OpenShift Container Platform 4.15

Backup and restore

Backing up and restoring your OpenShift Container Platform cluster
Backing up and restoring your OpenShift Container Platform cluster
Abstract

This document provides instructions for backing up your cluster’s data and for recovering from various disaster scenarios.
Table of Contents

CHAPTER 1. BACKUP AND RESTORE ... 9
 1.1. CONTROL PLANE BACKUP AND RESTORE OPERATIONS 9
 1.2. APPLICATION BACKUP AND RESTORE OPERATIONS 9
 1.2.1. OADP requirements 9
 1.2.2. Backing up and restoring applications 10

CHAPTER 2. SHUTTING DOWN THE CLUSTER GRACEFULLY 12
 2.1. PREREQUISITES 12
 2.2. SHUTTING DOWN THE CLUSTER 12
 2.3. ADDITIONAL RESOURCES 14

CHAPTER 3. RESTARTING THE CLUSTER GRACEFULLY ... 15
 3.1. PREREQUISITES 15
 3.2. RESTARTING THE CLUSTER 15

CHAPTER 4. OADP APPLICATION BACKUP AND RESTORE 18
 4.1. INTRODUCTION TO OPENSFHT API FOR DATA PROTECTION 18
 4.1.1. OpenShift API for Data Protection APIs 18
 4.2. OADP RELEASE NOTES 18
 4.2.1. OADP 1.3 release notes 18
 4.2.1.1. OADP 1.3.0 release notes 18
 4.2.1.1.1. New features 18
 4.2.1.1.2. Resolved issues 19
 4.2.1.1.3. Known issues 20
 4.2.1.1.4. Upgrade notes 21
 4.2.1.1.4.1. Changes from OADP 1.2 to 1.3 21
 4.2.1.1.4.2. Upgrading steps 22
 4.2.1.1.4.3. Upgrading from OADP 1.2 Technology Preview Data Mover 22
 4.2.1.1.4.4. Backing up the DPA configuration 22
 4.2.1.1.4.5. Upgrading the OADP Operator 22
 4.2.1.1.4.6. Converting DPA to the new version 23
 4.2.1.1.4.7. Verifying the upgrade 24
 4.2.1.2. OADP 1.2 release notes 25
 4.2.1.2.1. OADP 1.2.3 release notes 25
 4.2.1.2.1.1. New features 25
 4.2.1.2.1.2. Resolved issues 25
 4.2.1.2.1.3. Known issues 26
 4.2.1.2. OADP 1.2.2 release notes 26
 4.2.1.2.1. New features 26
 4.2.1.2.2. Resolved issues 26
 4.2.1.2.3. Known issues 27
 4.2.1.3. OADP 1.2.1 release notes 27
 4.2.1.3.1. New features 27
 4.2.1.3.2. Resolved issues 27
 4.2.1.3.3. Known issues 28
 4.2.1.4. OADP 1.2.0 release notes 28
 4.2.1.4.1. New features 28
 4.2.1.4.1.1. Technical preview features 28
 4.2.1.4.2. Resolved issues 29
 4.2.1.4.3. Known issues 29
 4.2.1.4.4. Upgrade notes 29
 4.2.1.4.1.1. Changes from OADP 1.1 to 1.2 29
4.2.2.4.4.2. Upgrading steps
4.2.2.4.4.3. Backing up the DPA configuration
4.2.2.4.4.4. Upgrading the OADP Operator
4.2.2.4.4.5. Converting DPA to the new version
4.2.2.4.4.6. Verifying the upgrade

4.3. OADP FEATURES AND PLUGINS
4.3.1. OADP features
4.3.2. OADP plugins
4.3.3. About OADP Velero plugins
 4.3.3.1. Default Velero cloud provider plugins
 4.3.3.2. Custom Velero plugins
 4.3.3.3. Velero plugins returning "received EOF, stopping recv loop" message
4.3.4. Supported architectures for OADP
4.3.5. OADP support for IBM Power and IBM Z
 4.3.5.1. OADP support for target backup locations using IBM Power
 4.3.5.2. OADP testing and support for target backup locations using IBM Z

4.4. INSTALLING AND CONFIGURING OADP
4.4.1. About installing OADP
 4.4.1.1. AWS S3 compatible backup storage providers
 4.4.1.1.1. Supported backup storage providers
 4.4.1.1.2. Unsupported backup storage providers
 4.4.1.1.3. Backup storage providers with known limitations
 4.4.1.2. Configuring Multicloud Object Gateway (MCG) for disaster recovery on OpenShift Data Foundation
 4.4.1.2.1. About OADP update channels
 4.4.1.3. Installation of OADP on multiple namespaces
 4.4.1.4. Velero CPU and memory requirements based on collected data
4.4.1.5.1. CPU and memory requirement for configurations
4.4.1.5.2. NodeAgent CPU for large usage
4.4.2. Installing the OADP Operator
4.4.2.1. OADP-Velero-OpenShift Container Platform version relationship
4.4.3. Configuring the OpenShift API for Data Protection with Amazon Web Services
4.4.3.1. Configuring Amazon Web Services
4.4.3.2. About backup and snapshot locations and their secrets
 Backup locations
 Snapshot locations
 Secrets
 4.4.3.2.1. Creating a default Secret
 4.4.3.2.2. Creating profiles for different credentials
 4.4.3.3. Configuring the Data Protection Application
 4.4.3.3.1. Setting Velero CPU and memory resource allocations
 4.4.3.3.2. Enabling self-signed CA certificates
 4.4.3.3.2.1. Using CA certificates with the velero command aliased for Velero deployment
 4.4.3.4. Installing the Data Protection Application 1.2 and earlier
 4.4.3.4.1. Verifying the installation
 4.4.3.5. Installing the Data Protection Application 1.3
 4.4.3.5.1. Verifying the installation
 4.4.3.5.2. Enabling CSI in the DataProtectionApplication CR
 4.4.4. Configuring the OpenShift API for Data Protection with Microsoft Azure
 4.4.4.1. Configuring Microsoft Azure
 4.4.4.2. About backup and snapshot locations and their secrets
 Backup locations
 Snapshot locations
 Secrets
 4.4.4.2.1. Creating a default Secret
 4.4.4.2.2. Creating secrets for different credentials
 4.4.4.3. Configuring the Data Protection Application
 4.4.4.3.1. Setting Velero CPU and memory resource allocations
 4.4.4.3.2. Enabling self-signed CA certificates
 4.4.4.3.2.1. Using CA certificates with the velero command aliased for Velero deployment
 4.4.4.4. Installing the Data Protection Application 1.2 and earlier
 4.4.4.4.1. Verifying the installation
 4.4.4.5. Installing the Data Protection Application 1.3
 4.4.4.5.1. Verifying the installation
 4.4.4.5.2. Enabling CSI in the DataProtectionApplication CR
 4.4.5. Configuring the OpenShift API for Data Protection with Google Cloud Platform
 4.4.5.1. Configuring Google Cloud Platform
 4.4.5.2. About backup and snapshot locations and their secrets
 Backup locations
 Snapshot locations
 Secrets
 4.4.5.2.1. Creating a default Secret
 4.4.5.2.2. Creating secrets for different credentials
 4.4.5.3. Configuring the Data Protection Application
 4.4.5.3.1. Setting Velero CPU and memory resource allocations
 4.4.5.3.2. Enabling self-signed CA certificates
 4.4.5.3.2.1. Using CA certificates with the velero command aliased for Velero deployment
 4.4.5.4. Installing the Data Protection Application 1.2 and earlier
 4.4.5.4.1. Verifying the installation
 4.4.5.5. Google workload identity federation cloud authentication
4.4.5.6. Installing the Data Protection Application 1.3
4.4.5.6.1. Verifying the installation
4.4.5.6.2. Enabling CSI in the DataProtectionApplication CR
4.4.6. Configuring the OpenShift API for Data Protection with Multicloud Object Gateway
4.4.6.1. Retrieving Multicloud Object Gateway credentials
4.4.6.2. About backup and snapshot locations and their secrets
 Backup locations
 Snapshot locations
 Secrets
4.4.6.2.1. Creating a default Secret
4.4.6.2.2. Creating secrets for different credentials
4.4.6.3. Configuring the Data Protection Application
4.4.6.3.1. Setting Velero CPU and memory resource allocations
4.4.6.3.2. Enabling self-signed CA certificates
 4.4.6.3.2.1. Using CA certificates with the velero command aliased for Velero deployment
4.4.6.4. Installing the Data Protection Application 1.2 and earlier
 4.4.6.4.1. Verifying the installation
4.4.6.5. Installing the Data Protection Application 1.3
 4.4.6.5.1. Verifying the installation
4.4.6.5.2. Enabling CSI in the DataProtectionApplication CR
4.4.7. Configuring the OpenShift API for Data Protection with OpenShift Data Foundation
4.4.7.1. About backup and snapshot locations and their secrets
 Backup locations
 Snapshot locations
 Secrets
 4.4.7.1.1. Creating a default Secret
4.4.7.2. Configuring the Data Protection Application
 4.4.7.2.1. Setting Velero CPU and memory resource allocations
 4.4.7.2.1.1. Adjusting Ceph CPU and memory requirements based on collected data
 4.4.7.2.1.1.1. CPU and memory requirement for configurations
 4.4.7.2.2. Enabling self-signed CA certificates
 4.4.7.2.2.1. Using CA certificates with the velero command aliased for Velero deployment
4.4.7.3. Installing the Data Protection Application 1.2 and earlier
 4.4.7.3.1. Verifying the installation
4.4.7.4. Installing the Data Protection Application 1.3
 4.4.7.4.1. Verifying the installation
 4.4.7.4.2. Creating an Object Bucket Claim for disaster recovery on OpenShift Data Foundation
4.5. UNINSTALLING OADP
 4.5.1. Uninstalling the OpenShift API for Data Protection
4.6. OADP BACKING UP
 4.6.1. Backing up applications
 4.6.1.1. Known issues
 4.6.2. Creating a Backup CR
 4.6.3. Backing up persistent volumes with CSI snapshots
 4.6.4. Backing up applications with File System Backup: Kopia or Restic
 4.6.5. Creating backup hooks
 4.6.6. Scheduling backups using Schedule CR
 4.6.7. Deleting backups
 4.6.8. About Kopia
 4.6.8.1. OADP integration with Kopia
4.7. OADP RESTORING
 4.7.1. Restoring applications
4.7.1.2. Creating restore hooks

