base image you
build from, the software packages you install, and the software you copy into the container. You
also identify parameter values like network ports that you expose outside the container and
volumes that you mount inside the container. Put your Dockerfile and the software you want to
containerized in a directory on your RHEL system.

Run buildah or docker build: Run the buildah build-using-dockerfile or the docker
build command to pull you chosen base image to the local system and creates a container
image that is stored locally. You can also build container without a Dockerfile by using buildah.

. Tag and push to a registry: Add a tag to your new container image that identifies the location of

the registry in which you want to store and share your container. Then push that image to the
registry by running the podman push or docker push command.

Pull and run the image: From any system that has a container client tool, such as podman or
docker, run a command that identifies your new image. For example, run the podman

run <image_name> or docker run <image_name> command. Here <image_name> is the
name of your new container image, which resembles quay.io/myrepo/myapp:latest. The
registry might require credentials to push and pull images.

For more details on the process of building container images, pushing them to registries, and running
them, see Custom image builds with Buildah .

4.2.1. Container build tool options

While the Docker Container Engine and docker command are popular tools to work with containers, with
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RHEL and many other Linux systems, you can instead choose a different set of container tools that
includes podman, skopeo, and buildah. You can still use Docker Container Engine tools to create
containers that will run in OpenShift Container Platform and any other container platform.

Building and managing containers with buildah, podman, and skopeo results in industry standard
container images that include features tuned specifically for ultimately deploying those containers in
OpenShift Container Platform or other Kubernetes environments. These tools are daemonless and can
be run without root privileges, so there is less overhead in running them.

When you ultimately run your containers in OpenShift Container Platform, you use the CRI-O container
engine. CRI-O runs on every worker and master machine in an OpenShift Container Platform cluster,
but CRI-O is not yet supported as a standalone runtime outside of OpenShift Container Platform.

4.2.2. Base image options

The base image you choose to build your application on contains a set of software that resembles a
Linux system to your application. When you build your own image, your software is placed into that file
system and sees that file system as though it were looking at its operating system. Choosing this base
image has major impact on how secure, efficient and upgradeable your container is in the future.

Red Hat provides a new set of base images referred to as Red Hat Universal Base Images (UBI). These
images are based on Red Hat Enterprise Linux and are similar to base images that Red Hat has offered
in the past, with one major difference: they are freely redistributable without a Red Hat subscription. As
a result, you can build your application on UBI images without having to worry about how they are shared
or the need to create different images for different environments.

These UBI images have standard, init, and minimal versions. You can also use the Red Hat Software
Collections images as a foundation for applications that rely on specific runtime environments such as
Node.js, Perl, or Python. Special versions of some of these runtime base images referred to as Source-
to-image (S2I) images. With S2I images, you can insert your code into a base image environment that is
ready to run that code.

S2limages are available for you to use directly from the OpenShift Container Platform web Ul by
selecting Catalog — Developer Catalog, as shown in the following figure:

Figure 4.2. Choose S2I| base images for apps that need specific runtimes
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4.2.3. Registry options

Container Registries are where you store container images so you can share them with others and make

them available to the platform where they ultimately run. You can select large, public container registries
that offer free accounts or a premium version that offer more storage and special features. You can also
install your own registry that can be exclusive to your organization or selectively shared with others.

To get Red Hat images and certified partner images, you can draw from the Red Hat Registry. The Red
Hat Registry is represented by two locations: registry.access.redhat.com, which is unauthenticated

and deprecated, and registry.redhat.io, which requires authentication. You can learn about the Red Hat
and partner images in the Red Hat Registry from the Red Hat Container Catalog. Besides listing Red Hat
container images, it also shows extensive information about the contents and quality of those images,
including health scores that are based on applied security updates.

Large, public registries include Docker Hub and Quay.io. The Quay.io registry is owned and managed by
Red Hat. Many of the components used in OpenShift Container Platform are stored in Quay.io, including
container images and the Operators that are used to deploy OpenShift Container Platform itself.
Quay.io also offers the means of storing other types of content, including Helm Charts.

If you want your own, private container registry, OpenShift Container Platform itself includes a private
container registry that is installed with OpenShift Container Platform and runs on its cluster. Red Hat
also offers a private version of the Quay.io registry called Red Hat Quay. Red Hat Quay includes geo
replication, Git build triggers, Clair image scanning, and many other features.

