
OpenShift Container Platform 4.2

Scalability and performance

Scaling your OpenShift Container Platform 4.2 cluster and tuning performance in
production environments

Last Updated: 2020-10-01

OpenShift Container Platform 4.2 Scalability and performance

Scaling your OpenShift Container Platform 4.2 cluster and tuning performance in production
environments

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for scaling your cluster and optimizing the performance of
your OpenShift Container Platform environment.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RECOMMENDED HOST PRACTICES
1.1. RECOMMENDED NODE HOST PRACTICES
1.2. CREATE A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
1.3. MASTER NODE SIZING
1.4. RECOMMENDED ETCD PRACTICES
1.5. ADDITIONAL RESOURCES

CHAPTER 2. USING THE NODE TUNING OPERATOR
2.1. ABOUT THE NODE TUNING OPERATOR
2.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
2.3. DEFAULT PROFILES SET ON A CLUSTER
2.4. CUSTOM TUNING SPECIFICATION
2.5. CUSTOM TUNING EXAMPLE
2.6. SUPPORTED TUNED DAEMON PLUG-INS

CHAPTER 3. USING CLUSTER LOADER
3.1. INSTALLING CLUSTER LOADER
3.2. RUNNING CLUSTER LOADER
3.3. CONFIGURING CLUSTER LOADER

3.3.1. Example Cluster Loader configuration file
3.3.2. Configuration fields

3.4. KNOWN ISSUES

CHAPTER 4. USING CPU MANAGER
4.1. SETTING UP CPU MANAGER

CHAPTER 5. SCALING THE CLUSTER MONITORING OPERATOR
5.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
5.2. CONFIGURING CLUSTER MONITORING

CHAPTER 6. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
6.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
6.2. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS
6.3. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER
MAXIMUMS ARE TESTED
6.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
6.5. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

CHAPTER 7. OPTIMIZING STORAGE
7.1. AVAILABLE PERSISTENT STORAGE OPTIONS
7.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

7.2.1. Specific application storage recommendations
7.2.1.1. Registry
7.2.1.2. Scaled registry
7.2.1.3. Metrics
7.2.1.4. Logging
7.2.1.5. Applications

7.2.2. Other specific application storage recommendations

CHAPTER 8. OPTIMIZING ROUTING
8.1. BASELINE ROUTER PERFORMANCE
8.2. ROUTER PERFORMANCE OPTIMIZATIONS

CHAPTER 9. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

4
4
4
6
7
7

8
8
8
8

10
13
14

15
15
15
15
15
17

20

21
21

25
25
26

28
28
29

30
32
32

34
34
35
35
36
36
36
36
37
37

38
38
39

40

Table of Contents

1

9.1. WHAT HUGE PAGES DO
9.2. HOW HUGE PAGES ARE CONSUMED BY APPS
9.3. CONFIGURING HUGE PAGES

40
40
41

OpenShift Container Platform 4.2 Scalability and performance

2

Table of Contents

3

CHAPTER 1. RECOMMENDED HOST PRACTICES
This topic provides recommended host practices for OpenShift Container Platform.

1.1. RECOMMENDED NODE HOST PRACTICES

The OpenShift Container Platform node configuration file contains important options. For example, two
parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and
maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

podsPerCore sets the number of pods the node can run based on the number of processor cores on
the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum
number of pods allowed on the node will be 40.

kubeletConfig:
 podsPerCore: 10

Setting podsPerCore to 0 disables this limit. The default is 0. podsPerCore cannot exceed maxPods.

maxPods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node.

 kubeletConfig:
 maxPods: 250

1.2. CREATE A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS

The kubelet configuration is currently serialized as an ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This allows you to create a KubeletConfig custom resource (CR) to edit the kubelet parameters.

Procedure

1. Run:

OpenShift Container Platform 4.2 Scalability and performance

4

$ oc get machineconfig

This provides a list of the available machine configuration objects you can select. By default, the
two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. To check the current value of max Pods per node, run:

oc describe node <node-ip> | grep Allocatable -A6

Look for value: pods: <value>.

For example:

oc describe node ip-172-31-128-158.us-east-2.compute.internal | grep Allocatable -A6
Allocatable:
 attachable-volumes-aws-ebs: 25
 cpu: 3500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15341844Ki
 pods: 250

3. To set the max Pods per node on the worker nodes, create a custom resource file that contains
the kubelet configuration. For example, change-maxPods-cr.yaml:

The rate at which the kubelet talks to the API server depends on queries per second (QPS) and
burst values. The default values, 5 for kubeAPIQPS and 10 for kubeAPIBurst, are good
enough if there are limited pods running on each node. Updating the kubelet QPS and burst
rates is recommended if there are enough CPU and memory resources on the node:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: large-pods
 kubeletConfig:
 maxPods: 500

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: large-pods
 kubeletConfig:
 maxPods: <pod_count>
 kubeAPIBurst: <burst_rate>
 kubeAPIQPS: <QPS>

CHAPTER 1. RECOMMENDED HOST PRACTICES

5

a. Run:

$ oc label machineconfigpool worker custom-kubelet=large-pods

b. Run:

$ oc create -f change-maxPods-cr.yaml

c. Run:

$ oc get kubeletconfig

This should return set-max-pods.

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15
minutes.

4. Check for maxPods changing for the worker nodes:

$ oc describe node

a. Verify the change by running:

$ oc get kubeletconfigs set-max-pods -o yaml

This should show a status of True and type:Success

Procedure

By default, only one machine is allowed to be unavailable when applying the kubelet-related
configuration to the available worker nodes. For a large cluster, it can take a long time for the
configuration change to be reflected. At any time, you can adjust the number of machines that are
updating to speed up the process.

1. Run:

$ oc edit machineconfigpool worker

2. Set maxUnavailable to the desired value.

spec:
 maxUnavailable: <node_count>

IMPORTANT

When setting the value, consider the number of worker nodes that can be
unavailable without affecting the applications running on the cluster.