4.8. OADP AND ROSA

4.8.1. Backing up applications on ROSA clusters using OADP

4.8.1.1. Preparing AWS credentials for OADP

4.8.1.2. Installing the OADP Operator and providing the IAM role

4.8.1.3. Example: Backing up workload on OADP ROSA STS, with an optional cleanup

4.8.1.3.1. Performing a backup with OADP and ROSA STS

4.8.1.3.2. Cleaning up a cluster after a backup with OADP and ROSA STS

4.8.1.3.3. Example: Backing up workload on OADP ROSA STS, with an optional cleanup

4.8.1.3.3.1. Performing a backup with OADP and ROSA STS

4.8.1.3.3.2. Cleaning up a cluster after a backup with OADP and ROSA STS

4.9. OADP 1.2 DATA MOVER

4.9.1. OADP Data Mover Introduction

4.9.1.1. OADP Data Mover prerequisites

4.9.2. Using Data Mover for CSI snapshots

4.9.3. Using OADP 1.2 Data Mover with Ceph storage

4.9.3.1. Prerequisites for using OADP 1.2 Data Mover with Ceph storage

4.9.3.2. Defining custom resources for use with OADP 1.2 Data Mover

4.9.3.2.1. Defining CephFS custom resources for use with OADP 1.2 Data Mover

4.9.3.2.2. Defining CephRBD custom resources for use with OADP 1.2 Data Mover

4.9.3.2.3. Defining additional custom resources for use with OADP 1.2 Data Mover

4.9.3.3. Backing up and restoring data using OADP 1.2 Data Mover and CephFS storage

4.9.3.3.1. Creating a DPA for use with CephFS storage

4.9.3.3.2. Backing up data using OADP 1.2 Data Mover and CephFS storage

4.9.3.3.3. Restoring data using OADP 1.2 Data Mover and CephFS storage

4.9.3.4. Backing up and restoring data using OADP 1.2 Data Mover and split volumes (CephFS and Ceph RBD)

4.9.3.4.1. Creating a DPA for use with split volumes

4.9.3.4.2. Backing up data using OADP 1.2 Data Mover and split volumes

4.9.3.4.3. Restoring data using OADP 1.2 Data Mover and split volumes

4.10. OADP 1.3 DATA MOVER

4.10.1. About the OADP 1.3 Data Mover

4.10.1.1. Enabling the built-in Data Mover

4.10.1.2. Built-in Data Mover controller and custom resource definitions (CRDs)

4.10.2. Backing up and restoring CSI snapshots

4.10.2.1. Backing up persistent volumes with CSI snapshots

4.10.2.2. Restoring CSI volume snapshots

4.11. TROUBLESHOOTING

4.11.1. Downloading the Velero CLI tool

4.11.1.1. OADP-Velero-OpenShift Container Platform version relationship

4.11.2. Accessing the Velero binary in the Velero deployment in the cluster

4.11.3. Debugging Velero resources with the OpenShift CLI tool

Vebero CRs

Velero pod logs

Velero pod debug logs

4.11.4. Debugging Velero resources with the Velero CLI tool

Syntax

Help option

Describe command

Logs command

4.11.5. Pods crash or restart due to lack of memory or CPU

4.11.5.1. Setting resource requests for a Velero pod

4.11.5.2. Setting resource requests for a Restic pod

4.11.6. Issues with Velero and admission webhooks

4.11.6.1. Restoring workarounds for Velero backups that use admission webhooks
4.11.6.1. Restoring Knative resources
4.11.6.1.2. Restoring IBM AppConnect resources
4.11.6.2. Velero plugins returning "received EOF, stopping recv loop" message
4.11.7. Installation issues
4.11.7.1. Backup storage contains invalid directories
4.11.7.2. Incorrect AWS credentials
4.11.8. OADP Operator issues
4.11.8.1. OADP Operator fails silently
4.11.9. OADP timeouts
4.11.9.1. Restic timeout
4.11.9.2. Velero resource timeout
4.11.9.3. Data Mover timeout
4.11.9.4. CSI snapshot timeout
4.11.9.5. Velero default item operation timeout
4.11.9.6. Item operation timeout - restore
4.11.9.7. Item operation timeout - backup
4.11.10. Backup and Restore CR issues
4.11.10.1. Backup CR cannot retrieve volume
4.11.10.2. Backup CR status remains in progress
4.11.10.3. Backup CR status remains in PartiallyFailed
4.11.11. Restic issues
4.11.11.1. Restic permission error for NFS data volumes with root_squash enabled
4.11.11.2. Restic Backup CR cannot be recreated after bucket is emptied
4.11.11.3. Restic restore partially failing on OCP 4.14 due to changed PSA policy
4.11.12. Using the must-gather tool
4.11.12.1. Combining options when using the must-gather tool
4.11.13. OADP Monitoring
4.11.13.1. OADP monitoring setup
4.11.13.2. Creating OADP service monitor
4.11.13.3. Creating an alerting rule
4.11.13.4. List of available metrics
4.11.13.5. Viewing metrics using the Observe UI
4.12. APIS USED WITH OADP
4.12.1. Velero API
4.12.2. OADP API
4.13. ADVANCED OADP FEATURES AND FUNCTIONALITIES
4.13.1. Working with different Kubernetes API versions on the same cluster
4.13.1.1. Listing the Kubernetes API group versions on a cluster
4.13.1.2. About Enable API Group Versions
4.13.1.3. Using Enable API Group Versions
4.13.2. Backing up data from one cluster and restoring it to another cluster
4.13.2.1. About backing up data from one cluster and restoring it on another cluster
4.13.2.1.1. Operators
4.13.2.1.2. Use of Velero
4.13.2.2. About determining which pod volumes to back up
4.13.2.2.1. Limitations
4.13.2.2.2. Backing up pod volumes by using the opt-in method
4.13.2.2.3. Backing up pod volumes by using the opt-out method
4.13.2.3. UID and GiD ranges
4.13.2.4. Backing up data from one cluster and restoring it to another cluster
4.13.3. Additional resources
5.1. BACKING UP ETCD
5.1.1. Backing up etcd data
5.1.2. Additional resources
5.1.3. Creating automated etcd backups
 5.1.3.1. Enabling automated etcd backups
 5.1.3.2. Creating a single etcd backup
 5.1.3.3. Creating recurring etcd backups
5.2. REPLACING AN UNHEALTHY ETCD MEMBER
5.2.1. Prerequisites
5.2.2. Identifying an unhealthy etcd member
5.2.3. Determining the state of the unhealthy etcd member
5.2.4. Replacing the unhealthy etcd member
 5.2.4.1. Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
 5.2.4.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping
 5.2.4.3. Replacing an unhealthy bare metal etcd member whose machine is not running or whose node is not ready
5.2.5. Additional resources
5.3. DISASTER RECOVERY
5.3.1. About disaster recovery
5.3.2. Restoring to a previous cluster state
 5.3.2.1. About restoring cluster state
 5.3.2.2. Restoring to a previous cluster state
 5.3.2.3. Additional resources
 5.3.2.4. Issues and workarounds for restoring a persistent storage state
5.3.3. Recovering from expired control plane certificates
 5.3.3.1. Recovering from expired control plane certificates
CHAPTER 1. BACKUP AND RESTORE

1.1. CONTROL PLANE BACKUP AND RESTORE OPERATIONS

As a cluster administrator, you might need to stop an OpenShift Container Platform cluster for a period and restart it later. Some reasons for restarting a cluster are that you need to perform maintenance on a cluster or want to reduce resource costs. In OpenShift Container Platform, you can perform a graceful shutdown of a cluster so that you can easily restart the cluster later.

You must back up etcd data before shutting down a cluster; etcd is the key-value store for OpenShift Container Platform, which persists the state of all resource objects. An etcd backup plays a crucial role in disaster recovery. In OpenShift Container Platform, you can also replace an unhealthy etcd member.

When you want to get your cluster running again, restart the cluster gracefully.

NOTE

A cluster’s certificates expire one year after the installation date. You can shut down a cluster and expect it to restart gracefully while the certificates are still valid. Although the cluster automatically retrieves the expired control plane certificates, you must still approve the certificate signing requests (CSRs).

You might run into several situations where OpenShift Container Platform does not work as expected, such as:

- You have a cluster that is not functional after the restart because of unexpected conditions, such as node failure or network connectivity issues.
- You have deleted something critical in the cluster by mistake.
- You have lost the majority of your control plane hosts, leading to etcd quorum loss.

You can always recover from a disaster situation by restoring your cluster to its previous state using the saved etcd snapshots.

Additional resources

- Quorum protection with machine lifecycle hooks

1.2. APPLICATION BACKUP AND RESTORE OPERATIONS

As a cluster administrator, you can back up and restore applications running on OpenShift Container Platform by using the OpenShift API for Data Protection (OADP).

OADP backs up and restores Kubernetes resources and internal images, at the granularity of a namespace, by using the version of Velero that is appropriate for the version of OADP you install, according to the table in Downloading the Velero CLI tool. OADP backs up and restores persistent volumes (PVs) by using snapshots or Restic. For details, see OADP features.

1.2.1. OADP requirements

OADP has the following requirements:

- You must be logged in as a user with a cluster-admin role.
You must have object storage for storing backups, such as one of the following storage types:

- OpenShift Data Foundation
- Amazon Web Services
- Microsoft Azure
- Google Cloud Platform
- S3-compatible object storage

NOTE

If you want to use CSI backup on OCP 4.11 and later, install OADP 1.1.x.

OADP 1.0.x does not support CSI backup on OCP 4.11 and later. OADP 1.0.x includes Velero 1.7.x and expects the API group `snapshot.storage.k8s.io/v1beta1`, which is not present on OCP 4.11 and later.

IMPORTANT

The CloudStorage API for S3 storage is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

- To back up PVs with snapshots, you must have cloud storage that has a native snapshot API or supports Container Storage Interface (CSI) snapshots, such as the following providers:
 - Amazon Web Services
 - Microsoft Azure
 - Google Cloud Platform
 - CSI snapshot-enabled cloud storage, such as Ceph RBD or Ceph FS

NOTE

If you do not want to back up PVs by using snapshots, you can use Restic, which is installed by the OADP Operator by default.

1.2.2. Backing up and restoring applications

You back up applications by creating a Backup custom resource (CR). See Creating a Backup CR. You can configure the following backup options:

- Creating backup hooks to run commands before or after the backup operation
• Scheduling backups

• Backing up applications with File System Backup: Kopia or Restic

• You restore application backups by creating a Restore (CR). See Creating a Restore CR.

• You can configure restore hooks to run commands in init containers or in the application container during the restore operation.
CHAPTER 2. SHUTTING DOWN THE CLUSTER GRACEFULLY

This document describes the process to gracefully shut down your cluster. You might need to temporarily shut down your cluster for maintenance reasons, or to save on resource costs.

2.1. PREREQUISITES

- Take an etcd backup prior to shutting down the cluster.

IMPORTANT

It is important to take an etcd backup before performing this procedure so that your cluster can be restored if you encounter any issues when restarting the cluster.

For example, the following conditions can cause the restarted cluster to malfunction:

- etcd data corruption during shutdown
- Node failure due to hardware
- Network connectivity issues

If your cluster fails to recover, follow the steps to restore to a previous cluster state.

2.2. SHUTTING DOWN THE CLUSTER

You can shut down your cluster in a graceful manner so that it can be restarted at a later date.

NOTE

You can shut down a cluster until a year from the installation date and expect it to restart gracefully. After a year from the installation date, the cluster certificates expire.

Prerequisites

- You have access to the cluster as a user with the **cluster-admin** role.
- You have taken an etcd backup.

Procedure

1. If you are shutting the cluster down for an extended period, determine the date on which certificates expire and run the following command:

   ```bash
   $ oc -n openshift-kube-apiserver-operator get secret kube-apiserver-to-kubelet-signer -o jsonpath='{.metadata.annotations.auth.openshift.io/certificate-not-after}'
   ```

 Example output

   ```bash
   2022-08-05T14:37:50Z
   ```
1. To ensure that the cluster can restart gracefully, plan to restart it on or before the specified date. As the cluster restarts, the process might require you to manually approve the pending certificate signing requests (CSRs) to recover kubelet certificates.