All of the registries mentioned here can require credentials to download images from those registries.
Some of those credentials are presented on a cluster-wide basis from OpenShift Container Platform,
while other credentials can be assigned to individuals.

4.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT
CONTAINER PLATFORM

While the container image is the basic building block for a containerized application, more information is
required to manage and deploy that application in a Kubernetes environment such as OpenShift
Container Platform. The typical next steps after you create an image are to:

® Understand the different resources you work with in Kubernetes manifests
® Make some decisions about what kind of an application you are running
® Gather supporting components

® Create a manifest and store that manifest in a Git repository so you can store it in a source
versioning system, audit it, track it, promote and deploy it to the next environment, roll it back to
earlier versions, if necessary, and share it with others

4.3.1. About Kubernetes Pods and services

While the container image is the basic unit with docker, the basic units that Kubernetes works with are
called Pods. Pods represent the next step in building out an application. A Pod can contain one or more
than one container. The key is that the Pod is the single unit that you deploy, scale, and manage.

Scalability and namespaces are probably the main items to consider when determining what goesin a
Pod. For ease of deployment, you might want to deploy a container in a Pod and include its own logging
and monitoring container in the Pod. Later, when you run the Pod and need to scale up an additional
instance, those other containers are scaled up with it. For namespaces, containers in a Pod share the
same network interfaces, shared storage volumes, and resource limitations, such as memory and CPU,
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which makes it easier to manage the contents of the Pod as a single unit. Containers in a Pod can also
communicate with each other by using standard inter-process communications, such as System V
semaphores or POSIX shared memory.

While individual Pods represent a scalable unit in Kubernetes, a service provides a means of grouping
together a set of Pods to create a complete, stable application that can complete tasks such as load
balancing. A service is also more permanent than a Pod because the service remains available from the
same IP address until you delete it. When the service is in use, it is requested by name and the
OpenShift Container Platform cluster resolves that name into the IP addresses and ports where you can
reach the Pods that compose the service.

By their nature, containerized applications are separated from the operating systems where they run
and, by extension, their users. Part of your Kubernetes manifest describes how to expose the application
to internal and external networks by defining network policies that allow fine-grained control over
communication with your containerized applications. To connect incoming requests for HTTP, HTTPS,
and other services from outside your cluster to services inside your cluster, you can use an Ingress
resource.

If your container requires on-disk storage instead of database storage, which might be provided through
a service, you can add volumes to your manifests to make that storage available to your Pods. You can
configure the manifests to create persistent volumes (PVs) or dynamically create volumes that are
added to your Pod definitions.

After you define a group of Pods that compose your application, you can define those Pods in
deployments and deploymentconfigs.

4.3.2. Application types

Next, consider how your application type influences how to run it.

Kubernetes defines different types of workloads that are appropriate for different kinds of applications.
To determine the appropriate workload for your application, consider if the application is:

® Meant to run to completion and be done. An example is an application that starts up to produce
a report and exits when the report is complete. The application might not run again then for a
month. Suitable OpenShift Container Platform objects for these types of applications include
Jobs and CronJob objects.

® Expected to run continuously. For long-running applications, you can write a Deployment or a
DeploymentConfig.

® Required to be highly available. If your application requires high availability, then you want to size
your deployment to have more than one instance. A Deployment or DeploymentConfig can
incorporate a ReplicaSet for that type of application. With ReplicaSets, Pods run across multiple
nodes to make sure the application is always available, even if a worker goes down.

® Need to run on every node. Some types of Kubernetes applications are intended to run in the
cluster itself on every master or worker node. DNS and monitoring applications are examples of
applications that need to run continuously on every node. You can run this type of application as
a DaemonSet. You can also run a DaemonSet on a subset of nodes, based on node labels.

® Require life-cycle management. When you want to hand off your application so that others can
use it, consider creating an Operator. Operators let you build in intelligence, so it can handle
things like backups and upgrades automatically. Coupled with the Operator Lifecycle Manager
(OLM), cluster managers can expose Operators to selected namespaces so that users in the
cluster can run them.

23


https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/applications/#what-deployments-are
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/applications/#deployments-kube-deployments
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/applications/#deployments-and-deploymentconfigs
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://coreos.com/operators/

OpenShift Container Platform 4.3 Architecture

® Have identity or numbering requirements. An application might have identity requirements or
numbering requirements. For example, you might be required to run exactly three instances of
the application and to name the instances 0, 1, and 2. A StatefulSet is suitable for this
application. StatefulSets are most useful for applications that require independent storage, such
as databases and zookeeper clusters.