1.3. MASTER NODE SIZING

The master node resource requirements depend on the number of nodes in the cluster. The following
master node size recommendations are based on the results of control plane density focused testing.

OpenShift Container Platform 4.2 Scalability and performance

6

Number of worker nodes CPU cores Memory (GB)

25 4 16

100 8 32

250 16 64

IMPORTANT

Because you cannot modify the master node size in a running OpenShift Container
Platform 4.2 cluster, you must estimate your total node count and use the suggested
master size during installation.

NOTE

In OpenShift Container Platform 4.2, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

1.4. RECOMMENDED ETCD PRACTICES

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows excessively
large and exceeds the space quota. Periodic maintenance of etcd including defragmentation needs to
be done to free up space in the data store. It is highly recommended that you monitor Prometheus for
etcd metrics and defragment it when needed before etcd raises a cluster-wide alarm that puts the
cluster into a maintenance mode, which only accepts key reads and deletes. Some of the key metrics to
monitor are etcd_server_quota_backend_bytes which is the current quota limit,
etcd_mvcc_db_total_size_in_use_in_bytes which indicates the actual database usage after a history
compaction, and etcd_debugging_mvcc_db_total_size_in_bytes which shows the database size
including free space waiting for defragmentation.

1.5. ADDITIONAL RESOURCES

OpenShift Container Platform cluster maximums

CHAPTER 1. RECOMMENDED HOST PRACTICES

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums

CHAPTER 2. USING THE NODE TUNING OPERATOR
Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

2.1. ABOUT THE NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the tuned daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs. The Operator manages the containerized tuned daemon for
OpenShift Container Platform as a Kubernetes DaemonSet. It ensures the custom tuning specification is
passed to all containerized tuned daemons running in the cluster in the format that the daemons
understand. The daemons run on all nodes in the cluster, one per node.

Node-level settings applied by the containerized tuned daemon are rolled back on an event that
triggers a profile change or when the containerized tuned daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

2.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR
SPECIFICATION

Use this process to access an example Node Tuning Operator specification.

Procedure

1. Run:

$ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

Note the default CR is meant for delivering standard node-level tuning for the OpenShift Container
Platform platform and any custom changes to the default CR will be overwritten by the Operator. For
custom tuning, create your own tuned CRs. Newly created CRs will be combined with the default CR and
custom tuning applied to OpenShift Container Platform nodes based on node/pod labels and profile
priorities.

2.3. DEFAULT PROFILES SET ON A CLUSTER

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1alpha1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - name: "openshift"
 data: |
 [main]

OpenShift Container Platform 4.2 Scalability and performance

8

 summary=Optimize systems running OpenShift (parent profile)
 include=${f:virt_check:virtual-guest:throughput-performance}
 [selinux]
 avc_cache_threshold=8192
 [net]
 nf_conntrack_hashsize=131072
 [sysctl]
 net.ipv4.ip_forward=1
 kernel.pid_max=>131072
 net.netfilter.nf_conntrack_max=1048576
 net.ipv4.neigh.default.gc_thresh1=8192
 net.ipv4.neigh.default.gc_thresh2=32768
 net.ipv4.neigh.default.gc_thresh3=65536
 net.ipv6.neigh.default.gc_thresh1=8192
 net.ipv6.neigh.default.gc_thresh2=32768
 net.ipv6.neigh.default.gc_thresh3=65536
 [sysfs]
 /sys/module/nvme_core/parameters/io_timeout=4294967295
 /sys/module/nvme_core/parameters/max_retries=10
 - name: "openshift-control-plane"
 data: |
 [main]
 summary=Optimize systems running OpenShift control plane
 include=openshift
 [sysctl]
 # ktune sysctl settings, maximizing i/o throughput
 #
 # Minimal preemption granularity for CPU-bound tasks:
 # (default: 1 msec# (1 + ilog(ncpus)), units: nanoseconds)
 kernel.sched_min_granularity_ns=10000000
 # The total time the scheduler will consider a migrated process
 # "cache hot" and thus less likely to be re-migrated
 # (system default is 500000, i.e. 0.5 ms)
 kernel.sched_migration_cost_ns=5000000
 # SCHED_OTHER wake-up granularity.
 #
 # Preemption granularity when tasks wake up. Lower the value to
 # improve wake-up latency and throughput for latency critical tasks.
 kernel.sched_wakeup_granularity_ns=4000000
 - name: "openshift-node"
 data: |
 [main]
 summary=Optimize systems running OpenShift nodes
 include=openshift
 [sysctl]
 net.ipv4.tcp_fastopen=3
 fs.inotify.max_user_watches=65536
 - name: "openshift-control-plane-es"
 data: |
 [main]
 summary=Optimize systems running ES on OpenShift control-plane
 include=openshift-control-plane
 [sysctl]
 vm.max_map_count=262144
 - name: "openshift-node-es"
 data: |

CHAPTER 2. USING THE NODE TUNING OPERATOR

9

 [main]
 summary=Optimize systems running ES on OpenShift nodes
 include=openshift-node
 [sysctl]
 vm.max_map_count=262144
 recommend:
 - profile: "openshift-control-plane-es"
 priority: 10
 match:
 - label: "tuned.openshift.io/elasticsearch"
 type: "pod"
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node-es"
 priority: 20
 match:
 - label: "tuned.openshift.io/elasticsearch"
 type: "pod"

 - profile: "openshift-control-plane"
 priority: 30
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node"
priority: 40

IMPORTANT

Custom profiles for custom tuning specification is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

2.4. CUSTOM TUNING SPECIFICATION

The custom resource (CR) for the operator has two major sections. The first section, profile:, is a list of
tuned profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized tuned daemons are updated.

Profile data

The profile: section lists tuned profiles and their names.

OpenShift Container Platform 4.2 Scalability and performance

10

https://access.redhat.com/support/offerings/techpreview/

profile:
- name: tuned_profile_1
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other tuned daemon plugins supported by the containerized tuned

...

