
OpenShift Container Platform 4.15

Postinstallation configuration

Day 2 operations for OpenShift Container Platform

Last Updated: 2024-03-19





OpenShift Container Platform 4.15 Postinstallation configuration

Day 2 operations for OpenShift Container Platform



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions and guidance on post installation activities for OpenShift
Container Platform.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW
1.1. POST-INSTALLATION CONFIGURATION TASKS

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER
2.1. ABOUT PRIVATE CLUSTERS

DNS
Ingress Controller
API server

2.2. SETTING DNS TO PRIVATE
2.3. SETTING THE INGRESS CONTROLLER TO PRIVATE
2.4. RESTRICTING THE API SERVER TO PRIVATE

2.4.1. Configuring the Ingress Controller endpoint publishing scope to Internal
2.5. CONFIGURING A PRIVATE STORAGE ENDPOINT ON AZURE

2.5.1. Limitations for configuring a private storage endpoint on Azure
2.5.2. Configuring a private storage endpoint on Azure by enabling the Image Registry Operator to discover
VNet and subnet names
2.5.3. Configuring a private storage endpoint on Azure with user-provided VNet and subnet names
2.5.4. Optional: Disabling redirect when using a private storage endpoint on Azure

CHAPTER 3. BARE METAL CONFIGURATION
3.1. ABOUT THE BARE METAL OPERATOR

3.1.1. Bare Metal Operator architecture
3.2. ABOUT THE BAREMETALHOST RESOURCE

3.2.1. The BareMetalHost spec
3.2.2. The BareMetalHost status

3.3. GETTING THE BAREMETALHOST RESOURCE
3.4. ABOUT THE HOSTFIRMWARESETTINGS RESOURCE

3.4.1. The HostFirmwareSettings spec
3.4.2. The HostFirmwareSettings status

3.5. GETTING THE HOSTFIRMWARESETTINGS RESOURCE
3.6. EDITING THE HOSTFIRMWARESETTINGS RESOURCE
3.7. VERIFYING THE HOSTFIRMWARE SETTINGS RESOURCE IS VALID
3.8. ABOUT THE FIRMWARESCHEMA RESOURCE
3.9. GETTING THE FIRMWARESCHEMA RESOURCE

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

4.1. ABOUT CLUSTERS WITH MULTI-ARCHITECTURE COMPUTE MACHINES
4.1.1. Configuring your cluster with multi-architecture compute machines

4.2. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINE ON AZURE
4.2.1. Verifying cluster compatibility
4.2.2. Creating an ARM64 boot image using the Azure image gallery
4.2.3. Adding a multi-architecture compute machine set to your cluster

4.3. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON AWS
4.3.1. Verifying cluster compatibility
4.3.2. Adding an ARM64 compute machine set to your cluster

4.4. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON GCP
4.4.1. Verifying cluster compatibility
4.4.2. Adding an ARM64 compute machine set to your GCP cluster

4.5. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON BARE METAL, IBM
POWER, OR IBM Z

4.5.1. Verifying cluster compatibility

11
11

14
14
14
14
14
14
16
16
18
19
19

19
21
23

25
25
25
27
27
33
37
39
40
40
41

42
43
44
45

47
47
47
48
49
49
52
54
54
54
57
57
58

61
61

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5.2. Creating RHCOS machines using an ISO image
4.5.3. Creating RHCOS machines by PXE or iPXE booting
4.5.4. Approving the certificate signing requests for your machines

4.6. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM
LINUXONE WITH Z/VM

4.6.1. Verifying cluster compatibility
4.6.2. Creating RHCOS machines on IBM Z with z/VM
4.6.3. Approving the certificate signing requests for your machines

4.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM
LINUXONE WITH RHEL KVM

4.7.1. Verifying cluster compatibility
4.7.2. Creating RHCOS machines using virt-install
4.7.3. Approving the certificate signing requests for your machines

4.8. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM POWER
4.8.1. Verifying cluster compatibility
4.8.2. Creating RHCOS machines using an ISO image
4.8.3. Creating RHCOS machines by PXE or iPXE booting
4.8.4. Approving the certificate signing requests for your machines

4.9. MANAGING YOUR CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES
4.9.1. Scheduling workloads on clusters with multi-architecture compute machines

4.9.1.1. Sample multi-architecture node workload deployments
4.9.2. Enabling 64k pages on the Red Hat Enterprise Linux CoreOS (RHCOS) kernel
4.9.3. Importing manifest lists in image streams on your multi-architecture compute machines

CHAPTER 5. ENABLING ENCRYPTION ON A VSPHERE CLUSTER
5.1. ENCRYPTING VIRTUAL MACHINES
5.2. ADDITIONAL RESOURCES

CHAPTER 6. CONFIGURING THE VSPHERE CONNECTION SETTINGS AFTER AN INSTALLATION
6.1. CONFIGURING THE VSPHERE CONNECTION SETTINGS
6.2. VERIFYING THE CONFIGURATION

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS
7.1. UNDERSTANDING THE MACHINE CONFIG OPERATOR

7.1.1. Machine Config Operator
Purpose
Project

7.1.2. Machine config overview
7.1.2.1. What can you change with machine configs?
7.1.2.2. Project

7.1.3. Understanding configuration drift detection
7.1.4. Checking machine config pool status
7.1.5. Checking machine config node status
7.1.6. Viewing and interacting with certificates

7.2. USING MACHINECONFIG OBJECTS TO CONFIGURE NODES
7.2.1. Configuring chrony time service
7.2.2. Disabling the chrony time service
7.2.3. Adding kernel arguments to nodes
7.2.4. Enabling multipathing with kernel arguments on RHCOS
7.2.5. Adding a real-time kernel to nodes
7.2.6. Configuring journald settings
7.2.7. Adding extensions to RHCOS
7.2.8. Loading custom firmware blobs in the machine config manifest
7.2.9. Changing the core user password for node access

62
63
66

68
69
69
73

76
76
77
79
82
82
83
85
87
90
90
90
93
95

97
97
97

99
99

100

103
103
103
103
104
104
105
106
107
109
112
115
117
117
118
119
123
125
127
129
130
132

OpenShift Container Platform 4.15 Postinstallation configuration

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3. CONFIGURING MCO-RELATED CUSTOM RESOURCES
7.3.1. Creating a KubeletConfig CRD to edit kubelet parameters
7.3.2. Creating a ContainerRuntimeConfig CR to edit CRI-O parameters
7.3.3. Setting the default maximum container root partition size for Overlay with CRI-O

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS
8.1. AVAILABLE CLUSTER CUSTOMIZATIONS

8.1.1. Cluster configuration resources
8.1.2. Operator configuration resources
8.1.3. Additional configuration resources
8.1.4. Informational Resources

8.2. UPDATING THE GLOBAL CLUSTER PULL SECRET
8.3. ADDING WORKER NODES

8.3.1. Adding worker nodes to installer-provisioned infrastructure clusters
8.3.2. Adding worker nodes to user-provisioned infrastructure clusters
8.3.3. Adding worker nodes to clusters managed by the Assisted Installer
8.3.4. Adding worker nodes to clusters managed by the multicluster engine for Kubernetes

8.4. ADJUST WORKER NODES
8.4.1. Understanding the difference between compute machine sets and the machine config pool
8.4.2. Scaling a compute machine set manually
8.4.3. The compute machine set deletion policy
8.4.4. Creating default cluster-wide node selectors

8.5. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY
PROFILES

8.5.1. Understanding worker latency profiles
8.5.2. Using and changing worker latency profiles

8.6. MANAGING CONTROL PLANE MACHINES
8.7. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION ENVIRONMENTS

8.7.1. Creating a compute machine set
8.7.2. Creating an infrastructure node
8.7.3. Creating a machine config pool for infrastructure machines

8.8. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE NODES
8.8.1. Binding infrastructure node workloads using taints and tolerations

8.9. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS
8.9.1. Moving the router
8.9.2. Moving the default registry
8.9.3. Moving the monitoring solution
8.9.4. Moving logging resources

8.10. ABOUT THE CLUSTER AUTOSCALER
8.10.1. Cluster autoscaler resource definition
8.10.2. Deploying a cluster autoscaler

8.11. ABOUT THE MACHINE AUTOSCALER
8.11.1. Machine autoscaler resource definition
8.11.2. Deploying a machine autoscaler

8.12. CONFIGURING LINUX CGROUP
8.13. ENABLING TECHNOLOGY PREVIEW FEATURES USING FEATUREGATES

8.13.1. Understanding feature gates
8.13.2. Enabling feature sets using the web console
8.13.3. Enabling feature sets using the CLI

8.14. ETCD TASKS
8.14.1. About etcd encryption
8.14.2. Supported encryption types
8.14.3. Enabling etcd encryption

133
134
138
142

145
145
145
146
146
147
147
148
148
149
149
149
149
149
150
151
151

154
155
158
160
160
161

163
164
168
168
170
170
172
173
176
179
181

183
183
183
184
185
188
188
190
191

193
193
194
194

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.14.4. Disabling etcd encryption
8.14.5. Backing up etcd data
8.14.6. Defragmenting etcd data

8.14.6.1. Automatic defragmentation
8.14.6.2. Manual defragmentation

8.14.7. Restoring to a previous cluster state
8.14.8. Issues and workarounds for restoring a persistent storage state

8.15. POD DISRUPTION BUDGETS
8.15.1. Understanding how to use pod disruption budgets to specify the number of pods that must be up
8.15.2. Specifying the number of pods that must be up with pod disruption budgets
8.15.3. Specifying the eviction policy for unhealthy pods

8.16. ROTATING OR REMOVING CLOUD PROVIDER CREDENTIALS
8.16.1. Rotating cloud provider credentials with the Cloud Credential Operator utility

8.16.1.1. Rotating API keys
8.16.2. Rotating cloud provider credentials manually
8.16.3. Removing cloud provider credentials

8.17. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED CLUSTER
8.17.1. Cluster Samples Operator assistance for mirroring
8.17.2. Using Cluster Samples Operator image streams with alternate or mirrored registries
8.17.3. Preparing your cluster to gather support data

8.18. CONFIGURING PERIODIC IMPORTING OF CLUSTER SAMPLE OPERATOR IMAGE STREAM TAGS

CHAPTER 9. POSTINSTALLATION NODE TASKS
9.1. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

9.1.1. About adding RHEL compute nodes to a cluster
9.1.2. System requirements for RHEL compute nodes

9.1.2.1. Certificate signing requests management
9.1.3. Preparing the machine to run the playbook
9.1.4. Preparing a RHEL compute node
9.1.5. Adding a RHEL compute machine to your cluster
9.1.6. Required parameters for the Ansible hosts file
9.1.7. Optional: Removing RHCOS compute machines from a cluster

9.2. ADDING RHCOS COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
9.2.1. Prerequisites
9.2.2. Creating RHCOS machines using an ISO image
9.2.3. Creating RHCOS machines by PXE or iPXE booting
9.2.4. Approving the certificate signing requests for your machines
9.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

9.3. DEPLOYING MACHINE HEALTH CHECKS
9.3.1. About machine health checks

9.3.1.1. Limitations when deploying machine health checks
9.3.2. Sample MachineHealthCheck resource

9.3.2.1. Short-circuiting machine health check remediation
9.3.2.1.1. Setting maxUnhealthy by using an absolute value
9.3.2.1.2. Setting maxUnhealthy by using percentages

9.3.3. Creating a machine health check resource
9.3.4. Scaling a compute machine set manually
9.3.5. Understanding the difference between compute machine sets and the machine config pool

9.4. RECOMMENDED NODE HOST PRACTICES
9.4.1. Creating a KubeletConfig CRD to edit kubelet parameters
9.4.2. Modifying the number of unavailable worker nodes
9.4.3. Control plane node sizing
9.4.4. Setting up CPU Manager

196
197
199
199

200
203
216
217
217
218
219

220
221
221
221

224
225
225
225
227
227

229
229
229
229
231
231

232
233
234
235
235
236
236
237
240
242
247
248
248
249
250
250
250
251
251

253
253
254
258
259
261

OpenShift Container Platform 4.15 Postinstallation configuration

4



9.5. HUGE PAGES
9.5.1. What huge pages do
9.5.2. How huge pages are consumed by apps
9.5.3. Configuring huge pages at boot time

9.6. UNDERSTANDING DEVICE PLUGINS
Example device plugins
9.6.1. Methods for deploying a device plugin
9.6.2. Understanding the Device Manager
9.6.3. Enabling Device Manager

9.7. TAINTS AND TOLERATIONS
9.7.1. Understanding taints and tolerations
9.7.2. Adding taints and tolerations
9.7.3. Adding taints and tolerations using a compute machine set
9.7.4. Binding a user to a node using taints and tolerations
9.7.5. Controlling nodes with special hardware using taints and tolerations
9.7.6. Removing taints and tolerations

9.8. TOPOLOGY MANAGER
9.8.1. Topology Manager policies
9.8.2. Setting up Topology Manager
9.8.3. Pod interactions with Topology Manager policies

9.9. RESOURCE REQUESTS AND OVERCOMMITMENT
9.10. CLUSTER-LEVEL OVERCOMMIT USING THE CLUSTER RESOURCE OVERRIDE OPERATOR

9.10.1. Installing the Cluster Resource Override Operator using the web console
9.10.2. Installing the Cluster Resource Override Operator using the CLI
9.10.3. Configuring cluster-level overcommit

9.11. NODE-LEVEL OVERCOMMIT
9.11.1. Understanding compute resources and containers

9.11.1.1. Understanding container CPU requests
9.11.1.2. Understanding container memory requests

9.11.2. Understanding overcomitment and quality of service classes
9.11.2.1. Understanding how to reserve memory across quality of service tiers

9.11.3. Understanding swap memory and QOS
9.11.4. Understanding nodes overcommitment
9.11.5. Disabling or enforcing CPU limits using CPU CFS quotas
9.11.6. Reserving resources for system processes
9.11.7. Disabling overcommitment for a node

9.12. PROJECT-LEVEL LIMITS
9.12.1. Disabling overcommitment for a project

9.13. FREEING NODE RESOURCES USING GARBAGE COLLECTION
9.13.1. Understanding how terminated containers are removed through garbage collection
9.13.2. Understanding how images are removed through garbage collection
9.13.3. Configuring garbage collection for containers and images

9.14. USING THE NODE TUNING OPERATOR
Purpose
9.14.1. Accessing an example Node Tuning Operator specification
9.14.2. Custom tuning specification
9.14.3. Default profiles set on a cluster
9.14.4. Supported TuneD daemon plugins

9.15. CONFIGURING THE MAXIMUM NUMBER OF PODS PER NODE
9.16. MACHINE SCALING WITH STATIC IP ADDRESSES

9.16.1. Scaling machines to use static IP addresses
9.16.2. Machine set scaling of machines with configured static IP addresses
9.16.3. Using a machine set to scale machines with configured static IP addresses

265
265
266
267
268
269
269
270
270
272
272
274
276
278
279
280
281
281
281
282
283
283
284
286
289
290
291
291
291
291
292
292
293
294
295
295
295
296
296
296
297
298
301
301
302
302
307
308
309

311
311

313
314

Table of Contents

5



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION
10.1. CLUSTER NETWORK OPERATOR CONFIGURATION
10.2. ENABLING THE CLUSTER-WIDE PROXY
10.3. SETTING DNS TO PRIVATE
10.4. CONFIGURING INGRESS CLUSTER TRAFFIC
10.5. CONFIGURING THE NODE PORT SERVICE RANGE

10.5.1. Prerequisites
10.5.1.1. Expanding the node port range

10.6. CONFIGURING IPSEC ENCRYPTION
10.6.1. Prerequisites

10.6.1.1. Enabling IPsec encryption
10.7. CONFIGURING NETWORK POLICY

10.7.1. About network policy
10.7.1.1. Using the allow-from-router network policy
10.7.1.2. Using the allow-from-hostnetwork network policy

10.7.2. Example NetworkPolicy object
10.7.3. Creating a network policy using the CLI
10.7.4. Configuring multitenant isolation by using network policy
10.7.5. Creating default network policies for a new project
10.7.6. Modifying the template for new projects

10.7.6.1. Adding network policies to the new project template
10.8. SUPPORTED CONFIGURATIONS

10.8.1. Supported platforms
10.8.2. Unsupported configurations
10.8.3. Supported network configurations
10.8.4. Supported configurations for Service Mesh
10.8.5. Supported configurations for Kiali
10.8.6. Supported configurations for Distributed Tracing
10.8.7. Supported WebAssembly module
10.8.8. Operator overview

10.9. OPTIMIZING ROUTING
10.9.1. Baseline Ingress Controller (router) performance
10.9.2. Configuring Ingress Controller liveness, readiness, and startup probes
10.9.3. Configuring HAProxy reload interval

10.10. POSTINSTALLATION RHOSP NETWORK CONFIGURATION
10.10.1. Configuring application access with floating IP addresses
10.10.2. Enabling OVS hardware offloading
10.10.3. Attaching an OVS hardware offloading network
10.10.4. Enabling IPv6 connectivity to pods on RHOSP
10.10.5. Adding IPv6 connectivity to pods on RHOSP
10.10.6. Create pods that have IPv6 connectivity on RHOSP

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION
11.1. DYNAMIC PROVISIONING

11.1.1. About dynamic provisioning
11.1.2. Available dynamic provisioning plugins

11.2. DEFINING A STORAGE CLASS
11.2.1. Basic StorageClass object definition
11.2.2. Storage class annotations
11.2.3. RHOSP Cinder object definition
11.2.4. AWS Elastic Block Store (EBS) object definition
11.2.5. Azure Disk object definition
11.2.6. Azure File object definition

318
318
318

320
322
322
322
322
323
323
323
325
325
327
328
328
329
331

333
333
334
336
336
336
337
337
337
337
337
337
338
338
339
340
341
341

342
344
345
346
347

349
349
349
349
350
351
351
352
353
353
354

OpenShift Container Platform 4.15 Postinstallation configuration

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2.6.1. Considerations when using Azure File
11.2.7. GCE PersistentDisk (gcePD) object definition
11.2.8. VMware vSphere object definition

11.3. CHANGING THE DEFAULT STORAGE CLASS
11.4. OPTIMIZING STORAGE
11.5. AVAILABLE PERSISTENT STORAGE OPTIONS
11.6. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

11.6.1. Specific application storage recommendations
11.6.1.1. Registry
11.6.1.2. Scaled registry
11.6.1.3. Metrics
11.6.1.4. Logging
11.6.1.5. Applications

11.6.2. Other specific application storage recommendations
11.7. DEPLOY RED HAT OPENSHIFT DATA FOUNDATION
11.8. ADDITIONAL RESOURCES

CHAPTER 12. PREPARING FOR USERS
12.1. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

12.1.1. About identity providers in OpenShift Container Platform
12.1.2. Supported identity providers
12.1.3. Identity provider parameters
12.1.4. Sample identity provider CR

12.2. USING RBAC TO DEFINE AND APPLY PERMISSIONS
12.2.1. RBAC overview

12.2.1.1. Default cluster roles
12.2.1.2. Evaluating authorization

12.2.1.2.1. Cluster role aggregation
12.2.2. Projects and namespaces
12.2.3. Default projects
12.2.4. Viewing cluster roles and bindings
12.2.5. Viewing local roles and bindings
12.2.6. Adding roles to users
12.2.7. Creating a local role
12.2.8. Creating a cluster role
12.2.9. Local role binding commands
12.2.10. Cluster role binding commands
12.2.11. Creating a cluster admin

12.3. THE KUBEADMIN USER
12.3.1. Removing the kubeadmin user

12.4. IMAGE CONFIGURATION
12.4.1. Image controller configuration parameters
12.4.2. Configuring image registry settings
12.4.3. Configuring additional trust stores for image registry access

12.5. UNDERSTANDING IMAGE REGISTRY REPOSITORY MIRRORING
12.5.1. Configuring image registry repository mirroring
12.5.2. Converting ImageContentSourcePolicy (ICSP) files for image registry repository mirroring

12.6. POPULATING OPERATORHUB FROM MIRRORED OPERATOR CATALOGS
12.6.1. Prerequisites
12.6.2. Creating the ImageContentSourcePolicy object
12.6.3. Adding a catalog source to a cluster

12.7. ABOUT OPERATOR INSTALLATION WITH OPERATORHUB
12.7.1. Installing from OperatorHub using the web console

355
356
356
357
358
358
359
360
361
361
361

362
362
362
363
364

365
365
365
365
366
366
367
367
368
370
371
371
372
372
379
380
383
383
384
384
385
385
385
386
386
388
390
391

393
398
399
399
399
400
402
402

Table of Contents

7



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.7.2. Installing from OperatorHub using the CLI

CHAPTER 13. CONFIGURING ALERT NOTIFICATIONS
13.1. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

13.1.1. Configuring alert receivers
13.2. ADDITIONAL RESOURCES

CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER
14.1. ABOUT THE MIRROR REGISTRY
14.2. PREREQUISITES
14.3. PREPARING THE CLUSTER FOR MIRRORING
14.4. MIRRORING THE IMAGES
14.5. CONFIGURING THE CLUSTER FOR THE MIRROR REGISTRY
14.6. ENSURE APPLICATIONS CONTINUE TO WORK
14.7. DISCONNECT THE CLUSTER FROM THE NETWORK
14.8. RESTORING A DEGRADED INSIGHTS OPERATOR
14.9. RESTORING THE NETWORK

CHAPTER 15. ENABLING CLUSTER CAPABILITIES
15.1. VIEWING THE CLUSTER CAPABILITIES
15.2. ENABLING THE CLUSTER CAPABILITIES BY SETTING BASELINE CAPABILITY SET
15.3. ENABLING THE CLUSTER CAPABILITIES BY SETTING ADDITIONAL ENABLED CAPABILITIES
15.4. ADDITIONAL RESOURCES

CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM Z OR IBM LINUXONE ENVIRONMENT
16.1. CONFIGURING ADDITIONAL DEVICES USING THE MACHINE CONFIG OPERATOR (MCO)

16.1.1. Configuring a Fibre Channel Protocol (FCP) host
16.1.2. Configuring an FCP LUN
16.1.3. Configuring DASD
16.1.4. Configuring qeth

16.2. CONFIGURING ADDITIONAL DEVICES MANUALLY
16.3. ROCE NETWORK CARDS
16.4. ENABLING MULTIPATHING FOR FCP LUNS

CHAPTER 17. MULTIPLE REGIONS AND ZONES CONFIGURATION FOR A CLUSTER ON VSPHERE
17.1. SPECIFYING MULTIPLE REGIONS AND ZONES FOR YOUR CLUSTER ON VSPHERE
17.2. ENABLING A MULTIPLE LAYER 2 NETWORK FOR YOUR CLUSTER
17.3. PARAMETERS FOR THE CLUSTER-WIDE INFRASTRUCTURE CRD

CHAPTER 18. RHCOS IMAGE LAYERING
18.1. APPLYING A RHCOS CUSTOM LAYERED IMAGE
18.2. REMOVING A RHCOS CUSTOM LAYERED IMAGE
18.3. UPDATING WITH A RHCOS CUSTOM LAYERED IMAGE

CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER
19.1. FAILURE DOMAIN REQUIREMENTS
19.2. ADDING FAILURE DOMAINS TO THE INFRASTRUCTURE CR
19.3. DISTRIBUTING CONTROL PLANES ACROSS FAILURE DOMAINS
19.4. DISTRIBUTING COMPUTE MACHINES ACROSS FAILURE DOMAINS

19.4.1. Editing compute machine sets to implement failure domains
19.4.2. Replacing compute machine sets to implement failure domains

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS
20.1. EXTEND EXISTING CLUSTERS TO USE AWS LOCAL ZONES OR WAVELENGTH ZONES

20.1.1. About edge compute pools

404

409
409
409
410

412
412
413
413
414
417
419

420
420
421

423
423
423
425
426

427
427
428
429
430
431

432
433
433

435
435
437
438

440
443
447
448

450
450
450
451
452
453
455

460
460
461

OpenShift Container Platform 4.15 Postinstallation configuration

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20.2. CHANGING THE CLUSTER NETWORK MTU TO SUPPORT LOCAL ZONES OR WAVELENGTH ZONES

20.2.1. About the cluster MTU
20.2.1.1. Service interruption considerations
20.2.1.2. MTU value selection
20.2.1.3. How the migration process works
20.2.1.4. Changing the cluster network MTU

20.2.2. Opting in to AWS Local Zones or Wavelength Zones
20.2.3. Create network requirements in an existing VPC that uses AWS Local Zones or Wavelength Zones

20.2.4. Wavelength Zones only: Creating a VPC carrier gateway
20.2.5. Wavelength Zones only: CloudFormation template for the VPC Carrier Gateway
20.2.6. Creating subnets for AWS edge compute services
20.2.7. CloudFormation template for the VPC subnet
20.2.8. Creating a machine set manifest for an AWS Local Zones or Wavelength Zones node

20.2.8.1. Sample YAML for a compute machine set custom resource on AWS
20.2.8.2. Creating a compute machine set

20.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR WAVELENGTH ZONES
20.4. NEXT STEPS

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST
21.1. AWS OUTPOSTS ON OPENSHIFT CONTAINER PLATFORM REQUIREMENTS AND LIMITATIONS
21.2. OBTAINING INFORMATION ABOUT YOUR ENVIRONMENT

21.2.1. Obtaining information from your OpenShift Container Platform cluster
21.2.2. Obtaining information from your AWS account

21.3. CONFIGURING YOUR NETWORK FOR YOUR OUTPOST
21.3.1. Changing the cluster network MTU to support AWS Outposts
21.3.2. Creating subnets for AWS edge compute services
21.3.3. CloudFormation template for the VPC subnet

21.4. CREATING A COMPUTE MACHINE SET THAT DEPLOYS EDGE COMPUTE MACHINES ON AN OUTPOST

21.5. CREATING USER WORKLOADS IN AN OUTPOST
21.6. SCHEDULING WORKLOADS ON EDGE AND CLOUD-BASED AWS COMPUTE RESOURCES

21.6.1. Using AWS Classic Load Balancers in an AWS VPC cluster extended into an Outpost
21.6.2. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

21.7. ADDITIONAL RESOURCES

462
462
463
463
463
464
467

468
469
471
472
474
476
477
479
482
484

485
485
486
486
487
488
488
491

493

495
499
501

502
504
505

Table of Contents

9



OpenShift Container Platform 4.15 Postinstallation configuration

10



CHAPTER 1. POSTINSTALLATION CONFIGURATION
OVERVIEW

After installing OpenShift Container Platform, a cluster administrator can configure and customize the
following components:

Machine

Bare metal

Cluster

Node

Network

Storage

Users

Alerts and notifications

1.1. POST-INSTALLATION CONFIGURATION TASKS

You can perform the post-installation configuration tasks to configure your environment to meet your
need.

The following lists details these configurations:

Configure operating system features : The Machine Config Operator (MCO) manages 
MachineConfig objects. By using the MCO, you can configure nodes and custom resources.

Configure bare metal nodes: You can use the Bare Metal Operator (BMO) to manage bare
metal hosts. The BMO can complete the following operations:

Inspects hardware details of the host and report them to the bare metal host.

Inspect firmware and configure BIOS settings.

Provision hosts with a desired image.

Clean disk contents for the host before or after provisioning the host.

Configure cluster features. You can modify the following features of an OpenShift Container
Platform cluster:

Image registry

Networking configuration

Image build behavior

Identity provider

The etcd configuration

CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW

11



Machine set creation to handle the workloads

Cloud provider credential management

Configuring a private cluster: By default, the installation program provisions OpenShift
Container Platform by using a publicly accessible DNS and endpoints. To make your cluster
accessible only from within an internal network, configure the following components to make
them private:

DNS

Ingress Controller

API server

Perform node operations : By default, OpenShift Container Platform uses Red Hat Enterprise
Linux CoreOS (RHCOS) compute machines. You can perform the following node operations:

Add and remove compute machines.

Add and remove taints and tolerations.

Configure the maximum number of pods per node.

Enable Device Manager.

Configure network: After installing OpenShift Container Platform, you can configure the
following components:

Ingress cluster traffic

Node port service range

Network policy

Enabling the cluster-wide proxy

Configure storage: By default, containers operate by using the ephemeral storage or transient
local storage. The ephemeral storage has a lifetime limitation. To store the data for a long time,
you must configure persistent storage. You can configure storage by using one of the following
methods:

Dynamic provisioning: You can dynamically provision storage on demand by defining and
creating storage classes that control different levels of storage, including storage access.

Static provisioning: You can use Kubernetes persistent volumes to make existing storage
available to a cluster. Static provisioning can support various device configurations and
mount options.

Configure users: OAuth access tokens allow users to authenticate themselves to the API. You
can configure OAuth to perform the following tasks:

Specify an identity provider

Use role-based access control to define and supply permissions to users

Install an Operator from OperatorHub

Configuring alert notifications: By default, firing alerts are displayed on the Alerting UI of the

OpenShift Container Platform 4.15 Postinstallation configuration

12



Configuring alert notifications: By default, firing alerts are displayed on the Alerting UI of the
web console. You can also configure OpenShift Container Platform to send alert notifications to
external systems.

CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW

13



CHAPTER 2. CONFIGURING A PRIVATE CLUSTER
After you install an OpenShift Container Platform version 4.15 cluster, you can set some of its core
components to be private.

2.1. ABOUT PRIVATE CLUSTERS

By default, OpenShift Container Platform is provisioned using publicly-accessible DNS and endpoints.
You can set the DNS, Ingress Controller, and API server to private after you deploy your private cluster.

IMPORTANT

If the cluster has any public subnets, load balancer services created by administrators
might be publicly accessible. To ensure cluster security, verify that these services are
explicitly annotated as private.

DNS
If you install OpenShift Container Platform on installer-provisioned infrastructure, the installation
program creates records in a pre-existing public zone and, where possible, creates a private zone for the
cluster’s own DNS resolution. In both the public zone and the private zone, the installation program or
cluster creates DNS entries for *.apps, for the Ingress object, and api, for the API server.

The *.apps records in the public and private zone are identical, so when you delete the public zone, the
private zone seamlessly provides all DNS resolution for the cluster.

Ingress Controller
Because the default Ingress object is created as public, the load balancer is internet-facing and in the
public subnets.

The Ingress Operator generates a default certificate for an Ingress Controller to serve as a placeholder
until you configure a custom default certificate. Do not use Operator-generated default certificates in
production clusters. The Ingress Operator does not rotate its own signing certificate or the default
certificates that it generates. Operator-generated default certificates are intended as placeholders for
custom default certificates that you configure.

API server
By default, the installation program creates appropriate network load balancers for the API server to
use for both internal and external traffic.

On Amazon Web Services (AWS), separate public and private load balancers are created. The load
balancers are identical except that an additional port is available on the internal one for use within the
cluster. Although the installation program automatically creates or destroys the load balancer based on
API server requirements, the cluster does not manage or maintain them. As long as you preserve the
cluster’s access to the API server, you can manually modify or move the load balancers. For the public
load balancer, port 6443 is open and the health check is configured for HTTPS against the /readyz path.

On Google Cloud Platform, a single load balancer is created to manage both internal and external API
traffic, so you do not need to modify the load balancer.

On Microsoft Azure, both public and private load balancers are created. However, because of limitations
in current implementation, you just retain both load balancers in a private cluster.

2.2. SETTING DNS TO PRIVATE

OpenShift Container Platform 4.15 Postinstallation configuration

14



After you deploy a cluster, you can modify its DNS to use only a private zone.

Procedure

1. Review the DNS custom resource for your cluster:

Example output

Note that the spec section contains both a private and a public zone.

2. Patch the DNS custom resource to remove the public zone:

Because the Ingress Controller consults the DNS definition when it creates Ingress objects,
when you create or modify Ingress objects, only private records are created.

IMPORTANT

DNS records for the existing Ingress objects are not modified when you remove
the public zone.

3. Optional: Review the DNS custom resource for your cluster and confirm that the public zone
was removed:

Example output

$ oc get dnses.config.openshift.io/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: DNS
metadata:
  creationTimestamp: "2019-10-25T18:27:09Z"
  generation: 2
  name: cluster
  resourceVersion: "37966"
  selfLink: /apis/config.openshift.io/v1/dnses/cluster
  uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
  baseDomain: <base_domain>
  privateZone:
    tags:
      Name: <infrastructure_id>-int
      kubernetes.io/cluster/<infrastructure_id>: owned
  publicZone:
    id: Z2XXXXXXXXXXA4
status: {}

$ oc patch dnses.config.openshift.io/cluster --type=merge --patch='{"spec": {"publicZone": 
null}}'
dns.config.openshift.io/cluster patched

$ oc get dnses.config.openshift.io/cluster -o yaml

apiVersion: config.openshift.io/v1

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

15



2.3. SETTING THE INGRESS CONTROLLER TO PRIVATE

After you deploy a cluster, you can modify its Ingress Controller to use only a private zone.

Procedure

1. Modify the default Ingress Controller to use only an internal endpoint:

Example output

The public DNS entry is removed, and the private zone entry is updated.

2.4. RESTRICTING THE API SERVER TO PRIVATE

After you deploy a cluster to Amazon Web Services (AWS) or Microsoft Azure, you can reconfigure the
API server to use only the private zone.

Prerequisites

Install the OpenShift CLI (oc).

kind: DNS
metadata:
  creationTimestamp: "2019-10-25T18:27:09Z"
  generation: 2
  name: cluster
  resourceVersion: "37966"
  selfLink: /apis/config.openshift.io/v1/dnses/cluster
  uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
  baseDomain: <base_domain>
  privateZone:
    tags:
      Name: <infrastructure_id>-int
      kubernetes.io/cluster/<infrastructure_id>-wfpg4: owned
status: {}

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  namespace: openshift-ingress-operator
  name: default
spec:
  endpointPublishingStrategy:
    type: LoadBalancerService
    loadBalancer:
      scope: Internal
EOF

ingresscontroller.operator.openshift.io "default" deleted
ingresscontroller.operator.openshift.io/default replaced

OpenShift Container Platform 4.15 Postinstallation configuration

16



1 2

Have access to the web console as a user with admin privileges.

Procedure

1. In the web portal or console for your cloud provider, take the following actions:

a. Locate and delete the appropriate load balancer component:

For AWS, delete the external load balancer. The API DNS entry in the private zone
already points to the internal load balancer, which uses an identical configuration, so you
do not need to modify the internal load balancer.

For Azure, delete the api-internal rule for the load balancer.

b. Delete the api.$clustername.$yourdomain DNS entry in the public zone.

2. Remove the external load balancers:

IMPORTANT

You can run the following steps only for an installer-provisioned infrastructure
(IPI) cluster. For a user-provisioned infrastructure (UPI) cluster, you must
manually remove or disable the external load balancers.

If your cluster uses a control plane machine set, delete the following lines in the control
plane machine set custom resource:

Delete this line.

If your cluster does not use a control plane machine set, you must delete the external load
balancers from each control plane machine.

i. From your terminal, list the cluster machines by running the following command:

Example output

providerSpec:
  value:
    loadBalancers:
    - name: lk4pj-ext 1
      type: network 2
    - name: lk4pj-int
      type: network

$ oc get machine -n openshift-machine-api

NAME                            STATE     TYPE        REGION      ZONE         AGE
lk4pj-master-0                  running   m4.xlarge   us-east-1   us-east-1a   17m
lk4pj-master-1                  running   m4.xlarge   us-east-1   us-east-1b   17m
lk4pj-master-2                  running   m4.xlarge   us-east-1   us-east-1a   17m
lk4pj-worker-us-east-1a-5fzfj   running   m4.xlarge   us-east-1   us-east-1a   15m
lk4pj-worker-us-east-1a-vbghs   running   m4.xlarge   us-east-1   us-east-1a   15m
lk4pj-worker-us-east-1b-zgpzg   running   m4.xlarge   us-east-1   us-east-1b   15m

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

17



1

1 2

The control plane machines contain master in the name.

ii. Remove the external load balancer from each control plane machine:

A. Edit a control plane machine object to by running the following command:

Specify the name of the control plane machine object to modify.

B. Remove the lines that describe the external load balancer, which are marked in the
following example:

Delete this line.

C. Save your changes and exit the object specification.

D. Repeat this process for each of the control plane machines.

2.4.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External. Cluster administrators can change an 
External scoped Ingress Controller to Internal.

Prerequisites

You installed the oc CLI.

Procedure

To change an External scoped Ingress Controller to Internal, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

$ oc edit machines -n openshift-machine-api <control_plane_name> 1

providerSpec:
  value:
    loadBalancers:
    - name: lk4pj-ext 1
      type: network 2
    - name: lk4pj-int
      type: network

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"Internal"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

OpenShift Container Platform 4.15 Postinstallation configuration

18



If you delete the service, the Ingress Operator recreates it as Internal.

2.5. CONFIGURING A PRIVATE STORAGE ENDPOINT ON AZURE

You can leverage the Image Registry Operator to use private endpoints on Azure, which enables
seamless configuration of private storage accounts when OpenShift Container Platform is deployed on
private Azure clusters. This allows you to deploy the image registry without exposing public-facing
storage endpoints.

You can configure the Image Registry Operator to use private storage endpoints on Azure in one of two
ways:

By configuring the Image Registry Operator to discover the VNet and subnet names

With user-provided Azure Virtual Network (VNet) and subnet names

2.5.1. Limitations for configuring a private storage endpoint on Azure

The following limitations apply when configuring a private storage endpoint on Azure:

When configuring the Image Registry Operator to use a private storage endpoint, public
network access to the storage account is disabled. Consequently, pulling images from the
registry outside of OpenShift Container Platform only works by setting disableRedirect: true in
the registry Operator configuration. With redirect enabled, the registry redirects the client to
pull images directly from the storage account, which will no longer work due to disabled public
network access. For more information, see "Disabling redirect when using a private storage
endpoint on Azure".

This operation cannot be undone by the Image Registry Operator.

2.5.2. Configuring a private storage endpoint on Azure by enabling the Image
Registry Operator to discover VNet and subnet names

The following procedure shows you how to set up a private storage endpoint on Azure by configuring
the Image Registry Operator to discover VNet and subnet names.

Prerequisites

You have configured the image registry to run on Azure.

Your network has been set up using the Installer Provisioned Infrastructure installation method.
For users with a custom network setup, see "Configuring a private storage endpoint on Azure
with user-provided VNet and subnet names".

Procedure

1. Edit the Image Registry Operator config object and set networkAccess.type to Internal:

$ oc -n openshift-ingress delete services/router-default

$ oc edit configs.imageregistry/cluster

# ...
spec:

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

19



2. Optional: Enter the following command to confirm that the Operator has completed
provisioning. This might take a few minutes.

3. Optional: If the registry is exposed by a route, and you are configuring your storage account to
be private, you must disable redirect if you want pulls external to the cluster to continue to work.
Enter the following command to disable redirect on the Image Operator configuration:

NOTE

When redirect is enabled, pulling images from outside of the cluster will not work.

Verification

1. Fetch the registry service name by running the following command:

Example output

2. Enter debug mode by running the following command:

3. Run the suggested chroot command. For example:

4. Enter the following command to log in to your container registry:

Example output

  # ...
   storage:
      azure:
        # ...
        networkAccess:
          type: Internal
# ...

$ oc get configs.imageregistry/cluster -o=jsonpath="
{.spec.storage.azure.privateEndpointName}" -w

$ oc patch configs.imageregistry cluster --type=merge -p '{"spec":{"disableRedirect": true}}'

$ oc registry info --internal=true

image-registry.openshift-image-registry.svc:5000

$ oc debug node/<node_name>

$ chroot /host

$ podman login --tls-verify=false -u unused -p $(oc whoami -t) image-registry.openshift-
image-registry.svc:5000

Login Succeeded!

OpenShift Container Platform 4.15 Postinstallation configuration

20



5. Enter the following command to verify that you can pull an image from the registry:

Example output

2.5.3. Configuring a private storage endpoint on Azure with user-provided VNet and
subnet names

Use the following procedure to configure a storage account that has public network access disabled and
is exposed behind a private storage endpoint on Azure.

Prerequisites

You have configured the image registry to run on Azure.

You must know the VNet and subnet names used for your Azure environment.

If your network was configured in a separate resource group in Azure, you must also know its
name.

Procedure

1. Edit the Image Registry Operator config object and configure the private endpoint using your
VNet and subnet names:

2. Optional: Enter the following command to confirm that the Operator has completed

$ podman pull --tls-verify=false image-registry.openshift-image-
registry.svc:5000/openshift/tools

Trying to pull image-registry.openshift-image-
registry.svc:5000/openshift/tools/openshift/tools...
Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

$ oc edit configs.imageregistry/cluster

# ...
spec:
  # ...
   storage:
      azure:
        # ...
        networkAccess:
          type: Internal
          internal:
            subnetName: <subnet_name>
            vnetName: <vnet_name>
            networkResourceGroupName: <network_resource_group_name>
# ...

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

21



2. Optional: Enter the following command to confirm that the Operator has completed
provisioning. This might take a few minutes.

NOTE

When redirect is enabled, pulling images from outside of the cluster will not work.

Verification

1. Fetch the registry service name by running the following command:

Example output

2. Enter debug mode by running the following command:

3. Run the suggested chroot command. For example:

4. Enter the following command to log in to your container registry:

Example output

5. Enter the following command to verify that you can pull an image from the registry:

Example output

$ oc get configs.imageregistry/cluster -o=jsonpath="
{.spec.storage.azure.privateEndpointName}" -w

$ oc registry info --internal=true

image-registry.openshift-image-registry.svc:5000

$ oc debug node/<node_name>

$ chroot /host

$ podman login --tls-verify=false -u unused -p $(oc whoami -t) image-registry.openshift-
image-registry.svc:5000

Login Succeeded!

$ podman pull --tls-verify=false image-registry.openshift-image-
registry.svc:5000/openshift/tools

Trying to pull image-registry.openshift-image-
registry.svc:5000/openshift/tools/openshift/tools...
Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done

OpenShift Container Platform 4.15 Postinstallation configuration

22



2.5.4. Optional: Disabling redirect when using a private storage endpoint on Azure

By default, redirect is enabled when using the image registry. Redirect allows off-loading of traffic from
the registry pods into the object storage, which makes pull faster. When redirect is enabled and the
storage account is private, users from outside of the cluster are unable to pull images from the registry.

In some cases, users might want to disable redirect so that users from outside of the cluster can pull
images from the registry.

Use the following procedure to disable redirect.

Prerequisites

You have configured the image registry to run on Azure.

You have configured a route.

Procedure

Enter the following command to disable redirect on the image registry configuration:

Verification

1. Fetch the registry service name by running the following command:

Example output

2. Enter the following command to log in to your container registry:

Example output

3. Enter the following command to verify that you can pull an image from the registry:

Example output

Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

$ oc patch configs.imageregistry cluster --type=merge -p '{"spec":{"disableRedirect": true}}'

$ oc registry info

default-route-openshift-image-registry.<cluster_dns>

$ podman login --tls-verify=false -u unused -p $(oc whoami -t) default-route-openshift-image-
registry.<cluster_dns>

Login Succeeded!

$ podman pull --tls-verify=false default-route-openshift-image-registry.<cluster_dns>
/openshift/tools

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

23



Trying to pull default-route-openshift-image-registry.<cluster_dns>/openshift/tools...
Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

OpenShift Container Platform 4.15 Postinstallation configuration

24



CHAPTER 3. BARE METAL CONFIGURATION
When deploying OpenShift Container Platform on bare metal hosts, there are times when you need to
make changes to the host either before or after provisioning. This can include inspecting the host’s
hardware, firmware, and firmware details. It can also include formatting disks or changing modifiable
firmware settings.

3.1. ABOUT THE BARE METAL OPERATOR

Use the Bare Metal Operator (BMO) to provision, manage, and inspect bare-metal hosts in your cluster.

The BMO uses three resources to complete these tasks:

BareMetalHost

HostFirmwareSettings

FirmwareSchema

The BMO maintains an inventory of the physical hosts in the cluster by mapping each bare-metal host to
an instance of the BareMetalHost custom resource definition. Each BareMetalHost resource features
hardware, software, and firmware details. The BMO continually inspects the bare-metal hosts in the
cluster to ensure each BareMetalHost resource accurately details the components of the
corresponding host.

The BMO also uses the HostFirmwareSettings resource and the FirmwareSchema resource to detail
firmware specifications for the bare-metal host.

The BMO interfaces with bare-metal hosts in the cluster by using the Ironic API service. The Ironic
service uses the Baseboard Management Controller (BMC) on the host to interface with the machine.

Some common tasks you can complete by using the BMO include the following:

Provision bare-metal hosts to the cluster with a specific image

Format a host’s disk contents before provisioning or after deprovisioning

Turn on or off a host

Change firmware settings

View the host’s hardware details

3.1.1. Bare Metal Operator architecture

The Bare Metal Operator (BMO) uses three resources to provision, manage, and inspect bare-metal
hosts in your cluster. The following diagram illustrates the architecture of these resources:

CHAPTER 3. BARE METAL CONFIGURATION

25



BareMetalHost

The BareMetalHost resource defines a physical host and its properties. When you provision a bare-
metal host to the cluster, you must define a BareMetalHost resource for that host. For ongoing
management of the host, you can inspect the information in the BareMetalHost or update this
information.

The BareMetalHost resource features provisioning information such as the following:

Deployment specifications such as the operating system boot image or the custom RAM disk

Provisioning state

Baseboard Management Controller (BMC) address

Desired power state

The BareMetalHost resource features hardware information such as the following:

Number of CPUs

MAC address of a NIC

Size of the host’s storage device

Current power state

HostFirmwareSettings

OpenShift Container Platform 4.15 Postinstallation configuration

26



You can use the HostFirmwareSettings resource to retrieve and manage the firmware settings for a
host. When a host moves to the Available state, the Ironic service reads the host’s firmware settings
and creates the HostFirmwareSettings resource. There is a one-to-one mapping between the 
BareMetalHost resource and the HostFirmwareSettings resource.

You can use the HostFirmwareSettings resource to inspect the firmware specifications for a host or to
update a host’s firmware specifications.

NOTE

You must adhere to the schema specific to the vendor firmware when you edit the spec
field of the HostFirmwareSettings resource. This schema is defined in the read-only 
FirmwareSchema resource.

FirmwareSchema

Firmware settings vary among hardware vendors and host models. A FirmwareSchema resource is a
read-only resource that contains the types and limits for each firmware setting on each host model. The
data comes directly from the BMC by using the Ironic service. The FirmwareSchema resource enables
you to identify valid values you can specify in the spec field of the HostFirmwareSettings resource.

A FirmwareSchema resource can apply to many BareMetalHost resources if the schema is the same.

Additional resources

Metal³ API service for provisioning bare-metal hosts

Ironic API service for managing bare-metal infrastructure

3.2. ABOUT THE BAREMETALHOST RESOURCE

Metal3 introduces the concept of the BareMetalHost resource, which defines a physical host and its
properties. The BareMetalHost resource contains two sections:

1. The BareMetalHost spec

2. The BareMetalHost status

3.2.1. The BareMetalHost spec

The spec section of the BareMetalHost resource defines the desired state of the host.

Table 3.1. BareMetalHost spec

Parameters Description

automatedCleaningMode An interface to enable or disable automated cleaning
during provisioning and de-provisioning. When set to 
disabled, it skips automated cleaning. When set to 
metadata, automated cleaning is enabled. The
default setting is metadata.

CHAPTER 3. BARE METAL CONFIGURATION

27

https://metal3.io/
https://ironicbaremetal.org/


bmc:
  address:
  credentialsName:
  disableCertificateVerification:

The bmc configuration setting contains the
connection information for the baseboard
management controller (BMC) on the host. The
fields are:

address: The URL for communicating with
the host’s BMC controller.

credentialsName: A reference to a secret
containing the username and password for
the BMC.

disableCertificateVerification: A
boolean to skip certificate validation when
set to true.

bootMACAddress The MAC address of the NIC used for provisioning
the host.

bootMode The boot mode of the host. It defaults to UEFI, but it
can also be set to legacy for BIOS boot, or 
UEFISecureBoot.

consumerRef A reference to another resource that is using the
host. It could be empty if another resource is not
currently using the host. For example, a Machine
resource might use the host when the machine-api
is using the host.

description A human-provided string to help identify the host.

externallyProvisioned A boolean indicating whether the host provisioning
and deprovisioning are managed externally. When
set:

Power status can still be managed using the
online field.

Hardware inventory will be monitored, but
no provisioning or deprovisioning operations
are performed on the host.

Parameters Description

OpenShift Container Platform 4.15 Postinstallation configuration

28



firmware Contains information about the BIOS configuration
of bare metal hosts. Currently, firmware is only
supported by iRMC, iDRAC, iLO4 and iLO5 BMCs.
The sub fields are:

simultaneousMultithreadingEnabled:
Allows a single physical processor core to
appear as several logical processors. Valid
settings are true or false.

sriovEnabled: SR-IOV support enables a
hypervisor to create virtual instances of a
PCI-express device, potentially increasing
performance. Valid settings are true or 
false.

virtualizationEnabled: Supports the
virtualization of platform hardware. Valid
settings are true or false.

image:
  url:
  checksum:
  checksumType:
  format:

The image configuration setting holds the details for
the image to be deployed on the host. Ironic requires
the image fields. However, when the 
externallyProvisioned configuration setting is set
to true and the external management doesn’t
require power control, the fields can be empty. The
fields are:

url: The URL of an image to deploy to the
host.

checksum: The actual checksum or a URL
to a file containing the checksum for the
image at image.url.

checksumType: You can specify
checksum algorithms. Currently 
image.checksumType only supports 
md5, sha256, and sha512. The default
checksum type is md5.

format: This is the disk format of the image.
It can be one of raw, qcow2, vdi, vmdk, 
live-iso or be left unset. Setting it to raw
enables raw image streaming in the Ironic
agent for that image. Setting it to live-iso
enables iso images to live boot without
deploying to disk, and it ignores the 
checksum fields.

Parameters Description

CHAPTER 3. BARE METAL CONFIGURATION

29



networkData A reference to the secret containing the network
configuration data and its namespace, so that it can
be attached to the host before the host boots to set
up the network.

online A boolean indicating whether the host should be
powered on (true) or off (false). Changing this
value will trigger a change in the power state of the
physical host.

raid:
  hardwareRAIDVolumes:
  softwareRAIDVolumes:

(Optional) Contains the information about the RAID
configuration for bare metal hosts. If not specified, it
retains the current configuration.

NOTE

OpenShift Container Platform 4.15
supports hardware RAID for BMCs,
including:

Fujitsu iRMC with support
for RAID levels 0, 1, 5, 6, and
10

Dell iDRAC using the
Redfish API with firmware
version 6.10.30.20 or later
and RAID levels 0, 1, and 5

OpenShift Container Platform 4.15
does not support software RAID.

See the following configuration settings:

hardwareRAIDVolumes: Contains the
list of logical drives for hardware RAID, and
defines the desired volume configuration in
the hardware RAID. If you don’t specify 
rootDeviceHints, the first volume is the
root volume. The sub-fields are:

level: The RAID level for the logical
drive. The following levels are
supported: 0,1,2,5,6,1+0,5+0,6+0.

name: The name of the volume as a
string. It should be unique within the
server. If not specified, the volume
name will be auto-generated.

numberOfPhysicalDisks: The
number of physical drives as an integer
to use for the logical drove. Defaults to
the minimum number of disk drives
required for the particular RAID level.

physicalDisks: The list of names of
physical disk drives as a string. This is

Parameters Description

OpenShift Container Platform 4.15 Postinstallation configuration

30



an optional field. If specified, the
controller field must be specified too.

controller: (Optional) The name of
the RAID controller as a string to use in
the hardware RAID volume.

rotational: If set to true, it will only
select rotational disk drives. If set to 
false, it will only select solid-state and
NVMe drives. If not set, it selects any
drive types, which is the default
behavior.

sizeGibibytes: The size of the logical
drive as an integer to create in GiB. If
unspecified or set to 0, it will use the
maximum capacity of physical drive for
the logical drive.

softwareRAIDVolumes: OpenShift
Container Platform 4.15 does not support
software RAID. The following information is
for reference only. This configuration
contains the list of logical disks for software
RAID. If you don’t specify 
rootDeviceHints, the first volume is the
root volume. If you set 
HardwareRAIDVolumes, this item will be
invalid. Software RAIDs will always be
deleted. The number of created software
RAID devices must be 1 or 2. If there is only
one software RAID device, it must be RAID-
1. If there are two RAID devices, the first
device must be RAID-1, while the RAID
level for the second device can be 0, 1, or 
1+0. The first RAID device will be the
deployment device. Therefore, enforcing 
RAID-1 reduces the risk of a non-booting
node in case of a device failure. The 
softwareRAIDVolume field defines the
desired configuration of the volume in the
software RAID. The sub-fields are:

level: The RAID level for the logical
drive. The following levels are
supported: 0,1,1+0.

physicalDisks: A list of device hints.
The number of items should be greater
than or equal to 2.

sizeGibibytes: The size of the logical
disk drive as an integer to be created in
GiB. If unspecified or set to 0, it will use
the maximum capacity of physical drive
for logical drive.

You can set the hardwareRAIDVolume as an
empty slice to clear the hardware RAID configuration.
For example:

Parameters Description

CHAPTER 3. BARE METAL CONFIGURATION

31



spec:
   raid:
     hardwareRAIDVolume: []

If you receive an error message indicating that the
driver does not support RAID, set the raid, 
hardwareRAIDVolumes or 
softwareRAIDVolumes to nil. You might need to
ensure the host has a RAID controller.

Parameters Description

OpenShift Container Platform 4.15 Postinstallation configuration

32



rootDeviceHints:
  deviceName:
  hctl:
  model:
  vendor:
  serialNumber:
  minSizeGigabytes:
  wwn:
  wwnWithExtension:
  wwnVendorExtension:
  rotational:

The rootDeviceHints parameter enables
provisioning of the RHCOS image to a particular
device. It examines the devices in the order it
discovers them, and compares the discovered values
with the hint values. It uses the first discovered
device that matches the hint value. The configuration
can combine multiple hints, but a device must match
all hints to get selected. The fields are:

deviceName: A string containing a Linux
device name like /dev/vda. The hint must
match the actual value exactly.

hctl: A string containing a SCSI bus address
like 0:0:0:0. The hint must match the actual
value exactly.

model: A string containing a vendor-
specific device identifier. The hint can be a
substring of the actual value.

vendor: A string containing the name of
the vendor or manufacturer of the device.
The hint can be a sub-string of the actual
value.

serialNumber: A string containing the
device serial number. The hint must match
the actual value exactly.

minSizeGigabytes: An integer
representing the minimum size of the device
in gigabytes.

wwn: A string containing the unique
storage identifier. The hint must match the
actual value exactly.

wwnWithExtension: A string containing
the unique storage identifier with the
vendor extension appended. The hint must
match the actual value exactly.

wwnVendorExtension: A string
containing the unique vendor storage
identifier. The hint must match the actual
value exactly.

rotational: A boolean indicating whether
the device should be a rotating disk (true)
or not (false).

Parameters Description

3.2.2. The BareMetalHost status

The BareMetalHost status represents the host’s current state, and includes tested credentials, current
hardware details, and other information.

CHAPTER 3. BARE METAL CONFIGURATION

33



Table 3.2. BareMetalHost status

Parameters Description

goodCredentials A reference to the secret and its namespace holding
the last set of baseboard management controller
(BMC) credentials the system was able to validate as
working.

errorMessage Details of the last error reported by the provisioning
backend, if any.

errorType Indicates the class of problem that has caused the
host to enter an error state. The error types are:

provisioned registration error: Occurs
when the controller is unable to re-register
an already provisioned host.

registration error: Occurs when the
controller is unable to connect to the host’s
baseboard management controller.

inspection error: Occurs when an
attempt to obtain hardware details from the
host fails.

preparation error: Occurs when cleaning
fails.

provisioning error: Occurs when the
controller fails to provision or deprovision
the host.

power management error: Occurs when
the controller is unable to modify the power
state of the host.

detach error: Occurs when the controller is
unable to detatch the host from the
provisioner.

hardware:
  cpu
    arch:
    model:
    clockMegahertz:
    flags:
    count:

The hardware.cpu field details of the CPU(s) in the
system. The fields include:

arch: The architecture of the CPU.

model: The CPU model as a string.

clockMegahertz: The speed in MHz of the
CPU.

flags: The list of CPU flags. For example, 
'mmx','sse','sse2','vmx' etc.

count: The number of CPUs available in the
system.

OpenShift Container Platform 4.15 Postinstallation configuration

34



hardware:
  firmware:

Contains BIOS firmware information. For example,
the hardware vendor and version.

hardware:
  nics:
  - ip:
    name:
    mac:
    speedGbps:
    vlans:
    vlanId:
    pxe:

The hardware.nics field contains a list of network
interfaces for the host. The fields include:

ip: The IP address of the NIC, if one was
assigned when the discovery agent ran.

name: A string identifying the network
device. For example, nic-1.

mac: The MAC address of the NIC.

speedGbps: The speed of the device in
Gbps.

vlans: A list holding all the VLANs available
for this NIC.

vlanId: The untagged VLAN ID.

pxe: Whether the NIC is able to boot using
PXE.

hardware:
  ramMebibytes:

The host’s amount of memory in Mebibytes (MiB).

hardware:
  storage:
  - name:
    rotational:
    sizeBytes:
    serialNumber:

The hardware.storage field contains a list of
storage devices available to the host. The fields
include:

name: A string identifying the storage
device. For example, disk 1 (boot).

rotational: Indicates whether the disk is
rotational, and returns either true or false.

sizeBytes: The size of the storage device.

serialNumber: The device’s serial number.

hardware:
  systemVendor:
    manufacturer:
    productName:
    serialNumber:

Contains information about the host’s 
manufacturer, the productName, and the 
serialNumber.

Parameters Description

CHAPTER 3. BARE METAL CONFIGURATION

35



lastUpdated The timestamp of the last time the status of the host
was updated.

operationalStatus The status of the server. The status is one of the
following:

OK: Indicates all the details for the host are
known, correctly configured, working, and
manageable.

discovered: Implies some of the host’s
details are either not working correctly or
missing. For example, the BMC address is
known but the login credentials are not.

error: Indicates the system found some
sort of irrecoverable error. Refer to the 
errorMessage field in the status section
for more details.

delayed: Indicates that provisioning is
delayed to limit simultaneous provisioning of
multiple hosts.

detached: Indicates the host is marked 
unmanaged.

poweredOn Boolean indicating whether the host is powered on.

provisioning:
  state:
  id:
  image:
  raid:
  firmware:
  rootDeviceHints:

The provisioning field contains values related to
deploying an image to the host. The sub-fields
include:

state: The current state of any ongoing
provisioning operation. The states include:

<empty string>: There is no
provisioning happening at the moment.

unmanaged: There is insufficient
information available to register the
host.

registering: The agent is checking the
host’s BMC details.

match profile: The agent is
comparing the discovered hardware
details on the host against known
profiles.

available: The host is available for
provisioning. This state was previously
known as ready.

preparing: The existing configuration
will be removed, and the new
configuration will be set on the host.

Parameters Description

OpenShift Container Platform 4.15 Postinstallation configuration

36



provisioning: The provisioner is
writing an image to the host’s storage.

provisioned: The provisioner wrote an
image to the host’s storage.

externally provisioned: Metal3 does
not manage the image on the host.

deprovisioning: The provisioner is
wiping the image from the host’s
storage.

inspecting: The agent is collecting
hardware details for the host.

deleting: The agent is deleting the
from the cluster.

id: The unique identifier for the service in
the underlying provisioning tool.

image: The image most recently
provisioned to the host.

raid: The list of hardware or software RAID
volumes recently set.

firmware: The BIOS configuration for the
bare metal server.

rootDeviceHints: The root device
selection instructions used for the most
recent provisioning operation.

triedCredentials A reference to the secret and its namespace holding
the last set of BMC credentials that were sent to the
provisioning backend.

Parameters Description

3.3. GETTING THE BAREMETALHOST RESOURCE

The BareMetalHost resource contains the properties of a physical host. You must get the 
BareMetalHost resource for a physical host to review its properties.

Procedure

1. Get the list of BareMetalHost resources:

NOTE

You can use baremetalhost as the long form of bmh with oc get command.

2. Get the list of hosts:

$ oc get bmh -n openshift-machine-api -o yaml

CHAPTER 3. BARE METAL CONFIGURATION

37



3. Get the BareMetalHost resource for a specific host:

Where <host_name> is the name of the host.

Example output

$ oc get bmh -n openshift-machine-api

$ oc get bmh <host_name> -n openshift-machine-api -o yaml

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
  creationTimestamp: "2022-06-16T10:48:33Z"
  finalizers:
  - baremetalhost.metal3.io
  generation: 2
  name: openshift-worker-0
  namespace: openshift-machine-api
  resourceVersion: "30099"
  uid: 1513ae9b-e092-409d-be1b-ad08edeb1271
spec:
  automatedCleaningMode: metadata
  bmc:
    address: redfish://10.46.61.19:443/redfish/v1/Systems/1
    credentialsName: openshift-worker-0-bmc-secret
    disableCertificateVerification: true
  bootMACAddress: 48:df:37:c7:f7:b0
  bootMode: UEFI
  consumerRef:
    apiVersion: machine.openshift.io/v1beta1
    kind: Machine
    name: ocp-edge-958fk-worker-0-nrfcg
    namespace: openshift-machine-api
  customDeploy:
    method: install_coreos
  hardwareProfile: unknown
  online: true
  rootDeviceHints:
    deviceName: /dev/disk/by-id/scsi-<serial_number>
  userData:
    name: worker-user-data-managed
    namespace: openshift-machine-api
status:
  errorCount: 0
  errorMessage: ""
  goodCredentials:
    credentials:
      name: openshift-worker-0-bmc-secret
      namespace: openshift-machine-api
    credentialsVersion: "16120"
  hardware:
    cpu:
      arch: x86_64
      clockMegahertz: 2300

OpenShift Container Platform 4.15 Postinstallation configuration

38



3.4. ABOUT THE HOSTFIRMWARESETTINGS RESOURCE

You can use the HostFirmwareSettings resource to retrieve and manage the BIOS settings for a host.

      count: 64
      flags:
      - 3dnowprefetch
      - abm
      - acpi
      - adx
      - aes
      model: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
    firmware:
      bios:
        date: 10/26/2020
        vendor: HPE
        version: U30
    hostname: openshift-worker-0
    nics:
    - mac: 48:df:37:c7:f7:b3
      model: 0x8086 0x1572
      name: ens1f3
    ramMebibytes: 262144
    storage:
    - hctl: "0:0:0:0"
      model: VK000960GWTTB
      name: /dev/disk/by-id/scsi-<serial_number>
      sizeBytes: 960197124096
      type: SSD
      vendor: ATA
    systemVendor:
      manufacturer: HPE
      productName: ProLiant DL380 Gen10 (868703-B21)
      serialNumber: CZ200606M3
  hardwareProfile: unknown
  lastUpdated: "2022-06-16T11:41:42Z"
  operationalStatus: OK
  poweredOn: true
  provisioning:
    ID: 217baa14-cfcf-4196-b764-744e184a3413
    bootMode: UEFI
    customDeploy:
      method: install_coreos
    image:
      url: ""
    raid:
      hardwareRAIDVolumes: null
      softwareRAIDVolumes: []
    rootDeviceHints:
      deviceName: /dev/disk/by-id/scsi-<serial_number>
    state: provisioned
  triedCredentials:
    credentials:
      name: openshift-worker-0-bmc-secret
      namespace: openshift-machine-api
    credentialsVersion: "16120"

CHAPTER 3. BARE METAL CONFIGURATION

39



1

You can use the HostFirmwareSettings resource to retrieve and manage the BIOS settings for a host.
When a host moves to the Available state, Ironic reads the host’s BIOS settings and creates the 
HostFirmwareSettings resource. The resource contains the complete BIOS configuration returned
from the baseboard management controller (BMC). Whereas, the firmware field in the BareMetalHost
resource returns three vendor-independent fields, the HostFirmwareSettings resource typically
comprises many BIOS settings of vendor-specific fields per host.

The HostFirmwareSettings resource contains two sections:

1. The HostFirmwareSettings spec.

2. The HostFirmwareSettings status.

3.4.1. The HostFirmwareSettings spec

The spec section of the HostFirmwareSettings resource defines the desired state of the host’s BIOS,
and it is empty by default. Ironic uses the settings in the spec.settings section to update the baseboard
management controller (BMC) when the host is in the Preparing state. Use the FirmwareSchema
resource to ensure that you do not send invalid name/value pairs to hosts. See "About the
FirmwareSchema resource" for additional details.

Example

In the foregoing example, the spec.settings section contains a name/value pair that will set the 
ProcTurboMode BIOS setting to Disabled.

NOTE

Integer parameters listed in the status section appear as strings. For example, "1". When
setting integers in the spec.settings section, the values should be set as integers without
quotes. For example, 1.

3.4.2. The HostFirmwareSettings status

The status represents the current state of the host’s BIOS.

Table 3.3. HostFirmwareSettings

spec:
  settings:
    ProcTurboMode: Disabled 1

OpenShift Container Platform 4.15 Postinstallation configuration

40



Parameters Description

status:
  conditions:
  - lastTransitionTime:
    message:
    observedGeneration:
    reason:
    status:
    type:

The conditions field contains a list of state
changes. The sub-fields include:

lastTransitionTime: The last time the
state changed.

message: A description of the state
change.

observedGeneration: The current
generation of the status. If 
metadata.generation and this field are
not the same, the status.conditions
might be out of date.

reason: The reason for the state change.

status: The status of the state change. The
status can be True, False or Unknown.

type: The type of state change. The types
are Valid and ChangeDetected.

status:
  schema:
    name:
    namespace:
    lastUpdated:

The FirmwareSchema for the firmware settings.
The fields include:

name: The name or unique identifier
referencing the schema.

namespace: The namespace where the
schema is stored.

lastUpdated: The last time the resource
was updated.

status:
  settings:

The settings field contains a list of name/value pairs
of a host’s current BIOS settings.

3.5. GETTING THE HOSTFIRMWARESETTINGS RESOURCE

The HostFirmwareSettings resource contains the vendor-specific BIOS properties of a physical host.
You must get the HostFirmwareSettings resource for a physical host to review its BIOS properties.

Procedure

1. Get the detailed list of HostFirmwareSettings resources:

NOTE

$ oc get hfs -n openshift-machine-api -o yaml

CHAPTER 3. BARE METAL CONFIGURATION

41



1

NOTE

You can use hostfirmwaresettings as the long form of hfs with the oc get
command.

2. Get the list of HostFirmwareSettings resources:

3. Get the HostFirmwareSettings resource for a particular host

Where <host_name> is the name of the host.

3.6. EDITING THE HOSTFIRMWARESETTINGS RESOURCE

You can edit the HostFirmwareSettings of provisioned hosts.

IMPORTANT

You can only edit hosts when they are in the provisioned state, excluding read-only
values. You cannot edit hosts in the externally provisioned state.

Procedure

1. Get the list of HostFirmwareSettings resources:

2. Edit a host’s HostFirmwareSettings resource:

Where <host_name> is the name of a provisioned host. The HostFirmwareSettings resource
will open in the default editor for your terminal.

3. Add name/value pairs to the spec.settings section:

Example

Use the FirmwareSchema resource to identify the available settings for the host. You
cannot set values that are read-only.

4. Save the changes and exit the editor.

5. Get the host’s machine name:

$ oc get hfs -n openshift-machine-api

$ oc get hfs <host_name> -n openshift-machine-api -o yaml

$ oc get hfs -n openshift-machine-api

$ oc edit hfs <host_name> -n openshift-machine-api

spec:
  settings:
    name: value 1

OpenShift Container Platform 4.15 Postinstallation configuration

42



Where <host_name> is the name of the host. The machine name appears under the 
CONSUMER field.

6. Annotate the machine to delete it from the machineset:

Where <machine_name> is the name of the machine to delete.

7. Get a list of nodes and count the number of worker nodes:

8. Get the machineset:

9. Scale the machineset:

Where <machineset_name> is the name of the machineset and <n-1> is the decremented
number of worker nodes.

10. When the host enters the Available state, scale up the machineset to make the 
HostFirmwareSettings resource changes take effect:

Where <machineset_name> is the name of the machineset and <n> is the number of worker
nodes.

3.7. VERIFYING THE HOSTFIRMWARE SETTINGS RESOURCE IS VALID

When the user edits the spec.settings section to make a change to the HostFirmwareSetting(HFS)
resource, the Bare Metal Operator (BMO) validates the change against the FimwareSchema resource,
which is a read-only resource. If the setting is invalid, the BMO will set the Type value of the 
status.Condition setting to False and also generate an event and store it in the HFS resource. Use the
following procedure to verify that the resource is valid.

Procedure

1. Get a list of HostFirmwareSetting resources:

2. Verify that the HostFirmwareSettings resource for a particular host is valid:

 $ oc get bmh <host_name> -n openshift-machine name

$ oc annotate machine <machine_name> machine.openshift.io/delete-machine=true -n 
openshift-machine-api

$ oc get nodes

$ oc get machinesets -n openshift-machine-api

$ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n-1>

$ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n>

$ oc get hfs -n openshift-machine-api

$ oc describe hfs <host_name> -n openshift-machine-api

CHAPTER 3. BARE METAL CONFIGURATION

43



Where <host_name> is the name of the host.

Example output

IMPORTANT

If the response returns ValidationFailed, there is an error in the resource
configuration and you must update the values to conform to the 
FirmwareSchema resource.

3.8. ABOUT THE FIRMWARESCHEMA RESOURCE

BIOS settings vary among hardware vendors and host models. A FirmwareSchema resource is a read-
only resource that contains the types and limits for each BIOS setting on each host model. The data
comes directly from the BMC through Ironic. The FirmwareSchema enables you to identify valid values
you can specify in the spec field of the HostFirmwareSettings resource. The FirmwareSchema
resource has a unique identifier derived from its settings and limits. Identical host models use the same 
FirmwareSchema identifier. It is likely that multiple instances of HostFirmwareSettings use the same 
FirmwareSchema.

Table 3.4. FirmwareSchema specification

Parameters Description

Events:
  Type    Reason            Age    From                                    Message
  ----    ------            ----   ----                                    -------
  Normal  ValidationFailed  2m49s  metal3-hostfirmwaresettings-controller  Invalid BIOS 
setting: Setting ProcTurboMode is invalid, unknown enumeration value - Foo

OpenShift Container Platform 4.15 Postinstallation configuration

44



<BIOS_setting_name>
  attribute_type:
  allowable_values:
  lower_bound:
  upper_bound:
  min_length:
  max_length:
  read_only:
  unique:

The spec is a simple map consisting of the BIOS
setting name and the limits of the setting. The fields
include:

attribute_type: The type of setting. The
supported types are:

Enumeration

Integer

String

Boolean

allowable_values: A list of allowable
values when the attribute_type is 
Enumeration.

lower_bound: The lowest allowed value
when attribute_type is Integer.

upper_bound: The highest allowed value
when attribute_type is Integer.

min_length: The shortest string length
that the value can have when 
attribute_type is String.

max_length: The longest string length
that the value can have when 
attribute_type is String.

read_only: The setting is read only and
cannot be modified.

unique: The setting is specific to this host.

Parameters Description

3.9. GETTING THE FIRMWARESCHEMA RESOURCE

Each host model from each vendor has different BIOS settings. When editing the 
HostFirmwareSettings resource’s spec section, the name/value pairs you set must conform to that
host’s firmware schema. To ensure you are setting valid name/value pairs, get the FirmwareSchema for
the host and review it.

Procedure

1. To get a list of FirmwareSchema resource instances, execute the following:

2. To get a particular FirmwareSchema instance, execute:

Where <instance_name> is the name of the schema instance stated in the 

$ oc get firmwareschema -n openshift-machine-api

$ oc get firmwareschema <instance_name> -n openshift-machine-api -o yaml

CHAPTER 3. BARE METAL CONFIGURATION

45



Where <instance_name> is the name of the schema instance stated in the 
HostFirmwareSettings resource (see Table 3).

OpenShift Container Platform 4.15 Postinstallation configuration

46



CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE
COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

4.1. ABOUT CLUSTERS WITH MULTI-ARCHITECTURE COMPUTE
MACHINES

An OpenShift Container Platform cluster with multi-architecture compute machines is a cluster that
supports compute machines with different architectures. Clusters with multi-architecture compute
machines are available only on Amazon Web Services (AWS) or Microsoft Azure installer-provisioned
infrastructures and bare metal, IBM Power®, and IBM Z® user-provisioned infrastructures with 64-bit
x86 control plane machines.

NOTE

When there are nodes with multiple architectures in your cluster, the architecture of your
image must be consistent with the architecture of the node. You need to ensure that the
pod is assigned to the node with the appropriate architecture and that it matches the
image architecture. For more information on assigning pods to nodes, see Assigning pods
to nodes.

IMPORTANT

The Cluster Samples Operator is not supported on clusters with multi-architecture
compute machines. Your cluster can be created without this capability. For more
information, see Enabling cluster capabilities

For information on migrating your single-architecture cluster to a cluster that supports multi-
architecture compute machines, see Migrating to a cluster with multi-architecture compute machines .

4.1.1. Configuring your cluster with multi-architecture compute machines

To create a cluster with multi-architecture compute machines with different installation options and
platforms, you can use the documentation in the following table:

Table 4.1. Cluster with multi-architecture compute machine installation options

Documentation section Platform User-
provisione
d
installatio
n

Installer-
provisione
d
installatio
n

Control
Plane

Compute
node

Creating a cluster with multi-
architecture compute machines on
Azure

Microsoft
Azure

 ✓ x86_64 aarch64

Creating a cluster with multi-
architecture compute machines on
AWS

Amazon
Web
Services
(AWS)

 ✓ x86_64 aarch64

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

47

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


Creating a cluster with multi-
architecture compute machines on
GCP

Google
Cloud
Platform
(GCP)

 ✓ x86_64 aarch64

Creating a cluster with multi-
architecture compute machines on
bare metal, IBM Power, or IBM Z

Bare
metal

✓  x86_64 aarch64

IBM
Power

✓  x86_64
or 
ppc64le

x86_64, 
ppc64le

IBM Z ✓  x86_64
or s390x

x86_64, 
s390x

Creating a cluster with multi-
architecture compute machines on
IBM Z® and IBM® LinuxONE with
z/VM

IBM Z®
and IBM®
LinuxONE

✓  x86_64 x86_64, 
s390x

Creating a cluster with multi-
architecture compute machines on
IBM Z® and IBM® LinuxONE with
RHEL KVM

IBM Z®
and IBM®
LinuxONE

✓  x86_64 x86_64, 
s390x

Creating a cluster with multi-
architecture compute machines on
IBM Power®

IBM
Power®

✓  x86_64 x86_64, 
ppc64le

Documentation section Platform User-
provisione
d
installatio
n

Installer-
provisione
d
installatio
n

Control
Plane

Compute
node

IMPORTANT

Autoscaling from zero is currently not supported on Google Cloud Platform (GCP).

4.2. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINE ON AZURE

To deploy an Azure cluster with multi-architecture compute machines, you must first create a single-
architecture Azure installer-provisioned cluster that uses the multi-architecture installer binary. For
more information on Azure installations, see Installing a cluster on Azure with customizations . You can
then add an ARM64 compute machine set to your cluster to create a cluster with multi-architecture
compute machines.

The following procedures explain how to generate an ARM64 boot image and create an Azure compute
machine set that uses the ARM64 boot image. This adds ARM64 compute nodes to your cluster and
deploys the amount of ARM64 virtual machines (VM) that you need.

OpenShift Container Platform 4.15 Postinstallation configuration

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-azure-customizations


4.2.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

You can then begin adding multi-arch compute nodes to your cluster.

2. If you see the following output, then your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.2.2. Creating an ARM64 boot image using the Azure image gallery

The following procedure describes how to manually generate an ARM64 boot image.

Prerequisites

You installed the Azure CLI (az).

You created a single-architecture Azure installer-provisioned cluster with the multi-architecture
installer binary.

Procedure

1. Log in to your Azure account:

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


1

2. Create a storage account and upload the arm64 virtual hard disk (VHD) to your storage
account. The OpenShift Container Platform installation program creates a resource group,
however, the boot image can also be uploaded to a custom named resource group:

The westus object is an example region.

3. Create a storage container using the storage account you generated:

4. You must use the OpenShift Container Platform installation program JSON file to extract the
URL and aarch64 VHD name:

a. Extract the URL field and set it to RHCOS_VHD_ORIGIN_URL as the file name by running
the following command:

b. Extract the aarch64 VHD name and set it to BLOB_NAME as the file name by running the
following command:

5. Generate a shared access signature (SAS) token. Use this token to upload the RHCOS VHD to
your storage container with the following commands:

6. Copy the RHCOS VHD into the storage container:

You can check the status of the copying process with the following command:

$ az login

$ az storage account create -n ${STORAGE_ACCOUNT_NAME} -g 
${RESOURCE_GROUP} -l westus --sku Standard_LRS 1

$ az storage container create -n ${CONTAINER_NAME} --account-name 
${STORAGE_ACCOUNT_NAME}

$ RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get 
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r 
'.architectures.aarch64."rhel-coreos-extensions"."azure-disk".url')

$ BLOB_NAME=rhcos-$(oc -n openshift-machine-config-operator get configmap/coreos-
bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.aarch64."rhel-coreos-
extensions"."azure-disk".release')-azure.aarch64.vhd

$ end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'`

$ sas=`az storage container generate-sas -n ${CONTAINER_NAME} --account-name 
${STORAGE_ACCOUNT_NAME} --https-only --permissions dlrw --expiry $end -o tsv`

$ az storage blob copy start --account-name ${STORAGE_ACCOUNT_NAME} --sas-token 
"$sas" \
 --source-uri "${RHCOS_VHD_ORIGIN_URL}" \
 --destination-blob "${BLOB_NAME}" --destination-container ${CONTAINER_NAME}

$ az storage blob show -c ${CONTAINER_NAME} -n ${BLOB_NAME} --account-name 
${STORAGE_ACCOUNT_NAME} | jq .properties.copy

OpenShift Container Platform 4.15 Postinstallation configuration

50



1

Example output

If the status parameter displays the success object, the copying process is complete.

7. Create an image gallery using the following command:

Use the image gallery to create an image definition. In the following example command, rhcos-
arm64 is the name of the image definition.

8. To get the URL of the VHD and set it to RHCOS_VHD_URL as the file name, run the following
command:

9. Use the RHCOS_VHD_URL file, your storage account, resource group, and image gallery to
create an image version. In the following example, 1.0.0 is the image version.

10. Your arm64 boot image is now generated. You can access the ID of your image with the
following command:

The following example image ID is used in the recourseID parameter of the compute machine
set:

{
 "completionTime": null,
 "destinationSnapshot": null,
 "id": "1fd97630-03ca-489a-8c4e-cfe839c9627d",
 "incrementalCopy": null,
 "progress": "17179869696/17179869696",
 "source": "https://rhcos.blob.core.windows.net/imagebucket/rhcos-411.86.202207130959-0-
azure.aarch64.vhd",
 "status": "success", 1
 "statusDescription": null
}

$ az sig create --resource-group ${RESOURCE_GROUP} --gallery-name 
${GALLERY_NAME}

$ az sig image-definition create --resource-group ${RESOURCE_GROUP} --gallery-name 
${GALLERY_NAME} --gallery-image-definition rhcos-arm64 --publisher RedHat --offer arm -
-sku arm64 --os-type linux --architecture Arm64 --hyper-v-generation V2

$ RHCOS_VHD_URL=$(az storage blob url --account-name 
${STORAGE_ACCOUNT_NAME} -c ${CONTAINER_NAME} -n "${BLOB_NAME}" -o tsv)

$ az sig image-version create --resource-group ${RESOURCE_GROUP} --gallery-name 
${GALLERY_NAME} --gallery-image-definition rhcos-arm64 --gallery-image-version 1.0.0 --
os-vhd-storage-account ${STORAGE_ACCOUNT_NAME} --os-vhd-uri 
${RHCOS_VHD_URL}

$ az sig image-version show -r $GALLERY_NAME -g $RESOURCE_GROUP -i rhcos-arm64 
-e 1.0.0

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

51



Example resourceID

4.2.3. Adding a multi-architecture compute machine set to your cluster

To add ARM64 compute nodes to your cluster, you must create an Azure compute machine set that
uses the ARM64 boot image. To create your own custom compute machine set on Azure, see "Creating
a compute machine set on Azure".

Prerequisites

You installed the OpenShift CLI (oc).

Procedure

Create a compute machine set and modify the resourceID and vmSize parameters with the
following command. This compute machine set will control the arm64 worker nodes in your
cluster:

Sample YAML compute machine set with arm64 boot image

/resourceGroups/${RESOURCE_GROUP}/providers/Microsoft.Compute/galleries/${GALLERY
_NAME}/images/rhcos-arm64/versions/1.0.0

$ oc create -f arm64-machine-set-0.yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id>
    machine.openshift.io/cluster-api-machine-role: worker
    machine.openshift.io/cluster-api-machine-type: worker
  name: <infrastructure_id>-arm64-machine-set-0
  namespace: openshift-machine-api
spec:
  replicas: 2
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-arm64-machine-set-0
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: worker
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-arm64-machine-set-0
    spec:
      lifecycleHooks: {}
      metadata: {}
      providerSpec:
        value:
          acceleratedNetworking: true
          apiVersion: machine.openshift.io/v1beta1

OpenShift Container Platform 4.15 Postinstallation configuration

52



1

2

Set the resourceID parameter to the arm64 boot image.

Set the vmSize parameter to the instance type used in your installation. Some example
instance types are Standard_D4ps_v5 or D8ps.

Verification

1. Verify that the new ARM64 machines are running by entering the following command:

Example output

2. You can check that the nodes are ready and scheduable with the following command:

Additional resources

          credentialsSecret:
            name: azure-cloud-credentials
            namespace: openshift-machine-api
          image:
            offer: ""
            publisher: ""
            resourceID: 
/resourceGroups/${RESOURCE_GROUP}/providers/Microsoft.Compute/galleries/${GALLERY
_NAME}/images/rhcos-arm64/versions/1.0.0 1
            sku: ""
            version: ""
          kind: AzureMachineProviderSpec
          location: <region>
          managedIdentity: <infrastructure_id>-identity
          networkResourceGroup: <infrastructure_id>-rg
          osDisk:
            diskSettings: {}
            diskSizeGB: 128
            managedDisk:
              storageAccountType: Premium_LRS
            osType: Linux
          publicIP: false
          publicLoadBalancer: <infrastructure_id>
          resourceGroup: <infrastructure_id>-rg
          subnet: <infrastructure_id>-worker-subnet
          userDataSecret:
            name: worker-user-data
          vmSize: Standard_D4ps_v5 2
          vnet: <infrastructure_id>-vnet
          zone: "<zone>"

$ oc get machineset -n openshift-machine-api

NAME                                                DESIRED  CURRENT  READY  AVAILABLE  AGE
<infrastructure_id>-arm64-machine-set-0                   2        2      2          2  10m

$ oc get nodes

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

53



Creating a compute machine set on Azure

4.3. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON AWS

To create an AWS cluster with multi-architecture compute machines, you must first create a single-
architecture AWS installer-provisioned cluster with the multi-architecture installer binary. For more
information on AWS installations, refer to Installing a cluster on AWS with customizations . You can then
add a ARM64 compute machine set to your AWS cluster.

4.3.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

You can then begin adding multi-arch compute nodes to your cluster.

2. If you see the following output, then your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.3.2. Adding an ARM64 compute machine set to your cluster

To configure a cluster with multi-architecture compute machines, you must create a AWS ARM64

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

OpenShift Container Platform 4.15 Postinstallation configuration

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-machineset-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-a-cluster-on-aws-with-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


To configure a cluster with multi-architecture compute machines, you must create a AWS ARM64
compute machine set. This adds ARM64 compute nodes to your cluster so that your cluster has multi-
architecture compute machines.

Prerequisites

You installed the OpenShift CLI (oc).

You used the installation program to create an AMD64 single-architecture AWS cluster with the
multi-architecture installer binary.

Procedure

Create and modify a compute machine set, this will control the ARM64 compute nodes in your
cluster.

Sample YAML compute machine set to deploy an ARM64 compute node

$ oc create -f aws-arm64-machine-set-0.yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-aws-arm64-machine-set-0 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-<zone> 4
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: <role> 5
        machine.openshift.io/cluster-api-machine-type: <role> 6
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-<zone> 7
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: ""
      providerSpec:
        value:
          ami:
            id: ami-02a574449d4f4d280 8
          apiVersion: awsproviderconfig.openshift.io/v1beta1
          blockDevices:
            - ebs:
                iops: 0
                volumeSize: 120
                volumeType: gp2

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

55



1 2 3 9 13 14

4 7

5 6

8

10

11

12

Specify the infrastructure ID that is based on the cluster ID that you set when
you provisioned the cluster. If you have the OpenShift CLI installed, you can

obtain the infrastructure ID by running the following command:

Specify the infrastructure ID, role node label, and zone.

Specify the role node label to add.

Specify an ARM64 supported Red Hat Enterprise Linux CoreOS (RHCOS) Amazon
Machine Image (AMI) for your AWS zone for your OpenShift Container Platform nodes.