2. Mark all the nodes in the cluster as unschedulable. You can do this from your cloud provider’s web console, or by running the following loop:

```
$ for node in $(oc get nodes -o jsonpath='{.items[*].metadata.name}'); do echo ${node} ; oc adm cordon ${node} ; done
```

Example output

```
ci-ln-mgdnf4b-72292-n547t-master-0
node/ci-ln-mgdnf4b-72292-n547t-master-0 cordoned
```

```
ci-ln-mgdnf4b-72292-n547t-master-1
node/ci-ln-mgdnf4b-72292-n547t-master-1 cordoned
```

```
ci-ln-mgdnf4b-72292-n547t-master-2
node/ci-ln-mgdnf4b-72292-n547t-master-2 cordoned
```

```
ci-ln-mgdnf4b-72292-n547t-worker-a-s7ntl
node/ci-ln-mgdnf4b-72292-n547t-worker-a-s7ntl cordoned
```

```
ci-ln-mgdnf4b-72292-n547t-worker-b-cmc9k
node/ci-ln-mgdnf4b-72292-n547t-worker-b-cmc9k cordoned
```

```
ci-ln-mgdnf4b-72292-n547t-worker-c-vcmtn
node/ci-ln-mgdnf4b-72292-n547t-worker-c-vcmtn cordoned
```

3. Evacuate the pods using the following method:

```
$ for node in $(oc get nodes -l node-role.kubernetes.io/worker -o jsonpath='{.items[*].metadata.name}'); do echo ${node} ; oc adm drain ${node} --delete-emptydir-data --ignore-daemonsets=true --timeout=15s ; done
```

4. Shut down all of the nodes in the cluster. You can do this from your cloud provider’s web console, or by running the following loop:

```
$ for node in $(oc get nodes -o jsonpath='{.items[*].metadata.name}'); do oc debug node/${node} -- chroot /host shutdown -h 1; done
```

Example output

```
Starting pod/ip-10-0-130-169us-east-2computeinternal-debug ...
To use host binaries, run `chroot /host`
```

```
Shutdown scheduled for Mon 2021-09-13 09:36:17 UTC, use `shutdown -c` to cancel.
```

```
Removing debug pod ...
Starting pod/ip-10-0-150-116us-east-2computeinternal-debug ...
To use host binaries, run `chroot /host`
```

```
Shutdown scheduled for Mon 2021-09-13 09:36:29 UTC, use `shutdown -c` to cancel.
```

Shutting down the nodes using one of these methods allows pods to terminate gracefully, which reduces the chance for data corruption.
NOTE
Adjust the shut down time to be longer for large-scale clusters:

$ for node in $(oc get nodes -o jsonpath='{.items[*].metadata.name}'); do oc
d debug node/${node} -- chroot /host shutdown -h 10; done

NOTE
It is not necessary to drain control plane nodes of the standard pods that ship
with OpenShift Container Platform prior to shutdown. Cluster administrators are
responsible for ensuring a clean restart of their own workloads after the cluster is
restarted. If you drained control plane nodes prior to shutdown because of
custom workloads, you must mark the control plane nodes as schedulable before
the cluster will be functional again after restart.

5. Shut off any cluster dependencies that are no longer needed, such as external storage or an
LDAP server. Be sure to consult your vendor’s documentation before doing so.

IMPORTANT
If you deployed your cluster on a cloud-provider platform, do not shut down,
suspend, or delete the associated cloud resources. If you delete the cloud
resources of a suspended virtual machine, OpenShift Container Platform might
not restore successfully.

2.3. ADDITIONAL RESOURCES

- Restarting the cluster gracefully
CHAPTER 3. RESTARTING THE CLUSTER GRACEFULLY

This document describes the process to restart your cluster after a graceful shutdown.

Even though the cluster is expected to be functional after the restart, the cluster might not recover due to unexpected conditions, for example:

- etcd data corruption during shutdown
- Node failure due to hardware
- Network connectivity issues

If your cluster fails to recover, follow the steps to restore to a previous cluster state.

3.1. PREREQUISITES

- You have gracefully shut down your cluster.

3.2. RESTARTING THE CLUSTER

You can restart your cluster after it has been shut down gracefully.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` role.
- This procedure assumes that you gracefully shut down the cluster.

Procedure

1. Power on any cluster dependencies, such as external storage or an LDAP server.

2. Start all cluster machines.
 Use the appropriate method for your cloud environment to start the machines, for example, from your cloud provider’s web console.

 Wait approximately 10 minutes before continuing to check the status of control plane nodes.

3. Verify that all control plane nodes are ready.

 $ oc get nodes -l node-role.kubernetes.io/master

 The control plane nodes are ready if the status is `Ready`, as shown in the following output:

 NAME STATUS ROLES AGE VERSION
 ip-10-0-168-251.ec2.internal Ready master 75m v1.28.5
 ip-10-0-170-223.ec2.internal Ready master 75m v1.28.5
 ip-10-0-211-16.ec2.internal Ready master 75m v1.28.5

4. If the control plane nodes are not ready, then check whether there are any pending certificate signing requests (CSRs) that must be approved.
 a. Get the list of current CSRs:
$ oc get csr

b. Review the details of a CSR to verify that it is valid:

$ oc describe csr <csr_name> ①

① <csr_name> is the name of a CSR from the list of current CSRs.

c. Approve each valid CSR:

$ oc adm certificate approve <csr_name>

5. After the control plane nodes are ready, verify that all worker nodes are ready.

$ oc get nodes -l node-role.kubernetes.io/worker

The worker nodes are ready if the status is Ready, as shown in the following output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>ROLES</th>
<th>AGE</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10-0-179-95.ec2.internal</td>
<td>Ready</td>
<td>worker</td>
<td>64m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-182-134.ec2.internal</td>
<td>Ready</td>
<td>worker</td>
<td>64m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-250-100.ec2.internal</td>
<td>Ready</td>
<td>worker</td>
<td>64m</td>
<td>v1.28.5</td>
</tr>
</tbody>
</table>

$ oc get csr

$ oc describe csr <csr_name> ①

① <csr_name> is the name of a CSR from the list of current CSRs.

c. Approve each valid CSR:

$ oc adm certificate approve <csr_name>

6. If the worker nodes are not ready, then check whether there are any pending certificate signing requests (CSRs) that must be approved.

a. Get the list of current CSRs:

$ oc get csr

b. Review the details of a CSR to verify that it is valid:

$ oc describe csr <csr_name> ①

① <csr_name> is the name of a CSR from the list of current CSRs.

c. Approve each valid CSR:

$ oc adm certificate approve <csr_name>

7. Verify that the cluster started properly.

a. Check that there are no degraded cluster Operators.

$ oc get clusteroperators

Check that there are no cluster Operators with the DEGRADED condition set to True.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VERSION</th>
<th>AVAILABLE</th>
<th>PROGRESSING</th>
<th>DEGRADED</th>
<th>SINCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINCE authentication</td>
<td>4.15.0</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>59m</td>
</tr>
</tbody>
</table>
b. Check that all nodes are in the **Ready** state:

```bash
$ oc get nodes
```

Check that the status for all nodes is **Ready**.

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>ROLES</th>
<th>AGE</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10-0-168-251.ec2.internal</td>
<td>Ready</td>
<td>master</td>
<td>82m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-170-223.ec2.internal</td>
<td>Ready</td>
<td>master</td>
<td>82m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-179-95.ec2.internal</td>
<td>Ready</td>
<td>worker</td>
<td>70m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-182-134.ec2.internal</td>
<td>Ready</td>
<td>worker</td>
<td>70m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-211-16.ec2.internal</td>
<td>Ready</td>
<td>master</td>
<td>82m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>ip-10-0-250-100.ec2.internal</td>
<td>Ready</td>
<td>worker</td>
<td>69m</td>
<td>v1.28.5</td>
</tr>
</tbody>
</table>

If the cluster did not start properly, you might need to restore your cluster using an etcd backup.

Additional resources

- See [Restoring to a previous cluster state](#) for how to use an etcd backup to restore if your cluster failed to recover after restarting.
CHAPTER 4. OADP APPLICATION BACKUP AND RESTORE

4.1. INTRODUCTION TO OPENSHIFT API FOR DATA PROTECTION

The OpenShift API for Data Protection (OADP) product safeguards customer applications on OpenShift Container Platform. It offers comprehensive disaster recovery protection, covering OpenShift Container Platform applications, application-related cluster resources, persistent volumes, and internal images. OADP is also capable of backing up both containerized applications and virtual machines (VMs).

However, OADP does not serve as a disaster recovery solution for etcd or OpenShift Operators.

4.1.1. OpenShift API for Data Protection APIs

OpenShift API for Data Protection (OADP) provides APIs that enable multiple approaches to customizing backups and preventing the inclusion of unnecessary or inappropriate resources.

OADP provides the following APIs:

- Backup
- Restore
- Schedule
- BackupStorageLocation
- VolumeSnapshotLocation

Additional resources

- Backing up etcd

4.2. OADP RELEASE NOTES

4.2.1. OADP 1.3 release notes

The release notes for OpenShift API for Data Protection (OADP) 1.3 describe new features and enhancements, deprecated features, product recommendations, known issues, and resolved issues.

4.2.1.1. OADP 1.3.0 release notes

The OpenShift API for Data Protection (OADP) 1.3.0 release notes lists new features, resolved issues and bugs, and known issues.

4.2.1.1.1. New features

Velero built-in DataMover

OADP 1.3 includes a built-in Data Mover that you can use to move Container Storage Interface (CSI) volume snapshots to a remote object store. The built-in Data Mover allows you to restore stateful applications from the remote object store if a failure, accidental deletion, or corruption of the cluster
occurs. It uses Kopia as the uploader mechanism to read the snapshot data and to write to the Unified Repository.

IMPORTANT

Velero built-in DataMover is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

Backing up applications with File System Backup: Kopia or Restic

Velero’s File System Backup (FSB) supports two backup libraries: the Restic path and the Kopia path.

Velero allows users to select between the two paths.

For backup, specify the path during the installation through the `uploader-type` flag. The valid value is either `restic` or `kopia`. This field defaults to `kopia` if the value is not specified. The selection cannot be changed after the installation.

GCP Cloud authentication

Google Cloud Platform (GCP) authentication enables you to use short-lived Google credentials.

GCP with Workload Identity Federation enables you to use Identity and Access Management (IAM) to grant external identities IAM roles, including the ability to impersonate service accounts. This eliminates the maintenance and security risks associated with service account keys.

AWS ROSA STS authentication

You can use OpenShift API for Data Protection (OADP) with Red Hat OpenShift Service on AWS (ROSA) clusters to backup and restore application data.

ROSA provides seamless integration with a wide range of AWS compute, database, analytics, machine learning, networking, mobile, and other services to speed up the building and delivering of differentiating experiences to your customers.

You can subscribe to the service directly from your AWS account.

After the clusters are created, you can operate your clusters by using the OpenShift web console. The ROSA service also uses OpenShift APIs and command-line interface (CLI) tools.

4.2.1.2. Resolved issues

ACM applications were removed and re-created on managed clusters after restore

Applications on managed clusters were deleted and re-created upon restore activation. OpenShift API for Data Protection (OADP 1.2) backup and restore process is faster than the older versions. The OADP performance change caused this behavior when restoring ACM resources. Therefore, some resources were restored before other resources, which caused the removal of the applications from managed clusters. OADP-2686

Restic restore was partially failing due to Pod Security standard
During interoperability testing, OpenShift Container Platform 4.14 had the pod Security mode set to **enforce**, which caused the pod to be denied. This was caused due to the restore order. The pod was getting created before the security context constraints (SCC) resource, since the pod violated the **podSecurity** standard, it denied the pod. When setting the restore priority field on the Velero server, restore is successful. **OADP-2688**

Possible pod volume backup failure if Velero is installed in several namespaces

There was a regression in Pod Volume Backup (PVB) functionality when Velero was installed in several namespaces. The PVB controller was not properly limiting itself to PVBs in its own namespace. **OADP-2308**

OADP Velero plugins returning "received EOF, stopping recv loop" message

In OADP, Velero plugins were started as separate processes. When the Velero operation completes, either successfully or not, they exit. Therefore, if you see a **received EOF, stopping recv loop** messages in debug logs, it does not mean an error occurred, it means that a plugin operation has completed. **OADP-2176**

CVE-2023-39325 Multiple HTTP/2 enabled web servers are vulnerable to a DDoS attack (Rapid Reset Attack)

In previous releases of OADP, the HTTP/2 protocol was susceptible to a denial of service attack because request cancellation could reset multiple streams quickly. The server had to set up and tear down the streams while not hitting any server-side limit for the maximum number of active streams per connection. This resulted in a denial of service due to server resource consumption.