- name: tuned_profile_n
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR:

recommend:
- match: # optional; if omitted, profile match is assumed unless a profile with a
higher matches first
 <match> # an optional array
 priority: <priority> # profile ordering priority, lower numbers mean higher priority (0 is the
highest priority)
 profile: <tuned_profile_name> # e.g. tuned_profile_1

...

- match:
 <match>
 priority: <priority>
 profile: <tuned_profile_name> # e.g. tuned_profile_n

If <match> is omitted, a profile match (for example, true) is assumed.

<match> is an optional array recursively defined as follows:

- label: <label_name> # node or pod label name
 value: <label_value> # optional node or pod label value; if omitted, the presence of <label_name>
is enough to match
 type: <label_type> # optional node or pod type ("node" or "pod"); if omitted, "node" is assumed
 <match> # an optional <match> array

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> array matches, the entire <match> array evaluates to true. Therefore, the array acts as
logical OR operator.

CHAPTER 2. USING THE NODE TUNING OPERATOR

11

Example

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

The CR above is translated for the containerized tuned daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized tuned daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized tuned
pod runs on a node with labels node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

OpenShift Container Platform 4.2 Scalability and performance

12

2.5. CUSTOM TUNING EXAMPLE

The following CR applies custom node-level tuning for OpenShift Container Platform nodes that run an
ingress pod with label tuned.openshift.io/ingress-pod-label=ingress-pod-label-value. As an
administrator, use the following command to create a custom tuned CR.

Example

oc create -f- <<_EOF_
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: ingress
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=A custom OpenShift ingress profile
 include=openshift-control-plane
 [sysctl]
 net.ipv4.ip_local_port_range="1024 65535"
 net.ipv4.tcp_tw_reuse=1
 name: openshift-ingress
 recommend:
 - match:
 - label: tuned.openshift.io/ingress-pod-label
 value: "ingress-pod-label-value"

CHAPTER 2. USING THE NODE TUNING OPERATOR

13

 type: pod
 priority: 10
 profile: openshift-ingress
EOF

2.6. SUPPORTED TUNED DAEMON PLUG-INS

Excluding the [main] section, the following Tuned plug-ins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

There is some dynamic tuning functionality provided by some of these plug-ins that is not supported.
The following Tuned plug-ins are currently not supported:

bootloader

script

systemd

See Available Tuned Plug-ins and Getting Started with Tuned for more information.

OpenShift Container Platform 4.2 Scalability and performance

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

CHAPTER 3. USING CLUSTER LOADER
Cluster Loader is a tool that deploys large numbers of various objects to a cluster, which creates user-
defined cluster objects. Build, configure, and run Cluster Loader to measure performance metrics of
your OpenShift Container Platform deployment at various cluster states.

3.1. INSTALLING CLUSTER LOADER

Cluster Loader is included in the origin-tests container image.

Procedure

1. To pull the origin-tests container image, run:

$ sudo podman pull quay.io/openshift/origin-tests:4.2

3.2. RUNNING CLUSTER LOADER

Procedure

1. Execute Cluster Loader using the built-in test configuration, which deploys five template builds
and waits for them to complete:

$ sudo podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z -i \
quay.io/openshift/origin-tests:4.2 /bin/bash -c 'export KUBECONFIG=/root/.kube/config && \
openshift-tests run-test "[Feature:Performance][Serial][Slow] Load cluster should load the \
cluster [Suite:openshift]"'

Alternatively, execute Cluster Loader with a user-defined configuration by setting the
environment variable for VIPERCONFIG:

$ sudo podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z \
-v ${LOCAL_CONFIG_FILE_PATH}:/root/configs/:z \
-i quay.io/openshift/origin-tests:4.2 \
/bin/bash -c 'KUBECONFIG=/root/.kube/config VIPERCONFIG=/root/configs/test.yaml \
openshift-tests run-test "[Feature:Performance][Serial][Slow] Load cluster should \
load the cluster [Suite:openshift]"'

In this example, ${LOCAL_KUBECONFIG} refers to the path to the kubeconfig on your local
file system. Also, there is a directory called ${LOCAL_CONFIG_FILE_PATH}, which is mounted
into the container that contains a configuration file called test.yaml. Additionally, if the
test.yaml references any external template files or podspec files, they should also be mounted
into the container.

3.3. CONFIGURING CLUSTER LOADER

The tool creates multiple namespaces (projects), which contain multiple templates or Pods.

3.3.1. Example Cluster Loader configuration file

Cluster Loader’s configuration file is a basic YAML file:

CHAPTER 3. USING CLUSTER LOADER

15

1

2

Optional setting for end-to-end tests. Set to local to avoid extra log messages.

The tuning sets allow rate limiting and stepping, the ability to create several batches of Pods while
pausing in between sets. Cluster Loader monitors completion of the previous step before

provider: local 1
ClusterLoader:
 cleanup: true
 projects:
 - num: 1
 basename: clusterloader-cakephp-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: cakephp-mysql.json

 - num: 1
 basename: clusterloader-dancer-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: dancer-mysql.json

 - num: 1
 basename: clusterloader-django-postgresql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: django-postgresql.json

 - num: 1
 basename: clusterloader-nodejs-mongodb
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: quickstarts/nodejs-mongodb.json

 - num: 1
 basename: clusterloader-rails-postgresql
 tuning: default
 templates:
 - num: 1
 file: rails-postgresql.json

 tuningsets: 2
 - name: default
 pods:
 stepping: 3
 stepsize: 5
 pause: 0 s
 rate_limit: 4
 delay: 0 ms

OpenShift Container Platform 4.2 Scalability and performance

16

3

4

pausing in between sets. Cluster Loader monitors completion of the previous step before
continuing.

Stepping will pause for M seconds after each N objects are created.

Rate limiting will wait M milliseconds between the creation of objects.

This example assumes that references to any external template files or podspec files are also mounted
into the container.

IMPORTANT

If you are running Cluster Loader on Microsoft Azure, then you must set the
AZURE_AUTH_LOCATION variable to a file that contains the output of
terraform.azure.auto.tfvars.json, which is present in the installer directory.