Specify an ARM64 supported machine type. For more information, refer to "Tested
instance types for AWS 64-bit ARM"

Specify the zone, for example us-east-1a. Ensure that the zone you select offers 64-bit
ARM machines.

Specify the region, for example, us-east-1. Ensure that the zone you select offers 64-bit
ARM machines.

          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: <infrastructure_id>-worker-profile 9
          instanceType: m6g.xlarge 10
          kind: AWSMachineProviderConfig
          placement:
            availabilityZone: us-east-1a 11
            region: <region> 12
          securityGroups:
            - filters:
                - name: tag:Name
                  values:
                    - <infrastructure_id>-worker-sg 13
          subnet:
            filters:
              - name: tag:Name
                values:
                  - <infrastructure_id>-private-<zone>
          tags:
            - name: kubernetes.io/cluster/<infrastructure_id> 14
              value: owned
            - name: <custom_tag_name>
              value: <custom_tag_value>
          userDataSecret:
            name: worker-user-data

$ oc get -o jsonpath=‘{.status.infrastructureName}{“\n”}’ infrastructure cluster

$ oc get configmap/coreos-bootimages \
   -n openshift-machine-config-operator \
   -o jsonpath='{.data.stream}' | jq \
   -r '.architectures.<arch>.images.aws.regions."<region>".image'

OpenShift Container Platform 4.15 Postinstallation configuration

56



Verification

1. View the list of compute machine sets by entering the following command:

You can then see your created ARM64 machine set.

Example output

2. You can check that the nodes are ready and scheduable with the following command:

Additional resources

Tested instance types for AWS 64-bit ARM

4.4. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON GCP

To create a Google Cloud Platform (GCP) cluster with multi-architecture compute machines, you must
first create a single-architecture GCP installer-provisioned cluster with the multi-architecture installer
binary. For more information on AWS installations, refer to Installing a cluster on GCP with
customizations. You can then add ARM64 compute machines sets to your GCP cluster.

NOTE

Secure booting is currently not supported on ARM64 machines for GCP

4.4.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

$ oc get machineset -n openshift-machine-api

NAME                                                DESIRED  CURRENT  READY  AVAILABLE  AGE
<infrastructure_id>-aws-arm64-machine-set-0                   2        2      2          2  10m

$ oc get nodes

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-aws-arm-tested-machine-types_installing-aws-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-a-cluster-on-gcp-with-customizations


You can then begin adding multi-arch compute nodes to your cluster.

2. If you see the following output, then your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.4.2. Adding an ARM64 compute machine set to your GCP cluster

To configure a cluster with multi-architecture compute machines, you must create a GCP ARM64
compute machine set. This adds ARM64 compute nodes to your cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You used the installation program to create an AMD64 single-architecture AWS cluster with the
multi-architecture installer binary.

Procedure

Create and modify a compute machine set, this controls the ARM64 compute nodes in your
cluster:

Sample GCP YAML compute machine set to deploy an ARM64 compute node

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

$ oc create -f gcp-arm64-machine-set-0.yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-w-a
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-w-a

OpenShift Container Platform 4.15 Postinstallation configuration

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


1 Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. You can obtain the infrastructure ID by running the following
command:

  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: <role> 2
        machine.openshift.io/cluster-api-machine-type: <role>
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-w-a
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: ""
      providerSpec:
        value:
          apiVersion: gcpprovider.openshift.io/v1beta1
          canIPForward: false
          credentialsSecret:
            name: gcp-cloud-credentials
          deletionProtection: false
          disks:
          - autoDelete: true
            boot: true
            image: <path_to_image> 3
            labels: null
            sizeGb: 128
            type: pd-ssd
          gcpMetadata: 4
          - key: <custom_metadata_key>
            value: <custom_metadata_value>
          kind: GCPMachineProviderSpec
          machineType: n1-standard-4 5
          metadata:
            creationTimestamp: null
          networkInterfaces:
          - network: <infrastructure_id>-network
            subnetwork: <infrastructure_id>-worker-subnet
          projectID: <project_name> 6
          region: us-central1 7
          serviceAccounts:
          - email: <infrastructure_id>-w@<project_name>.iam.gserviceaccount.com
            scopes:
            - https://www.googleapis.com/auth/cloud-platform
          tags:
            - <infrastructure_id>-worker
          userDataSecret:
            name: worker-user-data
          zone: us-central1-a

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

59



2

3

4

5

6

7

Specify the role node label to add.

Specify the path to the image that is used in current compute machine sets. You need the
project and image name for your path to image.

To access the project and image name, run the following command:

Example output

Use the project and name parameters from the output to create the path to image field in
your machine set. The path to the image should follow the following format:

Optional: Specify custom metadata in the form of a key:value pair. For example use cases,
see the GCP documentation for setting custom metadata.

Specify an ARM64 supported machine type. For more information, refer to Tested
instance types for GCP on 64-bit ARM infrastructures in "Additional resources".

Specify the name of the GCP project that you use for your cluster.

Specify the region, for example, us-central1. Ensure that the zone you select offers 64-bit
ARM machines.

Verification

1. View the list of compute machine sets by entering the following command:

You can then see your created ARM64 machine set.

Example output

2. You can check that the nodes are ready and scheduable with the following command:

$ oc get configmap/coreos-bootimages \
  -n openshift-machine-config-operator \
  -o jsonpath='{.data.stream}' | jq \
  -r '.architectures.aarch64.images.gcp'

  "gcp": {
    "release": "415.92.202309142014-0",
    "project": "rhcos-cloud",
    "name": "rhcos-415-92-202309142014-0-gcp-aarch64"
  }

$ projects/<project>/global/images/<image_name>

$ oc get machineset -n openshift-machine-api

NAME                                                DESIRED  CURRENT  READY  AVAILABLE  AGE
<infrastructure_id>-gcp-arm64-machine-set-0                   2        2      2          2  10m

$ oc get nodes

OpenShift Container Platform 4.15 Postinstallation configuration

60

https://cloud.google.com/compute/docs/metadata/setting-custom-metadata


Additional resources

Tested instance types for GCP on 64-bit ARM infrastructures

4.5. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON BARE METAL, IBM POWER, OR IBM Z

To create a cluster with multi-architecture compute machines on bare metal (x86_64), IBM Power®
(ppc64le), or IBM Z® ( s390x) you must have an existing single-architecture cluster on one of these
platforms. Follow the installations procedures for your platform:

Installing a user provisioned cluster on bare metal . You can then add 64-bit ARM compute
machines to your OpenShift Container Platform cluster on bare metal.

Installing a cluster on IBM Power® . You can then add x86_64 compute machines to your
OpenShift Container Platform cluster on IBM Power®.

Installing a cluster on IBM Z® and IBM® LinuxONE . You can then add x86_64 compute machines
to your OpenShift Container Platform cluster on IBM Z® and IBM® LinuxONE.

Before you can add additional compute nodes to your cluster, you must upgrade your cluster to one that
uses the multi-architecture payload. For more information on migrating to the multi-architecture
payload, see Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using an ISO image or
network PXE booting. This will allow you to add additional nodes to your cluster and deploy a cluster
with multi-architecture compute machines.

4.5.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

You can then begin adding multi-arch compute nodes to your cluster.

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-gcp-tested-machine-types-arm_installing-gcp-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#preparing-to-install-on-ibm-power
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#preparing-to-install-on-ibm-z
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


2. If you see the following output, then your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.5.2. Creating RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

You must have the OpenShift CLI (oc) installed.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URLs of these files.

3. You can validate that the ignition files are available on the URLs. The following example gets
the Ignition config files for the compute node:

4. You can access the ISO image for booting your new machine by running to following command:

5. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

6. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot
sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<HTTP_server>/worker.ign

RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get 
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.
<architecture>.artifacts.metal.formats.iso.disk.location')

OpenShift Container Platform 4.15 Postinstallation configuration

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


1

2

NOTE

You can interrupt the RHCOS installation boot process to add kernel arguments.
However, for this ISO procedure you must use the coreos-installer command as
outlined in the following steps, instead of adding kernel arguments.

7. Run the coreos-installer command and specify the options that meet your installation
requirements. At a minimum, you must specify the URL that points to the Ignition config file for
the node type, and the device that you are installing to:

You must run the coreos-installer command by using sudo, because the core user does
not have the required root privileges to perform the installation.

The --ignition-hash option is required when the Ignition config file is obtained through an
HTTP URL to validate the authenticity of the Ignition config file on the cluster node. 
<digest> is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that
uses TLS, you can add the internal certificate authority (CA) to the system trust
store before running coreos-installer.

The following example initializes a bootstrap node installation to the /dev/sda device. The
Ignition config file for the bootstrap node is obtained from an HTTP web server with the IP
address 192.168.1.2:

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

Ensure that the installation is successful on each node before commencing with
the OpenShift Container Platform installation. Observing the installation process
can also help to determine the cause of RHCOS installation issues that might
arise.

9. Continue to create more compute machines for your cluster.

4.5.3. Creating RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> 
--ignition-hash=sha512-<digest> 1 2

$ sudo coreos-installer install --ignition-
url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda --ignition-hash=sha512-
a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011
6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

63



1

2

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
    KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
    APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img 2

Specify the location of the live kernel file that you uploaded to your HTTP server.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The 
initrd parameter value is the location of the live initramfs file, the 
coreos.inst.ignition_url parameter value is the location of the worker Ignition config
file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs
file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support
HTTP and HTTPS.

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more 
console= arguments to the APPEND line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE (x86_64 + aarch64):

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main 
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 

OpenShift Container Platform 4.15 Postinstallation configuration

64

https://access.redhat.com/articles/7212


1

2

3

1

2

3

coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

Specify the locations of the RHCOS files that you uploaded to your HTTP server. The 
kernel parameter value is the location of the kernel file, the initrd=main argument is
needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is
the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the
location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

This configuration does not enable serial console access on machines with a
graphical console To configure a different console, add one or more 
console= arguments to the kernel line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise Linux?
and "Enabling the serial console for PXE and ISO installation" in the
"Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS kernel on aarch64 architecture, you need to
use a version of iPXE build with the IMAGE_GZIP option enabled. See 
IMAGE_GZIP option in iPXE .

For PXE (with UEFI and GRUB as second stage) on aarch64:

menuentry 'Install CoreOS' {
    linux rhcos-<version>-live-kernel-<architecture>  
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
    initrd rhcos-<version>-live-initramfs.<architecture>.img 3
}

Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP
server. The kernel parameter value is the location of the kernel file on your TFTP
server. The coreos.live.rootfs_url parameter value is the location of the rootfs file,
and the coreos.inst.ignition_url parameter value is the location of the worker Ignition
config file on your HTTP Server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your TFTP server.

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

65

https://access.redhat.com/articles/7212
https://ipxe.org/buildcfg/image_gzip


2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

4.5.4. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.28.5
master-1  Ready     master  63m  v1.28.5
master-2  Ready     master  64m  v1.28.5

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

OpenShift Container Platform 4.15 Postinstallation configuration

66



1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

67



1

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

4.6. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM Z AND IBM LINUXONE WITH Z/VM

To create a cluster with multi-architecture compute machines on IBM Z® and IBM® LinuxONE (s390x)
with z/VM, you must have an existing single-architecture x86_64 cluster. You can then add s390x
compute machines to your OpenShift Container Platform cluster.

Before you can add s390x nodes to your cluster, you must upgrade your cluster to one that uses the
multi-architecture payload. For more information on migrating to the multi-architecture payload, see
Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using a z/VM instance. This
will allow you to add s390x nodes to your cluster and deploy a cluster with multi-architecture compute
machines.

NOTE

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.28.5
master-1  Ready     master  73m  v1.28.5
master-2  Ready     master  74m  v1.28.5
worker-0  Ready     worker  11m  v1.28.5
worker-1  Ready     worker  11m  v1.28.5

OpenShift Container Platform 4.15 Postinstallation configuration

68

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


NOTE

To create an IBM Z® or IBM® LinuxONE (s390x) cluster with multi-architecture compute
machines on x86_64, follow the instructions for Installing a cluster on IBM Z® and IBM®
LinuxONE. You can then add x86_64 compute machines as described in Creating a
cluster with multi-architecture compute machines on bare metal, IBM Power, or IBM Z.

4.6.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

You can then begin adding multi-arch compute nodes to your cluster.

2. If you see the following output, then your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.6.2. Creating RHCOS machines on IBM Z with z/VM

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines running on IBM Z®
with z/VM and attach them to your existing cluster.

Prerequisites

You have a domain name server (DNS) that can perform hostname and reverse lookup for the

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#preparing-to-install-on-ibm-z
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


You have a domain name server (DNS) that can perform hostname and reverse lookup for the
nodes.

You have an HTTP or HTTPS server running on your provisioning machine that is accessible to
the machines you create.

Procedure

1. Disable UDP aggregation.
Currently, UDP aggregation is not supported on IBM Z® and is not automatically deactivated on
multi-architecture compute clusters with an x86_64 control plane and additional s390x
compute machines. To ensure that the addtional compute nodes are added to the cluster
correctly, you must manually disable UDP aggregation.

a. Create a YAML file udp-aggregation-config.yaml with the following content:

b. Create the ConfigMap resource by running the following command:

2. Extract the Ignition config file from the cluster by running the following command:

3. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URL of this file.

4. You can validate that the Ignition file is available on the URL. The following example gets the
Ignition config file for the compute node:

5. Download the RHEL live kernel, initramfs, and rootfs files by running the following commands:

apiVersion: v1
kind: ConfigMap
data:
  disable-udp-aggregation: "true"
metadata:
  name: udp-aggregation-config
  namespace: openshift-network-operator

$ oc create -f udp-aggregation-config.yaml

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<HTTP_server>/worker.ign

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o 
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.kernel.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o 
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.initramfs.location')

OpenShift Container Platform 4.15 Postinstallation configuration

70



6. Move the downloaded RHEL live kernel, initramfs, and rootfs files to an HTTP or HTTPS server
that is accessible from the z/VM guest you want to add.

7. Create a parameter file for the z/VM guest. The following parameters are specific for the virtual
machine:

Optional: To specify a static IP address, add an ip= parameter with the following entries,
with each separated by a colon:

i. The IP address for the machine.

ii. An empty string.

iii. The gateway.

iv. The netmask.

v. The machine host and domain name in the form hostname.domainname. Omit this
value to let RHCOS decide.

vi. The network interface name. Omit this value to let RHCOS decide.

vii. The value none.

For coreos.inst.ignition_url=, specify the URL to the worker.ign file. Only HTTP and
HTTPS protocols are supported.

For coreos.live.rootfs_url=, specify the matching rootfs artifact for the kernel and 
initramfs you are booting. Only HTTP and HTTPS protocols are supported.

For installations on DASD-type disks, complete the following tasks:

i. For coreos.inst.install_dev=, specify /dev/dasda.

ii. Use rd.dasd= to specify the DASD where RHCOS is to be installed.

iii. Leave all other parameters unchanged.
The following is an example parameter file, additional-worker-dasd.parm:

Write all options in the parameter file as a single line and make sure that you have no
newline characters.

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o 
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.rootfs.location')

rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=/dev/dasda \
coreos.live.rootfs_url=http://cl1.provide.example.com:8080/assets/rhcos-live-
rootfs.s390x.img \
coreos.inst.ignition_url=http://cl1.provide.example.com:8080/ignition/worker.ign \
ip=172.18.78.2::172.18.78.1:255.255.255.0:::none nameserver=172.18.78.1 \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
zfcp.allow_lun_scan=0 \
rd.dasd=0.0.3490

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

71



For installations on FCP-type disks, complete the following tasks:

i. Use rd.zfcp=<adapter>,<wwpn>,<lun> to specify the FCP disk where RHCOS is to be
installed. For multipathing, repeat this step for each additional path.

NOTE

When you install with multiple paths, you must enable multipathing
directly after the installation, not at a later point in time, as this can cause
problems.

ii. Set the install device as: coreos.inst.install_dev=/dev/sda.

NOTE

If additional LUNs are configured with NPIV, FCP requires 
zfcp.allow_lun_scan=0. If you must enable zfcp.allow_lun_scan=1
because you use a CSI driver, for example, you must configure your NPIV
so that each node cannot access the boot partition of another node.

iii. Leave all other parameters unchanged.

IMPORTANT

Additional postinstallation steps are required to fully enable
multipathing. For more information, see “Enabling multipathing with
kernel arguments on RHCOS" in Postinstallation machine configuration
tasks.

The following is an example parameter file, additional-worker-fcp.parm for a worker
node with multipathing:

Write all options in the parameter file as a single line and make sure that you have no
newline characters.

8. Transfer the initramfs, kernel, parameter files, and RHCOS images to z/VM, for example, by
using FTP. For details about how to transfer the files with FTP and boot from the virtual reader,
see Installing under Z/VM .

9. Punch the files to the virtual reader of the z/VM guest virtual machine.

rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=/dev/sda \
coreos.live.rootfs_url=http://cl1.provide.example.com:8080/assets/rhcos-live-
rootfs.s390x.img \
coreos.inst.ignition_url=http://cl1.provide.example.com:8080/ignition/worker.ign \
ip=172.18.78.2::172.18.78.1:255.255.255.0:::none nameserver=172.18.78.1 \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
zfcp.allow_lun_scan=0 \
rd.zfcp=0.0.1987,0x50050763070bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.19C7,0x50050763070bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.1987,0x50050763071bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.19C7,0x50050763071bc5e3,0x4008400B00000000

OpenShift Container Platform 4.15 Postinstallation configuration

72

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-installing-zvm-s390


See PUNCH in IBM® Documentation.

TIP

You can use the CP PUNCH command or, if you use Linux, the vmur command to transfer files
between two z/VM guest virtual machines.

10. Log in to CMS on the bootstrap machine.

11. IPL the bootstrap machine from the reader by running the following command:

$ ipl c

See IPL in IBM® Documentation.

4.6.3. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.28.5
master-1  Ready     master  63m  v1.28.5
master-2  Ready     master  64m  v1.28.5

$ oc get csr

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

73

https://www.ibm.com/docs/en/zvm/latest?topic=commands-punch
https://www.ibm.com/docs/en/zvm/latest?topic=commands-ipl


1

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

OpenShift Container Platform 4.15 Postinstallation configuration

74



1

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

4.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.28.5
master-1  Ready     master  73m  v1.28.5
master-2  Ready     master  74m  v1.28.5
worker-0  Ready     worker  11m  v1.28.5
worker-1  Ready     worker  11m  v1.28.5

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

75

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/


4.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM Z AND IBM LINUXONE WITH RHEL KVM

To create a cluster with multi-architecture compute machines on IBM Z® and IBM® LinuxONE (s390x)
with RHEL KVM, you must have an existing single-architecture x86_64 cluster. You can then add s390x
compute machines to your OpenShift Container Platform cluster.

Before you can add s390x nodes to your cluster, you must upgrade your cluster to one that uses the
multi-architecture payload. For more information on migrating to the multi-architecture payload, see
Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using a RHEL KVM
instance. This will allow you to add s390x nodes to your cluster and deploy a cluster with multi-
architecture compute machines.

NOTE

To create an IBM Z® or IBM® LinuxONE (s390x) cluster with multi-architecture compute
machines on x86_64, follow the instructions for Installing a cluster on IBM Z® and IBM®
LinuxONE. You can then add x86_64 compute machines as described in Creating a
cluster with multi-architecture compute machines on bare metal, IBM Power, or IBM Z.

4.7.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

You can then begin adding multi-arch compute nodes to your cluster.

2. If you see the following output, then your cluster is not using the multi-architecture payload:

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

OpenShift Container Platform 4.15 Postinstallation configuration

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#preparing-to-install-on-ibm-z


IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.7.2. Creating RHCOS machines using virt-install

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your cluster by
using virt-install.

Prerequisites

You have at least one LPAR running on RHEL 8.7 or later with KVM, referred to as RHEL KVM
host in this procedure.

The KVM/QEMU hypervisor is installed on the RHEL KVM host.

You have a domain name server (DNS) that can perform hostname and reverse lookup for the
nodes.

An HTTP or HTTPS server is set up.

Procedure

1. Disable UDP aggregation.
Currently, UDP aggregation is not supported on IBM Z® and is not automatically deactivated on
multi-architecture compute clusters with an x86_64 control plane and additional s390x
compute machines. To ensure that the addtional compute nodes are added to the cluster
correctly, you must manually disable UDP aggregation.

a. Create a YAML file udp-aggregation-config.yaml with the following content:

b. Create the ConfigMap resource by running the following command:

2. Extract the Ignition config file from the cluster by running the following command:

3. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URL of this file.

apiVersion: v1
kind: ConfigMap
data:
  disable-udp-aggregation: "true"
metadata:
  name: udp-aggregation-config
  namespace: openshift-network-operator

$ oc create -f udp-aggregation-config.yaml

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


1

4. You can validate that the Ignition file is available on the URL. The following example gets the
Ignition config file for the compute node:

5. Download the RHEL live kernel, initramfs, and rootfs files by running the following commands:

6. Move the downloaded RHEL live kernel, initramfs and rootfs files to an HTTP or HTTPS server
before you launch virt-install.

7. Create the new KVM guest nodes using the RHEL kernel, initramfs, and Ignition files; the new
disk image; and adjusted parm line arguments.

For os-variant, specify the RHEL version for the RHCOS compute machine. rhel9.2 is the
recommended version. To query the supported RHEL version of your operating system,
run the following command:

$ curl -k http://<HTTP_server>/worker.ign

 $ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o 
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.kernel.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o 
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.initramfs.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o 
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.rootfs.location')

$ virt-install \
   --connect qemu:///system \
   --name <vm_name> \
   --autostart \
   --os-variant rhel9.2 \ 1
   --cpu host \
   --vcpus <vcpus> \
   --memory <memory_mb> \
   --disk <vm_name>.qcow2,size=<image_size> \
   --network network=<virt_network_parm> \
   --location <media_location>,kernel=<rhcos_kernel>,initrd=<rhcos_initrd> \ 2
   --extra-args "rd.neednet=1" \
   --extra-args "coreos.inst.install_dev=/dev/vda" \
   --extra-args "coreos.inst.ignition_url=<worker_ign>" \ 3
   --extra-args "coreos.live.rootfs_url=<rhcos_rootfs>" \ 4
   --extra-args "ip=<ip>::<default_gateway>:<subnet_mask_length>:<hostname>::none:
<MTU>" \ 5
   --extra-args "nameserver=<dns>" \
   --extra-args "console=ttysclp0" \
   --noautoconsole \
   --wait

$ osinfo-query os -f short-id

OpenShift Container Platform 4.15 Postinstallation configuration

78



2

3

4

5

NOTE

The os-variant is case sensitive.

For --location, specify the location of the kernel/initrd on the HTTP or HTTPS server.

For coreos.inst.ignition_url=, specify the worker.ign Ignition file for the machine role.
Only HTTP and HTTPS protocols are supported.

For coreos.live.rootfs_url=, specify the matching rootfs artifact for the kernel and 
initramfs you are booting. Only HTTP and HTTPS protocols are supported.

Optional: For hostname, specify the fully qualified hostname of the client machine.

NOTE

If you are using HAProxy as a load balancer, update your HAProxy rules for 
ingress-router-443 and ingress-router-80 in the /etc/haproxy/haproxy.cfg
configuration file.

8. Continue to create more compute machines for your cluster.

4.7.3. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.28.5
master-1  Ready     master  63m  v1.28.5
master-2  Ready     master  64m  v1.28.5

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

79



1

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

$ oc adm certificate approve <csr_name> 1

OpenShift Container Platform 4.15 Postinstallation configuration

80



1

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.28.5
master-1  Ready     master  73m  v1.28.5
master-2  Ready     master  74m  v1.28.5
worker-0  Ready     worker  11m  v1.28.5
worker-1  Ready     worker  11m  v1.28.5

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

81



NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

4.8. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM POWER

To create a cluster with multi-architecture compute machines on IBM Power® (ppc64le), you must have
an existing single-architecture (x86_64) cluster. You can then add ppc64le compute machines to your
OpenShift Container Platform cluster.

IMPORTANT

Before you can add ppc64le nodes to your cluster, you must upgrade your cluster to one
that uses the multi-architecture payload. For more information on migrating to the multi-
architecture payload, see Migrating to a cluster with multi-architecture compute
machines.

The following procedures explain how to create a RHCOS compute machine using an ISO image or
network PXE booting. This will allow you to add ppc64le nodes to your cluster and deploy a cluster with
multi-architecture compute machines.

NOTE

To create an IBM Power® (ppc64le) cluster with multi-architecture compute machines on
x86_64, follow the instructions for Installing a cluster on IBM Power® . You can then add 
x86_64 compute machines as described in Creating a cluster with multi-architecture
compute machines on bare metal, IBM Power, or IBM Z.

4.8.1. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc)

NOTE

When using multiple architectures, hosts for OpenShift Container Platform nodes must
share the same storage layer. If they do not have the same storage layer, use a storage
provider such as nfs-provisioner.

NOTE

You should limit the number of network hops between the compute and control plane as
much as possible.

OpenShift Container Platform 4.15 Postinstallation configuration

82

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#preparing-to-install-on-ibm-power


Procedure

You can check that your cluster uses the architecture payload by running the following
command:

Verification

1. If you see the following output, then your cluster is using the multi-architecture payload:

You can then begin adding multi-arch compute nodes to your cluster.

2. If you see the following output, then your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

4.8.2. Creating RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your cluster by
using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

You must have the OpenShift CLI (oc) installed.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URLs of these files.

3. You can validate that the ignition files are available on the URLs. The following example gets

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",
 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#migrating-to-multi-payload


1

2

3. You can validate that the ignition files are available on the URLs. The following example gets
the Ignition config files for the compute node:

4. You can access the ISO image for booting your new machine by running to following command:

5. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

6. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot
sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

NOTE

You can interrupt the RHCOS installation boot process to add kernel arguments.
However, for this ISO procedure you must use the coreos-installer command as
outlined in the following steps, instead of adding kernel arguments.

7. Run the coreos-installer command and specify the options that meet your installation
requirements. At a minimum, you must specify the URL that points to the Ignition config file for
the node type, and the device that you are installing to:

You must run the coreos-installer command by using sudo, because the core user does
not have the required root privileges to perform the installation.

The --ignition-hash option is required when the Ignition config file is obtained through an
HTTP URL to validate the authenticity of the Ignition config file on the cluster node. 
<digest> is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that
uses TLS, you can add the internal certificate authority (CA) to the system trust
store before running coreos-installer.

The following example initializes a bootstrap node installation to the /dev/sda device. The
Ignition config file for the bootstrap node is obtained from an HTTP web server with the IP
address 192.168.1.2:

$ curl -k http://<HTTP_server>/worker.ign

RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get 
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.
<architecture>.artifacts.metal.formats.iso.disk.location')

$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> 
--ignition-hash=sha512-<digest> 1 2

$ sudo coreos-installer install --ignition-
url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda --ignition-hash=sha512-

OpenShift Container Platform 4.15 Postinstallation configuration

84



1

2

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

Ensure that the installation is successful on each node before commencing with
the OpenShift Container Platform installation. Observing the installation process
can also help to determine the cause of RHCOS installation issues that might
arise.

9. Continue to create more compute machines for your cluster.

4.8.3. Creating RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
    KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
    APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img 2

Specify the location of the live kernel file that you uploaded to your HTTP server.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The 

a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011
6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

85



1

2

3

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more 
console= arguments to the APPEND line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE (x86_64 + ppc64le):

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main 
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

Specify the locations of the RHCOS files that you uploaded to your HTTP server. The 
kernel parameter value is the location of the kernel file, the initrd=main argument is
needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is
the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the
location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

This configuration does not enable serial console access on machines with a
graphical console To configure a different console, add one or more 
console= arguments to the kernel line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise Linux?
and "Enabling the serial console for PXE and ISO installation" in the
"Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS kernel on ppc64le architecture, you need to
use a version of iPXE build with the IMAGE_GZIP option enabled. See 
IMAGE_GZIP option in iPXE .

For PXE (with UEFI and GRUB as second stage) on ppc64le:

menuentry 'Install CoreOS' {
    linux rhcos-<version>-live-kernel-<architecture>  
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.

OpenShift Container Platform 4.15 Postinstallation configuration

86

https://access.redhat.com/articles/7212
https://access.redhat.com/articles/7212
https://ipxe.org/buildcfg/image_gzip


1

2

3

<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
    initrd rhcos-<version>-live-initramfs.<architecture>.img 3
}

Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP
server. The kernel parameter value is the location of the kernel file on your TFTP
server. The coreos.live.rootfs_url parameter value is the location of the rootfs file,
and the coreos.inst.ignition_url parameter value is the location of the worker Ignition
config file on your HTTP Server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your TFTP server.

2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

4.8.4. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.28.5
master-1  Ready     master  63m  v1.28.5
master-2  Ready     master  64m  v1.28.5

$ oc get csr

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

87



1

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

OpenShift Container Platform 4.15 Postinstallation configuration

88



1

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes -o wide

NAME               STATUS   ROLES                  AGE   VERSION           INTERNAL-IP      
EXTERNAL-IP   OS-IMAGE                                                       KERNEL-VERSION                  
CONTAINER-RUNTIME
worker-0-ppc64le   Ready    worker                 42d   v1.28.2+e3ba6d9   192.168.200.21   
<none>        Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.ppc64le   cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9
worker-1-ppc64le   Ready    worker                 42d   v1.28.2+e3ba6d9   192.168.200.20   
<none>        Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.ppc64le   cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9
master-0-x86       Ready    control-plane,master   75d   v1.28.2+e3ba6d9   10.248.0.38      
10.248.0.38   Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.x86_64    cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9
master-1-x86       Ready    control-plane,master   75d   v1.28.2+e3ba6d9   10.248.0.39      

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

89



NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

4.9. MANAGING YOUR CLUSTER WITH MULTI-ARCHITECTURE
COMPUTE MACHINES

4.9.1. Scheduling workloads on clusters with multi-architecture compute machines

Deploying a workload on a cluster with compute nodes of different architectures requires attention and
monitoring of your cluster. There might be further actions you need to take in order to successfully place
pods in the nodes of your cluster.

For more detailed information on node affinity, scheduling, taints and tolerlations, see the following
documentatinon:

Controlling pod placement using node taints .

Controlling pod placement on nodes using node affinity

Controlling pod placement using the scheduler

4.9.1.1. Sample multi-architecture node workload deployments

Before you schedule workloads on a cluster with compute nodes of different architectures, consider the
following use cases:

Using node affinity to schedule workloads on a node

You can allow a workload to be scheduled on only a set of nodes with architectures supported by its
images, you can set the spec.affinity.nodeAffinity field in your pod’s template specification.

Example deployment with the nodeAffinity set to certain architectures

10.248.0.39   Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.x86_64    cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9
master-2-x86       Ready    control-plane,master   75d   v1.28.2+e3ba6d9   10.248.0.40      
10.248.0.40   Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.x86_64    cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9
worker-0-x86       Ready    worker                 75d   v1.28.2+e3ba6d9   10.248.0.43      
10.248.0.43   Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.x86_64    cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9
worker-1-x86       Ready    worker                 75d   v1.28.2+e3ba6d9   10.248.0.44      
10.248.0.44   Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow)   5.14.0-
284.34.1.el9_2.x86_64    cri-o://1.28.1-3.rhaos4.15.gitb36169e.el9

apiVersion: apps/v1
kind: Deployment
metadata: # ...

OpenShift Container Platform 4.15 Postinstallation configuration

90

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-about


1 Specify the supported architectures. Valid values include amd64,arm64, or both values.

Tainting every node for a specific architecture

You can taint a node to avoid workloads that are not compatible with its architecture to be scheduled
on that node. In the case where your cluster is using a MachineSet object, you can add parameters to
the .spec.template.spec.taints field to avoid workloads being scheduled on nodes with non-
supported architectures.

Before you can taint a node, you must scale down the MachineSet object or remove
available machines. You can scale down the machine set by using one of following
commands:

Or:

For more information on scaling machine sets, see "Modifying a compute machine set".

Example MachineSet with a taint set

You can also set a taint on a specific node by running the following command:

spec:
   # ...
  template:
     # ...
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/arch
                operator: In
                values: 1
                - amd64
                - arm64

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata: # ...
spec:
  # ...
  template:
    # ...
    spec:
      # ...
      taints:
      - effect: NoSchedule
        key: multi-arch.openshift.io/arch
        value: arm64

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

91



Creating a default toleration

You can annotate a namespace so all of the workloads get the same default toleration by running the
following command:

Tolerating architecture taints in workloads

On a node with a defined taint, workloads will not be scheduled on that node. However, you can allow
them to be scheduled by setting a toleration in the pod’s specification.

Example deployment with a toleration

This example deployment can also be allowed on nodes with the multi-
arch.openshift.io/arch=arm64 taint specified.

Using node affinity with taints and tolerations

When a scheduler computes the set of nodes to schedule a pod, tolerations can broaden the set
while node affinity restricts the set. If you set a taint to the nodes of a specific architecture, the
following example toleration is required for scheduling pods.

Example deployment with a node affinity and toleration set.

$ oc adm taint nodes <node-name> multi-arch.openshift.io/arch=arm64:NoSchedule

$ oc annotate namespace my-namespace \
  'scheduler.alpha.kubernetes.io/defaultTolerations'='[{"operator": "Exists", "effect": "NoSchedule", 
"key": "multi-arch.openshift.io/arch"}]'

apiVersion: apps/v1
kind: Deployment
metadata: # ...
spec:
  # ...
  template:
    # ...
    spec:
      tolerations:
      - key: "multi-arch.openshift.io/arch"
        value: "arm64"
        operator: "Equal"
        effect: "NoSchedule"

apiVersion: apps/v1
kind: Deployment
metadata: # ...
spec:
  # ...
  template:
    # ...
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:

OpenShift Container Platform 4.15 Postinstallation configuration

92



Additional resources

Modifying a compute machine set

4.9.2. Enabling 64k pages on the Red Hat Enterprise Linux CoreOS (RHCOS) kernel

You can enable the 64k memory page in the Red Hat Enterprise Linux CoreOS (RHCOS) kernel on the
64-bit ARM compute machines in your cluster. The 64k page size kernel specification can be used for
large GPU or high memory workloads. This is done using the Machine Config Operator (MCO) which
uses a machine config pool to update the kernel. To enable 64k page sizes, you must dedicate a
machine config pool for ARM64 to enable on the kernel.

IMPORTANT

Using 64k pages is exclusive to 64-bit ARM architecture compute nodes or clusters
installed on 64-bit ARM machines. If you configure the 64k pages kernel on a machine
config pool using 64-bit x86 machines, the machine config pool and MCO will degrade.

Prerequisites:

You installed the OpenShift CLI (oc).

You created a cluster with compute nodes of different architecture on one of the supported
platforms.

Procedure:

1. Label the nodes where you want to run the 64k page size kernel:

Example command

2. Create a machine config pool that contains the worker role that uses the ARM64 architecture
and the worker-64k-pages role:

            - matchExpressions:
              - key: kubernetes.io/arch
                operator: In
                values:
                - amd64
                - arm64
      tolerations:
      - key: "multi-arch.openshift.io/arch"
        value: "arm64"
        operator: "Equal"
        effect: "NoSchedule"

$ oc label node <node_name> <label>

$ oc label node worker-arm64-01 node-role.kubernetes.io/worker-64k-pages=

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#machineset-modifying_modifying-machineset


1

2

3. Create a machine config on your compute node to enable 64k-pages with the 64k-pages
parameter.

Example MachineConfig

Specify the value of the machineconfiguration.openshift.io/role label in the custom
machine config pool. The example MachineConfig uses the worker-64k-pages label to
enable 64k pages in the worker-64k-pages pool.

Specify your desired kernel type. Valid values are 64k-pages and default

NOTE

The 64k-pages type is supported on only 64-bit ARM architecture based
compute nodes. The realtime type is supported on only 64-bit x86 architecture
based compute nodes.

Verification

To view your new worker-64k-pages machine config pool, run the following command:

Example output

metadata:
  name: worker-64k-pages
spec:
  machineConfigSelector:
    matchExpressions:
      - key: machineconfiguration.openshift.io/role
        operator: In
        values:
        - worker
        - worker-64k-pages
  nodeSelector:
    matchLabels:
      node-role.kubernetes.io/worker-64k-pages: ""
      kubernetes.io/arch: arm64

$ oc create -f <filename>.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: "worker-64k-pages" 1
  name: 99-worker-64kpages
spec:
  kernelType: 64k-pages 2

$ oc get mcp

NAME     CONFIG                                                                UPDATED   UPDATING   

OpenShift Container Platform 4.15 Postinstallation configuration

94



4.9.3. Importing manifest lists in image streams on your multi-architecture compute
machines

On an OpenShift Container Platform 4.15 cluster with multi-architecture compute machines, the image
streams in the cluster do not import manifest lists automatically. You must manually change the default 
importMode option to the PreserveOriginal option in order to import the manifest list.

Prerequisites

You installed the OpenShift Container Platform CLI (oc).

Procedure

The following example command shows how to patch the ImageStream cli-artifacts so that the
cli-artifacts:latest image stream tag is imported as a manifest list.

Verification

You can check that the manifest lists imported properly by inspecting the image stream tag.
The following command will list the individual architecture manifests for a particular tag.

If the dockerImageManifests object is present, then the manifest list import was successful.

Example output of the dockerImageManifests object

DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   
DEGRADEDMACHINECOUNT   AGE
master   rendered-master-9d55ac9a91127c36314e1efe7d77fbf8                      True      False      
False      3              3                   3                     0                      361d
worker   rendered-worker-e7b61751c4a5b7ff995d64b967c421ff                      True      False      
False      7              7                   7                     0                      361d
worker-64k-pages  rendered-worker-64k-pages-e7b61751c4a5b7ff995d64b967c421ff   True      
False      False      2              2                   2                     0                      35m

$ oc patch is/cli-artifacts -n openshift -p '{"spec":{"tags":[{"name":"latest","importPolicy":
{"importMode":"PreserveOriginal"}}]}}'

$ oc get istag cli-artifacts:latest -n openshift -oyaml

dockerImageManifests:
  - architecture: amd64
    digest: 
sha256:16d4c96c52923a9968fbfa69425ec703aff711f1db822e4e9788bf5d2bee5d77
    manifestSize: 1252
    mediaType: application/vnd.docker.distribution.manifest.v2+json
    os: linux
  - architecture: arm64
    digest: 
sha256:6ec8ad0d897bcdf727531f7d0b716931728999492709d19d8b09f0d90d57f626
    manifestSize: 1252
    mediaType: application/vnd.docker.distribution.manifest.v2+json
    os: linux
  - architecture: ppc64le
    digest: 

CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

95



sha256:65949e3a80349cdc42acd8c5b34cde6ebc3241eae8daaeea458498fedb359a6a
    manifestSize: 1252
    mediaType: application/vnd.docker.distribution.manifest.v2+json
    os: linux
  - architecture: s390x
    digest: 
sha256:75f4fa21224b5d5d511bea8f92dfa8e1c00231e5c81ab95e83c3013d245d1719
    manifestSize: 1252
    mediaType: application/vnd.docker.distribution.manifest.v2+json
    os: linux

OpenShift Container Platform 4.15 Postinstallation configuration

96



CHAPTER 5. ENABLING ENCRYPTION ON A VSPHERE
CLUSTER

You can encrypt your virtual machines after installing OpenShift Container Platform 4.15 on vSphere by
draining and shutting down your nodes one at a time. While each virtual machine is shutdown, you can
enable encryption in the vCenter web interface.

5.1. ENCRYPTING VIRTUAL MACHINES

You can encrypt your virtual machines with the following process. You can drain your virtual machines,
power them down and encrypt them using the vCenter interface. Finally, you can create a storage class
to use the encrypted storage.

Prerequisites

You have configured a Standard key provider in vSphere. For more information, see Adding a
KMS to vCenter Server.

IMPORTANT

The Native key provider in vCenter is not supported. For more information, see
vSphere Native Key Provider Overview .

You have enabled host encryption mode on all of the ESXi hosts that are hosting the cluster.
For more information, see Enabling host encryption mode .

You have a vSphere account which has all cryptographic privileges enabled. For more
information, see Cryptographic Operations Privileges.

Procedure

1. Drain and cordon one of your nodes. For detailed instructions on node management, see
"Working with Nodes".

2. Shutdown the virtual machine associated with that node in the vCenter interface.

3. Right-click on the virtual machine in the vCenter interface and select VM Policies → Edit VM
Storage Policies.

4. Select an encrypted storage policy and select OK.

5. Start the encrypted virtual machine in the vCenter interface.

6. Repeat steps 1-5 for all nodes that you want to encrypt.

7. Configure a storage class that uses the encrypted storage policy. For more information about
configuring an encrypted storage class, see "VMware vSphere CSI Driver Operator".

5.2. ADDITIONAL RESOURCES

Working with nodes

vSphere encryption

CHAPTER 5. ENABLING ENCRYPTION ON A VSPHERE CLUSTER

97

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vsan.doc/GUID-AC06B3C3-901F-402E-B25F-1EE7809D1264.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.security.doc/GUID-54B9FBA2-FDB1-400B-A6AE-81BF3AC9DF97.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.security.doc/GUID-A9E1F016-51B3-472F-B8DE-803F6BDB70BC.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.security.doc/GUID-660CCB35-847F-46B3-81CA-10DDDB9D7AA9.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-nodes-working-evacuating_nodes-nodes-working
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#vsphere-pv-encryption


Requirements for encrypting virtual machines

OpenShift Container Platform 4.15 Postinstallation configuration

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-vsphere-encrypted-vms_upi-vsphere-installation-reqs


CHAPTER 6. CONFIGURING THE VSPHERE CONNECTION
SETTINGS AFTER AN INSTALLATION

After installing an OpenShift Container Platform cluster on vSphere with the platform integration
feature enabled, you might need to update the vSphere connection settings manually, depending on the
installation method.

For installations using the Assisted Installer, you must update the connection settings. This is because
the Assisted Installer adds default connection settings to the vSphere connection configuration wizard
as placeholders during the installation.

For installer-provisioned or user-provisioned infrastructure installations, you should have entered valid
connection settings during the installation. You can use the vSphere connection configuration wizard
at any time to validate or modify the connection settings, but this is not mandatory for completing the
installation.

6.1. CONFIGURING THE VSPHERE CONNECTION SETTINGS

Modify the following vSphere configuration settings as required:

vCenter address

vCenter cluster

vCenter username

vCenter password

vCenter address

vSphere data center

vSphere datastore

Virtual machine folder

Prerequisites

The Assisted Installer has finished installing the cluster successfully.

The cluster is connected to https://console.redhat.com.

Procedure

1. In the Administrator perspective, navigate to Home → Overview.

2. Under Status, click vSphere connection to open the vSphere connection configuration
wizard.

3. In the vCenter field, enter the network address of the vSphere vCenter server. This can be
either a domain name or an IP address. It appears in the vSphere web client URL; for example 
https://[your_vCenter_address]/ui.

4. In the vCenter cluster field, enter the name of the vSphere vCenter cluster where OpenShift
Container Platform is installed.

IMPORTANT

CHAPTER 6. CONFIGURING THE VSPHERE CONNECTION SETTINGS AFTER AN INSTALLATION

99

https://console.redhat.com


IMPORTANT

This step is mandatory if you installed OpenShift Container Platform 4.13 or later.

5. In the Username field, enter your vSphere vCenter username.

6. In the Password field, enter your vSphere vCenter password.

WARNING

The system stores the username and password in the vsphere-creds
secret in the kube-system namespace of the cluster. An incorrect vCenter
username or password makes the cluster nodes unschedulable.

7. In the Datacenter field, enter the name of the vSphere data center that contains the virtual
machines used to host the cluster; for example, SDDC-Datacenter.

8. In the Default data store field, enter the path and name of the vSphere data store that stores
the persistent data volumes; for example, /SDDC-Datacenter/datastore/datastorename.

WARNING

Updating the vSphere data center or default data store after the
configuration has been saved detaches any active vSphere 
PersistentVolumes.

9. In the Virtual Machine Folder field, enter the data center folder that contains the virtual
machine of the cluster; for example, /SDDC-Datacenter/vm/ci-ln-hjg4vg2-c61657-t2gzr. For
the OpenShift Container Platform installation to succeed, all virtual machines comprising the
cluster must be located in a single data center folder.

10. Click Save Configuration. This updates the cloud-provider-config ConfigMap resource in the 
openshift-config namespace, and starts the configuration process.

11. Reopen the vSphere connection configuration wizard and expand the Monitored operators
panel. Check that the status of the operators is either Progressing or Healthy.

6.2. VERIFYING THE CONFIGURATION

The connection configuration process updates operator statuses and control plane nodes. It takes
approximately an hour to complete. During the configuration process, the nodes will reboot. Previously
bound PersistentVolumeClaims objects might become disconnected.

Prerequisites





OpenShift Container Platform 4.15 Postinstallation configuration

100



You have saved the configuration settings in the vSphere connection configuration wizard.

Procedure

1. Check that the configuration process completed successfully:

a. In the OpenShift Container Platform Administrator perspective, navigate to Home →
Overview.

b. Under Status click Operators. Wait for all operator statuses to change from Progressing
to All succeeded. A Failed status indicates that the configuration failed.

c. Under Status, click Control Plane. Wait for the response rate of all Control Pane
components to return to 100%. A Failed control plane component indicates that the
configuration failed.

A failure indicates that at least one of the connection settings is incorrect. Change the settings
in the vSphere connection configuration wizard and save the configuration again.

2. Check that you are able to bind PersistentVolumeClaims objects by performing the following
steps:

a. Create a StorageClass object using the following YAML:

b. Create a PersistentVolumeClaims object using the following YAML:

If you are unable to create a PersistentVolumeClaims object, you can troubleshoot by

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: vsphere-sc
provisioner: kubernetes.io/vsphere-volume
parameters:
 datastore: YOURVCENTERDATASTORE
 diskformat: thin
reclaimPolicy: Delete
volumeBindingMode: Immediate

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: test-pvc
 namespace: openshift-config
 annotations:
   volume.beta.kubernetes.io/storage-provisioner: kubernetes.io/vsphere-volume
 finalizers:
   - kubernetes.io/pvc-protection
spec:
 accessModes:
   - ReadWriteOnce
 resources:
   requests:
    storage: 10Gi
 storageClassName: vsphere-sc
 volumeMode: Filesystem

CHAPTER 6. CONFIGURING THE VSPHERE CONNECTION SETTINGS AFTER AN INSTALLATION

101



If you are unable to create a PersistentVolumeClaims object, you can troubleshoot by
navigating to Storage → PersistentVolumeClaims in the Administrator perspective of the
OpenShift Container Platform web console.

For instructions on creating storage objects, see Dynamic provisioning.

OpenShift Container Platform 4.15 Postinstallation configuration

102

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#dynamic-provisioning


CHAPTER 7. POSTINSTALLATION MACHINE
CONFIGURATION TASKS

There are times when you need to make changes to the operating systems running on OpenShift
Container Platform nodes. This can include changing settings for network time service, adding kernel
arguments, or configuring journaling in a specific way.

Aside from a few specialized features, most changes to operating systems on OpenShift Container
Platform nodes can be done by creating what are referred to as MachineConfig objects that are
managed by the Machine Config Operator.

Tasks in this section describe how to use features of the Machine Config Operator to configure
operating system features on OpenShift Container Platform nodes.

IMPORTANT

NetworkManager stores new network configurations to /etc/NetworkManager/system-
connections/ in a key file format.

Previously, NetworkManager stored new network configurations to 
/etc/sysconfig/network-scripts/ in the ifcfg format. Starting with RHEL 9.0, RHEL stores
new network configurations at /etc/NetworkManager/system-connections/ in a key file
format. The connections configurations stored to /etc/sysconfig/network-scripts/ in the
old format still work uninterrupted. Modifications in existing profiles continue updating
the older files.

7.1. UNDERSTANDING THE MACHINE CONFIG OPERATOR

7.1.1. Machine Config Operator

Purpose
The Machine Config Operator manages and applies configuration and updates of the base operating
system and container runtime, including everything between the kernel and kubelet.

There are four components:

machine-config-server: Provides Ignition configuration to new machines joining the cluster.

machine-config-controller: Coordinates the upgrade of machines to the desired
configurations defined by a MachineConfig object. Options are provided to control the
upgrade for sets of machines individually.

machine-config-daemon: Applies new machine configuration during update. Validates and
verifies the state of the machine to the requested machine configuration.

machine-config: Provides a complete source of machine configuration at installation, first start
up, and updates for a machine.

IMPORTANT

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

103



IMPORTANT

Currently, there is no supported way to block or restrict the machine config server
endpoint. The machine config server must be exposed to the network so that newly-
provisioned machines, which have no existing configuration or state, are able to fetch
their configuration. In this model, the root of trust is the certificate signing requests
(CSR) endpoint, which is where the kubelet sends its certificate signing request for
approval to join the cluster. Because of this, machine configs should not be used to
distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured
in bare metal scenarios, customers must configure proper network policies.

Additional resources

About the OpenShift SDN network plugin .

Project
openshift-machine-config-operator

7.1.2. Machine config overview

The Machine Config Operator (MCO) manages updates to systemd, CRI-O and Kubelet, the kernel,
Network Manager and other system features. It also offers a MachineConfig CRD that can write
configuration files onto the host (see machine-config-operator). Understanding what MCO does and
how it interacts with other components is critical to making advanced, system-level changes to an
OpenShift Container Platform cluster. Here are some things you should know about MCO, machine
configs, and how they are used:

Machine configs are processed alphabetically, in lexicographically increasing order, of their
name. The render controller uses the first machine config in the list as the base and appends
the rest to the base machine config.

A machine config can make a specific change to a file or service on the operating system of
each system representing a pool of OpenShift Container Platform nodes.

MCO applies changes to operating systems in pools of machines. All OpenShift Container
Platform clusters start with worker and control plane node pools. By adding more role labels, you
can configure custom pools of nodes. For example, you can set up a custom pool of worker
nodes that includes particular hardware features needed by an application. However, examples
in this section focus on changes to the default pool types.

IMPORTANT

A node can have multiple labels applied that indicate its type, such as master or 
worker, however it can be a member of only a single machine config pool.

After a machine config change, the MCO updates the affected nodes alphabetically by zone,
based on the topology.kubernetes.io/zone label. If a zone has more than one node, the oldest
nodes are updated first. For nodes that do not use zones, such as in bare metal deployments,
the nodes are upgraded by age, with the oldest nodes updated first. The MCO updates the
number of nodes as specified by the maxUnavailable field on the machine configuration pool
at a time.

Some machine configuration must be in place before OpenShift Container Platform is installed

OpenShift Container Platform 4.15 Postinstallation configuration

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#about-openshift-sdn
https://github.com/openshift/machine-config-operator
https://github.com/openshift/machine-config-operator#machine-config-operator


to disk. In most cases, this can be accomplished by creating a machine config that is injected
directly into the OpenShift Container Platform installer process, instead of running as a
postinstallation machine config. In other cases, you might need to do bare metal installation
where you pass kernel arguments at OpenShift Container Platform installer startup, to do such
things as setting per-node individual IP addresses or advanced disk partitioning.

MCO manages items that are set in machine configs. Manual changes you do to your systems
will not be overwritten by MCO, unless MCO is explicitly told to manage a conflicting file. In other
words, MCO only makes specific updates you request, it does not claim control over the whole
node.

Manual changes to nodes are strongly discouraged. If you need to decommission a node and
start a new one, those direct changes would be lost.

MCO is only supported for writing to files in /etc and /var directories, although there are
symbolic links to some directories that can be writeable by being symbolically linked to one of
those areas. The /opt and /usr/local directories are examples.

Ignition is the configuration format used in MachineConfigs. See the Ignition Configuration
Specification v3.2.0 for details.

Although Ignition config settings can be delivered directly at OpenShift Container Platform
installation time, and are formatted in the same way that MCO delivers Ignition configs, MCO
has no way of seeing what those original Ignition configs are. Therefore, you should wrap Ignition
config settings into a machine config before deploying them.

When a file managed by MCO changes outside of MCO, the Machine Config Daemon (MCD)
sets the node as degraded. It will not overwrite the offending file, however, and should continue
to operate in a degraded state.

A key reason for using a machine config is that it will be applied when you spin up new nodes for
a pool in your OpenShift Container Platform cluster. The machine-api-operator provisions a
new machine and MCO configures it.

MCO uses Ignition as the configuration format. OpenShift Container Platform 4.6 moved from Ignition
config specification version 2 to version 3.

7.1.2.1. What can you change with machine configs?

The kinds of components that MCO can change include:

config: Create Ignition config objects (see the Ignition configuration specification) to do things
like modify files, systemd services, and other features on OpenShift Container Platform
machines, including:

Configuration files: Create or overwrite files in the /var or /etc directory.

systemd units: Create and set the status of a systemd service or add to an existing systemd
service by dropping in additional settings.

users and groups: Change SSH keys in the passwd section postinstallation.

IMPORTANT

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

105

https://coreos.github.io/ignition/configuration-v3_2/
https://coreos.github.io/ignition/
https://coreos.github.io/ignition/configuration-v3_2/


IMPORTANT

Changing SSH keys by using a machine config is supported only for the 
core user.

Adding new users by using a machine config is not supported.

kernelArguments: Add arguments to the kernel command line when OpenShift Container
Platform nodes boot.

kernelType: Optionally identify a non-standard kernel to use instead of the standard kernel. Use
realtime to use the RT kernel (for RAN). This is only supported on select platforms. Use the 64k-
pages parameter to enable the 64k page size kernel. This setting is exclusive to machines with
64-bit ARM architectures.

fips: Enable FIPS mode. FIPS should be set at installation-time setting and not a
postinstallation procedure.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from a Red
Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more
information about configuring FIPS mode on RHEL, see Installing the system in FIPS
mode. When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux
CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted to NIST for
FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

extensions: Extend RHCOS features by adding selected pre-packaged software. For this
feature, available extensions include usbguard and kernel modules.

Custom resources (for ContainerRuntime and Kubelet): Outside of machine configs, MCO
manages two special custom resources for modifying CRI-O container runtime settings
(ContainerRuntime CR) and the Kubelet service ( Kubelet CR).

The MCO is not the only Operator that can change operating system components on OpenShift
Container Platform nodes. Other Operators can modify operating system-level features as well. One
example is the Node Tuning Operator, which allows you to do node-level tuning through Tuned daemon
profiles.

Tasks for the MCO configuration that can be done postinstallation are included in the following
procedures. See descriptions of RHCOS bare metal installation for system configuration tasks that must
be done during or before OpenShift Container Platform installation.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated. For more information on configuration drift,
see Understanding configuration drift detection .

7.1.2.2. Project

See the openshift-machine-config-operator GitHub site for details.

OpenShift Container Platform 4.15 Postinstallation configuration

106

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#protecting-systems-against-intrusive-usb-devices_security-hardening
https://github.com/openshift/machine-config-operator


7.1.3. Understanding configuration drift detection

There might be situations when the on-disk state of a node differs from what is configured in the
machine config. This is known as configuration drift. For example, a cluster admin might manually modify
a file, a systemd unit file, or a file permission that was configured through a machine config. This causes
configuration drift. Configuration drift can cause problems between nodes in a Machine Config Pool or
when the machine configs are updated.

The Machine Config Operator (MCO) uses the Machine Config Daemon (MCD) to check nodes for
configuration drift on a regular basis. If detected, the MCO sets the node and the machine config pool
(MCP) to Degraded and reports the error. A degraded node is online and operational, but, it cannot be
updated.

The MCD performs configuration drift detection upon each of the following conditions:

When a node boots.

After any of the files (Ignition files and systemd drop-in units) specified in the machine config
are modified outside of the machine config.

Before a new machine config is applied.

NOTE

If you apply a new machine config to the nodes, the MCD temporarily shuts down
configuration drift detection. This shutdown is needed because the new machine
config necessarily differs from the machine config on the nodes. After the new
machine config is applied, the MCD restarts detecting configuration drift using
the new machine config.

When performing configuration drift detection, the MCD validates that the file contents and permissions
fully match what the currently-applied machine config specifies. Typically, the MCD detects
configuration drift in less than a second after the detection is triggered.

If the MCD detects configuration drift, the MCD performs the following tasks:

Emits an error to the console logs

Emits a Kubernetes event

Stops further detection on the node

Sets the node and MCP to degraded

You can check if you have a degraded node by listing the MCPs:

If you have a degraded MCP, the DEGRADEDMACHINECOUNT field is non-zero, similar to the
following output:

Example output

$ oc get mcp worker

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   
MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

107



1

2

1

You can determine if the problem is caused by configuration drift by examining the machine config pool:

Example output

This message shows that a node’s /etc/mco-test-file file, which was added by the machine config,
has changed outside of the machine config.

The state of the node is NodeDegraded.

Or, if you know which node is degraded, examine that node:

Example output

The error message indicating that configuration drift was detected between the node and the
listed machine config. Here the error message indicates that the contents of the /etc/mco-test-
file, which was added by the machine config, has changed outside of the machine config.

DEGRADEDMACHINECOUNT   AGE
worker   rendered-worker-404caf3180818d8ac1f50c32f14b57c3   False     True       True       2              
1                   1                     1                      5h51m

$ oc describe mcp worker

 ...
    Last Transition Time:  2021-12-20T18:54:00Z
    Message:               Node ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4 is reporting: "content mismatch 
for file \"/etc/mco-test-file\"" 1
    Reason:                1 nodes are reporting degraded status on sync
    Status:                True
    Type:                  NodeDegraded 2
 ...

$ oc describe node/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4

 ...

Annotations:        cloud.network.openshift.io/egress-ipconfig: [{"interface":"nic0","ifaddr":
{"ipv4":"10.0.128.0/17"},"capacity":{"ip":10}}]
                    csi.volume.kubernetes.io/nodeid:
                      {"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci/zones/us-central1-
a/instances/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4"}
                    machine.openshift.io/machine: openshift-machine-api/ci-ln-j4h8nkb-72292-pxqxz-worker-
a-fjks4
                    machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
                    machineconfiguration.openshift.io/currentConfig: rendered-worker-
67bd55d0b02b0f659aef33680693a9f9
                    machineconfiguration.openshift.io/desiredConfig: rendered-worker-
67bd55d0b02b0f659aef33680693a9f9
                    machineconfiguration.openshift.io/reason: content mismatch for file "/etc/mco-test-file" 
1

                    machineconfiguration.openshift.io/state: Degraded 2
 ...

OpenShift Container Platform 4.15 Postinstallation configuration

108



2 The state of the node is Degraded.

You can correct configuration drift and return the node to the Ready state by performing one of the
following remediations:

Ensure that the contents and file permissions of the files on the node match what is configured
in the machine config. You can manually rewrite the file contents or change the file permissions.

Generate a force file on the degraded node. The force file causes the MCD to bypass the usual
configuration drift detection and reapplies the current machine config.

NOTE

Generating a force file on a node causes that node to reboot.

7.1.4. Checking machine config pool status

To see the status of the Machine Config Operator (MCO), its sub-components, and the resources it
manages, use the following oc commands:

Procedure

1. To see the number of MCO-managed nodes available on your cluster for each machine config
pool (MCP), run the following command:

Example output

where:

UPDATED

The True status indicates that the MCO has applied the current machine config to the
nodes in that MCP. The current machine config is specified in the STATUS field in the oc 
get mcp output. The False status indicates a node in the MCP is updating.

UPDATING

The True status indicates that the MCO is applying the desired machine config, as specified
in the MachineConfigPool custom resource, to at least one of the nodes in that MCP. The
desired machine config is the new, edited machine config. Nodes that are updating might
not be available for scheduling. The False status indicates that all nodes in the MCP are
updated.

DEGRADED

A True status indicates the MCO is blocked from applying the current or desired machine
config to at least one of the nodes in that MCP, or the configuration is failing. Nodes that

$ oc get machineconfigpool

NAME      CONFIG                    UPDATED  UPDATING   DEGRADED  MACHINECOUNT  
READYMACHINECOUNT  UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT  
AGE
master    rendered-master-06c9c4…   True     False      False     3             3                  3                   
0                     4h42m
worker    rendered-worker-f4b64…    False    True       False     3             2                  2                   
0                     4h42m

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

109

https://access.redhat.com/solutions/5414371


are degraded might not be available for scheduling. A False status indicates that all nodes in
the MCP are ready.

MACHINECOUNT

Indicates the total number of machines in that MCP.

READYMACHINECOUNT

Indicates the total number of machines in that MCP that are ready for scheduling.

UPDATEDMACHINECOUNT

Indicates the total number of machines in that MCP that have the current machine config.

DEGRADEDMACHINECOUNT

Indicates the total number of machines in that MCP that are marked as degraded or
unreconcilable.

In the previous output, there are three control plane (master) nodes and three worker nodes.
The control plane MCP and the associated nodes are updated to the current machine config.
The nodes in the worker MCP are being updated to the desired machine config. Two of the
nodes in the worker MCP are updated and one is still updating, as indicated by the 
UPDATEDMACHINECOUNT being 2. There are no issues, as indicated by the 
DEGRADEDMACHINECOUNT being 0 and DEGRADED being False.

While the nodes in the MCP are updating, the machine config listed under CONFIG is the
current machine config, which the MCP is being updated from. When the update is complete,
the listed machine config is the desired machine config, which the MCP was updated to.

NOTE

If a node is being cordoned, that node is not included in the 
READYMACHINECOUNT, but is included in the MACHINECOUNT. Also, the
MCP status is set to UPDATING. Because the node has the current machine
config, it is counted in the UPDATEDMACHINECOUNT total:

Example output

2. To check the status of the nodes in an MCP by examining the MachineConfigPool custom
resource, run the following command: :

Example output

NAME      CONFIG                    UPDATED  UPDATING   DEGRADED  
MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT 
DEGRADEDMACHINECOUNT  AGE
master    rendered-master-06c9c4…   True     False      False     3             3                  
3                   0                     4h42m
worker    rendered-worker-c1b41a…   False    True       False     3             2                  
3                   0                     4h42m

$ oc describe mcp worker

...
  Degraded Machine Count:     0
  Machine Count:              3
  Observed Generation:        2

OpenShift Container Platform 4.15 Postinstallation configuration

110



NOTE

If a node is being cordoned, the node is not included in the Ready Machine 
Count. It is included in the Unavailable Machine Count:

Example output

3. To see each existing MachineConfig object, run the following command:

Example output

Note that the MachineConfig objects listed as rendered are not meant to be changed or
deleted.

4. To view the contents of a particular machine config (in this case, 01-master-kubelet), run the
following command:

The output from the command shows that this MachineConfig object contains both
configuration files (cloud.conf and kubelet.conf) and a systemd service (Kubernetes Kubelet):

Example output

  Ready Machine Count:        3
  Unavailable Machine Count:  0
  Updated Machine Count:      3
Events:                       <none>

...
  Degraded Machine Count:     0
  Machine Count:              3
  Observed Generation:        2
  Ready Machine Count:        2
  Unavailable Machine Count:  1
  Updated Machine Count:      3

$ oc get machineconfigs

NAME                             GENERATEDBYCONTROLLER          IGNITIONVERSION  AGE
00-master                        2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
00-worker                        2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
01-master-container-runtime      2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
01-master-kubelet                2c9371fbb673b97a6fe8b1c52…     3.2.0            5h18m
...
rendered-master-dde...           2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
rendered-worker-fde...           2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m

$ oc describe machineconfigs 01-master-kubelet

Name:         01-master-kubelet
...
Spec:
  Config:
    Ignition:

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

111



If something goes wrong with a machine config that you apply, you can always back out that change. For
example, if you had run oc create -f ./myconfig.yaml to apply a machine config, you could remove that
machine config by running the following command:

If that was the only problem, the nodes in the affected pool should return to a non-degraded state. This
actually causes the rendered configuration to roll back to its previously rendered state.

If you add your own machine configs to your cluster, you can use the commands shown in the previous
example to check their status and the related status of the pool to which they are applied.

7.1.5. Checking machine config node status

During updates you might want to monitor the progress of individual nodes in case issues arise and you
need to troubleshoot a node.

To see the status of the Machine Config Operator (MCO) updates to your cluster, use the following oc
commands:

IMPORTANT

      Version:  3.2.0
    Storage:
      Files:
        Contents:
          Source:   data:,
        Mode:       420
        Overwrite:  true
        Path:       /etc/kubernetes/cloud.conf
        Contents:
          Source:   
data:,kind%3A%20KubeletConfiguration%0AapiVersion%3A%20kubelet.config.k8s.io%2Fv1bet
a1%0Aauthentication%3A%0A%20%20x509%3A%0A%20%20%20%20clientCAFile%3A%20
%2Fetc%2Fkubernetes%2Fkubelet-ca.crt%0A%20%20anonymous...
        Mode:       420
        Overwrite:  true
        Path:       /etc/kubernetes/kubelet.conf
    Systemd:
      Units:
        Contents:  [Unit]
Description=Kubernetes Kubelet
Wants=rpc-statd.service network-online.target crio.service
After=network-online.target crio.service

ExecStart=/usr/bin/hyperkube \
    kubelet \
      --config=/etc/kubernetes/kubelet.conf \ ...

$ oc delete -f ./myconfig.yaml

OpenShift Container Platform 4.15 Postinstallation configuration

112



IMPORTANT

Improved MCO state reporting is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Procedure

1. Get a summary of update statuses for all nodes in all machine config pools by running the
following command:

Example output

where:

UPDATED

The True status indicates that the MCO has applied the current machine config to that
particular node. The False status indicates that the node is currently updating. The 
Unknown status means the operation is processing.

UPDATEPREPARED

The False status indicates that the MCO has not started reconciling the new machine
configs to be distributed. The True status indicates that the MCO has completed this phase
of the update. The Unknown status means the operation is processing.

UPDATEEXECUTED

The False status indicates that the MCO has not started cordoning and draining the node. It
also indicates that the disk state and operating system have not started updating. The True
status indicates that the MCO has completed this phase of the update. The Unknown status
means the operation is processing.

UPDATEPOSTACTIONCOMPLETED

The False status indicates that the MCO has not started rebooting the node or closing the
daemon. The True status indicates that the MCO has completed reboot and updating the

$ oc get machineconfignodes

NAME                          UPDATED   UPDATEPREPARED   UPDATEEXECUTED   
UPDATEPOSTACTIONCOMPLETED   UPDATECOMPLETED   RESUMED
ip-10-0-12-194.ec2.internal   True      False             False              False                    False              
False
ip-10-0-17-102.ec2.internal   False     True              False              False                    False              
False
ip-10-0-2-232.ec2.internal    False     False             True               False                    False              
False
ip-10-0-59-251.ec2.internal   False     False             False              True                     False              
False
ip-10-0-59-56.ec2.internal    False     False             False              False                    True               
True
ip-10-0-6-214.ec2.internal    False     False             Unknown            False                    False              
False

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

113

https://access.redhat.com/support/offerings/techpreview/


1

1

node status. The Unknown status indicates either that an error has occurred during the
update process at this phase, or that the MCO is currently applying the update.

UPDATECOMPLETED

The False status indicates that the MCO has not started uncordoning the node and
updating the node state and metrics. The True status indicates that the MCO has finished
updating the node state and available metrics.

RESUMED

The False status indicates that the MCO has not started the config drift monitor. The True
status indicates that the node has resumed operation. The Unknown status means the
operation is processing.

NOTE

Within the primary phases previously described, you can have secondary
phases which you can use to see the update progression in more detail. You
can get more information that includes secondary phases of updates by using
the -o wide option of the preceding command. This provides the additional 
UPDATECOMPATIBLE, UPDATEFILESANDOS, DRAINEDNODE, 
CORDONEDNODE, REBOOTNODE, RELOADEDCRIO and UNCORDONED
columns. These secondary phases do not always occur and depend on the
type of update you want to apply.

2. Check the update status of nodes in a specific machine config pool by running the following
command:

The name of the pool is the MachineConfigPool object name.

Example output

3. Check the update status of an individual node by running the following command:

The name of the node is the MachineConfigNode object name.

Example output

$ oc get machineconfignodes $(oc get machineconfignodes -o json | jq -r 
'.items[]|select(.spec.pool.name=="<pool_name>")|.metadata.name') 1

NAME                          UPDATED   UPDATEPREPARED   UPDATEEXECUTED   
UPDATEPOSTACTIONCOMPLETE   UPDATECOMPLETE   RESUMED
ip-10-0-48-226.ec2.internal   True      False            False            False                      False            
False
ip-10-0-5-241.ec2.internal    True      False            False            False                      False            
False
ip-10-0-74-108.ec2.internal   True      False            False            False                      False            
False

$ oc describe machineconfignode/<node_name> 1

OpenShift Container Platform 4.15 Postinstallation configuration

114



1

2

The desired configuration specified in the spec.configversion.desired field updates
immediately when a new configuration is detected on the node.

The desired configuration specified in the status.configversion.desired field updates
only when the new configuration is validated by the Machine Config Daemon (MCD). The
MCD performs validation by checking the current phase of the update. If the update
successfully passes the UPDATEPREPARED phase, then the status adds the new
configuration.

7.1.6. Viewing and interacting with certificates

The following certificates are handled in the cluster by the Machine Config Controller (MCC) and can be
found in the ControllerConfig resource:

/etc/kubernetes/kubelet-ca.crt

/etc/kubernetes/static-pod-resources/configmaps/cloud-config/ca-bundle.pem

Name:         <node_name>
Namespace:
Labels:       <none>
Annotations:  <none>
API Version:  machineconfiguration.openshift.io/v1alpha1
Kind:         MachineConfigNode
Metadata:
  Creation Timestamp:  2023-10-17T13:08:58Z
  Generation:          1
  Resource Version:    49443
  UID:                 4bd758ab-2187-413c-ac42-882e61761b1d
Spec:
  Node Ref:
    Name:         <node_name>
  Pool:
    Name:         master
  ConfigVersion:
    Desired: rendered-worker-823ff8dc2b33bf444709ed7cd2b9855b 1
Status:
  Conditions:
    Last Transition Time:  2023-10-17T13:09:02Z
    Message:               Node has completed update to config rendered-master-
cf99e619747ab19165f11e3546c71f1e
    Reason:                NodeUpgradeComplete
    Status:                True
    Type:                  Updated
    Last Transition Time:  2023-10-17T13:09:02Z
    Message:               This node has not yet entered the UpdatePreparing phase
    Reason:                NotYetOccured
    Status:                False
  Config Version:
    Current:            rendered-worker-823ff8dc2b33bf444709ed7cd2b9855b
    Desired:            rendered-worker-823ff8dc2b33bf444709ed7cd2b9855b 2
  Health:               Healthy
  Most Recent Error:
  Observed Generation:  3

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

115



/etc/pki/ca-trust/source/anchors/openshift-config-user-ca-bundle.crt

The MCC also handles the image registry certificates and its associated user bundle certificate.

You can get information about the listed certificates, including the underyling bundle the certificate
comes from, and the signing and subject data.

Procedure

Get detailed certificate information by running the following command:

Example output

Get a simpler version of the information found in the ControllerConfig by checking the machine
config pool status using the following command:

Example output

This method is meant for OpenShift Container Platform applications that already consume
machine config pool information.

Check which image registry certificates are on the nodes by looking at the contents of the 

$ oc get controllerconfig/machine-config-controller -o yaml | yq -y 
'.status.controllerCertificates'

"controllerCertificates": [
                   {
                       "bundleFile": "KubeAPIServerServingCAData",
                       "signer": "<signer_data1>",
                       "subject": "CN=openshift-kube-apiserver-operator_node-system-admin-
signer@168909215"
                   },
                   {
                       "bundleFile": "RootCAData",
                       "signer": "<signer_data2>",
                       "subject": "CN=root-ca,OU=openshift"
                   }
                ]

$ oc get mcp master -o yaml | yq -y '.status.certExpirys'

status:
  certExpirys:
  - bundle: KubeAPIServerServingCAData
    subject: CN=admin-kubeconfig-signer,OU=openshift
  - bundle: KubeAPIServerServingCAData
    subject: CN=kube-csr-signer_@1689585558
  - bundle: KubeAPIServerServingCAData
    subject: CN=kubelet-signer,OU=openshift
  - bundle: KubeAPIServerServingCAData
    subject: CN=kube-apiserver-to-kubelet-signer,OU=openshift
  - bundle: KubeAPIServerServingCAData
    subject: CN=kube-control-plane-signer,OU=openshift

OpenShift Container Platform 4.15 Postinstallation configuration

116



Check which image registry certificates are on the nodes by looking at the contents of the 
/etc/docker/cert.d directory:

Example output

7.2. USING MACHINECONFIG OBJECTS TO CONFIGURE NODES

You can use the tasks in this section to create MachineConfig objects that modify files, systemd unit
files, and other operating system features running on OpenShift Container Platform nodes. For more
ideas on working with machine configs, see content related to updating SSH authorized keys, verifying
image signatures, enabling SCTP, and configuring iSCSI initiatornames  for OpenShift Container
Platform.

OpenShift Container Platform supports Ignition specification version 3.2. All new machine configs you
create going forward should be based on Ignition specification version 3.2. If you are upgrading your
OpenShift Container Platform cluster, any existing Ignition specification version 2.x machine configs will
be translated automatically to specification version 3.2.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated. For more information on configuration drift,
see Understanding configuration drift detection .

TIP

Use the following "Configuring chrony time service" procedure as a model for how to go about adding
other configuration files to OpenShift Container Platform nodes.

7.2.1. Configuring chrony time service

You can set the time server and related settings used by the chrony time service (chronyd) by
modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine
config.

Procedure

1. Create a Butane config including the contents of the chrony.conf file. For example, to
configure chrony on worker nodes, create a 99-worker-chrony.bu file.

NOTE

See "Creating machine configs with Butane" for information about Butane.

# ls /etc/docker/certs.d

image-registry.openshift-image-registry.svc.cluster.local:5000 image-registry.openshift-
image-registry.svc:5000

variant: openshift
version: 4.15.0
metadata:

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

117

https://access.redhat.com/solutions/3868301
https://access.redhat.com/verify-images-ocp4
https://access.redhat.com/solutions/4727321
https://access.redhat.com/solutions/5170251
https://coreos.github.io/ignition/configuration-v3_2/


1 2

3

4

On control plane nodes, substitute master for worker in both of these locations.

Specify an octal value mode for the mode field in the machine config file. After creating
the file and applying the changes, the mode is converted to a decimal value. You can check
the YAML file with the command oc get mc <mc-name> -o yaml.

Specify any valid, reachable time source, such as the one provided by your DHCP server.
Alternately, you can specify any of the following NTP servers: 1.rhel.pool.ntp.org, 
2.rhel.pool.ntp.org, or 3.rhel.pool.ntp.org.

2. Use Butane to generate a MachineConfig object file, 99-worker-chrony.yaml, containing the
configuration to be delivered to the nodes:

3. Apply the configurations in one of two ways:

If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift directory, and then continue to create
the cluster.

If the cluster is already running, apply the file:

Additional resources

Creating machine configs with Butane

7.2.2. Disabling the chrony time service

You can disable the chrony time service (chronyd) for nodes with a specific role by using a 
MachineConfig custom resource (CR).

Prerequisites

Install the OpenShift CLI (oc).

  name: 99-worker-chrony 1
  labels:
    machineconfiguration.openshift.io/role: worker 2
storage:
  files:
  - path: /etc/chrony.conf
    mode: 0644 3
    overwrite: true
    contents:
      inline: |
        pool 0.rhel.pool.ntp.org iburst 4
        driftfile /var/lib/chrony/drift
        makestep 1.0 3
        rtcsync
        logdir /var/log/chrony

$ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml

$ oc apply -f ./99-worker-chrony.yaml

OpenShift Container Platform 4.15 Postinstallation configuration

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-special-config-butane_installing-customizing


1

Log in as a user with cluster-admin privileges.

Procedure

1. Create the MachineConfig CR that disables chronyd for the specified node role.

a. Save the following YAML in the disable-chronyd.yaml file:

Node role where you want to disable chronyd, for example, master.

b. Create the MachineConfig CR by running the following command:

7.2.3. Adding kernel arguments to nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This
should only be done with caution and clear understanding of the implications of the arguments you set.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: <node_role> 1
  name: disable-chronyd
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - contents: |
            [Unit]
            Description=NTP client/server
            Documentation=man:chronyd(8) man:chrony.conf(5)
            After=ntpdate.service sntp.service ntpd.service
            Conflicts=ntpd.service systemd-timesyncd.service
            ConditionCapability=CAP_SYS_TIME
            [Service]
            Type=forking
            PIDFile=/run/chrony/chronyd.pid
            EnvironmentFile=-/etc/sysconfig/chronyd
            ExecStart=/usr/sbin/chronyd $OPTIONS
            ExecStartPost=/usr/libexec/chrony-helper update-daemon
            PrivateTmp=yes
            ProtectHome=yes
            ProtectSystem=full
            [Install]
            WantedBy=multi-user.target
          enabled: false
          name: "chronyd.service"

$ oc create -f disable-chronyd.yaml

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

119



WARNING

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple
logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce
risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over
performance.

systemd.unified_cgroup_hierarchy: Enables Linux control group version 2  (cgroup v2). cgroup
v2 is the next version of the kernel control group and offers multiple improvements.

enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In
permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including
labeling objects and emitting access denial entries in the logs, but it does not actually deny any
operations. While not supported for production systems, permissive mode can be helpful for
debugging.

WARNING

Disabling SELinux on RHCOS in production is not supported. Once SELinux
has been disabled on a node, it must be re-provisioned before re-inclusion
in a production cluster.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig object that identifies:

A set of machines to which you want to add the kernel argument. In this case, machines with a
worker role.

Kernel arguments that are appended to the end of the existing kernel arguments.

A label that indicates where in the list of machine configs the change is applied.

Prerequisites

Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

1. List existing MachineConfig objects for your OpenShift Container Platform cluster to
determine how to label your machine config:





OpenShift Container Platform 4.15 Postinstallation configuration

120

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt


1

2

3

Example output

2. Create a MachineConfig object file that identifies the kernel argument (for example, 05-
worker-kernelarg-selinuxpermissive.yaml)

Applies the new kernel argument only to worker nodes.

Named to identify where it fits among the machine configs (05) and what it does (adds a
kernel argument to configure SELinux permissive mode).

Identifies the exact kernel argument as enforcing=0.

3. Create the new machine config:

$ oc get MachineConfig

NAME                                               GENERATEDBYCONTROLLER                      
IGNITIONVERSION   AGE
00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-ssh                                                                                 3.2.0             40m
99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-worker-ssh                                                                                 3.2.0             40m
rendered-master-23e785de7587df95a4b517e0647e5ab7   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker 1
  name: 05-worker-kernelarg-selinuxpermissive 2
spec:
  kernelArguments:
    - enforcing=0 3

$ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

121



4. Check the machine configs to see that the new one was added:

Example output

5. Check the nodes:

Example output

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command line arguments (in /proc/cmdline on the host):

Example output

$ oc get MachineConfig

NAME                                               GENERATEDBYCONTROLLER                      
IGNITIONVERSION   AGE
00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
05-worker-kernelarg-selinuxpermissive                                                         3.2.0             105s
99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-ssh                                                                                 3.2.0             40m
99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-worker-ssh                                                                                 3.2.0             40m
rendered-master-23e785de7587df95a4b517e0647e5ab7   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m

$ oc get nodes

NAME                           STATUS                     ROLES    AGE   VERSION
ip-10-0-136-161.ec2.internal   Ready                      worker   28m   v1.28.5
ip-10-0-136-243.ec2.internal   Ready                      master   34m   v1.28.5
ip-10-0-141-105.ec2.internal   Ready,SchedulingDisabled   worker   28m   v1.28.5
ip-10-0-142-249.ec2.internal   Ready                      master   34m   v1.28.5
ip-10-0-153-11.ec2.internal    Ready                      worker   28m   v1.28.5
ip-10-0-153-150.ec2.internal   Ready                      master   34m   v1.28.5

$ oc debug node/ip-10-0-141-105.ec2.internal

OpenShift Container Platform 4.15 Postinstallation configuration

122



You should see the enforcing=0 argument added to the other kernel arguments.

7.2.4. Enabling multipathing with kernel arguments on RHCOS

Red Hat Enterprise Linux CoreOS (RHCOS) supports multipathing on the primary disk, allowing
stronger resilience to hardware failure to achieve higher host availability. Postinstallation support is
available by activating multipathing via the machine config.

IMPORTANT

Enabling multipathing during installation is supported and recommended for nodes
provisioned in OpenShift Container Platform 4.8 or higher. In setups where any I/O to
non-optimized paths results in I/O system errors, you must enable multipathing at
installation time. For more information about enabling multipathing during installation
time, see "Enabling multipathing with kernel arguments on RHCOS" in the Installing on
bare metal documentation.

IMPORTANT

On IBM Z® and IBM® LinuxONE, you can enable multipathing only if you configured your
cluster for it during installation. For more information, see "Installing RHCOS and starting
the OpenShift Container Platform bootstrap process" in Installing a cluster with z/VM on
IBM Z® and IBM® LinuxONE.

Prerequisites

You have a running OpenShift Container Platform cluster that uses version 4.7 or later.

You are logged in to the cluster as a user with administrative privileges.

You have confirmed that the disk is enabled for multipathing. Multipathing is only supported on
hosts that are connected to a SAN via an HBA adapter.

Procedure

1. To enable multipathing postinstallation on control plane nodes:

Create a machine config file, such as 99-master-kargs-mpath.yaml, that instructs the
cluster to add the master label and that identifies the multipath kernel argument, for
example:

Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0

sh-4.2# exit

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

123



2. To enable multipathing postinstallation on worker nodes:

Create a machine config file, such as 99-worker-kargs-mpath.yaml, that instructs the
cluster to add the worker label and that identifies the multipath kernel argument, for
example:

3. Create the new machine config by using either the master or worker YAML file you previously
created:

4. Check the machine configs to see that the new one was added:

Example output

  labels:
    machineconfiguration.openshift.io/role: "master"
  name: 99-master-kargs-mpath
spec:
  kernelArguments:
    - 'rd.multipath=default'
    - 'root=/dev/disk/by-label/dm-mpath-root'

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: "worker"
  name: 99-worker-kargs-mpath
spec:
  kernelArguments:
    - 'rd.multipath=default'
    - 'root=/dev/disk/by-label/dm-mpath-root'

$ oc create -f ./99-worker-kargs-mpath.yaml

$ oc get MachineConfig

NAME                                               GENERATEDBYCONTROLLER                      
IGNITIONVERSION   AGE
00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-ssh                                                                                 3.2.0             40m
99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   

OpenShift Container Platform 4.15 Postinstallation configuration

124



5. Check the nodes:

Example output

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command line arguments (in /proc/cmdline on the host):

Example output

You should see the added kernel arguments.

Additional resources

See Enabling multipathing with kernel arguments on RHCOS  for more information about
enabling multipathing during installation time.

7.2.5. Adding a real-time kernel to nodes

Some OpenShift Container Platform workloads require a high degree of determinism.While Linux is not

3.2.0             33m
99-worker-kargs-mpath                              52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             105s
99-worker-ssh                                                                                 3.2.0             40m
rendered-master-23e785de7587df95a4b517e0647e5ab7   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m

$ oc get nodes

NAME                           STATUS                     ROLES    AGE   VERSION
ip-10-0-136-161.ec2.internal   Ready                      worker   28m   v1.28.5
ip-10-0-136-243.ec2.internal   Ready                      master   34m   v1.28.5
ip-10-0-141-105.ec2.internal   Ready,SchedulingDisabled   worker   28m   v1.28.5
ip-10-0-142-249.ec2.internal   Ready                      master   34m   v1.28.5
ip-10-0-153-11.ec2.internal    Ready                      worker   28m   v1.28.5
ip-10-0-153-150.ec2.internal   Ready                      master   34m   v1.28.5

$ oc debug node/ip-10-0-141-105.ec2.internal

Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# cat /host/proc/cmdline
...
rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
...

sh-4.2# exit

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

125

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#rhcos-enabling-multipath_installing-bare-metal


Some OpenShift Container Platform workloads require a high degree of determinism.While Linux is not
a real-time operating system, the Linux real-time kernel includes a preemptive scheduler that provides
the operating system with real-time characteristics.

If your OpenShift Container Platform workloads require these real-time characteristics, you can switch
your machines to the Linux real-time kernel. For OpenShift Container Platform, 4.15 you can make this
switch using a MachineConfig object. Although making the change is as simple as changing a machine
config kernelType setting to realtime, there are a few other considerations before making the change:

Currently, real-time kernel is supported only on worker nodes, and only for radio access network
(RAN) use.

The following procedure is fully supported with bare metal installations that use systems that
are certified for Red Hat Enterprise Linux for Real Time 8.

Real-time support in OpenShift Container Platform is limited to specific subscriptions.

The following procedure is also supported for use with Google Cloud Platform.

Prerequisites

Have a running OpenShift Container Platform cluster (version 4.4 or later).

Log in to the cluster as a user with administrative privileges.