For more information, see **CVE-2023-39325 (Rapid Reset Attack)**

For a complete list of all issues resolved in this release, see the list of **OADP 1.3.0 resolved issues** in Jira.

4.2.1.3. Known issues

CSI plugin errors on nil pointer when csiSnapshotTimeout is set to a short duration

The CSI plugin errors on nil pointer when **csiSnapshotTimeout** is set to a short duration. Sometimes it succeeds to complete the snapshot within a short duration, but often it panics with the backup **PartiallyFailed** with the following error: **plugin panicked: runtime error: invalid memory address or nil pointer dereference**.

Backup is marked as PartiallyFailed when volumeSnapshotContent CR has an error

If any of the **VolumeSnapshotContent** CRs have an error related to removing the **VolumeSnapshotBeingCreated** annotation, it moves the backup to the **WaitingForPluginOperationsPartiallyFailed** phase. **OADP-2871**

Performance issues when restoring 30,000 resources for the first time

When restoring 30,000 resources for the first time, without an existing-resource-policy, it takes twice as long to restore them, than it takes during the second and third try with an existing-resource-policy set to **update**. **OADP-3071**

Post restore hooks might start running before Datadownload operation has released the related PV

Due to the asynchronous nature of the Data Mover operation, a post-hook might be attempted before the related pods persistent volumes (PVs) are released by the Data Mover persistent volume claim (PVC).
GCP-Workload Identity Federation VSL backup PartiallyFailed

VSL backup **PartiallyFailed** when GCP workload identity is configured on GCP.

For a complete list of all known issues in this release, see the list of **OADP 1.3.0 known issues** in Jira.

4.2.1.4. Upgrade notes

NOTE

Always upgrade to the next minor version. **Do not** skip versions. To update to a later version, upgrade only one channel at a time. For example, to upgrade from OpenShift API for Data Protection (OADP) 1.1 to 1.3, upgrade first to 1.2, and then to 1.3.

4.2.1.4.1. Changes from OADP 1.2 to 1.3

The Velero server has been updated from version 1.11 to 1.12.

OpenShift API for Data Protection (OADP) 1.3 uses the Velero built-in Data Mover instead of the VolumeSnapshotMover (VSM) or the Volsync Data Mover.

This changes the following:

- The **spec.features.dataMover** field and the VSM plugin are not compatible with OADP 1.3, and you must remove the configuration from the **DataProtectionApplication** (DPA) configuration.

- The Volsync Operator is no longer required for Data Mover functionality, and you can remove it.

- The custom resource definitions `volumesnapshotbackups.datamover.oadp.openshift.io` and `volumesnapshotrestores.datamover.oadp.openshift.io` are no longer required, and you can remove them.

- The secrets used for the OADP-1.2 Data Mover are no longer required, and you can remove them.

OADP 1.3 supports Kopia, which is an alternative file system backup tool to Restic.

- To employ Kopia, use the new **spec.configuration.nodeAgent** field as shown in the following example:

 Example

  ```yaml
  spec:
    configuration:
      nodeAgent:
        enable: true
        uploaderType: kopia
  # ...
  ```

- The **spec.configuration.restic** field is deprecated in OADP 1.3 and will be removed in a future version of OADP. To avoid seeing deprecation warnings, remove the **restic** key and its values, and use the following new syntax:

 Example

  ```yaml
  ```
In a future OADP release, it is planned that the **kopia** tool will become the default **uploaderType** value.

4.2.1.4.2. Upgrading steps

4.2.1.4.3. Upgrading from OADP 1.2 Technology Preview Data Mover

OADP 1.2 Data Mover backups cannot be restored with OADP 1.3. To prevent a gap in the data protection of your applications, complete the following steps before upgrading to OADP 1.3:

Procedure

1. If your cluster backups are sufficient and Container Storage Interface (CSI) storage is available, back up the applications with a CSI backup.

2. If you require off cluster backups:
 a. Back up the applications with a file system backup that uses the `--default-volumes-to-fs-backup=true` or `backup.spec.defaultVolumesToFsBackup` options.
 b. Back up the applications with your object storage plugins, for example, `velero-plugin-for-aws`.

NOTE

To restore OADP 1.2 Data Mover backup, you must uninstall OADP, and install and configure OADP 1.2.

4.2.1.4.4. Backing up the DPA configuration

You must back up your current **DataProtectionApplication (DPA)** configuration.

Procedure

- Save your current DPA configuration by running the following command:

 Example

  ```bash
  $ oc get dpa -n openshift-adp -o yaml > dpa.orig.backup
  ```

4.2.1.4.5. Upgrading the OADP Operator

Use the following sequence when upgrading the OpenShift API for Data Protection (OADP) Operator.

```yaml
spec:
  configuration:
    nodeAgent:
      enable: true
      uploaderType: restic
# ...
```
Procedure

1. Change your subscription channel for the OADP Operator from **stable-1.2** to **stable-1.3**.
2. Allow time for the Operator and containers to update and restart.

Additional resources

- Updating installed Operators

4.2.1.4.6. Converting DPA to the new version

If you need to move backups off cluster with the Data Mover, reconfigure the `DataProtectionApplication` (DPA) manifest as follows.

Procedure

1. Click **Operators → Installed Operators** and select the OADP Operator.
2. In the **Provided APIs** section, click **View more**.
3. Click **Create instance** in the `DataProtectionApplication` box.
4. Click **YAML View** to display the current DPA parameters.

Example current DPA

```yaml
spec:
  configuration:
    features:
      dataMover:
        enable: true
        credentialName: dm-credentials
      velero:
        defaultPlugins:
        - vsm
        - csi
        - openshift
    # ...
```

5. Update the DPA parameters:

- Remove the **features.dataMover** key and values from the DPA.
- Remove the VolumeSnapshotMover (VSM) plugin.
- Add the **nodeAgent** key and values.

Example updated DPA

```yaml
spec:
  configuration:
    nodeAgent:
      enable: true
      uploaderType: kopia
```
6. Wait for the DPA to reconcile successfully.

4.2.1.4.7. Verifying the upgrade

Use the following procedure to verify the upgrade.

Procedure

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```
   $ oc get all -n openshift-adp
   ```

 Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-618z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/node-agent-9c4q4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-pv4k</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td><none></td>
</tr>
<tr>
<td>service/openshift-adp-velero-metrics-svc</td>
<td>ClusterIP</td>
<td>172.30.10.0</td>
<td><none></td>
</tr>
<tr>
<td></td>
<td>8085/TCP</td>
<td>8h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>NODE SELECTOR</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemonset.apps/node-agent</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td><none></td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployment.apps/oadp-operator-controller-manager</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>deployment.apps/velero</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>replicaset.apps/oadp-operator-controller-manager-67d9494d47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>replicaset.apps/velero-588db7f655</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

   ```
   $ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
   ```

 Example output
3. Verify the type is set to Reconciled.

4. Verify the backup storage location and confirm that the PHASE is Available by running the following command:

   ```bash
   $ oc get backupStorageLocation -n openshift-adp
   
   Example output
   
   NAME   PHASE   LAST VALIDATED AGE   DEFAULT
   dpa-sample-1 Available 1s     3d16h true
   
   In OADP 1.3 you can start data movement off cluster per backup versus creating a DataProtectionApplication (DPA) configuration.

Example

   ```bash
 $ velero backup create example-backup --include-namespaces mysql-persistent --snapshot-move-data=true

 Example

   ```json
   {
     "conditions": [
       {
         "lastTransitionTime": "2023-10-27T01:23:57Z",
         "message": "Reconcile complete",
         "reason": "Complete",
         "status": "True",
         "type": "Reconciled"
       }
     ]
   }
   
   4.2.2. OADP 1.2 release notes

   The release notes for OpenShift API for Data Protection (OADP) 1.2 describe new features and enhancements, deprecated features, product recommendations, known issues, and resolved issues.

   4.2.2.1. OADP 1.2.3 release notes

   4.2.2.1.1. New features

   There are no new features in the release of OpenShift API for Data Protection (OADP) 1.2.3.

   4.2.2.1.2. Resolved issues

   The following highlighted issues are resolved in OADP 1.2.3:
Multiple HTTP/2 enabled web servers are vulnerable to a DDoS attack (Rapid Reset Attack)

In previous releases of OADP 1.2, the HTTP/2 protocol was susceptible to a denial of service attack because request cancellation could reset multiple streams quickly. The server had to set up and tear down the streams while not hitting any server-side limit for the maximum number of active streams per connection. This resulted in a denial of service due to server resource consumption. For a list of all OADP issues associated with this CVE, see the following Jira list.

For more information, see CVE-2023-39325 (Rapid Reset Attack).

For a complete list of all issues resolved in the release of OADP 1.2.3, see the list of OADP 1.2.3 resolved issues in Jira.

4.2.2.3. Known issues

There are no known issues in the release of OADP 1.2.3.

4.2.2.2. OADP 1.2.2 release notes

4.2.2.2.1. New features

There are no new features in the release of OpenShift API for Data Protection (OADP) 1.2.2.

4.2.2.2.2. Resolved issues

The following highlighted issues are resolved in OADP 1.2.2:

Restic restore partially failed due to a Pod Security standard

In previous releases of OADP 1.2, OpenShift Container Platform 4.14 enforced a pod security admission (PSA) policy that hindered the readiness of pods during a Restic restore process.

This issue has been resolved in the release of OADP 1.2.2, and also OADP 1.1.6. Therefore, it is recommended that users upgrade to these releases.

For more information, see Restic restore partially failing on OCP 4.14 due to changed PSA policy. (OADP-2094)

Backup of an app with internal images partially failed with plugin panicked error

In previous releases of OADP 1.2, the backup of an application with internal images partially failed with plugin panicked error returned. The backup partially fails with this error in the Velero logs:

```
time="2022-11-23T15:40:46Z" level=info msg="1 errors encountered backup up item" backup=openshift-adp/django-persistent-67a5b83d-6b44-11ed-9c3a-902e163f806c logSource="/remote-source/velero/app/pkg/backup/backup.go:413" name=django-psql-persistent
time="2022-11-23T15:40:46Z" level=error msg="Error backing up item" backup=openshift-adp/django-persistent-67a5b83d-6b44-11ed-9c3a-902e163f8
```

This issue has been resolved in OADP 1.2.2. (OADP-1057).