3.3.2. Configuration fields

Table 3.1. Top-level Cluster Loader Fields

Field Description

cleanup Set to true or false. One definition per
configuration. If set to true, cleanup deletes all
namespaces (projects) created by Cluster Loader at
the end of the test.

projects A sub-object with one or many definition(s). Under
projects, each namespace to create is defined and
projects has several mandatory subheadings.

tuningsets A sub-object with one definition per configuration.
tuningsets allows the user to define a tuning set to
add configurable timing to project or object creation
(Pods, templates, and so on).

sync An optional sub-object with one definition per
configuration. Adds synchronization possibilities
during object creation.

Table 3.2. Fields under projects

Field Description

num An integer. One definition of the count of how many
projects to create.

basename A string. One definition of the base name for the
project. The count of identical namespaces will be
appended to Basename to prevent collisions.

CHAPTER 3. USING CLUSTER LOADER

17

tuning A string. One definition of what tuning set you want
to apply to the objects, which you deploy inside this
namespace.

ifexists A string containing either reuse or delete. Defines
what the tool does if it finds a project or namespace
that has the same name of the project or namespace
it creates during execution.

configmaps A list of key-value pairs. The key is the ConfigMap
name and the value is a path to a file from which you
create the ConfigMap.

secrets A list of key-value pairs. The key is the secret name
and the value is a path to a file from which you
create the secret.

pods A sub-object with one or many definition(s) of Pods
to deploy.

templates A sub-object with one or many definition(s) of
templates to deploy.

Field Description

Table 3.3. Fields under pods and templates

Field Description

num An integer. The number of Pods or templates to
deploy.

image A string. The docker image URL to a repository
where it can be pulled.

basename A string. One definition of the base name for the
template (or pod) that you want to create.

file A string. The path to a local file, which is either a
PodSpec or template to be created.

parameters Key-value pairs. Under parameters, you can specify
a list of values to override in the pod or template.

Table 3.4. Fields under tuningsets

OpenShift Container Platform 4.2 Scalability and performance

18

Field Description

name A string. The name of the tuning set which will match
the name specified when defining a tuning in a
project.

pods A sub-object identifying the tuningsets that will
apply to Pods.

templates A sub-object identifying the tuningsets that will
apply to templates.

Table 3.5. Fields under tuningsets pods or tuningsets templates

Field Description

stepping A sub-object. A stepping configuration used if you
want to create an object in a step creation pattern.

rate_limit A sub-object. A rate-limiting tuning set configuration
to limit the object creation rate.

Table 3.6. Fields under tuningsets pods or tuningsets templates, stepping

Field Description

stepsize An integer. How many objects to create before
pausing object creation.

pause An integer. How many seconds to pause after
creating the number of objects defined in stepsize.

timeout An integer. How many seconds to wait before failure
if the object creation is not successful.

delay An integer. How many milliseconds (ms) to wait
between creation requests.

Table 3.7. Fields under sync

Field Description

server A sub-object with enabled and port fields. The
boolean enabled defines whether to start an HTTP
server for pod synchronization. The integer port
defines the HTTP server port to listen on (9090 by
default).

CHAPTER 3. USING CLUSTER LOADER

19

running A boolean. Wait for Pods with labels matching
selectors to go into Running state.

succeeded A boolean. Wait for Pods with labels matching
selectors to go into Completed state.

selectors A list of selectors to match Pods in Running or
Completed states.

timeout A string. The synchronization timeout period to wait
for Pods in Running or Completed states. For
values that are not 0, use units: [ns|us|ms|s|m|h].

Field Description

3.4. KNOWN ISSUES

Cluster Loader fails when called without configuration. (BZ#1761925)

If the IDENTIFIER parameter is not defined in user templates, template creation fails with error:
unknown parameter name "IDENTIFIER". If you deploy templates, add this parameter to your
template to avoid this error:

{
 "name": "IDENTIFIER",
 "description": "Number to append to the name of resources",
 "value": "1"
}

If you deploy Pods, adding the parameter is unnecessary.

OpenShift Container Platform 4.2 Scalability and performance

20

https://bugzilla.redhat.com/show_bug.cgi?id=1761925

CHAPTER 4. USING CPU MANAGER
CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

Require as much CPU time as possible.

Are sensitive to processor cache misses.

Are low-latency network applications.

Coordinate with other processes and benefit from sharing a single processor cache.

4.1. SETTING UP CPU MANAGER

Procedure

1. Optional: Label a node:

oc label node perf-node.example.com cpumanager=true

2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this
example, all workers have CPU Manager enabled:

oc edit machineconfigpool worker

3. Add a label to the worker MachineConfigPool:

metadata:
 creationTimestamp: 2019-xx-xxx
 generation: 3
 labels:
 custom-kubelet: cpumanager-enabled

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new
KubeletConfig. See the machineConfigPoolSelector section:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static
 cpuManagerReconcilePeriod: 5s

5. Create the dynamic KubeletConfig:

CHAPTER 4. USING CPU MANAGER

21

1 2

oc create -f cpumanager-kubeletconfig.yaml

This adds the CPU Manager feature to the KubeletConfig and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged KubeletConfig:

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "kind": "KubeletConfig",
 "name": "cpumanager-enabled",
 "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
 }
],

7. Check the worker for the updated kubelet.conf:

oc debug node/perf-node.example.com
sh-4.4# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager
cpuManagerPolicy: static 1
cpuManagerReconcilePeriod: 5s 2

These settings were defined when you created the KubeletConfig CR.