Procedure

1. Create a machine config for the real-time kernel: Create a YAML file (for example, 99-worker-
realtime.yaml) that contains a MachineConfig object for the realtime kernel type. This
example tells the cluster to use a real-time kernel for all worker nodes:

2. Add the machine config to the cluster. Type the following to add the machine config to the
cluster:

3. Check the real-time kernel: Once each impacted node reboots, log in to the cluster and run the
following commands to make sure that the real-time kernel has replaced the regular kernel for
the set of nodes you configured:

Example output

$ cat << EOF > 99-worker-realtime.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: "worker"
  name: 99-worker-realtime
spec:
  kernelType: realtime
EOF

$ oc create -f 99-worker-realtime.yaml

$ oc get nodes

OpenShift Container Platform 4.15 Postinstallation configuration

126



Example output

The kernel name contains rt and text “PREEMPT RT” indicates that this is a real-time kernel.

4. To go back to the regular kernel, delete the MachineConfig object:

7.2.6. Configuring journald settings

If you need to configure settings for the journald service on OpenShift Container Platform nodes, you
can do that by modifying the appropriate configuration file and passing the file to the appropriate pool
of nodes as a machine config.

This procedure describes how to modify journald rate limiting settings in the 
/etc/systemd/journald.conf file and apply them to worker nodes. See the journald.conf man page for
information on how to use that file.

Prerequisites

Have a running OpenShift Container Platform cluster.

Log in to the cluster as a user with administrative privileges.

Procedure

1. Create a Butane config file, 40-worker-custom-journald.bu, that includes an 
/etc/systemd/journald.conf file with the required settings.

NOTE

See "Creating machine configs with Butane" for information about Butane.

NAME                                        STATUS  ROLES    AGE   VERSION
ip-10-0-143-147.us-east-2.compute.internal  Ready   worker   103m  v1.28.5
ip-10-0-146-92.us-east-2.compute.internal   Ready   worker   101m  v1.28.5
ip-10-0-169-2.us-east-2.compute.internal    Ready   worker   102m  v1.28.5

$ oc debug node/ip-10-0-143-147.us-east-2.compute.internal

Starting pod/ip-10-0-143-147us-east-2computeinternal-debug ...
To use host binaries, run `chroot /host`

sh-4.4# uname -a
Linux <worker_node> 4.18.0-147.3.1.rt24.96.el8_1.x86_64 #1 SMP PREEMPT RT
        Wed Nov 27 18:29:55 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

$ oc delete -f 99-worker-realtime.yaml

variant: openshift
version: 4.15.0
metadata:
  name: 40-worker-custom-journald
  labels:

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

127



2. Use Butane to generate a MachineConfig object file, 40-worker-custom-journald.yaml,
containing the configuration to be delivered to the worker nodes:

3. Apply the machine config to the pool:

4. Check that the new machine config is applied and that the nodes are not in a degraded state. It
might take a few minutes. The worker pool will show the updates in progress, as each node
successfully has the new machine config applied:

5. To check that the change was applied, you can log in to a worker node:

    machineconfiguration.openshift.io/role: worker
storage:
  files:
  - path: /etc/systemd/journald.conf
    mode: 0644
    overwrite: true
    contents:
      inline: |
        # Disable rate limiting
        RateLimitInterval=1s
        RateLimitBurst=10000
        Storage=volatile
        Compress=no
        MaxRetentionSec=30s

$ butane 40-worker-custom-journald.bu -o 40-worker-custom-journald.yaml

$ oc apply -f 40-worker-custom-journald.yaml

$ oc get machineconfigpool
NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT 
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT 
AGE
master rendered-master-35 True    False    False    3            3                 3                   0                    
34m
worker rendered-worker-d8 False   True     False    3            1                 1                   0                    
34m

$ oc get node | grep worker
ip-10-0-0-1.us-east-2.compute.internal   Ready    worker   39m   v0.0.0-master+$Format:%h$
$ oc debug node/ip-10-0-0-1.us-east-2.compute.internal
Starting pod/ip-10-0-141-142us-east-2computeinternal-debug ...
...
sh-4.2# chroot /host
sh-4.4# cat /etc/systemd/journald.conf
# Disable rate limiting
RateLimitInterval=1s
RateLimitBurst=10000
Storage=volatile
Compress=no
MaxRetentionSec=30s
sh-4.4# exit

OpenShift Container Platform 4.15 Postinstallation configuration

128



Additional resources

Creating machine configs with Butane

7.2.7. Adding extensions to RHCOS

RHCOS is a minimal container-oriented RHEL operating system, designed to provide a common set of
capabilities to OpenShift Container Platform clusters across all platforms. While adding software
packages to RHCOS systems is generally discouraged, the MCO provides an extensions feature you
can use to add a minimal set of features to RHCOS nodes.

Currently, the following extensions are available:

usbguard: Adding the usbguard extension protects RHCOS systems from attacks from
intrusive USB devices. See USBGuard for details.

kerberos: Adding the kerberos extension provides a mechanism that allows both users and
machines to identify themselves to the network to receive defined, limited access to the areas
and services that an administrator has configured. See Using Kerberos for details, including how
to set up a Kerberos client and mount a Kerberized NFS share.

The following procedure describes how to use a machine config to add one or more extensions to your
RHCOS nodes.

Prerequisites

Have a running OpenShift Container Platform cluster (version 4.6 or later).

Log in to the cluster as a user with administrative privileges.

Procedure

1. Create a machine config for extensions: Create a YAML file (for example, 80-extensions.yaml)
that contains a MachineConfig extensions object. This example tells the cluster to add the 
usbguard extension.

2. Add the machine config to the cluster. Type the following to add the machine config to the
cluster:

$ cat << EOF > 80-extensions.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 80-worker-extensions
spec:
  config:
    ignition:
      version: 3.2.0
  extensions:
    - usbguard
EOF

$ oc create -f 80-extensions.yaml

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-special-config-butane_installing-customizing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#usbguard_protecting-systems-against-intrusive-usb-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos


This sets all worker nodes to have rpm packages for usbguard installed.

3. Check that the extensions were applied:

Example output

4. Check that the new machine config is now applied and that the nodes are not in a degraded
state. It may take a few minutes. The worker pool will show the updates in progress, as each
machine successfully has the new machine config applied:

Example output

5. Check the extensions. To check that the extension was applied, run:

Example output

Example output

7.2.8. Loading custom firmware blobs in the machine config manifest

Because the default location for firmware blobs in /usr/lib is read-only, you can locate a custom
firmware blob by updating the search path. This enables you to load local firmware blobs in the machine
config manifest when the blobs are not managed by RHCOS.

$ oc get machineconfig 80-worker-extensions

NAME                 GENERATEDBYCONTROLLER IGNITIONVERSION AGE
80-worker-extensions                       3.2.0           57s

$ oc get machineconfigpool

NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT 
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT 
AGE
master rendered-master-35 True    False    False    3            3                 3                   0                    
34m
worker rendered-worker-d8 False   True     False    3            1                 1                   0                    
34m

$ oc get node | grep worker

NAME                                        STATUS  ROLES    AGE   VERSION
ip-10-0-169-2.us-east-2.compute.internal    Ready   worker   102m  v1.28.5

$ oc debug node/ip-10-0-169-2.us-east-2.compute.internal

...
To use host binaries, run `chroot /host`
sh-4.4# chroot /host
sh-4.4# rpm -q usbguard
usbguard-0.7.4-4.el8.x86_64.rpm

OpenShift Container Platform 4.15 Postinstallation configuration

130



1

2

3

4

Procedure

1. Create a Butane config file, 98-worker-firmware-blob.bu, that updates the search path so that
it is root-owned and writable to local storage. The following example places the custom blob file
from your local workstation onto nodes under /var/lib/firmware.

NOTE

See "Creating machine configs with Butane" for information about Butane.

Butane config file for custom firmware blob

Sets the path on the node where the firmware package is copied to.

Specifies a file with contents that are read from a local file directory on the system running
Butane. The path of the local file is relative to a files-dir directory, which must be specified
by using the --files-dir option with Butane in the following step.

Sets the permissions for the file on the RHCOS node. It is recommended to set 0644
permissions.

The firmware_class.path parameter customizes the kernel search path of where to look
for the custom firmware blob that was copied from your local workstation onto the root file
system of the node. This example uses /var/lib/firmware as the customized path.

2. Run Butane to generate a MachineConfig object file that uses a copy of the firmware blob on
your local workstation named 98-worker-firmware-blob.yaml. The firmware blob contains the
configuration to be delivered to the nodes. The following example uses the --files-dir option to
specify the directory on your workstation where the local file or files are located:

3. Apply the configurations to the nodes in one of two ways:

If the cluster is not running yet, after you generate manifest files, add the MachineConfig

variant: openshift
version: 4.15.0
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 98-worker-firmware-blob
storage:
  files:
  - path: /var/lib/firmware/<package_name> 1
    contents:
      local: <package_name> 2
    mode: 0644 3
openshift:
  kernel_arguments:
    - 'firmware_class.path=/var/lib/firmware' 4

$ butane 98-worker-firmware-blob.bu -o 98-worker-firmware-blob.yaml --files-dir 
<directory_including_package_name>

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

131



If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift directory, and then continue to create
the cluster.

If the cluster is already running, apply the file:

A MachineConfig object YAML file is created for you to finish configuring your machines.

4. Save the Butane config in case you need to update the MachineConfig object in the future.

Additional resources

Creating machine configs with Butane

7.2.9. Changing the core user password for node access

By default, Red Hat Enterprise Linux CoreOS (RHCOS) creates a user named core on the nodes in your
cluster. You can use the core user to access the node through a cloud provider serial console or a bare
metal baseboard controller manager (BMC). This can be helpful, for example, if a node is down and you
cannot access that node by using SSH or the oc debug node command. However, by default, there is
no password for this user, so you cannot log in without creating one.

You can create a password for the core user by using a machine config. The Machine Config Operator
(MCO) assigns the password and injects the password into the /etc/shadow file, allowing you to log in
with the core user. The MCO does not examine the password hash. As such, the MCO cannot report if
there is a problem with the password.

NOTE

The password works only through a cloud provider serial console or a BMC. It
does not work with SSH.

If you have a machine config that includes an /etc/shadow file or a systemd unit
that sets a password, it takes precedence over the password hash.

You can change the password, if needed, by editing the machine config you used to create the
password. Also, you can remove the password by deleting the machine config. Deleting the machine
config does not remove the user account.

Prerequisites

Create a hashed password by using a tool that is supported by your operating system.

Procedure

1. Create a machine config file that contains the core username and the hashed password:

$ oc apply -f 98-worker-firmware-blob.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: set-core-user-password

OpenShift Container Platform 4.15 Postinstallation configuration

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-special-config-butane_installing-customizing


1

2

This must be core.

The hashed password to use with the core account.

2. Create the machine config by running the following command:

The nodes do not reboot and should become available in a few moments. You can use the oc 
get mcp to watch for the machine config pools to be updated, as shown in the following
example:

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   
MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   
DEGRADEDMACHINECOUNT   AGE
master   rendered-master-d686a3ffc8fdec47280afec446fce8dd   True      False      False      3              
3                   3                     0                      64m
worker   rendered-worker-4605605a5b1f9de1d061e9d350f251e5   False     True       False      
3              0                   0                     0                      64m

Verification

1. After the nodes return to the UPDATED=True state, start a debug session for a node by
running the following command:

2. Set /host as the root directory within the debug shell by running the following command:

3. Check the contents of the /etc/shadow file:

Example output

The hashed password is assigned to the core user.

7.3. CONFIGURING MCO-RELATED CUSTOM RESOURCES

spec:
  config:
    ignition:
      version: 3.2.0
    passwd:
      users:
      - name: core 1
        passwordHash: <password> 2

$ oc create -f <file-name>.yaml

$ oc debug node/<node_name>

sh-4.4# chroot /host

...
core:$6$2sE/010goDuRSxxv$o18K52wor.wIwZp:19418:0:99999:7:::
...

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

133



Besides managing MachineConfig objects, the MCO manages two custom resources (CRs): 
KubeletConfig and ContainerRuntimeConfig. Those CRs let you change node-level settings
impacting how the Kubelet and CRI-O container runtime services behave.

7.3.1. Creating a KubeletConfig CRD to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the 
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Consider the following guidance:

Create one KubeletConfig CR for each machine config pool with all the config changes you
want for that pool. If you are applying the same content to all of the pools, you need only one 
KubeletConfig CR for all of the pools.

Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of
creating a CR for each change. It is recommended that you create a CR only to modify a
different machine config pool, or for changes that are intended to be temporary, so that you
can revert the changes.

As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first 
KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended
with kubelet. With each subsequent CR, the controller creates another kubelet machine config
with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next
kubelet machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

NOTE

If you have a machine config with a kubelet-9 suffix, and you create another 
KubeletConfig CR, a new machine config is not created, even if there are fewer than 10 
kubelet machine configs.

Example KubeletConfig CR

Example showing a KubeletConfig machine config

$ oc get kubeletconfig

NAME                AGE
set-max-pods        15m

$ oc get mc | grep kubelet

OpenShift Container Platform 4.15 Postinstallation configuration

134

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/


1

The following procedure is an example to show how to configure the maximum number of pods per
node on the worker nodes.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CR for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. Check the current value for the maximum pods per node:

For example:

...
99-worker-generated-kubelet-1                  b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             
26m
...

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  creationTimestamp: 2019-02-08T14:52:39Z
  generation: 1
  labels:
    custom-kubelet: set-max-pods 1

$ oc label machineconfigpool worker custom-kubelet=set-max-pods

$ oc get machineconfig

$ oc describe node <node_name>

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

135



1

2

Look for value: pods: <value> in the Allocatable stanza:

Example output

3. Set the maximum pods per node on the worker nodes by creating a custom resource file that
contains the kubelet configuration:

IMPORTANT

Kubelet configurations that target a specific machine config pool also affect any
dependent pools. For example, creating a kubelet configuration for the pool
containing worker nodes will also apply to any subset pools, including the pool
containing infrastructure nodes. To avoid this, you must create a new machine
config pool with a selection expression that only includes worker nodes, and have
your kubelet configuration target this new pool.

Enter the label from the machine config pool.

Add the kubelet configuration. In this example, use maxPods to set the maximum pods per
node.

NOTE

$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

Allocatable:
 attachable-volumes-aws-ebs:  25
 cpu:                         3500m
 hugepages-1Gi:               0
 hugepages-2Mi:               0
 memory:                      15341844Ki
 pods:                        250

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: set-max-pods
spec:
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: set-max-pods 1
  kubeletConfig:
    maxPods: 500 2

OpenShift Container Platform 4.15 Postinstallation configuration

136



NOTE

The rate at which the kubelet talks to the API server depends on queries per
second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100
for kubeAPIBurst, are sufficient if there are limited pods running on each node.
It is recommended to update the kubelet QPS and burst rates if there are enough
CPU and memory resources on the node.

a. Update the machine config pool for workers with the label:

b. Create the KubeletConfig object:

c. Verify that the KubeletConfig object is created:

Example output

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15
minutes.

4. Verify that the changes are applied to the node:

a. Check on a worker node that the maxPods value changed:

b. Locate the Allocatable stanza:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: set-max-pods
spec:
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: set-max-pods
  kubeletConfig:
    maxPods: <pod_count>
    kubeAPIBurst: <burst_rate>
    kubeAPIQPS: <QPS>

$ oc label machineconfigpool worker custom-kubelet=set-max-pods

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

NAME                AGE
set-max-pods        15m

$ oc describe node <node_name>

 ...
Allocatable:
  attachable-volumes-gce-pd:  127

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

137



1 In this example, the pods parameter should report the value you set in the 
KubeletConfig object.

5. Verify the change in the KubeletConfig object:

This should show a status of True and type:Success, as shown in the following example:

7.3.2. Creating a ContainerRuntimeConfig CR to edit CRI-O parameters

You can change some of the settings associated with the OpenShift Container Platform CRI-O runtime
for the nodes associated with a specific machine config pool (MCP). Using a ContainerRuntimeConfig
custom resource (CR), you set the configuration values and add a label to match the MCP. The MCO
then rebuilds the crio.conf and storage.conf configuration files on the associated nodes with the
updated values.

NOTE

To revert the changes implemented by using a ContainerRuntimeConfig CR, you must
delete the CR. Removing the label from the machine config pool does not revert the
changes.

You can modify the following settings by using a ContainerRuntimeConfig CR:

PIDs limit: Setting the PIDs limit in the ContainerRuntimeConfig is expected to be deprecated.
If PIDs limits are required, it is recommended to use the podPidsLimit field in the 
KubeletConfig CR instead. The default value of the podPidsLimit field is 4096.

NOTE

  cpu:                        3500m
  ephemeral-storage:          123201474766
  hugepages-1Gi:              0
  hugepages-2Mi:              0
  memory:                     14225400Ki
  pods:                       500 1
 ...

$ oc get kubeletconfigs set-max-pods -o yaml

spec:
  kubeletConfig:
    maxPods: 500
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: set-max-pods
status:
  conditions:
  - lastTransitionTime: "2021-06-30T17:04:07Z"
    message: Success
    status: "True"
    type: Success

OpenShift Container Platform 4.15 Postinstallation configuration

138



NOTE

The CRI-O flag is applied on the cgroup of the container, while the Kubelet flag is
set on the cgroup of the pod. Please adjust the PIDs limit accordingly.

Log level: The logLevel parameter sets the CRI-O log_level parameter, which is the level of
verbosity for log messages. The default is info (log_level = info). Other options include fatal, 
panic, error, warn, debug, and trace.

Overlay size: The overlaySize parameter sets the CRI-O Overlay storage driver size
parameter, which is the maximum size of a container image.

Maximum log size: Setting the maximum log size in the ContainerRuntimeConfig is expected
to be deprecated. If a maximum log size is required, it is recommended to use the 
containerLogMaxSize field in the KubeletConfig CR instead.

Container runtime: The defaultRuntime parameter sets the container runtime to either runc
or crun. The default is runc.

You should have one ContainerRuntimeConfig CR for each machine config pool with all the config
changes you want for that pool. If you are applying the same content to all the pools, you only need one 
ContainerRuntimeConfig CR for all the pools.

You should edit an existing ContainerRuntimeConfig CR to modify existing settings or add new
settings instead of creating a new CR for each change. It is recommended to create a new 
ContainerRuntimeConfig CR only to modify a different machine config pool, or for changes that are
intended to be temporary so that you can revert the changes.

You can create multiple ContainerRuntimeConfig CRs, as needed, with a limit of 10 per cluster. For the
first ContainerRuntimeConfig CR, the MCO creates a machine config appended with 
containerruntime. With each subsequent CR, the controller creates a new containerruntime machine
config with a numeric suffix. For example, if you have a containerruntime machine config with a -2
suffix, the next containerruntime machine config is appended with -3.

If you want to delete the machine configs, you should delete them in reverse order to avoid exceeding
the limit. For example, you should delete the containerruntime-3 machine config before deleting the 
containerruntime-2 machine config.

NOTE

If you have a machine config with a containerruntime-9 suffix, and you create another 
ContainerRuntimeConfig CR, a new machine config is not created, even if there are
fewer than 10 containerruntime machine configs.

Example showing multiple ContainerRuntimeConfig CRs

Example output

$ oc get ctrcfg

NAME         AGE
ctr-overlay  15m
ctr-level    5m45s

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

139



1

2

3

4

Example showing multiple containerruntime machine configs

Example output

The following example sets the log_level field to debug and sets the overlay size to 8 GB:

Example ContainerRuntimeConfig CR

Specifies the machine config pool label.

Optional: Specifies the level of verbosity for log messages.

Optional: Specifies the maximum size of a container image.

Optional: Specifies the container runtime to deploy to new containers. The default value is runc.

Procedure

To change CRI-O settings using the ContainerRuntimeConfig CR:

1. Create a YAML file for the ContainerRuntimeConfig CR:

$ oc get mc | grep container

...
01-master-container-runtime                        b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             
57m
...
01-worker-container-runtime                        b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             
57m
...
99-worker-generated-containerruntime               b5c5119de007945b6fe6fb215db3b8e2ceb12511   
3.2.0             26m
99-worker-generated-containerruntime-1             b5c5119de007945b6fe6fb215db3b8e2ceb12511   
3.2.0             17m
99-worker-generated-containerruntime-2             b5c5119de007945b6fe6fb215db3b8e2ceb12511   
3.2.0             7m26s
...

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
   matchLabels:
     pools.operator.machineconfiguration.openshift.io/worker: '' 1
 containerRuntimeConfig:
   logLevel: debug 2
   overlaySize: 8G 3
   defaultRuntime: "crun" 4

apiVersion: machineconfiguration.openshift.io/v1

OpenShift Container Platform 4.15 Postinstallation configuration

140



1

2

Specify a label for the machine config pool that you want you want to modify.

Set the parameters as needed.

2. Create the ContainerRuntimeConfig CR:

3. Verify that the CR is created:

Example output

4. Check that a new containerruntime machine config is created:

Example output

5. Monitor the machine config pool until all are shown as ready:

Example output

6. Verify that the settings were applied in CRI-O:

a. Open an oc debug session to a node in the machine config pool and run chroot /host.

kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
   matchLabels:
     pools.operator.machineconfiguration.openshift.io/worker: '' 1
 containerRuntimeConfig: 2
   logLevel: debug
   overlaySize: 8G

$ oc create -f <file_name>.yaml

$ oc get ContainerRuntimeConfig

NAME           AGE
overlay-size   3m19s

$ oc get machineconfigs | grep containerrun

99-worker-generated-containerruntime   2c9371fbb673b97a6fe8b1c52691999ed3a1bfc2  
3.2.0  31s

$ oc get mcp worker

NAME    CONFIG               UPDATED  UPDATING  DEGRADED  MACHINECOUNT  
READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  
AGE
worker  rendered-worker-169  False    True      False     3             1                  1                    0                     
9h

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

141



b. Verify the changes in the crio.conf file:

Example output

c. Verify the changes in the `storage.conf`file:

Example output

[storage]
  driver = "overlay"
  runroot = "/var/run/containers/storage"
  graphroot = "/var/lib/containers/storage"
  [storage.options]
    additionalimagestores = []
    size = "8G"

7.3.3. Setting the default maximum container root partition size for Overlay with
CRI-O

The root partition of each container shows all of the available disk space of the underlying host. Follow
this guidance to set a maximum partition size for the root disk of all containers.

To configure the maximum Overlay size, as well as other CRI-O options like the log level, you can create
the following ContainerRuntimeConfig custom resource definition (CRD):

Procedure

1. Create the configuration object:

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# crio config | grep 'log_level'

log_level = "debug"

sh-4.4# head -n 7 /etc/containers/storage.conf

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
   matchLabels:
     custom-crio: overlay-size
 containerRuntimeConfig:
   logLevel: debug
   overlaySize: 8G

OpenShift Container Platform 4.15 Postinstallation configuration

142



2. To apply the new CRI-O configuration to your worker nodes, edit the worker machine config
pool:

3. Add the custom-crio label based on the matchLabels name you set in the 
ContainerRuntimeConfig CRD:

4. Save the changes, then view the machine configs:

New 99-worker-generated-containerruntime and rendered-worker-xyz objects are created:

Example output

5. After those objects are created, monitor the machine config pool for the changes to be applied:

The worker nodes show UPDATING as True, as well as the number of machines, the number
updated, and other details:

Example output

When complete, the worker nodes transition back to UPDATING as False, and the 
UPDATEDMACHINECOUNT number matches the MACHINECOUNT:

Example output

$ oc apply -f overlaysize.yml

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  creationTimestamp: "2020-07-09T15:46:34Z"
  generation: 3
  labels:
    custom-crio: overlay-size
    machineconfiguration.openshift.io/mco-built-in: ""

$ oc get machineconfigs

99-worker-generated-containerruntime  4173030d89fbf4a7a0976d1665491a4d9a6e54f1   
3.2.0             7m42s
rendered-worker-xyz                   4173030d89fbf4a7a0976d1665491a4d9a6e54f1   3.2.0             
7m36s

$ oc get mcp worker

NAME   CONFIG              UPDATED   UPDATING   DEGRADED  MACHINECOUNT  
READYMACHINECOUNT  UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   
AGE
worker rendered-worker-xyz False True False     3             2                   2                    0                      
20h

NAME   CONFIG              UPDATED   UPDATING   DEGRADED  MACHINECOUNT  

CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS

143



Looking at a worker machine, you see that the new 8 GB max size configuration is applied to all
of the workers:

Example output

Looking inside a container, you see that the root partition is now 8 GB:

Example output

READYMACHINECOUNT  UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   
AGE
worker   rendered-worker-xyz   True      False      False      3         3            3             0           
20h

head -n 7 /etc/containers/storage.conf
[storage]
  driver = "overlay"
  runroot = "/var/run/containers/storage"
  graphroot = "/var/lib/containers/storage"
  [storage.options]
    additionalimagestores = []
    size = "8G"

~ $ df -h
Filesystem                Size      Used Available Use% Mounted on
overlay                   8.0G      8.0K      8.0G   0% /

OpenShift Container Platform 4.15 Postinstallation configuration

144



CHAPTER 8. POSTINSTALLATION CLUSTER TASKS
After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements.

8.1. AVAILABLE CLUSTER CUSTOMIZATIONS

You complete most of the cluster configuration and customization after you deploy your OpenShift
Container Platform cluster. A number of configuration resources are available.

NOTE

If you install your cluster on IBM Z®, not all features and functions are available.

You modify the configuration resources to configure the major features of the cluster, such as the
image registry, networking configuration, image build behavior, and the identity provider.

For current documentation of the settings that you control by using these resources, use the oc explain
command, for example oc explain builds --api-version=config.openshift.io/v1

8.1.1. Cluster configuration resources

All cluster configuration resources are globally scoped (not namespaced) and named cluster.

Resource name Description

apiserver.config
.openshift.io

Provides API server configuration such as certificates and certificate authorities.

authentication.c
onfig.openshift.i
o

Controls the identity provider and authentication configuration for the cluster.

build.config.ope
nshift.io

Controls default and enforced configuration for all builds on the cluster.

console.config.
openshift.io

Configures the behavior of the web console interface, including the logout behavior.

featuregate.conf
ig.openshift.io

Enables FeatureGates so that you can use Tech Preview features.

image.config.op
enshift.io

Configures how specific image registries should be treated (allowed, disallowed,
insecure, CA details).

ingress.config.o
penshift.io

Configuration details related to routing such as the default domain for routes.

oauth.config.op
enshift.io

Configures identity providers and other behavior related to internal OAuth server flows.

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

145

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#api-server-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/builds_using_buildconfig/#build-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/web_console/#configuring-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cluster-enabling
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/#image-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#nw-installation-ingress-config-asset_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-internal-oauth


project.config.o
penshift.io

Configures how projects are created including the project template.

proxy.config.op
enshift.io

Defines proxies to be used by components needing external network access. Note: not
all components currently consume this value.

scheduler.confi
g.openshift.io

Configures scheduler behavior such as profiles and default node selectors.

Resource name Description

8.1.2. Operator configuration resources

These configuration resources are cluster-scoped instances, named cluster, which control the behavior
of a specific component as owned by a particular Operator.

Resource name Description

consoles.operat
or.openshift.io

Controls console appearance such as branding customizations

config.imagereg
istry.operator.o
penshift.io

Configures OpenShift image registry settings such as public routing, log levels, proxy
settings, resource constraints, replica counts, and storage type.

config.samples.
operator.opens
hift.io

Configures the Samples Operator to control which example image streams and
templates are installed on the cluster.

8.1.3. Additional configuration resources

These configuration resources represent a single instance of a particular component. In some cases, you
can request multiple instances by creating multiple instances of the resource. In other cases, the
Operator can use only a specific resource instance name in a specific namespace. Reference the
component-specific documentation for details on how and when you can create additional resource
instances.

Resource
name

Instance
name

Namespace Description

alertmana
ger.monit
oring.core
os.com

main openshift-
monitorin
g

Controls the Alertmanager deployment parameters.

OpenShift Container Platform 4.15 Postinstallation configuration

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#registry-operator-configuration-resource-overview_configuring-registry-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/#configuring-samples-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#managing-alerts


ingressco
ntroller.op
erator.ope
nshift.io

default openshift-
ingress-
operator

Configures Ingress Operator behavior such as domain,
number of replicas, certificates, and controller placement.

Resource
name

Instance
name

Namespace Description

8.1.4. Informational Resources

You use these resources to retrieve information about the cluster. Some configurations might require
you to edit these resources directly.

Resource
name

Instance name Description

clusterversio
n.config.ope
nshift.io

version In OpenShift Container Platform 4.15, you must not customize the 
ClusterVersion resource for production clusters. Instead, follow the
process to update a cluster.

dns.config.o
penshift.io

cluster You cannot modify the DNS settings for your cluster. You can view the
DNS Operator status.

infrastructur
e.config.ope
nshift.io

cluster Configuration details allowing the cluster to interact with its cloud
provider.

network.conf
ig.openshift.i
o

cluster You cannot modify your cluster networking after installation. To
customize your network, follow the process to customize networking
during installation.

8.2. UPDATING THE GLOBAL CLUSTER PULL SECRET

You can update the global pull secret for your cluster by either replacing the current pull secret or
appending a new pull secret.

The procedure is required when users use a separate registry to store images than the registry used
during installation.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To append a new pull secret to the existing pull secret, complete the following steps:

a. Enter the following command to download the pull secret:

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

147

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#updating-cluster-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-network-customizations


1

1

2

3

1

Provide the path to the pull secret file.

b. Enter the following command to add the new pull secret:

Provide the new registry. You can include multiple repositories within the same
registry, for example: --registry="<registry/my-namespace/my-repository>".

Provide the credentials of the new registry.

Provide the path to the pull secret file.

Alternatively, you can perform a manual update to the pull secret file.

2. Enter the following command to update the global pull secret for your cluster:

Provide the path to the new pull secret file.

This update is rolled out to all nodes, which can take some time depending on the size of your
cluster.

NOTE

As of OpenShift Container Platform 4.7.4, changes to the global pull secret no
longer trigger a node drain or reboot.

8.3. ADDING WORKER NODES

After you deploy your OpenShift Container Platform cluster, you can add worker nodes to scale cluster
resources. There are different ways you can add worker nodes depending on the installation method and
the environment of your cluster.

8.3.1. Adding worker nodes to installer-provisioned infrastructure clusters

For installer-provisioned infrastructure clusters, you can manually or automatically scale the 
MachineSet object to match the number of available bare-metal hosts.

To add a bare-metal host, you must configure all network prerequisites, configure an associated 
baremetalhost object, then provision the worker node to the cluster. You can add a bare-metal host
manually or by using the web console.

Adding worker nodes using the web console

$ oc get secret/pull-secret -n openshift-config --template='{{index .data 
".dockerconfigjson" | base64decode}}' ><pull_secret_location> 1

$ oc registry login --registry="<registry>" \ 1
--auth-basic="<username>:<password>" \ 2
--to=<pull_secret_location> 3

$ oc set data secret/pull-secret -n openshift-config --from-file=.dockerconfigjson=
<pull_secret_location> 1

OpenShift Container Platform 4.15 Postinstallation configuration

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#adding-bare-metal-host-to-cluster-using-web-console_managing-bare-metal-hosts


Adding worker nodes using YAML in the web console

Manually adding a worker node to an installer-provisioned infrastructure cluster

8.3.2. Adding worker nodes to user-provisioned infrastructure clusters

For user-provisioned infrastructure clusters, you can add worker nodes by using a RHEL or RHCOS ISO
image and connecting it to your cluster using cluster Ignition config files. For RHEL worker nodes, the
following example uses Ansible playbooks to add worker nodes to the cluster. For RHCOS worker nodes,
the following example uses an ISO image and network booting to add worker nodes to the cluster.

Adding RHCOS worker nodes to a user-provisioned infrastructure cluster

Adding RHEL worker nodes to a user-provisioned infrastructure cluster

8.3.3. Adding worker nodes to clusters managed by the Assisted Installer

For clusters managed by the Assisted Installer, you can add worker nodes by using the Red Hat
OpenShift Cluster Manager console, the Assisted Installer REST API or you can manually add worker
nodes using an ISO image and cluster Ignition config files.

Adding worker nodes using the OpenShift Cluster Manager

Adding worker nodes using the Assisted Installer REST API

Manually adding worker nodes to a SNO cluster

8.3.4. Adding worker nodes to clusters managed by the multicluster engine for
Kubernetes

For clusters managed by the multicluster engine for Kubernetes, you can add worker nodes by using the
dedicated multicluster engine console.

Creating your cluster with the console

8.4. ADJUST WORKER NODES

If you incorrectly sized the worker nodes during deployment, adjust them by creating one or more new
compute machine sets, scale them up, then scale the original compute machine set down before
removing them.

8.4.1. Understanding the difference between compute machine sets and the
machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine
provider.

The MachineConfigPool object allows MachineConfigController components to define and provide
the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift
Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

149

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#adding-bare-metal-host-to-cluster-using-yaml_managing-bare-metal-hosts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#preparing-the-bare-metal-node_ipi-install-expanding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#sno-adding-worker-nodes-to-sno-clusters_add-workers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#adding-worker-nodes-using-the-assisted-installer-api
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#sno-adding-worker-nodes-to-single-node-clusters-manually_add-workers
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#on-prem-creating-your-cluster-with-the-console


8.4.2. Scaling a compute machine set manually

To add or remove an instance of a machine in a compute machine set, you can manually scale the
compute machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations.
Customized, user-provisioned infrastructure installations do not have compute machine sets.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. View the compute machine sets that are in the cluster by running the following command:

The compute machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. View the compute machines that are in the cluster by running the following command:

3. Set the annotation on the compute machine that you want to delete by running the following
command:

4. Scale the compute machine set by running one of the following commands:

Or:

TIP

You can alternatively apply the following YAML to scale the compute machine set:

You can scale the compute machine set up or down. It takes several minutes for the new

$ oc get machinesets -n openshift-machine-api

$ oc get machine -n openshift-machine-api

$ oc annotate machine/<machine_name> -n openshift-machine-api 
machine.openshift.io/delete-machine="true"

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  name: <machineset>
  namespace: openshift-machine-api
spec:
  replicas: 2

OpenShift Container Platform 4.15 Postinstallation configuration

150



You can scale the compute machine set up or down. It takes several minutes for the new
machines to be available.

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed. If the drain
operation fails, the machine controller cannot proceed removing the machine.

You can skip draining the node by annotating machine.openshift.io/exclude-
node-draining in a specific machine.

Verification

Verify the deletion of the intended machine by running the following command:

8.4.3. The compute machine set deletion policy

Random, Newest, and Oldest are the three supported deletion options. The default is Random,
meaning that random machines are chosen and deleted when scaling compute machine sets down. The
deletion policy can be set according to the use case by modifying the particular compute machine set:

Specific machines can also be prioritized for deletion by adding the annotation 
machine.openshift.io/delete-machine=true to the machine of interest, regardless of the deletion
policy.

IMPORTANT

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker compute machine set to 0 unless you first relocate the
router pods.

NOTE

Custom compute machine sets can be used for use cases requiring that services run on
specific nodes and that those services are ignored by the controller when the worker
compute machine sets are scaling down. This prevents service disruption.

8.4.4. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all
pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform
adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

$ oc get machines

spec:
  deletePolicy: <delete_policy>
  replicas: <desired_replica_count>

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

151



1

1

You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR).
You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a default key.

Procedure

To add a default cluster-wide node selector:

1. Edit the Scheduler Operator CR to add the default cluster-wide node selectors:

Example Scheduler Operator CR with a node selector

Add a node selector with the appropriate <key>:<value> pairs.

After making this change, wait for the pods in the openshift-kube-apiserver project to
redeploy. This can take several minutes. The default cluster-wide node selector does not take
effect until the pods redeploy.

2. Add labels to a node by using a compute machine set or editing the node directly:

Use a compute machine set to add labels to nodes managed by the compute machine set
when a node is created:

a. Run the following command to add labels to a MachineSet object:

Add a <key>/<value> pair for each label.

For example:

TIP

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
  name: cluster
...
spec:
  defaultNodeSelector: type=user-node,region=east 1
  mastersSchedulable: false

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]'  -n openshift-machine-api 1

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]'  -n openshift-machine-api

OpenShift Container Platform 4.15 Postinstallation configuration

152



TIP

You can alternatively apply the following YAML to add labels to a compute machine set:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example MachineSet object

c. Redeploy the nodes associated with that compute machine set by scaling down to 0
and scaling up the nodes:
For example:

d. When the nodes are ready and available, verify that the label is added to the nodes by
using the oc get command:

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  name: <machineset>
  namespace: openshift-machine-api
spec:
  template:
    spec:
      metadata:
        labels:
          region: "east"
          type: "user-node"

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
  ...
spec:
  ...
  template:
    metadata:
  ...
    spec:
      metadata:
        labels:
          region: east
          type: user-node
  ...

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

153



For example:

Example output

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

TIP

You can alternatively apply the following YAML to add labels to a node:

b. Verify that the labels are added to the node using the oc get command:

For example:

Example output

8.5. IMPROVING CLUSTER STABILITY IN HIGH LATENCY
ENVIRONMENTS USING WORKER LATENCY PROFILES

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node

NAME                                       STATUS   ROLES    AGE   VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp   Ready    worker   61s   v1.28.5

$ oc label nodes <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node 
region=east

kind: Node
apiVersion: v1
metadata:
  name: <node_name>
  labels:
    type: "user-node"
    region: "east"

$ oc get nodes -l <key>=<value>,<key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME                                       STATUS   ROLES    AGE   VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49   Ready    worker   17m   v1.28.5

OpenShift Container Platform 4.15 Postinstallation configuration

154



If the cluster administrator has performed latency tests for platform verification, they can discover the
need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster
administrator need change only one parameter, recorded in a file, which controls four parameters
affecting how supervisory processes read status and interpret the health of the cluster. Changing only
the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status
values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager
(kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot
read a node status value, it loses contact with that node after a configured period. The default behavior
is:

1. The node controller on the control plane updates the node health to Unhealthy and marks the
node Ready condition`Unknown`.

2. In response, the scheduler stops scheduling pods to that node.

3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a 
NoExecute effect to the node and schedules any pods on the node for eviction after five
minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes
at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update
from a healthy node due to network latency. The Kubelet evicts pods from the node even though the
node is healthy.

To avoid this problem, you can use worker latency profiles  to adjust the frequency that the Kubelet and
the Kubernetes Controller Manager wait for status updates before taking action. These adjustments
help to ensure that your cluster runs properly if network latency between the control plane and the
worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are pre-defined with carefully tuned
values to control the reaction of the cluster to increased latency. No need to experimentally find the
best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased
latency in your cluster network.

8.5.1. Understanding worker latency profiles

Worker latency profiles are four different categories of carefully-tuned parameters. The four parameters
which implement these values are node-status-update-frequency, node-monitor-grace-period, 
default-not-ready-toleration-seconds and default-unreachable-toleration-seconds. These
parameters can use values which allow you control the reaction of the cluster to latency issues without
needing to determine the best values using manual methods.

IMPORTANT

Setting these parameters manually is not supported. Incorrect parameter settings
adversely affect cluster stability.

All worker latency profiles configure the following parameters:

node-status-update-frequency

Specifies how often the kubelet posts node status to the API server.

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

155



node-monitor-grace-period

Specifies the amount of time in seconds that the Kubernetes Controller Manager waits for an update
from a kubelet before marking the node unhealthy and adding the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint to the node.

default-not-ready-toleration-seconds

Specifies the amount of time in seconds after marking a node unhealthy that the Kube API Server
Operator waits before evicting pods from that node.

default-unreachable-toleration-seconds

Specifies the amount of time in seconds after marking a node unreachable that the Kube API Server
Operator waits before evicting pods from that node.

The following Operators monitor the changes to the worker latency profiles and respond accordingly:

The Machine Config Operator (MCO) updates the node-status-update-frequency parameter
on the worker nodes.

The Kubernetes Controller Manager updates the node-monitor-grace-period parameter on
the control plane nodes.

The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and 
default-unreachable-toleration-seconds parameters on the control plane nodes.

Although the default configuration works in most cases, OpenShift Container Platform offers two other
worker latency profiles for situations where the network is experiencing higher latency than usual. The
three worker latency profiles are described in the following sections:

Default worker latency profile

With the Default profile, each Kubelet updates it’s status every 10 seconds ( node-status-update-
frequency). The Kube Controller Manager checks the statuses of Kubelet every 5 seconds ( node-
monitor-grace-period).
The Kubernetes Controller Manager waits 40 seconds for a status update from Kubelet before
considering the Kubelet unhealthy. If no status is made available to the Kubernetes Controller
Manager, it then marks the node with the node.kubernetes.io/not-ready or 
node.kubernetes.io/unreachable taint and evicts the pods on that node.

If a pod on that node has the NoExecute taint, the pod is run according to tolerationSeconds. If the
pod has no taint, it will be evicted in 300 seconds (default-not-ready-toleration-seconds and 
default-unreachable-toleration-seconds settings of the Kube API Server).

Profile Component Parameter Value

Default kubelet node-status-update-
frequency

10s

Kubelet
Controller
Manager

node-monitor-grace-period 40s

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

300s

OpenShift Container Platform 4.15 Postinstallation configuration

156



Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

300s

Profile Component Parameter Value

Medium worker latency profile

Use the MediumUpdateAverageReaction profile if the network latency is slightly higher than usual.
The MediumUpdateAverageReaction profile reduces the frequency of kubelet updates to 20
seconds and changes the period that the Kubernetes Controller Manager waits for those updates to
2 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has
the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 2 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

MediumUpdateAverageReaction kubelet node-status-update-
frequency

20s

Kubelet
Controller
Manager

node-monitor-grace-period 2m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

Low worker latency profile

Use the LowUpdateSlowReaction profile if the network latency is extremely high.
The LowUpdateSlowReaction profile reduces the frequency of kubelet updates to 1 minute and
changes the period that the Kubernetes Controller Manager waits for those updates to 5 minutes.
The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the 
tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 5 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

LowUpdateSlowReaction kubelet node-status-update-
frequency

1m

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

157



Kubelet
Controller
Manager

node-monitor-grace-period 5m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

Profile Component Parameter Value

8.5.2. Using and changing worker latency profiles

To change a worker latency profile to deal with network latency, edit the node.config object to add the
name of the profile. You can change the profile at any time as latency increases or decreases.

You must move one worker latency profile at a time. For example, you cannot move directly from the 
Default profile to the LowUpdateSlowReaction worker latency profile. You must move from the 
Default worker latency profile to the MediumUpdateAverageReaction profile first, then to 
LowUpdateSlowReaction. Similarly, when returning to the Default profile, you must move from the low
profile to the medium profile first, then to Default.

NOTE

You can also configure worker latency profiles upon installing an OpenShift Container
Platform cluster.

Procedure

To move from the default worker latency profile:

1. Move to the medium worker latency profile:

a. Edit the node.config object:

b. Add spec.workerLatencyProfile: MediumUpdateAverageReaction:

Example node.config object

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
  annotations:
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"

OpenShift Container Platform 4.15 Postinstallation configuration

158



1

1

Specifies the medium worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

2. Optional: Move to the low worker latency profile:

a. Edit the node.config object:

b. Change the spec.workerLatencyProfile value to LowUpdateSlowReaction:

Example node.config object

Specifies use of the low worker latency policy.

    release.openshift.io/create-only: "true"
  creationTimestamp: "2022-07-08T16:02:51Z"
  generation: 1
  name: cluster
  ownerReferences:
  - apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    name: version
    uid: 36282574-bf9f-409e-a6cd-3032939293eb
  resourceVersion: "1865"
  uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
  workerLatencyProfile: MediumUpdateAverageReaction 1

# ...

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
  annotations:
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
    release.openshift.io/create-only: "true"
  creationTimestamp: "2022-07-08T16:02:51Z"
  generation: 1
  name: cluster
  ownerReferences:
  - apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    name: version
    uid: 36282574-bf9f-409e-a6cd-3032939293eb
  resourceVersion: "1865"
  uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
  workerLatencyProfile: LowUpdateSlowReaction 1

# ...

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

159



1

Scheduling on each worker node is disabled as the change is being applied.

Verification

When all nodes return to the Ready condition, you can use the following command to look in the
Kubernetes Controller Manager to ensure it was applied:

Example output

Specifies that the profile is applied and active.

To change the medium profile to default or change the default to medium, edit the node.config object
and set the spec.workerLatencyProfile parameter to the appropriate value.

8.6. MANAGING CONTROL PLANE MACHINES

Control plane machine sets provide management capabilities for control plane machines that are similar
to what compute machine sets provide for compute machines. The availability and initial status of
control plane machine sets on your cluster depend on your cloud provider and the version of OpenShift
Container Platform that you installed. For more information, see Getting started with control plane
machine sets.

8.7. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION
ENVIRONMENTS

You can create a compute machine set to create machines that host only infrastructure components,
such as the default router, the integrated container image registry, and components for cluster metrics
and monitoring. These infrastructure machines are not counted toward the total number of subscriptions
that are required to run the environment.

In a production deployment, it is recommended that you deploy at least three compute machine sets to
hold infrastructure components. Both OpenShift Logging and Red Hat OpenShift Service Mesh deploy

$ oc get KubeControllerManager -o yaml | grep -i workerlatency -A 5 -B 5

# ...
    - lastTransitionTime: "2022-07-11T19:47:10Z"
      reason: ProfileUpdated
      status: "False"
      type: WorkerLatencyProfileProgressing
    - lastTransitionTime: "2022-07-11T19:47:10Z" 1
      message: all static pod revision(s) have updated latency profile
      reason: ProfileUpdated
      status: "True"
      type: WorkerLatencyProfileComplete
    - lastTransitionTime: "2022-07-11T19:20:11Z"
      reason: AsExpected
      status: "False"
      type: WorkerLatencyProfileDegraded
    - lastTransitionTime: "2022-07-11T19:20:36Z"
      status: "False"
# ...

OpenShift Container Platform 4.15 Postinstallation configuration

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#cpmso-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#cpmso-getting-started


Elasticsearch, which requires three instances to be installed on different nodes. Each of these nodes can
be deployed to different availability zones for high availability. A configuration like this requires three
different compute machine sets, one for each availability zone. In global Azure regions that do not have
multiple availability zones, you can use availability sets to ensure high availability.

For information on infrastructure nodes and which components can run on infrastructure nodes, see
Creating infrastructure machine sets.

To create an infrastructure node, you can use a machine set, assign a label to the nodes , or use a
machine config pool.

For sample machine sets that you can use with these procedures, see Creating machine sets for
different clouds.

Applying a specific node selector to all infrastructure components causes OpenShift Container Platform
to schedule those workloads on nodes with that label .

8.7.1. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

161

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-infrastructure-machinesets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-infrastructure-machinesets-clouds


1

2

3

Example output

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

$ oc get machineset <machineset_name> \
  -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-<role> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: <role>
        machine.openshift.io/cluster-api-machine-type: <role>
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
    spec:
      providerSpec: 3
        ...

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

OpenShift Container Platform 4.15 Postinstallation configuration

162



Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

8.7.2. Creating an infrastructure node

IMPORTANT

See Creating infrastructure machine sets for installer-provisioned infrastructure
environments or for any cluster where the control plane nodes are managed by the
machine API.

Requirements of the cluster dictate that infrastructure, also called infra nodes, be provisioned. The
installer only provides provisions for control plane and worker nodes. Worker nodes can be designated as
infrastructure nodes or application, also called app, nodes through labeling.

Procedure

1. Add a label to the worker node that you want to act as application node:

2. Add a label to the worker nodes that you want to act as infrastructure nodes:

3. Check to see if applicable nodes now have the infra role and app roles:

4. Create a default cluster-wide node selector. The default node selector is applied to pods
created in all namespaces. This creates an intersection with any existing node selectors on a
pod, which additionally constrains the pod’s selector.

IMPORTANT

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc label node <node-name> node-role.kubernetes.io/app=""

$ oc label node <node-name> node-role.kubernetes.io/infra=""

$ oc get nodes

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

163



1

IMPORTANT

If the default node selector key conflicts with the key of a pod’s label, then the
default node selector is not applied.

However, do not set a default node selector that might cause a pod to become
unschedulable. For example, setting the default node selector to a specific node
role, such as node-role.kubernetes.io/infra="", when a pod’s label is set to a
different node role, such as node-role.kubernetes.io/master="", can cause the
pod to become unschedulable. For this reason, use caution when setting the
default node selector to specific node roles.

You can alternatively use a project node selector to avoid cluster-wide node
selector key conflicts.

a. Edit the Scheduler object:

b. Add the defaultNodeSelector field with the appropriate node selector:

This example node selector deploys pods on nodes in the us-east-1 region by default.

c. Save the file to apply the changes.

You can now move infrastructure resources to the newly labeled infra nodes.

Additional resources

For information on how to configure project node selectors to avoid cluster-wide node selector
key conflicts, see Project node selectors .

8.7.3. Creating a machine config pool for infrastructure machines

If you need infrastructure machines to have dedicated configurations, you must create an infra pool.

IMPORTANT

Creating a custom machine configuration pool overrides default worker pool
configurations if they refer to the same file or unit.

Procedure

1. Add a label to the node you want to assign as the infra node with a specific label:

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
  name: cluster
spec:
  defaultNodeSelector: topology.kubernetes.io/region=us-east-1 1
# ...

OpenShift Container Platform 4.15 Postinstallation configuration

164

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#project-node-selectors_nodes-scheduler-node-selectors


1

2

2. Create a machine config pool that contains both the worker role and your custom role as
machine config selector:

Example output

Add the worker role and your custom role.

Add the label you added to the node as a nodeSelector.

NOTE

Custom machine config pools inherit machine configs from the worker pool.
Custom pools use any machine config targeted for the worker pool, but add the
ability to also deploy changes that are targeted at only the custom pool. Because
a custom pool inherits resources from the worker pool, any change to the worker
pool also affects the custom pool.

3. After you have the YAML file, you can create the machine config pool:

4. Check the machine configs to ensure that the infrastructure configuration rendered
successfully:

Example output

$ oc label node <node_name> <label>

$ oc label node ci-ln-n8mqwr2-f76d1-xscn2-worker-c-6fmtx node-role.kubernetes.io/infra=

$ cat infra.mcp.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  name: infra
spec:
  machineConfigSelector:
    matchExpressions:
      - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]} 1
  nodeSelector:
    matchLabels:
      node-role.kubernetes.io/infra: "" 2

$ oc create -f infra.mcp.yaml

$ oc get machineconfig

NAME                                                        GENERATEDBYCONTROLLER                      
IGNITIONVERSION   CREATED
00-master                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
3.2.0             31d
00-worker                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

165



You should see a new machine config, with the rendered-infra-* prefix.

5. Optional: To deploy changes to a custom pool, create a machine config that uses the custom
pool name as the label, such as infra. Note that this is not required and only shown for
instructional purposes. In this manner, you can apply any custom configurations specific to only
your infra nodes.

NOTE

After you create the new machine config pool, the MCO generates a new
rendered config for that pool, and associated nodes of that pool reboot to apply
the new configuration.

3.2.0             31d
01-master-container-runtime                                 
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
01-master-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
3.2.0             31d
01-worker-container-runtime                                 
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
01-worker-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
3.2.0             31d
99-master-1ae2a1e0-a115-11e9-8f14-005056899d54-registries   
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
99-master-ssh                                                                                          3.2.0             31d
99-worker-1ae64748-a115-11e9-8f14-005056899d54-registries   
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
99-worker-ssh                                                                                          3.2.0             31d
rendered-infra-4e48906dca84ee702959c71a53ee80e7             
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             23m
rendered-master-072d4b2da7f88162636902b074e9e28e            
5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
rendered-master-3e88ec72aed3886dec061df60d16d1af            
02c07496ba0417b3e12b78fb32baf6293d314f79   3.2.0             31d
rendered-master-419bee7de96134963a15fdf9dd473b25            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             17d
rendered-master-53f5c91c7661708adce18739cc0f40fb            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             13d
rendered-master-a6a357ec18e5bce7f5ac426fc7c5ffcd            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             7d3h
rendered-master-dc7f874ec77fc4b969674204332da037            
5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
rendered-worker-1a75960c52ad18ff5dfa6674eb7e533d            
5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
rendered-worker-2640531be11ba43c61d72e82dc634ce6            
5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
rendered-worker-4e48906dca84ee702959c71a53ee80e7            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             7d3h
rendered-worker-4f110718fe88e5f349987854a1147755            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             17d
rendered-worker-afc758e194d6188677eb837842d3b379            
02c07496ba0417b3e12b78fb32baf6293d314f79   3.2.0             31d
rendered-worker-daa08cc1e8f5fcdeba24de60cd955cc3            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             13d

OpenShift Container Platform 4.15 Postinstallation configuration

166



1

a. Create a machine config:

Example output

Add the label you added to the node as a nodeSelector.

b. Apply the machine config to the infra-labeled nodes:

6. Confirm that your new machine config pool is available:

Example output

In this example, a worker node was changed to an infra node.

Additional resources

See Node configuration management with machine config pools  for more information on
grouping infra machines in a custom pool.

$ cat infra.mc.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  name: 51-infra
  labels:
    machineconfiguration.openshift.io/role: infra 1
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
      - path: /etc/infratest
        mode: 0644
        contents:
          source: data:,infra

$ oc create -f infra.mc.yaml

$ oc get mcp

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   
MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   
DEGRADEDMACHINECOUNT   AGE
infra    rendered-infra-60e35c2e99f42d976e084fa94da4d0fc    True      False      False      1              
1                   1                     0                      4m20s
master   rendered-master-9360fdb895d4c131c7c4bebbae099c90   True      False      False      
3              3                   3                     0                      91m
worker   rendered-worker-60e35c2e99f42d976e084fa94da4d0fc   True      False      False      
2              2                   2                     0                      91m

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

167

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/architecture/#architecture-machine-config-pools_control-plane


8.8. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE
NODES

After creating an infrastructure machine set, the worker and infra roles are applied to new infra nodes.
Nodes with the infra role are not counted toward the total number of subscriptions that are required to
run the environment, even when the worker role is also applied.

However, when an infra node is assigned the worker role, there is a chance that user workloads can get
assigned inadvertently to the infra node. To avoid this, you can apply a taint to the infra node and
tolerations for the pods that you want to control.

8.8.1. Binding infrastructure node workloads using taints and tolerations

If you have an infra node that has the infra and worker roles assigned, you must configure the node so
that user workloads are not assigned to it.

IMPORTANT

It is recommended that you preserve the dual infra,worker label that is created for infra
nodes and use taints and tolerations to manage nodes that user workloads are scheduled
on. If you remove the worker label from the node, you must create a custom pool to
manage it. A node with a label other than master or worker is not recognized by the
MCO without a custom pool. Maintaining the worker label allows the node to be
managed by the default worker machine config pool, if no custom pools that select the
custom label exists. The infra label communicates to the cluster that it does not count
toward the total number of subscriptions.

Prerequisites

Configure additional MachineSet objects in your OpenShift Container Platform cluster.

Procedure

1. Add a taint to the infra node to prevent scheduling user workloads on it:

a. Determine if the node has the taint:

Sample output

This example shows that the node has a taint. You can proceed with adding a toleration to
your pod in the next step.

b. If you have not configured a taint to prevent scheduling user workloads on it:

$ oc describe nodes <node_name>

oc describe node ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
Name:               ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
Roles:              worker
 ...
Taints:             node-role.kubernetes.io/infra:NoSchedule
 ...

$ oc adm taint nodes <node_name> <key>=<value>:<effect>

OpenShift Container Platform 4.15 Postinstallation configuration

168



1

2

3

4

For example:

TIP

You can alternatively apply the following YAML to add the taint:

This example places a taint on node1 that has key node-role.kubernetes.io/infra and taint
effect NoSchedule. Nodes with the NoSchedule effect schedule only pods that tolerate
the taint, but allow existing pods to remain scheduled on the node.

NOTE

If a descheduler is used, pods violating node taints could be evicted from the
cluster.

2. Add tolerations for the pod configurations you want to schedule on the infra node, like router,
registry, and monitoring workloads. Add the following code to the Pod object specification:

Specify the effect that you added to the node.

Specify the key that you added to the node.

Specify the Exists Operator to require a taint with the key node-role.kubernetes.io/infra
to be present on the node.

Specify the value of the key-value pair taint that you added to the node.

This toleration matches the taint created by the oc adm taint command. A pod with this
toleration can be scheduled onto the infra node.

NOTE

$ oc adm taint nodes node1 node-role.kubernetes.io/infra=reserved:NoExecute

kind: Node
apiVersion: v1
metadata:
  name: <node_name>
  labels:
    ...
spec:
  taints:
    - key: node-role.kubernetes.io/infra
      effect: NoExecute
      value: reserved
  ...

tolerations:
  - effect: NoExecute 1
    key: node-role.kubernetes.io/infra 2
    operator: Exists 3
    value: reserved 4

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

169



NOTE

Moving pods for an Operator installed via OLM to an infra node is not always
possible. The capability to move Operator pods depends on the configuration of
each Operator.

3. Schedule the pod to the infra node using a scheduler. See the documentation for Controlling
pod placement onto nodes for details.

Additional resources

See Controlling pod placement using the scheduler  for general information on scheduling a pod
to a node.

8.9. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS

Some of the infrastructure resources are deployed in your cluster by default. You can move them to the
infrastructure machine sets that you created.

8.9.1. Moving the router

You can deploy the router pod to a different compute machine set. By default, the pod is deployed to a
worker node.

Prerequisites

Configure additional compute machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the IngressController custom resource for the router Operator:

The command output resembles the following text:

$ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  creationTimestamp: 2019-04-18T12:35:39Z
  finalizers:
  - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
  generation: 1
  name: default
  namespace: openshift-ingress-operator
  resourceVersion: "11341"
  selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-
operator/ingresscontrollers/default
  uid: 79509e05-61d6-11e9-bc55-02ce4781844a
spec: {}
status:
  availableReplicas: 2
  conditions:
  - lastTransitionTime: 2019-04-18T12:36:15Z

OpenShift Container Platform 4.15 Postinstallation configuration

170

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-about


1

1

2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrastructure node,
also add a matching toleration.

3. Confirm that the router pod is running on the infra node.

a. View the list of router pods and note the node name of the running pod:

Example output

In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

b. View the node status of the running pod:

Specify the <node_name> that you obtained from the pod list.

    status: "True"
    type: Available
  domain: apps.<cluster>.example.com
  endpointPublishingStrategy:
    type: LoadBalancerService
  selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default

$ oc edit ingresscontroller default -n openshift-ingress-operator

  spec:
    nodePlacement:
      nodeSelector: 1
        matchLabels:
          node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved

$ oc get pod -n openshift-ingress -o wide

NAME                              READY     STATUS        RESTARTS   AGE       IP           NODE                           
NOMINATED NODE   READINESS GATES
router-default-86798b4b5d-bdlvd   1/1      Running       0          28s       10.130.2.4   ip-10-
0-217-226.ec2.internal   <none>           <none>
router-default-955d875f4-255g8    0/1      Terminating   0          19h       10.129.2.4   ip-10-
0-148-172.ec2.internal   <none>           <none>

$ oc get node <node_name> 1

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

171



Example output

Because the role list includes infra, the pod is running on the correct node.

8.9.2. Moving the default registry

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

Configure additional compute machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the config/instance object:

Example output

2. Edit the config/instance object:

NAME                          STATUS  ROLES         AGE   VERSION
ip-10-0-217-226.ec2.internal  Ready   infra,worker  17h   v1.28.5

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
  creationTimestamp: 2019-02-05T13:52:05Z
  finalizers:
  - imageregistry.operator.openshift.io/finalizer
  generation: 1
  name: cluster
  resourceVersion: "56174"
  selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
  uid: 36fd3724-294d-11e9-a524-12ffeee2931b
spec:
  httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
  logging: 2
  managementState: Managed
  proxy: {}
  replicas: 1
  requests:
    read: {}
    write: {}
  storage:
    s3:
      bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
      region: us-east-1
status:
...

$ oc edit configs.imageregistry.operator.openshift.io/cluster

OpenShift Container Platform 4.15 Postinstallation configuration

172



1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrasructure node,
also add a matching toleration.

3. Verify the registry pod has been moved to the infrastructure node.

a. Run the following command to identify the node where the registry pod is located:

b. Confirm the node has the label you specified:

Review the command output and confirm that node-role.kubernetes.io/infra is in the 
LABELS list.

8.9.3. Moving the monitoring solution

The monitoring stack includes multiple components, including Prometheus, Thanos Querier, and
Alertmanager. The Cluster Monitoring Operator manages this stack. To redeploy the monitoring stack
to infrastructure nodes, you can create and apply a custom config map.

Procedure

1. Edit the cluster-monitoring-config config map and change the nodeSelector to use the infra
label:

spec:
  affinity:
    podAntiAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - podAffinityTerm:
          namespaces:
          - openshift-image-registry
          topologyKey: kubernetes.io/hostname
        weight: 100
  logLevel: Normal
  managementState: Managed
  nodeSelector: 1
    node-role.kubernetes.io/infra: ""
  tolerations:
  - effect: NoSchedule
    key: node-role.kubernetes.io/infra
    value: reserved
  - effect: NoExecute
    key: node-role.kubernetes.io/infra
    value: reserved

$ oc get pods -o wide -n openshift-image-registry

$ oc describe node <node_name>

$ oc edit configmap cluster-monitoring-config -n openshift-monitoring

apiVersion: v1

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

173



kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |+
    alertmanagerMain:
      nodeSelector: 1
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    prometheusK8s:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    prometheusOperator:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    k8sPrometheusAdapter:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    kubeStateMetrics:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute

OpenShift Container Platform 4.15 Postinstallation configuration

174



1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrastructure node,
also add a matching toleration.

2. Watch the monitoring pods move to the new machines:

3. If a component has not moved to the infra node, delete the pod with this component:

    telemeterClient:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    openshiftStateMetrics:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    thanosQuerier:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute
    monitoringPlugin:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoSchedule
      - key: node-role.kubernetes.io/infra
        value: reserved
        effect: NoExecute

$ watch 'oc get pod -n openshift-monitoring -o wide'

$ oc delete pod -n openshift-monitoring <pod>

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

175



The component from the deleted pod is re-created on the infra node.

8.9.4. Moving logging resources

You can configure the Red Hat OpenShift Logging Operator to deploy the pods for logging
components, such as Elasticsearch and Kibana, to different nodes. You cannot move the Red Hat
OpenShift Logging Operator pod from its installed location.

For example, you can move the Elasticsearch pods to a separate node because of high CPU, memory,
and disk requirements.

Prerequisites

You have installed the Red Hat OpenShift Logging Operator and the OpenShift Elasticsearch
Operator.

Procedure

1. Edit the ClusterLogging custom resource (CR) in the openshift-logging project:

Example ClusterLogging CR

$ oc edit ClusterLogging instance

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
# ...
spec:
  logStore:
    elasticsearch:
      nodeCount: 3
      nodeSelector: 1
        node-role.kubernetes.io/infra: ''
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
      redundancyPolicy: SingleRedundancy
      resources:
        limits:
          cpu: 500m
          memory: 16Gi
        requests:
          cpu: 500m
          memory: 16Gi
      storage: {}
    type: elasticsearch
  managementState: Managed
  visualization:
    kibana:
      nodeSelector: 2

OpenShift Container Platform 4.15 Postinstallation configuration

176



1 2 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrasructure node,
also add a matching toleration.

Verification

To verify that a component has moved, you can use the oc get pod -o wide command.

For example:

You want to move the Kibana pod from the ip-10-0-147-79.us-east-2.compute.internal node:

Example output

You want to move the Kibana pod to the ip-10-0-139-48.us-east-2.compute.internal node, a
dedicated infrastructure node:

Example output

        node-role.kubernetes.io/infra: ''
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
      proxy:
        resources: null
      replicas: 1
      resources: null
    type: kibana
# ...

$ oc get pod kibana-5b8bdf44f9-ccpq9 -o wide

NAME                      READY   STATUS    RESTARTS   AGE   IP            NODE                                        
NOMINATED NODE   READINESS GATES
kibana-5b8bdf44f9-ccpq9   2/2     Running   0          27s   10.129.2.18   ip-10-0-147-79.us-
east-2.compute.internal   <none>           <none>

$ oc get nodes

NAME                                         STATUS   ROLES          AGE   VERSION
ip-10-0-133-216.us-east-2.compute.internal   Ready    master         60m   v1.28.5
ip-10-0-139-146.us-east-2.compute.internal   Ready    master         60m   v1.28.5
ip-10-0-139-192.us-east-2.compute.internal   Ready    worker         51m   v1.28.5
ip-10-0-139-241.us-east-2.compute.internal   Ready    worker         51m   v1.28.5
ip-10-0-147-79.us-east-2.compute.internal    Ready    worker         51m   v1.28.5
ip-10-0-152-241.us-east-2.compute.internal   Ready    master         60m   v1.28.5
ip-10-0-139-48.us-east-2.compute.internal    Ready    infra          51m   v1.28.5

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

177



1

Note that the node has a node-role.kubernetes.io/infra: '' label:

Example output

To move the Kibana pod, edit the ClusterLogging CR to add a node selector:

Add a node selector to match the label in the node specification.

After you save the CR, the current Kibana pod is terminated and new pod is deployed:

Example output

$ oc get node ip-10-0-139-48.us-east-2.compute.internal -o yaml

kind: Node
apiVersion: v1
metadata:
  name: ip-10-0-139-48.us-east-2.compute.internal
  selfLink: /api/v1/nodes/ip-10-0-139-48.us-east-2.compute.internal
  uid: 62038aa9-661f-41d7-ba93-b5f1b6ef8751
  resourceVersion: '39083'
  creationTimestamp: '2020-04-13T19:07:55Z'
  labels:
    node-role.kubernetes.io/infra: ''
...

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
# ...
spec:
# ...
  visualization:
    kibana:
      nodeSelector: 1
        node-role.kubernetes.io/infra: ''
      proxy:
        resources: null
      replicas: 1
      resources: null
    type: kibana

$ oc get pods

NAME                                            READY   STATUS        RESTARTS   AGE
cluster-logging-operator-84d98649c4-zb9g7       1/1     Running       0          29m
elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running       0          28m
elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running       0          28m
elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running       0          28m
collector-42dzz                                 1/1     Running       0          28m
collector-d74rq                                 1/1     Running       0          28m
collector-m5vr9                                 1/1     Running       0          28m
collector-nkxl7                                 1/1     Running       0          28m
collector-pdvqb                                 1/1     Running       0          28m

OpenShift Container Platform 4.15 Postinstallation configuration

178



The new pod is on the ip-10-0-139-48.us-east-2.compute.internal node:

Example output

After a few moments, the original Kibana pod is removed.

Example output

8.10. ABOUT THE CLUSTER AUTOSCALER

The cluster autoscaler adjusts the size of an OpenShift Container Platform cluster to meet its current
deployment needs. It uses declarative, Kubernetes-style arguments to provide infrastructure
management that does not rely on objects of a specific cloud provider. The cluster autoscaler has a
cluster scope, and is not associated with a particular namespace.

The cluster autoscaler increases the size of the cluster when there are pods that fail to schedule on any
of the current worker nodes due to insufficient resources or when another node is necessary to meet
deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits
that you specify.

The cluster autoscaler computes the total memory, CPU, and GPU on all nodes the cluster, even though
it does not manage the control plane nodes. These values are not single-machine oriented. They are an
aggregation of all the resources in the entire cluster. For example, if you set the maximum memory
resource limit, the cluster autoscaler includes all the nodes in the cluster when calculating the current
memory usage. That calculation is then used to determine if the cluster autoscaler has the capacity to
add more worker resources.

IMPORTANT

collector-tflh6                                 1/1     Running       0          28m
kibana-5b8bdf44f9-ccpq9                         2/2     Terminating   0          4m11s
kibana-7d85dcffc8-bfpfp                         2/2     Running       0          33s

$ oc get pod kibana-7d85dcffc8-bfpfp -o wide

NAME                      READY   STATUS        RESTARTS   AGE   IP            NODE                                        
NOMINATED NODE   READINESS GATES
kibana-7d85dcffc8-bfpfp   2/2     Running       0          43s   10.131.0.22   ip-10-0-139-48.us-
east-2.compute.internal   <none>           <none>

$ oc get pods

NAME                                            READY   STATUS    RESTARTS   AGE
cluster-logging-operator-84d98649c4-zb9g7       1/1     Running   0          30m
elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running   0          29m
elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running   0          29m
elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running   0          29m
collector-42dzz                                 1/1     Running   0          29m
collector-d74rq                                 1/1     Running   0          29m
collector-m5vr9                                 1/1     Running   0          29m
collector-nkxl7                                 1/1     Running   0          29m
collector-pdvqb                                 1/1     Running   0          29m
collector-tflh6                                 1/1     Running   0          29m
kibana-7d85dcffc8-bfpfp                         2/2     Running   0          62s

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

179



IMPORTANT

Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition that
you create is large enough to account for the total possible number of machines in your
cluster. This value must encompass the number of control plane machines and the
possible number of compute machines that you might scale to.

Every 10 seconds, the cluster autoscaler checks which nodes are unnecessary in the cluster and removes
them. The cluster autoscaler considers a node for removal if the following conditions apply:

The node utilization is less than the node utilization level threshold for the cluster. The node
utilization level is the sum of the requested resources divided by the allocated resources for the
node. If you do not specify a value in the ClusterAutoscaler custom resource, the cluster
autoscaler uses a default value of 0.5, which corresponds to 50% utilization.

The cluster autoscaler can move all pods running on the node to the other nodes. The
Kubernetes scheduler is responsible for scheduling pods on the nodes.

The cluster autoscaler does not have scale down disabled annotation.

If the following types of pods are present on a node, the cluster autoscaler will not remove the node:

Pods with restrictive pod disruption budgets (PDBs).

Kube-system pods that do not run on the node by default.

Kube-system pods that do not have a PDB or have a PDB that is too restrictive.

Pods that are not backed by a controller object such as a deployment, replica set, or stateful set.

Pods with local storage.

Pods that cannot be moved elsewhere because of a lack of resources, incompatible node
selectors or affinity, matching anti-affinity, and so on.

Unless they also have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" annotation,
pods that have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "false" annotation.

For example, you set the maximum CPU limit to 64 cores and configure the cluster autoscaler to only
create machines that have 8 cores each. If your cluster starts with 30 cores, the cluster autoscaler can
add up to 4 more nodes with 32 cores, for a total of 62.

If you configure the cluster autoscaler, additional usage restrictions apply:

Do not modify the nodes that are in autoscaled node groups directly. All nodes within the same
node group have the same capacity and labels and run the same system pods.

Specify requests for your pods.

If you have to prevent pods from being deleted too quickly, configure appropriate PDBs.

Confirm that your cloud provider quota is large enough to support the maximum node pools
that you configure.

Do not run additional node group autoscalers, especially the ones offered by your cloud
provider.

OpenShift Container Platform 4.15 Postinstallation configuration

180



The horizontal pod autoscaler (HPA) and the cluster autoscaler modify cluster resources in different
ways. The HPA changes the deployment’s or replica set’s number of replicas based on the current CPU
load. If the load increases, the HPA creates new replicas, regardless of the amount of resources available
to the cluster. If there are not enough resources, the cluster autoscaler adds resources so that the HPA-
created pods can run. If the load decreases, the HPA stops some replicas. If this action causes some
nodes to be underutilized or completely empty, the cluster autoscaler deletes the unnecessary nodes.

The cluster autoscaler takes pod priorities into account. The Pod Priority and Preemption feature
enables scheduling pods based on priorities if the cluster does not have enough resources, but the
cluster autoscaler ensures that the cluster has resources to run all pods. To honor the intention of both
features, the cluster autoscaler includes a priority cutoff function. You can use this cutoff to schedule
"best-effort" pods, which do not cause the cluster autoscaler to increase resources but instead run only
when spare resources are available.

Pods with priority lower than the cutoff value do not cause the cluster to scale up or prevent the cluster
from scaling down. No new nodes are added to run the pods, and nodes running these pods might be
deleted to free resources.

Cluster autoscaling is supported for the platforms that have machine API available on it.

8.10.1. Cluster autoscaler resource definition

This ClusterAutoscaler resource definition shows the parameters and sample values for the cluster
autoscaler.

apiVersion: "autoscaling.openshift.io/v1"
kind: "ClusterAutoscaler"
metadata:
  name: "default"
spec:
  podPriorityThreshold: -10 1
  resourceLimits:
    maxNodesTotal: 24 2
    cores:
      min: 8 3
      max: 128 4
    memory:
      min: 4 5
      max: 256 6
    gpus:
      - type: nvidia.com/gpu 7
        min: 0 8
        max: 16 9
      - type: amd.com/gpu
        min: 0
        max: 4
  logVerbosity: 4 10
  scaleDown: 11
    enabled: true 12
    delayAfterAdd: 10m 13
    delayAfterDelete: 5m 14

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

181



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Specify the priority that a pod must exceed to cause the cluster autoscaler to deploy additional
nodes. Enter a 32-bit integer value. The podPriorityThreshold value is compared to the value of
the PriorityClass that you assign to each pod.

Specify the maximum number of nodes to deploy. This value is the total number of machines that
are deployed in your cluster, not just the ones that the autoscaler controls. Ensure that this value is
large enough to account for all of your control plane and compute machines and the total number
of replicas that you specify in your MachineAutoscaler resources.

Specify the minimum number of cores to deploy in the cluster.

Specify the maximum number of cores to deploy in the cluster.

Specify the minimum amount of memory, in GiB, in the cluster.

Specify the maximum amount of memory, in GiB, in the cluster.

Optional: Specify the type of GPU node to deploy. Only nvidia.com/gpu and amd.com/gpu are
valid types.

Specify the minimum number of GPUs to deploy in the cluster.

Specify the maximum number of GPUs to deploy in the cluster.

Specify the logging verbosity level between 0 and 10. The following log level thresholds are
provided for guidance:

1: (Default) Basic information about changes.

4: Debug-level verbosity for troubleshooting typical issues.

9: Extensive, protocol-level debugging information.

If you do not specify a value, the default value of 1 is used.

In this section, you can specify the period to wait for each action by using any valid ParseDuration
interval, including ns, us, ms, s, m, and h.

Specify whether the cluster autoscaler can remove unnecessary nodes.

Optional: Specify the period to wait before deleting a node after a node has recently been added. If
you do not specify a value, the default value of 10m is used.

Optional: Specify the period to wait before deleting a node after a node has recently been deleted.
If you do not specify a value, the default value of 0s is used.

Optional: Specify the period to wait before deleting a node after a scale down failure occurred. If
you do not specify a value, the default value of 3m is used.

Optional: Specify a period of time before an unnecessary node is eligible for deletion. If you do not
specify a value, the default value of 10m is used.

Optional: Specify the node utilization level. Nodes below this utilization level are eligible for
deletion. If you do not specify a value, the default value of 10m is used.. The node utilization level is

    delayAfterFailure: 30s 15
    unneededTime: 5m 16
    utilizationThreshold: "0.4" 17

OpenShift Container Platform 4.15 Postinstallation configuration

182

https://golang.org/pkg/time/#ParseDuration


1

deletion. If you do not specify a value, the default value of 10m is used.. The node utilization level is
the sum of the requested resources divided by the allocated resources for the node, and must be a
value greater than "0" but less than "1". If you do not specify a value, the cluster autoscaler uses a
default value of "0.5", which corresponds to 50% utilization. This value must be expressed as a
string.

NOTE

When performing a scaling operation, the cluster autoscaler remains within the ranges set
in the ClusterAutoscaler resource definition, such as the minimum and maximum
number of cores to deploy or the amount of memory in the cluster. However, the cluster
autoscaler does not correct the current values in your cluster to be within those ranges.

The minimum and maximum CPUs, memory, and GPU values are determined by
calculating those resources on all nodes in the cluster, even if the cluster autoscaler does
not manage the nodes. For example, the control plane nodes are considered in the total
memory in the cluster, even though the cluster autoscaler does not manage the control
plane nodes.

8.10.2. Deploying a cluster autoscaler

To deploy a cluster autoscaler, you create an instance of the ClusterAutoscaler resource.

Procedure

1. Create a YAML file for a ClusterAutoscaler resource that contains the custom resource
definition.

2. Create the custom resource in the cluster by running the following command:

<filename> is the name of the custom resource file.

8.11. ABOUT THE MACHINE AUTOSCALER

The machine autoscaler adjusts the number of Machines in the compute machine sets that you deploy in
an OpenShift Container Platform cluster. You can scale both the default worker compute machine set
and any other compute machine sets that you create. The machine autoscaler makes more Machines
when the cluster runs out of resources to support more deployments. Any changes to the values in 
MachineAutoscaler resources, such as the minimum or maximum number of instances, are immediately
applied to the compute machine set they target.

IMPORTANT

You must deploy a machine autoscaler for the cluster autoscaler to scale your machines.
The cluster autoscaler uses the annotations on compute machine sets that the machine
autoscaler sets to determine the resources that it can scale. If you define a cluster
autoscaler without also defining machine autoscalers, the cluster autoscaler will never
scale your cluster.

8.11.1. Machine autoscaler resource definition

$ oc create -f <filename>.yaml 1

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

183



1

2

3

4

5

6

This MachineAutoscaler resource definition shows the parameters and sample values for the machine
autoscaler.

Specify the machine autoscaler name. To make it easier to identify which compute machine set this
machine autoscaler scales, specify or include the name of the compute machine set to scale. The
compute machine set name takes the following form: <clusterid>-<machineset>-<region>.

Specify the minimum number machines of the specified type that must remain in the specified
zone after the cluster autoscaler initiates cluster scaling. If running in AWS, GCP, Azure, RHOSP, or
vSphere, this value can be set to 0. For other providers, do not set this value to 0.

You can save on costs by setting this value to 0 for use cases such as running expensive or limited-
usage hardware that is used for specialized workloads, or by scaling a compute machine set with
extra large machines. The cluster autoscaler scales the compute machine set down to zero if the
machines are not in use.

IMPORTANT

Do not set the spec.minReplicas value to 0 for the three compute machine sets
that are created during the OpenShift Container Platform installation process for an
installer provisioned infrastructure.

Specify the maximum number machines of the specified type that the cluster autoscaler can
deploy in the specified zone after it initiates cluster scaling. Ensure that the maxNodesTotal value
in the ClusterAutoscaler resource definition is large enough to allow the machine autoscaler to
deploy this number of machines.

In this section, provide values that describe the existing compute machine set to scale.

The kind parameter value is always MachineSet.

The name value must match the name of an existing compute machine set, as shown in the 
metadata.name parameter value.

8.11.2. Deploying a machine autoscaler

To deploy a machine autoscaler, you create an instance of the MachineAutoscaler resource.

Procedure

apiVersion: "autoscaling.openshift.io/v1beta1"
kind: "MachineAutoscaler"
metadata:
  name: "worker-us-east-1a" 1
  namespace: "openshift-machine-api"
spec:
  minReplicas: 1 2
  maxReplicas: 12 3
  scaleTargetRef: 4
    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet 5
    name: worker-us-east-1a 6

OpenShift Container Platform 4.15 Postinstallation configuration

184



1

1. Create a YAML file for a MachineAutoscaler resource that contains the custom resource
definition.

2. Create the custom resource in the cluster by running the following command:

<filename> is the name of the custom resource file.

8.12. CONFIGURING LINUX CGROUP

As of OpenShift Container Platform 4.14, OpenShift Container Platform uses Linux control group
version 2 (cgroup v2) in your cluster. If you are using cgroup v1 on OpenShift Container Platform 4.13 or
earlier, migrating to OpenShift Container Platform 4.14 or later will not automatically update your cgroup
configuration to version 2. A fresh installation of OpenShift Container Platform 4.14 or later will use
cgroup v2 by default. However, you can enable Linux control group version 1  (cgroup v1) upon
installation.

cgroup v2 is the current version of the Linux cgroup API. cgroup v2 offers several improvements over
cgroup v1, including a unified hierarchy, safer sub-tree delegation, new features such as Pressure Stall
Information, and enhanced resource management and isolation. However, cgroup v2 has different CPU,
memory, and I/O management characteristics than cgroup v1. Therefore, some workloads might
experience slight differences in memory or CPU usage on clusters that run cgroup v2.

You can change between cgroup v1 and cgroup v2, as needed. Enabling cgroup v1 in OpenShift
Container Platform disables all cgroup v2 controllers and hierarchies in your cluster.

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

Prerequisites

You have a running OpenShift Container Platform cluster that uses version 4.12 or later.

You are logged in to the cluster as a user with administrative privileges.

Procedure

1. Enable cgroup v1 on nodes:

a. Edit the node.config object:

b. Add spec.cgroupMode: "v1":

Example node.config object

$ oc create -f <filename>.yaml 1

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v2
kind: Node

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

185

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/index.html
https://www.kernel.org/doc/html/latest/accounting/psi.html


1 Enables cgroup v1.

Verification

1. Check the machine configs to see that the new machine configs were added:

Example output

metadata:
  annotations:
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
    release.openshift.io/create-only: "true"
  creationTimestamp: "2022-07-08T16:02:51Z"
  generation: 1
  name: cluster
  ownerReferences:
  - apiVersion: config.openshift.io/v2
    kind: ClusterVersion
    name: version
    uid: 36282574-bf9f-409e-a6cd-3032939293eb
  resourceVersion: "1865"
  uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
  cgroupMode: "v1" 1
...

$ oc get mc

NAME                                               GENERATEDBYCONTROLLER                      
IGNITIONVERSION   AGE
00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             
33m
01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
97-master-generated-kubelet                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-worker-generated-kubelet                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-master-ssh                                                                                 3.2.0             40m
99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   
3.2.0             33m
99-worker-ssh                                                                                 3.2.0             40m

OpenShift Container Platform 4.15 Postinstallation configuration

186



1

1

2

New machine configs are created, as expected.

2. Check that the new kernelArguments were added to the new machine configs:

Example output for cgroup v1

Disables cgroup v2.

Enables cgroup v1 in systemd.

3. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the change
is being applied:

Example output

4. After a node returns to the Ready state, start a debug session for that node:

rendered-master-23d4317815a5f854bd3553d689cfe2e9   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             10s 1
rendered-master-23e785de7587df95a4b517e0647e5ab7   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
rendered-worker-dcc7f1b92892d34db74d6832bcc9ccd4   
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             10s

$ oc describe mc <name>

apiVersion: machineconfiguration.openshift.io/v2
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 05-worker-kernelarg-selinuxpermissive
spec:
  kernelArguments:
    systemd.unified_cgroup_hierarchy=0 1
    systemd.legacy_systemd_cgroup_controller=1 2

$ oc get nodes

NAME                                       STATUS                     ROLES    AGE   VERSION
ci-ln-fm1qnwt-72292-99kt6-master-0         Ready,SchedulingDisabled   master   58m   
v1.28.5
ci-ln-fm1qnwt-72292-99kt6-master-1         Ready                      master   58m   v1.28.5
ci-ln-fm1qnwt-72292-99kt6-master-2         Ready                      master   58m   v1.28.5
ci-ln-fm1qnwt-72292-99kt6-worker-a-h5gt4   Ready,SchedulingDisabled   worker   48m   
v1.28.5
ci-ln-fm1qnwt-72292-99kt6-worker-b-7vtmd   Ready                      worker   48m   v1.28.5
ci-ln-fm1qnwt-72292-99kt6-worker-c-rhzkv   Ready                      worker   48m   v1.28.5

$ oc debug node/<node_name>

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

187



5. Set /host as the root directory within the debug shell:

6. Check that the sys/fs/cgroup/cgroup2fs file is present on your nodes. This file is created by
cgroup v1:

Example output

Additional resources

Configuring the Linux cgroup version on your nodes

8.13. ENABLING TECHNOLOGY PREVIEW FEATURES USING
FEATUREGATES

You can turn on a subset of the current Technology Preview features on for all nodes in the cluster by
editing the FeatureGate custom resource (CR).

8.13.1. Understanding feature gates

You can use the FeatureGate custom resource (CR) to enable specific feature sets in your cluster. A
feature set is a collection of OpenShift Container Platform features that are not enabled by default.

You can activate the following feature set by using the FeatureGate CR:

TechPreviewNoUpgrade. This feature set is a subset of the current Technology Preview
features. This feature set allows you to enable these Technology Preview features on test
clusters, where you can fully test them, while leaving the features disabled on production
clusters.

