& RedHat

OpenShift Container Platform 4.2

Storage

Configuring and managing storage in OpenShift Container Platform 4.2

Last Updated: 2020-06-24

OpenShift Container Platform 4.2 Storage

Configuring and managing storage in OpenShift Container Platform 4.2

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring persistent volumes from various storage back
ends and managing dynamic allocation from Pods.

Table of Contents

Table of Contents

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGEttt ieii e ieieaieennneanns 5
1.1. PERSISTENT STORAGE OVERVIEW 5
1.2. LIFECYCLE OF AVOLUME AND CLAIM 5

1.2.1. Provision storage 5
1.2.2. Bind claims 5
1.2.3. Use Pods and claimed PVs 6
1.2.4. Storage Object in Use Protection 6
1.2.5. Release volumes 6
1.2.6. Reclaim volumes 6
1.3. PERSISTENT VOLUMES 7
1.3.1. Types of PVs 7
1.3.2. Capacity 8
1.3.3. Access modes 8
1.3.4. Phase 10
1.3.4.1. Mount options 10

1.4. PERSISTENT VOLUME CLAIMS 1
1.4.1. Storage classes 12
1.4.2. Access modes 12
1.4.3. Resources 12
1.4.4. Claims as volumes 13
1.5. BLOCK VOLUME SUPPORT 13
1.5.1. Block volume examples 14

CHAPTER 2. CONFIGURING PERSISTENT STORAGE ...ttt ittt it niieaneenns 17

2.1. PERSISTENT STORAGE USING AWS ELASTIC FILE SYSTEM 17
2.1.1. Store the EFS variables in a ConfigMap 17
2.1.2. Configuring authorization for EFS volumes 18
2.1.3. Create the EFS StorageClass 20
2.1.4. Create the EFS provisioner 20
2.1.5. Create the EFS PersistentVolumeClaim 22

2.2. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE 23
2.2.1. Creating the EBS Storage Class 23
2.2.2. Creating the Persistent Volume Claim 24
2.2.3. Volume format 24
2.2.4. Maximum Number of EBS Volumes on a Node 24

2.3. PERSISTENT STORAGE USING AZURE 25
2.3.1. Creating the Azure storage class 25
2.3.2. Creating the Persistent Volume Claim 25
2.3.3. Volume format 26

2.4. PERSISTENT STORAGE USING AZURE FILE 26
2.4.1. Create the Azure File share PersistentVolumeClaim 27
2.4.2. Mount the Azure File share in a Pod 28

2.5. PERSISTENT STORAGE USING CINDER 29
2.5.1. Manual provisioning with Cinder 29

2.5.1.1. Creating the persistent volume 29
2.5.1.2. Persistent volume formatting 30
2.5.1.3. Cinder volume security 30

2.6. PERSISTENT STORAGE USING THE CONTAINER STORAGE INTERFACE (CSI) 31

2.6.1. CSl Architecture 31
2.6.1.1. External CSl controllers 32
2.6.1.2. CSI Driver DaemonSet 33

OpenShift Container Platform 4.2 Storage

2.6.2. Dynamic Provisioning
2.6.3. Example using the CSl driver
2.7. PERSISTENT STORAGE USING FIBRE CHANNEL
2.7.1. Provisioning
2.7.1.1. Enforcing disk quotas
2.7.1.2. Fibre Channel volume security
2.8. PERSISTENT STORAGE USING FLEXVOLUME
2.8.1. About FlexVolume drivers
2.8.2. FlexVolume driver example
2.8.3. Installing FlexVolume drivers
2.8.4. Consuming storage using FlexVolume drivers
2.9. PERSISTENT STORAGE USING GCE PERSISTENT DISK
2.9.1. Creating the GCE Storage Class
2.9.2. Creating the Persistent Volume Claim
2.9.3. Volume format
2.10. PERSISTENT STORAGE USING HOSTPATH
2.10.1. Overview
2.10.2. Statically provisioning hostPath volumes
2.10.3. Mounting the hostPath share in a privileged Pod
2.11. PERSISTENT STORAGE USING ISCSI
2.11.1. Provisioning
2.11.2. Enforcing Disk Quotas
2.11.3.iSCSI Volume Security
2.11.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration
2.11.4.iSCSI Multipathing
2.11.5.iSCSI Custom Initiator IQN
2.12. PERSISTENT STORAGE USING LOCAL VOLUMES
2.12.1. Installing the Local Storage Operator
2.12.2. Provision the local volumes
2.12.3. Create the local volume PersistentVolumeClaim
2.12.4. Attach the local claim
2.12.5. Deleting the Local Storage Operator's resources
2.12.5.1. Removing a local volume
2.12.5.2. Uninstalling the Local Storage Operator
2.13. PERSISTENT STORAGE USING NFS
2.13.1. Provisioning
2.13.2. Enforcing disk quotas
2.13.3. NFS volume security
2.13.3.1. Group IDs
2.13.3.2. User IDs
2.13.3.3. SELinux
2.13.3.4. Export settings
2.13.4. Reclaiming resources
2.13.5. Additional configuration and troubleshooting
2.14. RED HAT OPENSHIFT CONTAINER STORAGE
2.15. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES
2.15.1. Dynamically provisioning VMware vSphere volumes
2.15.1.1. Dynamically provisioning VMware vSphere volumes using the Ul
2.15.1.2. Dynamically provisioning VMware vSphere volumes using the CLI
2.15.2. Statically provisioning VMware vSphere volumes
2.15.2.1. Formatting VMware vSphere volumes
2.16. PERSISTENT STORAGE USING VOLUME SNAPSHOTS
2.16.1. About snapshots

33
33
34
34
35
35
35
36
36
37
38
39
40
40
40

41

41

41
42
43
44
44
44
44
45
45
46
46
48

51
52
52
53
54
55
55
56
57
57
58
59
59
60
60

61
62
62
62
63
63
65
65
66

2.16.2. External controller and provisioner
2.16.2.1. Running the external controller and provisioner
2.16.2.2. AWS and GCE authentication
2.16.2.2.1. AWS authentication
2.16.2.2.2. GCE authentication
2.16.2.3. Managing shapshot users
2.16.3. Creating and deleting snapshots
2.16.3.1. Create snapshot
2.16.3.2. Restore snapshot
2.16.3.3. Delete snapshot

CHAPTER 3. EXPANDING PERSISTENTVOLUMES i

3.1. ENABLING VOLUME EXPANSION SUPPORT

3.2. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER

3.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH AFILE SYSTEM
3.4. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

CHAPTER 4.DYNAMICPROVISIONING i

4.1. ABOUT DYNAMIC PROVISIONING
4.2. AVAILABLE DYNAMIC PROVISIONING PLUG-INS
4.3. DEFINING A STORAGECLASS

4.3.1. Basic StorageClass object definition

4.3.2. StorageClass annotations

4.3.3. RHOSP Cinder object definition

4.3.4. AWS Elastic Block Store (EBS) object definition

4.3.5. Azure Disk object definition

4.3.6. Azure File object definition

4.3.6.1. Considerations when using Azure File

4.3.7. GCE PersistentDisk (gcePD) object definition

4.3.8. VMware vSphere object definition

4.3.9. Red Hat OpenShift Container Storage object definition
4.4, CHANGING THE DEFAULT STORAGECLASS

Table of Contents

66
66
68
68
69
70

71

71
72
73

................... 74

74
74
75
75

................... 77

77
77
78
78
79
80
80

81

81
83
83
84
84
84

OpenShift Container Platform 4.2 Storage

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

1.1. PERSISTENT STORAGE OVERVIEW

Managing storage is a distinct problem from managing compute resources. OpenShift Container
Platform uses the Kubernetes persistent volume (PV) framework to allow cluster administrators to
provision persistent storage for a cluster. Developers can use persistent volume claims (PVCs) to
request PV resources without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project, and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Container Platform cluster and claimed from any project. After a PV is bound to a PVC, that
PV can not then be bound to additional PVCs. This has the effect of scoping a bound PV to a single
namespace, that of the binding project.

PVs are defined by a PersistentVolume API object, which represents a piece of existing storage in the
cluster that was either statically provisioned by the cluster administrator or dynamically provisioned
using a StorageClass object. It is a resource in the cluster just like a node is a cluster resource.

PVs are volume plug-ins like Volumes but have a lifecycle that is independent of any individual Pod that
uses the PV. PV objects capture the details of the implementation of the storage, be that NFS, iSCSI, or
a cloud-provider-specific storage system.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage by a
developer. It is similar to a Pod in that Pods consume node resources and PVCs consume PV resources.
For example, Pods can request specific levels of resources, such as CPU and memory, while PVCs can
request specific storage capacity and access modes. For example, they can be mounted once read-
write or many times read-only.

1.2. LIFECYCLE OF AVOLUME AND CLAIM

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

1.2.1. Provision storage

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

Alternatively, a cluster administrator can create a number of PVs in advance that carry the details of the
real storage that is available for use. PVs exist in the APl and are available for use.

1.2.2. Bind claims

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and create a storage class to describe and classify the storage. The control loop in the master watches
for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist, a
provisioner for the storage class creates one.

OpenShift Container Platform 4.2 Storage

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To
minimize the excess, OpenShift Container Platform binds to the smallest PV that matches all other
criteria.

Claims remain unbound indefinitely if a matching volume does not exist or can not be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

1.2.3. Use Pods and claimed PVs

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a Pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a Pod.

Once you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule Pods and access claimed PVs by including persistentVolumeClaim in the Pod's
volumes block.

1.2.4. Storage Object in Use Protection

The Storage Object in Use Protection feature ensures that PVCs in active use by a Pod and PVs that are
bound to PVCs are not removed from the system, as this can result in data loss.

Storage Object in Use Protection is enabled by default.

NOTE

A PVCisin active use by a Pod when a Pod object exists that uses the PVC.

If a user deletes a PVC that s in active use by a Pod, the PVC is not removed immediately. PVC removal
is postponed until the PVC is no longer actively used by any Pods. Also, if a cluster admin deletes a PV
that is bound to a PVC, the PV is not removed immediately. PV removal is postponed until the PV is no
longer bound to a PVC.

1.2.5. Release volumes

When you are finished with a volume, you can delete the PVC object from the API, which allows
reclamation of the resource. The volume is considered released when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume and must be
handled according to policy.

1.2.6. Reclaim volumes

The reclaim policy of a PersistentVolume tells the cluster what to do with the volume after it is
released. Volumes reclaim policy can either be Retain, Recycle, or Delete.

e Retain reclaim policy allows manual reclamation of the resource for those volume plug-ins that
support it.

e Recycle reclaim policy recycles the volume back into the pool of unbound persistent volumes
once it is released from its claim.

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

IMPORTANT

The Recycle reclaim policy is deprecated in OpenShift Container Platform 4. Dynamic
provisioning is recommended for equivalent and better functionality.

e Delete reclaim policy deletes both the PersistentVolume object from OpenShift Container
Platform and the associated storage asset in external infrastructure, such as AWS EBS or
VMware vSphere.

NOTE

Dynamically provisioned volumes are always deleted.

1.3. PERSISTENT VOLUMES
Each PV contains a spec and status, which is the specification and status of the volume, for example:

PV object definition example

apiVersion: vi
kind: PersistentVolume
metadata:
name: pv0001 0
spec:
capacity:
storage: 5Gi
accessModes:
- ReadWriteOnce 6
persistentVolumeReclaimPolicy: Retain ﬂ

status:

ﬂ Name of the persistent volume.
9 The amount of storage available to the volume.
9 The access mode, defining the read-write and mount permissions.

Q The reclaim policy, indicating how the resource should be handled once it is released.

1.3.1. Types of PVs

OpenShift Container Platform supports the following PersistentVolume plug-ins:
® AWS Elastic Block Store (EBS)
® Azure Disk
® Azure File

e Cinder

OpenShift Container Platform 4.2 Storage

® Fibre Channel

® GCE Persistent Disk

® HostPath

e iSCSI

® | ocal volume

e NFS

® Red Hat OpenShift Container Storage

® VMware vSphere

1.3.2. Capacity

Generally, a PV has a specific storage capacity. This is set by using the PV’s capacity attribute.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

1.3.3. Access modes

A PersistentVolume can be mounted on a host in any way supported by the resource provider.
Providers have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume. For example, NFS can support multiple read-write clients, but a
specific NFS PV might be exported on the server as read-only. Each PV gets its own set of access
modes describing that specific PV's capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, you might be granted more, but
never less. For example, if a claim requests RWO, but the only volume available is an NFS PV
(RWO+ROX+RWX), the claim would then match NFS because it supports RWO.

Direct matches are always attempted first. The volume’s modes must match or contain more modes
than you requested. The size must be greater than or equal to what is expected. If two types of volumes,
such as NFS and iSCSI, have the same set of access modes, either of them can match a claim with those
modes. There is no ordering between types of volumes and no way to choose one type over another.

All volumes with the same modes are grouped, and then sorted by size, smallest to largest. The binder
gets the group with matching modes and iterates over each, in size order, until one size matches.

The following table lists the access modes:

Table 1.1. Access modes

Access Mode CLI abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted as read-only by many nodes.

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

Access Mode CLI abbreviation Description

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

IMPORTANT

A volume's AccessModes are descriptors of the volume’s capabilities. They are not
enforced constraints. The storage provider is responsible for runtime errors resulting
from invalid use of the resource.

For example, NFS offers ReadWriteOnce access mode. You must mark the claims as
read-only if you want to use the volume's ROX capability. Errors in the provider show up
at runtime as mount errors.

iISCSI and Fibre Channel volumes do not currently have any fencing mechanisms. You
must ensure the volumes are only used by one node at a time. In certain situations, such
as draining a node, the volumes can be used simultaneously by two nodes. Before draining
the node, first ensure the Pods that use these volumes are deleted.

Table 1.2. Supported access modes for PVs

Volume Plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany
AWS EBS | - -
Azure File | | |
Azure Disk | - _
Cinder | - _
Fibre Channel | | -
GCE Persistent Disk | - -
HostPath | - -
iSCSI | | -
Local volume | - -
NFS | | |

OpenShift Container Platform 4.2 Storage

Volume Plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany

Red Hat OpenShift ceph-rbd - ceph-fs
Container Storage

See Available dynamic
provisioning plug-ins for
more information.

VMware vSphere | - -

NOTE

Use a recreate deployment strategy for Pods that rely on AWS EBS.

1.3.4. Phase

Volumes can be found in one of the following phases:

Table 1.3. Volume phases

Phase Description

Available A free resource not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

You can view the name of the PVC bound to the PV by running:

I $ oc get pv <pv-claim>

1.3.4.1. Mount options

You can specify mount options while mounting a PV by using the annotation
volume.beta.kubernetes.io/mount-options.