8. Create a Pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this Pod:

cat cpumanager-pod.yaml
apiVersion: v1
kind: Pod
metadata:
 generateName: cpumanager-
spec:
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause-amd64:3.0
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 nodeSelector:
 cpumanager: "true"

9. Create the Pod:

oc create -f cpumanager-pod.yaml

OpenShift Container Platform 4.2 Scalability and performance

22

10. Verify that the Pod is scheduled to the node that you labeled:

oc describe pod cpumanager
Name: cpumanager-6cqz7
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: perf-node.example.com/xxx.xx.xx.xxx
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:
 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true

11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
 ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
 │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
 │ └─32706 /pause

Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of
other QoS tiers end up in child cgroups of kubepods:

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done
cpuset.cpus 1
tasks 32706

12. Check the allowed CPU list for the task:

grep ^Cpus_allowed_list /proc/32706/status
 Cpus_allowed_list: 1

13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot
run on the core allocated for the Guaranteed pod:

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

0

oc describe node perf-node.example.com

CHAPTER 4. USING CPU MANAGER

23

...
Capacity:
 attachable-volumes-aws-ebs: 39
 cpu: 2
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8162900Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7548500Ki
 pods: 250
------- ---- ------------ ---------- --------------- ------------- --
-
 default cpumanager-6cqz7 1 (66%) 1 (66%) 1G (12%)
1G (12%) 29m

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 1440m (96%) 1 (66%)

This VM has two CPU cores. You set kube-reserved to 500 millicores, meaning half of one core
is subtracted from the total capacity of the node to arrive at the Node Allocatable amount. You
can see that Allocatable CPU is 1500 millicores. This means you can run one of the CPU
Manager pods since each will take one whole core. A whole core is equivalent to 1000 millicores.
If you try to schedule a second pod, the system will accept the pod, but it will never be
scheduled:

NAME READY STATUS RESTARTS AGE
cpumanager-6cqz7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

OpenShift Container Platform 4.2 Scalability and performance

24

CHAPTER 5. SCALING THE CLUSTER MONITORING
OPERATOR

OpenShift Container Platform exposes metrics that the Cluster Monitoring Operator collects and stores
in the Prometheus-based monitoring stack. As an administrator, you can view system resources,
containers and components metrics in one dashboard interface, Grafana.

5.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS

Red Hat performed various tests for different scale sizes.

Table 5.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of
Nodes

Number of
Pods

Prometheus
storage
growth per
day

Prometheus
storage
growth per 15
days

RAM Space
(per scale
size)

Network (per
tsdb chunk)

50 1800 6.3 GB 94 GB 6 GB 16 MB

100 3600 13 GB 195 GB 10 GB 26 MB

150 5400 19 GB 283 GB 12 GB 36 MB

200 7200 25 GB 375 GB 14 GB 46 MB

Approximately 20 percent of the expected size was added as overhead to ensure that the storage
requirements do not exceed the calculated value.

The above calculation is for the default OpenShift Container Platform Cluster Monitoring Operator.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

Lab environment

In a previous release, all experiments were performed in an OpenShift Container Platform on RHOSP
environment:

Infra nodes (VMs) - 40 cores, 157 GB RAM.

CNS nodes (VMs) - 16 cores, 62 GB RAM, NVMe drives.

IMPORTANT

Currently, RHOSP environments are not supported for OpenShift Container Platform 4.2.

Recommendations for OpenShift Container Platform

CHAPTER 5. SCALING THE CLUSTER MONITORING OPERATOR

25

Use at least three infrastructure (infra) nodes.

Use at least three openshift-container-storage nodes with non-volatile memory express
(NVMe) drives.

5.2. CONFIGURING CLUSTER MONITORING

Procedure

To increase the storage capacity for Prometheus:

1. Create a YAML configuration file, cluster-monitoring-config.yml. For example:

apiVersion: v1
kind: ConfigMap
data:
 config.yaml: |
 prometheusOperator:
 baseImage: quay.io/coreos/prometheus-operator
 prometheusConfigReloaderBaseImage: quay.io/coreos/prometheus-config-reloader
 configReloaderBaseImage: quay.io/coreos/configmap-reload
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 prometheusK8s:
 retention: {{PROMETHEUS_RETENTION_PERIOD}} 1
 baseImage: openshift/prometheus
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: gp2
 resources:
 requests:
 storage: {{PROMETHEUS_STORAGE_SIZE}} 2
 alertmanagerMain:
 baseImage: openshift/prometheus-alertmanager
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: gp2
 resources:
 requests:
 storage: {{ALERTMANAGER_STORAGE_SIZE}} 3
 nodeExporter:
 baseImage: openshift/prometheus-node-exporter
 kubeRbacProxy:
 baseImage: quay.io/coreos/kube-rbac-proxy
 kubeStateMetrics:
 baseImage: quay.io/coreos/kube-state-metrics
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 grafana:
 baseImage: grafana/grafana
 nodeSelector:

OpenShift Container Platform 4.2 Scalability and performance

26

1

2

3

 node-role.kubernetes.io/infra: ""
 auth:
 baseImage: openshift/oauth-proxy
 k8sPrometheusAdapter:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
metadata:
 name: cluster-monitoring-config
namespace: openshift-monitoring

A typical value is PROMETHEUS_RETENTION_PERIOD=15d. Units are measured in time
using one of these suffixes: s, m, h, d.

A typical value is PROMETHEUS_STORAGE_SIZE=2000Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

A typical value is ALERTMANAGER_STORAGE_SIZE=20Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

2. Set the values like the retention period and storage sizes.

3. Apply the changes by running:

$ oc create -f cluster-monitoring-config.yml

CHAPTER 5. SCALING THE CLUSTER MONITORING OPERATOR

27

CHAPTER 6. PLANNING YOUR ENVIRONMENT ACCORDING
TO OBJECT MAXIMUMS

Consider the following tested object maximums when you plan your OpenShift Container Platform
cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are lower.
There are many factors that influence the stated thresholds, including the etcd version or storage data
format.

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

6.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

Tested Cloud Platforms for OpenShift Container Platform 3.x: Red Hat OpenStack Platform (RHOSP),
Amazon Web Services and Microsoft Azure. Tested Cloud Platforms for OpenShift Container Platform
4.x: Amazon Web Services, Microsoft Azure and Google Cloud Platform.

Maximum type 3.x tested maximum 4.x tested maximum

Number of Nodes 2,000 2,000

Number of Pods [a] 150,000 150,000

Number of Pods per node 250 500 [b]

Number of Pods per core There is no default value. There is no default value.