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

The following Technology Preview features are enabled by this feature set:

External cloud providers. Enables support for external cloud providers for clusters on
vSphere, AWS, Azure, and GCP. Support for OpenStack is GA. This is an internal feature
that most users do not need to interact with. (ExternalCloudProvider)

sh-4.4# chroot /host

$ stat -c %T -f /sys/fs/cgroup

cgroup2fs



OpenShift Container Platform 4.15 Postinstallation configuration

188

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cluster-cgroups-2


Shared Resources CSI Driver in OpenShift Builds. Enables the Container Storage Interface
(CSI). (CSIDriverSharedResource)

Swap memory on nodes. Enables swap memory use for OpenShift Container Platform
workloads on a per-node basis. (NodeSwap)

OpenStack Machine API Provider. This gate has no effect and is planned to be removed
from this feature set in a future release. (MachineAPIProviderOpenStack)

Insights Operator. Enables the InsightsDataGather CRD, which allows users to configure
some Insights data gathering options. The feature set also enables the DataGather CRD,
which allows users to run Insights data gathering on-demand. (InsightsConfigAPI)

Retroactive Default Storage Class. Enables OpenShift Container Platform to retroactively
assign the default storage class to PVCs if there was no default storage class when the PVC
was created.(RetroactiveDefaultStorageClass)

Dynamic Resource Allocation API. Enables a new API for requesting and sharing resources
between pods and containers. This is an internal feature that most users do not need to
interact with. (DynamicResourceAllocation)

Pod security admission enforcement. Enables the restricted enforcement mode for pod
security admission. Instead of only logging a warning, pods are rejected if they violate pod
security standards. (OpenShiftPodSecurityAdmission)

StatefulSet pod availability upgrading limits. Enables users to define the maximum number
of statefulset pods unavailable during updates which reduces application downtime.
(MaxUnavailableStatefulSet)

Admin Network Policy and Baseline Admin Network Policy. Enables AdminNetworkPolicy
and BaselineAdminNetworkPolicy resources, which are part of the Network Policy V2 API,
in clusters running the OVN-Kubernetes CNI plugin. Cluster administrators can apply
cluster-scoped policies and safeguards for an entire cluster before namespaces are
created. Network administrators can secure clusters by enforcing network traffic controls
that cannot be overridden by users. Network administrators can enforce optional baseline
network traffic controls that can be overridden by users in the cluster, if necessary.
Currently, these APIs support only expressing policies for intra-cluster traffic.
(AdminNetworkPolicy)

MatchConditions is a list of conditions that must be met for a request to be sent to this
webhook. Match conditions filter requests that have already been matched by the rules,
namespaceSelector, and objectSelector. An empty list of matchConditions matches all
requests. (admissionWebhookMatchConditions)

Gateway API. To enable the OpenShift Container Platform Gateway API, set the value of
the enabled field to true in the techPreview.gatewayAPI specification of the 
ServiceMeshControlPlane resource.(gateGatewayAPI)

gcpLabelsTags

vSphereStaticIPs

routeExternalCertificate

automatedEtcdBackup

gcpClusterHostedDNS

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

189



vSphereControlPlaneMachineset

dnsNameResolver

machineConfigNodes

metricsServer

installAlternateInfrastructureAWS

sdnLiveMigration

mixedCPUsAllocation

managedBootImages

onClusterBuild

signatureStores

8.13.2. Enabling feature sets using the web console

You can use the OpenShift Container Platform web console to enable feature sets for all of the nodes
in a cluster by editing the FeatureGate custom resource (CR).

Procedure

To enable feature sets:

1. In the OpenShift Container Platform web console, switch to the Administration → Custom
Resource Definitions page.

2. On the Custom Resource Definitions page, click FeatureGate.

3. On the Custom Resource Definition Details page, click the Instances tab.

4. Click the cluster feature gate, then click the YAML tab.

5. Edit the cluster instance to add specific feature sets:

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample Feature Gate custom resource



apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:

OpenShift Container Platform 4.15 Postinstallation configuration

190



1

2

The name of the FeatureGate CR must be cluster.

Add the feature set that you want to enable:

TechPreviewNoUpgrade enables specific Technology Preview features.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

5. View the kubelet.conf file:

Sample output

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

8.13.3. Enabling feature sets using the CLI

You can use the OpenShift CLI (oc) to enable feature sets for all of the nodes in a cluster by editing the
FeatureGate custom resource (CR).

  name: cluster 1
# ...
spec:
  featureSet: TechPreviewNoUpgrade 2

sh-4.2# chroot /host

sh-4.2# cat /etc/kubernetes/kubelet.conf

# ...
featureGates:
  InsightsOperatorPullingSCA: true,
  LegacyNodeRoleBehavior: false
# ...

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

191



1

2

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

To enable feature sets:

1. Edit the FeatureGate CR named cluster:

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample FeatureGate custom resource

The name of the FeatureGate CR must be cluster.

Add the feature set that you want to enable:

TechPreviewNoUpgrade enables specific Technology Preview features.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

$ oc edit featuregate cluster



apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
  name: cluster 1
# ...
spec:
  featureSet: TechPreviewNoUpgrade 2

OpenShift Container Platform 4.15 Postinstallation configuration

192



5. View the kubelet.conf file:

Sample output

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

8.14. ETCD TASKS

Back up etcd, enable or disable etcd encryption, or defragment etcd data.

8.14.1. About etcd encryption

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption
for your cluster to provide an additional layer of data security. For example, it can help protect the loss
of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server
resources are encrypted:

Secrets

Config maps

Routes

OAuth access tokens

OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. You must have these keys to restore
from an etcd backup.

NOTE

sh-4.2# chroot /host

sh-4.2# cat /etc/kubernetes/kubelet.conf

# ...
featureGates:
  InsightsOperatorPullingSCA: true,
  LegacyNodeRoleBehavior: false
# ...

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

193



NOTE

Etcd encryption only encrypts values, not keys. Resource types, namespaces, and object
names are unencrypted.

If etcd encryption is enabled during a backup, the 
static_kuberesources_<datetimestamp>.tar.gz file contains the encryption keys for
the etcd snapshot. For security reasons, store this file separately from the etcd snapshot.
However, this file is required to restore a previous state of etcd from the respective etcd
snapshot.

8.14.2. Supported encryption types

The following encryption types are supported for encrypting etcd data in OpenShift Container Platform:

AES-CBC

Uses AES-CBC with PKCS#7 padding and a 32 byte key to perform the encryption. The encryption
keys are rotated weekly.

AES-GCM

Uses AES-GCM with a random nonce and a 32 byte key to perform the encryption. The encryption
keys are rotated weekly.

8.14.3. Enabling etcd encryption

You can enable etcd encryption to encrypt sensitive resources in your cluster.

WARNING

Do not back up etcd resources until the initial encryption process is completed. If
the encryption process is not completed, the backup might be only partially
encrypted.

After you enable etcd encryption, several changes can occur:

The etcd encryption might affect the memory consumption of a few
resources.

You might notice a transient affect on backup performance because the
leader must serve the backup.

A disk I/O can affect the node that receives the backup state.

You can encrypt the etcd database in either AES-GCM or AES-CBC encryption.

NOTE

To migrate your etcd database from one encryption type to the other, you can modify
the API server’s spec.encryption.type field. Migration of the etcd data to the new
encryption type occurs automatically.



OpenShift Container Platform 4.15 Postinstallation configuration

194



1

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the spec.encryption.type field to aesgcm or aescbc:

Set to aesgcm for AES-GCM encryption or aescbc for AES-CBC encryption.

3. Save the file to apply the changes.
The encryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of the etcd database.

4. Verify that etcd encryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that

$ oc edit apiserver

spec:
  encryption:
    type: aesgcm 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: routes.route.openshift.io

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: secrets, configmaps

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

195



1

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

8.14.4. Disabling etcd encryption

You can disable encryption of etcd data in your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the encryption field type to identity:

The identity type is the default value and means that no encryption is performed.

3. Save the file to apply the changes.
The decryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd decryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

$ oc get authentication.operator.openshift.io -o=jsonpath='{range 
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: oauthaccesstokens.oauth.openshift.io, 
oauthauthorizetokens.oauth.openshift.io

$ oc edit apiserver

spec:
  encryption:
    type: identity 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

OpenShift Container Platform 4.15 Postinstallation configuration

196



If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

8.14.5. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for
the static pods. This backup can be saved and used at a later time if you need to restore etcd.

IMPORTANT

Only save a backup from a single control plane host. Do not take a backup from each
control plane host in the cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have checked whether the cluster-wide proxy is enabled.

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o 
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get authentication.operator.openshift.io -o=jsonpath='{range 
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

197



Procedure

1. Start a debug session as root for a control plane node:

2. Change your root directory to /host in the debug shell:

3. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY, 
HTTP_PROXY, and HTTPS_PROXY environment variables.

4. Run the cluster-backup.sh script in the debug shell and pass in the location to save the backup
to.

TIP

The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is
a wrapper around the etcdctl snapshot save command.

Example script output

In this example, two files are created in the /home/core/assets/backup/ directory on the control
plane host:

snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh

$ oc debug --as-root node/<node_name>

sh-4.4# chroot /host

sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-
manager-pod-7
found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
etcdctl version: 3.4.14
API version: 3.4
{"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created
temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"}
{"level":"info","ts":"2021-06-
25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream; 
downloading"}
{"level":"info","ts":1624647639.0301006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching
snapshot","endpoint":"https://10.0.0.5:2379"}
{"level":"info","ts":"2021-06-
25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read; 
closing"}
{"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched
snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
{"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved",
"path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"}
Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
{"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336}
snapshot db and kube resources are successfully saved to /home/core/assets/backup

OpenShift Container Platform 4.15 Postinstallation configuration

198



snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh
script confirms its validity.

static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the
static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd
snapshot.

NOTE

If etcd encryption is enabled, it is recommended to store this second file
separately from the etcd snapshot for security reasons. However, this file is
required to restore from the etcd snapshot.

Keep in mind that etcd encryption only encrypts values, not keys. This means
that resource types, namespaces, and object names are unencrypted.

8.14.6. Defragmenting etcd data

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

8.14.6.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

etcd logs

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

199



cluster-etcd-operator pod

operator status error log

WARNING

Automatic defragmentation can cause leader election failure in various OpenShift
core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output for successful defragmentation

Example log output for unsuccessful defragmentation

8.14.6.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in
two cases:

When etcd uses more than 50% of its available space for more than 10 minutes

When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB
that will be freed by defragmentation with the PromQL expression: 
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024

WARNING

Defragmenting etcd is a blocking action. The etcd member will not respond until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.



etcd member has been defragmented: <member_name>, memberID: <member_id>

failed defrag on member: <member_name>, memberID: <member_id>: <error_message>



OpenShift Container Platform 4.15 Postinstallation configuration

200



Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the
leader:

Example output

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

b. Unset the ETCDCTL_ENDPOINTS environment variable:

$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-ip-10-0-159-225.example.redhat.com                3/3     Running     0          175m   
10.0.159.225   ip-10-0-159-225.example.redhat.com   <none>           <none>
etcd-ip-10-0-191-37.example.redhat.com                 3/3     Running     0          173m   
10.0.191.37    ip-10-0-191-37.example.redhat.com    <none>           <none>
etcd-ip-10-0-199-170.example.redhat.com                3/3     Running     0          176m   
10.0.199.170   ip-10-0-199-170.example.redhat.com   <none>           <none>

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint 
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see 
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
|         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | 
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
|  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.5.9 |  104 MB |     false |      false |         
7 |      91624 |              91624 |        |
| https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.5.9 |  104 MB |     false |      false |         
7 |      91624 |              91624 |        |
| https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.5.9 |  104 MB |      true |      false |         
7 |      91624 |              91624 |        |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

201



c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

Example output

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

b. Clear the alarms:

sh-4.4# unset ETCDCTL_ENDPOINTS

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

sh-4.4# etcdctl endpoint status -w table --cluster

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
|         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | 
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
|  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.5.9 |  104 MB |     false |      false |         
7 |      91624 |              91624 |        |
| https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.5.9 |   41 MB |     false |      false |         
7 |      91624 |              91624 |        | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.5.9 |  104 MB |      true |      false |         
7 |      91624 |              91624 |        |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

OpenShift Container Platform 4.15 Postinstallation configuration

202



8.14.7. Restoring to a previous cluster state

You can use a saved etcd backup to restore a previous cluster state or restore a cluster that has lost the
majority of control plane hosts.

NOTE

If your cluster uses a control plane machine set, see "Troubleshooting the control plane
machine set" for a more simple etcd recovery procedure.

IMPORTANT

When you restore your cluster, you must use an etcd backup that was taken from the
same z-stream release. For example, an OpenShift Container Platform 4.7.2 cluster must
use an etcd backup that was taken from 4.7.2.

Prerequisites

Access to the cluster as a user with the cluster-admin role through a certificate-based 
kubeconfig file, like the one that was used during installation.

A healthy control plane host to use as the recovery host.

SSH access to control plane hosts.

A backup directory containing both the etcd snapshot and the resources for the static pods,
which were from the same backup. The file names in the directory must be in the following
formats: snapshot_<datetimestamp>.db and 
static_kuberesources_<datetimestamp>.tar.gz.

IMPORTANT

For non-recovery control plane nodes, it is not required to establish SSH connectivity or
to stop the static pods. You can delete and recreate other non-recovery, control plane
machines, one by one.

Procedure

1. Select a control plane host to use as the recovery host. This is the host that you will run the
restore operation on.

2. Establish SSH connectivity to each of the control plane nodes, including the recovery host.
kube-apiserver becomes inaccessible after the restore process starts, so you cannot access
the control plane nodes. For this reason, it is recommended to establish SSH connectivity to
each control plane host in a separate terminal.

IMPORTANT

If you do not complete this step, you will not be able to access the control plane
hosts to complete the restore procedure, and you will be unable to recover your
cluster from this state.

sh-4.4# etcdctl alarm disarm

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

203



3. Copy the etcd backup directory to the recovery control plane host.
This procedure assumes that you copied the backup directory containing the etcd snapshot
and the resources for the static pods to the /home/core/ directory of your recovery control
plane host.

4. Stop the static pods on any other control plane nodes.

NOTE

You do not need to stop the static pods on the recovery host.

a. Access a control plane host that is not the recovery host.

b. Move the existing etcd pod file out of the kubelet manifest directory by running:

c. Verify that the etcd pods are stopped by using:

If the output of this command is not empty, wait a few minutes and check again.

d. Move the existing kube-apiserver file out of the kubelet manifest directory by running:

e. Verify that the kube-apiserver containers are stopped by running:

If the output of this command is not empty, wait a few minutes and check again.

f. Move the existing kube-controller-manager file out of the kubelet manifest directory by
using:

g. Verify that the kube-controller-manager containers are stopped by running:

If the output of this command is not empty, wait a few minutes and check again.

h. Move the existing kube-scheduler file out of the kubelet manifest directory by using:

i. Verify that the kube-scheduler containers are stopped by using:

If the output of this command is not empty, wait a few minutes and check again.

$ sudo mv -v /etc/kubernetes/manifests/etcd-pod.yaml /tmp

$ sudo crictl ps | grep etcd | egrep -v "operator|etcd-guard"

$ sudo mv -v /etc/kubernetes/manifests/kube-apiserver-pod.yaml /tmp

$ sudo crictl ps | grep kube-apiserver | egrep -v "operator|guard"

$ sudo mv -v /etc/kubernetes/manifests/kube-controller-manager-pod.yaml /tmp

$ sudo crictl ps | grep kube-controller-manager | egrep -v "operator|guard"

$ sudo mv -v /etc/kubernetes/manifests/kube-scheduler-pod.yaml /tmp

$ sudo crictl ps | grep kube-scheduler | egrep -v "operator|guard"

OpenShift Container Platform 4.15 Postinstallation configuration

204



j. Move the etcd data directory to a different location with the following example:

k. If the /etc/kubernetes/manifests/keepalived.yaml file exists and the node is deleted,
follow these steps:

i. Move the /etc/kubernetes/manifests/keepalived.yaml file out of the kubelet manifest
directory:

ii. Verify that any containers managed by the keepalived daemon are stopped:

The output of this command should be empty. If it is not empty, wait a few minutes and
check again.

iii. Check if the control plane has any Virtual IPs (VIPs) assigned to it:

iv. For each reported VIP, run the following command to remove it:

l. Repeat this step on each of the other control plane hosts that is not the recovery host.

5. Access the recovery control plane host.

6. If the keepalived daemon is in use, verify that the recovery control plane node owns the VIP:

The address of the VIP is highlighted in the output if it exists. This command returns an empty
string if the VIP is not set or configured incorrectly.

7. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY, 
HTTP_PROXY, and HTTPS_PROXY environment variables.

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o 
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

8. Run the restore script on the recovery control plane host and pass in the path to the etcd
backup directory:

Example script output

$ sudo mv -v /var/lib/etcd/ /tmp

$ sudo mv -v /etc/kubernetes/manifests/keepalived.yaml /tmp

$ sudo crictl ps --name keepalived

$ ip -o address | egrep '<api_vip>|<ingress_vip>'

$ sudo ip address del <reported_vip> dev <reported_vip_device>

$ ip -o address | grep <api_vip>

$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/assets/backup

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

205



The cluster-restore.sh script must show that etcd, kube-apiserver, kube-controller-manager,
and kube-scheduler pods are stopped and then started at the end of the restore process.

NOTE

The restore process can cause nodes to enter the NotReady state if the node
certificates were updated after the last etcd backup.

9. Check the nodes to ensure they are in the Ready state.

a. Run the following command:

Sample output

It can take several minutes for all nodes to report their state.

b. If any nodes are in the NotReady state, log in to the nodes and remove all of the PEM files

...stopping kube-scheduler-pod.yaml

...stopping kube-controller-manager-pod.yaml

...stopping etcd-pod.yaml

...stopping kube-apiserver-pod.yaml
Waiting for container etcd to stop
.complete
Waiting for container etcdctl to stop
.............................complete
Waiting for container etcd-metrics to stop
complete
Waiting for container kube-controller-manager to stop
complete
Waiting for container kube-apiserver to stop
..........................................................................................complete
Waiting for container kube-scheduler to stop
complete
Moving etcd data-dir /var/lib/etcd/member to /var/lib/etcd-backup
starting restore-etcd static pod
starting kube-apiserver-pod.yaml
static-pod-resources/kube-apiserver-pod-7/kube-apiserver-pod.yaml
starting kube-controller-manager-pod.yaml
static-pod-resources/kube-controller-manager-pod-7/kube-controller-manager-pod.yaml
starting kube-scheduler-pod.yaml
static-pod-resources/kube-scheduler-pod-8/kube-scheduler-pod.yaml

$ oc get nodes -w

NAME                STATUS  ROLES          AGE     VERSION
host-172-25-75-28   Ready   master         3d20h   v1.28.5
host-172-25-75-38   Ready   infra,worker   3d20h   v1.28.5
host-172-25-75-40   Ready   master         3d20h   v1.28.5
host-172-25-75-65   Ready   master         3d20h   v1.28.5
host-172-25-75-74   Ready   infra,worker   3d20h   v1.28.5
host-172-25-75-79   Ready   worker         3d20h   v1.28.5
host-172-25-75-86   Ready   worker         3d20h   v1.28.5
host-172-25-75-98   Ready   infra,worker   3d20h   v1.28.5

OpenShift Container Platform 4.15 Postinstallation configuration

206



1 1 2

b. If any nodes are in the NotReady state, log in to the nodes and remove all of the PEM files
from the /var/lib/kubelet/pki directory on each node. You can SSH into the nodes or use
the terminal window in the web console.

Sample pki directory

10. Restart the kubelet service on all control plane hosts.

a. From the recovery host, run:

b. Repeat this step on all other control plane hosts.

11. Approve the pending Certificate Signing Requests (CSRs):

NOTE

Clusters with no worker nodes, such as single-node clusters or clusters consisting
of three schedulable control plane nodes, will not have any pending CSRs to
approve. You can skip all the commands listed in this step.

a. Get the list of current CSRs by running:

Example output

NAME        AGE    SIGNERNAME                                    REQUESTOR                                                                   
CONDITION
csr-2s94x   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name>                                                     
Pending 1
csr-4bd6t   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name>                                                     
Pending 2
csr-4hl85   13m    kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending 
3

csr-zhhhp   3m8s   kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending 
4

...

A pending kubelet service

$  ssh -i <ssh-key-path> core@<master-hostname>

sh-4.4# pwd
/var/lib/kubelet/pki
sh-4.4# ls
kubelet-client-2022-04-28-11-24-09.pem  kubelet-server-2022-04-28-11-24-15.pem
kubelet-client-current.pem              kubelet-server-current.pem

$ sudo systemctl restart kubelet.service

$ oc get csr

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

207



1

CSR (for user-provisioned installations). <2> A pending node-bootstrapper CSR.

a. Review the details of a CSR to verify that it is valid by running:

<csr_name> is the name of a CSR from the list of current CSRs.

b. Approve each valid node-bootstrapper CSR by running:

c. For user-provisioned installations, approve each valid kubelet service CSR by running:

1. Verify that the single member control plane has started successfully.

d. From the recovery host, verify that the etcd container is running by using:

Example output

e. From the recovery host, verify that the etcd pod is running by using:

Example output

If the status is Pending, or the output lists more than one running etcd pod, wait a few minutes
and check again.

1. If you are using the OVNKubernetes network plugin, you must restart ovnkube-
controlplane pods.

f. Delete all of the ovnkube-controlplane pods by running:

g. Verify that all of the ovnkube-controlplane pods were redeployed by using:

$ oc describe csr <csr_name> 1

$ oc adm certificate approve <csr_name>

$ oc adm certificate approve <csr_name>

$ sudo crictl ps | grep etcd | egrep -v "operator|etcd-guard"

3ad41b7908e32       
36f86e2eeaaffe662df0d21041eb22b8198e0e58abeeae8c743c3e6e977e8009                                                         
About a minute ago   Running             etcd                                          0                   
7c05f8af362f0

$ oc -n openshift-etcd get pods -l k8s-app=etcd

NAME                                             READY   STATUS      RESTARTS   AGE
etcd-ip-10-0-143-125.ec2.internal                1/1     Running     1          2m47s

$ oc -n openshift-ovn-kubernetes delete pod -l app=ovnkube-control-plane

$ oc -n openshift-ovn-kubernetes get pod -l app=ovnkube-control-plane

OpenShift Container Platform 4.15 Postinstallation configuration

208



1. If you are using the OVN-Kubernetes network plugin, restart the Open Virtual Network
(OVN) Kubernetes pods on all the nodes one by one. Use the following steps to restart
OVN-Kubernetes pods on each node:

IMPORTANT

Restart OVN-Kubernetes pods in the following order:

1. The recovery control plane host

2. The other control plane hosts (if available)

3. The other nodes

NOTE

Validating and mutating admission webhooks can reject pods. If you add any
additional webhooks with the failurePolicy set to Fail, then they can reject
pods and the restoration process can fail. You can avoid this by saving and
deleting webhooks while restoring the cluster state. After the cluster state is
restored successfully, you can enable the webhooks again.

Alternatively, you can temporarily set the failurePolicy to Ignore while
restoring the cluster state. After the cluster state is restored successfully,
you can set the failurePolicy to Fail.

h. Remove the northbound database (nbdb) and southbound database (sbdb). Access the
recovery host and the remaining control plane nodes by using Secure Shell (SSH) and run:

i. Restart the OpenVSwitch services. Access the node by using Secure Shell (SSH) and run the
following command:

j. Delete the ovnkube-node pod on the node by running the following command, replacing 
<node> with the name of the node that you are restarting:

k. Verify that the ovnkube-node pod is running again with:

NOTE

It might take several minutes for the pods to restart.

1. Delete and re-create other non-recovery, control plane machines, one by one. After the
machines are re-created, a new revision is forced and etcd automatically scales up.

$ sudo rm -f /var/lib/ovn-ic/etc/*.db

$ sudo systemctl restart ovs-vswitchd ovsdb-server

$ oc -n openshift-ovn-kubernetes delete pod -l app=ovnkube-node --field-
selector=spec.nodeName==<node>

$ oc -n openshift-ovn-kubernetes get pod -l app=ovnkube-node --field-
selector=spec.nodeName==<node>

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

209



1

If you use a user-provisioned bare metal installation, you can re-create a control plane
machine by using the same method that you used to originally create it. For more
information, see "Installing a user-provisioned cluster on bare metal".

WARNING

Do not delete and re-create the machine for the recovery host.

If you are running installer-provisioned infrastructure, or you used the Machine API to
create your machines, follow these steps:

WARNING

Do not delete and re-create the machine for the recovery host.

For bare metal installations on installer-provisioned infrastructure,
control plane machines are not re-created. For more information,
see "Replacing a bare-metal control plane node".

l. Obtain the machine for one of the lost control plane hosts.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Example output:

This is the control plane machine for the lost control plane host, ip-10-0-131-
183.ec2.internal.





$ oc get machines -n openshift-machine-api -o wide

NAME                                        PHASE     TYPE        REGION      ZONE         AGE     NODE                           
PROVIDERID                              STATE
clustername-8qw5l-master-0                  Running   m4.xlarge   us-east-1   us-east-1a   3h37m   
ip-10-0-131-183.ec2.internal   aws:///us-east-1a/i-0ec2782f8287dfb7e   stopped 1
clustername-8qw5l-master-1                  Running   m4.xlarge   us-east-1   us-east-1b   3h37m   
ip-10-0-143-125.ec2.internal   aws:///us-east-1b/i-096c349b700a19631   running
clustername-8qw5l-master-2                  Running   m4.xlarge   us-east-1   us-east-1c   3h37m   
ip-10-0-154-194.ec2.internal    aws:///us-east-1c/i-02626f1dba9ed5bba  running
clustername-8qw5l-worker-us-east-1a-wbtgd   Running   m4.large    us-east-1   us-east-1a   
3h28m   ip-10-0-129-226.ec2.internal   aws:///us-east-1a/i-010ef6279b4662ced   running
clustername-8qw5l-worker-us-east-1b-lrdxb   Running   m4.large    us-east-1   us-east-1b   
3h28m   ip-10-0-144-248.ec2.internal   aws:///us-east-1b/i-0cb45ac45a166173b   running
clustername-8qw5l-worker-us-east-1c-pkg26   Running   m4.large    us-east-1   us-east-1c   
3h28m   ip-10-0-170-181.ec2.internal   aws:///us-east-1c/i-06861c00007751b0a   running

OpenShift Container Platform 4.15 Postinstallation configuration

210



1

m. Save the machine configuration to a file on your file system by running:

Specify the name of the control plane machine for the lost control plane host.

n. Edit the new-master-machine.yaml file that was created in the previous step to assign a new
name and remove unnecessary fields.

i. Remove the entire status section by running:

ii. Change the metadata.name field to a new name by running:
It is recommended to keep the same base name as the old machine and change the ending
number to the next available number. In this example, clustername-8qw5l-master-0 is
changed to clustername-8qw5l-master-3:

iii. Remove the spec.providerID field by running:

$ oc get machine clustername-8qw5l-master-0 \ 1
    -n openshift-machine-api \
    -o yaml \
    > new-master-machine.yaml

status:
  addresses:
  - address: 10.0.131.183
    type: InternalIP
  - address: ip-10-0-131-183.ec2.internal
    type: InternalDNS
  - address: ip-10-0-131-183.ec2.internal
    type: Hostname
  lastUpdated: "2020-04-20T17:44:29Z"
  nodeRef:
    kind: Node
    name: ip-10-0-131-183.ec2.internal
    uid: acca4411-af0d-4387-b73e-52b2484295ad
  phase: Running
  providerStatus:
    apiVersion: awsproviderconfig.openshift.io/v1beta1
    conditions:
    - lastProbeTime: "2020-04-20T16:53:50Z"
      lastTransitionTime: "2020-04-20T16:53:50Z"
      message: machine successfully created
      reason: MachineCreationSucceeded
      status: "True"
      type: MachineCreation
    instanceId: i-0fdb85790d76d0c3f
    instanceState: stopped
    kind: AWSMachineProviderStatus

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
  ...
  name: clustername-8qw5l-master-3
  ...

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

211



1

iv. Remove the metadata.annotations and metadata.generation fields by running:

v. Remove the metadata.resourceVersion and metadata.uid fields by running:

o. Delete the machine of the lost control plane host by running:

Specify the name of the control plane machine for the lost control plane host.

p. Verify that the machine was deleted by running:

Example output:

q. Create a machine by using the new-master-machine.yaml file by running:

r. Verify that the new machine has been created by running:

Example output:

providerID: aws:///us-east-1a/i-0fdb85790d76d0c3f

annotations:
  machine.openshift.io/instance-state: running
...
generation: 2

resourceVersion: "13291"
uid: a282eb70-40a2-4e89-8009-d05dd420d31a

$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0 1

$ oc get machines -n openshift-machine-api -o wide

NAME                                        PHASE     TYPE        REGION      ZONE         AGE     NODE                           
PROVIDERID                              STATE
clustername-8qw5l-master-1                  Running   m4.xlarge   us-east-1   us-east-1b   3h37m   
ip-10-0-143-125.ec2.internal   aws:///us-east-1b/i-096c349b700a19631   running
clustername-8qw5l-master-2                  Running   m4.xlarge   us-east-1   us-east-1c   3h37m   
ip-10-0-154-194.ec2.internal   aws:///us-east-1c/i-02626f1dba9ed5bba  running
clustername-8qw5l-worker-us-east-1a-wbtgd   Running   m4.large    us-east-1   us-east-1a   
3h28m   ip-10-0-129-226.ec2.internal   aws:///us-east-1a/i-010ef6279b4662ced   running
clustername-8qw5l-worker-us-east-1b-lrdxb   Running   m4.large    us-east-1   us-east-1b   
3h28m   ip-10-0-144-248.ec2.internal   aws:///us-east-1b/i-0cb45ac45a166173b   running
clustername-8qw5l-worker-us-east-1c-pkg26   Running   m4.large    us-east-1   us-east-1c   
3h28m   ip-10-0-170-181.ec2.internal   aws:///us-east-1c/i-06861c00007751b0a   running

$ oc apply -f new-master-machine.yaml

$ oc get machines -n openshift-machine-api -o wide

NAME                                        PHASE          TYPE        REGION      ZONE         AGE     
NODE                           PROVIDERID                              STATE
clustername-8qw5l-master-1                  Running        m4.xlarge   us-east-1   us-east-1b   

OpenShift Container Platform 4.15 Postinstallation configuration

212



1

1

The new machine, clustername-8qw5l-master-3 is being created and is ready after the
phase changes from Provisioning to Running.

It might take a few minutes for the new machine to be created. The etcd cluster Operator will
automatically sync when the machine or node returns to a healthy state.

s. Repeat these steps for each lost control plane host that is not the recovery host.

1. Turn off the quorum guard by entering:

This command ensures that you can successfully re-create secrets and roll out the static
pods.

2. In a separate terminal window within the recovery host, export the recovery kubeconfig file
by running:

3. Force etcd redeployment.
In the same terminal window where you exported the recovery kubeconfig file, run:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

When the etcd cluster Operator performs a redeployment, the existing nodes are started
with new pods similar to the initial bootstrap scale up.

4. Turn the quorum guard back on by entering:

5. You can verify that the unsupportedConfigOverrides section is removed from the object
by running:

3h37m   ip-10-0-143-125.ec2.internal   aws:///us-east-1b/i-096c349b700a19631   running
clustername-8qw5l-master-2                  Running        m4.xlarge   us-east-1   us-east-1c   
3h37m   ip-10-0-154-194.ec2.internal    aws:///us-east-1c/i-02626f1dba9ed5bba  running
clustername-8qw5l-master-3                  Provisioning   m4.xlarge   us-east-1   us-east-1a   85s     
ip-10-0-173-171.ec2.internal    aws:///us-east-1a/i-015b0888fe17bc2c8  running 1
clustername-8qw5l-worker-us-east-1a-wbtgd   Running        m4.large    us-east-1   us-east-1a   
3h28m   ip-10-0-129-226.ec2.internal   aws:///us-east-1a/i-010ef6279b4662ced   running
clustername-8qw5l-worker-us-east-1b-lrdxb   Running        m4.large    us-east-1   us-east-1b   
3h28m   ip-10-0-144-248.ec2.internal   aws:///us-east-1b/i-0cb45ac45a166173b   running
clustername-8qw5l-worker-us-east-1c-pkg26   Running        m4.large    us-east-1   us-east-1c   
3h28m   ip-10-0-170-181.ec2.internal   aws:///us-east-1c/i-06861c00007751b0a   running

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": 
{"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

$ export KUBECONFIG=/etc/kubernetes/static-pod-resources/kube-apiserver-
certs/secrets/node-kubeconfigs/localhost-recovery.kubeconfig

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --
rfc-3339=ns )"'"}}' --type=merge 1

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

213



1

1

6. Verify all nodes are updated to the latest revision.
In a terminal that has access to the cluster as a cluster-admin user, run:

Review the NodeInstallerProgressing status condition for etcd to verify that all nodes are
at the latest revision. The output shows AllNodesAtLatestRevision upon successful
update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 
nodes are at revision 7, this means that the update is still in progress. Wait a few minutes
and try again.

7. After etcd is redeployed, force new rollouts for the control plane. kube-apiserver will
reinstall itself on the other nodes because the kubelet is connected to API servers using an
internal load balancer.
In a terminal that has access to the cluster as a cluster-admin user, run:

t. Force a new rollout for kube-apiserver:

Verify all nodes are updated to the latest revision.

Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest
revision. The output shows AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes 
are at revision 7, this means that the update is still in progress. Wait a few minutes and try
again.

u. Force a new rollout for the Kubernetes controller manager by running the following command:

$ oc get etcd/cluster -oyaml

$ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc patch kubeapiserver cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( 
date --rfc-3339=ns )"'"}}' --type=merge

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc patch kubecontrollermanager cluster -p='{"spec": {"forceRedeploymentReason": 
"recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

OpenShift Container Platform 4.15 Postinstallation configuration

214



1

1

Verify all nodes are updated to the latest revision by running:

Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest
revision. The output shows AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes 
are at revision 7, this means that the update is still in progress. Wait a few minutes and try
again.

v. Force a new rollout for the kube-scheduler by running:

Verify all nodes are updated to the latest revision by using:

Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest
revision. The output shows AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes 
are at revision 7, this means that the update is still in progress. Wait a few minutes and try
again.

1. Verify that all control plane hosts have started and joined the cluster.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

$ oc get kubecontrollermanager -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc patch kubescheduler cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( 
date --rfc-3339=ns )"'"}}' --type=merge

$ oc get kubescheduler -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc -n openshift-etcd get pods -l k8s-app=etcd

etcd-ip-10-0-143-125.ec2.internal                2/2     Running     0          9h
etcd-ip-10-0-154-194.ec2.internal                2/2     Running     0          9h
etcd-ip-10-0-173-171.ec2.internal                2/2     Running     0          9h

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

215



To ensure that all workloads return to normal operation following a recovery procedure, restart each pod
that stores kube-apiserver information. This includes OpenShift Container Platform components such
as routers, Operators, and third-party components.

NOTE

On completion of the previous procedural steps, you might need to wait a few minutes for
all services to return to their restored state. For example, authentication by using oc 
login might not immediately work until the OAuth server pods are restarted.

Consider using the system:admin kubeconfig file for immediate authentication. This
method basis its authentication on SSL/TLS client certificates as against OAuth tokens.
You can authenticate with this file by issuing the following command:

Issue the following command to display your authenticated user name:

Additional resources

Installing a user-provisioned cluster on bare metal

Replacing a bare-metal control plane node

8.14.8. Issues and workarounds for restoring a persistent storage state

If your OpenShift Container Platform cluster uses persistent storage of any form, a state of the cluster
is typically stored outside etcd. It might be an Elasticsearch cluster running in a pod or a database
running in a StatefulSet object. When you restore from an etcd backup, the status of the workloads in
OpenShift Container Platform is also restored. However, if the etcd snapshot is old, the status might be
invalid or outdated.

IMPORTANT

The contents of persistent volumes (PVs) are never part of the etcd snapshot. When you
restore an OpenShift Container Platform cluster from an etcd snapshot, non-critical
workloads might gain access to critical data, or vice-versa.

The following are some example scenarios that produce an out-of-date status:

MySQL database is running in a pod backed up by a PV object. Restoring OpenShift Container
Platform from an etcd snapshot does not bring back the volume on the storage provider, and
does not produce a running MySQL pod, despite the pod repeatedly attempting to start. You
must manually restore this pod by restoring the volume on the storage provider, and then
editing the PV to point to the new volume.

Pod P1 is using volume A, which is attached to node X. If the etcd snapshot is taken while another
pod uses the same volume on node Y, then when the etcd restore is performed, pod P1 might
not be able to start correctly due to the volume still being attached to node Y. OpenShift
Container Platform is not aware of the attachment, and does not automatically detach it. When
this occurs, the volume must be manually detached from node Y so that the volume can attach
on node X, and then pod P1 can start.

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig

$ oc whoami

OpenShift Container Platform 4.15 Postinstallation configuration

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#replacing-a-bare-metal-control-plane-node_ipi-install-expanding


Cloud provider or storage provider credentials were updated after the etcd snapshot was taken.
This causes any CSI drivers or Operators that depend on the those credentials to not work. You
might have to manually update the credentials required by those drivers or Operators.

A device is removed or renamed from OpenShift Container Platform nodes after the etcd
snapshot is taken. The Local Storage Operator creates symlinks for each PV that it manages
from /dev/disk/by-id or /dev directories. This situation might cause the local PVs to refer to
devices that no longer exist.
To fix this problem, an administrator must:

1. Manually remove the PVs with invalid devices.

2. Remove symlinks from respective nodes.

3. Delete LocalVolume or LocalVolumeSet objects (see Storage → Configuring persistent
storage → Persistent storage using local volumes  → Deleting the Local Storage Operator
Resources).

8.15. POD DISRUPTION BUDGETS

Understand and configure pod disruption budgets.

8.15.1. Understanding how to use pod disruption budgets to specify the number of
pods that must be up

A pod disruption budget  allows the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

A label selector, which is a label query over a set of pods.

An availability level, which specifies the minimum number of pods that must be available
simultaneously, either:

minAvailable is the number of pods must always be available, even during a disruption.

maxUnavailable is the number of pods can be unavailable during a disruption.

NOTE

Available refers to the number of pods that has condition Ready=True. Ready=True
refers to the pod that is able to serve requests and should be added to the load balancing
pools of all matching services.

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of
replicas is permitted but can block nodes from being drained.

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

217



WARNING

The default setting for maxUnavailable is 1 for all the machine config pools in
OpenShift Container Platform. It is recommended to not change this value and
update one control plane node at a time. Do not change this value to 3 for the
control plane pool.

You can check for pod disruption budgets across all projects with the following:

Example output

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

NOTE

Depending on your pod priority and preemption settings, lower-priority pods might be
removed despite their pod disruption budget requirements.

8.15.2. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas
that must be up at a time.

Procedure

To configure a pod disruption budget:

1. Create a YAML file with the an object definition similar to the following:



$ oc get poddisruptionbudget --all-namespaces

NAMESPACE                              NAME                                    MIN AVAILABLE   MAX UNAVAILABLE   
ALLOWED DISRUPTIONS   AGE
openshift-apiserver                    openshift-apiserver-pdb                 N/A             1                 1                     
121m
openshift-cloud-controller-manager     aws-cloud-controller-manager            1               N/A               1                     
125m
openshift-cloud-credential-operator    pod-identity-webhook                    1               N/A               1                     
117m
openshift-cluster-csi-drivers          aws-ebs-csi-driver-controller-pdb       N/A             1                 1                     
121m
openshift-cluster-storage-operator     csi-snapshot-controller-pdb             N/A             1                 1                     
122m
openshift-cluster-storage-operator     csi-snapshot-webhook-pdb                N/A             1                 1                     
122m
openshift-console                      console                                 N/A             1                 1                     
116m
#...

OpenShift Container Platform 4.15 Postinstallation configuration

218



1

2

3

1

2

3

PodDisruptionBudget is part of the policy/v1 API group.

The minimum number of pods that must be available simultaneously. This can be either an
integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

Or:

PodDisruptionBudget is part of the policy/v1 API group.

The maximum number of pods that can be unavailable simultaneously. This can be either
an integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

2. Run the following command to add the object to project:

8.15.3. Specifying the eviction policy for unhealthy pods

When you use pod disruption budgets (PDBs) to specify how many pods must be available
simultaneously, you can also define the criteria for how unhealthy pods are considered for eviction.

You can choose one of the following policies:

IfHealthyBudget

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
  name: my-pdb
spec:
  minAvailable: 2  2
  selector:  3
    matchLabels:
      name: my-pod

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
  name: my-pdb
spec:
  maxUnavailable: 25% 2
  selector: 3
    matchLabels:
      name: my-pod

$ oc create -f </path/to/file> -n <project_name>

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

219



1

Running pods that are not yet healthy can be evicted only if the guarded application is not disrupted.

AlwaysAllow

Running pods that are not yet healthy can be evicted regardless of whether the criteria in the pod
disruption budget is met. This policy can help evict malfunctioning applications, such as ones with
pods stuck in the CrashLoopBackOff state or failing to report the Ready status.

NOTE

It is recommended to set the unhealthyPodEvictionPolicy field to AlwaysAllow in
the PodDisruptionBudget object to support the eviction of misbehaving applications
during a node drain. The default behavior is to wait for the application pods to
become healthy before the drain can proceed.

Procedure

1. Create a YAML file that defines a PodDisruptionBudget object and specify the unhealthy pod
eviction policy:

Example pod-disruption-budget.yaml file

Choose either IfHealthyBudget or AlwaysAllow as the unhealthy pod eviction policy. The
default is IfHealthyBudget when the unhealthyPodEvictionPolicy field is empty.

2. Create the PodDisruptionBudget object by running the following command:

With a PDB that has the AlwaysAllow unhealthy pod eviction policy set, you can now drain nodes and
evict the pods for a malfunctioning application guarded by this PDB.

Additional resources

Enabling features using feature gates

Unhealthy Pod Eviction Policy  in the Kubernetes documentation

8.16. ROTATING OR REMOVING CLOUD PROVIDER CREDENTIALS

After installing OpenShift Container Platform, some organizations require the rotation or removal of the
cloud provider credentials that were used during the initial installation.

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: my-pdb
spec:
  minAvailable: 2
  selector:
    matchLabels:
      name: my-pod
  unhealthyPodEvictionPolicy: AlwaysAllow 1

$ oc create -f pod-disruption-budget.yaml

OpenShift Container Platform 4.15 Postinstallation configuration

220

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cluster-enabling
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#unhealthy-pod-eviction-policy


1

2

3

4

To allow the cluster to use the new credentials, you must update the secrets that the Cloud Credential
Operator (CCO) uses to manage cloud provider credentials.

8.16.1. Rotating cloud provider credentials with the Cloud Credential Operator utility

The Cloud Credential Operator (CCO) utility ccoctl supports updating secrets for clusters installed on
IBM Cloud®.

8.16.1.1. Rotating API keys

You can rotate API keys for your existing service IDs and update the corresponding secrets.

Prerequisites

You have configured the ccoctl binary.

You have existing service IDs in a live OpenShift Container Platform cluster installed.

Procedure

Use the ccoctl utility to rotate your API keys for the service IDs and update the secrets:

The name of the provider. For example: ibmcloud or powervs.

The kubeconfig file associated with the cluster. For example, 
<installation_directory>/auth/kubeconfig.

The directory where the credential requests are stored.

The name of the OpenShift Container Platform cluster.

NOTE

If your cluster uses Technology Preview features that are enabled by the 
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

8.16.2. Rotating cloud provider credentials manually

If your cloud provider credentials are changed for any reason, you must manually update the secret that
the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use.
After you rotate credentials for a cluster that is using mint mode, you must manually remove the
component credentials that were created by the removed credential.

Prerequisites

$ ccoctl <provider_name> refresh-keys \ 1
    --kubeconfig <openshift_kubeconfig_file> \ 2
    --credentials-requests-dir <path_to_credential_requests_directory> \ 3
    --name <name> 4

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

221

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#cloud-credential-operator_cluster-operators-ref


Your cluster is installed on a platform that supports rotating cloud credentials manually with the
CCO mode that you are using:

For mint mode, Amazon Web Services (AWS) and Google Cloud Platform (GCP) are
supported.

For passthrough mode, Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform (GCP), Red Hat OpenStack Platform (RHOSP), and VMware vSphere are
supported.

You have changed the credentials that are used to interface with your cloud provider.

The new credentials have sufficient permissions for the mode CCO is configured to use in your
cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. In the table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds

Azure azure-credentials

GCP gcp-credentials

RHOSP openstack-credentials

VMware vSphere vsphere-creds

3. Click the Options menu  in the same row as the secret and select Edit Secret.

4. Record the contents of the Value field or fields. You can use this information to verify that the
value is different after updating the credentials.

5. Update the text in the Value field or fields with the new authentication information for your
cloud provider, and then click Save.

6. If you are updating the credentials for a vSphere cluster that does not have the vSphere CSI
Driver Operator enabled, you must force a rollout of the Kubernetes controller manager to apply
the updated credentials.

NOTE

If the vSphere CSI Driver Operator is enabled, this step is not required.

To apply the updated vSphere credentials, log in to the OpenShift Container Platform CLI as a
user with the cluster-admin role and run the following command:

OpenShift Container Platform 4.15 Postinstallation configuration

222



1

2

While the credentials are rolling out, the status of the Kubernetes Controller Manager Operator
reports Progressing=true. To view the status, run the following command:

7. If the CCO for your cluster is configured to use mint mode, delete each component secret that
is referenced by the individual CredentialsRequest objects.

a. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

b. Get the names and namespaces of all referenced component secrets:

where <provider_spec> is the corresponding value for your cloud provider:

AWS: AWSProviderSpec

GCP: GCPProviderSpec

Partial example output for AWS

c. Delete each of the referenced component secrets:

Specify the name of a secret.

Specify the namespace that contains the secret.

Example deletion of an AWS secret

You do not need to manually delete the credentials from your provider console. Deleting
the referenced component secrets will cause the CCO to delete the existing credentials
from the platform and create new ones.

$ oc patch kubecontrollermanager cluster \
  -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date )"'"}}' \
  --type=merge

$ oc get co kube-controller-manager

$ oc -n openshift-cloud-credential-operator get CredentialsRequest \
  -o json | jq -r '.items[] | select (.spec.providerSpec.kind=="<provider_spec>") | 
.spec.secretRef'

{
  "name": "ebs-cloud-credentials",
  "namespace": "openshift-cluster-csi-drivers"
}
{
  "name": "cloud-credential-operator-iam-ro-creds",
  "namespace": "openshift-cloud-credential-operator"
}

$ oc delete secret <secret_name> \ 1
  -n <secret_namespace> 2

$ oc delete secret ebs-cloud-credentials -n openshift-cluster-csi-drivers

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

223



Verification

To verify that the credentials have changed:

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. Verify that the contents of the Value field or fields have changed.

Additional resources

vSphere CSI Driver Operator

8.16.3. Removing cloud provider credentials

After installing an OpenShift Container Platform cluster with the Cloud Credential Operator (CCO) in
mint mode, you can remove the administrator-level credential secret from the kube-system namespace
in the cluster. The administrator-level credential is required only during changes that require its
elevated permissions, such as upgrades.

NOTE

Prior to a non z-stream upgrade, you must reinstate the credential secret with the
administrator-level credential. If the credential is not present, the upgrade might be
blocked.

Prerequisites

Your cluster is installed on a platform that supports removing cloud credentials from the CCO.
Supported platforms are AWS and GCP.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. In the table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds

GCP gcp-credentials

3. Click the Options menu  in the same row as the secret and select Delete Secret.

Additional resources

About the Cloud Credential Operator

Admin credentials root secret format

8.17. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED

OpenShift Container Platform 4.15 Postinstallation configuration

224

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#vmware-vsphere-csi-driver-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#about-cloud-credential-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#admin-credentials-root-secret-formats_cco-mode-passthrough


8.17. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED
CLUSTER

After installing OpenShift Container Platform in a disconnected environment, configure the image
streams for the Cluster Samples Operator and the must-gather image stream.

8.17.1. Cluster Samples Operator assistance for mirroring

During installation, OpenShift Container Platform creates a config map named imagestreamtag-to-
image in the openshift-cluster-samples-operator namespace. The imagestreamtag-to-image config
map contains an entry, the populating image, for each image stream tag.

The format of the key for each entry in the data field in the config map is 
<image_stream_name>_<image_stream_tag_name>.

During a disconnected installation of OpenShift Container Platform, the status of the Cluster Samples
Operator is set to Removed. If you choose to change it to Managed, it installs samples.

NOTE

The use of samples in a network-restricted or discontinued environment may require
access to services external to your network. Some example services include: Github,
Maven Central, npm, RubyGems, PyPi and others. There might be additional steps to
take that allow the cluster samples operators’s objects to reach the services they require.

You can use this config map as a reference for which images need to be mirrored for your image
streams to import.

While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or
determine which existing mirrored registry you want to use.

Mirror the samples you want to the mirrored registry using the new config map as your guide.

Add any of the image streams you did not mirror to the skippedImagestreams list of the
Cluster Samples Operator configuration object.

Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored
registry.

Then set the Cluster Samples Operator to Managed to install the image streams you have
mirrored.

8.17.2. Using Cluster Samples Operator image streams with alternate or mirrored
registries

Most image streams in the openshift namespace managed by the Cluster Samples Operator point to
images located in the Red Hat registry at registry.redhat.io. Mirroring will not apply to these image
streams.

NOTE

The cli, installer, must-gather, and tests image streams, while part of the install payload,
are not managed by the Cluster Samples Operator. These are not addressed in this
procedure.

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

225

https://registry.redhat.io


IMPORTANT

The Cluster Samples Operator must be set to Managed in a disconnected environment.
To install the image streams, you have a mirrored registry.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Create a pull secret for your mirror registry.

Procedure

1. Access the images of a specific image stream to mirror, for example:

2. Mirror images from registry.redhat.io associated with any image streams you need in the
restricted network environment into one of the defined mirrors, for example:

3. Create the cluster’s image configuration object:

4. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

5. Update the samplesRegistry field in the Cluster Samples Operator configuration object to
contain the hostname portion of the mirror location defined in the mirror configuration:

NOTE

This is required because the image stream import process does not use the
mirror or search mechanism at this time.

6. Add any image streams that are not mirrored into the skippedImagestreams field of the
Cluster Samples Operator configuration object. Or if you do not want to support any of the
sample image streams, set the Cluster Samples Operator to Removed in the Cluster Samples
Operator configuration object.

NOTE

$ oc get is <imagestream> -n openshift -o json | jq .spec.tags[].from.name | grep 
registry.redhat.io

$ oc image mirror registry.redhat.io/rhscl/ruby-25-rhel7:latest ${MIRROR_ADDR}/rhscl/ruby-
25-rhel7:latest

$ oc create configmap registry-config --from-
file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

$ oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

OpenShift Container Platform 4.15 Postinstallation configuration

226

https://registry.redhat.io


NOTE

The Cluster Samples Operator issues alerts if image stream imports are failing
but the Cluster Samples Operator is either periodically retrying or does not
appear to be retrying them.

Many of the templates in the openshift namespace reference the image streams. So using 
Removed to purge both the image streams and templates will eliminate the possibility of
attempts to use them if they are not functional because of any missing image streams.

8.17.3. Preparing your cluster to gather support data

Clusters using a restricted network must import the default must-gather image to gather debugging
data for Red Hat support. The must-gather image is not imported by default, and clusters on a
restricted network do not have access to the internet to pull the latest image from a remote repository.

Procedure

1. If you have not added your mirror registry’s trusted CA to your cluster’s image configuration
object as part of the Cluster Samples Operator configuration, perform the following steps:

a. Create the cluster’s image configuration object:

b. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

2. Import the default must-gather image from your installation payload:

When running the oc adm must-gather command, use the --image flag and point to the payload
image, as in the following example:

8.18. CONFIGURING PERIODIC IMPORTING OF CLUSTER SAMPLE
OPERATOR IMAGE STREAM TAGS

You can ensure that you always have access to the latest versions of the Cluster Sample Operator
images by periodically importing the image stream tags when new versions become available.

Procedure

1. Fetch all the imagestreams in the openshift namespace by running the following command:

2. Fetch the tags for every imagestream in the openshift namespace by running the following

$ oc create configmap registry-config --from-
file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

$ oc import-image is/must-gather -n openshift

$ oc adm must-gather --image=$(oc adm release info --image-for must-gather)

oc get imagestreams -nopenshift

CHAPTER 8. POSTINSTALLATION CLUSTER TASKS

227



2. Fetch the tags for every imagestream in the openshift namespace by running the following
command:

For example:

Example output

3. Schedule periodic importing of images for each tag present in the image stream by running the
following command:

For example:

This command causes OpenShift Container Platform to periodically update this particular image
stream tag. This period is a cluster-wide setting set to 15 minutes by default.

4. Verify the scheduling status of the periodic import by running the following command:

For example:

Example output

$ oc get is <image-stream-name> -o jsonpath="{range .spec.tags[*]}{.name}{'\t'}{.from.name}
{'\n'}{end}" -nopenshift

$ oc get is ubi8-openjdk-17 -o jsonpath="{range .spec.tags[*]}{.name}{'\t'}{.from.name}{'\n'}
{end}" -nopenshift

1.11 registry.access.redhat.com/ubi8/openjdk-17:1.11
1.12 registry.access.redhat.com/ubi8/openjdk-17:1.12

$ oc tag <repository/image> <image-stream-name:tag> --scheduled -nopenshift

$ oc tag registry.access.redhat.com/ubi8/openjdk-17:1.11 ubi8-openjdk-17:1.11 --scheduled -
nopenshift
$ oc tag registry.access.redhat.com/ubi8/openjdk-17:1.12 ubi8-openjdk-17:1.12 --scheduled -
nopenshift

oc get imagestream <image-stream-name> -o jsonpath="{range .spec.tags[*]}Tag: {.name}
{'\t'}Scheduled: {.importPolicy.scheduled}{'\n'}{end}" -nopenshift

oc get imagestream ubi8-openjdk-17 -o jsonpath="{range .spec.tags[*]}Tag: {.name}
{'\t'}Scheduled: {.importPolicy.scheduled}{'\n'}{end}" -nopenshift

Tag: 1.11 Scheduled: true
Tag: 1.12 Scheduled: true

OpenShift Container Platform 4.15 Postinstallation configuration

228



CHAPTER 9. POSTINSTALLATION NODE TASKS
After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements through certain node tasks.

9.1. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

Understand and work with RHEL compute nodes.

9.1.1. About adding RHEL compute nodes to a cluster

In OpenShift Container Platform 4.15, you have the option of using Red Hat Enterprise Linux (RHEL)
machines as compute machines in your cluster if you use a user-provisioned or installer-provisioned
infrastructure installation on the x86_64 architecture. You must use Red Hat Enterprise Linux CoreOS
(RHCOS) machines for the control plane machines in your cluster.

If you choose to use RHEL compute machines in your cluster, you are responsible for all operating
system life cycle management and maintenance. You must perform system updates, apply patches, and
complete all other required tasks.

For installer-provisioned infrastructure clusters, you must manually add RHEL compute machines
because automatic scaling in installer-provisioned infrastructure clusters adds Red Hat Enterprise Linux
CoreOS (RHCOS) compute machines by default.

IMPORTANT

Because removing OpenShift Container Platform from a machine in the cluster
requires destroying the operating system, you must use dedicated hardware for
any RHEL machines that you add to the cluster.

Swap memory is disabled on all RHEL machines that you add to your OpenShift
Container Platform cluster. You cannot enable swap memory on these machines.

You must add any RHEL compute machines to the cluster after you initialize the control plane.

9.1.2. System requirements for RHEL compute nodes

The Red Hat Enterprise Linux (RHEL) compute machine hosts in your OpenShift Container Platform
environment must meet the following minimum hardware specifications and system-level requirements:

You must have an active OpenShift Container Platform subscription on your Red Hat account. If
you do not, contact your sales representative for more information.

Production environments must provide compute machines to support your expected workloads.
As a cluster administrator, you must calculate the expected workload and add about 10% for
overhead. For production environments, allocate enough resources so that a node host failure
does not affect your maximum capacity.

Each system must meet the following hardware requirements:

Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 8.6 and later  with "Minimal" installation option.

IMPORTANT

CHAPTER 9. POSTINSTALLATION NODE TASKS

229

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/index


IMPORTANT

Adding RHEL 7 compute machines to an OpenShift Container Platform
cluster is not supported.

If you have RHEL 7 compute machines that were previously supported in a
past OpenShift Container Platform version, you cannot upgrade them to
RHEL 8. You must deploy new RHEL 8 hosts, and the old RHEL 7 hosts
should be removed. See the "Deleting nodes" section for more information.

For the most recent list of major functionality that has been deprecated or
removed within OpenShift Container Platform, refer to the Deprecated and
removed features section of the OpenShift Container Platform release
notes.

If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the
RHEL machine before you boot it. See Installing a RHEL 8 system with FIPS mode enabled
in the RHEL 8 documentation.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from a Red
Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more
information about configuring FIPS mode on RHEL, see Installing the system in FIPS
mode. When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux
CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted to NIST for
FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

NetworkManager 1.0 or later.

1 vCPU.

Minimum 8 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

Minimum 1 GB hard disk space for the file system containing its temporary directory. The
temporary system directory is determined according to the rules defined in the tempfile module
in the Python standard library.

Each system must meet any additional requirements for your system provider. For example,
if you installed your cluster on VMware vSphere, your disks must be configured according to
its storage guidelines and the disk.enableUUID=true attribute must be set.

Each system must be able to access the cluster’s API endpoints by using DNS-resolvable
hostnames. Any network security access control that is in place must allow system access to
the cluster’s API service endpoints.

Additional resources

Deleting nodes

OpenShift Container Platform 4.15 Postinstallation configuration

230

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/assembly_installing-a-rhel-8-system-with-fips-mode-enabled_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-nodes-working-deleting_nodes-nodes-working


9.1.2.1. Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure
that you provision, you must provide a mechanism for approving cluster certificate signing requests
(CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The 
machine-approver cannot guarantee the validity of a serving certificate that is requested by using
kubelet credentials because it cannot confirm that the correct machine issued the request. You must
determine and implement a method of verifying the validity of the kubelet serving certificate requests
and approving them.

9.1.3. Preparing the machine to run the playbook

Before you can add compute machines that use Red Hat Enterprise Linux (RHEL) as the operating
system to an OpenShift Container Platform 4.15 cluster, you must prepare a RHEL 8 machine to run an
Ansible playbook that adds the new node to the cluster. This machine is not part of the cluster but must
be able to access it.

Prerequisites

Install the OpenShift CLI (oc) on the machine that you run the playbook on.

Log in as a user with cluster-admin permission.

Procedure

1. Ensure that the kubeconfig file for the cluster and the installation program that you used to
install the cluster are on the RHEL 8 machine. One way to accomplish this is to use the same
machine that you used to install the cluster.

2. Configure the machine to access all of the RHEL hosts that you plan to use as compute
machines. You can use any method that your company allows, including a bastion with an SSH
proxy or a VPN.

3. Configure a user on the machine that you run the playbook on that has SSH access to all of the
RHEL hosts.

IMPORTANT

If you use SSH key-based authentication, you must manage the key with an SSH
agent.

4. If you have not already done so, register the machine with RHSM and attach a pool with an 
OpenShift subscription to it:

a. Register the machine with RHSM:

b. Pull the latest subscription data from RHSM:

c. List the available subscriptions:

# subscription-manager register --username=<user_name> --password=<password>

# subscription-manager refresh

CHAPTER 9. POSTINSTALLATION NODE TASKS

231



d. In the output for the previous command, find the pool ID for an OpenShift Container
Platform subscription and attach it:

5. Enable the repositories required by OpenShift Container Platform 4.15:

6. Install the required packages, including openshift-ansible:

The openshift-ansible package provides installation program utilities and pulls in other
packages that you require to add a RHEL compute node to your cluster, such as Ansible,
playbooks, and related configuration files. The openshift-clients provides the oc CLI, and the 
jq package improves the display of JSON output on your command line.

9.1.4. Preparing a RHEL compute node

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform
cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active
OpenShift Container Platform subscription, and enable the required repositories.

1. On each host, register with RHSM:

2. Pull the latest subscription data from RHSM:

3. List the available subscriptions:

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform
subscription and attach it:

5. Disable all yum repositories:

a. Disable all the enabled RHSM repositories:

# subscription-manager list --available --matches '*OpenShift*'

# subscription-manager attach --pool=<pool_id>

# subscription-manager repos \
    --enable="rhel-8-for-x86_64-baseos-rpms" \
    --enable="rhel-8-for-x86_64-appstream-rpms" \
    --enable="rhocp-4.15-for-rhel-8-x86_64-rpms"

# yum install openshift-ansible openshift-clients jq

# subscription-manager register --username=<user_name> --password=<password>

# subscription-manager refresh

# subscription-manager list --available --matches '*OpenShift*'

# subscription-manager attach --pool=<pool_id>

# subscription-manager repos --disable="*"

OpenShift Container Platform 4.15 Postinstallation configuration

232



b. List the remaining yum repositories and note their names under repo id, if any:

c. Use yum-config-manager to disable the remaining yum repositories:

Alternatively, disable all repositories:

Note that this might take a few minutes if you have a large number of available repositories

6. Enable only the repositories required by OpenShift Container Platform 4.15:

7. Stop and disable firewalld on the host:

NOTE

You must not enable firewalld later. If you do, you cannot access OpenShift
Container Platform logs on the worker.

9.1.5. Adding a RHEL compute machine to your cluster

You can add compute machines that use Red Hat Enterprise Linux as the operating system to an
OpenShift Container Platform 4.15 cluster.

Prerequisites

You installed the required packages and performed the necessary configuration on the machine
that you run the playbook on.

You prepared the RHEL hosts for installation.

Procedure

Perform the following steps on the machine that you prepared to run the playbook:

1. Create an Ansible inventory file that is named /<path>/inventory/hosts that defines your
compute machine hosts and required variables:

[all:vars]
ansible_user=root 1
#ansible_become=True 2

# yum repolist

# yum-config-manager --disable <repo_id>

# yum-config-manager --disable \*

# subscription-manager repos \
    --enable="rhel-8-for-x86_64-baseos-rpms" \
    --enable="rhel-8-for-x86_64-appstream-rpms" \
    --enable="rhocp-4.15-for-rhel-8-x86_64-rpms" \
    --enable="fast-datapath-for-rhel-8-x86_64-rpms"

# systemctl disable --now firewalld.service

CHAPTER 9. POSTINSTALLATION NODE TASKS

233



1

2

3

4

1

openshift_kubeconfig_path="~/.kube/config" 3

[new_workers] 4
mycluster-rhel8-0.example.com
mycluster-rhel8-1.example.com

Specify the user name that runs the Ansible tasks on the remote compute machines.

If you do not specify root for the ansible_user, you must set ansible_become to True
and assign the user sudo permissions.

Specify the path and file name of the kubeconfig file for your cluster.

List each RHEL machine to add to your cluster. You must provide the fully-qualified
domain name for each host. This name is the hostname that the cluster uses to access the
machine, so set the correct public or private name to access the machine.

2. Navigate to the Ansible playbook directory:

3. Run the playbook:

For <path>, specify the path to the Ansible inventory file that you created.

9.1.6. Required parameters for the Ansible hosts file

You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise
Linux (RHEL) compute machines to your cluster.

Parameter Description Values

ansible_user The SSH user that allows SSH-based
authentication without requiring a
password. If you use SSH key-based
authentication, then you must manage
the key with an SSH agent.

A user name on the system. The default
value is root.

ansible_becom
e

If the values of ansible_user is not root,
you must set ansible_become to True,
and the user that you specify as the 
ansible_user must be configured for
passwordless sudo access.

True. If the value is not True, do not
specify and define this parameter.

openshift_kube
config_path

Specifies a path and file name to a local
directory that contains the kubeconfig
file for your cluster.

The path and name of the configuration
file.

$ cd /usr/share/ansible/openshift-ansible

$ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1

OpenShift Container Platform 4.15 Postinstallation configuration

234



1

1

1

9.1.7. Optional: Removing RHCOS compute machines from a cluster

After you add the Red Hat Enterprise Linux (RHEL) compute machines to your cluster, you can
optionally remove the Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to free up
resources.

Prerequisites

You have added RHEL compute machines to your cluster.

Procedure

1. View the list of machines and record the node names of the RHCOS compute machines:

2. For each RHCOS compute machine, delete the node:

a. Mark the node as unschedulable by running the oc adm cordon command:

Specify the node name of one of the RHCOS compute machines.

b. Drain all the pods from the node:

Specify the node name of the RHCOS compute machine that you isolated.

c. Delete the node:

Specify the node name of the RHCOS compute machine that you drained.

3. Review the list of compute machines to ensure that only the RHEL nodes remain:

4. Remove the RHCOS machines from the load balancer for your cluster’s compute machines. You
can delete the virtual machines or reimage the physical hardware for the RHCOS compute
machines.

9.2. ADDING RHCOS COMPUTE MACHINES TO AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

You can add more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to your OpenShift
Container Platform cluster on bare metal.

Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you

$ oc get nodes -o wide

$ oc adm cordon <node_name> 1

$ oc adm drain <node_name> --force --delete-emptydir-data --ignore-daemonsets 1

$ oc delete nodes <node_name> 1

$ oc get nodes -o wide

CHAPTER 9. POSTINSTALLATION NODE TASKS

235



Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you
must create RHCOS machines for it to use. You can either use an ISO image or network PXE booting to
create the machines.

9.2.1. Prerequisites

You installed a cluster on bare metal.

You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you
used to create your cluster. If you do not have these files, you must obtain them by following the
instructions in the installation procedure.

9.2.2. Creating RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

You must have the OpenShift CLI (oc) installed.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URLs of these files.

3. You can validate that the ignition files are available on the URLs. The following example gets
the Ignition config files for the compute node:

4. You can access the ISO image for booting your new machine by running to following command:

5. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

6. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot
sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

NOTE

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<HTTP_server>/worker.ign

RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get 
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.
<architecture>.artifacts.metal.formats.iso.disk.location')

OpenShift Container Platform 4.15 Postinstallation configuration

236

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-bare-metal


1

2

NOTE

You can interrupt the RHCOS installation boot process to add kernel arguments.
However, for this ISO procedure you must use the coreos-installer command as
outlined in the following steps, instead of adding kernel arguments.

7. Run the coreos-installer command and specify the options that meet your installation
requirements. At a minimum, you must specify the URL that points to the Ignition config file for
the node type, and the device that you are installing to:

You must run the coreos-installer command by using sudo, because the core user does
not have the required root privileges to perform the installation.

The --ignition-hash option is required when the Ignition config file is obtained through an
HTTP URL to validate the authenticity of the Ignition config file on the cluster node. 
<digest> is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that
uses TLS, you can add the internal certificate authority (CA) to the system trust
store before running coreos-installer.

The following example initializes a bootstrap node installation to the /dev/sda device. The
Ignition config file for the bootstrap node is obtained from an HTTP web server with the IP
address 192.168.1.2:

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

Ensure that the installation is successful on each node before commencing with
the OpenShift Container Platform installation. Observing the installation process
can also help to determine the cause of RHCOS installation issues that might
arise.

9. Continue to create more compute machines for your cluster.

9.2.3. Creating RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> 
--ignition-hash=sha512-<digest> 1 2

$ sudo coreos-installer install --ignition-
url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda --ignition-hash=sha512-
a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011
6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

CHAPTER 9. POSTINSTALLATION NODE TASKS

237



1

2

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
    KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
    APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img 2

Specify the location of the live kernel file that you uploaded to your HTTP server.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The 
initrd parameter value is the location of the live initramfs file, the 
coreos.inst.ignition_url parameter value is the location of the worker Ignition config
file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs
file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support
HTTP and HTTPS.

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more 
console= arguments to the APPEND line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE (x86_64 + aarch64):

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main 
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 

OpenShift Container Platform 4.15 Postinstallation configuration

238

https://access.redhat.com/articles/7212


1

2

3

1

2

3

coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

Specify the locations of the RHCOS files that you uploaded to your HTTP server. The 
kernel parameter value is the location of the kernel file, the initrd=main argument is
needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is
the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the
location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

This configuration does not enable serial console access on machines with a
graphical console To configure a different console, add one or more 
console= arguments to the kernel line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise Linux?
and "Enabling the serial console for PXE and ISO installation" in the
"Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS kernel on aarch64 architecture, you need to
use a version of iPXE build with the IMAGE_GZIP option enabled. See 
IMAGE_GZIP option in iPXE .

For PXE (with UEFI and GRUB as second stage) on aarch64:

menuentry 'Install CoreOS' {
    linux rhcos-<version>-live-kernel-<architecture>  
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda 
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
    initrd rhcos-<version>-live-initramfs.<architecture>.img 3
}

Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP
server. The kernel parameter value is the location of the kernel file on your TFTP
server. The coreos.live.rootfs_url parameter value is the location of the rootfs file,
and the coreos.inst.ignition_url parameter value is the location of the worker Ignition
config file on your HTTP Server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your TFTP server.

CHAPTER 9. POSTINSTALLATION NODE TASKS

239

https://access.redhat.com/articles/7212
https://ipxe.org/buildcfg/image_gzip


2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

9.2.4. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.28.5
master-1  Ready     master  63m  v1.28.5
master-2  Ready     master  64m  v1.28.5

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

OpenShift Container Platform 4.15 Postinstallation configuration

240



1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

CHAPTER 9. POSTINSTALLATION NODE TASKS

241



1

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

9.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

OpenShift Container Platform supports partitioning devices during installation by using machine configs
that are processed during the bootstrap. However, if you use /var partitioning, the device name must be
determined at installation and cannot be changed. You cannot add different instance types as nodes if
they have a different device naming schema. For example, if you configured the /var partition with the
default AWS device name for m4.large instances, dev/xvdb, you cannot directly add an AWS m5.large
instance, as m5.large instances use a /dev/nvme1n1 device by default. The device might fail to partition
due to the different naming schema.

The procedure in this section shows how to add a new Red Hat Enterprise Linux CoreOS (RHCOS)
compute node with an instance that uses a different device name from what was configured at
installation. You create a custom user data secret and configure a new compute machine set. These
steps are specific to an AWS cluster. The principles apply to other cloud deployments also. However, the
device naming schema is different for other deployments and should be determined on a per-case basis.

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.28.5
master-1  Ready     master  73m  v1.28.5
master-2  Ready     master  74m  v1.28.5
worker-0  Ready     worker  11m  v1.28.5
worker-1  Ready     worker  11m  v1.28.5

OpenShift Container Platform 4.15 Postinstallation configuration

242

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/


Procedure

1. On a command line, change to the openshift-machine-api namespace:

2. Create a new secret from the worker-user-data secret:

a. Export the userData section of the secret to a text file:

b. Edit the text file to add the storage, filesystems, and systemd stanzas for the partitions
you want to use for the new node. You can specify any Ignition configuration parameters  as
needed.

NOTE

Do not change the values in the ignition stanza.

$ oc project openshift-machine-api

$ oc get secret worker-user-data --template='{{index .data.userData | base64decode}}' | 
jq > userData.txt

{
  "ignition": {
    "config": {
      "merge": [
        {
          "source": "https:...."
        }
      ]
    },
    "security": {
      "tls": {
        "certificateAuthorities": [
          {
            "source": "data:text/plain;charset=utf-8;base64,.....=="
          }
        ]
      }
    },
    "version": "3.2.0"
  },
  "storage": {
    "disks": [
      {
        "device": "/dev/nvme1n1", 1
        "partitions": [
          {
            "label": "var",
            "sizeMiB": 50000, 2
            "startMiB": 0 3
          }
        ]
      }
    ],

CHAPTER 9. POSTINSTALLATION NODE TASKS

243

https://coreos.github.io/ignition/configuration-v3_2/


1

2

3

4

5

6

7

Specifies an absolute path to the AWS block device.

Specifies the size of the data partition in Mebibytes.

Specifies the start of the partition in Mebibytes. When adding a data partition to the
boot disk, a minimum value of 25000 MB (Mebibytes) is recommended. The root file
system is automatically resized to fill all available space up to the specified offset. If no
value is specified, or if the specified value is smaller than the recommended minimum,
the resulting root file system will be too small, and future reinstalls of RHCOS might
overwrite the beginning of the data partition.

Specifies an absolute path to the /var partition.

Specifies the filesystem format.

Specifies the mount-point of the filesystem while Ignition is running relative to where
the root filesystem will be mounted. This is not necessarily the same as where it should
be mounted in the real root, but it is encouraged to make it the same.

Defines a systemd mount unit that mounts the /dev/disk/by-partlabel/var device to
the /var partition.

c. Extract the disableTemplating section from the work-user-data secret to a text file:

d. Create the new user data secret file from the two text files. This user data secret passes the
additional node partition information in the userData.txt file to the newly created node.

    "filesystems": [
      {
        "device": "/dev/disk/by-partlabel/var", 4
        "format": "xfs", 5
        "path": "/var" 6
      }
    ]
  },
  "systemd": {
    "units": [ 7
      {
        "contents": "[Unit]\nBefore=local-
fs.target\n[Mount]\nWhere=/var\nWhat=/dev/disk/by-
partlabel/var\nOptions=defaults,pquota\n[Install]\nWantedBy=local-fs.target\n",
        "enabled": true,
        "name": "var.mount"
      }
    ]
  }
}

$ oc get secret worker-user-data --template='{{index .data.disableTemplating | 
base64decode}}' | jq > disableTemplating.txt

$ oc create secret generic worker-user-data-x5 --from-file=userData=userData.txt --
from-file=disableTemplating=disableTemplating.txt

OpenShift Container Platform 4.15 Postinstallation configuration

244



3. Create a new compute machine set for the new node:

a. Create a new compute machine set YAML file, similar to the following, which is configured
for AWS. Add the required partitions and the newly-created user data secret:

TIP

Use an existing compute machine set as a template and change the parameters as needed
for the new node.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: auto-52-92tf4
  name: worker-us-east-2-nvme1n1 1
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: auto-52-92tf4
      machine.openshift.io/cluster-api-machineset: auto-52-92tf4-worker-us-east-2b
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: auto-52-92tf4
        machine.openshift.io/cluster-api-machine-role: worker
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: auto-52-92tf4-worker-us-east-2b
    spec:
      metadata: {}
      providerSpec:
        value:
          ami:
            id: ami-0c2dbd95931a
          apiVersion: awsproviderconfig.openshift.io/v1beta1
          blockDevices:
          - DeviceName: /dev/nvme1n1 2
            ebs:
              encrypted: true
              iops: 0
              volumeSize: 120
              volumeType: gp2
          - DeviceName: /dev/nvme1n2 3
            ebs:
              encrypted: true
              iops: 0
              volumeSize: 50
              volumeType: gp2
          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: auto-52-92tf4-worker-profile

CHAPTER 9. POSTINSTALLATION NODE TASKS

245



1

2

3

4

1

Specifies a name for the new node.

Specifies an absolute path to the AWS block device, here an encrypted EBS volume.

Optional. Specifies an additional EBS volume.

Specifies the user data secret file.

b. Create the compute machine set:

The machines might take a few moments to become available.

4. Verify that the new partition and nodes are created:

a. Verify that the compute machine set is created:

Example output

This is the new compute machine set.

b. Verify that the new node is created:

          instanceType: m6i.large
          kind: AWSMachineProviderConfig
          metadata:
            creationTimestamp: null
          placement:
            availabilityZone: us-east-2b
            region: us-east-2
          securityGroups:
          - filters:
            - name: tag:Name
              values:
              - auto-52-92tf4-worker-sg
          subnet:
            id: subnet-07a90e5db1
          tags:
          - name: kubernetes.io/cluster/auto-52-92tf4
            value: owned
          userDataSecret:
            name: worker-user-data-x5 4

$ oc create -f <file-name>.yaml

$ oc get machineset

NAME                                               DESIRED   CURRENT   READY   AVAILABLE   AGE
ci-ln-2675bt2-76ef8-bdgsc-worker-us-east-1a        1         1         1       1           124m
ci-ln-2675bt2-76ef8-bdgsc-worker-us-east-1b        2         2         2       2           124m
worker-us-east-2-nvme1n1                           1         1         1       1           2m35s 1

$ oc get nodes

OpenShift Container Platform 4.15 Postinstallation configuration

246



1

1

Example output

This is new new node.

c. Verify that the custom /var partition is created on the new node:

For example:

Example output

The nvme1n1 device is mounted to the /var partition.

Additional resources

For more information on how OpenShift Container Platform uses disk partitioning, see Disk
partitioning.

9.3. DEPLOYING MACHINE HEALTH CHECKS

Understand and deploy machine health checks.

IMPORTANT

NAME                           STATUS   ROLES    AGE     VERSION
ip-10-0-128-78.ec2.internal    Ready    worker   117m    v1.28.5
ip-10-0-146-113.ec2.internal   Ready    master   127m    v1.28.5
ip-10-0-153-35.ec2.internal    Ready    worker   118m    v1.28.5
ip-10-0-176-58.ec2.internal    Ready    master   126m    v1.28.5
ip-10-0-217-135.ec2.internal   Ready    worker   2m57s   v1.28.5 1
ip-10-0-225-248.ec2.internal   Ready    master   127m    v1.28.5
ip-10-0-245-59.ec2.internal    Ready    worker   116m    v1.28.5

$ oc debug node/<node-name> -- chroot /host lsblk

$ oc debug node/ip-10-0-217-135.ec2.internal -- chroot /host lsblk

NAME        MAJ:MIN  RM  SIZE RO TYPE MOUNTPOINT
nvme0n1     202:0    0   120G  0 disk
|-nvme0n1p1 202:1    0     1M  0 part
|-nvme0n1p2 202:2    0   127M  0 part
|-nvme0n1p3 202:3    0   384M  0 part /boot
`-nvme0n1p4 202:4    0 119.5G  0 part /sysroot
nvme1n1     202:16   0    50G  0 disk
`-nvme1n1p1 202:17   0  48.8G  0 part /var 1

CHAPTER 9. POSTINSTALLATION NODE TASKS

247

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-user-infra-machines-advanced_disk_installing-bare-metal


IMPORTANT

You can use the advanced machine management and scaling capabilities only in clusters
where the Machine API is operational. Clusters with user-provisioned infrastructure
require additional validation and configuration to use the Machine API.

Clusters with the infrastructure platform type none cannot use the Machine API. This
limitation applies even if the compute machines that are attached to the cluster are
installed on a platform that supports the feature. This parameter cannot be changed
after installation.

To view the platform type for your cluster, run the following command:

9.3.1. About machine health checks

NOTE

You can only apply a machine health check to machines that are managed by compute
machine sets or control plane machine sets.

To monitor machine health, create a resource to define the configuration for a controller. Set a condition
to check, such as staying in the NotReady status for five minutes or displaying a permanent condition in
the node-problem-detector, and a label for the set of machines to monitor.

The controller that observes a MachineHealthCheck resource checks for the defined condition. If a
machine fails the health check, the machine is automatically deleted and one is created to take its place.
When a machine is deleted, you see a machine deleted event.

To limit disruptive impact of the machine deletion, the controller drains and deletes only one node at a
time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted
pool of machines, remediation stops and therefore enables manual intervention.

NOTE

Consider the timeouts carefully, accounting for workloads and requirements.

Long timeouts can result in long periods of downtime for the workload on the
unhealthy machine.

Too short timeouts can result in a remediation loop. For example, the timeout for
checking the NotReady status must be long enough to allow the machine to
complete the startup process.

To stop the check, remove the resource.

9.3.1.1. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

If the node for a machine is removed from the cluster, a machine health check considers the

$ oc get infrastructure cluster -o jsonpath='{.status.platform}'

OpenShift Container Platform 4.15 Postinstallation configuration

248



1

2 3

4

5 6

7

8

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the 
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

Additional resources

About control plane machine sets

9.3.2. Sample MachineHealthCheck resource

The MachineHealthCheck resource for all cloud-based installation types, and other than bare metal,
resembles the following YAML file:

Specify the name of the machine health check to deploy.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This
can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set
by maxUnhealthy, remediation is not performed.

Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
  name: example 1
  namespace: openshift-machine-api
spec:
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-machine-role: <role> 2
      machine.openshift.io/cluster-api-machine-type: <role> 3
      machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
  unhealthyConditions:
  - type:    "Ready"
    timeout: "300s" 5
    status: "False"
  - type:    "Ready"
    timeout: "300s" 6
    status: "Unknown"
  maxUnhealthy: "40%" 7
  nodeStartupTimeout: "10m" 8

CHAPTER 9. POSTINSTALLATION NODE TASKS

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#cpmso-about


NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

9.3.2.1. Short-circuiting machine health check remediation

Short-circuiting ensures that machine health checks remediate machines only when the cluster is
healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck
resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the 
MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its
target pool that it has determined to be unhealthy. Remediation is not performed if the number of
unhealthy machines exceeds the maxUnhealthy limit.

IMPORTANT

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated
regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many
machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to
cover multiple compute machine sets across multiple availability zones so that if you lose an entire zone,
your maxUnhealthy setting prevents further remediation within the cluster. In global Azure regions that
do not have multiple availability zones, you can use availability sets to ensure high availability.

IMPORTANT

If you configure a MachineHealthCheck resource for the control plane, set the value of 
maxUnhealthy to 1.

This configuration ensures that the machine health check takes no action when multiple
control plane machines appear to be unhealthy. Multiple unhealthy control plane
machines can indicate that the etcd cluster is degraded or that a scaling operation to
replace a failed machine is in progress.

If the etcd cluster is degraded, manual intervention might be required. If a scaling
operation is in progress, the machine health check should allow it to finish.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation
implementations depending on the maxUnhealthy value.

9.3.2.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

9.3.2.1.2. Setting maxUnhealthy by using percentages

OpenShift Container Platform 4.15 Postinstallation configuration

250



If maxUnhealthy is set to 40% and there are 25 machines being checked:

Remediation will be performed if 10 or fewer nodes are unhealthy

Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

NOTE

The allowed number of machines is rounded down when the percentage of 
maxUnhealthy machines that are checked is not a whole number.

9.3.3. Creating a machine health check resource

You can create a MachineHealthCheck resource for machine sets in your cluster.

NOTE

You can only apply a machine health check to machines that are managed by compute
machine sets or control plane machine sets.

Prerequisites

Install the oc command line interface.

Procedure

1. Create a healthcheck.yml file that contains the definition of your machine health check.

2. Apply the healthcheck.yml file to your cluster:

9.3.4. Scaling a compute machine set manually

To add or remove an instance of a machine in a compute machine set, you can manually scale the
compute machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations.
Customized, user-provisioned infrastructure installations do not have compute machine sets.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

$ oc apply -f healthcheck.yml

CHAPTER 9. POSTINSTALLATION NODE TASKS

251



1. View the compute machine sets that are in the cluster by running the following command:

The compute machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. View the compute machines that are in the cluster by running the following command:

3. Set the annotation on the compute machine that you want to delete by running the following
command:

4. Scale the compute machine set by running one of the following commands:

Or:

TIP

You can alternatively apply the following YAML to scale the compute machine set:

You can scale the compute machine set up or down. It takes several minutes for the new
machines to be available.

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed. If the drain
operation fails, the machine controller cannot proceed removing the machine.

You can skip draining the node by annotating machine.openshift.io/exclude-
node-draining in a specific machine.

Verification

Verify the deletion of the intended machine by running the following command:

$ oc get machinesets -n openshift-machine-api

$ oc get machine -n openshift-machine-api

$ oc annotate machine/<machine_name> -n openshift-machine-api 
machine.openshift.io/delete-machine="true"

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  name: <machineset>
  namespace: openshift-machine-api
spec:
  replicas: 2

OpenShift Container Platform 4.15 Postinstallation configuration

252



9.3.5. Understanding the difference between compute machine sets and the
machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine
provider.

The MachineConfigPool object allows MachineConfigController components to define and provide
the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift
Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

9.4. RECOMMENDED NODE HOST PRACTICES

The OpenShift Container Platform node configuration file contains important options. For example, two
parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and 
maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

NOTE

Disk IOPS throttling from the cloud provider might have an impact on CRI-O and kubelet.
They might get overloaded when there are large number of I/O intensive pods running on
the nodes. It is recommended that you monitor the disk I/O on the nodes and use
volumes with sufficient throughput for the workload.

The podsPerCore parameter sets the number of pods the node can run based on the number of
processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor
cores, the maximum number of pods allowed on the node will be 40.

$ oc get machines

kubeletConfig:
  podsPerCore: 10

CHAPTER 9. POSTINSTALLATION NODE TASKS

253



Setting podsPerCore to 0 disables this limit. The default is 0. The value of the podsPerCore parameter
cannot exceed the value of the maxPods parameter.

The maxPods parameter sets the number of pods the node can run to a fixed value, regardless of the
properties of the node.

9.4.1. Creating a KubeletConfig CRD to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the 
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Consider the following guidance:

Create one KubeletConfig CR for each machine config pool with all the config changes you
want for that pool. If you are applying the same content to all of the pools, you need only one 
KubeletConfig CR for all of the pools.

Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of
creating a CR for each change. It is recommended that you create a CR only to modify a
different machine config pool, or for changes that are intended to be temporary, so that you
can revert the changes.

As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first 
KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended
with kubelet. With each subsequent CR, the controller creates another kubelet machine config
with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next
kubelet machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

NOTE

If you have a machine config with a kubelet-9 suffix, and you create another 
KubeletConfig CR, a new machine config is not created, even if there are fewer than 10 
kubelet machine configs.

Example KubeletConfig CR

 kubeletConfig:
    maxPods: 250

$ oc get kubeletconfig

OpenShift Container Platform 4.15 Postinstallation configuration

254

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/


1

Example showing a KubeletConfig machine config

The following procedure is an example to show how to configure the maximum number of pods per
node on the worker nodes.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CR for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

NAME                AGE
set-max-pods        15m

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1                  b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             
26m
...