4.3.3. Available supporting components

The application you write might need supporting components, like a database or a logging component.
To fulfill that need, you might be able to obtain the required component from the following Catalogs
that are available in the OpenShift Container Platform web console:

® OperatorHub, which is available in each OpenShift Container Platform 4.3 cluster. The
OperatorHub makes Operators available from Red Hat, certified Red Hat partners, and
community members to the cluster operator. The cluster operator can make those Operators
available in all or selected namespaces in the cluster, so developers can launch them and
configure them with their applications.

® Service Catalog, which offers alternatives to Operators. While deploying Operators is the
preferred method of getting packaged applications in OpenShift Container Platform, there are
some reasons why you might want to use the Service Catalog to get supporting applications for
your own application. You might want to use the Service Catalog if you are an existing
OpenShift Container Platform 3 customer and are invested in Service Catalog applications or if
you already have a Cloud Foundry environment from which you are interested in consuming
brokers from other ecosystems.

® Templates, which are useful for a one-off type of application, where the lifecycle of a
component is not important after it is installed. A template provides an easy way to get started
developing a Kubernetes application with minimal overhead. A template can be a list of resource
definitions, which could be deployments, services, routes, or other objects. If you want to change
names or resources, you can set these values as parameters in the template. The Template
Service Broker Operator is a service broker that you can use to instantiate your own templates.
You can also install templates directly from the command line.

You can configure the supporting Operators, Service Catalog applications, and templates to the specific
needs of your development team and then make them available in the namespaces in which your
developers work. Many people add shared templates to the openshift namespace because it is
accessible from all other namespaces.

4.3.4. Applying the manifest

Kubernetes manifests let you create a more complete picture of the components that make up your
Kubernetes applications. You write these manifests as YAML files and deploy them by applying them to
the cluster, for example, by running the oc apply command.

4.3.5. Next steps

At this point, consider ways to automate your container development process. Ideally, you have some
sort of Cl pipeline that builds the images and pushes them to a registry. In particular, a GitOps pipeline
integrates your container development with the Git repositories that you use to store the software that
is required to build your applications.

The workflow to this point might look like:
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® Day 1: You write some YAML. You then run the oc apply command to apply that YAML to the
cluster and test that it works.

® Day 2: You put your YAML container configuration file into your own Git repository. From there,
people who want to install that app, or help you improve it, can pull down the YAML and apply it
to their cluster to run the app.

® Day 3: Consider writing an Operator for your application.

4.4. DEVELOP FOR OPERATORS

Packaging and deploying your application as an Operator might be preferred if you make your
application available for others to run. As noted earlier, Operators add a lifecycle component to your
application that acknowledges that the job of running an application is not complete as soon as it is
installed.

When you create an application as an Operator, you can build in your own knowledge of how to run and
maintain the application. You can build in features for upgrading the application, backing it up, scaling it,
or keeping track of its state. If you configure the application correctly, maintenance tasks, like updating
the Operator, can happen automatically and invisibly to the Operator’s users.

An example of a useful Operator is one that is set up to automatically back up data at particular times.
Having an Operator manage an application’s backup at set times can save a system administrator from

remembering to do it.

Any application maintenance that has traditionally been completed manually, like backing up data or
rotating certificates, can be completed automatically with an Operator.
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CHAPTER 5. RED HAT ENTERPRISE LINUX COREOS (RHCOS)

5.1. ABOUT RHCOS

Red Hat Enterprise Linux CoreOS (RHCOS) represents the next generation of single-purpose container
operating system technology. Created by the same development teams that created Red Hat
Enterprise Linux Atomic Host and CoreOS Container Linux, RHCOS combines the quality standards of
Red Hat Enterprise Linux (RHEL) with the automated, remote upgrade features from Container Linux.

RHCOS is supported only as a component of OpenShift Container Platform 4.3 for all OpenShift
Container Platform machines. RHCOS is the only supported operating system for OpenShift Container
Platform control plane, or master, machines. While RHCOS is the default operating system for all cluster
machines, you can create compute machines, which are also known as worker machines, that use RHEL
as their operating system. There are two general ways RHCOS is deployed in OpenShift Container
Platform 4.3:

e |f youinstall your cluster on infrastructure that the cluster provisions, RHCOS images are
downloaded to the target platform during installation, and suitable Ignition config files, which
control the RHCOS configuration, are used to deploy the machines.

e |f you install your cluster on infrastructure that you manage, you must follow the installation
documentation to obtain the RHCOS images, generate Ignition config files, and use the Ignition
config files to provision your machines.