For example:

Mount options example

10

apiVersion: vi
kind: PersistentVolume
metadata:

name: pv0001

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html-single/managing_openshift_container_storage/index#available-plug-ins_rhocs

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

annotations:
volume.beta.kubernetes.io/mount-options: rw,nfsvers=4,noexec ﬂ
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
nfs:
path: /tmp
server: 172.17.0.2
persistentVolumeReclaimPolicy: Retain
claimRef:
name: claim1
namespace: default

ﬂ Specified mount options are used while mounting the PV to the disk.

The following PV types support mount options:
® AWS Elastic Block Store (EBS)
® Azure Disk
® Azure File
e Cinder
® GCE Persistent Disk
e iSCSI
® | ocal volume
e NFS
® Red Hat OpenShift Container Storage (Ceph RBD only)

® VMware vSphere

NOTE

Fibre Channel and HostPath PVs do not support mount options.

1.4. PERSISTENT VOLUME CLAIMS

Each persistent volume claim (PVC) contains a spec and status, which is the specification and status of
the claim, for example:

PVC object definition example

kind: PersistentVolumeClaim
apiVersion: vi
metadata:

name: myclaim ﬂ

1

OpenShift Container Platform 4.2 Storage

spec:
accessModes:
- ReadWriteOnce 9
resources:
requests:

storage: 8Gi 6
storageClassName: gold ﬂ
status:

Name of the PVC
The access mode, defining the read-write and mount permissions

The amount of storage available to the PVC

0009

Name of the StorageClass required by the claim

1.4.1. Storage classes

Claims can optionally request a specific storage class by specifying the storage class’s name in the
storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName
as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

IMPORTANT

The ClusterStorageOperator may install a default StorageClass depending on the
platform in use. This StorageClass is owned and controlled by the operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom StorageClass.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to
"" to be bound to a PV without a storage class.

NOTE

If more than one StorageClass is marked as default, a PVC can only be created if the
storageClassName is explicitly specified. Therefore, only one StorageClass should be
set as the default.

1.4.2. Access modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

1.4.3. Resources

Claims, such as Pods, can request specific quantities of a resource. In this case, the request is for
storage. The same resource model applies to volumes and claims.

12

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

1.4.4. Claims as volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
Pod by using the claim. The cluster finds the claim in the Pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is mounted to the host and into the Pod, for example:

Mount volume to the host and into the Pod example

kind: Pod
apiVersion: vi
metadata:
name: mypod
spec:
containers:
- name: myfrontend
image: dockerfile/nginx
volumeMounts:
- mountPath: "/var/www/html" ﬂ
name: mypd g
volumes:
- hame: mypd
persistentVolumeClaim:
claimName: myclaim e

ﬂ Path to mount the volume inside the Pod
9 Name of the volume to mount

9 Name of the PVC, that exists in the same namespace, to use

1.5. BLOCK VOLUME SUPPORT
OpenShift Container Platform can statically provision raw block volumes. These volumes do not have a
file system, and can provide performance benefits for applications that either write to the disk directly

or implement their own storage service.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and PVC specification.

IMPORTANT

Pods using raw block volumes must be configured to allow privileged containers.

The following table displays which volume plug-ins support block volumes.

Table 1.4. Block volume support

Volume Plug-in Manually provisioned Dynamically Fully supported

provisioned

AWS EBS | | |

Azure Disk | | |

13

OpenShift Container Platform 4.2 Storage

Volume Plug-in Manually provisioned Dynamically Fully supported

provisioned

Azure File

Cinder

Fibre Channel |

GCP | | |
HostPath

iISCSI |

Local volume | |
NFS

Red Hat OpenShift | | |

Container Storage

VMware vSphere | | |

NOTE

Any of the block volumes that can be provisioned manually, but are not provided as fully
supported, are included as a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

1.5.1. Block volume examples

PV example

14

apiVersion: vi
kind: PersistentVolume
metadata:
name: block-pv
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
volumeMode: Block ﬂ
persistentVolumeReclaimPolicy: Retain

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE

fc:
targetWWNs: ['50060e801049cfd1"]
lun: 0
readOnly: false

ﬂ volumeMode must be set to Block to indicate that this PV is a raw block volume.

PVC example

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: block-pvc
spec:
accessModes:

- ReadWriteOnce
volumeMode: Block ﬂ
resources:

requests:

storage: 10Gi

ﬂ volumeMode must be set to Block to indicate that a raw block PVC is requested.

Pod specification example

O ® o

apiVersion: vi
kind: Pod
metadata:
name: pod-with-block-volume
spec:
containers:
- name: fc-container
image: fedora:26
command: ["/bin/sh", "-c"]
args: ["tail -f /dev/null"]
volumeDevices:
- name: data
devicePath: /dev/xvda @)
volumes:
- name: data
persistentVolumeClaim:
claimName: block-pvc 6

volumeDevices, instead of volumeMounts, is used for block devices. Only
PersistentVolumeClaim sources can be used with raw block volumes.

devicePath, instead of mountPath, represents the path to the physical device where the raw block
is mapped to the system.

The volume source must be of type persistentVolumeClaim and must match the name of the
PVC as expected.

15

OpenShift Container Platform 4.2 Storage

Table 1.5. Accepted values forVolumeMode

Value Default

Filesystem Yes

Block No

Table 1.6. Binding scenarios for block volumes

PV PVC VolumeMode
VolumeMode

Binding Result

Filesystem Filesystem Bind
Unspecified Unspecified Bind
Filesystem Unspecified Bind
Unspecified Filesystem Bind
Block Block Bind
Unspecified Block No Bind
Block Unspecified No Bind
Filesystem Block No Bind
Block Filesystem No Bind
IMPORTANT

Unspecified values result in the default value of Filesystem.

16

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.1. PERSISTENT STORAGE USING AWS ELASTIC FILE SYSTEM

OpenShift Container Platform allows use of Amazon Web Services (AWS) Elastic File System volumes
(EFS). You can provision your OpenShift Container Platform cluster with persistent storage using AWS
EC2. Some familiarity with Kubernetes and AWS is assumed.

IMPORTANT

Elastic File System is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not

be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically.
PersistentVolumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. PersistentVolumeClaims are specific to a project or namespace
and can be requested by users.

Prerequisites

e Configure the AWS security groups to allow inbound NFS traffic from the EFS volume's security
group.

e Configure the AWS EFS volume to allow incoming SSH traffic from any host.

Additional references

® Amazon EFS

® Amazon security groups for EFS

2.1.1. Store the EFS variables in a ConfigMap

It is recommended to use a ConfigMap to contain all the environment variables that are required for the
EFS provisioner.

Procedure

1. Define an OpenShift Container Platform ConfigMap that contains the environment variables by
creating a configmap.yaml file that contains following contents:

apiVersion: vi
kind: ConfigMap
metadata:

name: efs-provisioner

17

https://access.redhat.com/support/offerings/techpreview/
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/efs/latest/ug/security-considerations.html#network-access

OpenShift Container Platform 4.2 Storage

data:
file.system.id: <file-system-id> 0
aws.region: <aws-region>
provisioner.name: openshift.org/aws-efs 6
dns.name: ™"

Defines the Amazon Web Services (AWS) EFS file system ID.

The AWS region of the EFS file system, such as us-east-1.

The name of the provisioner for the associated StorageClass.

An optional argument that specifies the new DNS name where the EFS volume is located.

If no DNS name is provided, the provisioner will search for the EFS volume at <file-
system-id>.efs.<aws-region>.amazonaws.com.

- -

2. After the file has been configured, create it in your cluster by running the following command:

I $ oc create -f configmap.yaml -n <namespace>

2.1.2. Configuring authorization for EFS volumes

The EFS provisioner must be authorized to communicate to the AWS endpoints, along with observing
and updating OpenShift Container Platform storage resources. The following instructions create the
necessary permissions for the EFS provisioner.

Procedure

1. Create an efs-provisioner service account:

I $ oc create serviceaccount efs-provisioner

2. Create a file, clusterrole.yaml that defines the necessary permissions:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: efs-provisioner-runner
rules:
- apiGroups: ["]
resources: ["persistentvolumes”]
verbs: ["get", "list", "watch", "create", "delete"]
- apiGroups: ["]
resources: ["persistentvolumeclaims”]
verbs: ["get", "list", "watch", "update"]
- apiGroups: ["storage.k8s.i0"]
resources: ["storageclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: ["]
resources: ["events"]
verbs: ["create”, "update”, "patch"]
- apiGroups: ["security.openshift.io"]

18

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

resources: ["securitycontextconstraints"]
verbs: ["use"]
resourceNames: ["hostmount-anyuid"]

3. Create a file, clusterrolebinding.yaml, that defines a cluster role binding that assigns the
defined role to the service account:

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: run-efs-provisioner
subjects:
- kind: ServiceAccount
name: efs-provisioner
namespace: default ﬂ
roleRef:
kind: ClusterRole
name: efs-provisioner-runner
apiGroup: rbac.authorization.k8s.io

The namespace where the EFS provisioner pod will run. If the EFS provisioner is running in
a namespace other than default, this value must be updated.

4. Create a file, role.yaml, that defines a role with the necessary permissions:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: leader-locking-efs-provisioner
rules:
- apiGroups: ["]
resources: ["endpoints"]
verbs: ["get", "list", "watch", "create", "update", "patch"]

5. Create a file, rolebinding.yaml, that defines a role binding that assigns this role to the service
account:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: leader-locking-efs-provisioner
subjects:
- kind: ServiceAccount
name: efs-provisioner
namespace: default ﬂ
roleRef:
kind: Role
name: leader-locking-efs-provisioner
apiGroup: rbac.authorization.k8s.io

The namespace where the EFS provisioner pod will run. If the EFS provisioner is running in
a namespace other than default, this value must be updated.

19

OpenShift Container Platform 4.2 Storage

6. Create the resources inside the OpenShift Container Platform cluster:

I $ oc create -f clusterrole.yaml,clusterrolebinding.yaml,role.yaml,rolebinding.yaml

2.1.3. Create the EFS StorageClass

Before PersistentVolumeClaims can be created, a StorageClass must exist in the OpenShift Container
Platform cluster. The following instructions create the StorageClass for the EFS provisioner.

Procedure

1. Define an OpenShift Container Platform ConfigMap that contains the environment variables by
creating a storageclass.yaml with the following contents:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: aws-efs
provisioner: openshift.org/aws-efs
parameters:
gidMin: "2048" @)
gidMax: "2147483647" g
gidAllocate: "true"

ﬂ An optional argument that defines the minimum group ID (GID) for volume assignments.
The default value is 2048.

9 An optional argument that defines the maximum GID for volume assignments. The default
value is 2147483647.

9 An optional argument that determines if GIDs are assigned to volumes. If false,

dynamically provisioned volumes are not allocated GIDs, allowing all users to read and write
to the created volumes. The default value is true.

2. After the file has been configured, create it in your cluster by running the following command:

I $ oc create -f storageclass.yaml

2.1.4. Create the EFS provisioner

The EFS provisioner is an OpenShift Container Platform Pod that mounts the EFS volume as an NFS
share.

Prerequisites
® Create A ConfigMap that defines the EFS environment variables.
® Create a service account that contains the necessary cluster and role permissions.
® Create a StorageClass for provisioning volumes.

e Configure the Amazon Web Services (AWS) security groups to allow incoming NFS traffic on all
OpenShift Container Platform nodes.

20

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

e Configure the AWS EFS volume security groups to allow incoming SSH traffic from all sources.

Procedure

1. Define the EFS provisioner by creating a provisioner.yaml with the following contents:

kind: Pod
apiVersion: vi
metadata:
name: efs-provisioner
spec:
serviceAccount: efs-provisioner
containers:
- name: efs-provisioner
image: quay.io/external_storage/efs-provisioner:latest
env:
- name: PROVISIONER_NAME
valueFrom:
configMapKeyRef:
name: efs-provisioner
key: provisioner.name
- name: FILE_SYSTEM_ID
valueFrom:
configMapKeyRef:
name: efs-provisioner
key: file.system.id
- name: AWS_REGION
valueFrom:
configMapKeyRef:
name: efs-provisioner
key: aws.region
- name: DNS_NAME
valueFrom:
configMapKeyRef:
name: efs-provisioner
key: dns.name
optional: true
volumeMounts:
- name: pv-volume
mountPath: /persistentvolumes
volumes:
- name: pv-volume
nfs:
server: <file-system-id>.efs.<region>.amazonaws.com 0

path: /9

Contains the DNS name of the EFS volume. This field must be updated for the Pod to
discover the EFS volume.

9 The mount path of the EFS volume. Each persistent volume is created as a separate
subdirectory on the EFS volume. If this EFS volume is used for other projects outside of
OpenShift Container Platform, then it is recommended to create a unique subdirectory
OpenShift Container Platform manually on EFS for the cluster to prevent projects from
accessing another project’s data. Specifying a directory that does not exist results in an
error.

21

OpenShift Container Platform 4.2 Storage

2. After the file has been configured, create it in your cluster by running the following command:

$ oc create -f provisioner.yaml

2.1.5. Create the EFS PersistentVolumeClaim

EFS PersistentVolumeClaims are created to allow Pods to mount the underlying EFS storage.

Prerequisites

® Create the EFS provisioner pod.

Procedure (Ul)

1. In the OpenShift Container Platform console, click Storage — Persistent Volume Claims

2. Inthe persistent volume claims overview, click Create Persistent Volume Claim

3. Define the required options on the resulting page.

a.

b.

Select the storage class that you created from the list.
Enter a unique name for the storage claim.

Select the access mode to determine the read and write access for the created storage
claim.

. Define the size of the storage claim.

NOTE

Although you must enter a size, every Pod that access the EFS volume has
unlimited storage. Define a value, such as 1Mi, that will remind you that the
storage size is unlimited.

4. Click Create to create the persistent volume claim and generate a persistent volume.

Procedure (CLI)

1. Alternately, you can define EFS PersistentVolumeClaims by creating a file, pve.yaml, with the
following contents:

22

kind: PersistentVolumeClaim
apiVersion: vi
metadata:
name: efs-claim ﬂ
namespace: test-efs
annotations:
volume.beta.kubernetes.io/storage-provisioner: openshift.org/aws-efs
finalizers:
- kubernetes.io/pvc-protection
spec:
accessModes:
- ReadWriteOnce 9

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

resources:
requests:
storage: 5Gi 6
storageClassName: aws-efs ﬂ
volumeMode: Filesystem

A unique name for the PVC.
The access mode to determine the read and write access for the created PVC.