Number of Namespaces [c] 10,000 10,000

Number of Builds 10,000 (Default pod RAM 512 Mi)
- Pipeline Strategy

10,000 (Default pod RAM 512 Mi)
- Source-to-Image (S2I) build
strategy

Number of Pods per namespace
[d]

25,000 25,000

Number of Services [e] 10,000 10,000

Number of Services per
Namespace

5,000 5,000

Number of Back-ends per Service 5,000 5,000

Number of Deployments per

Namespace [d]

2,000 2,000

OpenShift Container Platform 4.2 Scalability and performance

28

[a] The Pod count displayed here is the number of test Pods. The actual number of Pods depends on the application’s
memory, CPU, and storage requirements.

[b] This was tested on a cluster with 100 worker nodes with 500 Pods per worker node. The default maxPods is still 250.
To get to 500 maxPods, the cluster must be created with a hostPrefix of 22 in the install-config.yaml file and
maxPods set to 500 using a custom KubeletConfig. The maximum number of Pods with attached Persistant Volume
Claims (PVC) depends on storage backend from where PVC are allocated. In our tests, only OpenShift Container Storage
v4 (OCS v4) was able to satisfy the number of Pods per node discussed in this document.

[c] When there are a large number of active projects, etcd might suffer from poor performance if the keyspace grows
excessively large and exceeds the space quota. Periodic maintenance of etcd, including defragmentaion, is highly
recommended to free etcd storage.

[d] There are a number of control loops in the system that must iterate over all objects in a given namespace as a reaction
to some changes in state. Having a large number of objects of a given type in a single namespace can make those loops
expensive and slow down processing given state changes. The limit assumes that the system has enough CPU, memory,
and disk to satisfy the application requirements.

[e] Each Service port and each Service back-end has a corresponding entry in iptables. The number of back-ends of a
given Service impact the size of the endpoints objects, which impacts the size of data that is being sent all over the system.

Maximum type 3.x tested maximum 4.x tested maximum

6.2. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS

Limit type 3.10 tested
maximum

3.11 tested
maximum

4.1 tested
maximum

4.2 tested
maximum

Number of Nodes 2,000 2,000 2,000 2,000

Number of Pods
[a]

150,000 150,000 150,000 150,000

Number of Pods
per node

250 250 250 250

Number of Pods
per core

There is no default
value.

There is no default
value.

There is no default
value.

There is no default
value.

Number of
Namespaces [b]

10,000 10,000 10,000 10,000

Number of builds 10,000 (Default
pod RAM 512 Mi)

10,000 (Default
pod RAM 512 Mi)

10,000 (Default
pod RAM 512 Mi)

10,000 (Default
pod RAM 512 Mi)

Number of Pods
per Namespace [c]

3,000 25,000 25,000 25,000

Number of

Services [d]
10,000 10,000 10,000 10,000

CHAPTER 6. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

29

Number of
Services per
Namespace

5,000 5,000 5,000 5,000

Number of Back-
ends per Service

5,000 5,000 5,000 5,000

Number of
Deployments per

Namespace [c]

2,000 2,000 2,000 2,000

[a] The Pod count displayed here is the number of test Pods. The actual number of Pods depends on the application’s
memory, CPU, and storage requirements.

[b] When there are a large number of active projects, etcd might suffer from poor performance if the keyspace grows
excessively large and exceeds the space quota. Periodic maintenance of etcd, including defragmentaion, is highly
recommended to free etcd storage.

[c] There are a number of control loops in the system that must iterate over all objects in a given namespace as a reaction
to some changes in state. Having a large number of objects of a given type in a single namespace can make those loops
expensive and slow down processing given state changes. The limit assumes that the system has enough CPU, memory,
and disk to satisfy the application requirements.

[d] Each service port and each service back-end has a corresponding entry in iptables. The number of back-ends of a given
service impact the size of the endpoints objects, which impacts the size of data that is being sent all over the system.

Limit type 3.10 tested
maximum

3.11 tested
maximum

4.1 tested
maximum

4.2 tested
maximum

In OpenShift Container Platform 4.2, half of a CPU core (500 millicore) is reserved by the system
compared to OpenShift Container Platform 3.11 and previous versions.

6.3. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND
CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED

Google Cloud Platform:

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOPS

Count Region

Master/Et
cd

n1-
highmem-
16

16 104 Regional/
Zonal
SSD

220 3 us-east4

Infra [a] n1-
standard-
64

64 240 Regional/
Zonal
SSD

100 3 us-east4

OpenShift Container Platform 4.2 Scalability and performance

30

Workload
[b]

n1-
standard-
16

16 60 Regional/
Zonal
SSD

500 [c] 1 us-east4

Worker n1-
standard-
8

8 30 Regional/
Zonal
SSD

100 3/25/250
[d]

us-east4

[a] Infra nodes are used to host Monitoring, Ingress and Registry components to make sure they have enough resources to
run at large scale.

[b] Workload node is dedicated to run performance and scalability workload generators.

[c] Larger disk size is used to have enough space to store large amounts of data collected during the performance and
scalability test run.

[d] Cluster is scaled in iterations and performance and scalability tests are executed at the specified node counts.

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOPS

Count Region

AWS cloud platform:

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOPS

Count Region

Master/Et
cd [a]

r5.4xlarge 16 128 io1 220 /
3000

3 us-west-2

Infra [b] m5.12xlarg
e

48 192 gp2 100 3 us-west-2

Workload
[c]

m5.4xlarg
e

16 64 gp2 500 [d] 1 us-west-2

Worker m5.large 2 8 gp2 100 2000 us-west-2

[a] io1 disk with 3000 IOPS is used for master/etcd nodes as etcd is I/O intensive and latency sensitive.

[b] Infra nodes are used to host Monitoring, Ingress and Registry components to make sure they have enough resources to
run at large scale.

[c] Workload node is dedicated to run performance and scalability workload generators.

[d] Larger disk size is used to have enough space to store large amounts of data collected during the performance and
scalability test run.