5.1.1. Key RHCOS features

The following list describes key features of the RHCOS operating system:

® Based on RHEL: The underlying operating system consists primarily of RHEL components. The
same quality, security, and control measures that support RHEL also support RHCOS. For
example, RHCOS software is in RPM packages, and each RHCOS system starts up with a RHEL
kernel and a set of services that are managed by the systemd init system.

® Controlled immutability: Although it contains RHEL components, RHCOS is designed to be
managed more tightly than a default RHEL installation. Management is performed remotely
from the OpenShift Container Platform cluster. When you set up your RHCOS machines, you
can modify only a few system settings. This controlled immutability allows OpenShift Container
Platform to store the latest state of RHCOS systems in the cluster so it is always able to create
additional machines and perform updates based on the latest RHCOS configurations.

® CRI-O container runtime Although RHCOS contains features for running the OCI- and
libcontainer-formatted containers that Docker requires, it incorporates the CRI-O container
engine instead of the Docker container engine. By focusing on features needed by Kubernetes
platforms, such as OpenShift Container Platform, CRI-O can offer specific compatibility with
different Kubernetes versions. CRI-O also offers a smaller footprint and reduced attack surface
than is possible with container engines that offer a larger feature set. At the moment, CRI-O is
only available as a container engine within OpenShift Container Platform clusters.

® Set of container tools: For tasks such as building, copying, and otherwise managing containers,
RHCOS replaces the Docker CLI tool with a compatible set of container tools. The podman CLI
tool supports many container runtime features, such as running, starting, stopping, listing, and
removing containers and container images. The skopeo CLI tool can copy, authenticate, and
sign images. You can use the crictl CLI tool to work with containers and pods from the CRI-O
container engine. While direct use of these tools in RHCOS is discouraged, you can use them for
debugging purposes.
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rpm-ostree upgrades. RHCOS features transactional upgrades using the rpm-ostree system.
Updates are delivered by means of container images and are part of the OpenShift Container
Platform update process. When deployed, the container image is pulled, extracted, and written
to disk, then the bootloader is modified to boot into the new version. The machine will reboot
into the update in a rolling manner to ensure cluster capacity is minimally impacted.

Updated through MachineConfigOperator. In OpenShift Container Platform, the Machine
Config Operator handles operating system upgrades. Instead of upgrading individual packages,
as is done with yum upgrades, rpm-ostree delivers upgrades of the OS as an atomic unit. The
new OS deployment is staged during upgrades and goes into effect on the next reboot. If
something goes wrong with the upgrade, a single rollback and reboot returns the system to the
previous state. RHCOS upgrades in OpenShift Container Platform are performed during cluster
updates.

For RHCOS systems, the layout of the rpm-ostree file system has the following characteristics:

/usr is where the operating system binaries and libraries are stored and is read-only. We do not
support altering this.

/etc, /boot, /var are writable on the system but only intended to be altered by the Machine
Config Operator.

/var/lib/containers is the graph storage location for storing container images.

5.1.2. Choosing how to configure RHCOS

RHCOS is designed to deploy on an OpenShift Container Platform cluster with a minimal amount of user
configuration. In its most basic form, this consists of:

Starting with a provisioned infrastructure, such as on AWS, or provisioning the infrastructure
yourself.

Supplying a few pieces of information, such as credentials and cluster name, in an install-
config.yaml file when running openshift-install.

Because RHCOS systems in OpenShift Container Platform are designed to be fully managed from the
OpenShift Container Platform cluster after that, directly changing an RHCOS machine is discouraged.
Although limited direct access to RHCOS machines cluster can be accomplished for debugging
purposes, you should not directly configure RHCOS systems. Instead, if you need to add or change
features on your OpenShift Container Platform nodes, consider making changes in the following ways:

Kubernetes workload objects (DaemonSets, Deployments, etc.) If you need to add services
or other user-level features to your cluster, consider adding them as Kubernetes workload
objects. Keeping those features outside of specific node configurations is the best way to
reduce the risk of breaking the cluster on subsequent upgrades.

Day-2 customizations: If possible, bring up a cluster without making any customizations to
cluster nodes and make necessary node changes after the cluster is up. Those changes are
easier to track later and less likely to break updates. Creating MachineConfigs or modifying
Operator custom resources are ways of making these customizations.