Defines the size of the PVC.

- -

Name of the StorageClass for the EFS provisioner.

2. After the file has been configured, create it in your cluster by running the following command:

I $ oc create -f pvc.yaml

2.2. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

OpenShift Container Platform supports AWS Elastic Block Store volumes (EBS). You can provision your
OpenShift Container Platform cluster with persistent storage using AWS EC2. Some familiarity with
Kubernetes and AWS is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically. Persistent
volumes are not bound to a single project or namespace; they can be shared across the OpenShift
Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be
requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

Additional References

® Amazon EC2

2.2.1. Creating the EBS Storage Class

StorageClasses are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Procedure

1. In the OpenShift Container Platform console, click Storage - Storage Classes.
2. In the storage class overview, click Create Storage Class

3. Define the desired options on the page that appears.

a. Enter a name to reference the storage class.

23

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

OpenShift Container Platform 4.2 Storage

o

Enter an optional description.

(@]

. Select the reclaim policy.
d. Select kubernetes.io/aws-ebs from the drop down list.
e. Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

2.2.2. Creating the Persistent Volume Claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure
1. In the OpenShift Container Platform console, click Storage — Persistent Volume Claims
2. Inthe persistent volume claims overview, click Create Persistent Volume Claim
3. Define the desired options on the page that appears.
a. Select the storage class created previously from the drop-down menu.
b. Enter a unigue name for the storage claim.

c. Select the access mode. This determines the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

2.2.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted AWS volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

2.2.4. Maximum Number of EBS Volumes on a Node

By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one
node. This limit is consistent with the AWS volume limits.

OpenShift Container Platform can be configured to have a higher limit by setting the environment
variable KUBE_MAX_PD_VOLS. However, AWS requires a particular naming scheme (AWS Device
Naming) for attached devices, which only supports a maximum of 52 volumes. This limits the number of
volumes that can be attached to a node via OpenShift Container Platform to 52.

24

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.3. PERSISTENT STORAGE USING AZURE

OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your
OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with
Kubernetes and Azure is assumed. The Kubernetes persistent volume framework allows administrators
to provision a cluster with persistent storage and gives users a way to request those resources without
having any knowledge of the underlying infrastructure. Azure Disk volumes can be provisioned
dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared
across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or
namespace and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional references

® Microsoft Azure Disk

2.3.1. Creating the Azure storage class

StorageClasses are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Additional References

® Azure Disk Storage Class

Procedure

1. In the OpenShift Container Platform console, click Storage - Storage Classes.
2. Inthe storage class overview, click Create Storage Class

3. Define the desired options on the page that appears.

a. Enter a name to reference the storage class.

b. Enter an optional description.

(@]

. Select the reclaim policy.

d. Select kubernetes.io/azure-disk from the drop down list.

i. Enter the storage account type. This corresponds to your Azure storage account SKU
tier. Valid options are Premium_LRS, Standard_LRS, StandardSSD_LRS, and
UltraSSD_LRS.

ii. Enter the kind of account. Valid options are shared, dedicated, and managed.

e. Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

2.3.2. Creating the Persistent Volume Claim

25

https://azure.microsoft.com/en-us/services/storage/disks
https://kubernetes.io/docs/concepts/storage/storage-classes/#new-azure-disk-storage-class-starting-from-v1-7-2

OpenShift Container Platform 4.2 Storage

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure
1. In the OpenShift Container Platform console, click Storage — Persistent Volume Claims
2. Inthe persistent volume claims overview, click Create Persistent Volume Claim
3. Define the desired options on the page that appears.
a. Select the storage class created previously from the drop-down menu.
b. Enter a unigue name for the storage claim.

c. Select the access mode. This determines the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

2.3.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted Azure volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

2.4. PERSISTENT STORAGE USING AZURE FILE

OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift
Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and
Azure is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Azure File volumes can be provisioned dynamically.

PersistentVolumes are not bound to a single project or namespace; they can be shared across the

OpenShift Container Platform cluster. PersistentVolumeClaims are specific to a project or namespace
and can be requested by users for use in applications.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional references

® Azure Files

26

https://azure.microsoft.com/en-us/services/storage/files/

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.4.1. Create the Azure File share PersistentVolumeClaim

To create the PersistentVolumeClaim, you must first define a Secret that contains the Azure account
and key. This Secret is used in the PersistentVolume definition, and will be referenced by the
PersistentVolumeClaim for use in applications.

Prerequisites

® An Azure File share exists.

® The credentials to access this share, specifically the storage account and key, are available.

Procedure

1. Create a Secret that contains the Azure File credentials:

$ oc create secret generic <secret-name> --from-literal=azurestorageaccountname=
<storage-account> \

--from-literal=azurestorageaccountkey=<storage-account-key> 9

ﬂ The Azure File storage account name.

9 The Azure File storage account key.

2. Create a PersistentVolume that references the Secret you created:

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

name: "pv0001" 0
spec:

capacity:

storage: "5Gi"
accessModes:

- "ReadWriteOnce"
storageClassName: azure-file-sc
azureFile:

secretName: <secret-name> 6

shareName: share-1 ﬂ

readOnly: false

ﬂ The name of the PersistentVolume.
9 The size of this PersistentVolume.
9 The name of the Secret that contains the Azure File share credentials.

Q The name of the Azure File share.

3. Create a PersistentVolumeClaim that maps to the PersistentVolume you created:

apiVersion: "v1"
kind: "PersistentVolumeClaim"

27

OpenShift Container Platform 4.2 Storage

metadata:
name: "claim1" ﬂ
spec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: "5Gi" g
storageClassName: azure-file-sc 6
volumeName: "pv0001" ﬂ

ﬂ The name of the PersistentVolumeClaim.
9 The size of this PersistentVolumeClaim.

9 The name of the StorageClass that is used to provision the PersistentVolume. Specify the
StorageClass used in the PersistentVolume definition.

Q The name of the existing PersistentVolume that references the Azure File share.

2.4.2. Mount the Azure File share in a Pod

After the PersistentVolumeClaim has been created, it can be used inside by an application. The following
example demonstrates mounting this share inside of a Pod.

Prerequisites

® A PersistentVolumeClaim exists that is mapped to the underlying Azure File share.

Procedure

® Create a Pod that mounts the existing PersistentVolumeClaim:

apiVersion: vi
kind: Pod
metadata:
name: pod-name ﬂ
spec:
containers:

volumeMounts:
- mountPath: "/data"
name: azure-file-share
volumes:
- name: azure-file-share
persistentVolumeClaim:
claimName: claim1 e

ﬂ The name of the Pod.
9 The path to mount the Azure File share inside the Pod.

9 The name of the PersistentVolumeClaim that has been previously created.

28

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.5. PERSISTENT STORAGE USING CINDER

OpenShift Container Platform supports OpenStack Cinder. Some familiarity with Kubernetes and
OpenStack is assumed.

Cinder volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or
namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume
claims are specific to a project or namespace and can be requested by users.
Additional resources

® For more information about how OpenStack Block Storage provides persistent block storage

management for virtual hard drives, see OpenStack Cinder.

2.5.1. Manual provisioning with Cinder
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.
Prerequisites

® OpenShift Container Platform configured for Red Hat OpenStack Platform (RHOSP)

e Cinder volume ID

2.5.1.1. Creating the persistent volume

You must define your persistent volume (PV) in an object definition before creating it in OpenShift
Container Platform:

Procedure

1. Save your object definition to a file.

cinder-persistentvolume.yaml

apiVersion: "v1"
kind: "PersistentVolume”
metadata:
name: "pv0001" 0
spec:
capacity:
storage: "5Gi"
accessModes:
- "ReadWriteOnce"

cinder: 6
fsType: "ext3" ﬂ
volumelD: "f37a03aa-6212-4c62-a805-9ce139fab180" 6

ﬂ The name of the volume that is used by persistent volume claims or pods.

9 The amount of storage allocated to this volume.

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/8/html-single/architecture_guide/index#comp-cinder

OpenShift Container Platform 4.2 Storage

9 Indicates cinder for Red Hat OpenStack Platform (RHOSP) Cinder volumes.
Q The file system that is created when the volume is mounted for the first time.

9 The Cinder volume to use.

IMPORTANT

Do not change the fstype parameter value after the volume is formatted and
provisioned. Changing this value can result in data loss and Pod failure.

2. Create the object definition file you saved in the previous step.

I $ oc create -f cinder-persistentvolume.yaml

2.5.1.2. Persistent volume formatting

You can use unformatted Cinder volumes as PVs because OpenShift Container Platform formats them
before the first use.

Before OpenShift Container Platform mounts the volume and passes it to a container, the system
checks that it contains a file system as specified by the fsType parameter in the PV definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

2.5.1.3. Cinder volume security

If you use Cinder PVs in your application, configure security for their deployment configurations.

Prerequisite

® An SCC must be created that uses the appropriate fsGroup strategy.

Procedure

1. Create a service account and add it to the SCC:

$ oc create serviceaccount <service_account>
$ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n <project>

2. Inyour application’s deployment configuration, provide the service account name and
securityContext:

apiVersion: vi
kind: ReplicationController
metadata:

name: frontend-1
spec:

replicas: 1 0

selector:

name: frontend

template: 6

30

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

metadata:
labels: @)
name: frontend 9
spec:
containers:
- image: openshift/hello-openshift
name: helloworld
ports:
- containerPort: 8080
protocol: TCP
restartPolicy: Always
serviceAccountName: <service_account> G
securityContext:
fsGroup: 7777 ﬂ

The number of copies of the Pod to run.

The label selector of the Pod to run.

A template for the Pod that the controller creates.

The labels on the Pod. They must include labels from the label selector.

The maximum name length after expanding any parameters is 63 characters.
Specifies the service account you created.

Specifies an fsGroup for the Pods.

OO0 009

2.6. PERSISTENT STORAGE USING THE CONTAINER STORAGE
INTERFACE (CSI)

The Container Storage Interface (CSI) allows OpenShift Container Platform to consume storage from
storage backends that implement the CSl interface as persistent storage.

IMPORTANT

OpenShift Container Platform does not ship with any CSl drivers. It is recommended to
use the CSl drivers provided by community or storage vendors.

Installation instructions differ by driver, and are found in each driver’'s documentation.
Follow the instructions provided by the CSI driver.

OpenShift Container Platform 4.2 supports version 1.1.0 of the CSl specification.

2.6.1. CSl Architecture

CSl drivers are typically shipped as container images. These containers are not aware of OpenShift
Container Platform where they run. To use CSl-compatible storage backend in OpenShift Container
Platform, the cluster administrator must deploy several components that serve as a bridge between
OpenShift Container Platform and the storage driver.

The following diagram provides a high-level overview about the components running in pods in the
OpenShift Container Platform cluster.

31

https://github.com/container-storage-interface/spec
https://kubernetes-csi.github.io/docs/drivers.html
https://github.com/container-storage-interface/spec

OpenShift Container Platform 4.2 Storage

OpenShift APl Server

INRN

INFRASTRUCTURE NODE NODE
External CSI Controller Atomic OpenShift CSI Driver DaemonSet
(Pod) ¢ Node Service (Pod) ¢
v
A
Attacher Container Provisioner Container : Driver Registrar
)
4 + | 4
v v i v
Driver Container R — | 3 Driver Container

A
& Unix domain socket i Any proprietary protocol ﬁ

Storage Backend

It is possible to run multiple CSl drivers for different storage backends. Each driver needs its own
external controllers' deployment and DaemonSet with the driver and CSl registrar.

2.6.1.1. External CSI controllers

External CSI Controllers is a deployment that deploys one or more pods with three containers:

® An external CSl attacher container translates attach and detach calls from OpenShift Container
Platform to respective ControllerPublish and ControllerUnpublish calls to the CSI driver.

® An external CSl provisioner container that translates provision and delete calls from OpenShift
Container Platform to respective CreateVolume and DeleteVolume calls to the CSl driver.

® A CSl|driver container

The CSl attacher and CSI provisioner containers communicate with the CSI driver container using UNIX
Domain Sockets, ensuring that no CSI communication leaves the pod. The CSlI driver is not accessible
from outside of the pod.

NOTE

attach, detach, provision, and delete operations typically require the CSI driver to use
credentials to the storage backend. Run the CSI controller pods on infrastructure nodes
so the credentials are never leaked to user processes, even in the event of a catastrophic
security breach on a compute node.

32

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

NOTE

The external attacher must also run for CSl drivers that do not support third-party attach
or detach operations. The external attacher will not issue any ControllerPublish or
ControllerUnpublish operations to the CSl driver. However, it still must run to implement
the necessary OpenShift Container Platform attachment API.

2.6.1.2. CSI Driver DaemonSet

The CSI driver DaemonSet runs a pod on every node that allows OpenShift Container Platform to
mount storage provided by the CSl driver to the node and use it in user workloads (pods) as persistent
volumes (PVs). The pod with the CSI driver installed contains the following containers:

® A CSldriver registrar, which registers the CSl driver into the openshift-node service running on
the node. The openshift-node process running on the node then directly connects with the CSI
driver using the UNIX Domain Socket available on the node.

e A CSldriver.

The CSl driver deployed on the node should have as few credentials to the storage backend as possible.
OpenShift Container Platform will only use the node plug-in set of CSl calls such as
NodePublish/NodeUnpublish and NodeStage/NodeUnstage, if these calls are implemented.

2.6.2. Dynamic Provisioning

Dynamic provisioning of persistent storage depends on the capabilities of the CSI driver and underlying
storage backend. The provider of the CSl driver should document how to create a StorageClass in
OpenShift Container Platform and the parameters available for configuration.

The created StorageClass can be configured to enable dynamic provisioning.

Procedure

® Create a default storage class that ensures all PVCs that do not require any special storage class
are provisioned by the installed CSI driver.

oc create -f - << EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: <storage-class> ﬂ
annotations:
storageclass.kubernetes.io/is-default-class: "true"
provisioner: <provisioner-name> g
parameters:
EOF

ﬂ The name of the StorageClass that will be created.

9 The name of the CSI driver that has been installed

2.6.3. Example using the CSl driver

The following example installs a default MySQL template without any changes to the template.

33

OpenShift Container Platform 4.2 Storage

Prerequisites

® The CSldriver has been deployed.

® A StorageClass has been created for dynamic provisioning.