ACM cluster restore was not functioning as expected due to restore order
In previous releases of OADP 1.2, ACM cluster restore was not functioning as expected due to restore order. ACM applications were removed and re-created on managed clusters after restore activation. (OADP-2505)

**VM’s using filesystemOverhead failed when backing up and restoring due to volume size mismatch**

In previous releases of OADP 1.2, due to storage provider implementation choices, whenever there was a difference between the application persistent volume claims (PVCs) storage request and the snapshot size of the same PVC, VM’s using filesystemOverhead failed when backing up and restoring. This issue has been resolved in the Data Mover of OADP 1.2.2. (OADP-2144)

**OADP did not contain an option to set VolSync replication source prune interval**

In previous releases of OADP 1.2, there was no option to set the VolSync replication source pruneInterval. (OADP-2052)

**Possible pod volume backup failure if Velero was installed in multiple namespaces**

In previous releases of OADP 1.2, there was a possibility of pod volume backup failure if Velero was installed in multiple namespaces. (OADP-2409)

**Backup Storage Locations moved to unavailable phase when VSL uses custom secret**

In previous releases of OADP 1.2, Backup Storage Locations moved to unavailable phase when Volume Snapshot Location used custom secret. (OADP-1737)

For a complete list of all issues resolved in the release of OADP 1.2.2, see the list of OADP 1.2.2 resolved issues in Jira.

### 4.2.2.3. Known issues

The following issues have been highlighted as known issues in the release of OADP 1.2.2:

#### Must-gather command fails to remove ClusterRoleBinding resources

The `oc adm must-gather` command fails to remove `ClusterRoleBinding` resources, which are left on cluster due to admission webhook. Therefore, requests for the removal of the `ClusterRoleBinding` resources are denied. (OADP-27730)

admission webhook "clusterrolebindings-validation.managed.openshift.io" denied the request: Deleting ClusterRoleBinding must-gather-p7vwj is not allowed

For a complete list of all known issues in this release, see the list of OADP 1.2.2 known issues in Jira.

### 4.2.2.3. OADP 1.2.1 release notes

#### 4.2.2.3.1. New features

There are no new features in the release of OpenShift API for Data Protection (OADP) 1.2.1.

#### 4.2.2.3.2. Resolved issues

For a complete list of all issues resolved in the release of OADP 1.2.1, see the list of OADP 1.2.1 resolved issues in Jira.
4.2.2.3. Known issues

The following issues have been highlighted as known issues in the release of OADP 1.2.1:

**DataMover Restic retain and prune policies do not work as expected**

The retention and prune features provided by VolSync and Restic are not working as expected. Because there is no working option to set the prune interval on VolSync replication, you have to manage and prune remotely stored backups on S3 storage outside of OADP. For more details, see:

- OADP-2052
- OADP-2048
- OADP-2175
- OADP-1690

**IMPORTANT**

OADP Data Mover is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

For a complete list of all known issues in this release, see the list of [OADP 1.2.1 known issues](#) in Jira.

4.2.2.4. OADP 1.2.0 release notes

The OADP 1.2.0 release notes include information about new features, bug fixes, and known issues.

4.2.2.4.1. New features

**Resource timeouts**

The new `resourceTimeout` option specifies the timeout duration in minutes for waiting on various Velero resources. This option applies to resources such as Velero CRD availability, `volumeSnapshot` deletion, and backup repository availability. The default duration is 10 minutes.

**AWS S3 compatible backup storage providers**

You can back up objects and snapshots on AWS S3 compatible providers.

4.2.2.4.1.1. Technical preview features

**Data Mover**

The OADP Data Mover enables you to back up Container Storage Interface (CSI) volume snapshots to a remote object store. When you enable Data Mover, you can restore stateful applications using CSI volume snapshots pulled from the object store in case of accidental cluster deletion, cluster failure, or data corruption.
IMPORTANT

OADP Data Mover is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.2.2.4.2. Resolved issues

For a complete list of all issues resolved in this release, see the list of OADP 1.2.0 resolved issues in Jira.

4.2.2.4.3. Known issues

The following issues have been highlighted as known issues in the release of OADP 1.2.0:

Multiple HTTP/2 enabled web servers are vulnerable to a DDoS attack (Rapid Reset Attack)

The HTTP/2 protocol is susceptible to a denial of service attack because request cancellation can reset multiple streams quickly. The server has to set up and tear down the streams while not hitting any server-side limit for the maximum number of active streams per connection. This results in a denial of service due to server resource consumption.

It is advised to upgrade to OADP 1.2.3, which resolves this issue.

For more information, see CVE-2023-39325 (Rapid Reset Attack).

An incorrect hostname can be created when changing a hostname in a generated route.

By default, the OpenShift Container Platform cluster makes sure that the openshift.io/host.generated: true annotation is turned on and fills in the field for both the routes that are generated and those that are not generated.

You cannot modify the value for the .spec.host field based on the base domain name of your cluster in the generated and non-generated routes.

If you modify the value for the .spec.host field, it is not possible to restore the default value that was generated by the OpenShift Container Platform cluster. After you restore your OpenShift Container Platform cluster, the Operator resets the value for the field.

4.2.2.4.4. Upgrade notes

NOTE

Always upgrade to the next minor version. Do not skip versions. To update to a later version, upgrade only one channel at a time. For example, to upgrade from OpenShift API for Data Protection (OADP) 1.1 to 1.3, upgrade first to 1.2, then to 1.3.

4.2.2.4.4.1. Changes from OADP 1.1 to 1.2

The Velero server was updated from version 1.9 to 1.11.
In OADP 1.2, the **DataProtectionApplication** (DPA) configuration `spec.configuration.velero.args` has the following changes:

- The `default-volumes-to-restic` field was renamed to `default-volumes-to-fs-backup`. If you use `spec.velero`, you must add it again with the new name to your DPA after upgrading OADP.

- The `default-volumes-to-restic` field was renamed to `default-volumes-to-fs-backup`. If you use `spec.velero`, you must add it again with the new name to your DPA after upgrading OADP.

- The `restic-timeout` field was renamed to `fs-backup-timeout`. If you use `spec.velero`, you must add it again with the new name to your DPA after upgrading OADP.

- The `restic` daemon set was renamed to `node-agent`. OADP automatically updates the name of the daemon set.

- The custom resource definition `resticrepositories.velero.io` was renamed to `backuprepositories.velero.io`.

- The custom resource definition `resticrepositories.velero.io` can be removed from the cluster.

**4.2.2.4.4.2. Upgrading steps**

**4.2.2.4.4.3. Backing up the DPA configuration**

You must back up your current **DataProtectionApplication** (DPA) configuration.

**Procedure**

- Save your current DPA configuration by running the following command:

  **Example**

  ```
 $ oc get dpa -n openshift-adp -o yaml > dpa.orig.backup
  ```

**4.2.2.4.4.4. Upgrading the OADP Operator**

Use the following sequence when upgrading the OpenShift API for Data Protection (OADP) Operator.

**Procedure**

1. Change your subscription channel for the OADP Operator from `stable-1.1` to `stable-1.2`.

2. Allow time for the Operator and containers to update and restart.

**Additional resources**

- Configuring Amazon Web Services
- Using Data Mover for CSI snapshots
- Updating installed Operators

**4.2.2.4.4.5. Converting DPA to the new version**
If you use the fields that were updated in the `spec.configuration.velero.args` stanza, you must configure your DataProtectionApplication (DPA) manifest to use the new parameter names.

**Procedure**

1. Click Operators → Installed Operators and select the OADP Operator.
2. Select Provided APIs, click Create instance in the DataProtectionApplication box.
3. Click YAML View to display the current DPA parameters.

**Example current DPA**

```yaml
spec:
 configuration:
 velero:
 args:
 default-volumes-to-restic: true
 default-restic-prune-frequency: 6000
 restic-timeout: 600
 # ...
```

4. Update the DPA parameters:
5. Update the DPA parameter names without changing their values:
   a. Change the `default-volumes-to-restic` key to `default-volumes-to-fs-backup`.
   b. Change the `default-restic-prune-frequency` key to `default-repo-maintain-frequency`.
   c. Change the `restic-timeout` key to `fs-backup-timeout`.

**Example updated DPA**

```yaml
spec:
 configuration:
 velero:
 args:
 default-volumes-to-fs-backup: true
 default-repo-maintain-frequency: 6000
 fs-backup-timeout: 600
 # ...
```

6. Wait for the DPA to reconcile successfully.

**4.2.2.4.4.6. Verifying the upgrade**

Use the following procedure to verify the upgrade.

**Procedure**

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```bash
 $ oc get all -n openshift-adp
   ```
Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/restic-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n-842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>NODE SELECTION</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemonset.apps/restic</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>&lt;none&gt;</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployment.apps/oadp-operator-controller-manager</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>deployment.apps/velero</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>replicaset.apps/oadp-operator-controller-manager-67d9494d47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>replicaset.apps/velero-588db7f655</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```bash
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

**Example output**