Day-1customizations: For customizations that you must implement when the cluster first
comes up, there are ways of modifying your cluster so changes are implemented on first boot.
Day-1 customizations can be done through Ignition configs and manifest files during openshift-
install or by adding boot options during ISO installs provisioned by the user.

Here are examples of customizations you could do on day-1:
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e Kernel arguments: If particular kernel features or tuning is needed on nodes when the cluster
first boots.

e Disk encryption: If your security needs require that the root filesystem on the nodes are
encrypted, such as with FIPS support.

e Kernel modules: If a particular hardware device, such as a network card or video card, does not
have a usable module available by default in the Linux kernel.

® Chronyd: If you want to provide specific clock settings to your nodes, such as the location of
time servers.

To accomplish these tasks, you can augment the openshift-install process to include additional objects
such as MachineConfigs. Those procedures that result in creating MachineConfigs can be passed to the
Machine Config Operator after the cluster is up.

NOTE

The Ignition config files that the installation program generates contain certificates that
expire after 24 hours. You must complete your cluster installation and keep the cluster
running for 24 hours in a non-degraded state to ensure that the first certificate rotation
has finished.

5.1.3. Choosing how to configure RHCOS

Differences between RHCOS deployments for OpenShift Container Platform are based on whether you
are deploying on an infrastructure provisioned by the installer or by the user:

® |nstaller provisioned Some cloud environments offer pre-configured infrastructures that allow
you to bring up an OpenShift Container Platform cluster with minimal configuration. For these
types of deployments, you can supply Ignition configs that place content on each node so it is
there when the cluster first boots.

® User provisioned: If you are provisioning your own infrastructure, you have more flexibility in
how you add content to a RHCOS node. For example, you could add kernel arguments when you
boot the RHCOS ISO installer to install each system. However, in most cases where
configuration is required on the operating system itself, it is best to provide that configuration
through an Ignition config.

The Ignition facility runs only when the RHCOS system is first set up. After that, Ignition configs can be
supplied later using the MachineConfigs.

5.1.4. About Ignition

Ignition is the utility that is used by RHCOS to manipulate disks during initial configuration. It completes
common disk tasks, including partitioning disks, formatting partitions, writing files, and configuring users.
On first boot, Ignition reads its configuration from the installation media or the location that you specify
and applies the configuration to the machines.

Whether you are installing your cluster or adding machines to it, Ignition always performs the initial
configuration of the OpenShift Container Platform cluster machines. Most of the actual system setup
happens on each machine itself. For each machine, Ignition takes the RHCOS image and boots the
RHCOS kernel. Options on the kernel command line, identify the type of deployment and the location of
the Ignition-enabled initial Ram Disk (initramfs).
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5.1.4.1. How Ignition works

To create machines by using Ignition, you need Ignition config files. The OpenShift Container Platform
installation program creates the Ignition config files that you need to deploy your cluster. These files are
based on the information that you provide to the installation program directly or through an install-
config.yaml file.

The way that Ignition configures machines is similar to how tools like cloud-init or Linux Anaconda
kickstart configure systems, but with some important differences:

Ignition runs from an initial RAM disk that is separate from the system you are installing to.
Because of that, Ignition can repartition disks, set up file systems, and perform other changes to
the machine’s permanent file system. In contrast, cloud-init runs as part of a machine’s init
system when the system boots, so making foundational changes to things like disk partitions
cannot be done as easily. With cloud-init, it is also difficult to reconfigure the boot process while
you are in the middle of the node’s boot process.

Ignition is meant to initialize systems, not change existing systems. After a machine initializes
and the kernel is running from the installed system, the Machine Config Operator from the
OpenShift Container Platform cluster completes all future machine configuration.

Instead of completing a defined set of actions, Ignition implements a declarative configuration.
It checks that all partitions, files, services, and other items are in place before the new machine
starts. It then makes the changes, like copying files to disk that are necessary for the new
machine to meet the specified configuration.

After Ignition finishes configuring a machine, the kernel keeps running but discards the initial
RAM disk and pivots to the installed system on disk. All of the new system services and other
features start without requiring a system reboot.