Procedure

® Create the MySQL template:

oc new-app mysql-persistent
--> Deploying template "openshift/mysql-persistent" to project default

oc get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

mysq|l Bound kubernetes-dynamic-pv-3271ffcb4e1811e8 1Gi
RWO cinder 3s

2.7. PERSISTENT STORAGE USING FIBRE CHANNEL

OpenShift Container Platform supports Fibre Channel, allowing you to provision your OpenShift
Container Platform cluster with persistent storage using Fibre channel volumes. Some familiarity with
Kubernetes and Fibre Channel is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. PersistentVolumes are not bound to a single project or namespace; they can

be shared across the OpenShift Container Platform cluster. PersistentVolumeClaims are specific to a
project or namespace and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional references

® F[ibre Channel

2.7.1. Provisioning

To provision Fibre Channel volumes using the PersistentVolume API the following must be available:
® The targetWWNs (array of Fibre Channel target's World Wide Names).
® Avalid LUN number.
® The filesystem type.

A PersistentVolume and a LUN have a one-to-one mapping between them.

Prerequisites

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-fibrechanel

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

® Fibre Channel LUNs must exist in the underlying infrastructure.

PersistentVolume Object Definition

apiVersion: vi
kind: PersistentVolume
metadata:
name: pv0001
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
fc:
targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5 ﬂ
lun: 2
fsType: ext4

Fibre Channel WWNs are identified as /dev/disk/by-path/pci-<IDENTIFIER>-fc-0x<WWN>-lun-
<LUN#>, but you do not need to provide any part of the path leading up to the WWN, including the
0x, and anything after, including the - (hyphen).

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

2.7.1.1. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is mapped to a single
PersistentVolume, and unique names must be used for PersistentVolumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount, such
as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

2.7.1.2. Fibre Channel volume security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’'s namespace, and
can only be referenced by a pod within that same namespace. Any attempt to access a
PersistentVolume across a namespace causes the pod to fail.

Each Fibre Channel LUN must be accessible by all nodes in the cluster.

2.8. PERSISTENT STORAGE USING FLEXVOLUME

OpenShift Container Platform supports FlexVolume, an out-of-tree plug-in that uses an executable
model to interface with drivers.

To use storage from a back-end that does not have a built-in plug-in, you can extend OpenShift
Container Platform through FlexVolume drivers and provide persistent storage to applications.

Pods interact with FlexVolume drivers through the flexvolume in-tree plugin.

35

OpenShift Container Platform 4.2 Storage

Additional keterences

® [Expanding persistent volumes

2.8.1. About FlexVolume drivers

A FlexVolume driver is an executable file that resides in a well-defined directory on all nodes in the
cluster. OpenShift Container Platform calls the FlexVolume driver whenever it needs to mount or
unmount a volume represented by a PersistentVolume with flexVolume as the source.

IMPORTANT

Attach and detach operations are not supported in OpenShift Container Platform for
FlexVolume.

2.8.2. FlexVolume driver example

The first command-line argument of the FlexVolume driver is always an operation name. Other
parameters are specific to each operation. Most of the operations take a JavaScript Object Notation
(JSON) string as a parameter. This parameter is a complete JSON string, and not the name of a file with
the JSON data.

The FlexVolume driver contains:
o All flexVolume.options.
® Some options from flexVolume prefixed by kubernetes.io/, such as fsType and readwrite.
® The content of the referenced secret, if specified, prefixed by kubernetes.io/secret/.

FlexVolume driver JSSON input example

{
"fooServer". "192.168.0.1:1234",)

"fooVolumeName": "bar",
"kubernetes.io/fsType": "ext4", 3
"kubernetes.io/readwrite": "ro",
"kubernetes.io/secret/<key name>": "<key value>", ﬂ
"kubernetes.io/secret/<another key hame>": "<another key value>",

}

All options from flexVolume.options.
The value of flexVolume.fsType.

ro/rw based on flexVolume.readOnly.

0009

All keys and their values from the secret referenced by flexVolume.secretRef.

OpenShift Container Platform expects JSON data on standard output of the driver. When not specified,
the output describes the result of the operation.

FlexVolume driver default output example

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/storage/#expanding-persistent-volumes

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

{

"status": "<Success/Failure/Not supported>",
"message": "<Reason for success/failure>"

}

Exit code of the driver should be 0 for success and 1 for error.

Operations should be idempotent, which means that the mounting of an already mounted volume should
result in a successful operation.

2.8.3. Installing FlexVolume drivers
FlexVolume drivers that are used to extend OpenShift Container Platform are executed only on the

node. To implement FlexVolumes, a list of operations to call and the installation path are all that is
required.

Prerequisites
® FlexVolume drivers must implement these operations:
init
Initializes the driver. It is called during initialization of all nodes.
© Arguments: none

o Executed on: node

o Expected output: default JSSON

mount

Mounts a volume to directory. This can include anything that is necessary to mount the
volume, including finding the device and then mounting the device.

o Arguments: <mount-dir> <json>
o Executed on: node

o Expected output: default JSSON

unmount

Unmounts a volume from a directory. This can include anything that is necessary to clean up
the volume after unmounting.

o Arguments: <mount-dir>
o Executed on: node

o Expected output: default JSSON

mountdevice

Mounts a volume's device to a directory where individual Pods can then bind mount.

This call-out does not pass "secrets” specified in the FlexVolume spec. If your driver requires secrets, do
not implement this call-out.

37

OpenShift Container Platform 4.2 Storage

® Arguments: <mount-dir> <json>
® [Executed on: node

® Expected output: default JSSON

unmountdevice

Unmounts a volume's device from a directory.
® Arguments: <mount-dir>
® Executed on: node
® Expected output: default JSON
o All other operations should return JSON with {"status": "Not supported"} and exit code 1.

Procedure

To install the FlexVolume driver:
1. Ensure that the executable file exists on all nodes in the cluster.

2. Place the executable file at the volume plug-in path: /etc/kubernetes/kubelet-
plugins/volume/exec/<vendor>~<driver>/<driver>.

For example, to install the FlexVolume driver for the storage foo, place the executable file at:
/etc/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.

2.8.4. Consuming storage using FlexVolume drivers

Each PersistentVolume object in OpenShift Container Platform represents one storage asset in the
storage back-end, such as a volume.

Procedure
e Use the PersistentVolume object to reference the installed storage.

Persistent volume object definition using FlexVolume drivers example

apiVersion: vi
kind: PersistentVolume
metadata:
name: pv0001 0
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
flexVolume:
driver: openshift.com/foo 6
fsType: "ext4" ﬂ
secretRef: foo-secret 9
readOnly: true G

38

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

options: ﬂ
fooServer: 192.168.0.1:1234
fooVolumeName: bar

The name of the volume. This is how it is identified through persistent volume claims or from Pods.
This name can be different from the name of the volume on back-end storage.

The amount of storage allocated to this volume.
The name of the driver. This field is mandatory.
The file system that is present on the volume. This field is optional.

The reference to a secret. Keys and values from this secret are provided to the FlexVolume driver
on invocation. This field is optional.

The read-only flag. This field is optional.

o9 60060 9 —

The additional options for the FlexVolume driver. In addition to the flags specified by the user in
the options field, the following flags are also passed to the executable:

"fsType":"<FS type>",
"readwrite":"<rw>",
"secret/key1":"<secret1>"

"secret/keyN":"<secretN>"

NOTE

Secrets are passed only to mount or unmount call-outs.

2.9. PERSISTENT STORAGE USING GCE PERSISTENT DISK

OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your
OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with
Kubernetes and GCE is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

GCE Persistent Disk volumes can be provisioned dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the

OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace
and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional references

39

OpenShift Container Platform 4.2 Storage

® GCE Persistent Disk

2.9.1. Creating the GCE Storage Class

StorageClasses are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Procedure

1. In the OpenShift Container Platform console, click Storage — Storage Classes.

2. Inthe storage class overview, click Create Storage Class

3. Define the desired options on the page that appears.

a.

b.

e.

Enter a name to reference the storage class.

Enter an optional description.

. Select the reclaim policy.

Select kubernetes.io/gce-pd from the drop down list.

Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

2.9.2. Creating the Persistent Volume Claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage — Persistent Volume Claims

2. Inthe persistent volume claims overview, click Create Persistent Volume Claim

3. Define the desired options on the page that appears.

a.

b.

d.

Select the storage class created previously from the drop-down menu.

Enter a unique name for the storage claim.

. Select the access mode. This determines the read and write access for the created storage

claim.

Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

2.9.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it

40

https://cloud.google.com/compute/docs/disks/

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted GCE volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

2.10. PERSISTENT STORAGE USING HOSTPATH

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the host
node's filesystem into your Pod. Most Pods will not need a hostPath volume, but it does offer a quick
option for testing should an application require it.

IMPORTANT

The cluster administrator must configure Pods to run as privileged. This grants access to
Pods in the same node.

2.10.1. Overview

OpenShift Container Platform supports hostPath mounting for development and testing on a single-
node cluster.

In a production cluster, you would not use hostPath. Instead, a cluster administrator would provision a
network resource, such as a GCE Persistent Disk volume, an NFS share, or an Amazon EBS volume.
Network resources support the use of StorageClasses to set up dynamic provisioning.

A hostPath volume must be provisioned statically.

2.10.2. Statically provisioning hostPath volumes

A Pod that uses a hostPath volume must be referenced by manual (static) provisioning.

Procedure

1. Define the persistent volume (PV). Create a file, pv.yaml, with the PersistentVolume object
definition:

apiVersion: vi
kind: PersistentVolume
metadata:
name: task-pv-volume ﬂ
labels:
type: local
spec:
storageClassName: manual g
capacity:

storage: 5Gi
accessModes:

- ReadWriteOnce 6
persistentVolumeReclaimPolicy: Retain
hostPath:

path: "/mnt/data"

41

OpenShift Container Platform 4.2 Storage

ﬂ The name of the volume. This name is how it is identified by PersistentVolumeClaims or
Pods.

9 Used to bind PersistentVolumeClaim requests to this PersistentVolume.
9 The volume can be mounted as read-write by a single node.

Q The configuration file specifies that the volume is at /mnt/data on the cluster’s node.

2. Create the PV from the file:

I $ oc create -f pv.yaml

3. Define the persistent volume claim (PVC). Create a file, pve.yaml, with the
PersistentVolumeClaim object definition:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: task-pvc-volume
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: manual

4. Create the PVC from the file:

I $ oc create -f pvc.yaml

2.10.3. Mounting the hostPath share in a privileged Pod

After the PersistentVolumeClaim has been created, it can be used inside by an application. The following
example demonstrates mounting this share inside of a Pod.

Prerequisites

® A PersistentVolumeClaim exists that is mapped to the underlying hostPath share.

Procedure

® Create a privileged Pod that mounts the existing PersistentVolumeClaim:

apiVersion: vi
kind: Pod
metadata:
name: pod-name ﬂ
spec:
containers:

securityContext:

42

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

privileged: true 9
volumeMounts:
- mountPath: /data 6
name: hostpath-privileged

securityContext: {}
volumes:
- name: hostpath-privileged
persistentVolumeClaim:
claimName: task-pvc-volume ﬂ

The name of the Pod.
The Pod must run as privileged to access the node’s storage.

The path to mount the hostPath share inside the privileged Pod.

0009

The name of the PersistentVolumeClaim that has been previously created.

2.11. PERSISTENT STORAGE USING ISCSI

You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some
familiarity with Kubernetes and iSCSl is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

Persistent storage using iISCSl is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

IMPORTANT

When you use iSCSI on Amazon Web Services, you must update the default security
policy to include TCP traffic between nodes on the iSCSI ports. By default, they are ports
860 and 3260.

43

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.2 Storage

IMPORTANT

OpenShift assumes that all nodes in the cluster have already configured iSCSl initator, i.e.
have installed iscsi-initiator-utils package and configured their initiator name in
/etc/iscsi/initiatorname.iscsi. See Storage Administration Guide linked above.

2.11.1. Provisioning

Qualified Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume API.
spec:
accessModes:

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in
OpenShift Container Platform. All that is required for the iSCSl is the iSCSI target portal, a valid iSCSI
Example 2.1. Persistent Volume Object Definition
apiVersion: vi
kind: PersistentVolume
metadata:
name: iscsi-pv
capacity:
storage: 1Gi
- ReadWriteOnce
iscsi:

targetPortal: 10.16.154.81:3260

ign: ign.2014-12.example.server:storage.target00
lun: 0

fsType: 'ext4’

2.11.2. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

2.11.3.iSCSI Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’'s namespace and
can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume claim across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

2.11.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

Optionally, OpenShift can use CHAP to authenticate itself to iSCSI targets:

apiVersion: vi
kind: PersistentVolume
metadata:

name: iscsi-pv

44

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
iscsi:
targetPortal: 10.0.0.1:3260
ign: ign.2016-04.test.com:storage.target00
lun: 0
fsType: ext4
chapAuthDiscovery: true ﬂ
chapAuthSession: true
secretRef:
name: chap-secret 6

Enable CHAP authentication of iISCSI discovery.
Enable CHAP authentication of iISCSI session.

Specify name of Secrets object with user name + password. This Secrets object must be available
in all namespaces that can use the referenced volume.

909

2.11.4.iSCSI Multipathing

For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one
target portal IP address. Multipathing ensures access to the persistent volume when one or more of the
components in a path fail.

To specify multi-paths in the pod specification use the portals field. For example:

apiVersion: vi
kind: PersistentVolume
metadata:
name: iscsi-pv
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
iscsi:
targetPortal: 10.0.0.1:3260
portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260] ﬂ
ign: ign.2016-04.test.com:storage.target00
lun: 0
fsType: ext4
readOnly: false

ﬂ Add additional target portals using the portals field.

2.11.5. iISCSI Custom Initiator IQN

Configure the custom initiator iISCSI Qualified Name (IQN) if the iSCSI targets are restricted to certain
IQNs, but the nodes that the iISCSI PVs are attached to are not guaranteed to have these IQNs.

45

OpenShift Container Platform 4.2 Storage

To specify a custom initiator IQN, use initiatorName field.

apiVersion: vi
kind: PersistentVolume
metadata:
name: iscsi-pv
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
iscsi:
targetPortal: 10.0.0.1:3260
portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260]
ign: ign.2016-04.test.com:storage.target00
lun: 0
initiatorName: ign.2016-04.test.com:custom.ign ﬂ
fsType: ext4
readOnly: false

ﬂ Specify the name of the initiator.

2.12. PERSISTENT STORAGE USING LOCAL VOLUMES

OpenShift Container Platform can be provisioned with persistent storage by using local volumes. Local
persistent volumes allow you to access local storage devices, such as a disk or partition, by using the
standard PVC interface.

Local volumes can be used without manually scheduling Pods to nodes, because the system is aware of
the volume node’s constraints. However, local volumes are still subject to the availability of the
underlying node and are not suitable for all applications.