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  creationTimestamp: 2019-02-08T14:52:39Z
  generation: 1
  labels:
    custom-kubelet: set-max-pods 1

$ oc label machineconfigpool worker custom-kubelet=set-max-pods

$ oc get machineconfig

CHAPTER 9. POSTINSTALLATION NODE TASKS

255



1

2

2. Check the current value for the maximum pods per node:

For example:

Look for value: pods: <value> in the Allocatable stanza:

Example output

3. Set the maximum pods per node on the worker nodes by creating a custom resource file that
contains the kubelet configuration:

IMPORTANT

Kubelet configurations that target a specific machine config pool also affect any
dependent pools. For example, creating a kubelet configuration for the pool
containing worker nodes will also apply to any subset pools, including the pool
containing infrastructure nodes. To avoid this, you must create a new machine
config pool with a selection expression that only includes worker nodes, and have
your kubelet configuration target this new pool.

Enter the label from the machine config pool.

Add the kubelet configuration. In this example, use maxPods to set the maximum pods per
node.

NOTE

$ oc describe node <node_name>

$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

Allocatable:
 attachable-volumes-aws-ebs:  25
 cpu:                         3500m
 hugepages-1Gi:               0
 hugepages-2Mi:               0
 memory:                      15341844Ki
 pods:                        250

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: set-max-pods
spec:
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: set-max-pods 1
  kubeletConfig:
    maxPods: 500 2

OpenShift Container Platform 4.15 Postinstallation configuration

256



NOTE

The rate at which the kubelet talks to the API server depends on queries per
second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100
for kubeAPIBurst, are sufficient if there are limited pods running on each node.
It is recommended to update the kubelet QPS and burst rates if there are enough
CPU and memory resources on the node.

a. Update the machine config pool for workers with the label:

b. Create the KubeletConfig object:

c. Verify that the KubeletConfig object is created:

Example output

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15
minutes.

4. Verify that the changes are applied to the node:

a. Check on a worker node that the maxPods value changed:

b. Locate the Allocatable stanza:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: set-max-pods
spec:
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: set-max-pods
  kubeletConfig:
    maxPods: <pod_count>
    kubeAPIBurst: <burst_rate>
    kubeAPIQPS: <QPS>

$ oc label machineconfigpool worker custom-kubelet=set-max-pods

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

NAME                AGE
set-max-pods        15m

$ oc describe node <node_name>

 ...
Allocatable:
  attachable-volumes-gce-pd:  127

CHAPTER 9. POSTINSTALLATION NODE TASKS

257



1 In this example, the pods parameter should report the value you set in the 
KubeletConfig object.

5. Verify the change in the KubeletConfig object:

This should show a status of True and type:Success, as shown in the following example:

9.4.2. Modifying the number of unavailable worker nodes

By default, only one machine is allowed to be unavailable when applying the kubelet-related
configuration to the available worker nodes. For a large cluster, it can take a long time for the
configuration change to be reflected. At any time, you can adjust the number of machines that are
updating to speed up the process.

Procedure

1. Edit the worker machine config pool:

2. Add the maxUnavailable field and set the value:

IMPORTANT

When setting the value, consider the number of worker nodes that can be
unavailable without affecting the applications running on the cluster.

  cpu:                        3500m
  ephemeral-storage:          123201474766
  hugepages-1Gi:              0
  hugepages-2Mi:              0
  memory:                     14225400Ki
  pods:                       500 1
 ...

$ oc get kubeletconfigs set-max-pods -o yaml

spec:
  kubeletConfig:
    maxPods: 500
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: set-max-pods
status:
  conditions:
  - lastTransitionTime: "2021-06-30T17:04:07Z"
    message: Success
    status: "True"
    type: Success

$ oc edit machineconfigpool worker

spec:
  maxUnavailable: <node_count>

OpenShift Container Platform 4.15 Postinstallation configuration

258



9.4.3. Control plane node sizing

The control plane node resource requirements depend on the number and type of nodes and objects in
the cluster. The following control plane node size recommendations are based on the results of a control
plane density focused testing, or Cluster-density. This test creates the following objects across a given
number of namespaces:

1 image stream

1 build

5 deployments, with 2 pod replicas in a sleep state, mounting 4 secrets, 4 config maps, and 1
downward API volume each

5 services, each one pointing to the TCP/8080 and TCP/8443 ports of one of the previous
deployments

1 route pointing to the first of the previous services

10 secrets containing 2048 random string characters

10 config maps containing 2048 random string characters

Number of worker
nodes

Cluster-density
(namespaces)

CPU cores Memory (GB)

24 500 4 16

120 1000 8 32

252 4000 16, but 24 if using the
OVN-Kubernetes
network plug-in

64, but 128 if using the
OVN-Kubernetes
network plug-in

501, but untested with
the OVN-Kubernetes
network plug-in

4000 16 96

The data from the table above is based on an OpenShift Container Platform running on top of AWS,
using r5.4xlarge instances as control-plane nodes and m5.2xlarge instances as worker nodes.

On a large and dense cluster with three control plane nodes, the CPU and memory usage will spike up
when one of the nodes is stopped, rebooted, or fails. The failures can be due to unexpected issues with
power, network, underlying infrastructure, or intentional cases where the cluster is restarted after
shutting it down to save costs. The remaining two control plane nodes must handle the load in order to
be highly available, which leads to increase in the resource usage. This is also expected during upgrades
because the control plane nodes are cordoned, drained, and rebooted serially to apply the operating
system updates, as well as the control plane Operators update. To avoid cascading failures, keep the
overall CPU and memory resource usage on the control plane nodes to at most 60% of all available
capacity to handle the resource usage spikes. Increase the CPU and memory on the control plane nodes
accordingly to avoid potential downtime due to lack of resources.

IMPORTANT

CHAPTER 9. POSTINSTALLATION NODE TASKS

259



IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the running phase.

Operator Lifecycle Manager (OLM ) runs on the control plane nodes and its memory footprint depends
on the number of namespaces and user installed operators that OLM needs to manage on the cluster.
Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on
the results from cluster maximums testing.

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

500 0.823 1.7

1000 1.2 2.5

1500 1.7 3.2

2000 2 4.4

3000 2.7 5.6

4000 3.8 7.6

5000 4.2 9.02

6000 5.8 11.3

7000 6.6 12.9

8000 6.9 14.8

9000 8 17.7

10,000 9.9 21.6

IMPORTANT

OpenShift Container Platform 4.15 Postinstallation configuration

260



IMPORTANT

You can modify the control plane node size in a running OpenShift Container Platform
4.15 cluster for the following configurations only:

Clusters installed with a user-provisioned installation method.

AWS clusters installed with an installer-provisioned infrastructure installation
method.

Clusters that use a control plane machine set to manage control plane machines.

For all other configurations, you must estimate your total node count and use the
suggested control plane node size during installation.

IMPORTANT

The recommendations are based on the data points captured on OpenShift Container
Platform clusters with OpenShift SDN as the network plugin.

NOTE

In OpenShift Container Platform 4.15, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

9.4.4. Setting up CPU Manager

Procedure

1. Optional: Label a node:

2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this
example, all workers have CPU Manager enabled:

3. Add a label to the worker machine config pool:

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

# oc label node perf-node.example.com cpumanager=true

# oc edit machineconfigpool worker

metadata:
  creationTimestamp: 2020-xx-xxx
  generation: 3
  labels:
    custom-kubelet: cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:

CHAPTER 9. POSTINSTALLATION NODE TASKS

261



1

2

Specify a policy:

none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically. This is the default policy.

static. This policy allows containers in guaranteed pods with integer CPU requests. It
also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.

Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config:

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config:

Example output

7. Check the worker for the updated kubelet.conf:

Example output

  name: cpumanager-enabled
spec:
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: cpumanager-enabled
  kubeletConfig:
     cpuManagerPolicy: static 1
     cpuManagerReconcilePeriod: 5s 2

# oc create -f cpumanager-kubeletconfig.yaml

# oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep 
ownerReference -A7

       "ownerReferences": [
            {
                "apiVersion": "machineconfiguration.openshift.io/v1",
                "kind": "KubeletConfig",
                "name": "cpumanager-enabled",
                "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
            }
        ]

# oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

cpuManagerPolicy: static        1
cpuManagerReconcilePeriod: 5s   2

OpenShift Container Platform 4.15 Postinstallation configuration

262



1

2

cpuManagerPolicy is defined when you create the KubeletConfig CR.

cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.

8. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example output

9. Create the pod:

10. Verify that the pod is scheduled to the node that you labeled:

Example output

# cat cpumanager-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  generateName: cpumanager-
spec:
  securityContext:
    runAsNonRoot: true
    seccompProfile:
      type: RuntimeDefault
  containers:
  - name: cpumanager
    image: gcr.io/google_containers/pause:3.2
    resources:
      requests:
        cpu: 1
        memory: "1G"
      limits:
        cpu: 1
        memory: "1G"
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop: [ALL]
  nodeSelector:
    cpumanager: "true"

# oc create -f cpumanager-pod.yaml

# oc describe pod cpumanager

Name:               cpumanager-6cqz7
Namespace:          default
Priority:           0
PriorityClassName:  <none>
Node:  perf-node.example.com/xxx.xx.xx.xxx
...

CHAPTER 9. POSTINSTALLATION NODE TASKS

263



11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of
other QoS tiers end up in child cgroups of kubepods:

Example output

12. Check the allowed CPU list for the task:

Example output

13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot
run on the core allocated for the Guaranteed pod:

Example output

 Limits:
      cpu:     1
      memory:  1G
    Requests:
      cpu:        1
      memory:     1G
...
QoS Class:       Guaranteed
Node-Selectors:  cpumanager=true

# ├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
  ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
  │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
  │ └─32706 /pause

# cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
# for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 1
tasks 32706

# grep ^Cpus_allowed_list /proc/32706/status

 Cpus_allowed_list:    1

# cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

0
# oc describe node perf-node.example.com

...

OpenShift Container Platform 4.15 Postinstallation configuration

264



This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node 
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

9.5. HUGE PAGES

Understand and configure huge pages.

9.5.1. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common

Capacity:
 attachable-volumes-aws-ebs:  39
 cpu:                         2
 ephemeral-storage:           124768236Ki
 hugepages-1Gi:               0
 hugepages-2Mi:               0
 memory:                      8162900Ki
 pods:                        250
Allocatable:
 attachable-volumes-aws-ebs:  39
 cpu:                         1500m
 ephemeral-storage:           124768236Ki
 hugepages-1Gi:               0
 hugepages-2Mi:               0
 memory:                      7548500Ki
 pods:                        250
-------                               ----                           ------------  ----------  ---------------  -------------  --
-
  default                                 cpumanager-6cqz7               1 (66%)       1 (66%)     1G (12%)         
1G (12%)       29m

Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource                    Requests          Limits
  --------                    --------          ------
  cpu                         1440m (96%)       1 (66%)

NAME                    READY   STATUS    RESTARTS   AGE
cpumanager-6cqz7        1/1     Running   0          33m
cpumanager-7qc2t        0/1     Pending   0          11s

CHAPTER 9. POSTINSTALLATION NODE TASKS

265



1

huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

9.5.2. How huge pages are consumed by apps

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name 
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource 
hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [ kKmMgG]. The default huge

apiVersion: v1
kind: Pod
metadata:
  generateName: hugepages-volume-
spec:
  containers:
  - securityContext:
      privileged: true
    image: rhel7:latest
    command:
    - sleep
    - inf
    name: example
    volumeMounts:
    - mountPath: /dev/hugepages
      name: hugepage
    resources:
      limits:
        hugepages-2Mi: 100Mi 1
        memory: "1Gi"
        cpu: "1"
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages

OpenShift Container Platform 4.15 Postinstallation configuration

266



1

page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

9.5.3. Configuring huge pages at boot time

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two
ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the
possibility of success because the memory has not yet been significantly fragmented. The Node Tuning
Operator currently supports boot time allocation of huge pages on specific nodes.

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

1. Label all nodes that need the same huge pages setting by a label.

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

Set the name of the Tuned resource to hugepages.

$ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: hugepages 1
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile: 2
  - data: |
      [main]
      summary=Boot time configuration for hugepages
      include=openshift-node
      [bootloader]
      cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
    name: openshift-node-hugepages

  recommend:
  - machineConfigLabels: 4
      machineconfiguration.openshift.io/role: "worker-hp"
    priority: 30
    profile: openshift-node-hugepages

CHAPTER 9. POSTINSTALLATION NODE TASKS

267



2

3

4

Set the profile section to allocate huge pages.

Note the order of parameters is important as some platforms support huge pages of
various sizes.

Enable machine config pool based matching.

3. Create the Tuned hugepages object

4. Create a file with the following content and name it hugepages-mcp.yaml:

5. Create the machine config pool:

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now
have 50 2Mi huge pages allocated.

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

9.6. UNDERSTANDING DEVICE PLUGINS

The device plugin provides a consistent and portable solution to consume hardware devices across
clusters. The device plugin provides support for these devices through an extension mechanism, which
makes these devices available to Containers, provides health checks of these devices, and securely
shares them.

IMPORTANT

$ oc create -f hugepages-tuned-boottime.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  name: worker-hp
  labels:
    worker-hp: ""
spec:
  machineConfigSelector:
    matchExpressions:
      - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
  nodeSelector:
    matchLabels:
      node-role.kubernetes.io/worker-hp: ""

$ oc create -f hugepages-mcp.yaml

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

OpenShift Container Platform 4.15 Postinstallation configuration

268



IMPORTANT

OpenShift Container Platform supports the device plugin API, but the device plugin
Containers are supported by individual vendors.

A device plugin is a gRPC service running on the nodes (external to the kubelet) that is responsible for
managing specific hardware resources. Any device plugin must support following remote procedure calls
(RPCs):

Example device plugins

Nvidia GPU device plugin for COS-based operating system

Nvidia official GPU device plugin

Solarflare device plugin

KubeVirt device plugins: vfio and kvm

Kubernetes device plugin for IBM® Crypto Express (CEX) cards

NOTE

For easy device plugin reference implementation, there is a stub device plugin in the
Device Manager code:
vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

9.6.1. Methods for deploying a device plugin

Daemon sets are the recommended approach for device plugin deployments.

Upon start, the device plugin will try to create a UNIX domain socket at
/var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.

service DevicePlugin {
      // GetDevicePluginOptions returns options to be communicated with Device
      // Manager
      rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

      // ListAndWatch returns a stream of List of Devices
      // Whenever a Device state change or a Device disappears, ListAndWatch
      // returns the new list
      rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

      // Allocate is called during container creation so that the Device
      // Plug-in can run device specific operations and instruct Kubelet
      // of the steps to make the Device available in the container
      rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

      // PreStartcontainer is called, if indicated by Device Plug-in during
      // registration phase, before each container start. Device plug-in
      // can run device specific operations such as resetting the device
      // before making devices available to the container
      rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}

CHAPTER 9. POSTINSTALLATION NODE TASKS

269

https://github.com/GoogleCloudPlatform/Container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin
https://github.com/kubevirt/kubernetes-device-plugins
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin


Since device plugins must manage hardware resources, access to the host file system, as well as
socket creation, they must be run in a privileged security context.

More specific details regarding deployment steps can be found with each device plugin
implementation.

9.6.2. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plugins known as device plugins.

You can advertise specialized hardware without requiring any upstream code changes.

IMPORTANT

OpenShift Container Platform supports the device plugin API, but the device plugin
Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices,
advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting
any other Extended Resource.

Upon start, the device plugin registers itself with Device Manager invoking Register on the
/var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-
plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure
call (RPC) at the device plugin service. In response, Device Manager gets a list of Device objects from
the plugin over a gRPC stream. Device Manager will keep watching on the stream for new updates from
the plugin. On the plugin side, the plugin will also keep the stream open and whenever there is a change
in the state of any of the devices, a new device list is sent to the Device Manager over the same
streaming connection.

While handling a new pod admission request, Kubelet passes requested Extended Resources to the
Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding
plugin exists or not. If the plugin exists and there are free allocatable devices as well as per local cache, 
Allocate RPC is invoked at that particular device plugin.

Additionally, device plugins can also perform several other device-specific operations, such as driver
installation, device initialization, and device resets. These functionalities vary from implementation to
implementation.

9.6.3. Enabling Device Manager

Enable Device Manager to implement a device plugin to advertise specialized hardware without any
upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plugins known as device plugins.

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command. Perform one of the following steps:

a. View the machine config:

OpenShift Container Platform 4.15 Postinstallation configuration

270



1

1

2

3

For example:

Example output

Label required for the Device Manager.

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a Device Manager CR

Assign a name to CR.

Enter the label from the Machine Config Pool.

Set DevicePlugins to 'true`.

2. Create the Device Manager:

Example output

3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-
plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the
Device Manager gRPC server listens for new plugin registrations. This sock file is created when
the Kubelet is started only if Device Manager is enabled.

# oc describe machineconfig <name>

# oc describe machineconfig 00-worker

Name:         00-worker
Namespace:
Labels:       machineconfiguration.openshift.io/role=worker 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: devicemgr 1
spec:
  machineConfigPoolSelector:
    matchLabels:
       machineconfiguration.openshift.io: devicemgr 2
  kubeletConfig:
    feature-gates:
      - DevicePlugins=true 3

$ oc create -f devicemgr.yaml

kubeletconfig.machineconfiguration.openshift.io/devicemgr created

CHAPTER 9. POSTINSTALLATION NODE TASKS

271



9.7. TAINTS AND TOLERATIONS

Understand and work with taints and tolerations.

9.7.1. Understanding taints and tolerations

A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.

You apply taints to a node through the Node specification (NodeSpec) and apply tolerations to a pod
through the Pod specification (PodSpec). When you apply a taint a node, the scheduler cannot place a
pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

Example toleration in a Pod spec

Taints and tolerations consist of a key, value, and effect.

Table 9.1. Taint and toleration components

Parameter Description

key The key is any string, up to 253 characters. The key must begin with a letter or
number, and may contain letters, numbers, hyphens, dots, and underscores.

value The value is any string, up to 63 characters. The value must begin with a letter
or number, and may contain letters, numbers, hyphens, dots, and underscores.

apiVersion: v1
kind: Node
metadata:
  name: my-node
#...
spec:
  taints:
  - effect: NoExecute
    key: key1
    value: value1
#...

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key1"
    operator: "Equal"
    value: "value1"
    effect: "NoExecute"
    tolerationSeconds: 3600
#...

OpenShift Container Platform 4.15 Postinstallation configuration

272



effect The effect is one of the following:

NoSchedule [1]
New pods that do not match the taint
are not scheduled onto that node.

Existing pods on the node remain.

PreferNoSchedule
New pods that do not match the taint
might be scheduled onto that node,
but the scheduler tries not to.

Existing pods on the node remain.

NoExecute
New pods that do not match the taint
cannot be scheduled onto that node.

Existing pods on the node that do not
have a matching toleration are
removed.

operator
Equal The key/value/effect parameters must

match. This is the default.

Exists The key/effect parameters must match. You
must leave a blank value parameter, which
matches any.

Parameter Description

1. If you add a NoSchedule taint to a control plane node, the node must have the node-
role.kubernetes.io/master=:NoSchedule taint, which is added by default.
For example:

apiVersion: v1
kind: Node
metadata:
  annotations:
    machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
    machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
  name: my-node
#...
spec:
  taints:
  - effect: NoSchedule
    key: node-role.kubernetes.io/master
#...

CHAPTER 9. POSTINSTALLATION NODE TASKS

273



A toleration matches a taint:

If the operator parameter is set to Equal:

the key parameters are the same;

the value parameters are the same;

the effect parameters are the same.

If the operator parameter is set to Exists:

the key parameters are the same;

the effect parameters are the same.

The following taints are built into OpenShift Container Platform:

node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition 
Ready=False.

node.kubernetes.io/unreachable: The node is unreachable from the node controller. This
corresponds to the node condition Ready=Unknown.

node.kubernetes.io/memory-pressure: The node has memory pressure issues. This
corresponds to the node condition MemoryPressure=True.

node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the
node condition DiskPressure=True.

node.kubernetes.io/network-unavailable: The node network is unavailable.

node.kubernetes.io/unschedulable: The node is unschedulable.

node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an
external cloud provider, this taint is set on a node to mark it as unusable. After a controller from
the cloud-controller-manager initializes this node, the kubelet removes this taint.

node.kubernetes.io/pid-pressure: The node has pid pressure. This corresponds to the node
condition PIDPressure=True.

IMPORTANT

OpenShift Container Platform does not set a default pid.available evictionHard.

9.7.2. Adding taints and tolerations

You add tolerations to pods and taints to nodes to allow the node to control which pods should or
should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod
first, then add the taint to the node to avoid pods being removed from the node before you can add the
toleration.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with an Equal operator

OpenShift Container Platform 4.15 Postinstallation configuration

274



1

2

1

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod can remain bound to a node
before being evicted.

For example:

Sample pod configuration file with an Exists operator

The Exists operator does not take a value.

This example places a taint on node1 that has key key1, value value1, and taint effect 
NoExecute.

2. Add a taint to a node by using the following command with the parameters described in the
Taint and toleration components table:

For example:

This command places a taint on node1 that has key key1, value value1, and effect NoExecute.

NOTE

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key1" 1
    value: "value1"
    operator: "Equal"
    effect: "NoExecute"
    tolerationSeconds: 3600 2
#...

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
   tolerations:
    - key: "key1"
      operator: "Exists" 1
      effect: "NoExecute"
      tolerationSeconds: 3600
#...

$ oc adm taint nodes <node_name> <key>=<value>:<effect>

$ oc adm taint nodes node1 key1=value1:NoExecute

CHAPTER 9. POSTINSTALLATION NODE TASKS

275



1

NOTE

If you add a NoSchedule taint to a control plane node, the node must have the 
node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

For example:

The tolerations on the pod match the taint on the node. A pod with either toleration can be
scheduled onto node1.

9.7.3. Adding taints and tolerations using a compute machine set

You can add taints to nodes using a compute machine set. All nodes associated with the MachineSet
object are updated with the taint. Tolerations respond to taints added by a compute machine set in the
same manner as taints added directly to the nodes.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with Equal operator

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod is bound to a node before

apiVersion: v1
kind: Node
metadata:
  annotations:
    machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-
v8jxv-master-0
    machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
  name: my-node
#...
spec:
  taints:
  - effect: NoSchedule
    key: node-role.kubernetes.io/master
#...

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key1" 1
    value: "value1"
    operator: "Equal"
    effect: "NoExecute"
    tolerationSeconds: 3600 2
#...

OpenShift Container Platform 4.15 Postinstallation configuration

276



2 The tolerationSeconds parameter specifies how long a pod is bound to a node before
being evicted.

For example:

Sample pod configuration file with Exists operator

2. Add the taint to the MachineSet object:

a. Edit the MachineSet YAML for the nodes you want to taint or you can create a new 
MachineSet object:

b. Add the taint to the spec.template.spec section:

Example taint in a compute machine set specification

This example places a taint that has the key key1, value value1, and taint effect NoExecute
on the nodes.

c. Scale down the compute machine set to 0:

TIP

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key1"
    operator: "Exists"
    effect: "NoExecute"
    tolerationSeconds: 3600
#...

$ oc edit machineset <machineset>

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  name: my-machineset
#...
spec:
#...
  template:
#...
    spec:
      taints:
      - effect: NoExecute
        key: key1
        value: value1
#...

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

CHAPTER 9. POSTINSTALLATION NODE TASKS

277



TIP

You can alternatively apply the following YAML to scale the compute machine set:

Wait for the machines to be removed.

d. Scale up the compute machine set as needed:

Or:

Wait for the machines to start. The taint is added to the nodes associated with the 
MachineSet object.

9.7.4. Binding a user to a node using taints and tolerations

If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to
their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to
use the tainted nodes or any other nodes in the cluster.

If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set
of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with
that label.

Procedure

To configure a node so that users can use only that node:

1. Add a corresponding taint to those nodes:
For example:

TIP

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  name: <machineset>
  namespace: openshift-machine-api
spec:
  replicas: 0

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

OpenShift Container Platform 4.15 Postinstallation configuration

278



TIP

You can alternatively apply the following YAML to add the taint:

2. Add a toleration to the pods by writing a custom admission controller.

9.7.5. Controlling nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations
to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods
that do need the specialized hardware. You can also require pods that need specialized hardware to use
specific nodes.

You can achieve this by adding a toleration to pods that need the special hardware and tainting the
nodes that have the specialized hardware.

Procedure

To ensure nodes with specialized hardware are reserved for specific pods:

1. Add a toleration to pods that need the special hardware.
For example:

2. Taint the nodes that have the specialized hardware using one of the following commands:

Or:

kind: Node
apiVersion: v1
metadata:
  name: my-node
#...
spec:
  taints:
    - key: dedicated
      value: groupName
      effect: NoSchedule
#...

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
    - key: "disktype"
      value: "ssd"
      operator: "Equal"
      effect: "NoSchedule"
      tolerationSeconds: 3600
#...

$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule

CHAPTER 9. POSTINSTALLATION NODE TASKS

279



TIP

You can alternatively apply the following YAML to add the taint:

9.7.6. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed. You should add the toleration
to the pod first, then add the taint to the node to avoid pods being removed from the node before you
can add the toleration.

Procedure

To remove taints and tolerations:

1. To remove a taint from a node:

For example:

Example output

2. To remove a toleration from a pod, edit the Pod spec to remove the toleration:

$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

kind: Node
apiVersion: v1
metadata:
  name: my_node
#...
spec:
  taints:
    - key: disktype
      value: ssd
      effect: PreferNoSchedule
#...

$ oc adm taint nodes <node-name> <key>-

$ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

node/ip-10-0-132-248.ec2.internal untainted

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key2"
    operator: "Exists"

OpenShift Container Platform 4.15 Postinstallation configuration

280



9.8. TOPOLOGY MANAGER

Understand and work with Topology Manager.

9.8.1. Topology Manager policies

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the KubeletConfig custom
resource (CR) named cpumanager-enabled:

none policy

This is the default policy and does not perform any topology alignment.

best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager stores this and admits the pod to the node.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod
admission failure.

single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubelet calls
each Hint Provider to discover their resource availability. Using this information, the Topology
Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the
node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the
node. This results in a pod in a Terminated state with a pod admission failure.

9.8.2. Setting up Topology Manager

To use Topology Manager, you must configure an allocation policy in the KubeletConfig custom
resource (CR) named cpumanager-enabled. This file might exist if you have set up CPU Manager. If the
file does not exist, you can create the file.

Prequisites

Configure the CPU Manager policy to be static.

Procedure

To activate Topololgy Manager:

1. Configure the Topology Manager allocation policy in the custom resource.

    effect: "NoExecute"
    tolerationSeconds: 3600
#...

CHAPTER 9. POSTINSTALLATION NODE TASKS

281



1

2

This parameter must be static with a lowercase s.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

9.8.3. Pod interactions with Topology Manager policies

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

The next pod runs in the Burstable QoS class because requests are less than limits.

If the selected policy is anything other than none, Topology Manager would not consider either of these 
Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

$ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: cpumanager-enabled
spec:
  machineConfigPoolSelector:
    matchLabels:
      custom-kubelet: cpumanager-enabled
  kubeletConfig:
     cpuManagerPolicy: static 1
     cpuManagerReconcilePeriod: 5s
     topologyManagerPolicy: single-numa-node 2

spec:
  containers:
  - name: nginx
    image: nginx

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
      requests:
        memory: "100Mi"

spec:
  containers:
  - name: nginx
    image: nginx
    resources:

OpenShift Container Platform 4.15 Postinstallation configuration

282



Topology Manager would consider this pod. The Topology Manager would consult the hint providers,
which are CPU Manager and Device Manager, to get topology hints for the pod.

Topology Manager will use this information to store the best topology for this container. In the case of
this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

9.9. RESOURCE REQUESTS AND OVERCOMMITMENT

For each compute resource, a container may specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no
request or limit, the container is scheduled to a node with no resource guarantees. In practice, the
container is able to consume as much of the specified resource as is available with the lowest local
priority. In low resource situations, containers that specify no resource requests are given the lowest
quality of service.

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between request and limit determines the
level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of
2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it is
200% overcommitted.

9.10. CLUSTER-LEVEL OVERCOMMIT USING THE CLUSTER
RESOURCE OVERRIDE OPERATOR

The Cluster Resource Override Operator is an admission webhook that allows you to control the level of
overcommit and manage container density across all the nodes in your cluster. The Operator controls
how nodes in specific projects can exceed defined memory and CPU limits.

You must install the Cluster Resource Override Operator using the OpenShift Container Platform
console or CLI as shown in the following sections. During the installation, you create a 
ClusterResourceOverride custom resource (CR), where you set the level of overcommit, as shown in
the following example:

      limits:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"
      requests:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
    name: cluster 1
spec:
  podResourceOverride:
    spec:

CHAPTER 9. POSTINSTALLATION NODE TASKS

283



1

2

3

4

The name must be cluster.

Optional. If a container memory limit has been specified or defaulted, the memory request is
overridden to this percentage of the limit, between 1-100. The default is 50.

Optional. If a container CPU limit has been specified or defaulted, the CPU request is overridden to
this percentage of the limit, between 1-100. The default is 25.

Optional. If a container memory limit has been specified or defaulted, the CPU limit is overridden to
a percentage of the memory limit, if specified. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU
core. This is processed prior to overriding the CPU request (if configured). The default is 200.

NOTE

The Cluster Resource Override Operator overrides have no effect if limits have not been
set on containers. Create a LimitRange object with default limits per individual project or
configure limits in Pod specs for the overrides to apply.

When configured, overrides can be enabled per-project by applying the following label to the
Namespace object for each project:

The Operator watches for the ClusterResourceOverride CR and ensures that the 
ClusterResourceOverride admission webhook is installed into the same namespace as the operator.

9.10.1. Installing the Cluster Resource Override Operator using the web console

You can use the OpenShift Container Platform web console to install the Cluster Resource Override
Operator to help control overcommit in your cluster.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in 
Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the OpenShift Container Platform web console:

      memoryRequestToLimitPercent: 50 2
      cpuRequestToLimitPercent: 25 3
      limitCPUToMemoryPercent: 200 4
# ...

apiVersion: v1
kind: Namespace
metadata:

# ...

  labels:
    clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

# ...

OpenShift Container Platform 4.15 Postinstallation configuration

284



1

2

3

4

1. In the OpenShift Container Platform web console, navigate to Home → Projects

a. Click Create Project.

b. Specify clusterresourceoverride-operator as the name of the project.

c. Click Create.

2. Navigate to Operators → OperatorHub.

a. Choose ClusterResourceOverride Operator from the list of available Operators and click
Install.

b. On the Install Operator page, make sure A specific Namespace on the cluster is selected
for Installation Mode.

c. Make sure clusterresourceoverride-operator is selected for Installed Namespace.

d. Select an Update Channel and Approval Strategy.

e. Click Install.

3. On the Installed Operators page, click ClusterResourceOverride.

a. On the ClusterResourceOverride Operator details page, click Create
ClusterResourceOverride.

b. On the Create ClusterResourceOverride page, click YAML view and edit the YAML
template to set the overcommit values as needed:

The name must be cluster.

Optional. Specify the percentage to override the container memory limit, if used,
between 1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between
1-100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used.
Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to
overriding the CPU request, if configured. The default is 200.

c. Click Create.

4. Check the current state of the admission webhook by checking the status of the cluster custom

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
  name: cluster 1
spec:
  podResourceOverride:
    spec:
      memoryRequestToLimitPercent: 50 2
      cpuRequestToLimitPercent: 25 3
      limitCPUToMemoryPercent: 200 4
# ...

CHAPTER 9. POSTINSTALLATION NODE TASKS

285



1

4. Check the current state of the admission webhook by checking the status of the cluster custom
resource:

a. On the ClusterResourceOverride Operator page, click cluster.

b. On the ClusterResourceOverride Details page, click YAML. The 
mutatingWebhookConfigurationRef section appears when the webhook is called.

Reference to the ClusterResourceOverride admission webhook.

9.10.2. Installing the Cluster Resource Override Operator using the CLI

You can use the OpenShift Container Platform CLI to install the Cluster Resource Override Operator to
help control overcommit in your cluster.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in 
Pod specs for the overrides to apply.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      
{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","met
adata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLi
mitPercent":50}}}}
  creationTimestamp: "2019-12-18T22:35:02Z"
  generation: 1
  name: cluster
  resourceVersion: "127622"
  selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
  uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
  podResourceOverride:
    spec:
      cpuRequestToLimitPercent: 25
      limitCPUToMemoryPercent: 200
      memoryRequestToLimitPercent: 50
status:

# ...

    mutatingWebhookConfigurationRef: 1
      apiVersion: admissionregistration.k8s.io/v1
      kind: MutatingWebhookConfiguration
      name: clusterresourceoverrides.admission.autoscaling.openshift.io
      resourceVersion: "127621"
      uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

# ...

OpenShift Container Platform 4.15 Postinstallation configuration

286



Procedure

To install the Cluster Resource Override Operator using the CLI:

1. Create a namespace for the Cluster Resource Override Operator:

a. Create a Namespace object YAML file (for example, cro-namespace.yaml) for the Cluster
Resource Override Operator:

b. Create the namespace:

For example:

2. Create an Operator group:

a. Create an OperatorGroup object YAML file (for example, cro-og.yaml) for the Cluster
Resource Override Operator:

b. Create the Operator Group:

For example:

3. Create a subscription:

a. Create a Subscription object YAML file (for example, cro-sub.yaml) for the Cluster
Resource Override Operator:

apiVersion: v1
kind: Namespace
metadata:
  name: clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: clusterresourceoverride-operator
  namespace: clusterresourceoverride-operator
spec:
  targetNamespaces:
    - clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-og.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: clusterresourceoverride
  namespace: clusterresourceoverride-operator

CHAPTER 9. POSTINSTALLATION NODE TASKS

287



1

2

3

4

b. Create the subscription:

For example:

4. Create a ClusterResourceOverride custom resource (CR) object in the 
clusterresourceoverride-operator namespace:

a. Change to the clusterresourceoverride-operator namespace.

b. Create a ClusterResourceOverride object YAML file (for example, cro-cr.yaml) for the
Cluster Resource Override Operator:

The name must be cluster.

Optional. Specify the percentage to override the container memory limit, if used,
between 1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between
1-100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used.
Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to
overriding the CPU request, if configured. The default is 200.

c. Create the ClusterResourceOverride object:

For example:

spec:
  channel: "4.15"
  name: clusterresourceoverride
  source: redhat-operators
  sourceNamespace: openshift-marketplace

$ oc create -f <file-name>.yaml

$ oc create -f cro-sub.yaml

$ oc project clusterresourceoverride-operator

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
    name: cluster 1
spec:
  podResourceOverride:
    spec:
      memoryRequestToLimitPercent: 50 2
      cpuRequestToLimitPercent: 25 3
      limitCPUToMemoryPercent: 200 4

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.15 Postinstallation configuration

288



1

5. Verify the current state of the admission webhook by checking the status of the cluster custom
resource.

The mutatingWebhookConfigurationRef section appears when the webhook is called.

Example output

Reference to the ClusterResourceOverride admission webhook.

9.10.3. Configuring cluster-level overcommit

The Cluster Resource Override Operator requires a ClusterResourceOverride custom resource (CR)
and a label for each project where you want the Operator to control overcommit.

Prerequisites

$ oc create -f cro-cr.yaml

$ oc get clusterresourceoverride cluster -n clusterresourceoverride-operator -o yaml

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      
{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadat
a":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPe
rcent":50}}}}
  creationTimestamp: "2019-12-18T22:35:02Z"
  generation: 1
  name: cluster
  resourceVersion: "127622"
  selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
  uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
  podResourceOverride:
    spec:
      cpuRequestToLimitPercent: 25
      limitCPUToMemoryPercent: 200
      memoryRequestToLimitPercent: 50
status:

# ...

    mutatingWebhookConfigurationRef: 1
      apiVersion: admissionregistration.k8s.io/v1
      kind: MutatingWebhookConfiguration
      name: clusterresourceoverrides.admission.autoscaling.openshift.io
      resourceVersion: "127621"
      uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

# ...

CHAPTER 9. POSTINSTALLATION NODE TASKS

289



1

2

3

1

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in 
Pod specs for the overrides to apply.

Procedure

To modify cluster-level overcommit:

1. Edit the ClusterResourceOverride CR:

Optional. Specify the percentage to override the container memory limit, if used, between
1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between 1-
100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used. Scaling
1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the
CPU request, if configured. The default is 200.

2. Ensure the following label has been added to the Namespace object for each project where you
want the Cluster Resource Override Operator to control overcommit:

Add this label to each project.

9.11. NODE-LEVEL OVERCOMMIT

You can use various ways to control overcommit on specific nodes, such as quality of service (QOS)

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
    name: cluster
spec:
  podResourceOverride:
    spec:
      memoryRequestToLimitPercent: 50 1
      cpuRequestToLimitPercent: 25 2
      limitCPUToMemoryPercent: 200 3
# ...

apiVersion: v1
kind: Namespace
metadata:

# ...

  labels:
    clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true" 1

# ...

OpenShift Container Platform 4.15 Postinstallation configuration

290



You can use various ways to control overcommit on specific nodes, such as quality of service (QOS)
guarantees, CPU limits, or reserve resources. You can also disable overcommit for specific nodes and
specific projects.

9.11.1. Understanding compute resources and containers

The node-enforced behavior for compute resources is specific to the resource type.

9.11.1.1. Understanding container CPU requests

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1
ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit. CPU
requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are
enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this
can be disabled.

9.11.1.2. Understanding container memory requests

A container is guaranteed the amount of memory it requests. A container can use more memory than
requested, but once it exceeds its requested amount, it could be terminated in a low memory situation
on the node. If a container uses less memory than requested, it will not be terminated unless system
tasks or daemons need more memory than was accounted for in the node’s resource reservation. If a
container specifies a limit on memory, it is immediately terminated if it exceeds the limit amount.

9.11.2. Understanding overcomitment and quality of service classes

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

In an overcommitted environment, it is possible that the pods on the node will attempt to use more
compute resource than is available at any given point in time. When this occurs, the node must give
priority to one pod over another. The facility used to make this decision is referred to as a Quality of
Service (QoS) Class.

A pod is designated as one of three QoS classes with decreasing order of priority:

Table 9.2. Quality of Service Classes

Priority Class Name Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the pod is classified as Guaranteed.

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the pod is classified as Burstable.

CHAPTER 9. POSTINSTALLATION NODE TASKS

291



3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the pod is
classified as BestEffort.

Priority Class Name Description

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are terminated first:

Guaranteed containers are considered top priority, and are guaranteed to only be terminated if
they exceed their limits, or if the system is under memory pressure and there are no lower
priority containers that can be evicted.

Burstable containers under system memory pressure are more likely to be terminated once
they exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are
first to be terminated if the system runs out of memory.

9.11.2.1. Understanding how to reserve memory across quality of service tiers

You can use the qos-reserved parameter to specify a percentage of memory to be reserved by a pod in
a particular QoS level. This feature attempts to reserve requested resources to exclude pods from
lower OoS classes from using resources requested by pods in higher QoS classes.

OpenShift Container Platform uses the qos-reserved parameter as follows:

A value of qos-reserved=memory=100% will prevent the Burstable and BestEffort QoS
classes from consuming memory that was requested by a higher QoS class. This increases the
risk of inducing OOM on BestEffort and Burstable workloads in favor of increasing memory
resource guarantees for Guaranteed and Burstable workloads.

A value of qos-reserved=memory=50% will allow the Burstable and BestEffort QoS classes to
consume half of the memory requested by a higher QoS class.

A value of qos-reserved=memory=0% will allow a Burstable and BestEffort QoS classes to
consume up to the full node allocatable amount if available, but increases the risk that a 
Guaranteed workload will not have access to requested memory. This condition effectively
disables this feature.

9.11.3. Understanding swap memory and QOS

You can disable swap by default on your nodes to preserve quality of service (QOS) guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure,
resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

IMPORTANT

OpenShift Container Platform 4.15 Postinstallation configuration

292



IMPORTANT

If swap is enabled, any out-of-resource handling eviction thresholds for available memory
will not work as expected. Take advantage of out-of-resource handling to allow pods to
be evicted from a node when it is under memory pressure, and rescheduled on an
alternative node that has no such pressure.

9.11.4. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

Example output

Example output

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

$ sysctl -a |grep commit

#...
vm.overcommit_memory = 0
#...

$ sysctl -a |grep panic

#...
vm.panic_on_oom = 0
#...

CHAPTER 9. POSTINSTALLATION NODE TASKS

293



1

9.11.5. Disabling or enforcing CPU limits using CPU CFS quotas

Nodes by default enforce specified CPU limits using the Completely Fair Scheduler (CFS) quota
support in the Linux kernel.

If you disable CPU limit enforcement, it is important to understand the impact on your node:

If a container has a CPU request, the request continues to be enforced by CFS shares in the
Linux kernel.

If a container does not have a CPU request, but does have a CPU limit, the CPU request
defaults to the specified CPU limit, and is enforced by CFS shares in the Linux kernel.

If a container has both a CPU request and limit, the CPU request is enforced by CFS shares in
the Linux kernel, and the CPU limit has no impact on the node.

Prerequisites

Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

For example:

Example output

The label appears under Labels.

TIP

If the label is not present, add a key/value pair such as:

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a disabling CPU limits

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  creationTimestamp: "2022-11-16T15:34:25Z"
  generation: 4
  labels:
    pools.operator.machineconfiguration.openshift.io/worker: "" 1
  name: worker

$ oc label machineconfigpool worker custom-kubelet=small-pods

OpenShift Container Platform 4.15 Postinstallation configuration

294



1

2

3

Assign a name to CR.

Specify the label from the machine config pool.

Set the cpuCfsQuota parameter to false.

2. Run the following command to create the CR:

9.11.6. Reserving resources for system processes

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by system daemons that are required to run on your node for
your cluster to function. In particular, it is recommended that you reserve resources for incompressible
resources such as memory.

Procedure

To explicitly reserve resources for non-pod processes, allocate node resources by specifying resources
available for scheduling. For more details, see Allocating Resources for Nodes.

9.11.7. Disabling overcommitment for a node

When enabled, overcommitment can be disabled on each node.

Procedure

To disable overcommitment in a node run the following command on that node:

9.12. PROJECT-LEVEL LIMITS

To help control overcommit, you can set per-project resource limit ranges, specifying memory and CPU
limits and defaults for a project that overcommit cannot exceed.

For information on project-level resource limits, see Additional resources.

Alternatively, you can disable overcommitment for specific projects.

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: disable-cpu-units 1
spec:
  machineConfigPoolSelector:
    matchLabels:
      pools.operator.machineconfiguration.openshift.io/worker: "" 2
  kubeletConfig:
    cpuCfsQuota: false 3

$ oc create -f <file_name>.yaml

$ sysctl -w vm.overcommit_memory=0

CHAPTER 9. POSTINSTALLATION NODE TASKS

295



1

9.12.1. Disabling overcommitment for a project

When enabled, overcommitment can be disabled per-project. For example, you can allow infrastructure
components to be configured independently of overcommitment.

Procedure

To disable overcommitment in a project:

1. Create or edit the namespace object file.

2. Add the following annotation:

Setting this annotation to false disables overcommit for this namespace.

9.13. FREEING NODE RESOURCES USING GARBAGE COLLECTION

Understand and use garbage collection.

9.13.1. Understanding how terminated containers are removed through garbage
collection

Container garbage collection removes terminated containers by using eviction thresholds.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any
pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are
preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under
disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

eviction-soft - A soft eviction threshold pairs an eviction threshold with a required
administrator-specified grace period.

eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift
Container Platform takes immediate action.

The following table lists the eviction thresholds:

Table 9.3. Variables for configuring container garbage collection

Node condition Eviction signal Description

MemoryPressure memory.available The available memory on the
node.

apiVersion: v1
kind: Namespace
metadata:
  annotations:
    quota.openshift.io/cluster-resource-override-enabled: "false" 1
# ...

OpenShift Container Platform 4.15 Postinstallation configuration

296



DiskPressure
nodefs.available

nodefs.inodesFree

imagefs.available

imagefs.inodesFree

The available disk space or inodes
on the node root file system, 
nodefs, or image file system, 
imagefs.

Node condition Eviction signal Description

NOTE

For evictionHard you must specify all of these parameters. If you do not specify all
parameters, only the specified parameters are applied and the garbage collection will not
function properly.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node would constantly oscillate between true and false. As a consequence,
the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the eviction-pressure-transition-period flag to control how long
OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift
Container Platform will not set an eviction threshold as being met for the specified pressure condition
for the period specified before toggling the condition back to false.

9.13.2. Understanding how images are removed through garbage collection

Image garbage collection removes images that are not referenced by any running pods.

OpenShift Container Platform determines which images to remove from a node based on the disk usage
that is reported by cAdvisor.

The policy for image garbage collection is based on two conditions:

The percent of disk usage (expressed as an integer) which triggers image garbage collection.
The default is 85.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a custom resource.

Table 9.4. Variables for configuring image garbage collection

Setting Description

imageMinimumGCA
ge

The minimum age for an unused image before the image is removed by garbage
collection. The default is 2m.

imageGCHighThresh
oldPercent

The percent of disk usage, expressed as an integer, which triggers image garbage
collection. The default is 85.

CHAPTER 9. POSTINSTALLATION NODE TASKS

297



imageGCLowThresh
oldPercent

The percent of disk usage, expressed as an integer, to which image garbage
collection attempts to free. The default is 80.

Setting Description

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod.

2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

9.13.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection
by creating a kubeletConfig object for each machine config pool.

NOTE

OpenShift Container Platform supports only one kubeletConfig object for each machine
config pool.

You can configure any combination of the following:

Soft eviction for containers

Hard eviction for containers

Eviction for images

Container garbage collection removes terminated containers. Image garbage collection removes images
that are not referenced by any running pods.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

For example:

Example output

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

OpenShift Container Platform 4.15 Postinstallation configuration

298



1 The label appears under Labels.

TIP

If the label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a custom resource (CR) for your configuration change.

IMPORTANT

If there is one file system, or if /var/lib/kubelet and /var/lib/containers/ are in the
same file system, the settings with the highest values trigger evictions, as those
are met first. The file system triggers the eviction.

Sample configuration for a container garbage collection CR:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  creationTimestamp: "2022-11-16T15:34:25Z"
  generation: 4
  labels:
    pools.operator.machineconfiguration.openshift.io/worker: "" 1
  name: worker
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: worker-kubeconfig 1
spec:
  machineConfigPoolSelector:
    matchLabels:
      pools.operator.machineconfiguration.openshift.io/worker: "" 2
  kubeletConfig:
    evictionSoft: 3
      memory.available: "500Mi" 4
      nodefs.available: "10%"
      nodefs.inodesFree: "5%"
      imagefs.available: "15%"
      imagefs.inodesFree: "10%"
    evictionSoftGracePeriod:  5
      memory.available: "1m30s"
      nodefs.available: "1m30s"
      nodefs.inodesFree: "1m30s"
      imagefs.available: "1m30s"
      imagefs.inodesFree: "1m30s"
    evictionHard: 6

CHAPTER 9. POSTINSTALLATION NODE TASKS

299



1

2

3

4

5

6

7

8

9

10

Name for the object.

Specify the label from the machine config pool.

For container garbage collection: Type of eviction: evictionSoft or evictionHard.

For container garbage collection: Eviction thresholds based on a specific eviction trigger
signal.

For container garbage collection: Grace periods for the soft eviction. This parameter does
not apply to eviction-hard.

For container garbage collection: Eviction thresholds based on a specific eviction trigger
signal. For evictionHard you must specify all of these parameters. If you do not specify all
parameters, only the specified parameters are applied and the garbage collection will not
function properly.

For container garbage collection: The duration to wait before transitioning out of an
eviction pressure condition.

For image garbage collection: The minimum age for an unused image before the image is
removed by garbage collection.

For image garbage collection: The percent of disk usage (expressed as an integer) that
triggers image garbage collection.

For image garbage collection: The percent of disk usage (expressed as an integer) that
image garbage collection attempts to free.

2. Run the following command to create the CR:

For example:

Example output

Verification

      memory.available: "200Mi"
      nodefs.available: "5%"
      nodefs.inodesFree: "4%"
      imagefs.available: "10%"
      imagefs.inodesFree: "5%"
    evictionPressureTransitionPeriod: 0s 7
    imageMinimumGCAge: 5m 8
    imageGCHighThresholdPercent: 80 9
    imageGCLowThresholdPercent: 75 10
#...

$ oc create -f <file_name>.yaml

$ oc create -f gc-container.yaml

kubeletconfig.machineconfiguration.openshift.io/gc-container created

OpenShift Container Platform 4.15 Postinstallation configuration

300



1. Verify that garbage collection is active by entering the following command. The Machine Config
Pool you specified in the custom resource appears with UPDATING as 'true` until the change is
fully implemented:

Example output

9.14. USING THE NODE TUNING OPERATOR

Understand and use the Node Tuning Operator.

Purpose
The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications.

The cluster administrator configures a performance profile to define node-level settings such as the
following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

$ oc get machineconfigpool

NAME     CONFIG                                   UPDATED   UPDATING
master   rendered-master-546383f80705bd5aeaba93   True      False
worker   rendered-worker-b4c51bb33ccaae6fc4a6a5   False     True

CHAPTER 9. POSTINSTALLATION NODE TASKS

301



NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

9.14.1. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

Run the following command to access an example Node Tuning Operator specification:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality will be
deprecated in future versions of the Node Tuning Operator.

9.14.2. Custom tuning specification

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator



OpenShift Container Platform 4.15 Postinstallation configuration

302



1

2

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

profile:
- name: tuned_profile_1
  data: |
    # TuneD profile specification
    [main]
    summary=Description of tuned_profile_1 profile

    [sysctl]
    net.ipv4.ip_forward=1
    # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

# ...

- name: tuned_profile_n
  data: |
    # TuneD profile specification
    [main]
    summary=Description of tuned_profile_n profile

    # tuned_profile_n profile settings

recommend:
<recommend-item-1>
# ...
<recommend-item-n>

- machineConfigLabels: 1
    <mcLabels> 2
  match: 3
    <match> 4
  priority: <priority> 5
  profile: <tuned_profile_name> 6
  operand: 7
    debug: <bool> 8
    tunedConfig:
      reapply_sysctl: <bool> 9

CHAPTER 9. POSTINSTALLATION NODE TASKS

303



3

4

5

6

7

8

9

1

2

3

4

If omitted, profile match is assumed unless a profile with a higher priority matches first or 
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

Turn reapply_sysctl functionality on or off for the TuneD daemon. Options are true for on and 
false for off.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given 
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile 
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the 
machineConfigLabels item is not considered.

IMPORTANT

- label: <label_name> 1
  value: <label_value> 2
  type: <label_type> 3
    <match> 4

OpenShift Container Platform 4.15 Postinstallation configuration

304



IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: Node or pod label based matching

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
  - label: tuned.openshift.io/elasticsearch
    match:
    - label: node-role.kubernetes.io/master
    - label: node-role.kubernetes.io/infra
    type: pod
  priority: 10
  profile: openshift-control-plane-es
- match:
  - label: node-role.kubernetes.io/master
  - label: node-role.kubernetes.io/infra
  priority: 20
  profile: openshift-control-plane
- priority: 30
  profile: openshift-node

CHAPTER 9. POSTINSTALLATION NODE TASKS

305



Example: Machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

Cloud provider-specific TuneD profiles

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: openshift-node-custom
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=Custom OpenShift node profile with an additional kernel parameter
      include=openshift-node
      [bootloader]
      cmdline_openshift_node_custom=+skew_tick=1
    name: openshift-node-custom

  recommend:
  - machineConfigLabels:
      machineconfiguration.openshift.io/role: "worker-custom"
    priority: 20
    profile: openshift-node-custom

OpenShift Container Platform 4.15 Postinstallation configuration

306



With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile
specifically tailored to a given Cloud provider on a OpenShift Container Platform cluster. This can be
accomplished without adding additional node labels or grouping nodes into machine config pools.

This functionality takes advantage of spec.providerID node object values in the form of <cloud-
provider>://<cloud-provider-specific-id> and writes the file /var/lib/tuned/provider with the value 
<cloud-provider> in NTO operand containers. The content of this file is then used by TuneD to load 
provider-<cloud-provider> profile if such profile exists.

The openshift profile that both openshift-control-plane and openshift-node profiles inherit settings
from is now updated to use this functionality through the use of conditional profile loading. Neither NTO
nor TuneD currently include any Cloud provider-specific profiles. However, it is possible to create a
custom profile provider-<cloud-provider> that will be applied to all Cloud provider-specific cluster
nodes.

Example GCE Cloud provider profile

NOTE

Due to profile inheritance, any setting specified in the provider-<cloud-provider> profile
will be overwritten by the openshift profile and its child profiles.

9.14.3. Default profiles set on a cluster

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: provider-gce
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=GCE Cloud provider-specific profile
      # Your tuning for GCE Cloud provider goes here.
    name: provider-gce

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: default
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=Optimize systems running OpenShift (provider specific parent profile)
      include=-provider-${f:exec:cat:/var/lib/tuned/provider},openshift
    name: openshift
  recommend:
  - profile: openshift-control-plane
    priority: 30
    match:

CHAPTER 9. POSTINSTALLATION NODE TASKS

307



Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

9.14.4. Supported TuneD daemon plugins

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

script

systemd

NOTE

    - label: node-role.kubernetes.io/master
    - label: node-role.kubernetes.io/infra
  - profile: openshift-node
    priority: 40

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

OpenShift Container Platform 4.15 Postinstallation configuration

308



1

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional resources

Available TuneD Plugins

Getting Started with TuneD

9.15. CONFIGURING THE MAXIMUM NUMBER OF PODS PER NODE

Two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore
and maxPods. If you use both options, the lower of the two limits the number of pods on a node.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of
pods allowed on the node will be 40.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

For example:

Example output

The label appears under Labels.

TIP

If the label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  creationTimestamp: "2022-11-16T15:34:25Z"
  generation: 4
  labels:
    pools.operator.machineconfiguration.openshift.io/worker: "" 1
  name: worker
#...

CHAPTER 9. POSTINSTALLATION NODE TASKS

309

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance


1

2

3

4

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a max-pods CR

Assign a name to CR.

Specify the label from the machine config pool.

Specify the number of pods the node can run based on the number of processor cores on
the node.

Specify the number of pods the node can run to a fixed value, regardless of the properties
of the node.

NOTE

Setting podsPerCore to 0 disables this limit.

In the above example, the default value for podsPerCore is 10 and the default value for 
maxPods is 250. This means that unless the node has 25 cores or more, by default, 
podsPerCore will be the limiting factor.

2. Run the following command to create the CR:

Verification

1. List the MachineConfigPool CRDs to see if the change is applied. The UPDATING column
reports True if the change is picked up by the Machine Config Controller:

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: set-max-pods 1
spec:
  machineConfigPoolSelector:
    matchLabels:
      pools.operator.machineconfiguration.openshift.io/worker: "" 2
  kubeletConfig:
    podsPerCore: 10 3
    maxPods: 250 4
#...

$ oc create -f <file_name>.yaml

$ oc get machineconfigpools

NAME     CONFIG                        UPDATED   UPDATING   DEGRADED
master   master-9cc2c72f205e103bb534   False     False      False
worker   worker-8cecd1236b33ee3f8a5e   False     True       False

OpenShift Container Platform 4.15 Postinstallation configuration

310



Once the change is complete, the UPDATED column reports True.

Example output

9.16. MACHINE SCALING WITH STATIC IP ADDRESSES

After you deployed your cluster to run nodes with static IP addresses, you can scale an instance of a
machine or a machine set to use one of these static IP addresses.

Additional resources

Static IP addresses for vSphere nodes

9.16.1. Scaling machines to use static IP addresses

You can scale additional machine sets to use pre-defined static IP addresses on your cluster. For this
configuration, you need to create a machine resource YAML file and then define static IP addresses in
this file.

IMPORTANT

Static IP addresses for vSphere nodes is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

You included featureSet:TechPreviewNoUpgrade as the initial entry in the install-config.yaml
file.

You deployed a cluster that runs at least one node with a configured static IP address.

Procedure

1. Create a machine resource YAML file and define static IP address network information in the 
network parameter.

Example of a machine resource YAML file with static IP address information defined
in the network parameter.

$ oc get machineconfigpools

NAME     CONFIG                        UPDATED   UPDATING   DEGRADED
master   master-9cc2c72f205e103bb534   False     True       False
worker   worker-8cecd1236b33ee3f8a5e   True      False      False

apiVersion: machine.openshift.io/v1beta1

CHAPTER 9. POSTINSTALLATION NODE TASKS

311

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-vsphere-installer-infra-requirements_ipi-vsphere-installation-reqs
https://access.redhat.com/support/offerings/techpreview/


1

2

3

The IP address for the default gateway for the network interface.

Lists IPv4, IPv6, or both IP addresses that installation program passes to the network
interface. Both IP families must use the same network interface for the default network.

Lists a DNS nameserver. You can define up to 3 DNS nameservers. Consider defining
more than one DNS nameserver to take advantage of DNS resolution if that one DNS
nameserver becomes unreachable.

Create a machine custom resource (CR) by entering the following command in your
terminal:

kind: Machine
metadata:
  creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id>
    machine.openshift.io/cluster-api-machine-role: <role>
    machine.openshift.io/cluster-api-machine-type: <role>
    machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
  name: <infrastructure_id>-<role>
  namespace: openshift-machine-api
spec:
  lifecycleHooks: {}
  metadata: {}
  providerSpec:
    value:
      apiVersion: machine.openshift.io/v1beta1
      credentialsSecret:
        name: vsphere-cloud-credentials
      diskGiB: 120
      kind: VSphereMachineProviderSpec
      memoryMiB: 8192
      metadata:
        creationTimestamp: null
      network:
        devices:
        - gateway: 192.168.204.1 1
          ipAddrs:
          - 192.168.204.8/24 2
          nameservers: 3
          - 192.168.204.1
          networkName: qe-segment-204
      numCPUs: 4
      numCoresPerSocket: 2
      snapshot: ""
      template: <vm_template_name>
      userDataSecret:
        name: worker-user-data
      workspace:
        datacenter: <vcenter_datacenter_name>
        datastore: <vcenter_datastore_name>
        folder: <vcenter_vm_folder_path>
        resourcepool: <vsphere_resource_pool>
        server: <vcenter_server_ip>
status: {}

OpenShift Container Platform 4.15 Postinstallation configuration

312



9.16.2. Machine set scaling of machines with configured static IP addresses

You can use a machine set to scale machines with configured static IP addresses.

IMPORTANT

Static IP addresses for vSphere nodes is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

After you configure a machine set to request a static IP address for a machine, the machine controller
creates an IPAddressClaim resource in the openshift-machine-api namespace. The external controller
then creates an IPAddress resource and binds any static IP addresses to the IPAddressClaim
resource.

IMPORTANT

Your organization might use numerous types of IP address management (IPAM) services.
If you want to enable a particular IPAM service on OpenShift Container Platform, you
might need to manually create the IPAddressClaim resource in a YAML definition and
then bind a static IP address to this resource by entering the following command in your 
oc CLI:

The following demonstrates an example of an IPAddressClaim resource:

The machine controller updates the machine with a status of IPAddressClaimed to indicate that a
static IP address has succesfully bound to the IPAddressClaim resource. The machine controller
applies the same status to a machine with multiple IPAddressClaim resources that each contain a

$ oc create -f <file_name>.yaml

$ oc create -f <ipaddressclaim_filename>

kind: IPAddressClaim
metadata:
  finalizers:
  - machine.openshift.io/ip-claim-protection
  name: cluster-dev-9n5wg-worker-0-m7529-claim-0-0
  namespace: openshift-machine-api
spec:
  poolRef:
    apiGroup: ipamcontroller.example.io
    kind: IPPool
    name: static-ci-pool
status: {}

CHAPTER 9. POSTINSTALLATION NODE TASKS

313

https://access.redhat.com/support/offerings/techpreview/


bound static IP address.The machine controller then creates a virtual machine and applies static IP
addresses to any nodes listed in the providerSpec of a machine’s configuration.

9.16.3. Using a machine set to scale machines with configured static IP addresses

You can use a machine set to scale machines with configured static IP addresses.

IMPORTANT

Static IP addresses for vSphere nodes is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The example in the procedure demonstrates the use of controllers for scaling machines in a machine set.

Prerequisites

You included featureSet:TechPreviewNoUpgrade as the initial entry in the install-config.yaml
file.

You deployed a cluster that runs at least one node with a configured static IP address.

Procedure

1. Configure a machine set by specifying IP pool information in the 
network.devices.addressesFromPools schema of the machine set’s YAML file:

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  annotations:
    machine.openshift.io/memoryMb: "8192"
    machine.openshift.io/vCPU: "4"
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id>
  name: <infrastructure_id>-<role>
  namespace: openshift-machine-api
spec:
  replicas: 0
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
  template:
    metadata:
      labels:
        ipam: "true"
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: worker

OpenShift Container Platform 4.15 Postinstallation configuration

314

https://access.redhat.com/support/offerings/techpreview/


1

2

Specifies an IP pool, which lists a static IP address or a range of static IP addresses. The IP
Pool can either be a reference to a custom resource definition (CRD) or a resource
supported by the IPAddressClaims resource handler. The machine controller accesses
static IP addresses listed in the machine set’s configuration and then allocates each
address to each machine.

Lists a nameserver. You must specify a nameserver for nodes that receive static IP
address, because the Dynamic Host Configuration Protocol (DHCP) network configuration
does not support static IP addresses.

2. Scale the machine set by entering the following commands in your oc CLI:

Or:

        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
    spec:
      lifecycleHooks: {}
      metadata: {}
      providerSpec:
        value:
          apiVersion: machine.openshift.io/v1beta1
          credentialsSecret:
            name: vsphere-cloud-credentials
          diskGiB: 120
          kind: VSphereMachineProviderSpec
          memoryMiB: 8192
          metadata: {}
          network:
            devices:
            - addressesFromPools: 1
              - group: ipamcontroller.example.io
                name: static-ci-pool
                resource: IPPool
              nameservers:
              - "192.168.204.1" 2
              networkName: qe-segment-204
          numCPUs: 4
          numCoresPerSocket: 2
          snapshot: ""
          template: rvanderp4-dev-9n5wg-rhcos-generated-region-generated-zone
          userDataSecret:
            name: worker-user-data
          workspace:
            datacenter: IBMCdatacenter
            datastore: /IBMCdatacenter/datastore/vsanDatastore
            folder: /IBMCdatacenter/vm/rvanderp4-dev-9n5wg
            resourcePool: /IBMCdatacenter/host/IBMCcluster//Resources
            server: vcenter.ibmc.devcluster.openshift.com

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

CHAPTER 9. POSTINSTALLATION NODE TASKS

315



1

2

After each machine is scaled up, the machine controller creates an IPAddresssClaim resource.

3. Optional: Check that the IPAddressClaim resource exists in the openshift-machine-api
namespace by entering the following command:

Example oc CLI output that lists two IP pools listed in the openshift-machine-api
namespace

4. Create an IPAddress resource by entering the following command:

The following example shows an IPAddress resource with defined network configuration
information and one defined static IP address:

The name of the target IPAddressClaim resource.

Details information about the static IP address or addresses from your nodes.

NOTE

By default, the external controller automatically scans any resources in the
machine set for recognizable address pool types. When the external controller
finds kind: IPPool defined in the IPAddress resource, the controller binds any
static IP addresses to the IPAddressClaim resource.

5. Update the IPAddressClaim status with a reference to the IPAddress resource:

$ oc get ipaddressclaims.ipam.cluster.x-k8s.io -n openshift-machine-api

NAME                                         POOL NAME        POOL KIND
cluster-dev-9n5wg-worker-0-m7529-claim-0-0   static-ci-pool   IPPool
cluster-dev-9n5wg-worker-0-wdqkt-claim-0-0   static-ci-pool   IPPool

$ oc create -f ipaddress.yaml

apiVersion: ipam.cluster.x-k8s.io/v1alpha1
kind: IPAddress
metadata:
  name: cluster-dev-9n5wg-worker-0-m7529-ipaddress-0-0
  namespace: openshift-machine-api
spec:
  address: 192.168.204.129
  claimRef: 1
    name: cluster-dev-9n5wg-worker-0-m7529-claim-0-0
  gateway: 192.168.204.1
  poolRef: 2
    apiGroup: ipamcontroller.example.io
    kind: IPPool
    name: static-ci-pool
  prefix: 23

OpenShift Container Platform 4.15 Postinstallation configuration

316



$ oc --type=merge patch IPAddressClaim cluster-dev-9n5wg-worker-0-m7529-claim-0-0 -
p='{"status":{"addressRef": {"name": "cluster-dev-9n5wg-worker-0-m7529-ipaddress-0-0"}}}' -
n openshift-machine-api --subresource=status

CHAPTER 9. POSTINSTALLATION NODE TASKS

317



CHAPTER 10. POSTINSTALLATION NETWORK
CONFIGURATION

After installing OpenShift Container Platform, you can further expand and customize your network to
your requirements.

10.1. CLUSTER NETWORK OPERATOR CONFIGURATION

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

NOTE

After cluster installation, you can only modify the clusterNetwork IP address range. The
default network type can only be changed from OpenShift SDN to OVN-Kubernetes
through migration.

10.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this 
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  trustedCA:
    name: ""
status:

OpenShift Container Platform 4.15 Postinstallation configuration

318



1

2

3

4

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
  ca-bundle.crt: | 1
    <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
  name: user-ca-bundle 3
  namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  httpProxy: http://<username>:<pswd>@<ip>:<port> 1

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

319



1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.
For example, most proxies will report an error if they are configured to use https but they
only support http. This failure message may not propagate to the logs and can appear to
be a network connection failure instead. If using a proxy that listens for https connections
from the cluster, you may need to configure the cluster to accept the CAs and certificates
that the proxy uses.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

10.3. SETTING DNS TO PRIVATE

After you deploy a cluster, you can modify its DNS to use only a private zone.

Procedure

1. Review the DNS custom resource for your cluster:

Example output

  httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
  noProxy: example.com 3
  readinessEndpoints:
  - http://www.google.com 4
  - https://www.google.com
  trustedCA:
    name: user-ca-bundle 5

$ oc get dnses.config.openshift.io/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: DNS

OpenShift Container Platform 4.15 Postinstallation configuration

320



Note that the spec section contains both a private and a public zone.

2. Patch the DNS custom resource to remove the public zone:

Because the Ingress Controller consults the DNS definition when it creates Ingress objects,
when you create or modify Ingress objects, only private records are created.

IMPORTANT

DNS records for the existing Ingress objects are not modified when you remove
the public zone.

3. Optional: Review the DNS custom resource for your cluster and confirm that the public zone
was removed:

Example output

metadata:
  creationTimestamp: "2019-10-25T18:27:09Z"
  generation: 2
  name: cluster
  resourceVersion: "37966"
  selfLink: /apis/config.openshift.io/v1/dnses/cluster
  uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
  baseDomain: <base_domain>
  privateZone:
    tags:
      Name: <infrastructure_id>-int
      kubernetes.io/cluster/<infrastructure_id>: owned
  publicZone:
    id: Z2XXXXXXXXXXA4
status: {}

$ oc patch dnses.config.openshift.io/cluster --type=merge --patch='{"spec": {"publicZone": 
null}}'
dns.config.openshift.io/cluster patched

$ oc get dnses.config.openshift.io/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: DNS
metadata:
  creationTimestamp: "2019-10-25T18:27:09Z"
  generation: 2
  name: cluster
  resourceVersion: "37966"
  selfLink: /apis/config.openshift.io/v1/dnses/cluster
  uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
  baseDomain: <base_domain>
  privateZone:
    tags:

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

321



10.4. CONFIGURING INGRESS CLUSTER TRAFFIC

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS, such as TLS with the SNI header, use
an Ingress Controller.

Otherwise, use a load balancer, an external IP, or a node port.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS, such as TLS
with the SNI header.

Automatically assign an external IP by using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

10.5. CONFIGURING THE NODE PORT SERVICE RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

10.5.1. Prerequisites

Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

10.5.1.1. Expanding the node port range

You can expand the node port range for the cluster.

Prerequisites

Install the OpenShift CLI (oc).

      Name: <infrastructure_id>-int
      kubernetes.io/cluster/<infrastructure_id>-wfpg4: owned
status: {}

OpenShift Container Platform 4.15 Postinstallation configuration

322

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#configuring-ingress-cluster-traffic-nodeport


Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

TIP

You can alternatively apply the following YAML to update the node port range:

Example output

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

Example output

10.6. CONFIGURING IPSEC ENCRYPTION

With IPsec enabled, all network traffic between nodes on the OVN-Kubernetes network plugin travels
through an encrypted tunnel.

IPsec is disabled by default.

10.6.1. Prerequisites

Your cluster must use the OVN-Kubernetes network plugin.

10.6.1.1. Enabling IPsec encryption
As a cluster administrator, you can enable pod-to-pod IPsec encryption and IPsec encryption between

$ oc patch network.config.openshift.io cluster --type=merge -p \
  '{
    "spec":
      { "serviceNodePortRange": "30000-<port>" }
  }'

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  serviceNodePortRange: "30000-<port>"

network.config.openshift.io/cluster patched

$ oc get configmaps -n openshift-kube-apiserver config \
  -o jsonpath="{.data['config\.yaml']}" | \
  grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

"service-node-port-range":["30000-33000"]

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

323



As a cluster administrator, you can enable pod-to-pod IPsec encryption and IPsec encryption between
the cluster and external IPsec endpoints.

You can configure IPsec in either of the following modes:

Full: Encryption for pod-to-pod and external traffic

External: Encryption for external traffic

If you need to configure encryption for external traffic in addition to pod-to-pod traffic, you must also
complete the "Configuring IPsec encryption for external traffic" procedure.

Prerequisites

Install the OpenShift CLI (oc).

You are logged in to the cluster as a user with cluster-admin privileges.

You have reduced the size of your cluster MTU by 46 bytes to allow for the overhead of the
IPsec ESP header.

Procedure

1. To enable IPsec encryption, enter the following command:

where:

mode

Specify External to encrypt only traffic to external hosts or specify Full to encrypt pod to
pod traffic and optionally traffic to external hosts. By default, IPsec is disabled.

2. Optional: If you need to encrypt traffic to external hosts, complete the "Configuring IPsec
encryption for external traffic" procedure.

Verification

1. To find the names of the OVN-Kubernetes data plane pods, enter the following command:

Example output

$ oc patch networks.operator.openshift.io cluster --type=merge \
-p '{
  "spec":{
    "defaultNetwork":{
      "ovnKubernetesConfig":{
        "ipsecConfig":{
          "mode":<mode>
        }}}}}'

$ oc get pods -n openshift-ovn-kubernetes -l=app=ovnkube-node

ovnkube-node-5xqbf                       8/8     Running   0              28m
ovnkube-node-6mwcx                       8/8     Running   0              29m
ovnkube-node-ck5fr                       8/8     Running   0              31m

OpenShift Container Platform 4.15 Postinstallation configuration

324



2. Verify that IPsec is enabled on your cluster by running the following command:

NOTE

As a cluster administrator, you can verify that IPsec is enabled between pods on
your cluster when IPsec is configured in Full mode. This step does not verify
whether IPsec is working between your cluster and external hosts.

where:

<XXXXX>

Specifies the random sequence of letters for a pod from the previous step.

Example output

10.7. CONFIGURING NETWORK POLICY

As a cluster administrator or project administrator, you can configure network policies for a project.

10.7.1. About network policy

In a cluster using a network plugin that supports Kubernetes network policy, network isolation is
controlled entirely by NetworkPolicy objects. In OpenShift Container Platform 4.15, OpenShift SDN
supports using network policy in its default network isolation mode.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost or from their resident nodes.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only

ovnkube-node-fr4ld                       8/8     Running   0              26m
ovnkube-node-wgs4l                       8/8     Running   0              33m
ovnkube-node-zfvcl                       8/8     Running   0              34m

$ oc -n openshift-ovn-kubernetes rsh ovnkube-node-<XXXXX> ovn-nbctl --no-leader-only get 
nb_global . ipsec

true



CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

325



If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

Only allow connections from the OpenShift Container Platform Ingress Controller:
To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default
spec:
  podSelector: {}
  ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-ingress
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          network.openshift.io/policy-group: ingress
  podSelector: {}
  policyTypes:
  - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector: {}
  ingress:
  - from:
    - podSelector: {}

OpenShift Container Platform 4.15 Postinstallation configuration

326



To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a 
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

10.7.1.1. Using the allow-from-router network policy

Use the following NetworkPolicy to allow external traffic regardless of the router configuration:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-http-and-https
spec:
  podSelector:
    matchLabels:
      role: frontend
  ingress:
  - ports:
    - protocol: TCP
      port: 80
    - protocol: TCP
      port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-pod-and-namespace-both
spec:
  podSelector:
    matchLabels:
      name: test-pods
  ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            project: project_name
        podSelector:
          matchLabels:
            name: test-pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

327



1 policy-group.network.openshift.io/ingress:"" label supports both OpenShift-SDN and OVN-
Kubernetes.

10.7.1.2. Using the allow-from-hostnetwork network policy

Add the following allow-from-hostnetwork NetworkPolicy object to direct traffic from the host
network pods:

10.7.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

metadata:
  name: allow-from-router
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/ingress: "" 1
  podSelector: {}
  policyTypes:
  - Ingress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-hostnetwork
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/host-network: ""
  podSelector: {}
  policyTypes:
  - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app

OpenShift Container Platform 4.15 Postinstallation configuration

328



1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

10.7.3. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic

    ports: 4
    - protocol: TCP
      port: 27017

$ touch <policy_name>.yaml

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

329



This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

Allow ingress from all pods in the same namespace

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default
spec:
  podSelector:
  ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector:
  ingress:
  - from:
    - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-traffic-pod
spec:
  podSelector:
   matchLabels:
      pod: pod-a
  policyTypes:
  - Ingress
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
           kubernetes.io/metadata.name: namespace-y

$ oc apply -f <policy_name>.yaml -n <namespace>

OpenShift Container Platform 4.15 Postinstallation configuration

330



Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

10.7.4. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

NOTE

networkpolicy.networking.k8s.io/deny-by-default created

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-ingress
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/ingress: ""
  podSelector: {}
  policyTypes:
  - Ingress
EOF

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

331



NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the 
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

c. A policy named allow-same-namespace:

d. A policy named allow-from-kube-apiserver-operator:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-monitoring
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          network.openshift.io/policy-group: monitoring
  podSelector: {}
  policyTypes:
  - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector:
  ingress:
  - from:
    - podSelector: {}
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-kube-apiserver-operator
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: openshift-kube-apiserver-operator
      podSelector:
        matchLabels:
          app: kube-apiserver-operator

OpenShift Container Platform 4.15 Postinstallation configuration

332



For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

10.7.5. Creating default network policies for a new project

As a cluster administrator, you can modify the new project template to automatically include 
NetworkPolicy objects when you create a new project.

10.7.6. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

  policyTypes:
  - Ingress
EOF

$ oc describe networkpolicy

Name:         allow-from-openshift-ingress
Namespace:    example1
Created on:   2020-06-09 00:28:17 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      NamespaceSelector: network.openshift.io/policy-group: ingress
  Not affecting egress traffic
  Policy Types: Ingress

Name:         allow-from-openshift-monitoring
Namespace:    example1
Created on:   2020-06-09 00:29:57 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      NamespaceSelector: network.openshift.io/policy-group: monitoring
  Not affecting egress traffic
  Policy Types: Ingress

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

333

https://access.redhat.com/solutions/6964520


Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

10.7.6.1. Adding network policies to the new project template

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
# ...
spec:
  projectRequestTemplate:
    name: <template_name>
# ...

OpenShift Container Platform 4.15 Postinstallation configuration

334



As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default CNI network plugin that supports NetworkPolicy objects, such as
the OpenShift SDN network plugin with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The 
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

$ oc edit template <project_template> -n openshift-config

objects:
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-same-namespace
  spec:
    podSelector: {}
    ingress:
    - from:
      - podSelector: {}
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-openshift-ingress
  spec:
    ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            network.openshift.io/policy-group: ingress
    podSelector: {}
    policyTypes:
    - Ingress
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

335



1

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

10.8. SUPPORTED CONFIGURATIONS

The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.

10.8.1. Supported platforms

The Red Hat OpenShift Service Mesh Operator supports multiple versions of the 
ServiceMeshControlPlane resource. Version 2.5 Service Mesh control planes are supported on the
following platform versions:

Red Hat OpenShift Container Platform version 4.10 or later

Red Hat OpenShift Dedicated version 4

Azure Red Hat OpenShift (ARO) version 4

Red Hat OpenShift Service on AWS (ROSA)

10.8.2. Unsupported configurations

Explicitly unsupported cases include:

  metadata:
    name: allow-from-kube-apiserver-operator
  spec:
    ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            kubernetes.io/metadata.name: openshift-kube-apiserver-operator
        podSelector:
          matchLabels:
            app: kube-apiserver-operator
    policyTypes:
    - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy
NAME                           POD-SELECTOR   AGE
allow-from-openshift-ingress   <none>         7s
allow-from-same-namespace      <none>         7s

OpenShift Container Platform 4.15 Postinstallation configuration

336



OpenShift Online is not supported for Red Hat OpenShift Service Mesh.

Red Hat OpenShift Service Mesh does not support the management of microservices outside
the cluster where Service Mesh is running.

10.8.3. Supported network configurations

Red Hat OpenShift Service Mesh supports the following network configurations.

OpenShift-SDN

OVN-Kubernetes is available on all supported versions of OpenShift Container Platform.

Third-Party Container Network Interface (CNI) plugins that have been certified on OpenShift
Container Platform and passed Service Mesh conformance testing. See Certified OpenShift
CNI Plug-ins for more information.

10.8.4. Supported configurations for Service Mesh

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64, IBM Z®, and IBM Power®.

IBM Z® is only supported on OpenShift Container Platform 4.10 and later.

IBM Power® is only supported on OpenShift Container Platform 4.10 and later.

Configurations where all Service Mesh components are contained within a single OpenShift
Container Platform cluster.

Configurations that do not integrate external services such as virtual machines.

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where
explicitly documented.

10.8.5. Supported configurations for Kiali

The Kiali console is only supported on the two most recent releases of the Google Chrome,
Microsoft Edge, Mozilla Firefox, or Apple Safari browsers.

The openshift authentication strategy is the only supported authentication configuration when
Kiali is deployed with Red Hat OpenShift Service Mesh (OSSM). The openshift strategy
controls access based on the individual’s role-based access control (RBAC) roles of the
OpenShift Container Platform.

10.8.6. Supported configurations for Distributed Tracing

Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a
daemonset is not supported for multitenant installations or OpenShift Dedicated.

10.8.7. Supported WebAssembly module

3scale WebAssembly is the only provided WebAssembly module. You can create custom
WebAssembly modules.

10.8.8. Operator overview

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

337

https://access.redhat.com/articles/5436171


Red Hat OpenShift Service Mesh requires the following Operators:

OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with
the distributed tracing platform (Jaeger). It is based on the open source Elasticsearch project.

Red Hat OpenShift distributed tracing platform (Jaeger) - Provides distributed tracing to
monitor and troubleshoot transactions in complex distributed systems. It is based on the open
source Jaeger project.

Kiali Operator provided by Red Hat - Provides observability for your service mesh. You can
view configurations, monitor traffic, and analyze traces in a single console. It is based on the
open source Kiali project.

Red Hat OpenShift Service Mesh - Allows you to connect, secure, control, and observe the
microservices that comprise your applications. The Service Mesh Operator defines and
monitors the ServiceMeshControlPlane resources that manage the deployment, updating,
and deletion of the Service Mesh components. It is based on the open source Istio project.

Next steps

Install Red Hat OpenShift Service Mesh  in your OpenShift Container Platform environment.

10.9. OPTIMIZING ROUTING

The OpenShift Container Platform HAProxy router can be scaled or configured to optimize
performance.

10.9.1. Baseline Ingress Controller (router) performance

The OpenShift Container Platform Ingress Controller, or router, is the ingress point for ingress traffic for
applications and services that are configured using routes and ingresses.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode

Route type

TLS session resumption client support

Number of concurrent connections per target route

Number of target routes

Back end server page size

Underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving
1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

OpenShift Container Platform 4.15 Postinstallation configuration

338

https://www.elastic.co/
https://www.jaegertracing.io/
https://www.kiali.io/
https://istio.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#installing-ossm


Encryption LoadBalancerService HostNetwork

none 21515 29622

edge 16743 22913

passthrough 36786 53295

re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273

edge 2729 4069

passthrough 4121 5344

re-encrypt 2320 2941

The default Ingress Controller configuration was used with the spec.tuningOptions.threadCount field
set to 4. Two different endpoint publishing strategies were tested: Load Balancer Service and Host
Network. TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single
HAProxy router is capable of saturating a 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
to how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for up to 1000 applications, depending on the technology in use.
Ingress Controller performance might be limited by the capabilities and performance of the applications
behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help
horizontally scale the routing tier.

10.9.2. Configuring Ingress Controller liveness, readiness, and startup probes

Cluster administrators can configure the timeout values for the kubelet’s liveness, readiness, and

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

339



startup probes for router deployments that are managed by the OpenShift Container Platform Ingress
Controller (router). The liveness and readiness probes of the router use the default timeout value of 1
second, which is too brief when networking or runtime performance is severely degraded. Probe
timeouts can cause unwanted router restarts that interrupt application connections. The ability to set
larger timeout values can reduce the risk of unnecessary and unwanted restarts.

You can update the timeoutSeconds value on the livenessProbe, readinessProbe, and startupProbe
parameters of the router container.

Parameter Description

livenessProbe The livenessProbe reports to the kubelet whether a pod is dead and needs
to be restarted.

readinessProbe The readinessProbe reports whether a pod is healthy or unhealthy. When the
readiness probe reports an unhealthy pod, then the kubelet marks the pod as
not ready to accept traffic. Subsequently, the endpoints for that pod are
marked as not ready, and this status propagates to the kube-proxy. On cloud
platforms with a configured load balancer, the kube-proxy communicates to
the cloud load-balancer not to send traffic to the node with that pod.

startupProbe The startupProbe gives the router pod up to 2 minutes to initialize before the
kubelet begins sending the router liveness and readiness probes. This
initialization time can prevent routers with many routes or endpoints from
prematurely restarting.

IMPORTANT

The timeout configuration option is an advanced tuning technique that can be used to
work around issues. However, these issues should eventually be diagnosed and possibly a
support case or Jira issue  opened for any issues that causes probes to time out.

The following example demonstrates how you can directly patch the default router deployment to set a
5-second timeout for the liveness and readiness probes:

Verification

10.9.3. Configuring HAProxy reload interval

When you update a route or an endpoint associated with a route, OpenShift Container Platform router
updates the configuration for HAProxy. Then, HAProxy reloads the updated configuration for those
changes to take effect. When HAProxy reloads, it generates a new process that handles new

$ oc -n openshift-ingress patch deploy/router-default --type=strategic --patch='{"spec":{"template":
{"spec":{"containers":[{"name":"router","livenessProbe":{"timeoutSeconds":5},"readinessProbe":
{"timeoutSeconds":5}}]}}}}'

$ oc -n openshift-ingress describe deploy/router-default | grep -e Liveness: -e Readiness:
    Liveness:   http-get http://:1936/healthz delay=0s timeout=5s period=10s #success=1 #failure=3
    Readiness:  http-get http://:1936/healthz/ready delay=0s timeout=5s period=10s #success=1 
#failure=3

OpenShift Container Platform 4.15 Postinstallation configuration

340

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Summary&issuetype=1&priority=10200&versions=12385624


connections using the updated configuration.

HAProxy keeps the old process running to handle existing connections until those connections are all
closed. When old processes have long-lived connections, these processes can accumulate and consume
resources.

The default minimum HAProxy reload interval is five seconds. You can configure an Ingress Controller
using its spec.tuningOptions.reloadInterval field to set a longer minimum reload interval.

WARNING

Setting a large value for the minimum HAProxy reload interval can cause latency in
observing updates to routes and their endpoints. To lessen the risk, avoid setting a
value larger than the tolerable latency for updates.

Procedure

Change the minimum HAProxy reload interval of the default Ingress Controller to 15 seconds by
running the following command:

10.10. POSTINSTALLATION RHOSP NETWORK CONFIGURATION

You can configure some aspects of an OpenShift Container Platform on Red Hat OpenStack Platform
(RHOSP) cluster after installation.

10.10.1. Configuring application access with floating IP addresses

After you install OpenShift Container Platform, configure Red Hat OpenStack Platform (RHOSP) to
allow application network traffic.

NOTE

You do not need to perform this procedure if you provided values for 
platform.openstack.apiFloatingIP and platform.openstack.ingressFloatingIP in the 
install-config.yaml file, or os_api_fip and os_ingress_fip in the inventory.yaml
playbook, during installation. The floating IP addresses are already set.

Prerequisites

OpenShift Container Platform cluster must be installed

Floating IP addresses are enabled as described in the OpenShift Container Platform on RHOSP
installation documentation.