Because Ignition confirms that all new machines meet the declared configuration, you cannot
have a partially-configured machine. If a machine’s setup fails, the initialization process does not
finish, and Ignition does not start the new machine. Your cluster will never contain partially-
configured machines. If Ignition cannot complete, the machine is not added to the cluster. You
must add a new machine instead. This behavior prevents the difficult case of debugging a
machine when the results of a failed configuration task are not known until something that
depended on it fails at a later date.

If there is a problem with an Ignition config that causes the setup of a machine to fail, Ignition
will not try to use the same config to set up another machine. For example, a failure could result
from an Ignition config made up of a parent and child config that both want to create the same
file. A failure in such a case would prevent that Ignition config from being used again to set up an
other machines, until the problem is resolved.

If you have multiple Ignition config files, you get a union of that set of configs. Because Ignition
is declarative, conflicts between the configs could cause Ignition to fail to set up the machine.
The order of information in those files does not matter. Ignition will sort and implement each
setting in ways that make the most sense. For example, if a file needs a directory several levels
deep, if another file needs a directory along that path, the later file is created first. Ignition sorts
and creates all files, directories, and links by depth.

Because Ignition can start with a completely empty hard disk, it can do something cloud-init
can't do: set up systems on bare metal from scratch (using features such as PXE boot). In the
bare metal case, the Ignition config is injected into the boot partition so Ignition can find it and
configure the system correctly.
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5.1.4.2. The Ignition sequence

The Ignition process for an RHCOS machine in an OpenShift Container Platform cluster involves the
following steps:

The machine gets its Ignition config file. Master machines get their Ignition config files from the
bootstrap machine, and worker machines get Ignition config files from a master.

Ignition creates disk partitions, file systems, directories, and links on the machine. It supports
RAID arrays but does not support LVM volumes

Ignition mounts the root of the permanent file system to the /sysroot directory in the initramfs
and starts working in that /sysroot directory.

Ignition configures all defined file systems and sets them up to mount appropriately at runtime.
Ignition runs systemd temporary files to populate required files in the /var directory.

Ignition runs the Ignition config files to set up users, systemd unit files, and other configuration
files.

Ignition unmounts all components in the permanent system that were mounted in the initramfs.

Ignition starts up new machine’s init process which, in turn, starts up all other services on the
machine that run during system boot.

The machine is then ready to join the cluster and does not require a reboot.

5.2. VIEWING IGNITION CONFIGURATION FILES

To see the Ignition config file used to deploy the bootstrap machine, run the following command:

I $ openshift-install create ignition-configs --dir SHOME/testconfig

After you answer a few questions, the bootstrap.ign, master.ign, and worker.ign files appear in the
directory you entered.

To see the contents of the bootstrap.ign file, pipe it through the jq filter. Here's a snippet from that file:

$ cat SHOME/testconfig/bootstrap.ign | jq

\Yi

"ignition": \\{

"config": \\{},

"storage": \\{

8;base64,VGhpcyBpcyB0aGUgYm9vdHNOcmFwIG5vZGU7IGIOIHdpbGwgYmUgZGVzdHJveWVkIHdo
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"files": [
\\(

"filesystem": "root",

"path": "/etc/motd",

"user": \\{
"name": "root"

b

"append": true,

"contents": \\{
"source": "data:text/plain;charset=utf-
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ZW4gdGhllG1hc3RiciBpcyBmdWxseSB1cC4KCIRoZSBwemltYXJSIHNIcnZpY2UgaXMgimJvb3RrdWJII
nNIcnZpY2UiLiBUbyB3YXRjaCBpdHMgc3RhdHVzLCBydW49ZS5nLgoKICBgb3VybmFsY3RsIC1ilC1m
IC111GJvb3RrdWJILnNIcnZpY2UK",

To decode the contents of a file listed in the bootstrap.ign file, pipe the base64-encoded data string
representing the contents of that file to the base64 -d command. Here's an example using the contents
of the /ete/motd file added to the bootstrap machine from the output shown above:

$ echo
VGhpcyBpcyB0aGUgYm9vdHNOcmFwIG5vZGU71GI0IHdpbGwgYmUgZGVzdHJveWVKIHdoZW4gdG
hllG1hc3RIciBpcyBmdWxseSB1cC4KCIRoZSBwemltY XJ5IHNIcnZpY2UgaXMglmJvb3RrdWJILnNIcnZp
Y2UiLiBUbyB3YXRjaCBpdHMgc3RhdHVzLCBydW4gZS5nLgoKICBgb3VybmFsY3RsIC1ilC1mIC111GJ
vb3RrdWJILnNIcnZpY2UK | base64 -d