NOTE

Local volumes can only be used as a statically created Persistent Volume.

-

2.12.1. Installing the Local Storage Operator

The Local Storage Operator is not installed in OpenShift Container Platform by default. Use the
following procedure to install and configure this Operator to enable local volumes in your cluster.

Prerequisites

® Access to the OpenShift Container Platform web console or command-line interface (CLI).

Procedure

1. Create the local-storage project:
I $ oc new-project local-storage

2. Optional: Allow local storage creation on master and infrastructure nodes.

46

From

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

You might want to use the Local Storage Operator to create volumes on master and
infrastructure nodes, and not just worker nodes, to support components such as logging and
monitoring.

To allow local storage creation on master and infrastructure nodes, add a toleration to the
DaemonSet by entering the following commands:

$ oc patch ds local-storage-local-diskmaker -n local-storage -p '{"spec": {"template": {"spec":
{"tolerations":[{"operator": "Exists"}]}}}}'

$ oc patch ds local-storage-local-provisioner -n local-storage -p '{"spec": {"template": {"spec":
{"tolerations":[{"operator": "Exists"}]}}}}'

the Ul

To install the Local Storage Operator from the web console, follow these steps:

1.

2.

3.

6.

7

Log in to the OpenShift Container Platform web console.

Navigate to Operators = OperatorHub.

Type Local Storage into the filter box to locate the Local Storage Operator.
Click Install.

On the Create Operator Subscription page, select A specific namespace on the cluster
Select local-storage from the drop-down menu.

Adjust the values for Update Channeland Approval Strategy to the values that you want.

. Click Subscribe.

Once finished, the Local Storage Operator will be listed in the Installed Operators section of the web

consol

e.

From the CLI

1.

Install the Local Storage Operator from the CLI.

a. Create an object YAML file to define a Namespace, OperatorGroup, and Subscription for
the Local Storage Operator, such as local-storage.yaml:

Example local-storage

apiVersion: vi
kind: Namespace
metadata:

name: local-storage
apiVersion: operators.coreos.com/vialpha2
kind: OperatorGroup
metadata:

name: local-operator-group

namespace: local-storage
spec:

targetNamespaces:

47

OpenShift Container Platform 4.2 Storage

- local-storage
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: local-storage-operator
namespace: local-storage
spec:
channel: "{product-version}" 0
installPlanApproval: Automatic
name: local-storage-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

This field can be edited to match your release selection of OpenShift Container

Platform.

I $ oc apply -f local-storage.yaml

$ oc -n local-storage get pods

2. Create the Local Storage Operator object by entering the following command:

At this point, the Operator Lifecycle Manager (OLM) is now aware of the Local Storage
Operator. A ClusterServiceVersion (CSV) for the Operator should appear in the target
namespace, and APIs provided by the Operator should be available for creation.

. Verify local storage installation by checking that all Pods and the Local Storage Operator have
been created:

a. Check that all the required Pods have been created:

NAME READY STATUS RESTARTS AGE

local-storage-operator-746bf599¢9-vit5t 1/1

$ oc get csvs -n local-storage
NAME DISPLAY

Running 0 19m

b. Check the ClusterServiceVersion (CSV) YAML manifest to see that the Local Storage
Operator is available in the local-storage project:

VERSION REPLACES PHASE

local-storage-operator.4.2.26-202003230335 Local Storage 4.2.26-202003230335

Succeeded

After all checks have passed, the Local Storage Operator is installed successfully.

2.12.2. Provision the local volumes

Local volumes cannot be created by dynamic provisioning. Instead, PersistentVolumes must be created
by the Local Storage Operator. This provisioner will look for any devices, both file system and block
volumes, at the paths specified in defined resource.

Prerequisites

48

® The Local Storage Operator is installed.

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

® | ocal disks are attached to the OpenShift Container Platform nodes.

Procedure

1. Create the local volume resource. This must define the nodes and paths to the local volumes.

NOTE

Do not use different StorageClass names for the same device. Doing so will
create multiple persistent volumes (PVs).

Example: Filesystem

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
name: "local-disks"
namespace: "local-storage" ﬂ
spec:
nodeSelector: g
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- ip-10-0-140-183
- ip-10-0-158-139
- ip-10-0-164-33
storageClassDevices:
- storageClassName: "local-sc"
volumeMode: Filesystem 6

fsType: xfs ﬂ
devicePaths:

- /path/to/device G

The namespace where the Local Storage Operator is installed.

®9

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node host names, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The volume mode, either Filesystem or Block, defining the type of the local volumes.

The file system that is created when the local volume is mounted for the first time.

The path containing a list of local storage devices to choose from.

o - -

Replace this value with your actual local disks filepath to the LocalVolume resource, such as
/dev/xvdg. PVs are created for these local disks when the provisioner is deployed
successfully.

Example: Block

49

OpenShift Container Platform 4.2 Storage

50

®9

00

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
name: "local-disks"
namespace: "local-storage" ﬂ
spec:
nodeSelector: g
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- ip-10-0-136-143
- ip-10-0-140-255
- ip-10-0-144-180
storageClassDevices:
- storageClassName: "localblock-sc"
volumeMode: Block 6
devicePaths: ﬂ

- /path/to/device 9

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node host names, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The volume mode, either Filesystem or Block, defining the type of the local volumes.
The path containing a list of local storage devices to choose from.
Replace this value with your actual local disks filepath to the LocalVolume resource, such as

/dev/xvdg. PVs are created for these local disks when the provisioner is deployed
successfully.

2. Create the local volume resource in your OpenShift Container Platform cluster, specifying the

file you just created:

$ oc create -f <local-volume>.yaml

3. Verify the provisioner was created, and the corresponding DaemonSets were created:

$ oc get all -n local-storage

NAME READY STATUS RESTARTS AGE
pod/local-disks-local-provisioner-h97hj 1/1 Running 0 46m
pod/local-disks-local-provisioner-j4mnn 1/1 Running 0 46m
pod/local-disks-local-provisioner-kbdnx 1/1 Running 0 46m
pod/local-disks-local-diskmaker-Ididw 1/1 Running 0 46m
pod/local-disks-local-diskmaker-Ivrv4 1/1 Running 0 46m
pod/local-disks-local-diskmaker-phxdq 1/1 Running 0 46m
pod/local-storage-operator-54564d9988-vxvhx 1/1 Running 0 47m

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

AGE

<none>

<none>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service/local-storage-operator ClusterlP 172.30.49.90 <none> 60000/TCP 47m
NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/local-disks-local-provisioner 3 3 3 3 3
46m

daemonset.apps/local-disks-local-diskmaker 3 3 3 3 3
46m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/local-storage-operator 1/1 1 1 47m

NAME DESIRED CURRENT READY AGE

replicaset.apps/local-storage-operator-54564d9988 1 1 1 47m

Note the desired and current number of DaemonSet processes. If the desired count is 0, it

indicates the label selectors were invalid.

4. Verify that the PersistentVolumes were created:

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
STORAGECLASS REASON AGE

local-pv-1cec77cf 100Gi RWO Delete Available local-sc
local-pv-2ef7cd2a 100Gi RWO Delete Available local-sc
82m

local-pv-3faic73 100Gi RWO Delete Available local-sc

2.12.3. Create the local volume PersistentVolumeClaim

CLAIM

88m

48m

Local volumes must be statically created as a PersistentVolumeClaim (PVC) to be accessed by the Pod.

Prerequisite

® PersistentVolumes have been created using the local volume provisioner.

Procedure

1. Create the PVC using the corresponding StorageClass:

kind: PersistentVolumeClaim
apiVersion: vi
metadata:

name: local-pvc-name ﬂ
spec:

accessModes:

- ReadWriteOnce

volumeMode: Filesystem 9

resources:

requests:
storage: 100Gi 6
storageClassName: local-sc ﬂ

51

OpenShift Container Platform 4.2 Storage

ﬂ Name of the PVC.

9 The type of the PVC. Defaults to Filesystem.
9 The amount of storage available to the PVC.
Q Name of the StorageClass required by the claim.

2. Create the PVC in the OpenShift Container Platform cluster, specifying the file you just
created:

I $ oc create -f <local-pvc>.yaml

2.12.4. Attach the local claim

After a local volume has been mapped to a PersistentVolumeClaim (PVC) it can be specified inside of a
resource.

Prerequisites

® A PVC exists in the same namespace.

Procedure

1. Include the defined claim in the resource’s Spec. The following example declares the PVC inside
a Pod:

apiVersion: v1
kind: Pod
spec:

containers:
volumeMounts:
- name: localpvc ﬂ
mountPath: "/data"
volumes:
- name: localpvc
persistentVolumeClaim:
claimName: localpvc 6

ﬂ Name of the volume to mount.
9 Path inside the Pod where the volume is mounted.

9 Name of the existing PVC to use.

2. Create the resource in the OpenShift Container Platform cluster, specifying the file you just
created:

I $ oc create -f <local-pod>.yaml

2.12.5. Deleting the Local Storage Operator’s resources

52

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.12.5.1. Removing a local volume

Occasionally, local volumes must be deleted. While removing the entry in the LocalVolume resource and
deleting the PersistentVolume is typically enough, if you want to re-use the same device path or have it
managed by a different StorageClass, then additional steps are needed.

' WARNING
A The following procedure involves accessing a node as the root user. Modifying the

state of the node beyond the steps in this procedure could result in cluster
instability.

Prerequisite

® The PersistentVolume must be in a Released or Available state.

' WARNING
A Deleting a PersistentVolume that is still in use can result in data loss or

corruption.

Procedure
1. Edit the previously created LocalVolume to remove any unwanted disks.

a. Edit the cluster resource:

I $ oc edit localvolume <name> -n local-storage

b. Navigate to the lines under devicePaths, and delete any representing unwanted disks.

2. Delete any PersistentVolumes created.

I $ oc delete pv <pv-name>

3. Delete any symlinks on the node.

a. Create a debug pod on the node:

I $ oc debug node/<node-name>

b. Change your root directory to the host:

I $ chroot /host

53

OpenShift Container Platform 4.2 Storage

c. Navigate to the directory containing the local volume symlinks.
I $ cd /mnt/local-storage/<sc-name> ﬂ

ﬂ The name of the StorageClass used to create the local volumes.

d. Delete the symlink belonging to the removed device.

I $ rm <symlink>

2.12.5.2. Uninstalling the Local Storage Operator

To uninstall the Local Storage Operator, you must remove the Operator and all created resources in the
local-storage project.

' WARNING
A Uninstalling the Local Storage Operator while local storage PVs are still in use is not

recommended. While the PVs will remain after the Operator’s removal, there might
be indeterminate behavior if the Operator is uninstalled and reinstalled without
removing the PVs and local storage resources.

Prerequisites

® Access to the OpenShift Container Platform web console.

Procedure

1. Delete any local volume resources in the project:

I $ oc delete localvolume --all --all-namespaces

2. Uninstall the Local Storage Operator from the web console.

a. Login to the OpenShift Container Platform web console.
b. Navigate to Operators — Installed Operators.

c. Type Local Storageinto the filter box to locate the Local Storage Operator.

d. Click the Options menu at the end of the Local Storage Operator.
e. Click Uninstall Operator.

f. Click Remove in the window that appears.

54

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

3. The PVs created by the Local Storage Operator will remain in the cluster until deleted. Once
these volumes are no longer in use, delete them by running the following command:

I $ oc delete pv <pv-name>

4. Delete the local-storage project:

I $ oc delete project local-storage

2.13. PERSISTENT STORAGE USING NFS

OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent
volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume
across a project. While the NFS-specific information contained in a PV definition could also be defined
directly in a Pod definition, doing so does not create the volume as a distinct cluster resource, making
the volume more susceptible to conflicts.

Additional resources

® Network File System (NFS)

2.13.1. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is
required.

Procedure

1. Create an object definition for the PV:

apiVersion: vi
kind: PersistentVolume
metadata:

name: pv0001 0
spec:

capacity:

storage: 5Gi 9
accessModes:
- ReadWriteOnce 6

nfs: ﬂ
path: tmp 6
server: 172.17.0.2 @)

persistentVolumeReclaimPolicy: Retain ﬂ

The name of the volume. This is the PV identity in various o¢c <command> pod
commands.

The amount of storage allocated to this volume.
Though this appears to be related to controlling access to the volume, it is actually used

similarly to labels and used to match a PVC to a PV. Currently, no access rules are enforced
based on the accessModes.

o

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs

OpenShift Container Platform 4.2 Storage

The volume type being used, in this case the nfs plug-in.
The path that is exported by the NFS server.
The host name or IP address of the NFS server.

The reclaim policy for the PV. This defines what happens to a volume when released.

OS99

NOTE

Each NFS volume must be mountable by all schedulable nodes in the cluster.

2. Verify that the PV was created:

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 5Gi RWO Available 31s

3. Create a persistent volume claim that binds to the new PV:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: nfs-claim1
spec:
accessModes:
- ReadWriteOnce ﬂ
resources:
requests:

storage: 5Gi g

As mentioned above for PVs, the accessModes do not enforce security, but rather act as
labels to match a PV to a PVC.

9 This claim looks for PVs offering 5Gi or greater capacity.

4. Verify that the persistent volume claim was created:

$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
nfs-claim1 Bound pv0001 5Gi RWO gp2 2m

2.13.2. Enforcing disk quotas
You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own
export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the

uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount,
such as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

56

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.13.3. NFS volume security

This section covers NFS volume security, including matching permissions and SELinux considerations.
The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental
groups, and SELinux.

Developers request NFS storage by referencing either a PVC by name or the NFS volume plug-in
directly in the volumes section of their Pod definition.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS
directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plug-in mounts the
container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS
directory. However, the container is not run with its effective UID equal to the owner of the NFS mount,
which is the desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

$ Is -1Z /opt/nfs -d
drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

$ id nfsnobody
uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Then the container must match SELinux labels, and either run with a UID of 65534, the nfsnobody
owner, or with 5555 in its supplemental groups in order to access the directory.

NOTE

The owner ID of 65534 is used as an example. Even though NFS's root_squash maps
root, uid 0, to nfsnobody, uid 65534, NFS exports can have arbitrary owner IDs. Owner
65534 is not required for NFS exports.