```json
{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```bash
$ oc get backupStorageLocation -n openshift-adp
```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>LAST VALIDATED</th>
<th>AGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpa-sample-1</td>
<td>Available</td>
<td>1s</td>
<td>3d16h</td>
<td>true</td>
</tr>
</tbody>
</table>

### 4.2.3. OADP 1.1 release notes

The release notes for OpenShift API for Data Protection (OADP) 1.1 describe new features and enhancements, deprecated features, product recommendations, known issues, and resolved issues.
4.2.3.1. OADP 1.1.7 release notes

The OADP 1.1.7 release notes lists any resolved issues and known issues.

4.2.3.1.1. Resolved issues

The following highlighted issues are resolved in OADP 1.1.7:

**Multiple HTTP/2 enabled web servers are vulnerable to a DDoS attack (Rapid Reset Attack)**

In previous releases of OADP 1.1, the HTTP/2 protocol was susceptible to a denial of service attack because request cancellation could reset multiple streams quickly. The server had to set up and tear down the streams while not hitting any server-side limit for the maximum number of active streams per connection. This resulted in a denial of service due to server resource consumption. For a list of all OADP issues associated with this CVE, see the following Jira list.

For more information, see CVE-2023-39325 (Rapid Reset Attack).

For a complete list of all issues resolved in the release of OADP 1.1.7, see the list of OADP 1.1.7 resolved issues in Jira.

4.2.3.1.2. Known issues

There are no known issues in the release of OADP 1.1.7.

4.2.3.2. OADP 1.1.6 release notes

The OADP 1.1.6 release notes lists any new features, resolved issues and bugs, and known issues.

4.2.3.2.1. Resolved issues

**Restic restore partially failing due to Pod Security standard**

OCP 4.14 introduced pod security standards that meant the privileged profile is enforced. In previous releases of OADP, this profile caused the pod to receive permission denied errors. This issue was caused because of the restore order. The pod was created before the security context constraints (SCC) resource. As this pod violated the pod security standard, the pod was denied and subsequently failed. OADP-2420

**Restore partially failing for job resource**

In previous releases of OADP, the restore of job resource was partially failing in OCP 4.14. This issue was not seen in older OCP versions. The issue was caused by an additional label being to the job resource, which was not present in older OCP versions. OADP-2530

For a complete list of all issues resolved in this release, see the list of OADP 1.1.6 resolved issues in Jira.

4.2.3.2.2. Known issues

For a complete list of all known issues in this release, see the list of OADP 1.1.6 known issues in Jira.

4.2.3.3. OADP 1.1.5 release notes

The OADP 1.1.5 release notes lists any new features, resolved issues and bugs, and known issues.
4.2.3.3.1. New features
This version of OADP is a service release. No new features are added to this version.

4.2.3.3.2. Resolved issues
For a complete list of all issues resolved in this release, see the list of OADP 1.1.5 resolved issues in Jira.

4.2.3.3.3. Known issues
For a complete list of all known issues in this release, see the list of OADP 1.1.5 known issues in Jira.

4.2.3.4. OADP 1.1.4 release notes
The OADP 1.1.4 release notes lists any new features, resolved issues and bugs, and known issues.

4.2.3.4.1. New features
This version of OADP is a service release. No new features are added to this version.

4.2.3.4.2. Resolved issues
Add support for all the velero deployment server arguments
In previous releases of OADP, OADP did not facilitate the support of all the upstream Velero server arguments. This issue has been resolved in OADP 1.1.4 and all the upstream Velero server arguments are supported. OADP-1557

Data Mover can restore from an incorrect snapshot when there was more than one VSR for the restore name and pvc name
In previous releases of OADP, OADP Data Mover could restore from an incorrect snapshot if there was more than one Volume Snapshot Restore (VSR) resource in the cluster for the same Velero restore name and PersistentVolumeClaim (pvc) name. OADP-1822

Cloud Storage API BSLs need OwnerReference
In previous releases of OADP, ACM BackupSchedules failed validation because of a missing OwnerReference on Backup Storage Locations (BSLs) created with dpa.spec.backupLocations.bucket. OADP-1511

For a complete list of all issues resolved in this release, see the list of OADP 1.1.4 resolved issues in Jira.

4.2.3.4.3. Known issues
This release has the following known issues:

OADP backups might fail because a UID/GID range might have changed on the cluster
OADP backups might fail because a UID/GID range might have changed on the cluster where the application has been restored, with the result that OADP does not back up and restore OpenShift Container Platform UID/GID range metadata. To avoid the issue, if the backed application requires a specific UUID, ensure the range is available when restored. An additional workaround is to allow OADP to create the namespace in the restore operation.

A restoration might fail if ArgoCD is used during the process due to a label used by ArgoCD
A restoration might fail if ArgoCD is used during the process due to a label used by ArgoCD, `app.kubernetes.io/instance`. This label identifies which resources ArgoCD needs to manage, which can create a conflict with OADP’s procedure for managing resources on restoration. To work around this issue, set `.spec.resourceTrackingMethod` on the ArgoCD YAML to `annotation+label` or `annotation`. If the issue continues to persist, then disable ArgoCD before beginning to restore, and enable it again when restoration is finished.

**OADP Velero plugins returning "received EOF, stopping recv loop" message**

Velero plugins are started as separate processes. When the Velero operation has completed, either successfully or not, they exit. Therefore if you see a received EOF, stopping recv loop messages in debug logs, it does not mean an error occurred. The message indicates that a plugin operation has completed. OADP-2176

For a complete list of all known issues in this release, see the list of OADP 1.1.4 known issues in Jira.

### 4.2.3.5. OADP 1.1.3 release notes

The OADP 1.1.3 release notes lists any new features, resolved issues and bugs, and known issues.

#### 4.2.3.5.1. New features

This version of OADP is a service release. No new features are added to this version.

#### 4.2.3.5.2. Resolved issues

For a complete list of all issues resolved in this release, see the list of OADP 1.1.3 resolved issues in Jira.

#### 4.2.3.5.3. Known issues

For a complete list of all known issues in this release, see the list of OADP 1.1.3 known issues in Jira.

### 4.2.3.6. OADP 1.1.2 release notes

The OADP 1.1.2 release notes include product recommendations, a list of fixed bugs and descriptions of known issues.

#### 4.2.3.6.1. Product recommendations

**VolSync**

To prepare for the upgrade from VolSync 0.5.1 to the latest version available from the VolSync stable channel, you must add this annotation in the `openshift-adp` namespace by running the following command:

```bash
$ oc annotate --overwrite namespace/openshift-adp volsync.backube/privileged-movers='true'
```

**Velero**

In this release, Velero has been upgraded from version 1.9.2 to version 1.9.5.

**Restic**

In this release, Restic has been upgraded from version 0.13.1 to version 0.14.0.
4.2.3.6.2. Resolved issues

The following issues have been resolved in this release:

- OADP-1150
- OADP-290
- OADP-1056

4.2.3.6.3. Known issues

This release has the following known issues:

- OADP currently does not support backup and restore of AWS EFS volumes using restic in Velero (OADP-778).
- CSI backups might fail due to a Ceph limitation of VolumeSnapshotContent snapshots per PVC.
  You can create many snapshots of the same persistent volume claim (PVC) but cannot schedule periodic creation of snapshots:
  - For CephFS, you can create up to 100 snapshots per PVC. (OADP-804)
  - For RADOS Block Device (RBD), you can create up to 512 snapshots for each PVC. (OADP-975)

For more information, see Volume Snapshots.

4.2.3.7. OADP 1.1.1 release notes

The OADP 1.1.1 release notes include product recommendations and descriptions of known issues.

4.2.3.7.1. Product recommendations

Before you install OADP 1.1.1, it is recommended to either install VolSync 0.5.1 or to upgrade to it.

4.2.3.7.2. Known issues

This release has the following known issues:

- Multiple HTTP/2 enabled web servers are vulnerable to a DDoS attack (Rapid Reset Attack) The HTTP/2 protocol is susceptible to a denial of service attack because request cancellation can reset multiple streams quickly. The server has to set up and tear down the streams while not hitting any server-side limit for the maximum number of active streams per connection. This results in a denial of service due to server resource consumption. For a list of all OADP issues associated with this CVE, see the following Jira list. It is advised to upgrade to OADP 1.1.7 or 1.2.3, which resolve this issue.

  For more information, see CVE-2023-39325 (Rapid Reset Attack).

- OADP currently does not support backup and restore of AWS EFS volumes using restic in Velero (OADP-778).
CSI backups might fail due to a Ceph limitation of VolumeSnapshotContent snapshots per PVC. You can create many snapshots of the same persistent volume claim (PVC) but cannot schedule periodic creation of snapshots:

- For CephFS, you can create up to 100 snapshots per PVC.
- For RADOS Block Device (RBD), you can create up to 512 snapshots for each PVC. (OADP-804) and (OADP-975)
  For more information, see Volume Snapshots.

4.3. OADP FEATURES AND PLUGINS

OpenShift API for Data Protection (OADP) features provide options for backing up and restoring applications.

The default plugins enable Velero to integrate with certain cloud providers and to back up and restore OpenShift Container Platform resources.

4.3.1. OADP features

OpenShift API for Data Protection (OADP) supports the following features:

Backup

You can use OADP to back up all applications on the OpenShift Platform, or you can filter the resources by type, namespace, or label.
OADP backs up Kubernetes objects and internal images by saving them as an archive file on object storage. OADP backs up persistent volumes (PVs) by creating snapshots with the native cloud snapshot API or with the Container Storage Interface (CSI). For cloud providers that do not support snapshots, OADP backs up resources and PV data with Restic.

NOTE

You must exclude Operators from the backup of an application for backup and restore to succeed.

Restore

You can restore resources and PVs from a backup. You can restore all objects in a backup or filter the objects by namespace, PV, or label.

NOTE

You must exclude Operators from the backup of an application for backup and restore to succeed.

Schedule

You can schedule backups at specified intervals.

Hooks

You can use hooks to run commands in a container on a pod, for example, fsfreeze to freeze a file system. You can configure a hook to run before or after a backup or restore. Restore hooks can run in an init container or in the application container.
4.3.2. OADP plugins

The OpenShift API for Data Protection (OADP) provides default Velero plugins that are integrated with storage providers to support backup and snapshot operations. You can create custom plugins based on the Velero plugins.

OADP also provides plugins for OpenShift Container Platform resource backups, OpenShift Virtualization resource backups, and Container Storage Interface (CSI) snapshots.

Table 4.1. OADP plugins

<table>
<thead>
<tr>
<th>OADP plugin</th>
<th>Function</th>
<th>Storage location</th>
</tr>
</thead>
<tbody>
<tr>
<td>aws</td>
<td>Backs up and restores Kubernetes objects.</td>
<td>AWS S3</td>
</tr>
<tr>
<td></td>
<td>Backs up and restores volumes with snapshots.</td>
<td>AWS EBS</td>
</tr>
<tr>
<td>azure</td>
<td>Backs up and restores Kubernetes objects.</td>
<td>Microsoft Azure Blob storage</td>
</tr>
<tr>
<td></td>
<td>Backs up and restores volumes with snapshots.</td>
<td>Microsoft Azure Managed Disks</td>
</tr>
<tr>
<td>gcp</td>
<td>Backs up and restores Kubernetes objects.</td>
<td>Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>Backs up and restores volumes with snapshots.</td>
<td>Google Compute Engine Disks</td>
</tr>
<tr>
<td>openshift</td>
<td>Backs up and restores OpenShift Container Platform resources.</td>
<td>Object store [1]</td>
</tr>
<tr>
<td>kubevirt</td>
<td>Backs up and restores OpenShift Virtualization resources.</td>
<td>Object store [2]</td>
</tr>
<tr>
<td>csi</td>
<td>Backs up and restores volumes with CSI snapshots.</td>
<td>Cloud storage that supports CSI snapshots [3]</td>
</tr>
<tr>
<td>vsm</td>
<td>VolumeSnapshotMover relocates snapshots from the cluster into an object store to be used during a restore process to recover stateful applications, in situations such as cluster deletion.</td>
<td>Object store [4]</td>
</tr>
</tbody>
</table>

1. Mandatory.

2. Virtual machine disks are backed up with CSI snapshots or Restic.
3. The `csi` plugin uses the Kubernetes CSI snapshot API.
   - OADP 1.1 or later uses `snapshot.storage.k8s.io/v1`
   - OADP 1.0 uses `snapshot.storage.k8s.io/v1beta1`

4. OADP 1.2 only.

### 4.3.3. About OADP Velero plugins

You can configure two types of plugins when you install Velero:

- Default cloud provider plugins
- Custom plugins

Both types of plugin are optional, but most users configure at least one cloud provider plugin.

#### 4.3.3.1. Default Velero cloud provider plugins

You can install any of the following default Velero cloud provider plugins when you configure the `oadp_v1alpha1_dpa.yaml` file during deployment:

- `aws` (Amazon Web Services)
- `gcp` (Google Cloud Platform)
- `azure` (Microsoft Azure)
- `openshift` (OpenShift Velero plugin)
- `csi` (Container Storage Interface)
- `kubevirt` (KubeVirt)

You specify the desired default plugins in the `oadp_v1alpha1_dpa.yaml` file during deployment.

#### Example file

The following `.yaml` file installs the `openshift`, `aws`, `azure`, and `gcp` plugins:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: dpa-sample
spec:
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws
 - azure
 - gcp
```

#### 4.3.3.2. Custom Velero plugins
You can install a custom Velero plugin by specifying the plugin image and name when you configure the `oadp_v1alpha1_dpa.yaml` file during deployment.

You specify the desired custom plugins in the `oadp_v1alpha1_dpa.yaml` file during deployment.