Procedure

After you install the OpenShift Container Platform cluster, attach a floating IP address to the ingress



$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"tuningOptions":{"reloadInterval":"15s"}}}'

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

341



After you install the OpenShift Container Platform cluster, attach a floating IP address to the ingress
port:

1. Show the port:

2. Attach the port to the IP address:

3. Add a wildcard A record for *apps. to your DNS file:

NOTE

If you do not control the DNS server but want to enable application access for non-
production purposes, you can add these hostnames to /etc/hosts:

10.10.2. Enabling OVS hardware offloading

For clusters that run on Red Hat OpenStack Platform (RHOSP), you can enable Open vSwitch (OVS)
hardware offloading.

OVS is a multi-layer virtual switch that enables large-scale, multi-server network virtualization.

Prerequisites

You installed a cluster on RHOSP that is configured for single-root input/output virtualization
(SR-IOV).

You installed the SR-IOV Network Operator on your cluster.

You created two hw-offload type virtual function (VF) interfaces on your cluster.

NOTE

Application layer gateway flows are broken in OpenShift Container Platform version 4.10,
4.11, and 4.12. Also, you cannot offload the application layer gateway flow for OpenShift
Container Platform version 4.13.

Procedure

1. Create an SriovNetworkNodePolicy policy for the two hw-offload type VF interfaces that are

$ openstack port show <cluster_name>-<cluster_ID>-ingress-port

$ openstack floating ip set --port <ingress_port_ID> <apps_FIP>

*.apps.<cluster_name>.<base_domain>  IN  A  <apps_FIP>

<apps_FIP> console-openshift-console.apps.<cluster name>.<base domain>
<apps_FIP> integrated-oauth-server-openshift-authentication.apps.<cluster name>.
<base domain>
<apps_FIP> oauth-openshift.apps.<cluster name>.<base domain>
<apps_FIP> prometheus-k8s-openshift-monitoring.apps.<cluster name>.<base 
domain>
<apps_FIP> <app name>.apps.<cluster name>.<base domain>

OpenShift Container Platform 4.15 Postinstallation configuration

342

https://www.openvswitch.org/


1

2

1

2

1. Create an SriovNetworkNodePolicy policy for the two hw-offload type VF interfaces that are
on your cluster:

The first virtual function interface

Insert the SriovNetworkNodePolicy value here.

Both interfaces must include physical function (PF) names.

The second virtual function interface

Insert the SriovNetworkNodePolicy value here.

Both interfaces must include physical function (PF) names.

2. Create NetworkAttachmentDefinition resources for the two interfaces:

A NetworkAttachmentDefinition resource for the first interface

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy 1
metadata:
  name: "hwoffload9"
  namespace: openshift-sriov-network-operator
spec:
  deviceType: netdevice
  isRdma: true
  nicSelector:
    pfNames: 2
    - ens6
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: 'true'
  numVfs: 1
  priority: 99
  resourceName: "hwoffload9"

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy 1
metadata:
  name: "hwoffload10"
  namespace: openshift-sriov-network-operator
spec:
  deviceType: netdevice
  isRdma: true
  nicSelector:
    pfNames: 2
    - ens5
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: 'true'
  numVfs: 1
  priority: 99
  resourceName: "hwoffload10"

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

343



A NetworkAttachmentDefinition resource for the second interface

3. Use the interfaces that you created with a pod. For example:

A pod that uses the two OVS offload interfaces

10.10.3. Attaching an OVS hardware offloading network

You can attach an Open vSwitch (OVS) hardware offloading network to your cluster.

Prerequisites

Your cluster is installed and running.

You provisioned an OVS hardware offloading network on Red Hat OpenStack Platform
(RHOSP) to use with your cluster.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
  annotations:
    k8s.v1.cni.cncf.io/resourceName: openshift.io/hwoffload9
  name: hwoffload9
  namespace: default
spec:
    config: '{ "cniVersion":"0.3.1", "name":"hwoffload9","type":"host-device","device":"ens6"
    }'

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
  annotations:
    k8s.v1.cni.cncf.io/resourceName: openshift.io/hwoffload10
  name: hwoffload10
  namespace: default
spec:
    config: '{ "cniVersion":"0.3.1", "name":"hwoffload10","type":"host-device","device":"ens5"
    }'

apiVersion: v1
kind: Pod
metadata:
  name: dpdk-testpmd
  namespace: default
  annotations:
    irq-load-balancing.crio.io: disable
    cpu-quota.crio.io: disable
    k8s.v1.cni.cncf.io/resourceName: openshift.io/hwoffload9
    k8s.v1.cni.cncf.io/resourceName: openshift.io/hwoffload10
spec:
  restartPolicy: Never
  containers:
  - name: dpdk-testpmd
    image: quay.io/krister/centos8_nfv-container-dpdk-testpmd:latest

OpenShift Container Platform 4.15 Postinstallation configuration

344



Procedure

1. Create a file named network.yaml from the following template:

where:

pciBusId

Specifies the device that is connected to the offloading network. If you do not have it, you
can find this value by running the following command:

2. From a command line, enter the following command to patch your cluster with the file:

10.10.4. Enabling IPv6 connectivity to pods on RHOSP

To enable IPv6 connectivity between pods that have additional networks that are on different nodes,
disable port security for the IPv6 port of the server. Disabling port security obviates the need to create
allowed address pairs for each IPv6 address that is assigned to pods and enables traffic on the security
group.

IMPORTANT

Only the following IPv6 additional network configurations are supported:

SLAAC and host-device

SLAAC and MACVLAN

DHCP stateless and host-device

DHCP stateless and MACVLAN

Procedure

On a command line, enter the following command:

IMPORTANT

spec:
  additionalNetworks:
  - name: hwoffload1
    namespace: cnf
    rawCNIConfig: '{ "cniVersion": "0.3.1", "name": "hwoffload1", "type": "host-
device","pciBusId": "0000:00:05.0", "ipam": {}}' 1
    type: Raw

$ oc describe SriovNetworkNodeState -n openshift-sriov-network-operator

$ oc apply -f network.yaml

$ openstack port set --no-security-group --disable-port-security <compute_ipv6_port>

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

345



1 1

2

IMPORTANT

This command removes security groups from the port and disables port security.
Traffic restrictions are removed entirely from the port.

where:

<compute_ipv6_port>

Specifies the IPv6 port of the compute server.

10.10.5. Adding IPv6 connectivity to pods on RHOSP

After you enable IPv6 connectivity in pods, add connectivity to them by using a Container Network
Interface (CNI) configuration.

Procedure

1. To edit the Cluster Network Operator (CNO), enter the following command:

2. Specify your CNI configuration under the spec field. For example, the following configuration
uses a SLAAC address mode with MACVLAN:

Be sure to create pods in the same namespace.

The interface in the network attachment "master" field can differ from "ens4" when more
networks are configured or when a different kernel driver is used.

NOTE

If you are using stateful address mode, include the IP Address Management
(IPAM) in the CNI configuration.

DHCPv6 is not supported by Multus.

3. Save your changes and quit the text editor to commit your changes.

Verification

On a command line, enter the following command:

$ oc edit networks.operator.openshift.io cluster

...
spec:
  additionalNetworks:
  - name: ipv6
    namespace: ipv6 1
    rawCNIConfig: '{ "cniVersion": "0.3.1", "name": "ipv6", "type": "macvlan", "master": "ens4"}' 
2

    type: Raw

$ oc get network-attachment-definitions -A

OpenShift Container Platform 4.15 Postinstallation configuration

346



Example output

You can now create pods that have secondary IPv6 connections.

Additional resources

Configuration for an additional network attachment

10.10.6. Create pods that have IPv6 connectivity on RHOSP

After you enable IPv6 connectivty for pods and add it to them, create pods that have secondary IPv6
connections.

Procedure

1. Define pods that use your IPv6 namespace and the annotation k8s.v1.cni.cncf.io/networks: 
<additional_network_name>, where <additional_network_name is the name of the additional
network. For example, as part of a Deployment object:

NAMESPACE       NAME            AGE
ipv6            ipv6            21h

apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-openshift
  namespace: ipv6
spec:
  affinity:
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
         - labelSelector:
            matchExpressions:
            - key: app
              operator: In
              values:
              - hello-openshift
  replicas: 2
  selector:
    matchLabels:
      app: hello-openshift
  template:
    metadata:
      labels:
        app: hello-openshift
      annotations:
        k8s.v1.cni.cncf.io/networks: ipv6
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
      - name: hello-openshift
        securityContext:

CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION

347

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#configuring-additional-network_configuration-additional-network-attachment


2. Create the pod. For example, on a command line, enter the following command:

where:

<ipv6_enabled_resource>

Specifies the file that contains your resource definition.

          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
        image: quay.io/openshift/origin-hello-openshift
        ports:
        - containerPort: 8080

$ oc create -f <ipv6_enabled_resource>

OpenShift Container Platform 4.15 Postinstallation configuration

348



CHAPTER 11. POSTINSTALLATION STORAGE
CONFIGURATION

After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements, including storage configuration.

11.1. DYNAMIC PROVISIONING

11.1.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand. 
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators
(storage-admin) define and create the StorageClass objects that users can request without needing
any detailed knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plugin APIs.

11.1.2. Available dynamic provisioning plugins

OpenShift Container Platform provides the following provisioner plugins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage type Provisioner plugin name Notes

Red Hat OpenStack Platform
(RHOSP) Cinder

kubernetes.io/cinder  

RHOSP Manila Container Storage
Interface (CSI)

manila.csi.openstack.org Once installed, the OpenStack
Manila CSI Driver Operator and
ManilaDriver automatically create
the required storage classes for
all available Manila share types
needed for dynamic provisioning.

Amazon Elastic Block Store
(Amazon EBS)

kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with 
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where 
<cluster_name> and 
<cluster_id> are unique per
cluster.

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

349



Azure Disk kubernetes.io/azure-disk  

Azure File kubernetes.io/azure-file The persistent-volume-binder
service account requires
permissions to create and get
secrets to store the Azure storage
account and keys.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

IBM Power® Virtual Server Block powervs.csi.ibm.com After installation, the IBM Power®
Virtual Server Block CSI Driver
Operator and IBM Power® Virtual
Server Block CSI Driver
automatically create the required
storage classes for dynamic
provisioning.

VMware vSphere kubernetes.io/vsphere-
volume

 

Storage type Provisioner plugin name Notes

IMPORTANT

Any chosen provisioner plugin also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

11.2. DEFINING A STORAGE CLASS

StorageClass objects are currently a globally scoped object and must be created by cluster-admin or 
storage-admin users.

IMPORTANT

OpenShift Container Platform 4.15 Postinstallation configuration

350

https://www.vmware.com/support/vsphere.html


1

2

3

4

5

6

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the Operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The following sections describe the basic definition for a StorageClass object and specific examples for
each of the supported plugin types.

11.2.1. Basic StorageClass object definition

The following resource shows the parameters and default values that you use to configure a storage
class. This example uses the AWS ElasticBlockStore (EBS) object definition.

Sample StorageClass definition

(required) The API object type.

(required) The current apiVersion.

(required) The name of the storage class.

(optional) Annotations for the storage class.

(required) The type of provisioner associated with this storage class.

(optional) The parameters required for the specific provisioner, this will change from plugin to
plug-iin.

11.2.2. Storage class annotations

To set a storage class as the cluster-wide default, add the following annotation to your storage class
metadata:

For example:

kind: StorageClass 1
apiVersion: storage.k8s.io/v1 2
metadata:
  name: <storage-class-name> 3
  annotations: 4
    storageclass.kubernetes.io/is-default-class: 'true'
    ...
provisioner: kubernetes.io/aws-ebs 5
parameters: 6
  type: gp3
...

storageclass.kubernetes.io/is-default-class: "true"

apiVersion: storage.k8s.io/v1

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

351



1

2

3

4

This enables any persistent volume claim (PVC) that does not specify a specific storage class to
automatically be provisioned through the default storage class. However, your cluster can have more
than one storage class, but only one of them can be the default storage class.

NOTE

The beta annotation storageclass.beta.kubernetes.io/is-default-class is still working;
however, it will be removed in a future release.

To set a storage class description, add the following annotation to your storage class metadata:

For example:

11.2.3. RHOSP Cinder object definition

cinder-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Volume type created in Cinder. Default is empty.

Availability Zone. If not specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

kind: StorageClass
metadata:
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"
...

kubernetes.io/description: My Storage Class Description

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  annotations:
    kubernetes.io/description: My Storage Class Description
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: <storage-class-name> 1
provisioner: kubernetes.io/cinder
parameters:
  type: fast  2
  availability: nova 3
  fsType: ext4 4

OpenShift Container Platform 4.15 Postinstallation configuration

352



1

2

3

4

5

6

11.2.4. AWS Elastic Block Store (EBS) object definition

aws-ebs-storageclass.yaml

(required) Name of the storage class. The persistent volume claim uses this storage class for
provisioning the associated persistent volumes.

(required) Select from io1, gp3, sc1, st1. The default is gp3. See the AWS documentation for valid
Amazon Resource Name (ARN) values.

Optional: Only for io1 volumes. I/O operations per second per GiB. The AWS volume plugin
multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap
is 20,000 IOPS, which is the maximum supported by AWS. See the AWS documentation for further
details.

Optional: Denotes whether to encrypt the EBS volume. Valid values are true or false.

Optional: The full ARN of the key to use when encrypting the volume. If none is supplied, but 
encypted is set to true, then AWS generates a key. See the AWS documentation for a valid ARN
value.

Optional: File system that is created on dynamically provisioned volumes. This value is copied to
the fsType field of dynamically provisioned persistent volumes and the file system is created when
the volume is mounted for the first time. The default value is ext4.

11.2.5. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: <storage-class-name> 1
provisioner: kubernetes.io/aws-ebs
parameters:
  type: io1 2
  iopsPerGB: "10" 3
  encrypted: "true" 4
  kmsKeyId: keyvalue 5
  fsType: ext4 6

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: <storage-class-name> 1
provisioner: kubernetes.io/azure-disk
volumeBindingMode: WaitForFirstConsumer 2
allowVolumeExpansion: true
parameters:
  kind: Managed 3
  storageaccounttype: Premium_LRS 4
reclaimPolicy: Delete

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

353

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html


1

2

3

4

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Using WaitForFirstConsumer is strongly recommended. This provisions the volume while allowing
enough storage to schedule the pod on a free worker node from an available zone.

Possible values are Shared (default), Managed, and Dedicated.

IMPORTANT

Red Hat only supports the use of kind: Managed in the storage class.

With Shared and Dedicated, Azure creates unmanaged disks, while OpenShift
Container Platform creates a managed disk for machine OS (root) disks. But
because Azure Disk does not allow the use of both managed and unmanaged disks
on a node, unmanaged disks created with Shared or Dedicated cannot be attached
to OpenShift Container Platform nodes.

Azure storage account SKU tier. Default is empty. Note that Premium VMs can attach both 
Standard_LRS and Premium_LRS disks, Standard VMs can only attach Standard_LRS disks,
Managed VMs can only attach managed disks, and unmanaged VMs can only attach unmanaged
disks.

a. If kind is set to Shared, Azure creates all unmanaged disks in a few shared storage
accounts in the same resource group as the cluster.

b. If kind is set to Managed, Azure creates new managed disks.

c. If kind is set to Dedicated and a storageAccount is specified, Azure uses the specified
storage account for the new unmanaged disk in the same resource group as the cluster.
For this to work:

The specified storage account must be in the same region.

Azure Cloud Provider must have write access to the storage account.

d. If kind is set to Dedicated and a storageAccount is not specified, Azure creates a new
dedicated storage account for the new unmanaged disk in the same resource group as the
cluster.

11.2.6. Azure File object definition

The Azure File storage class uses secrets to store the Azure storage account name and the storage
account key that are required to create an Azure Files share. These permissions are created as part of
the following procedure.

Procedure

1. Define a ClusterRole object that allows access to create and view secrets:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
#  name: system:azure-cloud-provider

OpenShift Container Platform 4.15 Postinstallation configuration

354



1

1

2

3

4

The name of the cluster role to view and create secrets.

2. Add the cluster role to the service account:

3. Create the Azure File StorageClass object:

Name of the storage class. The persistent volume claim uses this storage class for
provisioning the associated persistent volumes.

Location of the Azure storage account, such as eastus. Default is empty, meaning that a
new Azure storage account will be created in the OpenShift Container Platform cluster’s
location.

SKU tier of the Azure storage account, such as Standard_LRS. Default is empty, meaning
that a new Azure storage account will be created with the Standard_LRS SKU.

Name of the Azure storage account. If a storage account is provided, then skuName and 
location are ignored. If no storage account is provided, then the storage class searches for
any storage account that is associated with the resource group for any accounts that
match the defined skuName and location.

11.2.6.1. Considerations when using Azure File

The following file system features are not supported by the default Azure File storage class:

Symlinks

Hard links

Extended attributes

Sparse files

  name: <persistent-volume-binder-role> 1
rules:
- apiGroups: ['']
  resources: ['secrets']
  verbs:     ['get','create']

$ oc adm policy add-cluster-role-to-user <persistent-volume-binder-role> 
system:serviceaccount:kube-system:persistent-volume-binder

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: <azure-file> 1
provisioner: kubernetes.io/azure-file
parameters:
  location: eastus 2
  skuName: Standard_LRS 3
  storageAccount: <storage-account> 4
reclaimPolicy: Delete
volumeBindingMode: Immediate

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

355



1

2

3

1

2

Named pipes

Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the
process UID of the container. The uid mount option can be specified in the StorageClass object to
define a specific user identifier to use for the mounted directory.

The following StorageClass object demonstrates modifying the user and group identifier, along with
enabling symlinks for the mounted directory.

Specifies the user identifier to use for the mounted directory.

Specifies the group identifier to use for the mounted directory.

Enables symlinks.

11.2.7. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Select either pd-standard or pd-ssd. The default is pd-standard.

11.2.8. VMware vSphere object definition

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: azure-file
mountOptions:
  - uid=1500 1
  - gid=1500 2
  - mfsymlinks 3
provisioner: kubernetes.io/azure-file
parameters:
  location: eastus
  skuName: Standard_LRS
reclaimPolicy: Delete
volumeBindingMode: Immediate

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: <storage-class-name> 1
provisioner: kubernetes.io/gce-pd
parameters:
  type: pd-standard 2
  replication-type: none
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
reclaimPolicy: Delete

OpenShift Container Platform 4.15 Postinstallation configuration

356



1

2

1

vsphere-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

For more information about using VMware vSphere CSI with OpenShift Container Platform, see the
Kubernetes documentation.

11.3. CHANGING THE DEFAULT STORAGE CLASS

Use the following procedure to change the default storage class.

For example, if you have two defined storage classes, gp3 and standard, and you want to change the
default storage class from gp3 to standard.

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To change the default storage class:

1. List the storage classes:

Example output

(default) indicates the default storage class.

2. Make the desired storage class the default.
For the desired storage class, set the storageclass.kubernetes.io/is-default-class annotation
to true by running the following command:

NOTE

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: <storage-class-name> 1
provisioner: csi.vsphere.vmware.com 2

$ oc get storageclass

NAME                 TYPE
gp3 (default)        kubernetes.io/aws-ebs 1
standard             kubernetes.io/aws-ebs

$ oc patch storageclass standard -p '{"metadata": {"annotations": 
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

357

https://kubernetes.io/docs/concepts/storage/volumes/#vsphere-csi-migration


NOTE

You can have multiple default storage classes for a short time. However, you
should ensure that only one default storage class exists eventually.

With multiple default storage classes present, any persistent volume claim (PVC)
requesting the default storage class (pvc.spec.storageClassName=nil) gets the
most recently created default storage class, regardless of the default status of
that storage class, and the administrator receives an alert in the alerts dashboard
that there are multiple default storage classes, MultipleDefaultStorageClasses.

3. Remove the default storage class setting from the old default storage class.
For the old default storage class, change the value of the storageclass.kubernetes.io/is-
default-class annotation to false by running the following command:

4. Verify the changes:

Example output

11.4. OPTIMIZING STORAGE

Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

11.5. AVAILABLE PERSISTENT STORAGE OPTIONS

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 11.1. Available storage options

Storage
type

Description Examples

$ oc patch storageclass gp3 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

$ oc get storageclass

NAME                 TYPE
gp3                  kubernetes.io/aws-ebs
standard (default)   kubernetes.io/aws-ebs

OpenShift Container Platform 4.15 Postinstallation configuration

358



Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

AWS EBS and VMware vSphere
support dynamic persistent volume
(PV) provisioning natively in OpenShift
Container Platform.

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

RHEL NFS, NetApp NFS [1], and
Vendor NFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
image registry

Applications must build their drivers into
the application and/or container.

AWS S3

Storage
type

Description Examples

1. NetApp NFS supports dynamic PV provisioning when using the Trident plugin.

11.6. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 11.2. Recommended and configurable storage technology

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

359



Storage type Block File Object

1 ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure
Disk.

5 For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file
storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

6 For logging, review the recommended storage solution in Configuring persistent storage for the log
store section. Using NFS storage as a persistent volume or through NAS, such as Gluster, can corrupt the
data. Hence, NFS is not supported for Elasticsearch storage and LokiStack log store in OpenShift
Container Platform Logging. You must use one persistent volume type per log store.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must
integrate with the object storage REST API.

ROX1 Yes4 Yes4 Yes

RWX2 No Yes Yes

Registry Configurable Configurable Recommended

Scaled registry Not configurable Configurable Recommended

Metrics3 Recommended Configurable5 Not configurable

Elasticsearch Logging Recommended Configurable6 Not supported6

Loki Logging Not configurable Not configurable Recommended

Apps Recommended Recommended Not configurable7

Storage type Block File Object

NOTE

A scaled registry is an OpenShift image registry where two or more pod replicas are
running.

11.6.1. Specific application storage recommendations

IMPORTANT

OpenShift Container Platform 4.15 Postinstallation configuration

360



IMPORTANT

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as
storage backend for core services. This includes the OpenShift Container Registry and
Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage.
Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

11.6.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift image registry cluster deployment:

The storage technology does not have to support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage followed by block storage.

File storage is not recommended for OpenShift image registry cluster deployment with
production workloads.

11.6.1.2. Scaled registry

In a scaled/HA OpenShift image registry cluster deployment:

The storage technology must support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage.

Red Hat OpenShift Data Foundation (ODF), Amazon Simple Storage Service (Amazon S3),
Google Cloud Storage (GCS), Microsoft Azure Blob Storage, and OpenStack Swift are
supported.

Object storage should be S3 or Swift compliant.

For non-cloud platforms, such as vSphere and bare metal installations, the only configurable
technology is file storage.

Block storage is not configurable.

11.6.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

IMPORTANT

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

361



IMPORTANT

It is not recommended to use file storage for a hosted metrics cluster deployment with
production workloads.

11.6.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

Loki Operator:

The preferred storage technology is S3 compatible Object storage.

Block storage is not configurable.

OpenShift Elasticsearch Operator:

The preferred storage technology is block storage.

Object storage is not supported.

NOTE

As of logging version 5.4.3 the OpenShift Elasticsearch Operator is deprecated and is
planned to be removed in a future release. Red Hat will provide bug fixes and support for
this feature during the current release lifecycle, but this feature will no longer receive
enhancements and will be removed. As an alternative to using the OpenShift
Elasticsearch Operator to manage the default log storage, you can use the Loki
Operator.

11.6.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

11.6.2. Other specific application storage recommendations

IMPORTANT

It is not recommended to use RAID configurations on Write intensive workloads, such as 
etcd. If you are running etcd with a RAID configuration, you might be at risk of
encountering performance issues with your workloads.

Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

The etcd database must have enough storage and adequate performance capacity to enable a

OpenShift Container Platform 4.15 Postinstallation configuration

362



The etcd database must have enough storage and adequate performance capacity to enable a
large cluster. Information about monitoring and benchmarking tools to establish ample storage
and a high-performance environment is described in Recommended etcd practices .

Additional resources

Recommended etcd practices

11.7. DEPLOY RED HAT OPENSHIFT DATA FOUNDATION

Red Hat OpenShift Data Foundation is a provider of agnostic persistent storage for OpenShift
Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a
Red Hat storage solution, Red Hat OpenShift Data Foundation is completely integrated with OpenShift
Container Platform for deployment, management, and monitoring.

If you are looking for Red Hat OpenShift Data
Foundation information about…​

See the following Red Hat OpenShift Data
Foundation documentation:

What’s new, known issues, notable bug fixes, and
Technology Previews

OpenShift Data Foundation 4.12 Release Notes

Supported workloads, layouts, hardware and
software requirements, sizing and scaling
recommendations

Planning your OpenShift Data Foundation 4.12
deployment

Instructions on deploying OpenShift Data
Foundation to use an external Red Hat Ceph Storage
cluster

Deploying OpenShift Data Foundation 4.12 in
external mode

Instructions on deploying OpenShift Data
Foundation to local storage on bare metal
infrastructure

Deploying OpenShift Data Foundation 4.12 using
bare metal infrastructure

Instructions on deploying OpenShift Data
Foundation on Red Hat OpenShift Container
Platform VMware vSphere clusters

Deploying OpenShift Data Foundation 4.12 on
VMware vSphere

Instructions on deploying OpenShift Data
Foundation using Amazon Web Services for local or
cloud storage

Deploying OpenShift Data Foundation 4.12 using
Amazon Web Services

Instructions on deploying and managing OpenShift
Data Foundation on existing Red Hat OpenShift
Container Platform Google Cloud clusters

Deploying and managing OpenShift Data Foundation
4.12 using Google Cloud

Instructions on deploying and managing OpenShift
Data Foundation on existing Red Hat OpenShift
Container Platform Azure clusters

Deploying and managing OpenShift Data Foundation
4.12 using Microsoft Azure

CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION

363

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#recommended-etcd-practices
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/4.12_release_notes
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/planning_your_deployment
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_in_external_mode
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_bare_metal_infrastructure
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_on_vmware_vsphere
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_amazon_web_services
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_and_managing_openshift_data_foundation_using_google_cloud
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_microsoft_azure/index


Instructions on deploying OpenShift Data
Foundation to use local storage on IBM Power®
infrastructure

Deploying OpenShift Data Foundation on IBM
Power®

Instructions on deploying OpenShift Data
Foundation to use local storage on IBM Z®
infrastructure

Deploying OpenShift Data Foundation on IBM Z®
infrastructure

Allocating storage to core services and hosted
applications in Red Hat OpenShift Data Foundation,
including snapshot and clone

Managing and allocating resources

Managing storage resources across a hybrid cloud or
multicloud environment using the Multicloud Object
Gateway (NooBaa)

Managing hybrid and multicloud resources

Safely replacing storage devices for Red Hat
OpenShift Data Foundation

Replacing devices

Safely replacing a node in a Red Hat OpenShift Data
Foundation cluster

Replacing nodes

Scaling operations in Red Hat OpenShift Data
Foundation

Scaling storage

Monitoring a Red Hat OpenShift Data Foundation
4.12 cluster

Monitoring Red Hat OpenShift Data Foundation 4.12

Resolve issues encountered during operations Troubleshooting OpenShift Data Foundation 4.12

Migrating your OpenShift Container Platform cluster
from version 3 to version 4

Migration

If you are looking for Red Hat OpenShift Data
Foundation information about…​

See the following Red Hat OpenShift Data
Foundation documentation:

11.8. ADDITIONAL RESOURCES

Configuring the Elasticsearch log store

OpenShift Container Platform 4.15 Postinstallation configuration

364

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html-single/deploying_openshift_data_foundation_using_ibm_power/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_ibm_z_infrastructure/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/managing_and_allocating_storage_resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/managing_hybrid_and_multicloud_resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/replacing_devices
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/replacing_nodes
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/scaling_storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/monitoring_openshift_data_foundation
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/troubleshooting_openshift_data_foundation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/migrating_from_version_3_to_4/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/logging/#logging-config-es-store


CHAPTER 12. PREPARING FOR USERS
After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements, including taking steps to prepare for users.

12.1. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

The OpenShift Container Platform control plane includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your
cluster.

12.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

12.1.2. Supported identity providers

You can configure the following types of identity providers:

Identity provider Description

htpasswd Configure the htpasswd identity provider to validate user names and passwords
against a flat file generated using htpasswd.

Keystone Configure the keystone identity provider to integrate your OpenShift Container
Platform cluster with Keystone to enable shared authentication with an OpenStack
Keystone v3 server configured to store users in an internal database.

LDAP Configure the ldap identity provider to validate user names and passwords against an
LDAPv3 server, using simple bind authentication.

Basic
authentication

Configure a basic-authentication identity provider for users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider. Basic
authentication is a generic backend integration mechanism.

Request header Configure a request-header identity provider to identify users from request header
values, such as X-Remote-User. It is typically used in combination with an
authenticating proxy, which sets the request header value.

GitHub or GitHub
Enterprise

Configure a github identity provider to validate user names and passwords against
GitHub or GitHub Enterprise’s OAuth authentication server.

CHAPTER 12. PREPARING FOR USERS

365

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-htpasswd-identity-provider
http://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-keystone-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-ldap-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-basic-authentication-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-request-header-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-github-identity-provider


GitLab Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as
an identity provider.

Google Configure a google identity provider using Google’s OpenID Connect integration.

OpenID Connect Configure an oidc identity provider to integrate with an OpenID Connect identity
provider using an Authorization Code Flow.

Identity provider Description

After you define an identity provider, you can use RBAC to define and apply permissions .

12.1.3. Identity provider parameters

The following parameters are common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup
Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users.

add
Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

12.1.4. Sample identity provider CR

The following custom resource (CR) shows the parameters and default values that you use to configure
an identity provider. This example uses the htpasswd identity provider.

Sample identity provider CR

apiVersion: config.openshift.io/v1

OpenShift Container Platform 4.15 Postinstallation configuration

366

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-gitlab-identity-provider
https://gitlab.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-google-identity-provider
https://developers.google.com/identity/protocols/OpenIDConnect
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#configuring-oidc-identity-provider
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#authorization-overview_using-rbac


1

2

3

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

An existing secret containing a file generated using htpasswd.

12.2. USING RBAC TO DEFINE AND APPLY PERMISSIONS

Understand and apply role-based access control.

12.2.1. RBAC overview

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to
the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of
who is taking the action.

Authorization is managed using:

Authorization
object

Description

Rules Sets of permitted verbs on a set of objects. For example, whether a user or service
account can create pods.

Roles Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: my_identity_provider 1
    mappingMethod: claim 2
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret 3

CHAPTER 12. PREPARING FOR USERS

367

http://httpd.apache.org/docs/2.4/programs/htpasswd.html


RBAC level Description

Cluster RBAC Roles and bindings that are applicable across all projects. Cluster roles exist cluster-
wide, and cluster role bindings can reference only cluster roles.

Local RBAC Roles and bindings that are scoped to a given project. While local roles exist only in a
single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Create local roles only if a cluster role does not provide the set of permissions needed for a particular
situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing
customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

3. Deny by default.

12.2.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and
groups cluster-wide or locally.

IMPORTANT

It is not recommended to manually modify the default cluster roles. Modifications to
these system roles can prevent a cluster from functioning properly.

Default cluster
role

Description

admin A project manager. If used in a local binding, an admin has rights to view any resource
in the project and modify any resource in the project except for quota.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When bound to a user with a
local binding, they have full control over quota and every action on every resource in the
project.

cluster-status A user that can get basic cluster status information.

cluster-reader A user that can get or view most of the objects but cannot modify them.

OpenShift Container Platform 4.15 Postinstallation configuration

368



edit A user that can modify most objects in a project but does not have the power to view or
modify roles or bindings.

self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

Default cluster
role

Description

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-
admin role to a user by using a local role binding, it might appear that this user has the privileges of a
cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super
administrator privileges for only that project to the user. That user has the permissions of the cluster
role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This
binding can be confusing via the web console UI, which does not list cluster role bindings that are bound
to true cluster administrators. However, it does list local role bindings that you can use to locally bind 
cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

CHAPTER 12. PREPARING FOR USERS

369



WARNING

The get pods/exec, get pods/*, and get * rules grant execution privileges when they
are applied to a role. Apply the principle of least privilege and assign only the
minimal RBAC rights required for users and agents. For more information, see
RBAC rules allow execution privileges .

12.2.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity

The user name and list of groups that the user belongs to.

Action

The action you perform. In most cases, this consists of:

Project: The project you access. A project is a Kubernetes namespace with additional
annotations that allows a community of users to organize and manage their content in
isolation from other communities.

Verb : The action itself: get, list, create, update, delete, deletecollection, or watch.

Resource name: The API endpoint that you access.

Bindings

The full list of bindings, the associations between users or groups with a role.

OpenShift Container Platform evaluates authorization by using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs
and resources each are associated with.

IMPORTANT



OpenShift Container Platform 4.15 Postinstallation configuration

370

https://access.redhat.com/solutions/6989997


IMPORTANT

The cluster role bound to the project administrator is limited in a project through a local
binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or
system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster
level or at the project level.

12.2.1.2.1. Cluster role aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where
the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant
only if you extend the Kubernetes API by creating custom resources.

12.2.2. Projects and namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes
documentation has more information on namespaces.

Namespaces provide a unique scope for:

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

A project is a Kubernetes namespace with additional annotations and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to 
name).

The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Object Description

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

CHAPTER 12. PREPARING FOR USERS

371

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/


Constraints Quotas for each kind of object that can be limited.

Service 
accounts

Service accounts act automatically with designated access to objects in the project.

Object Description

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects by using the CLI or the web console.

12.2.3. Default projects

OpenShift Container Platform comes with a number of default projects, and projects starting with 
openshift- are the most essential to users. These projects host master components that run as pods
and other infrastructure components. The pods created in these namespaces that have a critical pod
annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for
master components in these namespaces are already marked as critical.

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public, 
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

12.2.4. Viewing cluster roles and bindings

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any
resource, including viewing cluster roles and bindings.

Procedure

1. To view the cluster roles and their associated rule sets:

$ oc describe clusterrole.rbac

OpenShift Container Platform 4.15 Postinstallation configuration

372

https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/#rescheduler-guaranteed-scheduling-of-critical-add-ons


Example output

Name:         admin
Labels:       kubernetes.io/bootstrapping=rbac-defaults
Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
  Resources                                                  Non-Resource URLs  Resource Names  Verbs
  ---------                                                  -----------------  --------------  -----
  .packages.apps.redhat.com                                  []                 []              [* create update 
patch delete get list watch]
  imagestreams                                               []                 []              [create delete 
deletecollection get list patch update watch create get list watch]
  imagestreams.image.openshift.io                            []                 []              [create delete 
deletecollection get list patch update watch create get list watch]
  secrets                                                    []                 []              [create delete deletecollection 
get list patch update watch get list watch create delete deletecollection patch update]
  buildconfigs/webhooks                                      []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  buildconfigs                                               []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  buildlogs                                                  []                 []              [create delete deletecollection 
get list patch update watch get list watch]
  deploymentconfigs/scale                                    []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  deploymentconfigs                                          []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  imagestreamimages                                          []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  imagestreammappings                                        []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  imagestreamtags                                            []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  processedtemplates                                         []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  routes                                                     []                 []              [create delete deletecollection 
get list patch update watch get list watch]
  templateconfigs                                            []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  templateinstances                                          []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  templates                                                  []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  deploymentconfigs.apps.openshift.io/scale                  []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  deploymentconfigs.apps.openshift.io                        []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  buildconfigs.build.openshift.io/webhooks                   []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  buildconfigs.build.openshift.io                            []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  buildlogs.build.openshift.io                               []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  imagestreamimages.image.openshift.io                       []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  imagestreammappings.image.openshift.io                     []                 []              [create delete 
deletecollection get list patch update watch get list watch]

CHAPTER 12. PREPARING FOR USERS

373



  imagestreamtags.image.openshift.io                         []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  routes.route.openshift.io                                  []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  processedtemplates.template.openshift.io                   []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  templateconfigs.template.openshift.io                      []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  templateinstances.template.openshift.io                    []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  templates.template.openshift.io                            []                 []              [create delete 
deletecollection get list patch update watch get list watch]
  serviceaccounts                                            []                 []              [create delete 
deletecollection get list patch update watch impersonate create delete deletecollection patch 
update get list watch]
  imagestreams/secrets                                       []                 []              [create delete 
deletecollection get list patch update watch]
  rolebindings                                               []                 []              [create delete 
deletecollection get list patch update watch]
  roles                                                      []                 []              [create delete deletecollection 
get list patch update watch]
  rolebindings.authorization.openshift.io                    []                 []              [create delete 
deletecollection get list patch update watch]
  roles.authorization.openshift.io                           []                 []              [create delete 
deletecollection get list patch update watch]
  imagestreams.image.openshift.io/secrets                    []                 []              [create delete 
deletecollection get list patch update watch]
  rolebindings.rbac.authorization.k8s.io                     []                 []              [create delete 
deletecollection get list patch update watch]
  roles.rbac.authorization.k8s.io                            []                 []              [create delete 
deletecollection get list patch update watch]
  networkpolicies.extensions                                 []                 []              [create delete 
deletecollection patch update create delete deletecollection get list patch update watch get 
list watch]
  networkpolicies.networking.k8s.io                          []                 []              [create delete 
deletecollection patch update create delete deletecollection get list patch update watch get 
list watch]
  configmaps                                                 []                 []              [create delete 
deletecollection patch update get list watch]
  endpoints                                                  []                 []              [create delete 
deletecollection patch update get list watch]
  persistentvolumeclaims                                     []                 []              [create delete 
deletecollection patch update get list watch]
  pods                                                       []                 []              [create delete deletecollection 
patch update get list watch]
  replicationcontrollers/scale                               []                 []              [create delete 
deletecollection patch update get list watch]
  replicationcontrollers                                     []                 []              [create delete 
deletecollection patch update get list watch]
  services                                                   []                 []              [create delete deletecollection 
patch update get list watch]
  daemonsets.apps                                            []                 []              [create delete 
deletecollection patch update get list watch]
  deployments.apps/scale                                     []                 []              [create delete 
deletecollection patch update get list watch]
  deployments.apps                                           []                 []              [create delete 

OpenShift Container Platform 4.15 Postinstallation configuration

374



deletecollection patch update get list watch]
  replicasets.apps/scale                                     []                 []              [create delete 
deletecollection patch update get list watch]
  replicasets.apps                                           []                 []              [create delete 
deletecollection patch update get list watch]
  statefulsets.apps/scale                                    []                 []              [create delete 
deletecollection patch update get list watch]
  statefulsets.apps                                          []                 []              [create delete 
deletecollection patch update get list watch]
  horizontalpodautoscalers.autoscaling                       []                 []              [create delete 
deletecollection patch update get list watch]
  cronjobs.batch                                             []                 []              [create delete 
deletecollection patch update get list watch]
  jobs.batch                                                 []                 []              [create delete 
deletecollection patch update get list watch]
  daemonsets.extensions                                      []                 []              [create delete 
deletecollection patch update get list watch]
  deployments.extensions/scale                               []                 []              [create delete 
deletecollection patch update get list watch]
  deployments.extensions                                     []                 []              [create delete 
deletecollection patch update get list watch]
  ingresses.extensions                                       []                 []              [create delete 
deletecollection patch update get list watch]
  replicasets.extensions/scale                               []                 []              [create delete 
deletecollection patch update get list watch]
  replicasets.extensions                                     []                 []              [create delete 
deletecollection patch update get list watch]
  replicationcontrollers.extensions/scale                    []                 []              [create delete 
deletecollection patch update get list watch]
  poddisruptionbudgets.policy                                []                 []              [create delete 
deletecollection patch update get list watch]
  deployments.apps/rollback                                  []                 []              [create delete 
deletecollection patch update]
  deployments.extensions/rollback                            []                 []              [create delete 
deletecollection patch update]
  catalogsources.operators.coreos.com                        []                 []              [create update 
patch delete get list watch]
  clusterserviceversions.operators.coreos.com                []                 []              [create update 
patch delete get list watch]
  installplans.operators.coreos.com                          []                 []              [create update 
patch delete get list watch]
  packagemanifests.operators.coreos.com                      []                 []              [create update 
patch delete get list watch]
  subscriptions.operators.coreos.com                         []                 []              [create update 
patch delete get list watch]
  buildconfigs/instantiate                                   []                 []              [create]
  buildconfigs/instantiatebinary                             []                 []              [create]
  builds/clone                                               []                 []              [create]
  deploymentconfigrollbacks                                  []                 []              [create]
  deploymentconfigs/instantiate                              []                 []              [create]
  deploymentconfigs/rollback                                 []                 []              [create]
  imagestreamimports                                         []                 []              [create]
  localresourceaccessreviews                                 []                 []              [create]
  localsubjectaccessreviews                                  []                 []              [create]
  podsecuritypolicyreviews                                   []                 []              [create]
  podsecuritypolicyselfsubjectreviews                        []                 []              [create]

CHAPTER 12. PREPARING FOR USERS

375



  podsecuritypolicysubjectreviews                            []                 []              [create]
  resourceaccessreviews                                      []                 []              [create]
  routes/custom-host                                         []                 []              [create]
  subjectaccessreviews                                       []                 []              [create]
  subjectrulesreviews                                        []                 []              [create]
  deploymentconfigrollbacks.apps.openshift.io                []                 []              [create]
  deploymentconfigs.apps.openshift.io/instantiate            []                 []              [create]
  deploymentconfigs.apps.openshift.io/rollback               []                 []              [create]
  localsubjectaccessreviews.authorization.k8s.io             []                 []              [create]
  localresourceaccessreviews.authorization.openshift.io      []                 []              [create]
  localsubjectaccessreviews.authorization.openshift.io       []                 []              [create]
  resourceaccessreviews.authorization.openshift.io           []                 []              [create]
  subjectaccessreviews.authorization.openshift.io            []                 []              [create]
  subjectrulesreviews.authorization.openshift.io             []                 []              [create]
  buildconfigs.build.openshift.io/instantiate                []                 []              [create]
  buildconfigs.build.openshift.io/instantiatebinary          []                 []              [create]
  builds.build.openshift.io/clone                            []                 []              [create]
  imagestreamimports.image.openshift.io                      []                 []              [create]
  routes.route.openshift.io/custom-host                      []                 []              [create]
  podsecuritypolicyreviews.security.openshift.io             []                 []              [create]
  podsecuritypolicyselfsubjectreviews.security.openshift.io  []                 []              [create]
  podsecuritypolicysubjectreviews.security.openshift.io      []                 []              [create]
  jenkins.build.openshift.io                                 []                 []              [edit view view admin 
edit view]
  builds                                                     []                 []              [get create delete 
deletecollection get list patch update watch get list watch]
  builds.build.openshift.io                                  []                 []              [get create delete 
deletecollection get list patch update watch get list watch]
  projects                                                   []                 []              [get delete get delete get patch 
update]
  projects.project.openshift.io                              []                 []              [get delete get delete 
get patch update]
  namespaces                                                 []                 []              [get get list watch]
  pods/attach                                                []                 []              [get list watch create delete 
deletecollection patch update]
  pods/exec                                                  []                 []              [get list watch create delete 
deletecollection patch update]
  pods/portforward                                           []                 []              [get list watch create 
delete deletecollection patch update]
  pods/proxy                                                 []                 []              [get list watch create delete 
deletecollection patch update]
  services/proxy                                             []                 []              [get list watch create delete 
deletecollection patch update]
  routes/status                                              []                 []              [get list watch update]
  routes.route.openshift.io/status                           []                 []              [get list watch update]
  appliedclusterresourcequotas                               []                 []              [get list watch]
  bindings                                                   []                 []              [get list watch]
  builds/log                                                 []                 []              [get list watch]
  deploymentconfigs/log                                      []                 []              [get list watch]
  deploymentconfigs/status                                   []                 []              [get list watch]
  events                                                     []                 []              [get list watch]
  imagestreams/status                                        []                 []              [get list watch]
  limitranges                                                []                 []              [get list watch]
  namespaces/status                                          []                 []              [get list watch]
  pods/log                                                   []                 []              [get list watch]
  pods/status                                                []                 []              [get list watch]

OpenShift Container Platform 4.15 Postinstallation configuration

376



2. To view the current set of cluster role bindings, which shows the users and groups that are
bound to various roles:

Example output

  replicationcontrollers/status                              []                 []              [get list watch]
  resourcequotas/status                                      []                 []              [get list watch]
  resourcequotas                                             []                 []              [get list watch]
  resourcequotausages                                        []                 []              [get list watch]
  rolebindingrestrictions                                    []                 []              [get list watch]
  deploymentconfigs.apps.openshift.io/log                    []                 []              [get list watch]
  deploymentconfigs.apps.openshift.io/status                 []                 []              [get list watch]
  controllerrevisions.apps                                   []                 []              [get list watch]
  rolebindingrestrictions.authorization.openshift.io         []                 []              [get list watch]
  builds.build.openshift.io/log                              []                 []              [get list watch]
  imagestreams.image.openshift.io/status                     []                 []              [get list watch]
  appliedclusterresourcequotas.quota.openshift.io            []                 []              [get list watch]
  imagestreams/layers                                        []                 []              [get update get]
  imagestreams.image.openshift.io/layers                     []                 []              [get update get]
  builds/details                                             []                 []              [update]
  builds.build.openshift.io/details                          []                 []              [update]

Name:         basic-user
Labels:       <none>
Annotations:  openshift.io/description: A user that can get basic information about projects.
               rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
 Resources                                           Non-Resource URLs  Resource Names  Verbs
   ---------                                           -----------------  --------------  -----
   selfsubjectrulesreviews                             []                 []              [create]
   selfsubjectaccessreviews.authorization.k8s.io       []                 []              [create]
   selfsubjectrulesreviews.authorization.openshift.io  []                 []              [create]
   clusterroles.rbac.authorization.k8s.io              []                 []              [get list watch]
   clusterroles                                        []                 []              [get list]
   clusterroles.authorization.openshift.io             []                 []              [get list]
   storageclasses.storage.k8s.io                       []                 []              [get list]
   users                                               []                 [~]             [get]
   users.user.openshift.io                             []                 [~]             [get]
   projects                                            []                 []              [list watch]
   projects.project.openshift.io                       []                 []              [list watch]
   projectrequests                                     []                 []              [list]
   projectrequests.project.openshift.io                []                 []              [list]

Name:         cluster-admin
Labels:       kubernetes.io/bootstrapping=rbac-defaults
Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
Resources  Non-Resource URLs  Resource Names  Verbs
---------  -----------------  --------------  -----
*.*        []                 []              [*]
           [*]                []              [*]

...

$ oc describe clusterrolebinding.rbac

CHAPTER 12. PREPARING FOR USERS

377



Example output

Name:         alertmanager-main
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  alertmanager-main
Subjects:
  Kind            Name               Namespace
  ----            ----               ---------
  ServiceAccount  alertmanager-main  openshift-monitoring

Name:         basic-users
Labels:       <none>
Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
Role:
  Kind:  ClusterRole
  Name:  basic-user
Subjects:
  Kind   Name                  Namespace
  ----   ----                  ---------
  Group  system:authenticated

Name:         cloud-credential-operator-rolebinding
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  cloud-credential-operator-role
Subjects:
  Kind            Name     Namespace
  ----            ----     ---------
  ServiceAccount  default  openshift-cloud-credential-operator

Name:         cluster-admin
Labels:       kubernetes.io/bootstrapping=rbac-defaults
Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
Role:
  Kind:  ClusterRole
  Name:  cluster-admin
Subjects:
  Kind   Name            Namespace
  ----   ----            ---------
  Group  system:masters

Name:         cluster-admins
Labels:       <none>
Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
Role:
  Kind:  ClusterRole
  Name:  cluster-admin
Subjects:

OpenShift Container Platform 4.15 Postinstallation configuration

378



12.2.5. Viewing local roles and bindings

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the local roles and bindings:

Users with the cluster-admin default cluster role bound cluster-wide can perform any
action on any resource, including viewing local roles and bindings.

Users with the admin default cluster role bound locally can view and manage roles and
bindings in that project.

Procedure

1. To view the current set of local role bindings, which show the users and groups that are bound to
various roles for the current project:

2. To view the local role bindings for a different project, add the -n flag to the command:

Example output

  Kind   Name                   Namespace
  ----   ----                   ---------
  Group  system:cluster-admins
  User   system:admin

Name:         cluster-api-manager-rolebinding
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  cluster-api-manager-role
Subjects:
  Kind            Name     Namespace
  ----            ----     ---------
  ServiceAccount  default  openshift-machine-api

...

$ oc describe rolebinding.rbac

$ oc describe rolebinding.rbac -n joe-project

Name:         admin
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  admin

CHAPTER 12. PREPARING FOR USERS

379



12.2.6. Adding roles to users

You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

Subjects:
  Kind  Name        Namespace
  ----  ----        ---------
  User  kube:admin

Name:         system:deployers
Labels:       <none>
Annotations:  openshift.io/description:
                Allows deploymentconfigs in this namespace to rollout pods in
                this namespace.  It is auto-managed by a controller; remove
                subjects to disa...
Role:
  Kind:  ClusterRole
  Name:  system:deployer
Subjects:
  Kind            Name      Namespace
  ----            ----      ---------
  ServiceAccount  deployer  joe-project

Name:         system:image-builders
Labels:       <none>
Annotations:  openshift.io/description:
                Allows builds in this namespace to push images to this
                namespace.  It is auto-managed by a controller; remove subjects
                to disable.
Role:
  Kind:  ClusterRole
  Name:  system:image-builder
Subjects:
  Kind            Name     Namespace
  ----            ----     ---------
  ServiceAccount  builder  joe-project

Name:         system:image-pullers
Labels:       <none>
Annotations:  openshift.io/description:
                Allows all pods in this namespace to pull images from this
                namespace.  It is auto-managed by a controller; remove subjects
                to disable.
Role:
  Kind:  ClusterRole
  Name:  system:image-puller
Subjects:
  Kind   Name                                Namespace
  ----   ----                                ---------
  Group  system:serviceaccounts:joe-project

OpenShift Container Platform 4.15 Postinstallation configuration

380



You can bind any of the default cluster roles to local users or groups in your project.

Procedure

1. Add a role to a user in a specific project:

For example, you can add the admin role to the alice user in joe project by running:

TIP

You can alternatively apply the following YAML to add the role to the user:

2. View the local role bindings and verify the addition in the output:

For example, to view the local role bindings for the joe project:

Example output

$ oc adm policy add-role-to-user <role> <user> -n <project>

$ oc adm policy add-role-to-user admin alice -n joe

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: admin-0
  namespace: joe
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: alice

$ oc describe rolebinding.rbac -n <project>

$ oc describe rolebinding.rbac -n joe

Name:         admin
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  admin
Subjects:
  Kind  Name        Namespace
  ----  ----        ---------
  User  kube:admin

CHAPTER 12. PREPARING FOR USERS

381



Name:         admin-0
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  admin
Subjects:
  Kind  Name   Namespace
  ----  ----   ---------
  User  alice 1

Name:         system:deployers
Labels:       <none>
Annotations:  openshift.io/description:
                Allows deploymentconfigs in this namespace to rollout pods in
                this namespace.  It is auto-managed by a controller; remove
                subjects to disa...
Role:
  Kind:  ClusterRole
  Name:  system:deployer
Subjects:
  Kind            Name      Namespace
  ----            ----      ---------
  ServiceAccount  deployer  joe

Name:         system:image-builders
Labels:       <none>
Annotations:  openshift.io/description:
                Allows builds in this namespace to push images to this
                namespace.  It is auto-managed by a controller; remove subjects
                to disable.
Role:
  Kind:  ClusterRole
  Name:  system:image-builder
Subjects:
  Kind            Name     Namespace
  ----            ----     ---------
  ServiceAccount  builder  joe

Name:         system:image-pullers
Labels:       <none>
Annotations:  openshift.io/description:
                Allows all pods in this namespace to pull images from this
                namespace.  It is auto-managed by a controller; remove subjects
                to disable.
Role:
  Kind:  ClusterRole
  Name:  system:image-puller
Subjects:
  Kind   Name                                Namespace
  ----   ----                                ---------
  Group  system:serviceaccounts:joe

OpenShift Container Platform 4.15 Postinstallation configuration

382



1 The alice user has been added to the admins RoleBinding.

12.2.7. Creating a local role

You can create a local role for a project and then bind it to a user.

Procedure

1. To create a local role for a project, run the following command:

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

<project>, the project name

For example, to create a local role that allows a user to view pods in the blue project, run the
following command:

2. To bind the new role to a user, run the following command:

12.2.8. Creating a cluster role

You can create a cluster role.

Procedure

1. To create a cluster role, run the following command:

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

For example, to create a cluster role that allows a user to view pods, run the following command:

$ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

$ oc create role podview --verb=get --resource=pod -n blue

$ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

$ oc create clusterrole <name> --verb=<verb> --resource=<resource>

$ oc create clusterrole podviewonly --verb=get --resource=pod

CHAPTER 12. PREPARING FOR USERS

383



12.2.9. Local role binding commands

When you manage a user or group’s associated roles for local role bindings using the following
operations, a project may be specified with the -n flag. If it is not specified, then the current project is
used.

You can use the following commands for local RBAC management.

Table 12.1. Local role binding operations

Command Description

$ oc adm policy who-can <verb> <resource> Indicates which users can perform an action on a
resource.

$ oc adm policy add-role-to-user <role> 
<username>

Binds a specified role to specified users in the
current project.

$ oc adm policy remove-role-from-user 
<role> <username>

Removes a given role from specified users in the
current project.

$ oc adm policy remove-user <username> Removes specified users and all of their roles in the
current project.

$ oc adm policy add-role-to-group <role> 
<groupname>

Binds a given role to specified groups in the current
project.

$ oc adm policy remove-role-from-group 
<role> <groupname>

Removes a given role from specified groups in the
current project.

$ oc adm policy remove-group <groupname> Removes specified groups and all of their roles in the
current project.

12.2.10. Cluster role binding commands

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings use non-namespaced resources.

Table 12.2. Cluster role binding operations

Command Description

$ oc adm policy add-cluster-role-to-user 
<role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oc adm policy remove-cluster-role-from-
user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oc adm policy add-cluster-role-to-group 
<role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

OpenShift Container Platform 4.15 Postinstallation configuration

384



$ oc adm policy remove-cluster-role-from-
group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

Command Description

12.2.11. Creating a cluster admin

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container
Platform cluster, such as modifying cluster resources.

Prerequisites

You must have created a user to define as the cluster admin.

Procedure

Define the user as a cluster admin:

12.3. THE KUBEADMIN USER

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process
completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster.
The password is dynamically generated and unique to your OpenShift Container Platform environment.
After installation completes the password is provided in the installation program’s output. For example:

12.3.1. Removing the kubeadmin user

After you define an identity provider and create a new cluster-admin user, you can remove the 
kubeadmin to improve cluster security.

WARNING

If you follow this procedure before another user is a cluster-admin, then OpenShift
Container Platform must be reinstalled. It is not possible to undo this command.

$ oc adm policy add-cluster-role-to-user cluster-admin <user>

INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster 
with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.demo1.openshift4-beta-abcorp.com
INFO Login to the console with user: kubeadmin, password: <provided>



CHAPTER 12. PREPARING FOR USERS

385



Prerequisites

You must have configured at least one identity provider.

You must have added the cluster-admin role to a user.

You must be logged in as an administrator.

Procedure

Remove the kubeadmin secrets:

12.4. IMAGE CONFIGURATION

Understand and configure image registry settings.

12.4.1. Image controller configuration parameters

The image.config.openshift.io/cluster resource holds cluster-wide information about how to handle
images. The canonical, and only valid name is cluster. Its spec offers the following configuration
parameters.

NOTE

Parameters such as DisableScheduledImport, 
MaxImagesBulkImportedPerRepository, MaxScheduledImportsPerMinute, 
ScheduledImageImportMinimumIntervalSeconds, InternalRegistryHostname are not
configurable.

Parameter Description

allowedRegistriesForI
mport

Limits the container image registries from which normal users can import
images. Set this list to the registries that you trust to contain valid images, and
that you want applications to be able to import from. Users with permission to
create images or ImageStreamMappings from the API are not affected by
this policy. Typically only cluster administrators have the appropriate
permissions.

Every element of this list contains a location of the registry specified by the
registry domain name.

domainName: Specifies a domain name for the registry. If the registry uses a
non-standard 80 or 443 port, the port should be included in the domain name
as well.

insecure: Insecure indicates whether the registry is secure or insecure. By
default, if not otherwise specified, the registry is assumed to be secure.

$ oc delete secrets kubeadmin -n kube-system

OpenShift Container Platform 4.15 Postinstallation configuration

386



additionalTrustedCA A reference to a config map containing additional CAs that should be trusted
during image stream import, pod image pull, openshift-image-registry 
pullthrough, and builds.

The namespace for this config map is openshift-config. The format of the
config map is to use the registry hostname as the key, and the PEM-encoded
certificate as the value, for each additional registry CA to trust.

externalRegistryHostn
ames

Provides the hostnames for the default external image registry. The external
hostname should be set only when the image registry is exposed externally. The
first value is used in publicDockerImageRepository field in image streams.
The value must be in hostname[:port] format.

registrySources Contains configuration that determines how the container runtime should treat
individual registries when accessing images for builds and pods. For instance,
whether or not to allow insecure access. It does not contain configuration for
the internal cluster registry.

insecureRegistries: Registries which do not have a valid TLS certificate or
only support HTTP connections. To specify all subdomains, add the asterisk (*)
wildcard character as a prefix to the domain name. For example, 
*.example.com. You can specify an individual repository within a registry. For
example: reg1.io/myrepo/myapp:latest.

blockedRegistries: Registries for which image pull and push actions are
denied. To specify all subdomains, add the asterisk (*) wildcard character as a
prefix to the domain name. For example, *.example.com. You can specify an
individual repository within a registry. For example: 
reg1.io/myrepo/myapp:latest. All other registries are allowed.

allowedRegistries: Registries for which image pull and push actions are
allowed. To specify all subdomains, add the asterisk (*) wildcard character as a
prefix to the domain name. For example, *.example.com. You can specify an
individual repository within a registry. For example: 
reg1.io/myrepo/myapp:latest. All other registries are blocked.

containerRuntimeSearchRegistries: Registries for which image pull and
push actions are allowed using image short names. All other registries are
blocked.

Either blockedRegistries or allowedRegistries can be set, but not both.

Parameter Description

CHAPTER 12. PREPARING FOR USERS

387



WARNING

When the allowedRegistries parameter is defined, all registries, including 
registry.redhat.io and quay.io registries and the default OpenShift image registry,
are blocked unless explicitly listed. When using the parameter, to prevent pod
failure, add all registries including the registry.redhat.io and quay.io registries and
the internalRegistryHostname to the allowedRegistries list, as they are required
by payload images within your environment. For disconnected clusters, mirror
registries should also be added.

The status field of the image.config.openshift.io/cluster resource holds observed values from the
cluster.

Parameter Description

internalRegistryHostna
me

Set by the Image Registry Operator, which controls the 
internalRegistryHostname. It sets the hostname for the default OpenShift
image registry. The value must be in hostname[:port] format. For backward
compatibility, you can still use the OPENSHIFT_DEFAULT_REGISTRY
environment variable, but this setting overrides the environment variable.

externalRegistryHostn
ames

Set by the Image Registry Operator, provides the external hostnames for the
image registry when it is exposed externally. The first value is used in 
publicDockerImageRepository field in image streams. The values must be
in hostname[:port] format.

12.4.2. Configuring image registry settings

You can configure image registry settings by editing the image.config.openshift.io/cluster custom
resource (CR). When changes to the registry are applied to the image.config.openshift.io/cluster CR,
the Machine Config Operator (MCO) performs the following sequential actions:

1. Cordons the node

2. Applies changes by restarting CRI-O

3. Uncordons the node

NOTE

The MCO does not restart nodes when it detects changes.

Procedure

1. Edit the image.config.openshift.io/cluster custom resource:



$ oc edit image.config.openshift.io/cluster

OpenShift Container Platform 4.15 Postinstallation configuration

388



1

2

3

4

The following is an example image.config.openshift.io/cluster CR:

Image: Holds cluster-wide information about how to handle images. The canonical, and
only valid name is cluster.

allowedRegistriesForImport: Limits the container image registries from which normal
users may import images. Set this list to the registries that you trust to contain valid
images, and that you want applications to be able to import from. Users with permission to
create images or ImageStreamMappings from the API are not affected by this policy.
Typically only cluster administrators have the appropriate permissions.

additionalTrustedCA: A reference to a config map containing additional certificate
authorities (CA) that are trusted during image stream import, pod image pull, openshift-
image-registry pullthrough, and builds. The namespace for this config map is openshift-
config. The format of the config map is to use the registry hostname as the key, and the
PEM certificate as the value, for each additional registry CA to trust.

registrySources: Contains configuration that determines whether the container runtime
allows or blocks individual registries when accessing images for builds and pods. Either the 
allowedRegistries parameter or the blockedRegistries parameter can be set, but not
both. You can also define whether or not to allow access to insecure registries or registries
that allow registries that use image short names. This example uses the allowedRegistries
parameter, which defines the registries that are allowed to be used. The insecure registry 
insecure.com is also allowed. The registrySources parameter does not contain
configuration for the internal cluster registry.

apiVersion: config.openshift.io/v1
kind: Image 1
metadata:
  annotations:
    release.openshift.io/create-only: "true"
  creationTimestamp: "2019-05-17T13:44:26Z"
  generation: 1
  name: cluster
  resourceVersion: "8302"
  selfLink: /apis/config.openshift.io/v1/images/cluster
  uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
  allowedRegistriesForImport: 2
    - domainName: quay.io
      insecure: false
  additionalTrustedCA: 3
    name: myconfigmap
  registrySources: 4
    allowedRegistries:
    - example.com
    - quay.io
    - registry.redhat.io
    - image-registry.openshift-image-registry.svc:5000
    - reg1.io/myrepo/myapp:latest
    insecureRegistries:
    - insecure.com
status:
  internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

CHAPTER 12. PREPARING FOR USERS

389



NOTE

When the allowedRegistries parameter is defined, all registries, including the
registry.redhat.io and quay.io registries and the default OpenShift image registry,
are blocked unless explicitly listed. If you use the parameter, to prevent pod
failure, you must add the registry.redhat.io and quay.io registries and the 
internalRegistryHostname to the allowedRegistries list, as they are required by
payload images within your environment. Do not add the registry.redhat.io and 
quay.io registries to the blockedRegistries list.

When using the allowedRegistries, blockedRegistries, or insecureRegistries
parameter, you can specify an individual repository within a registry. For example:
reg1.io/myrepo/myapp:latest.

Insecure external registries should be avoided to reduce possible security risks.

2. To check that the changes are applied, list your nodes:

Example output

For more information on the allowed, blocked, and insecure registry parameters, see Configuring image
registry settings.

12.4.3. Configuring additional trust stores for image registry access

The image.config.openshift.io/cluster custom resource can contain a reference to a config map that
contains additional certificate authorities to be trusted during image registry access.

Prerequisites

The certificate authorities (CA) must be PEM-encoded.

Procedure

You can create a config map in the openshift-config namespace and use its name in 
AdditionalTrustedCA in the image.config.openshift.io custom resource to provide additional CAs
that should be trusted when contacting external registries.

The config map key is the hostname of a registry with the port for which this CA is to be trusted, and the

$ oc get nodes

NAME                                         STATUS                     ROLES                  AGE   VERSION
ip-10-0-137-182.us-east-2.compute.internal   Ready,SchedulingDisabled   worker                 
65m   v1.28.5
ip-10-0-139-120.us-east-2.compute.internal   Ready,SchedulingDisabled   control-plane          
74m   v1.28.5
ip-10-0-176-102.us-east-2.compute.internal   Ready                      control-plane          75m   
v1.28.5
ip-10-0-188-96.us-east-2.compute.internal    Ready                      worker                 65m   
v1.28.5
ip-10-0-200-59.us-east-2.compute.internal    Ready                      worker                 63m   
v1.28.5
ip-10-0-223-123.us-east-2.compute.internal   Ready                      control-plane          73m   
v1.28.5

OpenShift Container Platform 4.15 Postinstallation configuration

390

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/#images-configuration-file_image-configuration


1

The config map key is the hostname of a registry with the port for which this CA is to be trusted, and the
PEM certificate content is the value, for each additional registry CA to trust.

Image registry CA config map example

If the registry has the port, such as registry-with-port.example.com:5000, : should be replaced
with ...

You can configure additional CAs with the following procedure.

To configure an additional CA:

12.5. UNDERSTANDING IMAGE REGISTRY REPOSITORY MIRRORING

Setting up container registry repository mirroring enables you to perform the following tasks:

Configure your OpenShift Container Platform cluster to redirect requests to pull images from a
repository on a source image registry and have it resolved by a repository on a mirrored image
registry.

Identify multiple mirrored repositories for each target repository, to make sure that if one mirror
is down, another can be used.

Repository mirroring in OpenShift Container Platform includes the following attributes:

Image pulls are resilient to registry downtimes.

Clusters in disconnected environments can pull images from critical locations, such as quay.io,
and have registries behind a company firewall provide the requested images.

A particular order of registries is tried when an image pull request is made, with the permanent

apiVersion: v1
kind: ConfigMap
metadata:
  name: my-registry-ca
data:
  registry.example.com: |
    -----BEGIN CERTIFICATE-----
    ...
    -----END CERTIFICATE-----
  registry-with-port.example.com..5000: | 1
    -----BEGIN CERTIFICATE-----
    ...
    -----END CERTIFICATE-----

$ oc create configmap registry-config --from-file=<external_registry_address>=ca.crt -n 
openshift-config

$ oc edit image.config.openshift.io cluster

spec:
  additionalTrustedCA:
    name: registry-config

CHAPTER 12. PREPARING FOR USERS

391



A particular order of registries is tried when an image pull request is made, with the permanent
registry typically being the last one tried.

The mirror information you enter is added to the /etc/containers/registries.conf file on every
node in the OpenShift Container Platform cluster.

When a node makes a request for an image from the source repository, it tries each mirrored
repository in turn until it finds the requested content. If all mirrors fail, the cluster tries the
source repository. If successful, the image is pulled to the node.

Setting up repository mirroring can be done in the following ways:

At OpenShift Container Platform installation:
By pulling container images needed by OpenShift Container Platform and then bringing those
images behind your company’s firewall, you can install OpenShift Container Platform into a
datacenter that is in a disconnected environment.

After OpenShift Container Platform installation:
If you did not configure mirroring during OpenShift Container Platform installation, you can do
so postinstallation by using any of the following custom resource (CR) objects:

ImageDigestMirrorSet (IDMS). This object allows you to pull images from a mirrored
registry by using digest specifications. The IDMS CR enables you to set a fall back policy
that allows or stops continued attempts to pull from the source registry if the image pull
fails.

ImageTagMirrorSet (ITMS). This object allows you to pull images from a mirrored registry
by using image tags. The ITMS CR enables you to set a fall back policy that allows or stops
continued attempts to pull from the source registry if the image pull fails.

ImageContentSourcePolicy (ICSP). This object allows you to pull images from a mirrored
registry by using digest specifications. The ICSP CR always falls back to the source registry
if the mirrors do not work.

IMPORTANT

Using an ImageContentSourcePolicy (ICSP) object to configure repository
mirroring is a deprecated feature. Deprecated functionality is still included in
OpenShift Container Platform and continues to be supported; however, it will be
removed in a future release of this product and is not recommended for new
deployments. If you have existing YAML files that you used to create 
ImageContentSourcePolicy objects, you can use the oc adm migrate icsp
command to convert those files to an ImageDigestMirrorSet YAML file. For
more information, see "Converting ImageContentSourcePolicy (ICSP) files for
image registry repository mirroring" in the following section.

Each of these custom resource objects identify the following information:

The source of the container image repository you want to mirror.

A separate entry for each mirror repository you want to offer the content requested from the
source repository.

For new clusters, you can use IDMS, ITMS, and ICSP CRs objects as desired. However, using IDMS and
ITMS is recommended.

OpenShift Container Platform 4.15 Postinstallation configuration

392



If you upgraded a cluster, any existing ICSP objects remain stable, and both IDMS and ICSP objects are
supported. Workloads using ICSP objects continue to function as expected. However, if you want to take
advantage of the fallback policies introduced in the IDMS CRs, you can migrate current workloads to
IDMS objects by using the oc adm migrate icsp command as shown in the Converting
ImageContentSourcePolicy (ICSP) files for image registry repository mirroring section that follows.
Migrating to IDMS objects does not require a cluster reboot.

NOTE

If your cluster uses an ImageDigestMirrorSet, ImageTagMirrorSet, or 
ImageContentSourcePolicy object to configure repository mirroring, you can use only
global pull secrets for mirrored registries. You cannot add a pull secret to a project.

12.5.1. Configuring image registry repository mirroring

You can create postinstallation mirror configuration custom resources (CR) to redirect image pull
requests from a source image registry to a mirrored image registry.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Configure mirrored repositories, by either:

Setting up a mirrored repository with Red Hat Quay, as described in Red Hat Quay
Repository Mirroring. Using Red Hat Quay allows you to copy images from one repository to
another and also automatically sync those repositories repeatedly over time.

Using a tool such as skopeo to copy images manually from the source repository to the
mirrored repository.
For example, after installing the skopeo RPM package on a Red Hat Enterprise Linux
(RHEL) 7 or RHEL 8 system, use the skopeo command as shown in this example:

In this example, you have a container image registry that is named example.io with an
image repository named example to which you want to copy the ubi9/ubi-minimal image
from registry.access.redhat.com. After you create the mirrored registry, you can configure
your OpenShift Container Platform cluster to redirect requests made of the source
repository to the mirrored repository.

2. Log in to your OpenShift Container Platform cluster.

3. Create a postinstallation mirror configuration CR, by using one of the following examples:

Create an ImageDigestMirrorSet or ImageTagMirrorSet CR, as needed, replacing the
source and mirrors with your own registry and repository pairs and images:

$ skopeo copy \
docker://registry.access.redhat.com/ubi9/ubi-minimal:latest@sha256:5cf... \
docker://example.io/example/ubi-minimal

apiVersion: config.openshift.io/v1 1
kind: ImageDigestMirrorSet 2
metadata:

CHAPTER 12. PREPARING FOR USERS

393

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/repo-mirroring-in-red-hat-quay


1

2

3

4

5

6

7

Indicates the API to use with this CR. This must be config.openshift.io/v1.

Indicates the kind of object according to the pull type:

ImageDigestMirrorSet: Pulls a digest reference image.

ImageTagMirrorSet: Pulls a tag reference image.

Indicates the type of image pull method, either:

imageDigestMirrors: Use for an ImageDigestMirrorSet CR.

imageTagMirrors: Use for an ImageTagMirrorSet CR.

Indicates the name of the mirrored image registry and repository.

Optional: Indicates a secondary mirror repository for each target repository. If one
mirror is down, the target repository can use another mirror.

Indicates the registry and repository source, which is the repository that is referred to
in image pull specifications.

Optional: Indicates the fallback policy if the image pull fails:

AllowContactingSource: Allows continued attempts to pull the image from the
source repository. This is the default.

NeverContactSource: Prevents continued attempts to pull the image from the

  name: ubi9repo
spec:
  imageDigestMirrors: 3
  - mirrors:
    - example.io/example/ubi-minimal 4
    - example.com/example/ubi-minimal 5
    source: registry.access.redhat.com/ubi9/ubi-minimal 6
    mirrorSourcePolicy: AllowContactingSource 7
  - mirrors:
    - mirror.example.com/redhat
    source: registry.redhat.io/openshift4 8
    mirrorSourcePolicy: AllowContactingSource
  - mirrors:
    - mirror.example.com
    source: registry.redhat.io 9
    mirrorSourcePolicy: AllowContactingSource
  - mirrors:
    - mirror.example.net/image
    source: registry.example.com/example/myimage 10
    mirrorSourcePolicy: AllowContactingSource
  - mirrors:
    - mirror.example.net
    source: registry.example.com/example 11
    mirrorSourcePolicy: AllowContactingSource
  - mirrors:
    - mirror.example.net/registry-example-com
    source: registry.example.com 12
    mirrorSourcePolicy: AllowContactingSource

OpenShift Container Platform 4.15 Postinstallation configuration

394



8

9

10

11

12

1

2

NeverContactSource: Prevents continued attempts to pull the image from the
source repository.

Optional: Indicates a namespace inside a registry, which allows you to use any image in
that namespace. If you use a registry domain as a source, the object is applied to all
repositories from the registry.

Optional: Indicates a registry, which allows you to use any image in that registry. If you
specify a registry name, the object is applied to all repositories from a source registry
to a mirror registry.

Pulls the image registry.example.com/example/myimage@sha256:… ​ from the
mirror mirror.example.net/image@sha256:...

Pulls the image registry.example.com/example/image@sha256:… ​ in the source
registry namespace from the mirror mirror.example.net/image@sha256:… ​.

Pulls the image registry.example.com/myimage@sha256 from the mirror registry 
example.net/registry-example-com/myimage@sha256:… ​.

Create an ImageContentSourcePolicy custom resource, replacing the source and mirrors
with your own registry and repository pairs and images:

Specifies the name of the mirror image registry and repository.

Specifies the online registry and repository containing the content that is mirrored.

4. Create the new object:

After the object is created, the Machine Config Operator (MCO) drains the nodes for 
ImageTagMirrorSet objects only. The MCO does not drain the nodes for 
ImageDigestMirrorSet and ImageContentSourcePolicy objects.

5. To check that the mirrored configuration settings are applied, do the following on one of the
nodes.

a. List your nodes:

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  name: mirror-ocp
spec:
  repositoryDigestMirrors:
  - mirrors:
    - mirror.registry.com:443/ocp/release 1
    source: quay.io/openshift-release-dev/ocp-release 2
  - mirrors:
    - mirror.registry.com:443/ocp/release
    source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

$ oc create -f registryrepomirror.yaml

$ oc get node

CHAPTER 12. PREPARING FOR USERS

395



Example output

b. Start the debugging process to access the node:

Example output

c. Change your root directory to /host:

d. Check the /etc/containers/registries.conf file to make sure the changes were made:

The following output represents a registries.conf file where postinstallation mirror
configuration CRs were applied. The final two entries are marked digest-only and tag-only
respectively.

Example output

NAME                           STATUS                     ROLES    AGE  VERSION
ip-10-0-137-44.ec2.internal    Ready                      worker   7m   v1.28.5
ip-10-0-138-148.ec2.internal   Ready                      master   11m  v1.28.5
ip-10-0-139-122.ec2.internal   Ready                      master   11m  v1.28.5
ip-10-0-147-35.ec2.internal    Ready                      worker   7m   v1.28.5
ip-10-0-153-12.ec2.internal    Ready                      worker   7m   v1.28.5
ip-10-0-154-10.ec2.internal    Ready                      master   11m  v1.28.5

$ oc debug node/ip-10-0-147-35.ec2.internal

Starting pod/ip-10-0-147-35ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# chroot /host

sh-4.2# cat /etc/containers/registries.conf

unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]
short-name-mode = ""

[[registry]]
  prefix = ""
  location = "registry.access.redhat.com/ubi9/ubi-minimal" 1

  [[registry.mirror]]
    location = "example.io/example/ubi-minimal" 2
    pull-from-mirror = "digest-only" 3

  [[registry.mirror]]
    location = "example.com/example/ubi-minimal"
    pull-from-mirror = "digest-only"

[[registry]]
  prefix = ""
  location = "registry.example.com"

  [[registry.mirror]]

OpenShift Container Platform 4.15 Postinstallation configuration

396



1

2

3

4

5

Indicates the repository that is referred to in a pull spec.

Indicates the mirror for that repository.

Indicates that the image pull from the mirror is a digest reference image.

Indicates that the NeverContactSource parameter is set for this repository.

Indicates that the image pull from the mirror is a tag reference image.

e. Pull an image to the node from the source and check if it is resolved by the mirror.

    location = "mirror.example.net/registry-example-com"
    pull-from-mirror = "digest-only"

[[registry]]
  prefix = ""
  location = "registry.example.com/example"

  [[registry.mirror]]
    location = "mirror.example.net"
    pull-from-mirror = "digest-only"

[[registry]]
  prefix = ""
  location = "registry.example.com/example/myimage"

  [[registry.mirror]]
    location = "mirror.example.net/image"
    pull-from-mirror = "digest-only"

[[registry]]
  prefix = ""
  location = "registry.redhat.io"

  [[registry.mirror]]
    location = "mirror.example.com"
    pull-from-mirror = "digest-only"

[[registry]]
  prefix = ""
  location = "registry.redhat.io/openshift4"

  [[registry.mirror]]
    location = "mirror.example.com/redhat"
    pull-from-mirror = "digest-only"
[[registry]]
  prefix = ""
  location = "registry.access.redhat.com/ubi9/ubi-minimal"
  blocked = true 4

  [[registry.mirror]]
    location = "example.io/example/ubi-minimal-tag"
    pull-from-mirror = "tag-only" 5

CHAPTER 12. PREPARING FOR USERS

397



Troubleshooting repository mirroring

If the repository mirroring procedure does not work as described, use the following information about
how repository mirroring works to help troubleshoot the problem.

The first working mirror is used to supply the pulled image.

The main registry is only used if no other mirror works.

From the system context, the Insecure flags are used as fallback.

The format of the /etc/containers/registries.conf file has changed recently. It is now version 2
and in TOML format.

12.5.2. Converting ImageContentSourcePolicy (ICSP) files for image registry
repository mirroring

Using an ImageContentSourcePolicy (ICSP) object to configure repository mirroring is a deprecated
feature. This functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for
new deployments.

ICSP objects are being replaced by ImageDigestMirrorSet and ImageTagMirrorSet objects to
configure repository mirroring. If you have existing YAML files that you used to create 
ImageContentSourcePolicy objects, you can use the oc adm migrate icsp command to convert those
files to an ImageDigestMirrorSet YAML file. The command updates the API to the current version,
changes the kind value to ImageDigestMirrorSet, and changes spec.repositoryDigestMirrors to 
spec.imageDigestMirrors. The rest of the file is not changed.

Because the migration does not change the registries.conf file, the cluster does not need to reboot.

For more information about ImageDigestMirrorSet or ImageTagMirrorSet objects, see "Configuring
image registry repository mirroring" in the previous section.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Ensure that you have ImageContentSourcePolicy objects on your cluster.

Procedure

1. Use the following command to convert one or more ImageContentSourcePolicy YAML files to
an ImageDigestMirrorSet YAML file:

where:

<file_name>

Specifies the name of the source ImageContentSourcePolicy YAML. You can list multiple

sh-4.2# podman pull --log-level=debug registry.access.redhat.com/ubi9/ubi-
minimal@sha256:5cf...

$ oc adm migrate icsp <file_name>.yaml <file_name>.yaml <file_name>.yaml --dest-dir 
<path_to_the_directory>

OpenShift Container Platform 4.15 Postinstallation configuration

398



Specifies the name of the source ImageContentSourcePolicy YAML. You can list multiple
file names.

--dest-dir

Optional: Specifies a directory for the output ImageDigestMirrorSet YAML. If unset, the file
is written to the current directory.

For example, the following command converts the icsp.yaml and icsp-2.yaml file and saves the
new YAML files to the idms-files directory.

Example output

2. Create the CR object by running the following command:

where:

<path_to_the_directory>

Specifies the path to the directory, if you used the --dest-dir flag.

<file_name>

Specifies the name of the ImageDigestMirrorSet YAML.

3. Remove the ICSP objects after the IDMS objects are rolled out.

12.6. POPULATING OPERATORHUB FROM MIRRORED OPERATOR
CATALOGS

If you mirrored Operator catalogs for use with disconnected clusters, you can populate OperatorHub
with the Operators from your mirrored catalogs. You can use the generated manifests from the
mirroring process to create the required ImageContentSourcePolicy and CatalogSource objects.

12.6.1. Prerequisites

Mirroring Operator catalogs for use with disconnected clusters

12.6.2. Creating the ImageContentSourcePolicy object

After mirroring Operator catalog content to your mirror registry, create the required 
ImageContentSourcePolicy (ICSP) object. The ICSP object configures nodes to translate between the
image references stored in Operator manifests and the mirrored registry.

Procedure

On a host with access to the disconnected cluster, create the ICSP by running the following

$ oc adm migrate icsp icsp.yaml icsp-2.yaml --dest-dir idms-files

wrote ImageDigestMirrorSet to idms-
files/imagedigestmirrorset_ubi8repo.5911620242173376087.yaml
wrote ImageDigestMirrorSet to idms-
files/imagedigestmirrorset_ubi9repo.6456931852378115011.yaml

$ oc create -f <path_to_the_directory>/<file-name>.yaml

CHAPTER 12. PREPARING FOR USERS

399

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#olm-mirror-catalog_installing-mirroring-installation-images


On a host with access to the disconnected cluster, create the ICSP by running the following
command to specify the imageContentSourcePolicy.yaml file in your manifests directory:

where <path/to/manifests/dir> is the path to the manifests directory for your mirrored content.

You can now create a CatalogSource object to reference your mirrored index image and
Operator content.

12.6.3. Adding a catalog source to a cluster

Adding a catalog source to an OpenShift Container Platform cluster enables the discovery and
installation of Operators for users. Cluster administrators can create a CatalogSource object that
references an index image. OperatorHub uses catalog sources to populate the user interface.

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

Prerequisites

You built and pushed an index image to a registry.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a CatalogSource object that references your index image. If you used the oc adm 
catalog mirror command to mirror your catalog to a target registry, you can use the generated 
catalogSource.yaml file in your manifests directory as a starting point.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

If you mirrored content to local files before uploading to a registry, remove any

$ oc create -f <path/to/manifests/dir>/imageContentSourcePolicy.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: my-operator-catalog 1
  namespace: openshift-marketplace 2
spec:
  sourceType: grpc
  grpcPodConfig:
    securityContextConfig: <security_mode> 3
  image: <registry>/<namespace>/redhat-operator-index:v4.15 4
  displayName: My Operator Catalog
  publisher: <publisher_name> 5
  updateStrategy:
    registryPoll: 6
      interval: 30m

OpenShift Container Platform 4.15 Postinstallation configuration

400



1

2

3

4

5

6

If you mirrored content to local files before uploading to a registry, remove any
backslash (/) characters from the metadata.name field to avoid an "invalid resource
name" error when you create the object.

If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Specify the value of legacy or restricted. If the field is not set, the default value is 
legacy. In a future OpenShift Container Platform release, it is planned that the default
value will be restricted. If your catalog cannot run with restricted permissions, it is
recommended that you manually set this field to legacy.

Specify your index image. If you specify a tag after the image name, for example 
:v4.15, the catalog source pod uses an image pull policy of Always, meaning the pod
always pulls the image prior to starting the container. If you specify a digest, for
example @sha256:<id>, the image pull policy is IfNotPresent, meaning the pod pulls
the image only if it does not already exist on the node.

Specify your name or an organization name publishing the catalog.

Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:

2. Verify the following resources are created successfully.

a. Check the pods:

Example output

b. Check the catalog source:

Example output

c. Check the package manifest:

Example output

$ oc apply -f catalogSource.yaml

$ oc get pods -n openshift-marketplace

NAME                                    READY   STATUS    RESTARTS  AGE
my-operator-catalog-6njx6               1/1     Running   0         28s
marketplace-operator-d9f549946-96sgr    1/1     Running   0         26h

$ oc get catalogsource -n openshift-marketplace

NAME                  DISPLAY               TYPE PUBLISHER  AGE
my-operator-catalog   My Operator Catalog   grpc            5s

$ oc get packagemanifest -n openshift-marketplace

CHAPTER 12. PREPARING FOR USERS

401



You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

Accessing images for Operators from private registries

Image template for custom catalog sources

Image pull policy

12.7. ABOUT OPERATOR INSTALLATION WITH OPERATORHUB

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a cluster administrator, you can install an Operator from OperatorHub by using the OpenShift
Container Platform web console or CLI. Subscribing an Operator to one or more namespaces makes the
Operator available to developers on your cluster.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose All namespaces on the cluster (default) to have the Operator installed on all namespaces
or choose individual namespaces, if available, to only install the Operator on selected namespaces.
This example chooses All namespaces…​ to make the Operator available to all users and projects.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.
If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

12.7.1. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub by using the OpenShift Container
Platform web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

NAME                          CATALOG               AGE
jaeger-product                My Operator Catalog   93s

OpenShift Container Platform 4.15 Postinstallation configuration

402

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-catalogsource-image-template_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/#image-pull-policy


Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type jaeger to find the Jaeger Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Select one of the following:

All namespaces on the cluster (default) installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster allows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

b. For clusters on cloud providers with token authentication enabled:

If the cluster is in AWS STS mode, enter the Amazon Resource Name (ARN) of the
AWS IAM role of your service account in the role ARN field.

To create the role’s ARN, follow the procedure described in Preparing AWS account .

If the cluster is in Azure AD Workload Identity mode, add the client ID, tenant ID, and
subscription ID in the appropriate field.

c. If more than one update channel is available, select an Update channel.

d. Select Automatic or Manual approval strategy, as described earlier.

IMPORTANT

CHAPTER 12. PREPARING FOR USERS

403

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection


IMPORTANT

If the web console shows that the cluster is in AWS STS or Azure AD
Workload Identity mode, you must set Update approval to Manual.