2.13.3.1. Group IDs

The recommended way to handle NFS access, assuming it is not an option to change permissions on the
NF'S export, is to use supplemental groups. Supplemental groups in OpenShift Container Platform are
used for shared storage, of which NFS is an example. In contrast block storage, such as iSCSI, use the
fsGroup SCC strategy and the fsGroup value in the Pod'’s securityContext.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

Because the group ID on the example target NFS directory is 5555, the Pod can define that group ID
using supplementalGroups under the Pod'’s securityContext definition. For example:

spec:
containers:
- name:

securityContext: ﬂ
supplementalGroups: [5555] 9

57

OpenShift Container Platform 4.2 Storage

ﬂ securityContext must be defined at the Pod level, not under a specific container.
An array of GIDs defined for the Pod. In this case, there is one element in the array. Additional GIDs

would be comma-separated.

Assuming there are no custom SCCs that might satisfy the Pod’s requirements, the Pod likely matches
the restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that
any supplied group ID is accepted without range checking.

As a result, the above Pod passes admissions and is launched. However, if group ID range checking is

desired, a custom SCC is the preferred solution. A custom SCC can be created such that minimum and
maximum group IDs are defined, group ID range checking is enforced, and a group ID of 5555 is allowed.

NOTE
To use a custom SCC, you must first add it to the appropriate service account. For

example, use the default service account in the given project unless another has been
specified on the Pod specification.

2.13.3.2. User IDs

User IDs can be defined in the container image or in the Pod definition.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534, ignoring
group IDs for the moment, so the following can be added to the Pod definition:

spec:
containers:
- name:

securityContext:
runAsUser: 65534 @)

Pods contain a securityContext specific to each container and a Pod's securityContext which
applies to all containers defined in the Pod.

9 65534 is the nfsnobody user.

Assuming the default project and the restricted SCC, the Pod’s requested user ID of 65534 is not
allowed, and therefore the Pod fails. The Pod fails for the following reasons:

® |t requests 65534 as its user ID.

® Al SCCs available to the Pod are examined to see which SCC allows a user ID of 65534. While all
policies of the SCCs are checked, the focus here is on user ID.

® Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

58

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

® 65534 is not included in the SCC or project’s user ID range.
It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix

this situation is to create a custom SCC A custom SCC can be created such that minimum and maximum
user IDs are defined, UID range checking is still enforced, and the UID of 65534 is allowed.

NOTE
To use a custom SCC, you must first add it to the appropriate service account. For

example, use the default service account in the given project unless another has been
specified on the Pod specification.

2.13.3.3. SELinux

By default, SELinux does not allow writing from a Pod to a remote NFS server. The NFS volume mounts
correctly, but is read-only.

To enable writing to a remote NFS server, follow the below procedure.

Prerequisites

® The container-selinux package must be installed. This package provides the virt_use_nfs
SELinux boolean.

Procedure

® Enable the virt_use_nfs boolean using the following command. The -P option makes this
boolean persistent across reboots.

I # setsebool -P virt_use_nfs 1

2.13.3.4. Export settings

In order to enable arbitrary container users to read and write the volume, each exported volume on the
NF'S server should conform to the following conditions:

® Every export must be exported using the following format:
I /<example_fs> *(rw,root_squash)

e The firewall must be configured to allow traffic to the mount point.

o For NFSv4, configure the default port 2049 (nfs).

NFSv4
I # iptables -1 INPUT 1 -p tcp --dport 2049 -j ACCEPT

o For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

NFSv3

59

OpenShift Container Platform 4.2 Storage

iptables -1 INPUT 1 -p tcp --dport 2049 -j ACCEPT
iptables -1 INPUT 1 -p tcp --dport 20048 -j ACCEPT
iptables -1 INPUT 1 -p tcp --dport 111 -j ACCEPT

® The NFS export and directory must be set up so that they are accessible by the target Pods.
Either set the export to be owned by the container’s primary UID, or supply the Pod group
access using supplementalGroups, as shown in group IDs above.

2.13.4. Reclaiming resources

NFS implements the OpenShift Container Platform Recyclable plug-in interface. Automatic processes
handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain.

Once claim to a PVC is deleted, and the PV is released, the PV object should not be reused. Instead, a
new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

apiVersion: vi
kind: PersistentVolume
metadata:
name: nfs1
spec:
capacity:
storage: 1Mi
accessModes:
- ReadWriteMany
nfs:
server: 192.168.1.1
path: "/"

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1. This
results in nfs1 being Released. If the administrator wants to make the same NFS share available, they
should create a new PV with the same NFS server details, but a different PV name:

apiVersion: vi
kind: PersistentVolume
metadata:
name: nfs2
spec:
capacity:
storage: 1Mi
accessModes:
- ReadWriteMany
nfs:
server: 192.168.1.1
path: "/"

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually
change the status of a PV from Released to Available causes errors and potential data loss.

2.13.5. Additional configuration and troubleshooting

60

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

Depending on what version of NFS is being used and how it is configured, there may be additional
configuration steps needed for proper export and security mapping. The following are some that may

apply:

NFSv4 mount incorrectly shows
all files with ownership of
nobody:nobody

o Could be attributed to the ID mapping settings, found in
/etc/idmapd.conf on your NFS.

® See this Red Hat Solution

Disabling ID mapping on NFSv4)
® On both the NFS client and server, run:

#echo'Y'>
/sys/module/nfsd/parameters/nfs4_disable_idmapping

2.14. RED HAT OPENSHIFT CONTAINER STORAGE

Red Hat OpenShift Container Storage is a provider of agnostic persistent storage for OpenShift
Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a
Red Hat storage solution, Red Hat OpenShift Container Storage is completely integrated with
OpenShift Container Platform for deployment, management, and monitoring.

Red Hat OpenShift Container Storage provides its own documentation library. The complete set of Red
Hat OpenShift Container Storage documentation identified below is available at
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/

If you are looking for Red Hat OpenShift Container See the following Red Hat OpenShift Container

Storage information about... Storage documentation:

What's new, known issues, notable bug fixes, and Red Hat OpenShift Container Storage 4.2 Release
Technology Previews Notes

Supported workloads, layouts, hardware and Planning your Red Hat OpenShift Container Storage
software requirements, sizing and scaling 4.2 deployment

recommendations

Deploying Red Hat OpenShift Container Storage 4.2 Deploying Red Hat OpenShift Container Storage 4.2
on an existing OpenShift Container Platform cluster

Managing a Red Hat OpenShift Container Storage Managing Red Hat OpenShift Container Storage 4.2
4.2 cluster

Monitoring a Red Hat OpenShift Container Storage Monitoring Red Hat OpenShift Container Storage
4.2 cluster 4.2

Migrating your OpenShift Container Platform cluster Migration
from version 3 to version 4

61

https://access.redhat.com/solutions/33455
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html/4.2_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html/deploying_openshift_container_storage/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html/managing_openshift_container_storage/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html/monitoring_openshift_container_storage/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/migration/index

OpenShift Container Platform 4.2 Storage

2.15. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES

OpenShift Container Platform allows use of VMware vSphere’s Virtual Machine Disk (VMDK) volumes.
You can provision your OpenShift Container Platform cluster with persistent storage using VMware
vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.

VMware vSphere volumes can be provisioned dynamically. OpenShift Container Platform creates the
disk in vSphere and attaches this disk to the correct image.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

PersistentVolumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. PersistentVolumeClaims are specific to a project or namespace
and can be requested by users.

Additional references

® VMware vSphere

2.15.1. Dynamically provisioning VMware vSphere volumes

Dynamically provisioning VMware vSphere volumes is the recommended method.

Prerequisites

® An OpenShift Container Platform cluster installed on a VMware vSphere version that meets the
requirements for the components that you use. See Installing a cluster on vSphere for
information about vSphere version support.

You can use either of the following procedures to dynamically provision these volumes using the default
StorageClass.

2.15.1.1. Dynamically provisioning VMware vSphere volumes using the Ul

OpenShift Container Platform installs a default StorageClass, named thin, that uses the thin disk
format for provisioning volumes.

Prerequisites

® Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage — Persistent Volume Claims
2. Inthe persistent volume claims overview, click Create Persistent Volume Claim

3. Define the required options on the resulting page.

a. Select the thin StorageClass.

b. Enter a unigue name for the storage claim.

62

https://www.vmware.com/au/products/vsphere.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/installing/#installing-a-cluster-on-vsphere

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

c. Select the access mode to determine the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the PersistentVolumeClaim and generate a PersistentVolume.

2.15.1.2. Dynamically provisioning VMware vSphere volumes using the CLI

OpenShift Container Platform installs a default StorageClass, named thin, that uses the thin disk
format for provisioning volumes.

Prerequisites

® Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure (CLI)

1. You can define a VMware vSphere PersistentVolumeClaim by creating a file, pve.yaml, with the
following contents:

kind: PersistentVolumeClaim
apiVersion: vi
metadata:

name: pvc ﬂ

spec:
accessModes:
- ReadWriteOnce 9
resources:
requests:
storage: 1Gi

ﬂ A unique name that represents the PersistentVolumeClaim.

9 The PersistentVolumeClaim'’s access mode. With ReadWriteOnce, the volume can be
mounted with read and write permissions by a single node.

9 The size of the PersistentVolumeClaim.

2. Create the PersistentVolumeClaim from the file:

I $ oc create -f pvc.yaml

2.15.2. Statically provisioning VMware vSphere volumes

To statically provision VMware vSphere volumes you must create the virtual machine disks for reference
by the persistent volume framework.

Prerequisites

® Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

63

OpenShift Container Platform 4.2 Storage

Procedure

1. Create the virtual machine disks. Virtual machine disks (VMDKs) must be created manually
before statically provisioning VMware vSphere volumes. Use either of the following methods:

® Create using vmkfstools. Access ESX through Secure Shell (SSH) and then use following
command to create a VMDK volume:

I $ vmkfstools -¢c <size> /vmfs/volumes/<datastore-name>/volumes/<disk-name>.vmdk

® Create using vmware-diskmanager:

I $ shell vmware-vdiskmanager -c -t 0 -s <size> -a Isilogic <disk-name>.vmdk

2. Create a PersistentVolume that references the VMDKs. Create a file, pv1i.yaml, with the
PersistentVolume object definition:

apiVersion: vi
kind: PersistentVolume

metadata:
name: pvi ﬂ
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce

persistentVolumeReclaimPolicy: Retain
vsphereVolume: e
volumePath: "[datastore1] volumes/myDisk" ﬂ

fsType: ext4 9

The name of the volume. This name is how it is identified by PersistentVolumeClaims or
Pods.

The amount of storage allocated to this volume.
The volume type used, with vsphereVolume for vSphere volumes. The label is used to
mount a vSphere VMDK volume into Pods. The contents of a volume are preserved when it

is unmounted. The volume type supports VMFS and VSAN datastore.

The existing VMDK volume to use. If you used vmkfstools, you must enclose the datastore
name in square brackets, [], in the volume definition, as shown previously.

® 6 00 9o

The file system type to mount. For example, ext4, xfs, or other file systems.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and Pod failure.

3. Create the PersistentVolume from the file:

I $ oc create -f pvi.yaml

64

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

4. Create a PersistentVolumeClaim that maps to the PersistentVolume you created in the previous
step. Create a file, pvel.yaml, with the PersistentVolumeClaim object definition:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:

name: pvci ﬂ
spec:
accessModes:
- ReadWriteOnce 9
resources:
requests:

storage: "1Gi" 6
volumeName: pv1

ﬂ A unigue name that represents the PersistentVolumeClaim.

9 The PersistentVolumeClaim'’s access mode. With ReadWriteOnce, the volume can be
mounted with read and write permissions by a single node.

9 The size of the PersistentVolumeClaim.

Q The name of the existing PersistentVolume.

5. Create the PersistentVolumeClaim from the file:

I $ oc create -f pvci.yaml

2.15.2.1. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system that is specified by the fsType parameter value in the PersistentVolume
(PV) definition. If the device is not formatted with the file system, all data from the device is erased, and
the device is automatically formatted with the specified file system.

Because OpenShift Container Platform formats them before the first use, you can use unformatted
vSphere volumes as PVs.

2.16. PERSISTENT STORAGE USING VOLUME SNAPSHOTS

IMPORTANT

Volume snapshot is deprecated in OpenShift Container Platform 4.2.

This document describes how to use VolumeSnapshots to protect against data loss in OpenShift
Container Platform. Familiarity with persistent volumes is suggested.

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/storage/#persistent-volumes_understanding-persistent-storage

OpenShift Container Platform 4.2 Storage

IMPORTANT

Volume snapshot is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

2.16.1. About shapshots

A volume snapshot is a snapshot taken from a storage volume in a cluster. The external snapshot
controller and provisioner enable use of the feature in the OpenShift Container Platform cluster and
handle volume snapshots through the OpenShift Container Platform API.
With volume snapshots, a cluster administrator can:

® Create a snapshot of a PersistentVolume bound to a PersistentVolumeClaim.

® List existing VolumeSnapshots.

® Delete an existing VolumeSnapshot.

® Create a new PersistentVolume from an existing VolumeSnapshot.
Supported PersistentVolume types:

® AWS Elastic Block Store (EBS)

® Google Compute Engine (GCE) Persistent Disk (PD)

2.16.2. External controller and provisioner

The controller and provisioner provide volume snapshotting. These external components run in the
cluster.

There are two external components that provide volume snapshotting:

External controller
Creates, deletes, and reports events on volume snapshots.
External provisioner

Creates new PersistentVolumes from VolumeSnapshots.

The external controller and provisioner services are distributed as container images and can be run in
the OpenShift Container Platform cluster as usual.

2.16.2.1. Running the external controller and provisioner

The cluster administrator must configure access to run the external controller and provisioner.

Procedure

To allow the containers managing the APl objects:

66

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

1. Create a ServiceAccount and ClusterRole:

apiVersion: vi
kind: ServiceAccount
metadata:
name: snapshot-controller-runner
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: snapshot-controller-role
rules:
- apiGroups: ["]
resources: ["persistentvolumes”]
verbs: ["get", "list", "watch", "create", "delete"]
- apiGroups: ["]
resources: ["persistentvolumeclaims”]
verbs: ["get", "list", "watch", "update"]
- apiGroups: ["storage.k8s.i0"]
resources: ["storageclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: ["]
resources: ["events"]
verbs: ["list", "watch", "create", "update”, "patch"]
- apiGroups: ["apiextensions.k8s.io"]
resources: ["'customresourcedefinitions"]
verbs: ["create”, "list", "watch", "delete"]
- apiGroups: ["volumesnapshot.external-storage.k8s.i0"]
resources: ["volumesnapshots"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
- apiGroups: ["volumesnapshot.external-storage.k8s.i0"]
resources: ["volumesnapshotdatas"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

2. As the cluster administrator, provide the hostNetwork security context constraint (SCC):
I # oc adm policy add-scc-to-user hostnetwork -z snapshot-controller-runner

This SCC controls access to the snapshot-controller-runner service account that the Pod is
using.