6.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED

CHAPTER 6. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

31

6.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED
CLUSTER MAXIMUMS

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension. They will vary
when many objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat’s test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment, determine how many pods are expected to fit per node:

Required Pods per Cluster / Pods per Node = Total Number of Nodes Needed

The current maximum number of pods per node is 250. However, the number of pods that fit on a node
is dependent on the application itself. Consider the application’s memory, CPU, and storage
requirements, as described in How to plan your environment according to application requirements .

Example scenario

If you want to scope your cluster at 2200 pods, assuming the 250 maximum pods per node, you would
need at least nine nodes:

2200 / 250 = 8.8

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

2200 / 20 = 110

Where:

Required Pods per Cluster / Total Number of Nodes = Expected Pods per Node

6.5. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO
APPLICATION REQUIREMENTS

Consider an example application environment:

Pod type Pod quantity Max memory CPU cores Persistent
storage

apache 100 500 MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

OpenShift Container Platform 4.2 Scalability and performance

32

postgresql 100 1 GB 2 10 GB

JBoss EAP 100 1 GB 1 1 GB

Pod type Pod quantity Max memory CPU cores Persistent
storage

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node type Quantity CPUs RAM (GB)

Nodes (option 1) 100 4 16

Nodes (option 2) 50 8 32

Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

CHAPTER 6. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

33

CHAPTER 7. OPTIMIZING STORAGE
Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

7.1. AVAILABLE PERSISTENT STORAGE OPTIONS

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 7.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

AWS EBS and VMware vSphere
support dynamic persistent volume
(PV) provisioning natively in OpenShift
Container Platform.

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

RHEL NFS, NetApp NFS
footnoteref:netappnfs[NetApp NFS
supports dynamic PV provisioning
when using the Trident plug-in.], and
Vendor NFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
Container Platform Registry

Applications must build their drivers into
the application and/or container.

AWS S3

IMPORTANT

Currently, CNS is not supported in OpenShift Container Platform 4.2.

OpenShift Container Platform 4.2 Scalability and performance

34

7.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 7.2. Recommended and configurable storage technology

Storage
type

ROX [a] RWX [b] Registry Scaled
registry

Metrics
[c]

Logging Apps

Block Yes [d] No Configura
ble

Not
configura
ble

Recomme
nded

Recomme
nded

Recomme
nded

File Yes [d] Yes Configura
ble

Configura
ble

Configura

ble [e]
Configura

ble [f]
Recomme
nded

Object Yes Yes Recomme
nded

Recomme
nded

Not
configura
ble

Not
configura
ble

Not
configura
ble [g]

[a] ReadOnlyMany

[b] ReadWriteMany

[c] Prometheus is the underlying technology used for metrics.

[d] This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure Disk.

[e] For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file storage, do not
configure the RWX access mode on any PersistentVolumeClaims that are configured for use with metrics.

[f] For logging, using any shared storage would be an anti-pattern. One volume per elasticsearch is required.

[g] Object storage is not consumed through OpenShift Container Platform’s PVs/persistent volume claims (PVCs). Apps
must integrate with the object storage REST API.

NOTE

A scaled registry is an OpenShift Container Platform registry where three or more pod
replicas are running.

7.2.1. Specific application storage recommendations

IMPORTANT

CHAPTER 7. OPTIMIZING STORAGE

35

IMPORTANT

Testing shows issues with using the NFS server on RHEL as storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay,
Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore,
using NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

7.2.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift Container Platform registry cluster deployment:

The preferred storage technology is object storage followed by block storage. The storage
technology does not have to support RWX access mode.

The storage technology must ensure read-after-write consistency. All NAS storage are not
recommended for OpenShift Container Platform Registry cluster deployment with production
workloads.

While hostPath volumes are configurable for a non-scaled/HA OpenShift Container Platform
Registry, they are not recommended for cluster deployment.

7.2.1.2. Scaled registry

In a scaled/HA OpenShift Container Platform registry cluster deployment:

The preferred storage technology is object storage. The storage technology must support RWX
access mode and must ensure read-after-write consistency.

File storage and block storage are not recommended for a scaled/HA OpenShift Container
Platform registry cluster deployment with production workloads.

All NAS storage are not recommended for OpenShift Container Platform Registry cluster
deployment with production workloads.

7.2.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

The preferred storage technology is block storage.

IMPORTANT

Testing shows significant unrecoverable corruptions using file storage and, therefore, file
storage is not recommended for use with metrics.

There are file storage implementations in the marketplace that might not have these
issues. Contact the individual storage vendor for more information on any testing that
was possibly completed against these OpenShift core components.

7.2.1.4. Logging

OpenShift Container Platform 4.2 Scalability and performance

36

In an OpenShift Container Platform hosted logging cluster deployment:

The preferred storage technology is block storage.

It is not recommended to use NAS storage for a hosted metrics cluster deployment with
production workloads.

IMPORTANT

Testing shows issues with using the NFS server on RHEL as storage backend for the
container image registry. This includes Elasticsearch for logging storage. Therefore, using
NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

7.2.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

7.2.2. Other specific application storage recommendations

OpenShift Container Platform Internal etcd: For the best etcd reliability, the lowest consistent
latency storage technology is preferable.

It is highly recommended that you use etcd with storage that handles serial writes (fsync)
quickly, such as NVMe or SSD. Ceph, NFS, and spinning disks are not recommended.

Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

CHAPTER 7. OPTIMIZING STORAGE

37

CHAPTER 8. OPTIMIZING ROUTING
The OpenShift Container Platform HAProxy router scales to optimize performance.