Subscriptions with automatic update approvals are not recommended
because there might be permission changes to make prior to updating.
Subscriptions with manual update approvals ensure that administrators have
the opportunity to verify the permissions of the later version and take any
necessary steps prior to update.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces…​ installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

12.7.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub by using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

$ oc get packagemanifests -n openshift-marketplace

OpenShift Container Platform 4.15 Postinstallation configuration

404



Example output

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required RBAC access for all Operators in the same namespace as the Operator
group.
The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AllNamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AllNamespaces, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

NOTE

The web console version of this procedure handles the creation of the 
OperatorGroup and Subscription objects automatically behind the scenes for
you when choosing SingleNamespace mode.

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

b. Create the OperatorGroup object:

NAME                               CATALOG               AGE
3scale-operator                    Red Hat Operators     91m
advanced-cluster-management        Red Hat Operators     91m
amq7-cert-manager                  Red Hat Operators     91m
...
couchbase-enterprise-certified     Certified Operators   91m
crunchy-postgres-operator          Certified Operators   91m
mongodb-enterprise                 Certified Operators   91m
...
etcd                               Community Operators   91m
jaeger                             Community Operators   91m
kubefed                            Community Operators   91m
...

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: <operatorgroup_name>
  namespace: <namespace>
spec:
  targetNamespaces:
  - <namespace>

CHAPTER 12. PREPARING FOR USERS

405



1

2

3

4

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example 
sub.yaml:

Example Subscription object

For default AllNamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have created
one. Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

$ oc apply -f operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: <subscription_name>
  namespace: openshift-operators 1
spec:
  channel: <channel_name> 2
  name: <operator_name> 3
  source: redhat-operators 4
  sourceNamespace: openshift-marketplace 5
  config:
    env: 6
    - name: ARGS
      value: "-v=10"
    envFrom: 7
    - secretRef:
        name: license-secret
    volumes: 8
    - name: <volume_name>
      configMap:
        name: <configmap_name>
    volumeMounts: 9
    - mountPath: <directory_name>
      name: <volume_name>
    tolerations: 10
    - operator: "Exists"
    resources: 11
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
    nodeSelector: 12
      foo: bar

OpenShift Container Platform 4.15 Postinstallation configuration

406



5

6

7

8

9

10

11

12

1

1

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of volume mounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does
not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

5. For clusters on cloud providers with token authentication enabled:

a. Ensure the Subscription object is set to manual update approvals:

Subscriptions with automatic update approvals are not recommended because there
might be permission changes to make prior to updating. Subscriptions with manual
update approvals ensure that administrators have the opportunity to verify the
permissions of the later version and take any necessary steps prior to update.

b. Include the relevant cloud provider-specific fields in the Subscription object’s config
section:

If the cluster is in AWS STS mode, include the following fields:

Include the role ARN details.

If the cluster is in Azure AD Workload Identity mode, include the following fields:

kind: Subscription
# ...
spec:
  installPlanApproval: Manual 1

kind: Subscription
# ...
spec:
  config:
    env:
    - name: ROLEARN
      value: "<role_arn>" 1

CHAPTER 12. PREPARING FOR USERS

407



1

2

3

Include the client ID.

Include the tenant ID.

Include the subscription ID.

6. Create the Subscription object:

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for
the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources

About OperatorGroups

kind: Subscription
# ...
spec:
 config:
   env:
   - name: CLIENTID
     value: "<client_id>" 1
   - name: TENANTID
     value: "<tenant_id>" 2
   - name: SUBSCRIPTIONID
     value: "<subscription_id>" 3

$ oc apply -f sub.yaml

OpenShift Container Platform 4.15 Postinstallation configuration

408

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-operatorgroups-about_olm-understanding-operatorgroups


CHAPTER 13. CONFIGURING ALERT NOTIFICATIONS
In OpenShift Container Platform, an alert is fired when the conditions defined in an alerting rule are true.
An alert provides a notification that a set of circumstances are apparent within a cluster. Firing alerts can
be viewed in the Alerting UI in the OpenShift Container Platform web console by default. After an
installation, you can configure OpenShift Container Platform to send alert notifications to external
systems.

13.1. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Container Platform 4.15, firing alerts can be viewed in the Alerting UI. Alerts are not
configured by default to be sent to any notification systems. You can configure OpenShift Container
Platform to send alerts to the following receiver types:

PagerDuty

Webhook

Email

Slack

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when
failures occur. For example, critical alerts require immediate attention and are typically paged to an
individual or a critical response team. Alerts that provide non-critical warning notifications might instead
be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously.
Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The
provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This
mechanism helps you quickly identify any communication issues between Alertmanager and the
notification provider.

13.1.1. Configuring alert receivers

You can configure alert receivers to ensure that you learn about important issues with your cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. In the Administrator perspective, go to Administration → Cluster Settings → Configuration
→ Alertmanager.

NOTE

Alternatively, you can go to the same page through the notification drawer.
Select the bell icon at the top right of the OpenShift Container Platform web
console and choose Configure in the AlertmanagerReceiverNotConfigured
alert.

CHAPTER 13. CONFIGURING ALERT NOTIFICATIONS

409



2. Click Create Receiver in the Receivers section of the page.

3. In the Create Receiver form, add a Receiver name and choose a Receiver type from the list.

4. Edit the receiver configuration:

For PagerDuty receivers:

a. Choose an integration type and add a PagerDuty integration key.

b. Add the URL of your PagerDuty installation.

c. Click Show advanced configuration if you want to edit the client and incident details or
the severity specification.

For webhook receivers:

a. Add the endpoint to send HTTP POST requests to.

b. Click Show advanced configuration if you want to edit the default option to send
resolved alerts to the receiver.

For email receivers:

a. Add the email address to send notifications to.

b. Add SMTP configuration details, including the address to send notifications from, the
smarthost and port number used for sending emails, the hostname of the SMTP server,
and authentication details.

c. Select whether TLS is required.

d. Click Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the body of email notifications configuration.

For Slack receivers:

a. Add the URL of the Slack webhook.

b. Add the Slack channel or user name to send notifications to.

c. Select Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the icon and username configuration. You can
also choose whether to find and link channel names and usernames.

5. By default, firing alerts with labels that match all of the selectors are sent to the receiver. If you
want label values for firing alerts to be matched exactly before they are sent to the receiver,
perform the following steps:

a. Add routing label names and values in the Routing labels section of the form.

b. Click Add label to add further routing labels.

6. Click Create to create the receiver.

13.2. ADDITIONAL RESOURCES

Monitoring overview

OpenShift Container Platform 4.15 Postinstallation configuration

410

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#monitoring-overview


Managing alerts

CHAPTER 13. CONFIGURING ALERT NOTIFICATIONS

411

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#managing-alerts


CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A
DISCONNECTED CLUSTER

There might be some scenarios where you need to convert your OpenShift Container Platform cluster
from a connected cluster to a disconnected cluster.

A disconnected cluster, also known as a restricted cluster, does not have an active connection to the
internet. As such, you must mirror the contents of your registries and installation media. You can create
this mirror registry on a host that can access both the internet and your closed network, or copy images
to a device that you can move across network boundaries.

This topic describes the general process for converting an existing, connected cluster into a
disconnected cluster.

14.1. ABOUT THE MIRROR REGISTRY

You can mirror the images that are required for OpenShift Container Platform installation and
subsequent product updates to a container mirror registry such as Red Hat Quay, JFrog Artifactory,
Sonatype Nexus Repository, or Harbor. If you do not have access to a large-scale container registry, you
can use the mirror registry for Red Hat OpenShift , a small-scale container registry included with
OpenShift Container Platform subscriptions.

You can use any container registry that supports Docker v2-2, such as Red Hat Quay, the mirror registry
for Red Hat OpenShift, Artifactory, Sonatype Nexus Repository, or Harbor. Regardless of your chosen
registry, the procedure to mirror content from Red Hat hosted sites on the internet to an isolated image
registry is the same. After you mirror the content, you configure each cluster to retrieve this content
from your mirror registry.

IMPORTANT

The OpenShift image registry cannot be used as the target registry because it does not
support pushing without a tag, which is required during the mirroring process.

If choosing a container registry that is not the mirror registry for Red Hat OpenShift , it must be reachable
by every machine in the clusters that you provision. If the registry is unreachable, installation, updating,
or normal operations such as workload relocation might fail. For that reason, you must run mirror
registries in a highly available way, and the mirror registries must at least match the production
availability of your OpenShift Container Platform clusters.

When you populate your mirror registry with OpenShift Container Platform images, you can follow two
scenarios. If you have a host that can access both the internet and your mirror registry, but not your
cluster nodes, you can directly mirror the content from that machine. This process is referred to as
connected mirroring. If you have no such host, you must mirror the images to a file system and then bring
that host or removable media into your restricted environment. This process is referred to as
disconnected mirroring .

For mirrored registries, to view the source of pulled images, you must review the Trying to access log
entry in the CRI-O logs. Other methods to view the image pull source, such as using the crictl images
command on a node, show the non-mirrored image name, even though the image is pulled from the
mirrored location.

NOTE

Red Hat does not test third party registries with OpenShift Container Platform.

OpenShift Container Platform 4.15 Postinstallation configuration

412

https://docs.docker.com/registry/spec/manifest-v2-2


14.2. PREREQUISITES

The oc client is installed.

A running cluster.

An installed mirror registry, which is a container image registry that supports Docker v2-2 in the
location that will host the OpenShift Container Platform cluster, such as one of the following
registries:

Red Hat Quay

JFrog Artifactory

Sonatype Nexus Repository

Harbor

If you have an subscription to Red Hat Quay, see the documentation on deploying Red Hat
Quay for proof-of-concept purposes or by using the Quay Operator.

The mirror repository must be configured to share images. For example, a Red Hat Quay
repository requires Organizations in order to share images.

Access to the internet to obtain the necessary container images.

14.3. PREPARING THE CLUSTER FOR MIRRORING

Before disconnecting your cluster, you must mirror, or copy, the images to a mirror registry that is
reachable by every node in your disconnected cluster. In order to mirror the images, you must prepare
your cluster by:

Adding the mirror registry certificates to the list of trusted CAs on your host.

Creating a .dockerconfigjson file that contains your image pull secret, which is from the 
cloud.openshift.com token.

Procedure

1. Configuring credentials that allow image mirroring:

a. Add the CA certificate for the mirror registry, in the simple PEM or DER file formats, to the
list of trusted CAs. For example:

where, </path/to/cert.crt>

Specifies the path to the certificate on your local file system.

b. Update the CA trust. For example, in Linux:

c. Extract the .dockerconfigjson file from the global pull secret:

$ cp </path/to/cert.crt> /usr/share/pki/ca-trust-source/anchors/

$ update-ca-trust

CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER

413

https://docs.docker.com/registry/spec/manifest-v2-2/
https://www.redhat.com/en/technologies/cloud-computing/quay
https://jfrog.com/artifactory/
https://www.sonatype.com/products/repository-oss?topnav=true
https://goharbor.io/
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploying_the_red_hat_quay_operator_on_openshift_container_platform/index
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#user-org-intro_use-quay


Example output

d. Edit the .dockerconfigjson file to add your mirror registry and authentication credentials
and save it as a new file:

where:

<local_registry>

Specifies the registry domain name, and optionally the port, that your mirror registry
uses to serve content.

auth

Specifies the base64-encoded user name and password for your mirror registry.

<registry>:<port>/<namespace>

Specifies the mirror registry details.

<token>

Specifies the base64-encoded username:password for your mirror registry.
For example:

14.4. MIRRORING THE IMAGES

After the cluster is properly configured, you can mirror the images from your external repositories to the
mirror repository.

Procedure

1. Mirror the Operator Lifecycle Manager (OLM) images:

$ oc extract secret/pull-secret -n openshift-config --confirm --to=.

.dockerconfigjson

{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}},"
<registry>:<port>/<namespace>/":{"auth":"<token>"}}}

$ {"auths":{"cloud.openshift.com":
{"auth":"b3BlbnNoaWZ0Y3UjhGOVZPT0lOMEFaUjdPUzRGTA==","email":"user@exa
mple.com"},
"quay.io":
{"auth":"b3BlbnNoaWZ0LXJlbGVhc2UtZGOVZPT0lOMEFaUGSTd4VGVGVUjdPUzR
GTA==","email":"user@example.com"},
"registry.connect.redhat.com"
{"auth":"NTE3MTMwNDB8dWhjLTFEZlN3VHkxOSTd4VGVGVU1MdTpleUpoYkdjaUail
A==","email":"user@example.com"},
"registry.redhat.io":
{"auth":"NTE3MTMwNDB8dWhjLTFEZlN3VH3BGSTd4VGVGVU1MdTpleUpoYkdjaU9
fZw==","email":"user@example.com"},
"registry.svc.ci.openshift.org":
{"auth":"dXNlcjpyWjAwWVFjSEJiT2RKVW1pSmg4dW92dGp1SXRxQ3RGN1pwajJhN1
ZXeTRV"},"my-registry:5000/my-namespace/":
{"auth":"dXNlcm5hbWU6cGFzc3dvcmQ="}}}

OpenShift Container Platform 4.15 Postinstallation configuration

414



where:

product-version

Specifies the tag that corresponds to the version of OpenShift Container Platform to install,
such as 4.8.

mirror_registry

Specifies the fully qualified domain name (FQDN) for the target registry and namespace to
mirror the Operator content to, where <namespace> is any existing namespace on the
registry.

reg_creds

Specifies the location of your modified .dockerconfigjson file.

For example:

2. Mirror the content for any other Red Hat-provided Operator:

where:

index_image

Specifies the index image for the catalog that you want to mirror.

mirror_registry

Specifies the FQDN for the target registry and namespace to mirror the Operator content
to, where <namespace> is any existing namespace on the registry.

reg_creds

Optional: Specifies the location of your registry credentials file, if required.

For example:

3. Mirror the OpenShift Container Platform image repository:

where:

product-version

Specifies the tag that corresponds to the version of OpenShift Container Platform to install,

$ oc adm catalog mirror registry.redhat.io/redhat/redhat-operator-index:v{product-version} 
<mirror_registry>:<port>/olm -a <reg_creds>

$ oc adm catalog mirror registry.redhat.io/redhat/redhat-operator-index:v4.8 
mirror.registry.com:443/olm -a ./.dockerconfigjson  --index-filter-by-os='.*'

$ oc adm catalog mirror <index_image> <mirror_registry>:<port>/<namespace> -a 
<reg_creds>

$ oc adm catalog mirror registry.redhat.io/redhat/community-operator-index:v4.8 
mirror.registry.com:443/olm -a ./.dockerconfigjson  --index-filter-by-os='.*'

$ oc adm release mirror -a .dockerconfigjson --from=quay.io/openshift-release-dev/ocp-
release:v<product-version>-<architecture> --to=<local_registry>/<local_repository> --to-
release-image=<local_registry>/<local_repository>:v<product-version>-<architecture>

CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER

415



Specifies the tag that corresponds to the version of OpenShift Container Platform to install,
such as 4.8.15-x86_64.

architecture

Specifies the type of architecture for your server, such as x86_64.

local_registry

Specifies the registry domain name for your mirror repository.

local_repository

Specifies the name of the repository to create in your registry, such as ocp4/openshift4.

For example:

Example output

4. Mirror any other registries, as needed:

Additional information

For more information about mirroring Operator catalogs, see Mirroring an Operator catalog .

For more information about the oc adm catalog mirror command, see the OpenShift CLI

$ oc adm release mirror -a .dockerconfigjson --from=quay.io/openshift-release-dev/ocp-
release:4.8.15-x86_64 --to=mirror.registry.com:443/ocp/release --to-release-
image=mirror.registry.com:443/ocp/release:4.8.15-x86_64

info: Mirroring 109 images to mirror.registry.com/ocp/release ...
mirror.registry.com:443/
  ocp/release
 manifests:
   sha256:086224cadce475029065a0efc5244923f43fb9bb3bb47637e0aaf1f32b9cad47 -> 
4.8.15-x86_64-thanos
   sha256:0a214f12737cb1cfbec473cc301aa2c289d4837224c9603e99d1e90fc00328db -> 
4.8.15-x86_64-kuryr-controller
   sha256:0cf5fd36ac4b95f9de506623b902118a90ff17a07b663aad5d57c425ca44038c -> 
4.8.15-x86_64-pod
   sha256:0d1c356c26d6e5945a488ab2b050b75a8b838fc948a75c0fa13a9084974680cb -> 
4.8.15-x86_64-kube-client-agent

…..
sha256:66e37d2532607e6c91eedf23b9600b4db904ce68e92b43c43d5b417ca6c8e63c 
mirror.registry.com:443/ocp/release:4.5.41-multus-admission-controller
sha256:d36efdbf8d5b2cbc4dcdbd64297107d88a31ef6b0ec4a39695915c10db4973f1 
mirror.registry.com:443/ocp/release:4.5.41-cluster-kube-scheduler-operator
sha256:bd1baa5c8239b23ecdf76819ddb63cd1cd6091119fecdbf1a0db1fb3760321a2 
mirror.registry.com:443/ocp/release:4.5.41-aws-machine-controllers
info: Mirroring completed in 2.02s (0B/s)

Success
Update image:  mirror.registry.com:443/ocp/release:4.5.41-x86_64
Mirror prefix: mirror.registry.com:443/ocp/release

$ oc image mirror <online_registry>/my/image:latest <mirror_registry>

OpenShift Container Platform 4.15 Postinstallation configuration

416

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-mirror-catalog_olm-restricted-networks


1

For more information about the oc adm catalog mirror command, see the OpenShift CLI
administrator command reference.

14.5. CONFIGURING THE CLUSTER FOR THE MIRROR REGISTRY

After creating and mirroring the images to the mirror registry, you must modify your cluster so that pods
can pull images from the mirror registry.

You must:

Add the mirror registry credentials to the global pull secret.

Add the mirror registry server certificate to the cluster.

Create an ImageContentSourcePolicy custom resource (ICSP), which associates the mirror
registry with the source registry.

1. Add mirror registry credential to the cluster global pull-secret:

Provide the path to the new pull secret file.

For example:

2. Add the CA-signed mirror registry server certificate to the nodes in the cluster:

a. Create a config map that includes the server certificate for the mirror registry

For example:

b. Use the config map to update the image.config.openshift.io/cluster custom resource
(CR). OpenShift Container Platform applies the changes to this CR to all nodes in the
cluster:

For example:

3. Create an ICSP to redirect container pull requests from the online registries to the mirror

$ oc set data secret/pull-secret -n openshift-config --from-file=.dockerconfigjson=
<pull_secret_location> 1

$ oc set data secret/pull-secret -n openshift-config --from-
file=.dockerconfigjson=.mirrorsecretconfigjson

$ oc create configmap <config_map_name> --from-file=<mirror_address_host>..
<port>=$path/ca.crt -n openshift-config

S oc create configmap registry-config --from-
file=mirror.registry.com..443=/root/certs/ca-chain.cert.pem -n openshift-config

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"<config_map_name>"}}}' --type=merge

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER

417

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/cli_tools/#oc-adm-catalog-mirror


1

2

1

3. Create an ICSP to redirect container pull requests from the online registries to the mirror
registry:

a. Create the ImageContentSourcePolicy custom resource:

Specifies the name of the mirror image registry and repository.

Specifies the online registry and repository containing the content that is mirrored.

b. Create the ICSP object:

Example output

OpenShift Container Platform applies the changes to this CR to all nodes in the cluster.

4. Verify that the credentials, CA, and ICSP for mirror registry were added:

a. Log into a node:

b. Set /host as the root directory within the debug shell:

c. Check the config.json file for the credentials:

Example output

Ensure that the mirror registry and credentials are present.

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  name: mirror-ocp
spec:
  repositoryDigestMirrors:
  - mirrors:
    - mirror.registry.com:443/ocp/release 1
    source: quay.io/openshift-release-dev/ocp-release 2
  - mirrors:
    - mirror.registry.com:443/ocp/release
    source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

$ oc create -f registryrepomirror.yaml

imagecontentsourcepolicy.operator.openshift.io/mirror-ocp created

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# cat /var/lib/kubelet/config.json

{"auths":{"brew.registry.redhat.io":{"xx=="},"brewregistry.stage.redhat.io":
{"auth":"xxx=="},"mirror.registry.com:443":{"auth":"xx="}}} 1

OpenShift Container Platform 4.15 Postinstallation configuration

418



1

d. Change to the certs.d directory

e. List the certificates in the certs.d directory:

Example output

image-registry.openshift-image-registry.svc.cluster.local:5000
image-registry.openshift-image-registry.svc:5000
mirror.registry.com:443 1

Ensure that the mirror registry is in the list.

f. Check that the ICSP added the mirror registry to the registries.conf file:

Example output

The registry.mirror parameters indicate that the mirror registry is searched before the
original registry.

g. Exit the node.

14.6. ENSURE APPLICATIONS CONTINUE TO WORK

Before disconnecting the cluster from the network, ensure that your cluster is working as expected and
all of your applications are working as expected.

sh-4.4# cd /etc/docker/certs.d/

sh-4.4# ls

sh-4.4# cat /etc/containers/registries.conf

unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

[[registry]]
  prefix = ""
  location = "quay.io/openshift-release-dev/ocp-release"
  mirror-by-digest-only = true

  [[registry.mirror]]
    location = "mirror.registry.com:443/ocp/release"

[[registry]]
  prefix = ""
  location = "quay.io/openshift-release-dev/ocp-v4.0-art-dev"
  mirror-by-digest-only = true

  [[registry.mirror]]
    location = "mirror.registry.com:443/ocp/release"

sh-4.4# exit

CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER

419



Procedure

Use the following commands to check the status of your cluster:

Ensure your pods are running:

Example output

Ensure your nodes are in the READY status:

Example output

14.7. DISCONNECT THE CLUSTER FROM THE NETWORK

After mirroring all the required repositories and configuring your cluster to work as a disconnected
cluster, you can disconnect the cluster from the network.

NOTE

The Insights Operator is degraded when the cluster loses its Internet connection. You can
avoid this problem by temporarily disabling the Insights Operator until you can restore it.

14.8. RESTORING A DEGRADED INSIGHTS OPERATOR

$ oc get pods --all-namespaces

NAMESPACE                                          NAME                                                          READY   
STATUS      RESTARTS   AGE
kube-system                                        apiserver-watcher-ci-ln-47ltxtb-f76d1-mrffg-master-0          
1/1     Running     0          39m
kube-system                                        apiserver-watcher-ci-ln-47ltxtb-f76d1-mrffg-master-1          
1/1     Running     0          39m
kube-system                                        apiserver-watcher-ci-ln-47ltxtb-f76d1-mrffg-master-2          
1/1     Running     0          39m
openshift-apiserver-operator                       openshift-apiserver-operator-79c7c646fd-5rvr5                 
1/1     Running     3          45m
openshift-apiserver                                apiserver-b944c4645-q694g                                     2/2     
Running     0          29m
openshift-apiserver                                apiserver-b944c4645-shdxb                                     2/2     
Running     0          31m
openshift-apiserver                                apiserver-b944c4645-x7rf2                                     2/2     
Running     0          33m
 ...

$ oc get nodes

NAME                                       STATUS   ROLES    AGE   VERSION
ci-ln-47ltxtb-f76d1-mrffg-master-0         Ready    master   42m   v1.28.5
ci-ln-47ltxtb-f76d1-mrffg-master-1         Ready    master   42m   v1.28.5
ci-ln-47ltxtb-f76d1-mrffg-master-2         Ready    master   42m   v1.28.5
ci-ln-47ltxtb-f76d1-mrffg-worker-a-gsxbz   Ready    worker   35m   v1.28.5
ci-ln-47ltxtb-f76d1-mrffg-worker-b-5qqdx   Ready    worker   35m   v1.28.5
ci-ln-47ltxtb-f76d1-mrffg-worker-c-rjkpq   Ready    worker   34m   v1.28.5

OpenShift Container Platform 4.15 Postinstallation configuration

420

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#opting-out-of-remote-health-reporting


Disconnecting the cluster from the network necessarily causes the cluster to lose the Internet
connection. The Insights Operator becomes degraded because it requires access to Red Hat Insights .

This topic describes how to recover from a degraded Insights Operator.

Procedure

1. Edit your .dockerconfigjson file to remove the cloud.openshift.com entry, for example:

2. Save the file.

3. Update the cluster secret with the edited .dockerconfigjson file:

4. Verify that the Insights Operator is no longer degraded:

Example output

14.9. RESTORING THE NETWORK

If you want to reconnect a disconnected cluster and pull images from online registries, delete the
cluster’s ImageContentSourcePolicy (ICSP) objects. Without the ICSP, pull requests to external
registries are no longer redirected to the mirror registry.

Procedure

1. View the ICSP objects in your cluster:

Example output

2. Delete all the ICSP objects you created when disconnecting your cluster:

For example:

"cloud.openshift.com":{"auth":"<hash>","email":"user@example.com"}

$ oc set data secret/pull-secret -n openshift-config --from-
file=.dockerconfigjson=./.dockerconfigjson

$ oc get co insights

NAME       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
insights   4.5.41    True        False         False      3d

$ oc get imagecontentsourcepolicy

NAME                 AGE
mirror-ocp           6d20h
ocp4-index-0         6d18h
qe45-index-0         6d15h

$ oc delete imagecontentsourcepolicy <icsp_name> <icsp_name> <icsp_name>

CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER

421

https://console.redhat.com


1

Example output

3. Wait for all the nodes to restart and return to the READY status and verify that the 
registries.conf file is pointing to the original registries and not the mirror registries:

a. Log into a node:

b. Set /host as the root directory within the debug shell:

c. Examine the registries.conf file:

Example output

The registry and registry.mirror entries created by the ICSPs you deleted are
removed.

$ oc delete imagecontentsourcepolicy mirror-ocp ocp4-index-0 qe45-index-0

imagecontentsourcepolicy.operator.openshift.io "mirror-ocp" deleted
imagecontentsourcepolicy.operator.openshift.io "ocp4-index-0" deleted
imagecontentsourcepolicy.operator.openshift.io "qe45-index-0" deleted

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# cat /etc/containers/registries.conf

unqualified-search-registries = ["registry.access.redhat.com", "docker.io"] 1

OpenShift Container Platform 4.15 Postinstallation configuration

422



1

CHAPTER 15. ENABLING CLUSTER CAPABILITIES
Cluster administrators can enable cluster capabilities that were disabled prior to installation.

NOTE

Cluster administrators cannot disable a cluster capability after it is enabled.

15.1. VIEWING THE CLUSTER CAPABILITIES

As a cluster administrator, you can view the capabilities by using the clusterversion resource status.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

To view the status of the cluster capabilities, run the following command:

Example output

15.2. ENABLING THE CLUSTER CAPABILITIES BY SETTING BASELINE
CAPABILITY SET

As a cluster administrator, you can enable the capabilities by setting baselineCapabilitySet.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

To set the baselineCapabilitySet, run the following command:

For baselineCapabilitySet you can specify vCurrent, v4.15, or None.

The following table describes the baselineCapabilitySet values.

Table 15.1. Cluster capabilities baselineCapabilitySet values description

$ oc get clusterversion version -o jsonpath='{.spec.capabilities}{"\n"}{.status.capabilities}{"\n"}'

{"additionalEnabledCapabilities":["openshift-samples"],"baselineCapabilitySet":"None"}
{"enabledCapabilities":["openshift-samples"],"knownCapabilities":
["CSISnapshot","Console","Insights","Storage","baremetal","marketplace","openshift-
samples"]}

$ oc patch clusterversion version --type merge -p '{"spec":{"capabilities":
{"baselineCapabilitySet":"vCurrent"}}}' 1

CHAPTER 15. ENABLING CLUSTER CAPABILITIES

423



Value Description

vCurrent Specify this option when you want to automatically add new,
default capabilities that are introduced in new releases.

v4.11 Specify this option when you want to enable the default
capabilities for OpenShift Container Platform 4.11. By specifying 
v4.11, capabilities that are introduced in newer versions of
OpenShift Container Platform are not enabled. The default
capabilities in OpenShift Container Platform 4.11 are 
baremetal, MachineAPI, marketplace, and openshift-
samples.

v4.12 Specify this option when you want to enable the default
capabilities for OpenShift Container Platform 4.12. By specifying
v4.12, capabilities that are introduced in newer versions of
OpenShift Container Platform are not enabled. The default
capabilities in OpenShift Container Platform 4.12 are 
baremetal, MachineAPI, marketplace, openshift-
samples, Console, Insights, Storage, and CSISnapshot.

v4.13 Specify this option when you want to enable the default
capabilities for OpenShift Container Platform 4.13. By specifying
v4.13, capabilities that are introduced in newer versions of
OpenShift Container Platform are not enabled. The default
capabilities in OpenShift Container Platform 4.13 are 
baremetal, MachineAPI, marketplace, openshift-
samples, Console, Insights, Storage, CSISnapshot, and 
NodeTuning.

v4.14 Specify this option when you want to enable the default
capabilities for OpenShift Container Platform 4.14. By specifying
v4.14, capabilities that are introduced in newer versions of
OpenShift Container Platform are not enabled. The default
capabilities in OpenShift Container Platform 4.14 are 
baremetal, MachineAPI, marketplace, openshift-
samples, Console, Insights, Storage, CSISnapshot, 
NodeTuning, ImageRegistry, Build, and 
DeploymentConfig.

v4.15 Specify this option when you want to enable the default
capabilities for OpenShift Container Platform 4.15. By specifying
v4.15, capabilities that are introduced in newer versions of
OpenShift Container Platform are not enabled. The default
capabilities in OpenShift Container Platform 4.15 are 
baremetal, MachineAPI, marketplace, 
OperatorLifecycleManager, openshift-samples, 
Console, Insights, Storage, CSISnapshot, NodeTuning, 
ImageRegistry, Build, CloudCredential, and 
DeploymentConfig.

OpenShift Container Platform 4.15 Postinstallation configuration

424



None Specify when the other sets are too large, and you do not need
any capabilities or want to fine-tune via 
additionalEnabledCapabilities.

Value Description

15.3. ENABLING THE CLUSTER CAPABILITIES BY SETTING
ADDITIONAL ENABLED CAPABILITIES

As a cluster administrator, you can enable the cluster capabilities by setting 
additionalEnabledCapabilities.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. View the additional enabled capabilities by running the following command:

Example output

2. To set the additionalEnabledCapabilities, run the following command:

IMPORTANT

It is not possible to disable a capability which is already enabled in a cluster. The cluster
version Operator (CVO) continues to reconcile the capability which is already enabled in
the cluster.

If you try to disable a capability, then CVO shows the divergent spec:

Example output

NOTE

$ oc get clusterversion version -o jsonpath='{.spec.capabilities.additionalEnabledCapabilities}
{"\n"}'

["openshift-samples"]

$ oc patch clusterversion/version --type merge -p '{"spec":{"capabilities":
{"additionalEnabledCapabilities":["openshift-samples", "marketplace"]}}}'

$ oc get clusterversion version -o jsonpath='{.status.conditions[?
(@.type=="ImplicitlyEnabledCapabilities")]}{"\n"}'

{"lastTransitionTime":"2022-07-22T03:14:35Z","message":"The following capabilities could not be 
disabled: openshift-
samples","reason":"CapabilitiesImplicitlyEnabled","status":"True","type":"ImplicitlyEnabledCapabilities"}

CHAPTER 15. ENABLING CLUSTER CAPABILITIES

425



NOTE

During the cluster upgrades, it is possible that a given capability could be implicitly
enabled. If a resource was already running on the cluster before the upgrade, then any
capabilities that is part of the resource will be enabled. For example, during a cluster
upgrade, a resource that is already running on the cluster has been changed to be part of
the marketplace capability by the system. Even if a cluster administrator does not
explicitly enabled the marketplace capability, it is implicitly enabled by the system.

15.4. ADDITIONAL RESOURCES

Cluster capabilities

OpenShift Container Platform 4.15 Postinstallation configuration

426

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#cluster-capabilities


CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM
Z OR IBM LINUXONE ENVIRONMENT

After installing OpenShift Container Platform, you can configure additional devices for your cluster in an
IBM Z® or IBM® LinuxONE environment, which is installed with z/VM. The following devices can be
configured:

Fibre Channel Protocol (FCP) host

FCP LUN

DASD

qeth

You can configure devices by adding udev rules using the Machine Config Operator (MCO) or you can
configure devices manually.

NOTE

The procedures described here apply only to z/VM installations. If you have installed your
cluster with RHEL KVM on IBM Z® or IBM® LinuxONE infrastructure, no additional
configuration is needed inside the KVM guest after the devices were added to the KVM
guests. However, both in z/VM and RHEL KVM environments the next steps to configure
the Local Storage Operator and Kubernetes NMState Operator need to be applied.

Additional resources

Postinstallation machine configuration tasks

16.1. CONFIGURING ADDITIONAL DEVICES USING THE MACHINE
CONFIG OPERATOR (MCO)

Tasks in this section describe how to use features of the Machine Config Operator (MCO) to configure
additional devices in an IBM Z® or IBM® LinuxONE environment. Configuring devices with the MCO is
persistent but only allows specific configurations for compute nodes. MCO does not allow control plane
nodes to have different configurations.

Prerequisites

You are logged in to the cluster as a user with administrative privileges.

The device must be available to the z/VM guest.

The device is already attached.

The device is not included in the cio_ignore list, which can be set in the kernel parameters.

You have created a MachineConfig object file with the following YAML:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  name: worker0

CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM Z OR IBM LINUXONE ENVIRONMENT

427



1

16.1.1. Configuring a Fibre Channel Protocol (FCP) host

The following is an example of how to configure an FCP host adapter with N_Port Identifier
Virtualization (NPIV) by adding a udev rule.

Procedure

1. Take the following sample udev rule 441-zfcp-host-0.0.8000.rules:

2. Convert the rule to Base64 encoded by running the following command:

3. Copy the following MCO sample profile into a YAML file:

The role you have defined in the machine config file.

spec:
  machineConfigSelector:
    matchExpressions:
      - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker0]}
  nodeSelector:
    matchLabels:
      node-role.kubernetes.io/worker0: ""

ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.8000", DRIVER=="zfcp", 
GOTO="cfg_zfcp_host_0.0.8000"
ACTION=="add", SUBSYSTEM=="drivers", KERNEL=="zfcp", TEST=="[ccw/0.0.8000]", 
GOTO="cfg_zfcp_host_0.0.8000"
GOTO="end_zfcp_host_0.0.8000"

LABEL="cfg_zfcp_host_0.0.8000"
ATTR{[ccw/0.0.8000]online}="1"

LABEL="end_zfcp_host_0.0.8000"

$ base64 /path/to/file/

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
   labels:
     machineconfiguration.openshift.io/role: worker0 1
   name: 99-worker0-devices
spec:
   config:
     ignition:
       version: 3.2.0
     storage:
       files:
       - contents:
           source: data:text/plain;base64,<encoded_base64_string> 2
         filesystem: root
         mode: 420
         path: /etc/udev/rules.d/41-zfcp-host-0.0.8000.rules 3

OpenShift Container Platform 4.15 Postinstallation configuration

428



2

3

The Base64 encoded string that you have generated in the previous step.

The path where the udev rule is located.

16.1.2. Configuring an FCP LUN

The following is an example of how to configure an FCP LUN by adding a udev rule. You can add new
FCP LUNs or add additional paths to LUNs that are already configured with multipathing.

Procedure

1. Take the following sample udev rule 41-zfcp-lun-
0.0.8000:0x500507680d760026:0x00bc000000000000.rules:

2. Convert the rule to Base64 encoded by running the following command:

3. Copy the following MCO sample profile into a YAML file:

ACTION=="add", SUBSYSTEMS=="ccw", KERNELS=="0.0.8000", 
GOTO="start_zfcp_lun_0.0.8207"
GOTO="end_zfcp_lun_0.0.8000"

LABEL="start_zfcp_lun_0.0.8000"
SUBSYSTEM=="fc_remote_ports", ATTR{port_name}=="0x500507680d760026", 
GOTO="cfg_fc_0.0.8000_0x500507680d760026"
GOTO="end_zfcp_lun_0.0.8000"

LABEL="cfg_fc_0.0.8000_0x500507680d760026"
ATTR{[ccw/0.0.8000]0x500507680d760026/unit_add}="0x00bc000000000000"
GOTO="end_zfcp_lun_0.0.8000"

LABEL="end_zfcp_lun_0.0.8000"

$ base64 /path/to/file/

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
   labels:
     machineconfiguration.openshift.io/role: worker0 1
   name: 99-worker0-devices
spec:
   config:
     ignition:
       version: 3.2.0
     storage:
       files:
       - contents:
           source: data:text/plain;base64,<encoded_base64_string> 2
         filesystem: root
         mode: 420
         path: /etc/udev/rules.d/41-zfcp-lun-
0.0.8000:0x500507680d760026:0x00bc000000000000.rules 3

CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM Z OR IBM LINUXONE ENVIRONMENT

429



1

2

3

1

2

The role you have defined in the machine config file.

The Base64 encoded string that you have generated in the previous step.

The path where the udev rule is located.

16.1.3. Configuring DASD

The following is an example of how to configure a DASD device by adding a udev rule.

Procedure

1. Take the following sample udev rule 41-dasd-eckd-0.0.4444.rules:

2. Convert the rule to Base64 encoded by running the following command:

3. Copy the following MCO sample profile into a YAML file:

The role you have defined in the machine config file.

The Base64 encoded string that you have generated in the previous step.

ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.4444", DRIVER=="dasd-eckd", 
GOTO="cfg_dasd_eckd_0.0.4444"
ACTION=="add", SUBSYSTEM=="drivers", KERNEL=="dasd-eckd", TEST=="
[ccw/0.0.4444]", GOTO="cfg_dasd_eckd_0.0.4444"
GOTO="end_dasd_eckd_0.0.4444"

LABEL="cfg_dasd_eckd_0.0.4444"
ATTR{[ccw/0.0.4444]online}="1"

LABEL="end_dasd_eckd_0.0.4444"

$ base64 /path/to/file/

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
   labels:
     machineconfiguration.openshift.io/role: worker0 1
   name: 99-worker0-devices
spec:
   config:
     ignition:
       version: 3.2.0
     storage:
       files:
       - contents:
           source: data:text/plain;base64,<encoded_base64_string> 2
         filesystem: root
         mode: 420
         path: /etc/udev/rules.d/41-dasd-eckd-0.0.4444.rules 3

OpenShift Container Platform 4.15 Postinstallation configuration

430



3 The path where the udev rule is located.

16.1.4. Configuring qeth

The following is an example of how to configure a qeth device by adding a udev rule.

Procedure

1. Take the following sample udev rule 41-qeth-0.0.1000.rules:

2. Convert the rule to Base64 encoded by running the following command:

3. Copy the following MCO sample profile into a YAML file:

ACTION=="add", SUBSYSTEM=="drivers", KERNEL=="qeth", 
GOTO="group_qeth_0.0.1000"
ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.1000", DRIVER=="qeth", 
GOTO="group_qeth_0.0.1000"
ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.1001", DRIVER=="qeth", 
GOTO="group_qeth_0.0.1000"
ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.1002", DRIVER=="qeth", 
GOTO="group_qeth_0.0.1000"
ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.1000", DRIVER=="qeth", 
GOTO="cfg_qeth_0.0.1000"
GOTO="end_qeth_0.0.1000"

LABEL="group_qeth_0.0.1000"
TEST=="[ccwgroup/0.0.1000]", GOTO="end_qeth_0.0.1000"
TEST!="[ccw/0.0.1000]", GOTO="end_qeth_0.0.1000"
TEST!="[ccw/0.0.1001]", GOTO="end_qeth_0.0.1000"
TEST!="[ccw/0.0.1002]", GOTO="end_qeth_0.0.1000"
ATTR{[drivers/ccwgroup:qeth]group}="0.0.1000,0.0.1001,0.0.1002"
GOTO="end_qeth_0.0.1000"

LABEL="cfg_qeth_0.0.1000"
ATTR{[ccwgroup/0.0.1000]online}="1"

LABEL="end_qeth_0.0.1000"

$ base64 /path/to/file/

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
   labels:
     machineconfiguration.openshift.io/role: worker0 1
   name: 99-worker0-devices
spec:
   config:
     ignition:
       version: 3.2.0
     storage:
       files:

CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM Z OR IBM LINUXONE ENVIRONMENT

431



1

2

3

The role you have defined in the machine config file.

The Base64 encoded string that you have generated in the previous step.

The path where the udev rule is located.

Next steps

Install and configure the Local Storage Operator

Updating node network configuration

16.2. CONFIGURING ADDITIONAL DEVICES MANUALLY

Tasks in this section describe how to manually configure additional devices in an IBM Z® or IBM®
LinuxONE environment. This configuration method is persistent over node restarts but not OpenShift
Container Platform native and you need to redo the steps if you replace the node.

Prerequisites

You are logged in to the cluster as a user with administrative privileges.

The device must be available to the node.

In a z/VM environment, the device must be attached to the z/VM guest.

Procedure

1. Connect to the node via SSH by running the following command:

You can also start a debug session to the node by running the following command:

2. To enable the devices with the chzdev command, enter the following command:

Additional resources

See Persistent device configuration in IBM® Documentation.

       - contents:
           source: data:text/plain;base64,<encoded_base64_string> 2
         filesystem: root
         mode: 420
         path: /etc/udev/rules.d/41-dasd-eckd-0.0.4444.rules 3

$ ssh <user>@<node_ip_address>

$ oc debug node/<node_name>

$ sudo chzdev -e 0.0.8000
  sudo chzdev -e 1000-1002
  sude chzdev -e 4444
  sudo chzdev -e 0.0.8000:0x500507680d760026:0x00bc000000000000

OpenShift Container Platform 4.15 Postinstallation configuration

432

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#persistent-storage-using-local-volume
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#k8s-nmstate-updating-node-network-config
https://www.ibm.com/docs/en/linux-on-systems?topic=linuxonibm/com.ibm.linux.z.ludd/ludd_c_perscfg.html


16.3. ROCE NETWORK CARDS

RoCE (RDMA over Converged Ethernet) network cards do not need to be enabled and their interfaces
can be configured with the Kubernetes NMState Operator whenever they are available in the node. For
example, RoCE network cards are available if they are attached in a z/VM environment or passed
through in a RHEL KVM environment.

16.4. ENABLING MULTIPATHING FOR FCP LUNS

Tasks in this section describe how to manually configure additional devices in an IBM Z® or IBM®
LinuxONE environment. This configuration method is persistent over node restarts but not OpenShift
Container Platform native and you need to redo the steps if you replace the node.

IMPORTANT

On IBM Z® and IBM® LinuxONE, you can enable multipathing only if you configured your
cluster for it during installation. For more information, see "Installing RHCOS and starting
the OpenShift Container Platform bootstrap process" in Installing a cluster with z/VM on
IBM Z® and IBM® LinuxONE.

Prerequisites

You are logged in to the cluster as a user with administrative privileges.

You have configured multiple paths to a LUN with either method explained above.

Procedure

1. Connect to the node via SSH by running the following command:

You can also start a debug session to the node by running the following command:

2. To enable multipathing, run the following command:

3. To start the multipathd daemon, run the following command:

4. Optional: To format your multipath device with fdisk, run the following command:

Verification

To verify that the devices have been grouped, run the following command:

$ ssh <user>@<node_ip_address>

$ oc debug node/<node_name>

$ sudo /sbin/mpathconf --enable

$ sudo multipath

$ sudo fdisk /dev/mapper/mpatha

CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM Z OR IBM LINUXONE ENVIRONMENT

433



Example output

Next steps

Install and configure the Local Storage Operator

Updating node network configuration

$ sudo multipath -II

mpatha (20017380030290197) dm-1 IBM,2810XIV
   size=512G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
 -+- policy='service-time 0' prio=50 status=enabled
  |- 1:0:0:6  sde 68:16  active ready running
  |- 1:0:1:6  sdf 69:24  active ready running
  |- 0:0:0:6  sdg  8:80  active ready running
  `- 0:0:1:6  sdh 66:48  active ready running

OpenShift Container Platform 4.15 Postinstallation configuration

434

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#persistent-storage-using-local-volume
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#k8s-nmstate-updating-node-network-config


CHAPTER 17. MULTIPLE REGIONS AND ZONES
CONFIGURATION FOR A CLUSTER ON VSPHERE

As an administrator, you can specify multiple regions and zones for your OpenShift Container Platform
cluster that runs on a VMware vSphere instance. This configuration reduces the risk of a hardware failure
or network outage causing your cluster to fail.

A failure domain configuration lists parameters that create a topology. The following list states some of
these parameters:

computeCluster

datacenter

datastore

networks

resourcePool

After you define multiple regions and zones for your OpenShift Container Platform cluster, you can
create or migrate nodes to another failure domain.

IMPORTANT

If you want to migrate pre-existing OpenShift Container Platform cluster compute nodes
to a failure domain, you must define a new compute machine set for the compute node.
This new machine set can scale up a compute node according to the topology of the
failure domain, and scale down the pre-existing compute node.

The cloud provider adds topology.kubernetes.io/zone and 
topology.kubernetes.io/region labels to any compute node provisioned by a machine
set resource.

For more information, see Creating a compute machine set .

17.1. SPECIFYING MULTIPLE REGIONS AND ZONES FOR YOUR
CLUSTER ON VSPHERE

You can configure the infrastructures.config.openshift.io configuration resource to specify multiple
regions and zones for your OpenShift Container Platform cluster that runs on a VMware vSphere
instance.

Topology-aware features for the cloud controller manager and the vSphere Container Storage Interface
(CSI) Operator Driver require information about the vSphere topology where you host your OpenShift
Container Platform cluster. This topology information exists in the infrastructures.config.openshift.io
configuration resource.

Before you specify regions and zones for your cluster, you must ensure that all datacenters and
compute clusters contain tags, so that the cloud provider can add labels to your node. For example, if 
datacenter-1 represents region-a and compute-cluster-1 represents zone-1, the cloud provider adds
an openshift-region category label with a value of region-a to datacenter-1. Additionally, the cloud
provider adds an openshift-zone category tag with a value of zone-1 to compute-cluster-1.

NOTE

CHAPTER 17. MULTIPLE REGIONS AND ZONES CONFIGURATION FOR A CLUSTER ON VSPHERE

435

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-a-compute-machine-set-on-vsphere


NOTE

You can migrate control plane nodes with vMotion capabilities to a failure domain. After
you add these nodes to a failure domain, the cloud provider adds 
topology.kubernetes.io/zone and topology.kubernetes.io/region labels to these
nodes.

Prerequisites

You created the openshift-region and openshift-zone tag categories on the vCenter server.

You ensured that each datacenter and compute cluster contains tags that represent the name
of their associated region or zone, or both.

Optional: If you defined API and Ingress static IP addresses to the installation program, you
must ensure that all regions and zones share a common layer 2 network. This configuration
ensures that API and Ingress Virtual IP (VIP) addresses can interact with your cluster.

IMPORTANT

If you do not supply tags to all datacenters and compute clusters before you create a
node or migrate a node, the cloud provider cannot add the 
topology.kubernetes.io/zone and topology.kubernetes.io/region labels to the node.
This means that services cannot route traffic to your node.

Procedure

1. Edit the infrastructures.config.openshift.io custom resource definition (CRD) of your cluster
to specify multiple regions and zones in the failureDomains section of the resource by running
the following command:

Example infrastructures.config.openshift.io CRD for a instance named cluster with
multiple regions and zones defined in its configuration

$ oc edit infrastructures.config.openshift.io cluster

spec:
  cloudConfig:
    key: config
    name: cloud-provider-config
  platformSpec:
    type: vSphere
    vsphere:
      vcenters:
        - datacenters:
            - <region_a_datacenter>
            - <region_b_datacenter>
          port: 443
          server: <your_vcenter_server>
      failureDomains:
        - name: <failure_domain_1>
          region: <region_a>
          zone: <zone_a>
          server: <your_vcenter_server>
          topology:

OpenShift Container Platform 4.15 Postinstallation configuration

436



IMPORTANT

After you create a failure domain and you define it in a CRD for a VMware
vSphere cluster, you must not modify or delete the failure domain. Doing any of
these actions with this configuration can impact the availability and fault
tolerance of a control plane machine.

2. Save the resource file to apply the changes.

Additional resources

Parameters for the cluster-wide infrastructure CRD

17.2. ENABLING A MULTIPLE LAYER 2 NETWORK FOR YOUR CLUSTER

You can configure your cluster to use a multiple layer 2 network configuration so that data transfer
among nodes can span across multiple networks.

Prerequisites

You configured network connectivity among machines so that cluster components can
communicate with each other.

Procedure

            datacenter: <region_a_dc>
            computeCluster: "</region_a_dc/host/zone_a_cluster>"
            resourcePool: "</region_a_dc/host/zone_a_cluster/Resources/resource_pool>"
            datastore: "</region_a_dc/datastore/datastore_a>"
            networks:
            - port-group
        - name: <failure_domain_2>
          region: <region_a>
          zone: <zone_b>
          server: <your_vcenter_server>
          topology:
            computeCluster: </region_a_dc/host/zone_b_cluster>
            datacenter: <region_a_dc>
            datastore: </region_a_dc/datastore/datastore_a>
            networks:
            - port-group
        - name: <failure_domain_3>
          region: <region_b>
          zone: <zone_a>
          server: <your_vcenter_server>
          topology:
            computeCluster: </region_b_dc/host/zone_a_cluster>
            datacenter: <region_b_dc>
            datastore: </region_b_dc/datastore/datastore_b>
            networks:
            - port-group
      nodeNetworking:
        external: {}
        internal: {}

CHAPTER 17. MULTIPLE REGIONS AND ZONES CONFIGURATION FOR A CLUSTER ON VSPHERE

437



If you installed your cluster with installer-provisioned infrastructure, you must ensure that all
control plane nodes share a common layer 2 network. Additionally, ensure compute nodes that
are configured for Ingress pod scheduling share a common layer 2 network.

If you need compute nodes to span multiple layer 2 networks, you can create infrastructure
nodes that can host Ingress pods.

If you need to provision workloads across additional layer 2 networks, you can create
compute machine sets on vSphere and then move these workloads to your target layer 2
networks.

If you installed your cluster on infrastructure that you provided, which is defined as a user-
provisioned infrastructure, complete the following actions to meet your needs:

Configure your API load balancer and network so that the load balancer can reach the API
and Machine Config Server on the control plane nodes.

Configure your Ingress load balancer and network so that the load balancer can reach the
Ingress pods on the compute or infrastructure nodes.

Additional resources

Network connectivity requirements

Creating infrastructure machine sets for production environments

Creating a compute machine set

17.3. PARAMETERS FOR THE CLUSTER-WIDE INFRASTRUCTURE CRD

You must set values for specific parameters in the cluster-wide infrastructure, 
infrastructures.config.openshift.io, Custom Resource Definition (CRD) to define multiple regions and
zones for your OpenShift Container Platform cluster that runs on a VMware vSphere instance.

The following table lists mandatory parameters for defining multiple regions and zones for your
OpenShift Container Platform cluster:

Parameter Description

vcenters The vCenter server for your OpenShift Container Platform cluster. You
can only specify one vCenter for your cluster.

datacenters vCenter datacenters where VMs associated with the OpenShift
Container Platform cluster will be created or presently exist.

port The TCP port of the vCenter server.

server The fully qualified domain name (FQDN) of the vCenter server.

failureDomains The list of failure domains.

name The name of the failure domain.

OpenShift Container Platform 4.15 Postinstallation configuration

438

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-network-connectivity-user-infra_installing-vsphere-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-infrastructure-machinesets-production
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#machineset-creating_creating-machineset-vsphere


region The value of the openshift-region tag assigned to the topology for the
failure failure domain.

zone The value of the openshift-zone tag assigned to the topology for the
failure failure domain.

topology The vCenter reources associated with the failure domain.

datacenter The datacenter associated with the failure domain.

computeCluster The full path of the compute cluster associated with the failure domain.

resourcePool The full path of the resource pool associated with the failure domain.

datastore The full path of the datastore associated with the failure domain.

networks A list of port groups associated with the failure domain. Only one
portgroup may be defined.

Parameter Description

Additional resources

Specifying multiple regions and zones for your cluster on vSphere

CHAPTER 17. MULTIPLE REGIONS AND ZONES CONFIGURATION FOR A CLUSTER ON VSPHERE

439



CHAPTER 18. RHCOS IMAGE LAYERING
Red Hat Enterprise Linux CoreOS (RHCOS) image layering allows you to easily extend the functionality
of your base RHCOS image by layering additional images onto the base image. This layering does not
modify the base RHCOS image. Instead, it creates a custom layered image that includes all RHCOS
functionality and adds additional functionality to specific nodes in the cluster.

You create a custom layered image by using a Containerfile and applying it to nodes by using a 
MachineConfig object. The Machine Config Operator overrides the base RHCOS image, as specified by
the osImageURL value in the associated machine config, and boots the new image. You can remove the
custom layered image by deleting the machine config, The MCO reboots the nodes back to the base
RHCOS image.

With RHCOS image layering, you can install RPMs into your base image, and your custom content will be
booted alongside RHCOS. The Machine Config Operator (MCO) can roll out these custom layered
images and monitor these custom containers in the same way it does for the default RHCOS image.
RHCOS image layering gives you greater flexibility in how you manage your RHCOS nodes.

IMPORTANT

Installing realtime kernel and extensions RPMs as custom layered content is not
recommended. This is because these RPMs can conflict with RPMs installed by using a
machine config. If there is a conflict, the MCO enters a degraded state when it tries to
install the machine config RPM. You need to remove the conflicting extension from your
machine config before proceeding.

As soon as you apply the custom layered image to your cluster, you effectively take ownership of your
custom layered images and those nodes. While Red Hat remains responsible for maintaining and
updating the base RHCOS image on standard nodes, you are responsible for maintaining and updating
images on nodes that use a custom layered image. You assume the responsibility for the package you
applied with the custom layered image and any issues that might arise with the package.

To apply a custom layered image, you create a Containerfile that references an OpenShift Container
Platform image and the RPM that you want to apply. You then push the resulting custom layered image
to an image registry. In a non-production OpenShift Container Platform cluster, create a 
MachineConfig object for the targeted node pool that points to the new image.

NOTE

Use the same base RHCOS image installed on the rest of your cluster. Use the oc adm 
release info --image-for rhel-coreos command to obtain the base image used in your
cluster.

RHCOS image layering allows you to use the following types of images to create custom layered
images:

OpenShift Container Platform Hotfixes. You can work with Customer Experience and
Engagement (CEE) to obtain and apply Hotfix packages on top of your RHCOS image. In some
instances, you might want a bug fix or enhancement before it is included in an official OpenShift
Container Platform release. RHCOS image layering allows you to easily add the Hotfix before it
is officially released and remove the Hotfix when the underlying RHCOS image incorporates the
fix.

IMPORTANT

OpenShift Container Platform 4.15 Postinstallation configuration

440

https://access.redhat.com/solutions/2996001


IMPORTANT

Some Hotfixes require a Red Hat Support Exception and are outside of the
normal scope of OpenShift Container Platform support coverage or life cycle
policies.

In the event you want a Hotfix, it will be provided to you based on Red Hat Hotfix policy . Apply it
on top of the base image and test that new custom layered image in a non-production
environment. When you are satisfied that the custom layered image is safe to use in production,
you can roll it out on your own schedule to specific node pools. For any reason, you can easily
roll back the custom layered image and return to using the default RHCOS.

Example Containerfile to apply a Hotfix

RHEL packages. You can download Red Hat Enterprise Linux (RHEL) packages from the Red
Hat Customer Portal, such as chrony, firewalld, and iputils.

Example Containerfile to apply the firewalld utility

Example Containerfile to apply the libreswan utility

Because libreswan requires additional RHEL packages, the image must be built on an entitled
RHEL host.

Third-party packages. You can download and install RPMs from third-party organizations, such
as the following types of packages:

# Using a 4.12.0 image
FROM quay.io/openshift-release-dev/ocp-release@sha256...
#Install hotfix rpm
RUN rpm-ostree override replace https://example.com/myrepo/haproxy-1.0.16-5.el8.src.rpm 
&& \
    rpm-ostree cleanup -m && \
    ostree container commit

FROM quay.io/openshift-release-dev/ocp-release@sha256...
ADD configure-firewall-playbook.yml .
RUN rpm-ostree install firewalld ansible && \
    ansible-playbook configure-firewall-playbook.yml && \
    rpm -e ansible && \
    ostree container commit

# Get RHCOS base image of target cluster `oc adm release info --image-for rhel-coreos`
# hadolint ignore=DL3006
FROM quay.io/openshift-release/ocp-release@sha256...

# Install our config file
COPY my-host-to-host.conf /etc/ipsec.d/

# RHEL entitled host is needed here to access RHEL packages
# Install libreswan as extra RHEL package
RUN rpm-ostree install libreswan && \
    systemctl enable ipsec && \
    ostree container commit

CHAPTER 18. RHCOS IMAGE LAYERING

441

https://access.redhat.com/solutions/2996001
https://access.redhat.com/downloads/content/479/ver=/rhel---9/9.1/x86_64/packages


Bleeding edge drivers and kernel enhancements to improve performance or add
capabilities.

Forensic client tools to investigate possible and actual break-ins.

Security agents.

Inventory agents that provide a coherent view of the entire cluster.

SSH Key management packages.

Example Containerfile to apply a third-party package from EPEL

Example Containerfile to apply a third-party package that has RHEL dependencies

This Containerfile installs the Linux fish program. Because fish requires additional RHEL
packages, the image must be built on an entitled RHEL host.

After you create the machine config, the Machine Config Operator (MCO) performs the following steps:

1. Renders a new machine config for the specified pool or pools.

2. Performs cordon and drain operations on the nodes in the pool or pools.

3. Writes the rest of the machine config parameters onto the nodes.

4. Applies the custom layered image to the node.

5. Reboots the node using the new image.

# Get RHCOS base image of target cluster `oc adm release info --image-for rhel-coreos`
# hadolint ignore=DL3006
FROM quay.io/openshift-release/ocp-release@sha256...

# Install our config file
COPY my-host-to-host.conf /etc/ipsec.d/

# RHEL entitled host is needed here to access RHEL packages
# Install libreswan as extra RHEL package
RUN rpm-ostree install libreswan && \
    systemctl enable ipsec && \
    ostree container commit

# Get RHCOS base image of target cluster `oc adm release info --image-for rhel-coreos`
# hadolint ignore=DL3006
FROM quay.io/openshift-release/ocp-release@sha256...

# Install our config file
COPY my-host-to-host.conf /etc/ipsec.d/

# RHEL entitled host is needed here to access RHEL packages
# Install libreswan as extra RHEL package
RUN rpm-ostree install libreswan && \
    systemctl enable ipsec && \
    ostree container commit

OpenShift Container Platform 4.15 Postinstallation configuration

442



1

IMPORTANT

It is strongly recommended that you test your images outside of your production
environment before rolling out to your cluster.

18.1. APPLYING A RHCOS CUSTOM LAYERED IMAGE

You can easily configure Red Hat Enterprise Linux CoreOS (RHCOS) image layering on the nodes in
specific machine config pools. The Machine Config Operator (MCO) reboots those nodes with the new
custom layered image, overriding the base Red Hat Enterprise Linux CoreOS (RHCOS) image.

To apply a custom layered image to your cluster, you must have the custom layered image in a
repository that your cluster can access. Then, create a MachineConfig object that points to the custom
layered image. You need a separate MachineConfig object for each machine config pool that you want
to configure.

IMPORTANT

When you configure a custom layered image, OpenShift Container Platform no longer
automatically updates any node that uses the custom layered image. You become
responsible for manually updating your nodes as appropriate. If you roll back the custom
layer, OpenShift Container Platform will again automatically update the node. See the
Additional resources section that follows for important information about updating nodes
that use a custom layered image.

Prerequisites

You must create a custom layered image that is based on an OpenShift Container Platform
image digest, not a tag.

NOTE

You should use the same base RHCOS image that is installed on the rest of your
cluster. Use the oc adm release info --image-for rhel-coreos command to
obtain the base image being used in your cluster.

For example, the following Containerfile creates a custom layered image from an OpenShift
Container Platform 4.15 image and overrides the kernel package with one from CentOS 9
Stream:

Example Containerfile for a custom layer image

Specifies the RHCOS base image of your cluster.

# Using a 4.15.0 image
FROM quay.io/openshift-release/ocp-release@sha256... 1
#Install hotfix rpm
RUN rpm-ostree cliwrap install-to-root / && \ 2
    rpm-ostree override replace http://mirror.stream.centos.org/9-
stream/BaseOS/x86_64/os/Packages/kernel-{,core-,modules-,modules-core-,modules-extra-
}5.14.0-295.el9.x86_64.rpm && \ 3
    rpm-ostree cleanup -m && \
    ostree container commit

CHAPTER 18. RHCOS IMAGE LAYERING

443



2

3

1

2

Enables cliwrap. This is currently required to intercept some command invocations made
from kernel scripts.

Replaces the kernel packages.

NOTE

Instructions on how to create a Containerfile are beyond the scope of this
documentation.

Because the process for building a custom layered image is performed outside of the cluster,
you must use the --authfile /path/to/pull-secret option with Podman or Buildah. Alternatively,
to have the pull secret read by these tools automatically, you can add it to one of the default file
locations: ~/.docker/config.json, $XDG_RUNTIME_DIR/containers/auth.json, 
~/.docker/config.json, or ~/.dockercfg. Refer to the containers-auth.json man page for more
information.

You must push the custom layered image to a repository that your cluster can access.

Procedure

1. Create a machine config file.

a. Create a YAML file similar to the following:

Specifies the machine config pool to apply the custom layered image.

Specifies the path to the custom layered image in the repository.

b. Create the MachineConfig object:

IMPORTANT

It is strongly recommended that you test your images outside of your
production environment before rolling out to your cluster.

Verification

You can verify that the custom layered image is applied by performing any of the following checks:

1. Check that the worker machine config pool has rolled out with the new machine config:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker 1
  name: os-layer-custom
spec:
  osImageURL: quay.io/my-registry/custom-image@sha256... 2

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.15 Postinstallation configuration

444



1

2

a. Check that the new machine config is created:

Sample output

New machine config

New rendered machine config

b. Check that the osImageURL value in the new machine config points to the expected
image:

Example output

$ oc get mc

NAME                                               GENERATEDBYCONTROLLER                      
IGNITIONVERSION   AGE
00-master                                          5bdb57489b720096ef912f738b46330a8f577803   
3.2.0             95m
00-worker                                          5bdb57489b720096ef912f738b46330a8f577803   
3.2.0             95m
01-master-container-runtime                        
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             95m
01-master-kubelet                                  5bdb57489b720096ef912f738b46330a8f577803   
3.2.0             95m
01-worker-container-runtime                        
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             95m
01-worker-kubelet                                  5bdb57489b720096ef912f738b46330a8f577803   
3.2.0             95m
99-master-generated-registries                     
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             95m
99-master-ssh                                                                                 3.2.0             98m
99-worker-generated-registries                     
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             95m
99-worker-ssh                                                                                 3.2.0             98m
os-layer-custom                                                                                                 10s 1
rendered-master-15961f1da260f7be141006404d17d39b   
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             95m
rendered-worker-5aff604cb1381a4fe07feaf1595a797e   
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             95m
rendered-worker-5de4837625b1cbc237de6b22bc0bc873   
5bdb57489b720096ef912f738b46330a8f577803   3.2.0             4s  2

$ oc describe mc rendered-master-4e8be63aef68b843b546827b6ebe0913

Name:         rendered-master-4e8be63aef68b843b546827b6ebe0913
Namespace:
Labels:       <none>
Annotations:  machineconfiguration.openshift.io/generated-by-controller-version: 
8276d9c1f574481043d3661a1ace1f36cd8c3b62
              machineconfiguration.openshift.io/release-image-version: 4.15.0-ec.3
API Version:  machineconfiguration.openshift.io/v1

CHAPTER 18. RHCOS IMAGE LAYERING

445



1

c. Check that the associated machine config pool is updating with the new machine config:

Sample output

When the UPDATING field is True, the machine config pool is updating with the new
machine config. When the field becomes False, the worker machine config pool has
rolled out to the new machine config.

d. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the
change is being applied:

Example output

2. When the node is back in the Ready state, check that the node is using the custom layered
image:

a. Open an oc debug session to the node. For example:

b. Set /host as the root directory within the debug shell:

Kind:         MachineConfig
...
  Os Image URL: quay.io/my-registry/custom-image@sha256...

$ oc get mcp

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   
MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   
DEGRADEDMACHINECOUNT   AGE
master   rendered-master-6faecdfa1b25c114a58cf178fbaa45e2   True      False      False      
3              3                   3                     0                      39m
worker   rendered-worker-6b000dbc31aaee63c6a2d56d04cd4c1b   False     True       
False      3              0                   0                     0                      39m 1

$ oc get nodes

NAME                                         STATUS                     ROLES                  AGE   
VERSION
ip-10-0-148-79.us-west-1.compute.internal    Ready                      worker                 32m   
v1.28.5
ip-10-0-155-125.us-west-1.compute.internal   Ready,SchedulingDisabled   worker                 
35m   v1.28.5
ip-10-0-170-47.us-west-1.compute.internal    Ready                      control-plane,master   
42m   v1.28.5
ip-10-0-174-77.us-west-1.compute.internal    Ready                      control-plane,master   
42m   v1.28.5
ip-10-0-211-49.us-west-1.compute.internal    Ready                      control-plane,master   
42m   v1.28.5
ip-10-0-218-151.us-west-1.compute.internal   Ready                      worker                 31m   
v1.28.5

$ oc debug node/ip-10-0-155-125.us-west-1.compute.internal

OpenShift Container Platform 4.15 Postinstallation configuration

446



c. Run the rpm-ostree status command to view that the custom layered image is in use:

Example output

State: idle
Deployments:
* ostree-unverified-registry:quay.io/my-registry/...
                   Digest: sha256:...

Additional resources

Updating with a RHCOS custom layered image

18.2. REMOVING A RHCOS CUSTOM LAYERED IMAGE

You can easily revert Red Hat Enterprise Linux CoreOS (RHCOS) image layering from the nodes in
specific machine config pools. The Machine Config Operator (MCO) reboots those nodes with the
cluster base Red Hat Enterprise Linux CoreOS (RHCOS) image, overriding the custom layered image.

To remove a Red Hat Enterprise Linux CoreOS (RHCOS) custom layered image from your cluster, you
need to delete the machine config that applied the image.

Procedure

1. Delete the machine config that applied the custom layered image.

After deleting the machine config, the nodes reboot.

Verification

You can verify that the custom layered image is removed by performing any of the following checks:

1. Check that the worker machine config pool is updating with the previous machine config:

Sample output

sh-4.4# chroot /host

sh-4.4# sudo rpm-ostree status

$ oc delete mc os-layer-custom

$ oc get mcp

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   
MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   
DEGRADEDMACHINECOUNT   AGE
master   rendered-master-6faecdfa1b25c114a58cf178fbaa45e2   True      False      False      
3              3                   3                     0                      39m
worker   rendered-worker-6b000dbc31aaee63c6a2d56d04cd4c1b   False     True       False      
3              0                   0                     0                      39m 1

CHAPTER 18. RHCOS IMAGE LAYERING

447



1 When the UPDATING field is True, the machine config pool is updating with the previous
machine config. When the field becomes False, the worker machine config pool has rolled

2. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the change
is being applied:

Example output

3. When the node is back in the Ready state, check that the node is using the base image:

a. Open an oc debug session to the node. For example:

b. Set /host as the root directory within the debug shell:

c. Run the rpm-ostree status command to view that the custom layered image is in use:

Example output

State: idle
Deployments:
* ostree-unverified-registry:podman pull quay.io/openshift-release-dev/ocp-
release@sha256:e2044c3cfebe0ff3a99fc207ac5efe6e07878ad59fd4ad5e41f88cb016dacd
73
                   Digest: 
sha256:e2044c3cfebe0ff3a99fc207ac5efe6e07878ad59fd4ad5e41f88cb016dacd73

18.3. UPDATING WITH A RHCOS CUSTOM LAYERED IMAGE

When you configure Red Hat Enterprise Linux CoreOS (RHCOS) image layering, OpenShift Container

$ oc get nodes

NAME                                         STATUS                     ROLES                  AGE   VERSION
ip-10-0-148-79.us-west-1.compute.internal    Ready                      worker                 32m   
v1.28.5
ip-10-0-155-125.us-west-1.compute.internal   Ready,SchedulingDisabled   worker                 
35m   v1.28.5
ip-10-0-170-47.us-west-1.compute.internal    Ready                      control-plane,master   42m   
v1.28.5
ip-10-0-174-77.us-west-1.compute.internal    Ready                      control-plane,master   42m   
v1.28.5
ip-10-0-211-49.us-west-1.compute.internal    Ready                      control-plane,master   42m   
v1.28.5
ip-10-0-218-151.us-west-1.compute.internal   Ready                      worker                 31m   
v1.28.5

$ oc debug node/ip-10-0-155-125.us-west-1.compute.internal

sh-4.4# chroot /host

sh-4.4# sudo rpm-ostree status

OpenShift Container Platform 4.15 Postinstallation configuration

448



When you configure Red Hat Enterprise Linux CoreOS (RHCOS) image layering, OpenShift Container
Platform no longer automatically updates the node pool that uses the custom layered image. You
become responsible to manually update your nodes as appropriate.

To update a node that uses a custom layered image, follow these general steps:

1. The cluster automatically upgrades to version x.y.z+1, except for the nodes that use the custom
layered image.

2. You could then create a new Containerfile that references the updated OpenShift Container
Platform image and the RPM that you had previously applied.

3. Create a new machine config that points to the updated custom layered image.

Updating a node with a custom layered image is not required. However, if that node gets too far behind
the current OpenShift Container Platform version, you could experience unexpected results.

CHAPTER 18. RHCOS IMAGE LAYERING

449



CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING
NUTANIX CLUSTER

By default, the installation program installs control plane and compute machines into a single Nutanix
Prism Element (cluster). After an OpenShift Container Platform cluster is deployed, you can improve its
fault tolerance by adding additional Prism Element instances to the deployment using failure domains.

A failure domain represents a single Prism Element instance to which:

New control plane and compute machines can be deployed.

Existing control plane and compute machines can be distributed.

19.1. FAILURE DOMAIN REQUIREMENTS

When planning to use failure domains, consider the following requirements:

All Nutanix Prism Element instances must be managed by the same instance of Prism Central. A
deployment that is comprised of multiple Prism Central instances is not supported.

The machines that make up the Prism Element clusters must reside on the same Ethernet
network for failure domains to be able to communicate with each other.

A subnet is required in each Prism Element that will be used as a failure domain in the OpenShift
Container Platform cluster. When defining these subnets, they must share the same IP address
prefix (CIDR) and should contain the virtual IP addresses that the OpenShift Container
Platform cluster uses.

19.2. ADDING FAILURE DOMAINS TO THE INFRASTRUCTURE CR

You add failure domains to an existing Nutanix cluster by modifying its Infrastructure custom resource
(CR) (infrastructures.config.openshift.io).

TIP

It is recommended that you configure three failure domains to ensure high-availability.

Procedure

1. Edit the Infrastructure CR by running the following command:

2. Configure the failure domains.

Example Infrastructure CR with Nutanix failure domains

$ oc edit infrastructures.config.openshift.io cluster

spec:
  cloudConfig:
    key: config
    name: cloud-provider-config
#...
  platformSpec:

OpenShift Container Platform 4.15 Postinstallation configuration

450



where:

<uuid>

Specifies the universally unique identifier (UUID) of the Prism Element.

<failure_domain_name>

Specifies a unique name for the failure domain. The name is limited to 64 or fewer
characters, which can include lower-case letters, digits, and a dash (-). The dash cannot be in
the leading or ending position of the name.

<network_uuid>

Specifies the UUID of the Prism Element subnet object. The subnet’s IP address prefix
(CIDR) should contain the virtual IP addresses that the OpenShift Container Platform
cluster uses. Only one subnet per failure domain (Prism Element) in an OpenShift Container
Platform cluster is supported.

3. Save the CR to apply the changes.

19.3. DISTRIBUTING CONTROL PLANES ACROSS FAILURE DOMAINS

You distribute control planes across Nutanix failure domains by modifying the control plane machine set
custom resource (CR).

Prerequisites

You have configured the failure domains in the cluster’s Infrastructure custom resource (CR).

The control plane machine set custom resource (CR) is in an active state.

For more information on checking the control plane machine set custom resource state, see "Additional
resources".

    nutanix:
      failureDomains:
      - cluster:
         type: UUID
         uuid: <uuid>
        name: <failure_domain_name>
        subnets:
        - type: UUID
          uuid: <network_uuid>
      - cluster:
         type: UUID
         uuid: <uuid>
        name: <failure_domain_name>
        subnets:
        - type: UUID
          uuid: <network_uuid>
      - cluster:
          type: UUID
          uuid: <uuid>
        name: <failure_domain_name>
        subnets:
        - type: UUID
          uuid: <network_uuid>
# ...

CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER

451



Procedure

1. Edit the control plane machine set CR by running the following command:

2. Configure the control plane machine set to use failure domains by adding a 
spec.template.machines_v1beta1_machine_openshift_io.failureDomains stanza.

Example control plane machine set with Nutanix failure domains

3. Save your changes.

By default, the control plane machine set propagates changes to your control plane configuration
automatically. If the cluster is configured to use the OnDelete update strategy, you must replace your
control planes manually. For more information, see "Additional resources".

Additional resources

Checking the control plane machine set custom resource state

Replacing a control plane machine

19.4. DISTRIBUTING COMPUTE MACHINES ACROSS FAILURE
DOMAINS

You can distribute compute machines across Nutanix failure domains one of the following ways:

Editing existing compute machine sets  allows you to distribute compute machines across
Nutanix failure domains as a minimal configuration update.

Replacing existing compute machine sets ensures that the specification is immutable and all
your machines are the same.

$ oc edit controlplanemachineset.machine.openshift.io cluster -n openshift-machine-api

apiVersion: machine.openshift.io/v1
kind: ControlPlaneMachineSet
  metadata:
    creationTimestamp: null
    labels:
      machine.openshift.io/cluster-api-cluster: <cluster_name>
    name: cluster
    namespace: openshift-machine-api
spec:
# ...
  template:
    machineType: machines_v1beta1_machine_openshift_io
    machines_v1beta1_machine_openshift_io:
      failureDomains:
        platform: Nutanix
        nutanix:
        - name: <failure_domain_name_1>
        - name: <failure_domain_name_2>
        - name: <failure_domain_name_3>
# ...

OpenShift Container Platform 4.15 Postinstallation configuration

452

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#cpmso-checking-status_cpmso-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#cpmso-feat-replace_cpmso-using


19.4.1. Editing compute machine sets to implement failure domains

To distribute compute machines across Nutanix failure domains by using an existing compute machine
set, you update the compute machine set with your configuration and then use scaling to replace the
existing compute machines.

Prerequisites

You have configured the failure domains in the cluster’s Infrastructure custom resource (CR).

Procedure

1. Run the following command to view the cluster’s Infrastructure CR.

2. For each failure domain (platformSpec.nutanix.failureDomains), note the cluster’s UUID,
name, and subnet object UUID. These values are required to add a failure domain to a compute
machine set.

3. List the compute machine sets in your cluster by running the following command:

Example output

4. Edit the first compute machine set by running the following command:

5. Configure the compute machine set to use the first failure domain by updating the following to
the spec.template.spec.providerSpec.value stanza.

NOTE

Be sure that the values you specify for the cluster and subnets fields match the
values that were configured in the failureDomains stanza in the cluster’s
Infrastructure CR.

Example compute machine set with Nutanix failure domains

$ oc describe infrastructures.config.openshift.io cluster

$ oc get machinesets -n openshift-machine-api

NAME                   DESIRED   CURRENT   READY   AVAILABLE   AGE
<machine_set_name_1>   1         1         1       1           55m
<machine_set_name_2>   1         1         1       1           55m

$ oc edit machineset <machine_set_name_1> -n openshift-machine-api

apiVersion: machine.openshift.io/v1
kind: MachineSet
metadata:
  creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: <cluster_name>
  name: <machine_set_name_1>
  namespace: openshift-machine-api

CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER

453



1

6. Note the value of spec.replicas, because you need it when scaling the compute machine set to
apply the changes.

7. Save your changes.

8. List the machines that are managed by the updated compute machine set by running the
following command:

Example output

9. For each machine that is managed by the updated compute machine set, set the delete
annotation by running the following command:

10. To create replacement machines with the new configuration, scale the compute machine set to
twice the number of replicas by running the following command:

For example, if the original number of replicas in the compute machine set is 2, scale the
replicas to 4.

spec:
  replicas: 2
# ...
  template:
    spec:
# ...
      providerSpec:
        value:
          apiVersion: machine.openshift.io/v1
          failureDomain:
            name: <failure_domain_name_1>
          cluster:
            type: uuid
            uuid: <prism_element_uuid_1>
          subnets:
          - type: uuid
            uuid: <prism_element_network_uuid_1>
# ...

$ oc get -n openshift-machine-api machines \
  -l machine.openshift.io/cluster-api-machineset=<machine_set_name_1>

NAME                        PHASE     TYPE   REGION    ZONE                 AGE
<machine_name_original_1>   Running   AHV    Unnamed   Development-STS   4h
<machine_name_original_2>   Running   AHV    Unnamed   Development-STS   4h

$ oc annotate machine/<machine_name_original_1> \
  -n openshift-machine-api \
  machine.openshift.io/delete-machine="true"

$ oc scale --replicas=<twice_the_number_of_replicas> \ 1
  machineset <machine_set_name_1> \
  -n openshift-machine-api

OpenShift Container Platform 4.15 Postinstallation configuration

454



1

11. List the machines that are managed by the updated compute machine set by running the
following command:

When the new machines are in the Running phase, you can scale the compute machine set to
the original number of replicas.

12. To remove the machines that were created with the old configuration, scale the compute
machine set to the original number of replicas by running the following command:

For example, if the original number of replicas in the compute machine set was 2, scale the
replicas to 2.

13. As required, continue to modify machine sets to reference the additional failure domains that
are available to the deployment.

Additional resources

Modifying a compute machine set

19.4.2. Replacing compute machine sets to implement failure domains

To distribute compute machines across Nutanix failure domains by replacing a compute machine set,
you create a new compute machine set with your configuration, wait for the machines that it creates to
start, and then delete the old compute machine set.

Prerequisites

You have configured the failure domains in the cluster’s Infrastructure custom resource (CR).

Procedure

1. Run the following command to view the cluster’s Infrastructure CR.

2. For each failure domain (platformSpec.nutanix.failureDomains), note the cluster’s UUID,
name, and subnet object UUID. These values are required to add a failure domain to a compute
machine set.

3. List the compute machine sets in your cluster by running the following command:

Example output

$ oc get -n openshift-machine-api machines -l machine.openshift.io/cluster-api-machineset=
<machine_set_name_1>

$ oc scale --replicas=<original_number_of_replicas> \ 1
  machineset <machine_set_name_1> \
  -n openshift-machine-api

$ oc describe infrastructures.config.openshift.io cluster

$ oc get machinesets -n openshift-machine-api

CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER

455

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#modifying-machineset


1

2

4. Note the names of the existing compute machine sets.

5. Create a YAML file that contains the values for your new compute machine set custom resource
(CR) by using one of the following methods:

Copy an existing compute machine set configuration into a new file by running the following
command:

You can edit this YAML file with your preferred text editor.

Create a blank YAML file named <new_machine_set_name_1>.yaml with your preferred
text editor and include the required values for your new compute machine set.
If you are not sure which value to set for a specific field, you can view values of an existing
compute machine set CR by running the following command:

Example output

The cluster infrastructure ID.

A default node label.

NAME                            DESIRED   CURRENT   READY   AVAILABLE   AGE
<original_machine_set_name_1>   1         1         1       1           55m
<original_machine_set_name_2>   1         1         1       1           55m

$ oc get machineset <original_machine_set_name_1> \
  -n openshift-machine-api -o yaml > <new_machine_set_name_1>.yaml

$ oc get machineset <original_machine_set_name_1> \
  -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-<role> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: <role>
        machine.openshift.io/cluster-api-machine-type: <role>
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
    spec:
      providerSpec: 3
        ...

OpenShift Container Platform 4.15 Postinstallation configuration

456



3

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create machines with a worker or infra role.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

6. Configure the new compute machine set to use the first failure domain by updating or adding
the following to the spec.template.spec.providerSpec.value stanza in the 
<new_machine_set_name_1>.yaml file.

NOTE

Be sure that the values you specify for the cluster and subnets fields match the
values that were configured in the failureDomains stanza in the cluster’s
Infrastructure CR.

Example compute machine set with Nutanix failure domains

7. Save your changes.

8. Create a compute machine set CR by running the following command:

apiVersion: machine.openshift.io/v1
kind: MachineSet
metadata:
  creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: <cluster_name>
  name: <new_machine_set_name_1>
  namespace: openshift-machine-api
spec:
  replicas: 2
# ...
  template:
    spec:
# ...
      providerSpec:
        value:
          apiVersion: machine.openshift.io/v1
          failureDomain:
            name: <failure_domain_name_1>
          cluster:
            type: uuid
            uuid: <prism_element_uuid_1>
          subnets:
          - type: uuid
            uuid: <prism_element_network_uuid_1>
# ...

$ oc create -f <new_machine_set_name_1>.yaml

CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER

457



9. As required, continue to create compute machine sets to reference the additional failure
domains that are available to the deployment.

10. List the machines that are managed by the new compute machine sets by running the following
command for each new compute machine set:

Example output

When the new machines are in the Running phase, you can delete the old compute machine
sets that do not include the failure domain configuration.

11. When you have verified that the new machines are in the Running phase, delete the old
compute machine sets by running the following command for each:

Verification

To verify that the compute machine sets without the updated configuration are deleted, list the
compute machine sets in your cluster by running the following command:

Example output

To verify that the compute machines without the updated configuration are deleted, list the
machines in your cluster by running the following command:

Example output while deletion is in progress

Example output when deletion is complete

$ oc get -n openshift-machine-api machines -l machine.openshift.io/cluster-api-machineset=
<new_machine_set_name_1>

NAME                             PHASE          TYPE   REGION    ZONE                 AGE
<machine_from_new_1>             Provisioned    AHV    Unnamed   Development-STS   25s
<machine_from_new_2>             Provisioning   AHV    Unnamed   Development-STS   25s

$ oc delete machineset <original_machine_set_name_1> -n openshift-machine-api

$ oc get machinesets -n openshift-machine-api

NAME                       DESIRED   CURRENT   READY   AVAILABLE   AGE
<new_machine_set_name_1>   1         1         1       1           4m12s
<new_machine_set_name_2>   1         1         1       1           4m12s

$ oc get -n openshift-machine-api machines

NAME                        PHASE           TYPE     REGION      ZONE                 AGE
<machine_from_new_1>        Running         AHV      Unnamed     Development-STS   5m41s
<machine_from_new_2>        Running         AHV      Unnamed     Development-STS   5m41s
<machine_from_original_1>   Deleting        AHV      Unnamed     Development-STS   4h
<machine_from_original_2>   Deleting        AHV      Unnamed     Development-STS   4h

OpenShift Container Platform 4.15 Postinstallation configuration

458



To verify that a machine created by the new compute machine set has the correct
configuration, examine the relevant fields in the CR for one of the new machines by running the
following command:

Additional resources

Creating a compute machine set on Nutanix

NAME                        PHASE           TYPE     REGION      ZONE                 AGE
<machine_from_new_1>        Running         AHV      Unnamed     Development-STS   6m30s
<machine_from_new_2>        Running         AHV      Unnamed     Development-STS   6m30s

$ oc describe machine <machine_from_new_1> -n openshift-machine-api

CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER

459

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-machineset-nutanix


CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE
TASKS

After installing OpenShift Container Platform on Amazon Web Services (AWS), you can further
configure AWS Local Zones or Wavelength Zones and an edge compute pool.

20.1. EXTEND EXISTING CLUSTERS TO USE AWS LOCAL ZONES OR
WAVELENGTH ZONES

As a post-installation task, you can extend an existing OpenShift Container Platform cluster on Amazon
Web Services (AWS) to use AWS Local Zones or Wavelength Zones.

Extending nodes to Local Zones or Wavelength Zones locations comprises the following steps:

Adjusting the cluster-network maximum transmission unit (MTU).

Opting in the Local Zones or Wavelength Zones group to AWS Local Zones or Wavelength
Zones.

Creating a subnet in the existing VPC for a Local Zones or Wavelength Zones location.

IMPORTANT

Before you extend an existing OpenShift Container Platform cluster on AWS to
use Local Zones or Wavelength Zones, check that the existing VPC contains
available Classless Inter-Domain Routing (CIDR) blocks. These blocks are
needed for creating the subnets.

Creating the machine set manifest, and then creating a node in each Local Zone or Wavelength
Zone location.