3. Bind the rules via ClusterRoleBinding:

apiVersion: rbac.authorization.k8s.io/vibetat
kind: ClusterRoleBinding
metadata:
name: snapshot-controller
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: snapshot-controller-role
subjects:
- kind: ServiceAccount
name: snapshot-controller-runner
namespace: default ﬂ

67

OpenShift Container Platform 4.2 Storage

ﬂ Specify the project name where the snapshot-controller resides.

2.16.2.2. AWS and GCE authentication

To authenticate the external controller and provisioner, your cloud provider may require the
administrator to provide a secret.

2.16.2.2.1. AWS authentication

If the external controller and provisioner are deployed in Amazon Web Services (AWS), AWS must be
able to authenticate using the access key.

To provide the credential to the Pod, the cluster administrator creates a new secret:

apiVersion: vi

kind: Secret

metadata:
name: awskeys

type: Opaque

data:
access-key-id: <base64 encoded AWS_ACCESS_KEY_ID>
secret-access-key: <base64 encoded AWS_SECRET_ACCESS_KEY>

IMPORTANT

When generating the base64 values required for the awskeys secret, remove any trailing
newline character as follows:

$ echo -n "<aws_access_key_id>" | base64
$ echo -n "<aws_secret_access_key>" | base64

The following example displays the AWS deployment of the external controller and provisioner
containers. Both Pod containers use the secret to access the AWS API.

kind: Deployment
apiVersion: extensions/vibetal
metadata:
name: snapshot-controller
spec:
replicas: 1
strategy:
type: Recreate
template:
metadata:
labels:
app: snapshot-controller
spec:
serviceAccountName: snapshot-controller-runner
hostNetwork: true
containers:
- name: snapshot-controller
image: "registry.redhat.io/openshift3/snapshot-controller:latest"

68

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

imagePullPolicy: "lIfNotPresent"
args: ["-cloudprovider", "aws"]
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: awskeys
key: access-key-id
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: awskeys
key: secret-access-key
- name: snapshot-provisioner
image: "registry.redhat.io/openshift3/snapshot-provisioner:latest"
imagePullPolicy: "lIfNotPresent”
args: ["-cloudprovider", "aws"]
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: awskeys
key: access-key-id
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: awskeys
key: secret-access-key

2.16.2.2.2. GCE authentication

For Google Compute Engine (GCE), there is no need to use secrets to access the GCE API.

The administrator can proceed with the deployment as shown in the following example:

kind: Deployment
apiVersion: extensions/vibetal
metadata:
name: snapshot-controller
spec:
replicas: 1
strategy:
type: Recreate
template:
metadata:
labels:
app: snapshot-controller
spec:
serviceAccountName: snapshot-controller-runner
containers:
- name: snapshot-controller
image: "registry.redhat.io/openshift3/snapshot-controller:latest"
imagePullPolicy: "IfNotPresent”
args: ["-cloudprovider", "gce"]
- name: snapshot-provisioner

69

OpenShift Container Platform 4.2 Storage

image: "registry.redhat.io/openshift3/snapshot-provisioner:latest"
imagePullPolicy: "lIfNotPresent”
args: ["-cloudprovider", "gce"]

2.16.2.3. Managing snhapshot users

Depending on the cluster configuration, it might be necessary to allow non-administrator users to
manipulate the VolumeSnapshot objects on the API server. This can be done by creating a ClusterRole
bound to a particular user or group.

For example, assume the user "alice” needs to work with snapshots in the cluster. The cluster
administrator completes the following steps:

1. Define a new ClusterRole:

apiVersion: vi
kind: ClusterRole
metadata:
name: volumesnapshot-admin
rules:
- apiGroups:
- "volumesnapshot.external-storage.k8s.io"
attributeRestrictions: null
resources:
- volumesnapshots
verbs:
- create
- delete
- deletecollection
- get
- list
- patch
- update
- watch

2. Bind the cluster role to the user "alice" by creating a ClusterRoleBinding object:

apiVersion: rbac.authorization.k8s.io/vibetat
kind: ClusterRoleBinding
metadata:
name: volumesnapshot-admin
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: volumesnapshot-admin
subjects:
- kind: User
name: alice

NOTE
This is only an example of APl access configuration. The VolumeSnapshot objects

behave similar to other OpenShift Container Platform APl objects. See the APl access
control documentation for more information on managing the API RBAC.

70

https://kubernetes.io/docs/admin/accessing-the-api/

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

2.16.3. Creating and deleting snapshots

Similar to how a persistent volume claim (PVC) binds to a persistent volume (PV) to provision a volume,
VolumeSnapshotData and VolumeSnapshot are used to create a volume snapshot.

Volume snapshots must use a supported PersistentVolume type.

2.16.3.1. Create snapshot

To take a snapshot of a PV, create a new VolumeSnapshotData object based on the VolumeSnapshot, as
shown in the following example:

apiVersion: volumesnapshot.external-storage.k8s.io/v1
kind: VolumeSnapshot ﬂ
metadata:
name: snapshot-demo
spec:
persistentVolumeClaimName: ebs-pvc 9

ﬂ A VolumeSnapshotData object is automatically created based on the VolumeSnapshot.

9 persistentVolumeClaimName is the name of the PersistentVolumeClaim bound to a
PersistentVolume. This particular PV is snapshotted.

Depending on the PV type, the create snapshot operation might go through several phases, which are
reflected by the VolumeSnapshot status:

1. Create the new VolumeSnapshot object.

2. Start the controller. The snapshotted PersistentVolume might need to be frozen and the
applications paused.

3. Create ("cut") the snapshot. The snapshotted PersistentVolume might return to normal
operation, but the snapshot itself is not yet ready (status=True, type=Pending).

4. Create the new VolumeSnapshotData object, representing the actual snapshot.

5. The snapshot is complete and ready to use (status=True, type=Ready).

IMPORTANT

It is the user’s responsibility to ensure data consistency (stop the Pod or application, flush
caches, freeze the file system, and so on).

NOTE

In case of error, the VolumeSnapshot status is appended with an Error condition.

To display the VolumeSnapshot status:

I $ oc get volumesnapshot -o yaml

The status is displayed, as shown in the following example:

71

OpenShift Container Platform 4.2 Storage

apiVersion: volumesnapshot.external-storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
clusterName: "
creationTimestamp: 2017-09-19T13:58:28Z
generation: 0
labels:
Timestamp: "1505829508178510973"
name: snapshot-demo
namespace: default
resourceVersion: "780"
selfLink: /apis/volumesnapshot.external-
storage.k8s.io/v1/namespaces/default/volumesnapshots/snapshot-demo
uid: 9cc5da57-9d42-11e7-9b25-90b11c132b3f
spec:
persistentVolumeClaimName: ebs-pvc
snapshotDataName: k8s-volume-snapshot-9cc8813e-9d42-11e7-8bed-90b11c132b3f
status:
conditions:
- lastTransitionTime: null
message: Snapshot created successfully
reason: ""
status: "True"
type: Ready
creationTimestamp: null

ﬂ Specify the project name where the snapshot-controller resides.

2.16.3.2. Restore snapshot

A PVC is used to restore a snapshot. But first, the administrator must create a StorageClass to restore a
PersistentVolume from an existing VolumeSnapshot.

1. Create a StorageClass:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: snapshot-promoter
provisioner: volumesnapshot.external-storage.k8s.io/snapshot-promoter
parameters:
encrypted: "true"

type: gp2

If you are using AWS EBS storage with gp2 encryption configured, you must set the
parameters for encrypted and type.

2. Create a PVC:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: snapshot-pv-provisioning-demo

72

CHAPTER 2. CONFIGURING PERSISTENT STORAGE

annotations:

snapshot.alpha.kubernetes.io/snapshot: snapshot-demo ﬂ
spec:

storageClassName: snapshot-promoter 9
accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

ﬂ The name of the VolumeSnapshot to be restored.
9 Created by the administrator for restoring VolumeSnapshots.

9 Storage size for a restored snapshot must be large enough to accommodate the original
PV size.

A new PersistentVolume is created and bound to the PersistentVolumeClaim. The process
might take several minutes depending on the PV type.

2.16.3.3. Delete snapshot

To delete a VolumeSnapshot:

I $ oc delete volumesnapshot/<snapshot-name>

The VolumeSnapshotData bound to the VolumeSnapshot is automatically deleted.

73

OpenShift Container Platform 4.2 Storage

CHAPTER 3. EXPANDING PERSISTENT VOLUMES

3.1. ENABLING VOLUME EXPANSION SUPPORT

Before you can expand persistent volumes, the StorageClass must have the allowVolumeExpansion
field set to true.

Procedure

® Edit the StorageClass and add the allowVolumeExpansion attribute. The following example
demonstrates adding this line at the bottom of the StorageClass’s configuration.

apiVersion: storage.k8s.io/v1
kind: StorageClass

parameters:
type: gp2

reclaimPolicy: Delete
allowVolumeExpansion: true 0

ﬂ Setting this attribute to true allows PVCs to be expanded after creation.

3.2. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER

When using FlexVolume to connect to your backend storage system, you can expand persistent storage
volumes after they have already been created. This is done by manually updating the persistent volume
claim (PVC) in OpenShift Container Platform.

FlexVolume allows expansion if the driver is set with RequiresFSResize to true. The FlexVolume can be
expanded on Pod restart.

Similar to other volume types, FlexVolume volumes can also be expanded when in use by a Pod.

Prerequisites
® The underlying volume driver supports resize.
® The driver is set with the RequiresFSResize capability to true.
® Dynamic provisioning is used.

® The controlling StorageClass has allowVolumeExpansion set to true.

Procedure

® To use resizing in the FlexVolume plugin, you must implement the ExpandableVolumePlugin
interface using these methods:

RequiresFSResize

If true, updates the capacity directly. If false, calls the ExpandFS method to finish the
filesystem resize.

ExpandFS

74

CHAPTER 3. EXPANDING PERSISTENT VOLUMES

If true, calls ExpandFS to resize filesystem after physical volume expansion is done. The
volume driver can also perform physical volume resize together with filesystem resize.

IMPORTANT

Because OpenShift Container Platform does not support installation of FlexVolume
plugins on master nodes, it does not support control-plane expansion of FlexVolume.

3.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH AFILE
SYSTEM

Expanding PVCs based on volume types that need file system resizing, such as GCE PD, EBS, and
Cinder, is a two-step process. This process involves expanding volume objects in the cloud provider, and
then expanding the file system on the actual node.

Expanding the file system on the node only happens when a new pod is started with the volume.

Prerequisites

® The controlling StorageClass must have allowVolumeExpansion set to true.

Procedure

1. Edit the PVC and request a new size by editing spec.resources.requests. For example, the
following expands the ebs PVC to 8 Gi.

kind: PersistentVolumeClaim
apiVersion: vi
metadata:
name: ebs
spec:
storageClass: "storageClassWithFlagSet"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 8Gi ﬂ

Q Updating spec.resources.requests to a larger amount will expand the PVC.

2. Once the cloud provider object has finished resizing, the PVC is set to
FileSystemResizePending. The following command is used to check the condition:

I $ oc describe pvc <pvc_name>

3. When the cloud provider object has finished resizing, the persistent volume object reflects the
newly requested size in PersistentVolume.Spec.Capacity. At this point, you can create or
recreate a new pod from the PVC to finish the file system resizing. Once the pod is running, the
newly requested size is available and the FileSystemResizePending condition is removed from
the PVC.

3.4.RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

75

OpenShift Container Platform 4.2 Storage

If expanding underlying storage fails, the OpenShift Container Platform administrator can manually
recover the Persistent Volume Claim (PVC) state and cancel the resize requests. Otherwise, the resize
requests are continuously retried by the controller without administrator intervention.

Procedure

1.

76

Mark the persistent volume (PV) that is bound to the PVC with the Retain reclaim policy. This
can be done by editing the PV and changing persistentVolumeReclaimPolicy to Retain.

Delete the PVC. This will be recreated later.

To ensure that the newly created PVC can bind to the PV marked Retain, manually edit the PV
and delete the claimRef entry from the PV specs. This marks the PV as Available.

Re-create the PVC in a smaller size, or a size that can be allocated by the underlying storage
provider.

Set the volumeName field of the PVC to the name of the PV. This binds the PVC to the
provisioned PV only.

Restore the reclaim policy on the PV.

CHAPTER 4. DYNAMIC PROVISIONING

CHAPTER 4. DYNAMIC PROVISIONING

4.1. ABOUT DYNAMIC PROVISIONING

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass
objects can also serve as a management mechanism for controlling different levels of storage and
access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-
admin) define and create the StorageClass objects that users can request without needing any intimate
knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APlIs.

4.2. AVAILABLE DYNAMIC PROVISIONING PLUG-INS

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’'s APl to create new
storage resources:

Storage type Provisioner plug-in name

Red Hat OpenStack Platform kubernetes.io/cinder
(RHOSP) Cinder

AWS Elastic Block Store (EBS) kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

AWS Elastic File System (EFS) Dynamic provisioning is
accomplished through the EFS
provisioner pod and not through a
provisioner plug-in.

Azure Disk kubernetes.io/azure-disk

Azure File kubernetes.io/azure-file The persistent-volume-binder
ServiceAccount requires
permissions to create and get
Secrets to store the Azure
storage account and keys.

77

OpenShift Container Platform 4.2 Storage

Storage type Provisioner plug-in name

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd

VMware vSphere kubernetes.io/vsphere-
volume

IMPORTANT

4.3. DEFINING A STORAGECLASS

Notes

In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

StorageClass objects are currently a globally scoped object and must be created by cluster-admin or

storage-admin users.

IMPORTANT

The ClusterStorageOperator may install a default StorageClass depending on the
platform in use. This StorageClass is owned and controlled by the operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom StorageClass.

The following sections describe the basic object definition for a StorageClass and specific examples for

each of the supported plug-in types.

4.3.1. Basic StorageClass object definition

The following resource shows the parameters and default values that you use to configure a
StorageClass. This example uses the AWS ElasticBlockStore (EBS) object definition.

Sample StorageClass definition

kind: StorageClass ﬂ
apiVersion: storage.k8s.io/v1 g
metadata:

name: gp2 e
annotations:
storageclass.kubernetes.io/is-default-class: 'true'

78

https://www.vmware.com/support/vsphere.html

CHAPTER 4. DYNAMIC PROVISIONING

provisioner: kubernetes.io/aws-ebs 6
parameters:
type: gp2

(required) The API object type.

(required) The current apiVersion.
(required) The name of the StorageClass.
(optional) Annotations for the StorageClass

(required) The type of provisioner associated with this storage class.