8.1. BASELINE ROUTER PERFORMANCE

The OpenShift Container Platform router is the Ingress point for all external traffic destined for
OpenShift Container Platform services.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode

route type

TLS session resumption client support

number of concurrent connections per target route

number of target routes

back end server page size

underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM, a single HAProxy router handling 100 routes terminated by backends serving
1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

Encryption LoadBalancerService HostNetwork

none 21515 29622

edge 16743 22913

passthrough 36786 53295

re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273

edge 2729 4069

passthrough 4121 5344

OpenShift Container Platform 4.2 Scalability and performance

38

re-encrypt 2320 2941

Encryption LoadBalancerService HostNetwork

Default router configuration with ROUTER_THREADS=4 was used and two different endpoint
publishing strategies (LoadBalancerService/HostNetwork) tested. TLS session resumption was used for
encrypted routes. With HTTP keep-alive, a single HAProxy router is capable of saturating 1 Gbit NIC at
page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
on how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for 5 to 1000 applications, depending on the technology in use.
Router performance might be limited by the capabilities and performance of the applications behind it,
such as language or static versus dynamic content.

Router sharding should be used to serve more routes towards applications and help horizontally scale
the routing tier.

8.2. ROUTER PERFORMANCE OPTIMIZATIONS

OpenShift Container Platform no longer supports modifying router deployments by setting environment
variables such as ROUTER_THREADS, ROUTER_DEFAULT_TUNNEL_TIMEOUT,
ROUTER_DEFAULT_CLIENT_TIMEOUT, ROUTER_DEFAULT_SERVER_TIMEOUT, and
RELOAD_INTERVAL.

You can modify the router deployment, but if the Ingress Operator is enabled, the configuration is
overwritten.

CHAPTER 8. OPTIMIZING ROUTING

39

CHAPTER 9. WHAT HUGE PAGES DO AND HOW THEY ARE
CONSUMED BY APPLICATIONS

9.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. In order to use huge pages, code must
be written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate
the management of huge pages without application knowledge, but they have limitations. In particular,
they are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high
memory utilization or fragmentation due to defragmenting efforts of THP, which can lock memory
pages. For this reason, some applications may be designed to (or recommend) usage of pre-allocated
huge pages instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages.

9.2. HOW HUGE PAGES ARE CONSUMED BY APPS

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource
hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:

OpenShift Container Platform 4.2 Scalability and performance

40

1

 hugepages-2Mi: 100Mi 1
 memory: "1Gi"
 cpu: "1"
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

Additional resources

Configuring Transparent Huge Pages

9.3. CONFIGURING HUGE PAGES

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. Use the Node
Tuning Operator to allocate huge pages on a specific node.

Procedure

1. Label the node so that the Node Tuning Operator knows on which node to apply the tuned
profile, which describes how many huge pages should be allocated:

$ oc label node <node_using_hugepages> hugepages=true

2. Create a file with the following content and name it hugepages_tuning.yaml:

apiVersion: tuned.openshift.io/v1
kind: Tuned

CHAPTER 9. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

41

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-configuring_transparent_huge_pages

1

2

3

metadata:
 name: hugepages 1
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile: 2
 - data: |
 [main]
 summary=Configuration for hugepages
 include=openshift-node

 [vm]
 transparent_hugepages=never

 [sysctl]
 vm.nr_hugepages=1024
 name: node-hugepages
 recommend:
 - match: 3
 - label: hugepages
 priority: 30
 profile: node-hugepages

Set the name parameter value to hugepages.

Set the profile section to allocate huge pages.

Set the match section to associate the profile to nodes with the hugepages label.

3. Create the custom hugepages tuned profile by using the hugepages_tuning.yaml file:

$ oc create -f hugepages_tuning.yaml

4. After creating the profile, the Operator applies the new profile to the correct node and allocates
huge pages. Check the logs of a tuned pod on a node using huge pages to verify:

$ oc logs <tuned_pod_on_node_using_hugepages> \
 -n openshift-cluster-node-tuning-operator | grep 'applied$' | tail -n1

2019-08-08 07:20:41,286 INFO tuned.daemon.daemon: static tuning from profile 'node-
hugepages' applied

OpenShift Container Platform 4.2 Scalability and performance

42

	Table of Contents
	CHAPTER 1. RECOMMENDED HOST PRACTICES
	1.1. RECOMMENDED NODE HOST PRACTICES
	1.2. CREATE A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
	1.3. MASTER NODE SIZING
	1.4. RECOMMENDED ETCD PRACTICES
	1.5. ADDITIONAL RESOURCES

	CHAPTER 2. USING THE NODE TUNING OPERATOR
	2.1. ABOUT THE NODE TUNING OPERATOR
	2.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
	2.3. DEFAULT PROFILES SET ON A CLUSTER
	2.4. CUSTOM TUNING SPECIFICATION
	2.5. CUSTOM TUNING EXAMPLE
	2.6. SUPPORTED TUNED DAEMON PLUG-INS

	CHAPTER 3. USING CLUSTER LOADER
	3.1. INSTALLING CLUSTER LOADER
	3.2. RUNNING CLUSTER LOADER
	3.3. CONFIGURING CLUSTER LOADER
	3.3.1. Example Cluster Loader configuration file
	3.3.2. Configuration fields

	3.4. KNOWN ISSUES

	CHAPTER 4. USING CPU MANAGER
	4.1. SETTING UP CPU MANAGER

	CHAPTER 5. SCALING THE CLUSTER MONITORING OPERATOR
	5.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
	5.2. CONFIGURING CLUSTER MONITORING

	CHAPTER 6. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
	6.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	6.2. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS
	6.3. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED
	6.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
	6.5. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 7. OPTIMIZING STORAGE
	7.1. AVAILABLE PERSISTENT STORAGE OPTIONS
	7.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
	7.2.1. Specific application storage recommendations
	7.2.1.1. Registry
	7.2.1.2. Scaled registry
	7.2.1.3. Metrics
	7.2.1.4. Logging
	7.2.1.5. Applications

	7.2.2. Other specific application storage recommendations

	CHAPTER 8. OPTIMIZING ROUTING
	8.1. BASELINE ROUTER PERFORMANCE
	8.2. ROUTER PERFORMANCE OPTIMIZATIONS

	CHAPTER 9. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
	9.1. WHAT HUGE PAGES DO
	9.2. HOW HUGE PAGES ARE CONSUMED BY APPS
	9.3. CONFIGURING HUGE PAGES