Local Zones only: Adding the permission ec2:ModifyAvailabilityZoneGroup to the Identity and
Access Management (IAM) user or role, so that the required network resources can be created.
For example:

Example of an additional IAM policy for AWS Local Zones deployments

Wavelength Zone only: Adding the permissions ec2:ModifyAvailabilityZoneGroup, 
ec2:CreateCarrierGateway, and ec2:DeleteCarrierGateway to the Identity and Access
Management (IAM) user or role, so that the required network resources can be created. For

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": [
        "ec2:ModifyAvailabilityZoneGroup"
      ],
      "Effect": "Allow",
      "Resource": "*"
    }
  ]
}

OpenShift Container Platform 4.15 Postinstallation configuration

460



example:

Example of an additional IAM policy for AWS Wavelength Zones deployments

Additional resources

For more information about AWS Local Zones, the supported instances types, and services, see
AWS Local Zones features  in the AWS documentation.

For more information about AWS Local Zones, the supported instances types, and services, see
AWS Wavelength features  in the AWS documentation.

20.1.1. About edge compute pools

Edge compute nodes are tainted compute nodes that run in AWS Local Zones or Wavelength Zones
locations.

When deploying a cluster that uses Local Zones or Wavelength Zones, consider the following points:

Amazon EC2 instances in the Local Zones or Wavelength Zones are more expensive than
Amazon EC2 instances in the Availability Zones.

The latency is lower between the applications running in AWS Local Zones or Wavelength Zones
and the end user. A latency impact exists for some workloads if, for example, ingress traffic is
mixed between Local Zones or Wavelength Zones and Availability Zones.

IMPORTANT

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "ec2:DeleteCarrierGateway",
        "ec2:CreateCarrierGateway"
      ],
      "Resource": "*"
    },
    {
      "Action": [
        "ec2:ModifyAvailabilityZoneGroup"
      ],
      "Effect": "Allow",
      "Resource": "*"
    }
  ]
}

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

461

https://aws.amazon.com/about-aws/global-infrastructure/localzones/features/
https://aws.amazon.com/wavelength/features/


IMPORTANT

Generally, the maximum transmission unit (MTU) between an Amazon EC2 instance in a
Local Zones or Wavelength Zones and an Amazon EC2 instance in the Region is 1300.
The cluster network MTU must be always less than the EC2 MTU to account for the
overhead. The specific overhead is determined by the network plugin. For example:
OVN-Kubernetes has an overhead of 100 bytes.

The network plugin can provide additional features, such as IPsec, that also affect the
MTU sizing.

You can access the following resources to learn more about a respective zone type:

See How Local Zones work in the AWS documentation.

See How AWS Wavelength work  in the AWS documentation.

OpenShift Container Platform 4.12 introduced a new compute pool, edge, that is designed for use in
remote zones. The edge compute pool configuration is common between AWS Local Zones or
Wavelength Zones locations. Because of the type and size limitations of resources like EC2 and EBS on
Local Zones or Wavelength Zones resources, the default instance type can vary from the traditional
compute pool.

The default Elastic Block Store (EBS) for Local Zones or Wavelength Zones locations is gp2, which
differs from the non-edge compute pool. The instance type used for each Local Zones or Wavelength
Zones on an edge compute pool also might differ from other compute pools, depending on the instance
offerings on the zone.

The edge compute pool creates new labels that developers can use to deploy applications onto AWS
Local Zones or Wavelength Zones nodes. The new labels are:

node-role.kubernetes.io/edge=''

Local Zones only: machine.openshift.io/zone-type=local-zone

Wavelength Zones only: machine.openshift.io/zone-type=wavelength-zone

machine.openshift.io/zone-group=$ZONE_GROUP_NAME

By default, the machine sets for the edge compute pool define the taint of NoSchedule to prevent
other workloads from spreading on Local Zones or Wavelength Zones instances. Users can only run user
workloads if they define tolerations in the pod specification.

20.2. CHANGING THE CLUSTER NETWORK MTU TO SUPPORT LOCAL
ZONES OR WAVELENGTH ZONES

You might need to change the maximum transmission unit (MTU) value for the cluster network so that
your cluster infrastructure can support Local Zones or Wavelength Zones subnets.

20.2.1. About the cluster MTU

During installation the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You do not
usually need to override the detected MTU.

OpenShift Container Platform 4.15 Postinstallation configuration

462

https://docs.aws.amazon.com/local-zones/latest/ug/how-local-zones-work.html
https://docs.aws.amazon.com/wavelength/latest/developerguide/how-wavelengths-work.html


You might want to change the MTU of the cluster network for several reasons:

The MTU detected during cluster installation is not correct for your infrastructure.

Your cluster infrastructure now requires a different MTU, such as from the addition of nodes
that need a different MTU for optimal performance.

Only the OVN-Kubernetes cluster network plugin supports changing the MTU value.

20.2.1.1. Service interruption considerations

When you initiate an MTU change on your cluster the following effects might impact service availability:

At least two rolling reboots are required to complete the migration to a new MTU. During this
time, some nodes are not available as they restart.

Specific applications deployed to the cluster with shorter timeout intervals than the absolute
TCP timeout interval might experience disruption during the MTU change.

20.2.1.2. MTU value selection

When planning your MTU migration there are two related but distinct MTU values to consider.

Hardware MTU: This MTU value is set based on the specifics of your network infrastructure.

Cluster network MTU: This MTU value is always less than your hardware MTU to account for
the cluster network overlay overhead. The specific overhead is determined by your network
plugin. For OVN-Kubernetes, the overhead is 100 bytes.

If your cluster requires different MTU values for different nodes, you must subtract the overhead value
for your network plugin from the lowest MTU value that is used by any node in your cluster. For example,
if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this
value to 1400.

IMPORTANT

To avoid selecting an MTU value that is not acceptable by a node, verify the maximum
MTU value (maxmtu) that is accepted by the network interface by using the ip -d link
command.

20.2.1.3. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 20.1. Live migration of the cluster MTU

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

463



User-initiated steps OpenShift Container Platform activity

Set the following values in the Cluster Network
Operator configuration:

spec.migration.mtu.machine.to

spec.migration.mtu.network.from

spec.migration.mtu.network.to

Cluster Network Operator (CNO): Confirms that
each field is set to a valid value.

The mtu.machine.to must be set to either
the new hardware MTU or to the current
hardware MTU if the MTU for the hardware
is not changing. This value is transient and is
used as part of the migration process.
Separately, if you specify a hardware MTU
that is different from your existing hardware
MTU value, you must manually configure
the MTU to persist by other means, such as
with a machine config, DHCP setting, or a
Linux kernel command line.

The mtu.network.from field must equal
the 
network.status.clusterNetworkMTU
field, which is the current MTU of the cluster
network.

The mtu.network.to field must be set to
the target cluster network MTU and must
be lower than the hardware MTU to allow for
the overlay overhead of the network plugin.
For OVN-Kubernetes, the overhead is 100
bytes.

If the values provided are valid, the CNO writes out a
new temporary configuration with the MTU for the
cluster network set to the value of the 
mtu.network.to field.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster.

Reconfigure the MTU of the primary network
interface for the nodes on the cluster. You can use a
variety of methods to accomplish this, including:

Deploying a new NetworkManager
connection profile with the MTU change

Changing the MTU through a DHCP server
setting

Changing the MTU through boot
parameters

N/A

Set the mtu value in the CNO configuration for the
network plugin and set spec.migration to null.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster with the
new MTU configuration.

20.2.1.4. Changing the cluster network MTU

OpenShift Container Platform 4.15 Postinstallation configuration

464



As a cluster administrator, you can increase or decrease the maximum transmission unit (MTU) for your
cluster.

IMPORTANT

The migration is disruptive and nodes in your cluster might be temporarily unavailable as
the MTU update takes effect.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster using an account with cluster-admin permissions.

You have identified the target MTU for your cluster. The MTU for the OVN-Kubernetes network
plugin must be set to 100 less than the lowest hardware MTU value in your cluster.

Procedure

1. To obtain the current MTU for the cluster network, enter the following command:

Example output

2. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

where:

<overlay_from>

Specifies the current cluster network MTU value.

<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value of 
<machine_to>. For OVN-Kubernetes, this value must be 100 less than the value of 
<machine_to>.

<machine_to>

$ oc describe network.config cluster

...
Status:
  Cluster Network:
    Cidr:               10.217.0.0/22
    Host Prefix:        23
  Cluster Network MTU:  1400
  Network Type:         OVNKubernetes
  Service Network:
    10.217.4.0/23
...

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to> } , 
"machine": { "to" : <machine_to> } } } } }'

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

465



Specifies the MTU for the primary network interface on the underlying host network.

Example that increases the cluster MTU

3. As the Machine Config Operator updates machines in each machine config pool, it reboots each
node one by one. You must wait until all the nodes are updated. Check the machine config pool
status by entering the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

NOTE

By default, the Machine Config Operator updates one machine per pool at a
time, causing the total time the migration takes to increase with the size of the
cluster.

4. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

b. Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

c. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the 
machineconfiguration.openshift.io/currentConfig field.

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": { "mtu": { "network": { "from": 1400, "to": 9000 } , "machine": { "to" : 
9100} } } } }'

$ oc get machineconfigpools

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

OpenShift Container Platform 4.15 Postinstallation configuration

466



The machine config must include the following update to the systemd configuration:

5. To finalize the MTU migration, enter the following command for the OVN-Kubernetes network
plugin:

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

6. After finalizing the MTU migration, each machine config pool node is rebooted one by one. You
must wait until all the nodes are updated. Check the machine config pool status by entering the
following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

Verification

Verify that the node in your cluster uses the MTU that you specified by entering the following
command:

20.2.2. Opting in to AWS Local Zones or Wavelength Zones

If you plan to create subnets in AWS Local Zones or Wavelength Zones, you must opt in to each zone
group separately.

Prerequisites

You have installed the AWS CLI.

You have determined an AWS Region for where you want to deploy your OpenShift Container
Platform cluster.

You have attached a permissive IAM policy to a user or role account that opts in to the zone
group.

Procedure

1. List the zones that are available in your AWS Region by running the following command:

Example command for listing available AWS Local Zones in an AWS Region

ExecStart=/usr/local/bin/mtu-migration.sh

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu> }}}}'

$ oc get machineconfigpools

$ oc describe network.config cluster

$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

467



1

Example command for listing available AWS Wavelength Zones in an AWS Region

Depending on the AWS Region, the list of available zones might be long. The command returns
the following fields:

ZoneName

The name of the Local Zones or Wavelength Zones.

GroupName

The group that comprises the zone. To opt in to the Region, save the name.

Status

The status of the Local Zones or Wavelength Zones group. If the status is not-opted-in, you
must opt in the GroupName as described in the next step.

2. Opt in to the zone group on your AWS account by running the following command:

Replace <value_of_GroupName> with the name of the group of the Local Zones or
Wavelength Zones where you want to create subnets.

20.2.3. Create network requirements in an existing VPC that uses AWS Local Zones
or Wavelength Zones

If you want a Machine API to create an Amazon EC2 instance in a remote zone location, you must create
a subnet in a Local Zones or Wavelength Zones location. You can use any provisioning tool, such as
Ansible or Terraform, to create subnets in the existing Virtual Private Cloud (VPC).

You can configure the CloudFormation template to meet your requirements. The following subsections
include steps that use CloudFormation templates to create the network requirements that extend an
existing VPC to use an AWS Local Zones or Wavelength Zones.

Extending nodes to Local Zones requires that you create the following resources:

2 VPC Subnets: public and private. The public subnet associates to the public route table for the
regular Availability Zones in the Region. The private subnet associates to the provided route
table ID.

Extending nodes to Wavelength Zones requires that you create the following resources:

    --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status: 
OptInStatus}]' \
    --filters Name=zone-type,Values=local-zone \
    --all-availability-zones

$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
    --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status: 
OptInStatus}]' \
    --filters Name=zone-type,Values=wavelength-zone \
    --all-availability-zones

$ aws ec2 modify-availability-zone-group \
    --group-name "<value_of_GroupName>" \ 1
    --opt-in-status opted-in

OpenShift Container Platform 4.15 Postinstallation configuration

468



1 VPC Carrier Gateway associated to the provided VPC ID.

1 VPC Route Table for Wavelength Zones with a default route entry to VPC Carrier Gateway.

2 VPC Subnets: public and private. The public subnet associates to the public route table for an
AWS Wavelength Zone. The private subnet associates to the provided route table ID.

IMPORTANT

Considering the limitation of NAT Gateways in Wavelength Zones, the provided
CloudFormation templates support only associating the private subnets with the
provided route table ID. A route table ID is attached to a valid NAT Gateway in the AWS
Region.

20.2.4. Wavelength Zones only: Creating a VPC carrier gateway

To use public subnets in your OpenShift Container Platform cluster that runs on Wavelength Zones, you
must create the carrier gateway and associate the carrier gateway to the VPC. Subnets are useful for
deploying load balancers or edge compute nodes.

To create edge nodes or internet-facing load balancers in Wavelength Zones locations for your
OpenShift Container Platform cluster, you must create the following required network components:

A carrier gateway that associates to the existing VPC.

A carrier route table that lists route entries.

A subnet that associates to the carrier route table.

Carrier gateways exist for VPCs that only contain subnets in a Wavelength Zone.

The following list explains the functions of a carrier gateway in the context of an AWS Wavelength Zones
location:

Provides connectivity between your Wavelength Zone and the carrier network, which includes
any available devices from the carrier network.

Performs Network Address Translation (NAT) functions, such as translating IP addresses that
are public IP addresses stored in a network border group, from Wavelength Zones to carrier IP
addresses. These translation functions apply to inbound and outbound traffic.

Authorizes inbound traffic from a carrier network that is located in a specific location.

Authorizes outbound traffic to a carrier network and the internet.

NOTE

No inbound connection configuration exists from the internet to a Wavelength Zone
through the carrier gateway.

You can use the provided CloudFormation template to create a stack of the following AWS resources:

One carrier gateway that associates to the VPC ID in the template.

One public route table for the Wavelength Zone named as <ClusterName>-public-carrier.

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

469



1

2

3

4

Default IPv4 route entry in the new route table that targets the carrier gateway.

VPC gateway endpoint for an AWS Simple Storage Service (S3).

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

Procedure

1. Go to the next section of the documentation named "CloudFormation template for the VPC
Carrier Gateway", and then copy the syntax from the CloudFormation template for VPC
Carrier Gateway template. Save the copied template syntax as a YAML file on your local
system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

<stack_name> is the name for the CloudFormation stack, such as clusterName-vpc-
carrier-gw. You need the name of this stack if you remove the cluster.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

<VpcId> is the VPC ID extracted from the CloudFormation stack output created in the
section named "Creating a VPC in AWS".

<ClusterName> is a custom value that prefixes to resources that the CloudFormation
stack creates. You can use the same name that is defined in the metadata.name section
of the install-config.yaml configuration file.

Example output

Verification

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
  --region ${CLUSTER_REGION} \
  --template-body file://<template>.yaml \ 2
  --parameters \//
    ParameterKey=VpcId,ParameterValue="${VpcId}" \ 3
    ParameterKey=ClusterName,ParameterValue="${ClusterName}" 4

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-2fd3-11eb-
820e-12a48460849f

OpenShift Container Platform 4.15 Postinstallation configuration

470



Confirm that the CloudFormation template components exist by running the following
command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameter. Ensure that you provide the parameter value to the other CloudFormation
templates that you run to create for your cluster.

PublicRou
teTableId

The ID of the Route Table in the Carrier infrastructure.

20.2.5. Wavelength Zones only: CloudFormation template for the VPC Carrier
Gateway

You can use the following CloudFormation template to deploy the Carrier Gateway on AWS Wavelength
infrastructure.

Example 20.1. CloudFormation template for VPC Carrier Gateway

$ aws cloudformation describe-stacks --stack-name <stack_name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Creating Wavelength Zone Gateway (Carrier Gateway).

Parameters:
  VpcId:
    Description: VPC ID to associate the Carrier Gateway.
    Type: String
    AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
    ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
  ClusterName:
    Description: Cluster Name or Prefix name to prepend the tag Name for each subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ClusterName parameter must be specified.

Resources:
  CarrierGateway:
    Type: "AWS::EC2::CarrierGateway"
    Properties:
      VpcId: !Ref VpcId
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "cagw"]]

  PublicRouteTable:
    Type: "AWS::EC2::RouteTable"
    Properties:
      VpcId: !Ref VpcId
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "public-carrier"]]

  PublicRoute:
    Type: "AWS::EC2::Route"

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

471



20.2.6. Creating subnets for AWS edge compute services

Before you configure a machine set for edge compute nodes in your OpenShift Container Platform
cluster, you must create a subnet in Local Zones or Wavelength Zones. Complete the following
procedure for each Wavelength Zone that you want to deploy compute nodes to.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then
use this stack to custom provision a subnet.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

    DependsOn: CarrierGateway
    Properties:
      RouteTableId: !Ref PublicRouteTable
      DestinationCidrBlock: 0.0.0.0/0
      CarrierGatewayId: !Ref CarrierGateway

  S3Endpoint:
    Type: AWS::EC2::VPCEndpoint
    Properties:
      PolicyDocument:
        Version: 2012-10-17
        Statement:
        - Effect: Allow
          Principal: '*'
          Action:
          - '*'
          Resource:
          - '*'
      RouteTableIds:
      - !Ref PublicRouteTable
      ServiceName: !Join
      - ''
      - - com.amazonaws.
        - !Ref 'AWS::Region'
        - .s3
      VpcId: !Ref VpcId

Outputs:
  PublicRouteTableId:
    Description: Public Route table ID
    Value: !Ref PublicRouteTable

OpenShift Container Platform 4.15 Postinstallation configuration

472



1

2

3

4

5

6

7

8

9

You opted in to the Local Zones or Wavelength Zones group.

Procedure

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",
and copy the syntax from the template. Save the copied template syntax as a YAML file on your
local system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

<stack_name> is the name for the CloudFormation stack, such as cluster-wl-
<local_zone_shortname> for Local Zones and cluster-wl-
<wavelength_zone_shortname> for Wavelength Zones. You need the name of this stack
if you remove the cluster.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation
template for the VPC.

${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS
resource names.

${ZONE_NAME} is the value of Local Zones or Wavelength Zones name to create the
subnets.

${ROUTE_TABLE_PUB} is the Public Route Table Id extracted from the CloudFormation
template. For Local Zones, the public route table is extracted from the VPC
CloudFormation Stack. For Wavelength Zones, the value must be extracted from the
output of the VPC’s carrier gateway CloudFormation stack.

${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This
block must be part of the VPC CIDR block VpcCidr.

${ROUTE_TABLE_PVT} is the PrivateRouteTableId extracted from the output of the
VPC’s CloudFormation stack.

${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This
block must be part of the VPC CIDR block VpcCidr.

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
  --region ${CLUSTER_REGION} \
  --template-body file://<template>.yaml \ 2
  --parameters \
    ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ 3
    ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ 4
    ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ 5
    ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ 6
    ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ 7
    ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ 8
    ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" 9

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

473



Example output

Verification

Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters:

PublicSub
netId

The IDs of the public subnet created by the CloudFormation stack.

PrivateSu
bnetId

The IDs of the private subnet created by the CloudFormation stack.

Ensure that you provide these parameter values to the other CloudFormation templates that
you run to create for your cluster.

20.2.7. CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the private and public subnets in a zone
on Local Zones or Wavelength Zones infrastructure.

Example 20.2. CloudFormation template for VPC subnets

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-
11eb-2fd3-12a48460849f

$ aws cloudformation describe-stacks --stack-name <stack_name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

Parameters:
  VpcId:
    Description: VPC ID that comprises all the target subnets.
    Type: String
    AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
    ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
  ClusterName:
    Description: Cluster name or prefix name to prepend the Name tag for each subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ClusterName parameter must be specified.
  ZoneName:
    Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ZoneName parameter must be specified.
  PublicRouteTableId:
    Description: Public Route Table ID to associate the public subnet.
    Type: String

OpenShift Container Platform 4.15 Postinstallation configuration

474



    AllowedPattern: ".+"
    ConstraintDescription: PublicRouteTableId parameter must be specified.
  PublicSubnetCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.128.0/20
    Description: CIDR block for public subnet.
    Type: String
  PrivateRouteTableId:
    Description: Private Route Table ID to associate the private subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: PrivateRouteTableId parameter must be specified.
  PrivateSubnetCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.128.0/20
    Description: CIDR block for private subnet.
    Type: String

Resources:
  PublicSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VpcId
      CidrBlock: !Ref PublicSubnetCidr
      AvailabilityZone: !Ref ZoneName
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "public", !Ref ZoneName]]

  PublicSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PublicSubnet
      RouteTableId: !Ref PublicRouteTableId

  PrivateSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VpcId
      CidrBlock: !Ref PrivateSubnetCidr
      AvailabilityZone: !Ref ZoneName
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "private", !Ref ZoneName]]

  PrivateSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PrivateSubnet
      RouteTableId: !Ref PrivateRouteTableId

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

475



1

2

20.2.8. Creating a machine set manifest for an AWS Local Zones or Wavelength
Zones node

After you create subnets in AWS Local Zones or Wavelength Zones, you can create a machine set
manifest.

The installation program sets the following labels for the edge machine pools at cluster installation
time:

machine.openshift.io/parent-zone-name: <value_of_ParentZoneName>

machine.openshift.io/zone-group: <value_of_ZoneGroup>

machine.openshift.io/zone-type: <value_of_ZoneType>

The following procedure details how you can create a machine set configuraton that matches the edge
compute pool configuration.

Prerequisites

You have created subnets in AWS Local Zones or Wavelength Zones.

Procedure

Manually preserve edge machine pool labels when creating the machine set manifest by
gathering the AWS API. To complete this action, enter the following command in your
command-line interface (CLI):

For <value_of_Region>, specify the name of the region for the zone.

For <value_of_ZoneName>, specify the name of the Local Zones or Wavelength Zones.

Example output for Local Zone us-east-1-nyc-1a

Outputs:
  PublicSubnetId:
    Description: Subnet ID of the public subnets.
    Value:
      !Join ["", [!Ref PublicSubnet]]

  PrivateSubnetId:
    Description: Subnet ID of the private subnets.
    Value:
      !Join ["", [!Ref PrivateSubnet]]

$ aws ec2 describe-availability-zones --region <value_of_Region> \ 1
    --query 'AvailabilityZones[].{
 ZoneName: ZoneName,
 ParentZoneName: ParentZoneName,
 GroupName: GroupName,
 ZoneType: ZoneType}' \
    --filters Name=zone-name,Values=<value_of_ZoneName> \ 2
    --all-availability-zones

OpenShift Container Platform 4.15 Postinstallation configuration

476



Example output for Wavelength Zone us-east-1-wl1

20.2.8.1. Sample YAML for a compute machine set custom resource on AWS

This sample YAML defines a compute machine set that runs in the us-east-1-nyc-1a Amazon Web
Services (AWS) zone and creates nodes that are labeled with node-role.kubernetes.io/edge: "".

NOTE

If you want to reference the sample YAML file in the context of Wavelength Zones,
ensure that you replace the AWS Region and zone information with supported
Wavelength Zone values.

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <edge> is the node label to add.

[
    {
        "ZoneName": "us-east-1-nyc-1a",
        "ParentZoneName": "us-east-1f",
        "GroupName": "us-east-1-nyc-1",
        "ZoneType": "local-zone"
    }
]

[
    {
        "ZoneName": "us-east-1-wl1-bos-wlz-1",
        "ParentZoneName": "us-east-1a",
        "GroupName": "us-east-1-wl1",
        "ZoneType": "wavelength-zone"
    }
]

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-edge-<zone> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-edge-<zone>
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 4
        machine.openshift.io/cluster-api-machine-role: edge 5
        machine.openshift.io/cluster-api-machine-type: edge 6

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

477



1 3 4 10 13 15

2 7

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the

infrastructure ID by running the following command:

Specify the infrastructure ID, edge role node label, and zone name.

        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-edge-<zone> 7
    spec:
      metadata:
        labels:
          machine.openshift.io/parent-zone-name: <value_of_ParentZoneName>
          machine.openshift.io/zone-group: <value_of_GroupName>
          machine.openshift.io/zone-type: <value_of_ZoneType>
          node-role.kubernetes.io/edge: "" 8
      providerSpec:
        value:
          ami:
            id: ami-046fe691f52a953f9 9
          apiVersion: machine.openshift.io/v1beta1
          blockDevices:
            - ebs:
                iops: 0
                volumeSize: 120
                volumeType: gp2
          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: <infrastructure_id>-worker-profile 10
          instanceType: m6i.large
          kind: AWSMachineProviderConfig
          placement:
            availabilityZone: <zone> 11
            region: <region> 12
          securityGroups:
            - filters:
                - name: tag:Name
                  values:
                    - <infrastructure_id>-worker-sg 13
          subnet:
              id: <value_of_PublicSubnetIds> 14
          publicIp: true
          tags:
            - name: kubernetes.io/cluster/<infrastructure_id> 15
              value: owned
            - name: <custom_tag_name> 16
              value: <custom_tag_value> 17
          userDataSecret:
            name: worker-user-data
      taints: 18
        - key: node-role.kubernetes.io/edge
          effect: NoSchedule

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.15 Postinstallation configuration

478



5 6 8

9

16 17

11

12

14

18

Specify the edge role node label.

Specify a valid Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) for your
AWS zone for your OpenShift Container Platform nodes. If you want to use an AWS Marketplace
image, you must complete the OpenShift Container Platform subscription from the AWS
Marketplace to obtain an AMI ID for your region.

Optional: Specify custom tag data for your cluster. For example, you might add an admin contact
email address by specifying a name:value pair of Email:admin-email@example.com.

NOTE

Custom tags can also be specified during installation in the install-config.yml file. If
the install-config.yml file and the machine set include a tag with the same name
data, the value for the tag from the machine set takes priority over the value for the
tag in the install-config.yml file.

Specify the zone name, for example, us-east-1-nyc-1a.

Specify the region, for example, us-east-1.

The ID of the public subnet that you created in AWS Local Zones or Wavelength Zones. You
created this public subnet ID when you finished the procedure for "Creating a subnet in an AWS
zone".

Specify a taint to prevent user workloads from being scheduled on edge nodes.

NOTE

After adding the NoSchedule taint on the infrastructure node, existing DNS pods
running on that node are marked as misscheduled. You must either delete or add
toleration on misscheduled DNS pods.

20.2.8.2. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample

$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}{"\n"}' \
    get machineset/<infrastructure_id>-<role>-<zone>

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

479

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845
https://access.redhat.com/solutions/6592171


1

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

Example output

The cluster infrastructure ID.

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> \
  -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-<role> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: <role>
        machine.openshift.io/cluster-api-machine-type: <role>
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
    spec:
      providerSpec: 3
        ...

OpenShift Container Platform 4.15 Postinstallation configuration

480



2

3

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

Optional: To check nodes that were created by the edge machine, run the following command:

Example output

Additional resources

Installing a cluster on AWS with compute nodes on AWS Local Zones

Installing a cluster on AWS with compute nodes on AWS Wavelength Zones

20.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME                                       DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-edge-us-east-1-nyc-1a      1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a          1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b          1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c          1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d          0         0                             55m
agl030519-vplxk-worker-us-east-1e          0         0                             55m
agl030519-vplxk-worker-us-east-1f          0         0                             55m

$ oc get nodes -l node-role.kubernetes.io/edge

NAME                           STATUS   ROLES         AGE    VERSION
ip-10-0-207-188.ec2.internal   Ready    edge,worker   172m   v1.25.2+d2e245f

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

481

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-localzone
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-wavelength-zone


20.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR
WAVELENGTH ZONES

After you create an Amazon Web Service (AWS) Local Zones or Wavelength Zones infrastructure and
deploy your cluster, you can use edge compute nodes to create user workloads in Local Zones or
Wavelength Zones subnets.

When you use the installation program to create a cluster, the installation program automatically
specifies a taint effect of NoSchedule to each edge compute node. This means that a scheduler does
not add a new pod, or deployment, to a node if the pod does not match the specified tolerations for a
taint. You can modify the taint for better control over how nodes create workloads in each Local Zones
or Wavelength Zones subnet.

The installation program creates the compute machine set manifests file with node-
role.kubernetes.io/edge and node-role.kubernetes.io/worker labels applied to each edge compute
node that is located in a Local Zones or Wavelength Zones subnet.

NOTE

The examples in the procedure are for a Local Zones infrastructure. If you are working
with a Wavelength Zones infrastructure, ensure you adapt the examples to what is
supported in this infrastructure.

Prerequisites

You have access to the OpenShift CLI (oc).

You deployed your cluster in a Virtual Private Cloud (VPC) with defined Local Zones or
Wavelength Zones subnets.

You ensured that the compute machine set for the edge compute nodes on Local Zones or
Wavelength Zones subnets specifies the taints for node-role.kubernetes.io/edge.

Procedure

1. Create a deployment resource YAML file for an example application to be deployed in the edge
compute node that operates in a Local Zones subnet. Ensure that you specify the correct
tolerations that match the taints for the edge compute node.

Example of a configured deployment resource for an edge compute node that
operates in a Local Zone subnet

kind: Namespace
apiVersion: v1
metadata:
  name: <local_zone_application_namespace>
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: <pvc_name>
  namespace: <local_zone_application_namespace>
spec:
  accessModes:
    - ReadWriteOnce

OpenShift Container Platform 4.15 Postinstallation configuration

482



1

2

storageClassName: For the Local Zone configuration, you must specify gp2-csi.

kind: Defines the deployment resource.

  resources:
    requests:
      storage: 10Gi
  storageClassName: gp2-csi 1
  volumeMode: Filesystem
---
apiVersion: apps/v1
kind: Deployment 2
metadata:
  name: <local_zone_application> 3
  namespace: <local_zone_application_namespace> 4
spec:
  selector:
    matchLabels:
      app: <local_zone_application>
  replicas: 1
  template:
    metadata:
      labels:
        app: <local_zone_application>
        zone-group: ${ZONE_GROUP_NAME} 5
    spec:
      securityContext:
        seccompProfile:
          type: RuntimeDefault
      nodeSelector: 6
        machine.openshift.io/zone-group: ${ZONE_GROUP_NAME}
      tolerations: 7
      - key: "node-role.kubernetes.io/edge"
        operator: "Equal"
        value: ""
        effect: "NoSchedule"
      containers:
        - image: openshift/origin-node
          command:
           - "/bin/socat"
          args:
            - TCP4-LISTEN:8080,reuseaddr,fork
            - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"'
          imagePullPolicy: Always
          name: echoserver
          ports:
            - containerPort: 8080
          volumeMounts:
            - mountPath: "/mnt/storage"
              name: data
      volumes:
      - name: data
        persistentVolumeClaim:
          claimName: <pvc_name>

CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

483



3

4

5

6

7

1

2

name: Specifies the name of your Local Zone application. For example, local-zone-demo-
app-nyc-1.

namespace: Defines the namespace for the AWS Local Zone where you want to run the
user workload. For example: local-zone-app-nyc-1a.

zone-group: Defines the group to where a zone belongs. For example, us-east-1-iah-1.

nodeSelector: Targets edge compute nodes that match the specified labels.

tolerations: Sets the values that match with the taints defined on the MachineSet
manifest for the Local Zone node.

2. Create a service resource YAML file for the node. This resource exposes a pod from a targeted
edge compute node to services that run inside your Local Zone network.

Example of a configured service resource for an edge compute node that operates
in a Local Zone subnet

kind: Defines the service resource.

selector: Specifies the label type applied to managed pods.

Additional resources

Installing a cluster on AWS with compute nodes on AWS Local Zones

Installing a cluster on AWS with compute nodes on AWS Wavelength Zones

Understanding taints and tolerations

20.4. NEXT STEPS

Optional: Use the AWS Load Balancer (ALB) Operator to expose a pod from a targeted edge
compute node to services that run inside of a Local Zones or Wavelength Zones subnet from a
public network. See Installing the AWS Load Balancer Operator .

apiVersion: v1
kind: Service 1
metadata:
  name:  <local_zone_application>
  namespace: <local_zone_application_namespace>
spec:
  ports:
    - port: 80
      targetPort: 8080
      protocol: TCP
  type: NodePort
  selector: 2
    app: <local_zone_application>

OpenShift Container Platform 4.15 Postinstallation configuration

484

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-localzone
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-wavelength-zone
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#nw-installing-aws-load-balancer-operator_aws-load-balancer-operator


CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN
AWS OUTPOST

After installing a cluster on Amazon Web Services (AWS) into an existing Amazon Virtual Private Cloud
(VPC), you can create a compute machine set that deploys compute machines in AWS Outposts. AWS
Outposts is an AWS edge compute service that enables using many features of a cloud-based AWS
deployment with the reduced latency of an on-premise environment. For more information, see the
AWS Outposts documentation.

21.1. AWS OUTPOSTS ON OPENSHIFT CONTAINER PLATFORM
REQUIREMENTS AND LIMITATIONS

You can manage the resources on your AWS Outpost similarly to those on a cloud-based AWS cluster if
you configure your OpenShift Container Platform cluster to accommodate the following requirements
and limitations:

To extend an OpenShift Container Platform cluster on AWS into an Outpost, you must have
installed the cluster into an existing Amazon Virtual Private Cloud (VPC).

The infrastructure of an Outpost is tied to an availability zone in an AWS region and uses a
dedicated subnet. Edge compute machines deployed into an Outpost must use the Outpost
subnet and the availability zone that the Outpost is tied to.

When the AWS Kubernetes cloud controller manager discovers an Outpost subnet, it attempts
to create service load balancers in the Outpost subnet. AWS Outposts do not support running
service load balancers. To prevent the cloud controller manager from creating unsupported
services in the Outpost subnet, you must include the kubernetes.io/cluster/unmanaged tag in
the Outpost subnet configuration. This requirement is a workaround in OpenShift Container
Platform version 4.15. For more information, see OCPBUGS-30041.

OpenShift Container Platform clusters on AWS include the gp3-csi and gp2-csi storage
classes. These classes correspond to Amazon Elastic Block Store (EBS) gp3 and gp2 volumes.
OpenShift Container Platform clusters use the gp3-csi storage class by default, but AWS
Outposts does not support EBS gp3 volumes.

This implementation uses the node-role.kubernetes.io/outposts taint to prevent spreading
regular cluster workloads to the Outpost nodes. To schedule user workloads in the Outpost, you
must specify a corresponding toleration in the Deployment resource for your application.
Reserving the AWS Outpost infrastructure for user workloads avoids additional configuration
requirements, such as updating the default CSI to gp2-csi so that it is compatible.

To create a volume in the Outpost, the CSI driver requires the Outpost Amazon Resource Name
(ARN). The driver uses the topology keys stored on the CSINode objects to determine the
Outpost ARN. To ensure that the driver uses the correct topology values, you must set the
volume binding mode to WaitForConsumer and avoid setting allowed topologies on any new
storage classes that you create.

When you extend an AWS VPC cluster into an Outpost, you have two types of compute
resources. The Outpost has edge compute nodes, while the VPC has cloud-based compute
nodes. The cloud-based AWS Elastic Block volume cannot attach to Outpost edge compute
nodes, and the Outpost volumes cannot attach to cloud-based compute nodes.
As a result, you cannot use CSI snapshots to migrate applications that use persistent storage
from cloud-based compute nodes to edge compute nodes or directly use the original
persistent volume. To migrate persistent storage data for applications, you must perform a
manual backup and restore operation.

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

485

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-vpc
https://docs.aws.amazon.com/outposts/
https://issues.redhat.com/browse/OCPBUGS-30041


AWS Outposts does not support AWS Network Load Balancers or AWS Classic Load Balancers.
You must use AWS Application Load Balancers to enable load balancing for edge compute
resources in the AWS Outposts environment.
To provision an Application Load Balancer, you must use an Ingress resource and install the
AWS Load Balancer Operator. If your cluster contains both edge and cloud-based compute
instances that share workloads, additional configuration is required.

For more information, see "Using the AWS Load Balancer Operator in an AWS VPC cluster
extended into an Outpost".

Additional resources

Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

21.2. OBTAINING INFORMATION ABOUT YOUR ENVIRONMENT

To extend an AWS VPC cluster to your Outpost, you must provide information about your OpenShift
Container Platform cluster and your Outpost environment. You use this information to complete
network configuration tasks and configure a compute machine set that creates compute machines in
your Outpost. You can use command-line tools to gather the required details.

21.2.1. Obtaining information from your OpenShift Container Platform cluster

You can use the OpenShift CLI (oc) to obtain information from your OpenShift Container Platform
cluster.

TIP

You might find it convenient to store some or all of these values as environment variables by using the 
export command.

Prerequisites

You have installed an OpenShift Container Platform cluster into a custom VPC on AWS.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. List the infrastructure ID for the cluster by running the following command. Retain this value.

2. Obtain details about the compute machine sets that the installation program created by
running the following commands:

a. List the compute machine sets on your cluster:

Example output

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructures.config.openshift.io 
cluster

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

OpenShift Container Platform 4.15 Postinstallation configuration

486



b. Display the Amazon Machine Image (AMI) ID for one of the listed compute machine sets.
Retain this value.

c. Display the subnet ID for the AWS VPC cluster. Retain this value.

21.2.2. Obtaining information from your AWS account

You can use the AWS CLI (aws) to obtain information from your AWS account.

TIP

You might find it convenient to store some or all of these values as environment variables by using the 
export command.

Prerequisites

You have an AWS Outposts site with the required hardware setup complete.

Your Outpost is connected to your AWS account.

You have access to your AWS account by using the AWS CLI (aws) as a user with permissions to
perform the required tasks.

Procedure

1. List the Outposts that are connected to your AWS account by running the following command:

2. Retain the following values from the output of the aws outposts list-outposts command:

The Outpost ID.

The Amazon Resource Name (ARN) for the Outpost.

The Outpost availability zone.

NOTE

NAME                           DESIRED   CURRENT   READY   AVAILABLE   AGE
<compute_machine_set_name_1>   1         1         1       1           55m
<compute_machine_set_name_2>   1         1         1       1           55m

$ oc get machinesets.machine.openshift.io <compute_machine_set_name_1> \
  -n openshift-machine-api \
  -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}'

$ oc get machinesets.machine.openshift.io <compute_machine_set_name_1> \
  -n openshift-machine-api \
  -o jsonpath='{.spec.template.spec.providerSpec.value.subnet.id}'

$ aws outposts list-outposts

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

487



NOTE

The output of the aws outposts list-outposts command includes two values
related to the availability zone: AvailabilityZone and AvailabilityZoneId.
You use the AvailablilityZone value to configure a compute machine set
that creates compute machines in your Outpost.

3. Using the value of the Outpost ID, show the instance types that are available in your Outpost by
running the following command. Retain the values of the available instance types.

4. Using the value of the Outpost ARN, show the subnet ID for the Outpost by running the
following command. Retain this value.

21.3. CONFIGURING YOUR NETWORK FOR YOUR OUTPOST

To extend your VPC cluster into an Outpost, you must complete the following network configuration
tasks:

Change the Cluster Network MTU.

Create a subnet in your Outpost.

21.3.1. Changing the cluster network MTU to support AWS Outposts

During installation, the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You might
need to decrease the MTU value for the cluster network to support an AWS Outposts subnet.

IMPORTANT

The migration is disruptive and nodes in your cluster might be temporarily unavailable as
the MTU update takes effect.

For more details about the migration process, including important service interruption considerations,
see "Changing the MTU for the cluster network" in the additional resources for this procedure.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster using an account with cluster-admin permissions.

You have identified the target MTU for your cluster. The MTU for the OVN-Kubernetes network
plugin must be set to 100 less than the lowest hardware MTU value in your cluster.

Procedure

$ aws outposts get-outpost-instance-types \
  --outpost-id <outpost_id_value>

$ aws ec2 describe-subnets \
  --filters Name=outpost-arn,Values=<outpost_arn_value>

OpenShift Container Platform 4.15 Postinstallation configuration

488



1. To obtain the current MTU for the cluster network, enter the following command:

Example output

2. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

where:

<overlay_from>

Specifies the current cluster network MTU value.

<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value of 
<machine_to>. For OVN-Kubernetes, this value must be 100 less than the value of 
<machine_to>.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

Example that decreases the cluster MTU

3. As the Machine Config Operator updates machines in each machine config pool, it reboots each
node one by one. You must wait until all the nodes are updated. Check the machine config pool
status by entering the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

NOTE

$ oc describe network.config cluster

...
Status:
  Cluster Network:
    Cidr:               10.217.0.0/22
    Host Prefix:        23
  Cluster Network MTU:  1400
  Network Type:         OVNKubernetes
  Service Network:
    10.217.4.0/23
...

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to> } , 
"machine": { "to" : <machine_to> } } } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": { "mtu": { "network": { "from": 1400, "to": 1000 } , "machine": { "to" : 
1100} } } } }'

$ oc get machineconfigpools

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

489



NOTE

By default, the Machine Config Operator updates one machine per pool at a
time, causing the total time the migration takes to increase with the size of the
cluster.

4. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

b. Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

c. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the 
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

5. To finalize the MTU migration, enter the following command for the OVN-Kubernetes network
plugin:

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

6. After finalizing the MTU migration, each machine config pool node is rebooted one by one. You

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/mtu-migration.sh

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu> }}}}'

OpenShift Container Platform 4.15 Postinstallation configuration

490



6. After finalizing the MTU migration, each machine config pool node is rebooted one by one. You
must wait until all the nodes are updated. Check the machine config pool status by entering the
following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

Verification

Verify that the node in your cluster uses the MTU that you specified by entering the following
command:

Additional resources

Changing the MTU for the cluster network

21.3.2. Creating subnets for AWS edge compute services

Before you configure a machine set for edge compute nodes in your OpenShift Container Platform
cluster, you must create a subnet in AWS Outposts.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then
use this stack to custom provision a subnet.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You have obtained the required information about your environment from your OpenShift
Container Platform cluster, Outpost, and AWS account.

Procedure

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",
and copy the syntax from the template. Save the copied template syntax as a YAML file on your
local system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

$ oc get machineconfigpools

$ oc describe network.config cluster

$ aws cloudformation create-stack --stack-name <stack_name> \ 1

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

491

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#changing-cluster-network-mtu


1

2

3

4

5

6

7

8

9

10

<stack_name> is the name for the CloudFormation stack, such as cluster-
<outpost_name>.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation
template for the VPC.

${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS
resource names.

${ZONE_NAME} is the value of AWS Outposts name to create the subnets.

${ROUTE_TABLE_PUB} is the Public Route Table ID created in the ${VPC_ID} used to
associate the public subnets on Outposts. Specify the public route table to associate the
Outpost subnet created by this stack.

${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This
block must be part of the VPC CIDR block VpcCidr.

${ROUTE_TABLE_PVT} is the Private Route Table ID created in the ${VPC_ID} used to
associate the private subnets on Outposts. Specify the private route table to associate the
Outpost subnet created by this stack.

${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This
block must be part of the VPC CIDR block VpcCidr.

${OUTPOST_ARN} is the Amazon Resource Name (ARN) for the Outpost.

Example output

Verification

Confirm that the template components exist by running the following command:

  --region ${CLUSTER_REGION} \
  --template-body file://<template>.yaml \ 2
  --parameters \
    ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ 3
    ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ 4
    ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ 5
    ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ 6
    ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ 7
    ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ 8
    ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" \ 9
    ParameterKey=PrivateSubnetLabel,ParameterValue="private-outpost" \
    ParameterKey=PublicSubnetLabel,ParameterValue="public-outpost" \
    ParameterKey=OutpostArn,ParameterValue="${OUTPOST_ARN}" 10

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-
11eb-2fd3-12a48460849f

OpenShift Container Platform 4.15 Postinstallation configuration

492



After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters:

PublicSub
netId

The IDs of the public subnet created by the CloudFormation stack.

PrivateSu
bnetId

The IDs of the private subnet created by the CloudFormation stack.

Ensure that you provide these parameter values to the other CloudFormation templates that
you run to create for your cluster.

21.3.3. CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the Outpost subnet.

Example 21.1. CloudFormation template for VPC subnets

$ aws cloudformation describe-stacks --stack-name <stack_name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

Parameters:
  VpcId:
    Description: VPC ID that comprises all the target subnets.
    Type: String
    AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
    ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
  ClusterName:
    Description: Cluster name or prefix name to prepend the Name tag for each subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ClusterName parameter must be specified.
  ZoneName:
    Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ZoneName parameter must be specified.
  PublicRouteTableId:
    Description: Public Route Table ID to associate the public subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: PublicRouteTableId parameter must be specified.
  PublicSubnetCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.128.0/20
    Description: CIDR block for public subnet.
    Type: String
  PrivateRouteTableId:
    Description: Private Route Table ID to associate the private subnet.

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

493



    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: PrivateRouteTableId parameter must be specified.
  PrivateSubnetCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.128.0/20
    Description: CIDR block for private subnet.
    Type: String
  PrivateSubnetLabel:
    Default: "private"
    Description: Subnet label to be added when building the subnet name.
    Type: String
  PublicSubnetLabel:
    Default: "public"
    Description: Subnet label to be added when building the subnet name.
    Type: String
  OutpostArn:
    Default: ""
    Description: OutpostArn when creating subnets on AWS Outpost.
    Type: String

Conditions:
  OutpostEnabled: !Not [!Equals [!Ref "OutpostArn", ""]]

Resources:
  PublicSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VpcId
      CidrBlock: !Ref PublicSubnetCidr
      AvailabilityZone: !Ref ZoneName
      OutpostArn: !If [ OutpostEnabled, !Ref OutpostArn, !Ref "AWS::NoValue"]
      Tags:
      - Key: Name
        Value: !Join ['-', [ !Ref ClusterName, !Ref PublicSubnetLabel, !Ref ZoneName]]
      - Key: kubernetes.io/cluster/unmanaged 1
        Value: true

  PublicSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PublicSubnet
      RouteTableId: !Ref PublicRouteTableId

  PrivateSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VpcId
      CidrBlock: !Ref PrivateSubnetCidr
      AvailabilityZone: !Ref ZoneName
      OutpostArn: !If [ OutpostEnabled, !Ref OutpostArn, !Ref "AWS::NoValue"]
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, !Ref PrivateSubnetLabel, !Ref ZoneName]]

OpenShift Container Platform 4.15 Postinstallation configuration

494



1

2

You must include the kubernetes.io/cluster/unmanaged tag in the public subnet configuration
for AWS Outposts.

You must include the kubernetes.io/cluster/unmanaged tag in the private subnet
configuration for AWS Outposts.

21.4. CREATING A COMPUTE MACHINE SET THAT DEPLOYS EDGE
COMPUTE MACHINES ON AN OUTPOST

To create edge compute machines on AWS Outposts, you must create a new compute machine set with
a compatible configuration.

Prerequisites

You have an AWS Outposts site.

You have installed an OpenShift Container Platform cluster into a custom VPC on AWS.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. List the compute machine sets in your cluster by running the following command:

Example output

      - Key: kubernetes.io/cluster/unmanaged 2
        Value: true

  PrivateSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PrivateSubnet
      RouteTableId: !Ref PrivateRouteTableId

Outputs:
  PublicSubnetId:
    Description: Subnet ID of the public subnets.
    Value:
      !Join ["", [!Ref PublicSubnet]]

  PrivateSubnetId:
    Description: Subnet ID of the private subnets.
    Value:
      !Join ["", [!Ref PrivateSubnet]]

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

495



1

2. Record the names of the existing compute machine sets.

3. Create a YAML file that contains the values for a new compute machine set custom resource
(CR) by using one of the following methods:

Copy an existing compute machine set configuration into a new file by running the following
command:

You can edit this YAML file with your preferred text editor.

Create an empty YAML file named <new_machine_set_name_1>.yaml with your
preferred text editor and include the required values for your new compute machine set.
If you are not sure which value to set for a specific field, you can view values of an existing
compute machine set CR by running the following command:

Example output

The cluster infrastructure ID.

NAME                            DESIRED   CURRENT   READY   AVAILABLE   AGE
<original_machine_set_name_1>   1         1         1       1           55m
<original_machine_set_name_2>   1         1         1       1           55m

$ oc get machinesets.machine.openshift.io <original_machine_set_name_1> \
  -n openshift-machine-api -o yaml > <new_machine_set_name_1>.yaml

$ oc get machinesets.machine.openshift.io <original_machine_set_name_1> \
  -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-<role>-<availability_zone> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-
<availability_zone>
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: <role>
        machine.openshift.io/cluster-api-machine-type: <role>
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-
<availability_zone>
    spec:
      providerSpec: 3
# ...

OpenShift Container Platform 4.15 Postinstallation configuration

496



2

3

A default node label. For AWS Outposts, you use the outposts role.

The omitted providerSpec section includes values that must be configured for your
Outpost.

4. Configure the new compute machine set to create edge compute machines in the Outpost by
editing the <new_machine_set_name_1>.yaml file:

Example compute machine set for AWS Outposts

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-outposts-<availability_zone> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id>
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-outposts-
<availability_zone>
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: outposts
        machine.openshift.io/cluster-api-machine-type: outposts
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-outposts-
<availability_zone>
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/outposts: ""
          location: outposts
      providerSpec:
        value:
          ami:
            id: <ami_id> 3
          apiVersion: machine.openshift.io/v1beta1
          blockDevices:
            - ebs:
                volumeSize: 120
                volumeType: gp2 4
          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: <infrastructure_id>-worker-profile
          instanceType: m5.xlarge 5
          kind: AWSMachineProviderConfig
          placement:

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

497



1

2

3

4

5

6

7

8

Specifies the cluster infrastructure ID.

Specifies the name of the compute machine set. The name is composed of the cluster
infrastructure ID, the outposts role name, and the Outpost availability zone.

Specifies the Amazon Machine Image (AMI) ID.

Specifies the EBS volume type. AWS Outposts requires gp2 volumes.

Specifies the AWS instance type. You must use an instance type that is configured in your
Outpost.

Specifies the AWS region in which the Outpost availability zone exists.

Specifies the dedicated subnet for your Outpost.

Specifies a taint to prevent workloads from being scheduled on nodes that have the node-
role.kubernetes.io/outposts label. To schedule user workloads in the Outpost, you must
specify a corresponding toleration in the Deployment resource for your application.

5. Save your changes.

6. Create a compute machine set CR by running the following command:

Verification

To verify that the compute machine set is created, list the compute machine sets in your cluster
by running the following command:

Example output

            availabilityZone: <availability_zone>
            region: <region> 6
          securityGroups:
            - filters:
              - name: tag:Name
                values:
                  - <infrastructure_id>-worker-sg
          subnet:
            id: <subnet_id> 7
          tags:
            - name: kubernetes.io/cluster/<infrastructure_id>
              value: owned
          userDataSecret:
            name: worker-user-data
      taints: 8
        - key: node-role.kubernetes.io/outposts
          effect: NoSchedule

$ oc create -f <new_machine_set_name_1>.yaml

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

NAME                            DESIRED   CURRENT   READY   AVAILABLE   AGE

OpenShift Container Platform 4.15 Postinstallation configuration

498



To list the machines that are managed by the new compute machine set, run the following
command:

Example output

To verify that a machine created by the new compute machine set has the correct
configuration, examine the relevant fields in the CR for one of the new machines by running the
following command:

21.5. CREATING USER WORKLOADS IN AN OUTPOST

After you extend an OpenShift Container Platform in an AWS VPC cluster into an Outpost, you can use
edge compute nodes with the label node-role.kubernetes.io/outposts to create user workloads in the
Outpost.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have created a compute machine set that deploys edge compute machines compatible
with the Outpost environment.

Procedure

1. Configure a Deployment resource file for an application that you want to deploy to the edge
compute node in the edge subnet.

Example Deployment manifest

<new_machine_set_name_1>        1         1         1       1           4m12s
<original_machine_set_name_1>   1         1         1       1           55m
<original_machine_set_name_2>   1         1         1       1           55m

$ oc get -n openshift-machine-api machines.machine.openshift.io \
  -l machine.openshift.io/cluster-api-machineset=<new_machine_set_name_1>

NAME                             PHASE          TYPE        REGION      ZONE         AGE
<machine_from_new_1>             Provisioned    m5.xlarge   us-east-1   us-east-1a   25s
<machine_from_new_2>             Provisioning   m5.xlarge   us-east-1   us-east-1a   25s

$ oc describe machine <machine_from_new_1> -n openshift-machine-api

kind: Namespace
apiVersion: v1
metadata:
  name: <application_name> 1
---
kind: PersistentVolumeClaim
apiVersion: v1

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

499



metadata:
  name: <application_name>
  namespace: <application_namespace> 2
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
  storageClassName: gp2-csi 3
  volumeMode: Filesystem
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: <application_name>
  namespace: <application_namespace>
spec:
  selector:
    matchLabels:
      app: <application_name>
  replicas: 1
  template:
    metadata:
      labels:
        app: <application_name>
        location: outposts 4
    spec:
      securityContext:
        seccompProfile:
          type: RuntimeDefault
      nodeSelector: 5
        node-role.kubernetes.io/outpost: ''
      tolerations: 6
      - key: "node-role.kubernetes.io/outposts"
        operator: "Equal"
        value: ""
        effect: "NoSchedule"
      containers:
        - image: openshift/origin-node
          command:
           - "/bin/socat"
          args:
            - TCP4-LISTEN:8080,reuseaddr,fork
            - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"'
          imagePullPolicy: Always
          name: <application_name>
          ports:
            - containerPort: 8080
          volumeMounts:
            - mountPath: "/mnt/storage"
              name: data
      volumes:

OpenShift Container Platform 4.15 Postinstallation configuration

500



1

2

3

4

5

6

1

2

Specify a name for your application.

Specify a namespace for your application. The application namespace can be the same as
the application name.

Specify the storage class name. For an edge compute configuration, you must use the 
gp2-csi storage class.

Specify a label to identify workloads deployed in the Outpost.

Specify the node selector label that targets edge compute nodes.

Specify tolerations that match the key and effects taints in the compute machine set for
your edge compute machines. Set the value and operator tolerations as shown.

2. Create the Deployment resource by running the following command:

3. Configure a Service object that exposes a pod from a targeted edge compute node to services
that run inside your edge network.

Example Service manifest

Defines the service resource.

Specify the label type to apply to managed pods.

4. Create the Service CR by running the following command:

21.6. SCHEDULING WORKLOADS ON EDGE AND CLOUD-BASED AWS
COMPUTE RESOURCES

      - name: data
        persistentVolumeClaim:
          claimName: <application_name>

$ oc create -f <application_deployment>.yaml

apiVersion: v1
kind: Service 1
metadata:
  name:  <application_name>
  namespace: <application_namespace>
spec:
  ports:
    - port: 80
      targetPort: 8080
      protocol: TCP
  type: NodePort
  selector: 2
    app: <application_name>

$ oc create -f <application_service>.yaml

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

501



When you extend an AWS VPC cluster into an Outpost, the Outpost uses edge compute nodes and the
VPC uses cloud-based compute nodes. The following load balancer considerations apply to an AWS
VPC cluster extended into an Outpost:

Outposts cannot run AWS Network Load Balancers or AWS Classic Load Balancers, but a
Classic Load Balancer for a VPC cluster extended into an Outpost can attach to the Outpost
edge compute nodes. For more information, see Using AWS Classic Load Balancers in an AWS
VPC cluster extended into an Outpost.

To run a load balancer on an Outpost instance, you must use an AWS Application Load
Balancer. You can use the AWS Load Balancer Operator to deploy an instance of the AWS Load
Balancer Controller. The controller provisions AWS Application Load Balancers for Kubernetes
Ingress resources. For more information, see Using the AWS Load Balancer Operator in an AWS
VPC cluster extended into an Outpost.

21.6.1. Using AWS Classic Load Balancers in an AWS VPC cluster extended into an
Outpost

AWS Outposts infrastructure cannot run AWS Classic Load Balancers, but Classic Load Balancers in the
AWS VPC cluster can target edge compute nodes in the Outpost if edge and cloud-based subnets are
in the same availability zone. As a result, Classic Load Balancers on the VPC cluster might schedule
pods on either of these node types.

Scheduling the workloads on edge compute nodes and cloud-based compute nodes can introduce
latency. If you want to prevent a Classic Load Balancer in the VPC cluster from targeting Outpost edge
compute nodes, you can apply labels to the cloud-based compute nodes and configure the Classic
Load Balancer to only schedule on nodes with the applied labels.

NOTE

If you do not need to prevent a Classic Load Balancer in the VPC cluster from targeting
Outpost edge compute nodes, you do not need to complete these steps.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have created a user workload in the Outpost with tolerations that match the taints for your
edge compute machines.

Procedure

1. Optional: Verify that the edge compute nodes have the location=outposts label by running the
following command and verifying that the output includes only the edge compute nodes in your
Outpost:

2. Label the cloud-based compute nodes in the VPC cluster with a key-value pair by running the
following command:

$ oc get nodes -l location=outposts

OpenShift Container Platform 4.15 Postinstallation configuration

502



1

where <key_name>=<value> is the label you want to use to distinguish cloud-based compute
nodes.

Example output

3. Optional: Verify that the cloud-based compute nodes have the specified label by running the
following command and confirming that the output includes all cloud-based compute nodes in
your VPC cluster:

Example output

4. Configure the Classic Load Balancer service by adding the cloud-based subnet information to
the annotations field of the Service manifest:

Example service configuration

Specify the subnet ID for the AWS VPC cluster.

$ for NODE in $(oc get node -l node-role.kubernetes.io/worker --no-headers | grep -v 
outposts | awk '{print$1}'); do oc label node $NODE <key_name>=<value>; done

node1.example.com labeled
node2.example.com labeled
node3.example.com labeled

$ oc get nodes -l <key_name>=<value>

NAME                   STATUS    ROLES     AGE       VERSION
node1.example.com      Ready     worker    7h        v1.28.5
node2.example.com      Ready     worker    7h        v1.28.5
node3.example.com      Ready     worker    7h        v1.28.5

apiVersion: v1
kind: Service
metadata:
  labels:
    app: <application_name>
  name: <application_name>
  namespace: <application_namespace>
  annotations:
    service.beta.kubernetes.io/aws-load-balancer-subnets: <aws_subnet> 1
    service.beta.kubernetes.io/aws-load-balancer-target-node-labels: <key_name>=<value> 
2

spec:
  ports:
  - name: http
    port: 80
    protocol: TCP
    targetPort: 8080
  selector:
    app: <application_name>
  type: LoadBalancer

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

503



2 Specify the key-value pair that matches the pair in the node label.

5. Create the Service CR by running the following command:

Verification

1. Verify the status of the service resource to show the host of the provisioned Classic Load
Balancer by running the following command:

2. Verify the status of the provisioned Classic Load Balancer host by running the following
command:

3. In the AWS console, verify that only the labeled instances appear as the targeted instances for
the load balancer.

21.6.2. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into
an Outpost

You can configure the AWS Load Balancer Operator to provision an AWS Application Load Balancer in
an AWS VPC cluster extended into an Outpost. AWS Outposts does not support AWS Network Load
Balancers. As a result, the AWS Load Balancer Operator cannot provision Network Load Balancers in an
Outpost.

You can create an AWS Application Load Balancer either in the cloud subnet or in the Outpost subnet.
An Application Load Balancer in the cloud can attach to cloud-based compute nodes and an Application
Load Balancer in the Outpost can attach to edge compute nodes. You must annotate Ingress resources
with the Outpost subnet or the VPC subnet, but not both.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have installed the OpenShift CLI (oc).

You have installed the AWS Load Balancer Operator and created the AWS Load Balancer
Controller.

Procedure

Configure the Ingress resource to use a specified subnet:

Example Ingress resource configuration

$ oc create -f <file_name>.yaml

$ HOST=$(oc get service <application_name> -n <application_namespace> --
template='{{(index .status.loadBalancer.ingress 0).hostname}}')

$ curl $HOST

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

OpenShift Container Platform 4.15 Postinstallation configuration

504



1 Specifies the subnet to use.

To use the Application Load Balancer in an Outpost, specify the Outpost subnet ID.

To use the Application Load Balancer in the cloud, you must specify at least two subnets in
different availability zones.

Additional resources

Creating an instance of the AWS Load Balancer Controller using AWS Load Balancer Operator

21.7. ADDITIONAL RESOURCES

Installing a cluster on AWS into an existing VPC

  name: <application_name>
  annotations:
    alb.ingress.kubernetes.io/subnets: <subnet_id> 1
spec:
  ingressClassName: alb
  rules:
    - http:
        paths:
          - path: /
            pathType: Exact
            backend:
              service:
                name: <application_name>
                port:
                  number: 80

CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

505

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#nw-creating-instance-aws-load-balancer-controller_create-instance-aws-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-aws-vpc

	Table of Contents
	CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW
	1.1. POST-INSTALLATION CONFIGURATION TASKS

	CHAPTER 2. CONFIGURING A PRIVATE CLUSTER
	2.1. ABOUT PRIVATE CLUSTERS
	DNS
	Ingress Controller
	API server

	2.2. SETTING DNS TO PRIVATE
	2.3. SETTING THE INGRESS CONTROLLER TO PRIVATE
	2.4. RESTRICTING THE API SERVER TO PRIVATE
	2.4.1. Configuring the Ingress Controller endpoint publishing scope to Internal

	2.5. CONFIGURING A PRIVATE STORAGE ENDPOINT ON AZURE
	2.5.1. Limitations for configuring a private storage endpoint on Azure
	2.5.2. Configuring a private storage endpoint on Azure by enabling the Image Registry Operator to discover VNet and subnet names
	2.5.3. Configuring a private storage endpoint on Azure with user-provided VNet and subnet names
	2.5.4. Optional: Disabling redirect when using a private storage endpoint on Azure


	CHAPTER 3. BARE METAL CONFIGURATION
	3.1. ABOUT THE BARE METAL OPERATOR
	3.1.1. Bare Metal Operator architecture

	3.2. ABOUT THE BAREMETALHOST RESOURCE
	3.2.1. The BareMetalHost spec
	3.2.2. The BareMetalHost status

	3.3. GETTING THE BAREMETALHOST RESOURCE
	3.4. ABOUT THE HOSTFIRMWARESETTINGS RESOURCE
	3.4.1. The HostFirmwareSettings spec
	3.4.2. The HostFirmwareSettings status

	3.5. GETTING THE HOSTFIRMWARESETTINGS RESOURCE
	3.6. EDITING THE HOSTFIRMWARESETTINGS RESOURCE
	3.7. VERIFYING THE HOSTFIRMWARE SETTINGS RESOURCE IS VALID
	3.8. ABOUT THE FIRMWARESCHEMA RESOURCE
	3.9. GETTING THE FIRMWARESCHEMA RESOURCE

	CHAPTER 4. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER
	4.1. ABOUT CLUSTERS WITH MULTI-ARCHITECTURE COMPUTE MACHINES
	4.1.1. Configuring your cluster with multi-architecture compute machines

	4.2. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINE ON AZURE
	4.2.1. Verifying cluster compatibility
	4.2.2. Creating an ARM64 boot image using the Azure image gallery
	4.2.3. Adding a multi-architecture compute machine set to your cluster

	4.3. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON AWS
	4.3.1. Verifying cluster compatibility
	4.3.2. Adding an ARM64 compute machine set to your cluster

	4.4. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON GCP
	4.4.1. Verifying cluster compatibility
	4.4.2. Adding an ARM64 compute machine set to your GCP cluster

	4.5. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON BARE METAL, IBM POWER, OR IBM Z
	4.5.1. Verifying cluster compatibility
	4.5.2. Creating RHCOS machines using an ISO image
	4.5.3. Creating RHCOS machines by PXE or iPXE booting
	4.5.4. Approving the certificate signing requests for your machines

	4.6. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM LINUXONE WITH Z/VM
	4.6.1. Verifying cluster compatibility
	4.6.2. Creating RHCOS machines on IBM Z with z/VM
	4.6.3. Approving the certificate signing requests for your machines

	4.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM LINUXONE WITH RHEL KVM
	4.7.1. Verifying cluster compatibility
	4.7.2. Creating RHCOS machines using virt-install
	4.7.3. Approving the certificate signing requests for your machines

	4.8. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM POWER
	4.8.1. Verifying cluster compatibility
	4.8.2. Creating RHCOS machines using an ISO image
	4.8.3. Creating RHCOS machines by PXE or iPXE booting
	4.8.4. Approving the certificate signing requests for your machines

	4.9. MANAGING YOUR CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES
	4.9.1. Scheduling workloads on clusters with multi-architecture compute machines
	4.9.1.1. Sample multi-architecture node workload deployments

	4.9.2. Enabling 64k pages on the Red Hat Enterprise Linux CoreOS (RHCOS) kernel
	4.9.3. Importing manifest lists in image streams on your multi-architecture compute machines


	CHAPTER 5. ENABLING ENCRYPTION ON A VSPHERE CLUSTER
	5.1. ENCRYPTING VIRTUAL MACHINES
	5.2. ADDITIONAL RESOURCES

	CHAPTER 6. CONFIGURING THE VSPHERE CONNECTION SETTINGS AFTER AN INSTALLATION
	6.1. CONFIGURING THE VSPHERE CONNECTION SETTINGS
	6.2. VERIFYING THE CONFIGURATION

	CHAPTER 7. POSTINSTALLATION MACHINE CONFIGURATION TASKS
	7.1. UNDERSTANDING THE MACHINE CONFIG OPERATOR
	7.1.1. Machine Config Operator
	Purpose
	Project

	7.1.2. Machine config overview
	7.1.2.1. What can you change with machine configs?
	7.1.2.2. Project

	7.1.3. Understanding configuration drift detection
	7.1.4. Checking machine config pool status
	7.1.5. Checking machine config node status
	7.1.6. Viewing and interacting with certificates

	7.2. USING MACHINECONFIG OBJECTS TO CONFIGURE NODES
	7.2.1. Configuring chrony time service
	7.2.2. Disabling the chrony time service
	7.2.3. Adding kernel arguments to nodes
	7.2.4. Enabling multipathing with kernel arguments on RHCOS
	7.2.5. Adding a real-time kernel to nodes
	7.2.6. Configuring journald settings
	7.2.7. Adding extensions to RHCOS
	7.2.8. Loading custom firmware blobs in the machine config manifest
	7.2.9. Changing the core user password for node access

	7.3. CONFIGURING MCO-RELATED CUSTOM RESOURCES
	7.3.1. Creating a KubeletConfig CRD to edit kubelet parameters
	7.3.2. Creating a ContainerRuntimeConfig CR to edit CRI-O parameters
	7.3.3. Setting the default maximum container root partition size for Overlay with CRI-O


	CHAPTER 8. POSTINSTALLATION CLUSTER TASKS
	8.1. AVAILABLE CLUSTER CUSTOMIZATIONS
	8.1.1. Cluster configuration resources
	8.1.2. Operator configuration resources
	8.1.3. Additional configuration resources
	8.1.4. Informational Resources

	8.2. UPDATING THE GLOBAL CLUSTER PULL SECRET
	8.3. ADDING WORKER NODES
	8.3.1. Adding worker nodes to installer-provisioned infrastructure clusters
	8.3.2. Adding worker nodes to user-provisioned infrastructure clusters
	8.3.3. Adding worker nodes to clusters managed by the Assisted Installer
	8.3.4. Adding worker nodes to clusters managed by the multicluster engine for Kubernetes

	8.4. ADJUST WORKER NODES
	8.4.1. Understanding the difference between compute machine sets and the machine config pool
	8.4.2. Scaling a compute machine set manually
	8.4.3. The compute machine set deletion policy
	8.4.4. Creating default cluster-wide node selectors

	8.5. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES
	8.5.1. Understanding worker latency profiles
	8.5.2. Using and changing worker latency profiles

	8.6. MANAGING CONTROL PLANE MACHINES
	8.7. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION ENVIRONMENTS
	8.7.1. Creating a compute machine set
	8.7.2. Creating an infrastructure node
	8.7.3. Creating a machine config pool for infrastructure machines

	8.8. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE NODES
	8.8.1. Binding infrastructure node workloads using taints and tolerations

	8.9. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS
	8.9.1. Moving the router
	8.9.2. Moving the default registry
	8.9.3. Moving the monitoring solution
	8.9.4. Moving logging resources

	8.10. ABOUT THE CLUSTER AUTOSCALER
	8.10.1. Cluster autoscaler resource definition
	8.10.2. Deploying a cluster autoscaler

	8.11. ABOUT THE MACHINE AUTOSCALER
	8.11.1. Machine autoscaler resource definition
	8.11.2. Deploying a machine autoscaler

	8.12. CONFIGURING LINUX CGROUP
	8.13. ENABLING TECHNOLOGY PREVIEW FEATURES USING FEATUREGATES
	8.13.1. Understanding feature gates
	8.13.2. Enabling feature sets using the web console
	8.13.3. Enabling feature sets using the CLI

	8.14. ETCD TASKS
	8.14.1. About etcd encryption
	8.14.2. Supported encryption types
	8.14.3. Enabling etcd encryption
	8.14.4. Disabling etcd encryption
	8.14.5. Backing up etcd data
	8.14.6. Defragmenting etcd data
	8.14.6.1. Automatic defragmentation
	8.14.6.2. Manual defragmentation

	8.14.7. Restoring to a previous cluster state
	8.14.8. Issues and workarounds for restoring a persistent storage state

	8.15. POD DISRUPTION BUDGETS
	8.15.1. Understanding how to use pod disruption budgets to specify the number of pods that must be up
	8.15.2. Specifying the number of pods that must be up with pod disruption budgets
	8.15.3. Specifying the eviction policy for unhealthy pods

	8.16. ROTATING OR REMOVING CLOUD PROVIDER CREDENTIALS
	8.16.1. Rotating cloud provider credentials with the Cloud Credential Operator utility
	8.16.1.1. Rotating API keys

	8.16.2. Rotating cloud provider credentials manually
	8.16.3. Removing cloud provider credentials

	8.17. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED CLUSTER
	8.17.1. Cluster Samples Operator assistance for mirroring
	8.17.2. Using Cluster Samples Operator image streams with alternate or mirrored registries
	8.17.3. Preparing your cluster to gather support data

	8.18. CONFIGURING PERIODIC IMPORTING OF CLUSTER SAMPLE OPERATOR IMAGE STREAM TAGS

	CHAPTER 9. POSTINSTALLATION NODE TASKS
	9.1. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	9.1.1. About adding RHEL compute nodes to a cluster
	9.1.2. System requirements for RHEL compute nodes
	9.1.2.1. Certificate signing requests management

	9.1.3. Preparing the machine to run the playbook
	9.1.4. Preparing a RHEL compute node
	9.1.5. Adding a RHEL compute machine to your cluster
	9.1.6. Required parameters for the Ansible hosts file
	9.1.7. Optional: Removing RHCOS compute machines from a cluster

	9.2. ADDING RHCOS COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	9.2.1. Prerequisites
	9.2.2. Creating RHCOS machines using an ISO image
	9.2.3. Creating RHCOS machines by PXE or iPXE booting
	9.2.4. Approving the certificate signing requests for your machines
	9.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

	9.3. DEPLOYING MACHINE HEALTH CHECKS
	9.3.1. About machine health checks
	9.3.1.1. Limitations when deploying machine health checks

	9.3.2. Sample MachineHealthCheck resource
	9.3.2.1. Short-circuiting machine health check remediation

	9.3.3. Creating a machine health check resource
	9.3.4. Scaling a compute machine set manually
	9.3.5. Understanding the difference between compute machine sets and the machine config pool

	9.4. RECOMMENDED NODE HOST PRACTICES
	9.4.1. Creating a KubeletConfig CRD to edit kubelet parameters
	9.4.2. Modifying the number of unavailable worker nodes
	9.4.3. Control plane node sizing
	9.4.4. Setting up CPU Manager

	9.5. HUGE PAGES
	9.5.1. What huge pages do
	9.5.2. How huge pages are consumed by apps
	9.5.3. Configuring huge pages at boot time

	9.6. UNDERSTANDING DEVICE PLUGINS
	Example device plugins
	9.6.1. Methods for deploying a device plugin
	9.6.2. Understanding the Device Manager
	9.6.3. Enabling Device Manager

	9.7. TAINTS AND TOLERATIONS
	9.7.1. Understanding taints and tolerations
	9.7.2. Adding taints and tolerations
	9.7.3. Adding taints and tolerations using a compute machine set
	9.7.4. Binding a user to a node using taints and tolerations
	9.7.5. Controlling nodes with special hardware using taints and tolerations
	9.7.6. Removing taints and tolerations

	9.8. TOPOLOGY MANAGER
	9.8.1. Topology Manager policies
	9.8.2. Setting up Topology Manager
	9.8.3. Pod interactions with Topology Manager policies

	9.9. RESOURCE REQUESTS AND OVERCOMMITMENT
	9.10. CLUSTER-LEVEL OVERCOMMIT USING THE CLUSTER RESOURCE OVERRIDE OPERATOR
	9.10.1. Installing the Cluster Resource Override Operator using the web console
	9.10.2. Installing the Cluster Resource Override Operator using the CLI
	9.10.3. Configuring cluster-level overcommit

	9.11. NODE-LEVEL OVERCOMMIT
	9.11.1. Understanding compute resources and containers
	9.11.1.1. Understanding container CPU requests
	9.11.1.2. Understanding container memory requests

	9.11.2. Understanding overcomitment and quality of service classes
	9.11.2.1. Understanding how to reserve memory across quality of service tiers

	9.11.3. Understanding swap memory and QOS
	9.11.4. Understanding nodes overcommitment
	9.11.5. Disabling or enforcing CPU limits using CPU CFS quotas
	9.11.6. Reserving resources for system processes
	9.11.7. Disabling overcommitment for a node

	9.12. PROJECT-LEVEL LIMITS
	9.12.1. Disabling overcommitment for a project

	9.13. FREEING NODE RESOURCES USING GARBAGE COLLECTION
	9.13.1. Understanding how terminated containers are removed through garbage collection
	9.13.2. Understanding how images are removed through garbage collection
	9.13.3. Configuring garbage collection for containers and images

	9.14. USING THE NODE TUNING OPERATOR
	Purpose
	9.14.1. Accessing an example Node Tuning Operator specification
	9.14.2. Custom tuning specification
	9.14.3. Default profiles set on a cluster
	9.14.4. Supported TuneD daemon plugins

	9.15. CONFIGURING THE MAXIMUM NUMBER OF PODS PER NODE
	9.16. MACHINE SCALING WITH STATIC IP ADDRESSES
	9.16.1. Scaling machines to use static IP addresses
	9.16.2. Machine set scaling of machines with configured static IP addresses
	9.16.3. Using a machine set to scale machines with configured static IP addresses


	CHAPTER 10. POSTINSTALLATION NETWORK CONFIGURATION
	10.1. CLUSTER NETWORK OPERATOR CONFIGURATION
	10.2. ENABLING THE CLUSTER-WIDE PROXY
	10.3. SETTING DNS TO PRIVATE
	10.4. CONFIGURING INGRESS CLUSTER TRAFFIC
	10.5. CONFIGURING THE NODE PORT SERVICE RANGE
	10.5.1. Prerequisites
	10.5.1.1. Expanding the node port range


	10.6. CONFIGURING IPSEC ENCRYPTION
	10.6.1. Prerequisites
	10.6.1.1. Enabling IPsec encryption


	10.7. CONFIGURING NETWORK POLICY
	10.7.1. About network policy
	10.7.1.1. Using the allow-from-router network policy
	10.7.1.2. Using the allow-from-hostnetwork network policy

	10.7.2. Example NetworkPolicy object
	10.7.3. Creating a network policy using the CLI
	10.7.4. Configuring multitenant isolation by using network policy
	10.7.5. Creating default network policies for a new project
	10.7.6. Modifying the template for new projects
	10.7.6.1. Adding network policies to the new project template


	10.8. SUPPORTED CONFIGURATIONS
	10.8.1. Supported platforms
	10.8.2. Unsupported configurations
	10.8.3. Supported network configurations
	10.8.4. Supported configurations for Service Mesh
	10.8.5. Supported configurations for Kiali
	10.8.6. Supported configurations for Distributed Tracing
	10.8.7. Supported WebAssembly module
	10.8.8. Operator overview

	10.9. OPTIMIZING ROUTING
	10.9.1. Baseline Ingress Controller (router) performance
	10.9.2. Configuring Ingress Controller liveness, readiness, and startup probes
	10.9.3. Configuring HAProxy reload interval

	10.10. POSTINSTALLATION RHOSP NETWORK CONFIGURATION
	10.10.1. Configuring application access with floating IP addresses
	10.10.2. Enabling OVS hardware offloading
	10.10.3. Attaching an OVS hardware offloading network
	10.10.4. Enabling IPv6 connectivity to pods on RHOSP
	10.10.5. Adding IPv6 connectivity to pods on RHOSP
	10.10.6. Create pods that have IPv6 connectivity on RHOSP


	CHAPTER 11. POSTINSTALLATION STORAGE CONFIGURATION
	11.1. DYNAMIC PROVISIONING
	11.1.1. About dynamic provisioning
	11.1.2. Available dynamic provisioning plugins

	11.2. DEFINING A STORAGE CLASS
	11.2.1. Basic StorageClass object definition
	11.2.2. Storage class annotations
	11.2.3. RHOSP Cinder object definition
	11.2.4. AWS Elastic Block Store (EBS) object definition
	11.2.5. Azure Disk object definition
	11.2.6. Azure File object definition
	11.2.6.1. Considerations when using Azure File

	11.2.7. GCE PersistentDisk (gcePD) object definition
	11.2.8. VMware vSphere object definition

	11.3. CHANGING THE DEFAULT STORAGE CLASS
	11.4. OPTIMIZING STORAGE
	11.5. AVAILABLE PERSISTENT STORAGE OPTIONS
	11.6. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
	11.6.1. Specific application storage recommendations
	11.6.1.1. Registry
	11.6.1.2. Scaled registry
	11.6.1.3. Metrics
	11.6.1.4. Logging
	11.6.1.5. Applications

	11.6.2. Other specific application storage recommendations

	11.7. DEPLOY RED HAT OPENSHIFT DATA FOUNDATION
	11.8. ADDITIONAL RESOURCES

	CHAPTER 12. PREPARING FOR USERS
	12.1. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
	12.1.1. About identity providers in OpenShift Container Platform
	12.1.2. Supported identity providers
	12.1.3. Identity provider parameters
	12.1.4. Sample identity provider CR

	12.2. USING RBAC TO DEFINE AND APPLY PERMISSIONS
	12.2.1. RBAC overview
	12.2.1.1. Default cluster roles
	12.2.1.2. Evaluating authorization

	12.2.2. Projects and namespaces
	12.2.3. Default projects
	12.2.4. Viewing cluster roles and bindings
	12.2.5. Viewing local roles and bindings
	12.2.6. Adding roles to users
	12.2.7. Creating a local role
	12.2.8. Creating a cluster role
	12.2.9. Local role binding commands
	12.2.10. Cluster role binding commands
	12.2.11. Creating a cluster admin

	12.3. THE KUBEADMIN USER
	12.3.1. Removing the kubeadmin user

	12.4. IMAGE CONFIGURATION
	12.4.1. Image controller configuration parameters
	12.4.2. Configuring image registry settings
	12.4.3. Configuring additional trust stores for image registry access

	12.5. UNDERSTANDING IMAGE REGISTRY REPOSITORY MIRRORING
	12.5.1. Configuring image registry repository mirroring
	12.5.2. Converting ImageContentSourcePolicy (ICSP) files for image registry repository mirroring

	12.6. POPULATING OPERATORHUB FROM MIRRORED OPERATOR CATALOGS
	12.6.1. Prerequisites
	12.6.2. Creating the ImageContentSourcePolicy object
	12.6.3. Adding a catalog source to a cluster

	12.7. ABOUT OPERATOR INSTALLATION WITH OPERATORHUB
	12.7.1. Installing from OperatorHub using the web console
	12.7.2. Installing from OperatorHub using the CLI


	CHAPTER 13. CONFIGURING ALERT NOTIFICATIONS
	13.1. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
	13.1.1. Configuring alert receivers

	13.2. ADDITIONAL RESOURCES

	CHAPTER 14. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER
	14.1. ABOUT THE MIRROR REGISTRY
	14.2. PREREQUISITES
	14.3. PREPARING THE CLUSTER FOR MIRRORING
	14.4. MIRRORING THE IMAGES
	14.5. CONFIGURING THE CLUSTER FOR THE MIRROR REGISTRY
	14.6. ENSURE APPLICATIONS CONTINUE TO WORK
	14.7. DISCONNECT THE CLUSTER FROM THE NETWORK
	14.8. RESTORING A DEGRADED INSIGHTS OPERATOR
	14.9. RESTORING THE NETWORK

	CHAPTER 15. ENABLING CLUSTER CAPABILITIES
	15.1. VIEWING THE CLUSTER CAPABILITIES
	15.2. ENABLING THE CLUSTER CAPABILITIES BY SETTING BASELINE CAPABILITY SET
	15.3. ENABLING THE CLUSTER CAPABILITIES BY SETTING ADDITIONAL ENABLED CAPABILITIES
	15.4. ADDITIONAL RESOURCES

	CHAPTER 16. CONFIGURING ADDITIONAL DEVICES IN AN IBM Z OR IBM LINUXONE ENVIRONMENT
	16.1. CONFIGURING ADDITIONAL DEVICES USING THE MACHINE CONFIG OPERATOR (MCO)
	16.1.1. Configuring a Fibre Channel Protocol (FCP) host
	16.1.2. Configuring an FCP LUN
	16.1.3. Configuring DASD
	16.1.4. Configuring qeth

	16.2. CONFIGURING ADDITIONAL DEVICES MANUALLY
	16.3. ROCE NETWORK CARDS
	16.4. ENABLING MULTIPATHING FOR FCP LUNS

	CHAPTER 17. MULTIPLE REGIONS AND ZONES CONFIGURATION FOR A CLUSTER ON VSPHERE
	17.1. SPECIFYING MULTIPLE REGIONS AND ZONES FOR YOUR CLUSTER ON VSPHERE
	17.2. ENABLING A MULTIPLE LAYER 2 NETWORK FOR YOUR CLUSTER
	17.3. PARAMETERS FOR THE CLUSTER-WIDE INFRASTRUCTURE CRD

	CHAPTER 18. RHCOS IMAGE LAYERING
	18.1. APPLYING A RHCOS CUSTOM LAYERED IMAGE
	18.2. REMOVING A RHCOS CUSTOM LAYERED IMAGE
	18.3. UPDATING WITH A RHCOS CUSTOM LAYERED IMAGE

	CHAPTER 19. ADDING FAILURE DOMAINS TO AN EXISTING NUTANIX CLUSTER
	19.1. FAILURE DOMAIN REQUIREMENTS
	19.2. ADDING FAILURE DOMAINS TO THE INFRASTRUCTURE CR
	19.3. DISTRIBUTING CONTROL PLANES ACROSS FAILURE DOMAINS
	19.4. DISTRIBUTING COMPUTE MACHINES ACROSS FAILURE DOMAINS
	19.4.1. Editing compute machine sets to implement failure domains
	19.4.2. Replacing compute machine sets to implement failure domains


	CHAPTER 20. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS
	20.1. EXTEND EXISTING CLUSTERS TO USE AWS LOCAL ZONES OR WAVELENGTH ZONES
	20.1.1. About edge compute pools

	20.2. CHANGING THE CLUSTER NETWORK MTU TO SUPPORT LOCAL ZONES OR WAVELENGTH ZONES
	20.2.1. About the cluster MTU
	20.2.1.1. Service interruption considerations
	20.2.1.2. MTU value selection
	20.2.1.3. How the migration process works
	20.2.1.4. Changing the cluster network MTU

	20.2.2. Opting in to AWS Local Zones or Wavelength Zones
	20.2.3. Create network requirements in an existing VPC that uses AWS Local Zones or Wavelength Zones
	20.2.4. Wavelength Zones only: Creating a VPC carrier gateway
	20.2.5. Wavelength Zones only: CloudFormation template for the VPC Carrier Gateway
	20.2.6. Creating subnets for AWS edge compute services
	20.2.7. CloudFormation template for the VPC subnet
	20.2.8. Creating a machine set manifest for an AWS Local Zones or Wavelength Zones node
	20.2.8.1. Sample YAML for a compute machine set custom resource on AWS
	20.2.8.2. Creating a compute machine set


	20.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR WAVELENGTH ZONES
	20.4. NEXT STEPS

	CHAPTER 21. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST
	21.1. AWS OUTPOSTS ON OPENSHIFT CONTAINER PLATFORM REQUIREMENTS AND LIMITATIONS
	21.2. OBTAINING INFORMATION ABOUT YOUR ENVIRONMENT
	21.2.1. Obtaining information from your OpenShift Container Platform cluster
	21.2.2. Obtaining information from your AWS account

	21.3. CONFIGURING YOUR NETWORK FOR YOUR OUTPOST
	21.3.1. Changing the cluster network MTU to support AWS Outposts
	21.3.2. Creating subnets for AWS edge compute services
	21.3.3. CloudFormation template for the VPC subnet

	21.4. CREATING A COMPUTE MACHINE SET THAT DEPLOYS EDGE COMPUTE MACHINES ON AN OUTPOST
	21.5. CREATING USER WORKLOADS IN AN OUTPOST
	21.6. SCHEDULING WORKLOADS ON EDGE AND CLOUD-BASED AWS COMPUTE RESOURCES
	21.6.1. Using AWS Classic Load Balancers in an AWS VPC cluster extended into an Outpost
	21.6.2. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

	21.7. ADDITIONAL RESOURCES