QD009

(optional) The parameters required for the specific provisioner, this will change from plug-in to
plug-in.

4.3.2. StorageClass annotations

To set a StorageClass as the cluster-wide default, add the following annotation to your StorageClass's
metadata:

I storageclass.kubernetes.io/is-default-class: "true"

For example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
annotations:
storageclass.kubernetes.io/is-default-class: "true"

This enables any Persistent Volume Claim (PVC) that does not specify a specific volume to
automatically be provisioned through the default StorageClass.

NOTE

The beta annotation storageclass.beta.kubernetes.io/is-default-class is still working;
however, it will be removed in a future release.

To set a StorageClass description, add the following annotation to your StorageClass’s metadata:
I kubernetes.io/description: My StorageClass Description
For example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

79

OpenShift Container Platform 4.2 Storage

annotations:
kubernetes.io/description: My StorageClass Description

4.3.3. RHOSP Cinder object definition

cinder-storageclass.yaml

1]
2]

©

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: gold

provisioner: kubernetes.io/cinder
parameters:

type: fast ﬂ
availability: nova g
fsType: ext4 e

Volume type created in Cinder. Default is empty.

Availability Zone. If not specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

4.3.4. AWS Elastic Block Store (EBS) object definition

aws-ebs-storageclass.yaml

2]

©

80

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: slow

provisioner: kubernetes.io/aws-ebs
parameters:

type: io1 ﬂ
iopsPerGB: "10" g
encrypted: "true"
kmsKeyld: keyvalue ﬂ
fsType: ext4 9

(required) Select from io1, gp2, sc1, st1. The default is gp2. See the AWS documentation for valid
Amazon Resource Name (ARN) values.

(optional) Only for io1 volumes. |/O operations per second per GiB. The AWS volume plug-in
multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap
is 20,000 IOPS, which is the maximum supported by AWS. See the AWS documentation for further
details.

(optional) Denotes whether to encrypt the EBS volume. Valid values are true or false.

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

CHAPTER 4. DYNAMIC PROVISIONING

o

(optional) The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted is set to true, then AWS generates a key. See the AWS documentation for a valid ARN

9 (optional) File system that is created on dynamically provisioned volumes. This value is copied to
the fsType field of dynamically provisioned persistent volumes and the file system is created when
the volume is mounted for the first time. The default value is ext4.

4.3.5. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: slow
provisioner: kubernetes.io/azure-disk
parameters:
storageAccount: azure_storage_account_name ﬂ
storageaccounttype: Standard_LRS 9
kind: Dedicated 6

ﬂ Azure storage account name. This must reside in the same resource group as the cluster. If a
storage account is specified, the location is ignored. If a storage account is not specified, a new
storage account gets created in the same resource group as the cluster. If you are specifying a
storageAccount, the value for kind must be Dedicated.

9 Azure storage account SKU tier. Default is empty. Note that Premium VMs can attach both
Standard_LRS and Premium_LRS disks, Standard VMs can only attach Standard_LRS disks,
Managed VMs can only attach managed disks, and unmanaged VMs can only attach unmanaged
disks.

9 Possible values are Shared (default), Dedicated, and Managed.

a. Ifkind is set to Shared, Azure creates all unmanaged disks in a few shared storage
accounts in the same resource group as the cluster.

b. Ifkind is set to Managed, Azure creates new managed disks.
c. Ifkind is set to Dedicated and a storageAccount is specified, Azure uses the specified

storage account for the new unmanaged disk in the same resource group as the cluster.
For this to work:

® The specified storage account must be in the same region.
® Azure Cloud Provider must have a write access to the storage account.
d. Ifkind is set to Dedicated and a storageAccount is not specified, Azure creates a new

dedicated storage account for the new unmanaged disk in the same resource group as the
cluster.

4.3.6. Azure File object definition

81

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

OpenShift Container Platform 4.2 Storage

The Azure File StorageClass uses secrets to store the Azure storage account name and the storage
account key that are required to create an Azure Files share. These permissions are created as part of
the following procedure.

Procedure

1. Define a ClusterRole that allows access to create and view secrets:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: system:azure-cloud-provider
name: <persistent-volume-binder-role> ﬂ
rules:
- apiGroups: ["]
resources: ['secrets']
verbs: [get,'create’]

ﬂ The name of the ClusterRole to view and create secrets.

2. Add the ClusterRole to the ServiceAccount:

$ oc adm policy add-cluster-role-to-user <persistent-volume-binder-role>
system:serviceaccount:kube-system:persistent-volume-binder

3. Create the Azure File StorageClass:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: <azure-file> ﬂ
provisioner: kubernetes.io/azure-file
parameters:

location: eastus 9

skuName: Standard LRS 6

storageAccount: <storage-account> ﬂ
reclaimPolicy: Delete
volumeBindingMode: Immediate

Name of the StorageClass. The PersistentVolumeClaim uses this StorageClass for
provisioning the associated PersistentVolumes.

Location of the Azure storage account, such as eastus. Default is empty, meaning that a
new Azure storage account will be created in the OpenShift Container Platform cluster’s
location.

SKU tier of the Azure storage account, such as Standard_LRS. Default is empty, meaning
that a new Azure storage account will be created with the Standard_LRS SKU.

Name of the Azure storage account. If a storage account is provided, then skuName and
location are ignored. If no storage account is provided, then the StorageClass searches for
any storage account that is associated with the resource group for any accounts that
match the defined skuName and location.

O o o 9o

82

CHAPTER 4. DYNAMIC PROVISIONING

4.3.6.1. Considerations when using Azure File

The following file system features are not supported by the default Azure File StorageClass:
® Symlinks
® Hard links
® Extended attributes
® Sparse files
® Named pipes

Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the
process UID of the container. The uid mount option can be specified in the StorageClass to define a
specific user identifier to use for the mounted directory.

The following StorageClass demonstrates modifying the user and group identifier, along with enabling
symlinks for the mounted directory.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: azure-file
mountOptions:

- uid=1500

- gid=1500

- mfsymlinks
provisioner: kubernetes.io/azure-file
parameters:

location: eastus

skuName: Standard_LRS

reclaimPolicy: Delete
volumeBindingMode: Immediate

ﬂ Specifies the user identifier to use for the mounted directory.
9 Specifies the group identifier to use for the mounted directory.

9 Enables symlinks.

4.3.7. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: slow
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard ﬂ
replication-type: none

83

OpenShift Container Platform 4.2 Storage

ﬂ Select either pd-standard or pd-ssd. The defaultis pd-ssd.

4.3.8. VMware vSphere object definition

vsphere-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: slow
provisioner: kubernetes.io/vsphere-volume ﬂ
parameters:
diskformat: thin 9

For more information about using VMware vSphere with OpenShift Container Platform, see the
VMware vSphere documentation.

diskformat: thin, zeroedthick and eagerzeroedthick are all valid disk formats. See vSphere docs
for additional details regarding the disk format types. The default value is thin.

4.3.9. Red Hat OpenShift Container Storage object definition

When using Red Hat OpenShift Container Storage, the storage classes for dynamic volume provisioning
are created when Red Hat OpenShift Container Storage 4.2 is deployed from the Operator Hub as
described in Verify that the storage classes are created and listed .

4.4. CHANGING THE DEFAULT STORAGECLASS
If you are using AWS, use the following process to change the default StorageClass. This process
assumes you have two StorageClasses defined, gp2 and standard, and you want to change the default

StorageClass from gp2 to standard.

1. List the StorageClass:

$ oc get storageclass

NAME TYPE
gp2 (default) kubernetes.io/aws-ebs ﬂ
standard kubernetes.io/aws-ebs

ﬂ (default) denotes the default StorageClass.

2. Change the value of the annotation storageclass.kubernetes.io/is-default-class to false for
the default StorageClass:

$ oc patch storageclass gp2 -p {"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

3. Make another StorageClass the default by adding or modifying the annotation as
storageclass.kubernetes.io/is-default-class=true.

84

https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.2/html-single/deploying_openshift_container_storage/index#verify_that_the_storage_classes_are_created_and_listed

CHAPTER 4. DYNAMIC PROVISIONING

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

4. Verify the changes:

$ oc get storageclass

NAME TYPE
gp2 kubernetes.io/aws-ebs
standard (default) kubernetes.io/aws-ebs

85

	Table of Contents
	CHAPTER 1. UNDERSTANDING PERSISTENT STORAGE
	1.1. PERSISTENT STORAGE OVERVIEW
	1.2. LIFECYCLE OF A VOLUME AND CLAIM
	1.2.1. Provision storage
	1.2.2. Bind claims
	1.2.3. Use Pods and claimed PVs
	1.2.4. Storage Object in Use Protection
	1.2.5. Release volumes
	1.2.6. Reclaim volumes

	1.3. PERSISTENT VOLUMES
	1.3.1. Types of PVs
	1.3.2. Capacity
	1.3.3. Access modes
	1.3.4. Phase
	1.3.4.1. Mount options

	1.4. PERSISTENT VOLUME CLAIMS
	1.4.1. Storage classes
	1.4.2. Access modes
	1.4.3. Resources
	1.4.4. Claims as volumes

	1.5. BLOCK VOLUME SUPPORT
	1.5.1. Block volume examples

	CHAPTER 2. CONFIGURING PERSISTENT STORAGE
	2.1. PERSISTENT STORAGE USING AWS ELASTIC FILE SYSTEM
	2.1.1. Store the EFS variables in a ConfigMap
	2.1.2. Configuring authorization for EFS volumes
	2.1.3. Create the EFS StorageClass
	2.1.4. Create the EFS provisioner
	2.1.5. Create the EFS PersistentVolumeClaim

	2.2. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	2.2.1. Creating the EBS Storage Class
	2.2.2. Creating the Persistent Volume Claim
	2.2.3. Volume format
	2.2.4. Maximum Number of EBS Volumes on a Node

	2.3. PERSISTENT STORAGE USING AZURE
	2.3.1. Creating the Azure storage class
	2.3.2. Creating the Persistent Volume Claim
	2.3.3. Volume format

	2.4. PERSISTENT STORAGE USING AZURE FILE
	2.4.1. Create the Azure File share PersistentVolumeClaim
	2.4.2. Mount the Azure File share in a Pod

	2.5. PERSISTENT STORAGE USING CINDER
	2.5.1. Manual provisioning with Cinder
	2.5.1.1. Creating the persistent volume
	2.5.1.2. Persistent volume formatting
	2.5.1.3. Cinder volume security

	2.6. PERSISTENT STORAGE USING THE CONTAINER STORAGE INTERFACE (CSI)
	2.6.1. CSI Architecture
	2.6.1.1. External CSI controllers
	2.6.1.2. CSI Driver DaemonSet

	2.6.2. Dynamic Provisioning
	2.6.3. Example using the CSI driver

	2.7. PERSISTENT STORAGE USING FIBRE CHANNEL
	2.7.1. Provisioning
	2.7.1.1. Enforcing disk quotas
	2.7.1.2. Fibre Channel volume security

	2.8. PERSISTENT STORAGE USING FLEXVOLUME
	2.8.1. About FlexVolume drivers
	2.8.2. FlexVolume driver example
	2.8.3. Installing FlexVolume drivers
	2.8.4. Consuming storage using FlexVolume drivers

	2.9. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	2.9.1. Creating the GCE Storage Class
	2.9.2. Creating the Persistent Volume Claim
	2.9.3. Volume format

	2.10. PERSISTENT STORAGE USING HOSTPATH
	2.10.1. Overview
	2.10.2. Statically provisioning hostPath volumes
	2.10.3. Mounting the hostPath share in a privileged Pod

	2.11. PERSISTENT STORAGE USING ISCSI
	2.11.1. Provisioning
	2.11.2. Enforcing Disk Quotas
	2.11.3. iSCSI Volume Security
	2.11.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

	2.11.4. iSCSI Multipathing
	2.11.5. iSCSI Custom Initiator IQN

	2.12. PERSISTENT STORAGE USING LOCAL VOLUMES
	2.12.1. Installing the Local Storage Operator
	2.12.2. Provision the local volumes
	2.12.3. Create the local volume PersistentVolumeClaim
	2.12.4. Attach the local claim
	2.12.5. Deleting the Local Storage Operator’s resources
	2.12.5.1. Removing a local volume
	2.12.5.2. Uninstalling the Local Storage Operator

	2.13. PERSISTENT STORAGE USING NFS
	2.13.1. Provisioning
	2.13.2. Enforcing disk quotas
	2.13.3. NFS volume security
	2.13.3.1. Group IDs
	2.13.3.2. User IDs
	2.13.3.3. SELinux
	2.13.3.4. Export settings

	2.13.4. Reclaiming resources
	2.13.5. Additional configuration and troubleshooting

	2.14. RED HAT OPENSHIFT CONTAINER STORAGE
	2.15. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES
	2.15.1. Dynamically provisioning VMware vSphere volumes
	2.15.1.1. Dynamically provisioning VMware vSphere volumes using the UI
	2.15.1.2. Dynamically provisioning VMware vSphere volumes using the CLI

	2.15.2. Statically provisioning VMware vSphere volumes
	2.15.2.1. Formatting VMware vSphere volumes

	2.16. PERSISTENT STORAGE USING VOLUME SNAPSHOTS
	2.16.1. About snapshots
	2.16.2. External controller and provisioner
	2.16.2.1. Running the external controller and provisioner
	2.16.2.2. AWS and GCE authentication
	2.16.2.3. Managing snapshot users

	2.16.3. Creating and deleting snapshots
	2.16.3.1. Create snapshot
	2.16.3.2. Restore snapshot
	2.16.3.3. Delete snapshot

	CHAPTER 3. EXPANDING PERSISTENT VOLUMES
	3.1. ENABLING VOLUME EXPANSION SUPPORT
	3.2. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER
	3.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
	3.4. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

	CHAPTER 4. DYNAMIC PROVISIONING
	4.1. ABOUT DYNAMIC PROVISIONING
	4.2. AVAILABLE DYNAMIC PROVISIONING PLUG-INS
	4.3. DEFINING A STORAGECLASS
	4.3.1. Basic StorageClass object definition
	4.3.2. StorageClass annotations
	4.3.3. RHOSP Cinder object definition
	4.3.4. AWS Elastic Block Store (EBS) object definition
	4.3.5. Azure Disk object definition
	4.3.6. Azure File object definition
	4.3.6.1. Considerations when using Azure File

	4.3.7. GCE PersistentDisk (gcePD) object definition
	4.3.8. VMware vSphere object definition
	4.3.9. Red Hat OpenShift Container Storage object definition

	4.4. CHANGING THE DEFAULT STORAGECLASS