This is the bootstrap machine; it will be destroyed when the master is fully up.
The primary service is "bootkube.service". To watch its status, run, e.g.:

journalctl -b -f -u bootkube.service

Repeat those commands on the master.ign and worker.ign files to see the source of Ignition config
files for each of those machine types. You should see a line like the following for the worker.ign,
identifying how it gets its Ignition config from the bootstrap machine:

I "source": "https://api.myign.develcluster.example.com:22623/config/worker",

Here are a few things you can learn from the bootstrap.ign file:

® Format: The format of the file is defined in the Ignition config spec. Files of the same format are
used later by the MCO to merge changes into a machine’s configuration.

e Contents: Because the bootstrap machine serves the Ignition configs for other machines, both
master and worker machine Ignition config information is stored in the bootstrap.ign, along with
the bootstrap machine’s configuration.

® Size: The file is more than 1300 lines long, with path to various types of resources.

® The content of each file that will be copied to the machine is actually encoded into data URLs,
which tends to make the content a bit clumsy to read. (Use the jq and base64 commands shown
previously to make the content more readable.)

e Configuration: The different sections of the Ignition config file are generally meant to contain
files that are just dropped into a machine’s file system, rather than commands to modify existing
files. For example, instead of having a section on NFS that configures that service, you would
just add an NFS configuration file, which would then be started by the init process when the
system comes up.

® users: A user named core is created, with your ssh key assigned to that user. This allows you to
log in to the cluster with that user name and your credentials.

® storage: The storage section identifies files that are added to each machine. A few notable files
include /root/.docker/config.json (which provides credentials your cluster needs to pull from
container image registries) and a bunch of manifest files in /opt/openshift/manifests that are
used to configure your cluster.
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® systemd: The systemd section holds content used to create systemd unit files. Those files are
used to start up services at boot time, as well as manage those services on running systems.

® Primitives: Ignition also exposes low-level primitives that other tools can build on.

5.3. CHANGING IGNITION CONFIGS AFTER INSTALLATION

Machine Config Pools manage a cluster of nodes and their corresponding Machine Configs. Machine
Configs contain configuration information for a cluster. To list all Machine Config Pools that are known:

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-1638c1aea398413bb918e76632f20799 False False False
worker worker-2feef4f8288936489a5a832ca8efe953 False False False

To list all Machine Configs:

$ oc get machineconfig

NAME GENERATEDBYCONTROLLER IGNITIONVERSION CREATED
OSIMAGEURL

00-master 4.0.0-0.150.0.0-dirty 2.2.0 16m

00-master-ssh 4.0.0-0.150.0.0-dirty 16m

00-worker 4.0.0-0.150.0.0-dirty 2.2.0 16m

00-worker-ssh 4.0.0-0.150.0.0-dirty 16m

01-master-kubelet 4.0.0-0.150.0.0-dirty 2.2.0 16m

01-worker-kubelet 4.0.0-0.150.0.0-dirty 2.2.0 16m
master-1638c1aea398413bb918e76632f20799 4.0.0-0.150.0.0-dirty 2.2.0 16m
worker-2feef4f8288936489a5a832ca8efe953 4.0.0-0.150.0.0-dirty 2.2.0 16m

The Machine Config Operator acts somewhat differently than Ignition when it comes to applying these
machineconfigs. The machineconfigs are read in order (from O0* to 99*). Labels inside the
machineconfigs identify the type of node each is for (master or worker). If the same file appears in
multiple machineconfig files, the last one wins. So, for example, any file that appears in a 99* file would
replace the same file that appeared in a 00* file. The input machineconfig objects are unioned into a
"rendered" machineconfig object, which will be used as a target by the operator and is the value you can
see in the machineconfigpool.

To see what files are being managed from a machineconfig, look for “Path:” inside a particular
machineconfig. For example:

$ oc describe machineconfigs 01-worker-container-runtime | grep Path:

Path: /etc/containers/registries.conf
Path: /etc/containers/storage.conf
Path: /etc/crio/crio.conf

If you wanted to change a setting in one of those files, for example to change pids_limit to 1500
(pids_limit = 1500) inside the crio.conf file, you could create a new machineconfig containing only the
file you want to change.

Be sure to give the machineconfig a later name (such as 10-worker-container-runtime). Keep in mind
that the content of each file is in URL-style data. Then apply the new machineconfig to the cluster.
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