### Example file

The following `.yaml` file installs the default `openshift`, `azure`, and `gcp` plugins and a custom plugin that has the name `custom-plugin-example` and the image `quay.io/example-repo/custom-velero-plugin`:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: dpa-sample
spec:
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - azure
 - gcp
 customPlugins:
 - name: custom-plugin-example
 image: quay.io/example-repo/custom-velero-plugin
```

4.3.3.3. Velero plugins returning "received EOF, stopping recv loop" message

**NOTE**

Velero plugins are started as separate processes. After the Velero operation has completed, either successfully or not, they exit. Receiving a **received EOF, stopping recv loop** message in the debug logs indicates that a plugin operation has completed. It does not mean that an error has occurred.

4.3.4. Supported architectures for OADP

OpenShift API for Data Protection (OADP) supports the following architectures:

- AMD64
- ARM64
- PPC64le
- s390x

**NOTE**

OADP 1.2.0 and later versions support the ARM64 architecture.

4.3.5. OADP support for IBM Power and IBM Z

OpenShift API for Data Protection (OADP) is platform neutral. The information that follows relates only to IBM Power® and to IBM Z®.
OADP 1.1.0 was tested successfully against OpenShift Container Platform 4.11 for both IBM Power® and IBM Z®. The sections that follow give testing and support information for OADP 1.1.0 in terms of backup locations for these systems.

4.3.5.1. OADP support for target backup locations using IBM Power

IBM Power® running with OpenShift Container Platform 4.11 and 4.12, and OpenShift API for Data Protection (OADP) 1.1.2 was tested successfully against an AWS S3 backup location target. Although the test involved only an AWS S3 target, Red Hat supports running IBM Power® with OpenShift Container Platform 4.11 and 4.12, and OADP 1.1.2 against all non-AWS S3 backup location targets as well.

4.3.5.2. OADP testing and support for target backup locations using IBM Z

IBM Z® running with OpenShift Container Platform 4.11 and 4.12, and OpenShift API for Data Protection (OADP) 1.1.2 was tested successfully against an AWS S3 backup location target. Although the test involved only an AWS S3 target, Red Hat supports running IBM Z® with OpenShift Container Platform 4.11 and 4.12, and OADP 1.1.2 against all non-AWS S3 backup location targets as well.

4.4. INSTALLING AND CONFIGURING OADP

4.4.1. About installing OADP

As a cluster administrator, you install the OpenShift API for Data Protection (OADP) by installing the OADP Operator. The OADP Operator installs Velero 1.12.

NOTE

Starting from OADP 1.0.4, all OADP 1.0.z versions can only be used as a dependency of the MTC Operator and are not available as a standalone Operator.

To back up Kubernetes resources and internal images, you must have object storage as a backup location, such as one of the following storage types:

- Amazon Web Services
- Microsoft Azure
- Google Cloud Platform
- Multicloud Object Gateway
- AWS S3 compatible object storage, such as Multicloud Object Gateway or MinIO

You can configure multiple backup storage locations within the same namespace for each individual OADP deployment.

NOTE

Unless specified otherwise, “NooBaa” refers to the open source project that provides lightweight object storage, while “Multicloud Object Gateway (MCG)” refers to the Red Hat distribution of NooBaa.

For more information on the MCG, see Accessing the Multicloud Object Gateway with your applications.
IMPORTANT

The CloudStorage API, which automates the creation of a bucket for object storage, is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

NOTE

The CloudStorage API is a Technology Preview feature when you use a CloudStorage object and want OADP to use the CloudStorage API to automatically create an S3 bucket for use as a BackupStorageLocation.

The CloudStorage API supports manually creating a BackupStorageLocation object by specifying an existing S3 bucket. The CloudStorage API that creates an S3 bucket automatically is currently only enabled for AWS S3 storage.

You can back up persistent volumes (PVs) by using snapshots or a File System Backup (FSB).

To back up PVs with snapshots, you must have a cloud provider that supports either a native snapshot API or Container Storage Interface (CSI) snapshots, such as one of the following cloud providers:

- Amazon Web Services
- Microsoft Azure
- Google Cloud Platform
- CSI snapshot-enabled cloud provider, such as OpenShift Data Foundation

NOTE

If you want to use CSI backup on OCP 4.11 and later, install OADP 1.1.x.

OADP 1.0.x does not support CSI backup on OCP 4.11 and later. OADP 1.0.x includes Velero 1.7.x and expects the API group snapshot.storage.k8s.io/v1beta1, which is not present on OCP 4.11 and later.

If your cloud provider does not support snapshots or if your storage is NFS, you can back up applications with Backing up applications with File System Backup: Kopia or Restic on object storage.

You create a default Secret and then you install the Data Protection Application.

4.4.1.1. AWS S3 compatible backup storage providers

OADP is compatible with many object storage providers for use with different backup and snapshot operations. Several object storage providers are fully supported, several are unsupported but known to work, and some have known limitations.

4.4.1.1.1. Supported backup storage providers
The following AWS S3 compatible object storage providers are fully supported by OADP through the AWS plugin for use as backup storage locations:

- MinIO
- Multicloud Object Gateway (MCG)
- Amazon Web Services (AWS) S3

**NOTE**

The following compatible object storage providers are supported and have their own Velero object store plugins:

- Google Cloud Platform (GCP)
- Microsoft Azure

### 4.4.1.1.2. Unsupported backup storage providers

The following AWS S3 compatible object storage providers, are known to work with Velero through the AWS plugin, for use as backup storage locations, however, they are unsupported and have not been tested by Red Hat:

- IBM Cloud
- Oracle Cloud
- DigitalOcean
- NooBaa, unless installed using Multicloud Object Gateway (MCG)
- Tencent Cloud
- Ceph RADOS v12.2.7
- Quobyte
- Cloudian HyperStore

**NOTE**

Unless specified otherwise, "NooBaa" refers to the open source project that provides lightweight object storage, while "Multicloud Object Gateway (MCG)" refers to the Red Hat distribution of NooBaa.

For more information on the MCG, see Accessing the Multicloud Object Gateway with your applications.

### 4.4.1.1.3. Backup storage providers with known limitations

The following AWS S3 compatible object storage providers are known to work with Velero through the AWS plugin with a limited feature set:

- Swift - It works for use as a backup storage location for backup storage, but is not compatible with Restic for filesystem-based volume backup and restore.
4.4.1.2. Configuring Multicloud Object Gateway (MCG) for disaster recovery on OpenShift Data Foundation

If you use cluster storage for your MCG bucket `backupStorageLocation` on OpenShift Data Foundation, configure MCG as an external object store.

**WARNING**

Failure to configure MCG as an external object store might lead to backups not being available.

**NOTE**

Unless specified otherwise, "NooBaa" refers to the open source project that provides lightweight object storage, while "Multicloud Object Gateway (MCG)" refers to the Red Hat distribution of NooBaa.

For more information on the MCG, see [Accessing the Multicloud Object Gateway with your applications](#).

**Procedure**

- Configure MCG as an external object store as described in [Adding storage resources for hybrid or Multicloud](#).

**Additional resources**

- [Overview of backup and snapshot locations in the Velero documentation](#)

4.4.1.3. About OADP update channels

When you install an OADP Operator, you choose an *update channel*. This channel determines which upgrades to the OADP Operator and to Velero you receive. You can switch channels at any time.

The following update channels are available:

- The *stable* channel is now deprecated. The *stable* channel contains the patches (z-stream updates) of OADP `ClusterServiceVersion` for `oadp.v1.1.z` and older versions from `oadp.v1.0.z`.  
- The *stable-1.0* channel contains `oadp.v1.0.z`, the most recent OADP 1.0 `ClusterServiceVersion`.  
- The *stable-1.1* channel contains `oadp.v1.1.z`, the most recent OADP 1.1 `ClusterServiceVersion`.  
- The *stable-1.2` channel contains `oadp.v1.2.z`, the most recent OADP 1.2 `ClusterServiceVersion`.  
- The *stable-1.3` channel contains `oadp.v1.3.z`, the most recent OADP 1.3 `ClusterServiceVersion`.  


Which update channel is right for you?

- The **stable** channel is now deprecated. If you are already using the stable channel, you will continue to get updates from **oadp.v1.1.z**.

- Choose the **stable-1.y** update channel to install OADP 1. y and to continue receiving patches for it. If you choose this channel, you will receive all z-stream patches for version 1.y.z.

**When must you switch update channels?**

- If you have OADP 1.y installed, and you want to receive patches only for that y-stream, you must switch from the **stable** update channel to the **stable-1.y** update channel. You will then receive all z-stream patches for version 1.y.z.

- If you have OADP 1.0 installed, want to upgrade to OADP 1.1, and then receive patches only for OADP 1.1, you must switch from the **stable-1.0** update channel to the **stable-1.1** update channel. You will then receive all z-stream patches for version 1.1.z.

- If you have OADP 1.y installed, with y greater than 0, and want to switch to OADP 1.0, you must **uninstall** your OADP Operator and then reinstall it using the **stable-1.0** update channel. You will then receive all z-stream patches for version 1.0.z.

**NOTE**

You cannot switch from OADP 1.y to OADP 1.0 by switching update channels. You must uninstall the Operator and then reinstall it.

**4.4.1.4. Installation of OADP on multiple namespaces**

You can install OpenShift API for Data Protection (OADP) into multiple namespaces on the same cluster so that multiple project owners can manage their own OADP instance. This use case has been validated with File System Backup (FSB) and Container Storage Interface (CSI).

You install each instance of OADP as specified by the per-platform procedures contained in this document with the following additional requirements:

- All deployments of OADP on the same cluster must be the same version, for example, 1.1.4. Installing different versions of OADP on the same cluster is not supported.

- Each individual deployment of OADP must have a unique set of credentials and at least one **BackupStorageLocation** configuration. You can also use multiple **BackupStorageLocation** configurations within the same namespace.

- By default, each OADP deployment has cluster-level access across namespaces. OpenShift Container Platform administrators need to review security and RBAC settings carefully and make any necessary changes to them to ensure that each OADP instance has the correct permissions.

**Additional resources**

- **Cluster service version**

**4.4.1.5. Velero CPU and memory requirements based on collected data**

The following recommendations are based on observations of performance made in the scale and performance lab. The backup and restore resources can be impacted by the type of plugin, the amount
of resources required by that backup or restore, and the respective data contained in the persistent volumes (PVs) related to those resources.

### 4.4.1.5.1. CPU and memory requirement for configurations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>Velero:</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>CPU- Request 200m, Limits 1000m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory - Request 256Mi, Limits 1024Mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restic</td>
<td>[3] Restic:</td>
<td></td>
<td>900m</td>
</tr>
<tr>
<td></td>
<td>CPU- Request 1000m, Limits 2000m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory - Request 16Gi, Limits 32Gi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Mover</td>
<td>[5] N/A</td>
<td></td>
<td>10m - average usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60m - large usage</td>
</tr>
</tbody>
</table>

1. Average usage - use these settings for most usage situations.

2. Large usage - use these settings for large usage situations, such as a large PV (500GB Usage), multiple namespaces (100+), or many pods within a single namespace (2000 pods+), and for optimal performance for backup and restore involving large datasets.

3. Restic resource usage corresponds to the amount of data, and type of data. For example, many small files or large amounts of data can cause Restic to use large amounts of resources. The Velero documentation references 500m as a supplied default, for most of our testing we found a 200m request suitable with 1000m limit. As cited in the Velero documentation, exact CPU and memory usage is dependent on the scale of files and directories, in addition to environmental limitations.

4. Increasing the CPU has a significant impact on improving backup and restore times.

5. Data Mover - Data Mover default resourceTimeout is 10m. Our tests show that for restoring a large PV (500GB usage), it is required to increase the resourceTimeout to 60m.

**NOTE**

The resource requirements listed throughout the guide are for average usage only. For large usage, adjust the settings as described in the table above.

### 4.4.1.5.2. NodeAgent CPU for large usage
Testing shows that increasing **NodeAgent** CPU can significantly improve backup and restore times when using OpenShift API for Data Protection (OADP).

**IMPORTANT**

It is not recommended to use Kopia without limits in production environments on nodes running production workloads due to Kopia’s aggressive consumption of resources. However, running Kopia with limits that are too low results in CPU limiting and slow backups and restore situations. Testing showed that running Kopia with 20 cores and 32 Gi memory supported backup and restore operations of over 100 GB of data, multiple namespaces, or over 2000 pods in a single namespace.

Testing detected no CPU limiting or memory saturation with these resource specifications.

You can set these limits in Ceph MDS pods by following the procedure in Changing the CPU and memory resources on the rook-ceph pods.

You need to add the following lines to the storage cluster Custom Resource (CR) to set the limits:

```yaml
resources:
 mds:
 limits:
 cpu: "3"
 memory: 128Gi
 requests:
 cpu: "3"
 memory: 8Gi
```

### 4.4.2. Installing the OADP Operator

You can install the OpenShift API for Data Protection (OADP) Operator on OpenShift Container Platform 4.15 by using Operator Lifecycle Manager (OLM).

The OADP Operator installs **Velero 1.12**.

**Prerequisites**

- You must be logged in as a user with **cluster-admin** privileges.

**Procedure**

1. In the OpenShift Container Platform web console, click **Operators → OperatorHub**.
2. Use the **Filter by keyword** field to find the **OADP Operator**.
3. Select the **OADP Operator** and click **Install**.
4. Click **Install** to install the Operator in the **openshift-adp** project.
5. Click **Operators → Installed Operators** to verify the installation.

### 4.4.2.1. OADP-Velero-OpenShift Container Platform version relationship
<table>
<thead>
<tr>
<th>OADP version</th>
<th>Velero version</th>
<th>OpenShift Container Platform version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.1</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.2</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.3</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.4</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.5</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.6</td>
<td>1.9</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.1.7</td>
<td>1.9</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.0</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.1</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.2</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.3</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.3.0</td>
<td>1.12</td>
<td>4.12 and later</td>
</tr>
</tbody>
</table>

### 4.4.3. Configuring the OpenShift API for Data Protection with Amazon Web Services

You install the OpenShift API for Data Protection (OADP) with Amazon Web Services (AWS) by installing the OADP Operator. The Operator installs Velero 1.12.

**NOTE**

Starting from OADP 1.0.4, all OADP 1.0.z versions can only be used as a dependency of the MTC Operator and are not available as a standalone Operator.

You configure AWS for Velero, create a default Secret, and then install the Data Protection Application. For more details, see Installing the OADP Operator.

To install the OADP Operator in a restricted network environment, you must first disable the default OperatorHub sources and mirror the Operator catalog. See Using Operator Lifecycle Manager on restricted networks for details.

### 4.4.3.1. Configuring Amazon Web Services

You configure Amazon Web Services (AWS) for the OpenShift API for Data Protection (OADP).
Prerequisites

- You must have the AWS CLI installed.

Procedure

1. Set the `BUCKET` variable:

   ```
 $ BUCKET=<your_bucket>
   ```

2. Set the `REGION` variable:

   ```
 $ REGION=<your_region>
   ```

3. Create an AWS S3 bucket:

   ```
 $ aws s3api create-bucket \
 --bucket $BUCKET \
 --region $REGION \
 --create-bucket-configuration LocationConstraint=$REGION
   ```
   - `us-east-1` does not support a `LocationConstraint`. If your region is `us-east-1`, omit `--create-bucket-configuration LocationConstraint=$REGION`.

4. Create an IAM user:

   ```
 $ aws iam create-user --user-name velero
   ```
   - If you want to use Velero to back up multiple clusters with multiple S3 buckets, create a unique user name for each cluster.

5. Create a `velero-policy.json` file:

   ```
 $ cat > velero-policy.json <<EOF
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:DescribeVolumes",
 "ec2:DescribeSnapshots",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:CreateSnapshot",
 "ec2:DeleteSnapshot"],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["s3:GetObject",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectTagging",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation"]
 }
]
 }
   ```
6. Attach the policies to give the velero user the minimum necessary permissions:

```bash
$ aws iam put-user-policy \
 --user-name velero \
 --policy-name velero \
 --policy-document file://velero-policy.json
```

7. Create an access key for the velero user:

```bash
$ aws iam create-access-key --user-name velero
```

**Example output**

```json
{
 "AccessKey": {
 "UserName": "velero",
 "Status": "Active",
 "CreateDate": "2017-07-31T22:24:41.576Z",
 "SecretAccessKey": "<AWS_SECRET_ACCESS_KEY>",
 "AccessKeyId": "<AWS_ACCESS_KEY_ID>
 }
}
```

8. Create a credentials-velero file:

```bash
$ cat << EOF > ./credentials-velero
[default]
aws_access_key_id=<AWS_ACCESS_KEY_ID>
aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>
EOF
```
You use the `credentials-velero` file to create a `Secret` object for AWS before you install the Data Protection Application.

### 4.4.3.2. About backup and snapshot locations and their secrets

You specify backup and snapshot locations and their secrets in the `DataProtectionApplication` custom resource (CR).

#### Backup locations

You specify AWS S3-compatible object storage, such as Multicloud Object Gateway or MinIO, as a backup location.

Velero backs up OpenShift Container Platform resources, Kubernetes objects, and internal images as an archive file on object storage.

#### Snapshot locations

If you use your cloud provider’s native snapshot API to back up persistent volumes, you must specify the cloud provider as the snapshot location.

If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location because you will create a `VolumeSnapshotClass` CR to register the CSI driver.

If you use File System Backup (FSB), you do not need to specify a snapshot location because FSB backs up the file system on object storage.

#### Secrets

If the backup and snapshot locations use the same credentials or if you do not require a snapshot location, you create a default `Secret`.

If the backup and snapshot locations use different credentials, you create two secret objects:

- Custom `Secret` for the backup location, which you specify in the `DataProtectionApplication` CR.
- Default `Secret` for the snapshot location, which is not referenced in the `DataProtectionApplication` CR.

**IMPORTANT**

The Data Protection Application requires a default `Secret`. Otherwise, the installation will fail.

If you do not want to specify backup or snapshot locations during the installation, you can create a default `Secret` with an empty `credentials-velero` file.

#### 4.4.3.2.1. Creating a default Secret

You create a default `Secret` if your backup and snapshot locations use the same credentials or if you do not require a snapshot location.

The default name of the `Secret` is `cloud-credentials`. 
**NOTE**

The DataProtectionApplication custom resource (CR) requires a default Secret. Otherwise, the installation will fail. If the name of the backup location Secret is not specified, the default name is used.

If you do not want to use the backup location credentials during the installation, you can create a Secret with the default name by using an empty credentials-velero file.

**Prerequisites**

- Your object storage and cloud storage, if any, must use the same credentials.
- You must configure object storage for Velero.
- You must create a credentials-velero file for the object storage in the appropriate format.

**Procedure**

- Create a Secret with the default name:

  ```bash
 $ oc create secret generic cloud-credentials -n openshift-adp --from-file cloud=credentials-velero
  ```

  The Secret is referenced in the spec.backupLocations.credential block of the DataProtectionApplication CR when you install the Data Protection Application.

4.4.3.2.2. Creating profiles for different credentials

If your backup and snapshot locations use different credentials, you create separate profiles in the credentials-velero file.

Then, you create a Secret object and specify the profiles in the DataProtectionApplication custom resource (CR).

**Procedure**

1. Create a credentials-velero file with separate profiles for the backup and snapshot locations, as in the following example:

   ```plaintext
 [backupStorage]
 aws_access_key_id=<AWS_ACCESS_KEY_ID>
 aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>

 [volumeSnapshot]
 aws_access_key_id=<AWS_ACCESS_KEY_ID>
 aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>
   ```

2. Create a Secret object with the credentials-velero file:

   ```bash
 $ oc create secret generic cloud-credentials -n openshift-adp --from-file cloud=credentials-velero
   ```

3. Add the profiles to the DataProtectionApplication CR, as in the following example:
4.4.3.3. Configuring the Data Protection Application

You can configure the Data Protection Application by setting Velero resource allocations or enabling self-signed CA certificates.

4.4.3.3.1. Setting Velero CPU and memory resource allocations

You set the CPU and memory resource allocations for the Velero pod by editing the `DataProtectionApplication` custom resource (CR) manifest.

Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the values in the `spec.configuration.velero.podConfig.ResourceAllocations` block of the `DataProtectionApplication` CR manifest, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp
spec:
 ...
 backupLocations:
 - name: default
 velero:
 provider: aws
 default: true
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
 config:
 region: us-east-1
 profile: "backupStorage"
 credential:
 key: cloud
 name: cloud-credentials
 snapshotLocations:
 - velero:
 provider: aws
 config:
 region: us-west-2
 profile: "volumeSnapshot"
```

CHAPTER 4. OADP APPLICATION BACKUP AND RESTORE

53
Specify the node selector to be supplied to Velero podSpec.

The **resourceAllocations** listed are for average usage.

NOTE

Kopia is an option in OADP 1.3 and later releases. You can use Kopia for file system backups, and Kopia is your only option for Data Mover cases with the built-in Data Mover.

Kopia is more resource intensive than Restic, and you might need to adjust the CPU and memory requirements accordingly.

4.4.3.3.2. Enabling self-signed CA certificates

You must enable a self-signed CA certificate for object storage by editing the **DataProtectionApplication** custom resource (CR) manifest to prevent a **certificate signed by unknown authority** error.

**Prerequisites**

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

**Procedure**

- Edit the **spec.backupLocations.velero.objectStorage.caCert** parameter and **spec.backupLocations.velero.config** parameters of the **DataProtectionApplication** CR manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
spec:
 ...
 backupLocations:
 - name: default
 velero:
 provider: aws
 default: true
 objectStorage:
 bucket: <bucket>
 prefix: <prefix>
 caCert: <base64_encoded_cert_string>
```
Specify the Base64-encoded CA certificate string.

The `insecureSkipTLSVerify` configuration can be set to either "true" or "false". If set to "true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.

### 4.4.3.3.2.1. Using CA certificates with the velero command aliased for Velero deployment

You might want to use the Velero CLI without installing it locally on your system by creating an alias for it.

**Prerequisites**

- You must be logged in to the OpenShift Container Platform cluster as a user with the `cluster-admin` role.
- You must have the OpenShift CLI (`oc`) installed.

1. To use an aliased Velero command, run the following command:

   ```bash
 $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
   ```

2. Check that the alias is working by running the following command:

   ```bash
 $ velero version
 Client:
 Version: v1.12.1-OADP
 Git commit: -
 Server:
 Version: v1.12.1-OADP
   ```

3. To use a CA certificate with this command, you can add a certificate to the Velero deployment by running the following commands:

   ```bash
 $ CA_CERT=$(oc -n openshift-adp get dataprotectionapplications.oadp.openshift.io <dpa-name> -o jsonpath='{.spec.backupLocations[0].velero.objectStorage.caCert}')
 $ [[-n $CA_CERT]] && echo "$CA_CERT" | base64 -d | oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "cat > /tmp/your-cacert.txt" || echo "DPA BSL has no caCert"
 $ velero -n openshift-adp describe backup <backup-name> --details --cacert /tmp/your-cacert.txt
   ```

4. If the Velero pod restarts, the `/tmp/your-cacert.txt` file disappears, and you must re-create the `/tmp/your-cacert.txt` file by re-running the commands from the previous step.
5. You can check if the /tmp/your-cacert.txt file still exists, in the file location where you stored it, by running the following command:

```bash
$ oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "ls /tmp/your-cacert.txt" /tmp/your-cacert.txt
```

In a future release of OpenShift API for Data Protection (OADP), we plan to mount the certificate to the Velero pod so that this step is not required.

### 4.4.3.4. Installing the Data Protection Application 1.2 and earlier

You install the Data Protection Application (DPA) by creating an instance of the DataProtectionApplication API.

#### Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a Secret with the default name, `cloud-credentials`.
- If the backup and snapshot locations use different credentials, you must create a Secret with the default name, `cloud-credentials`, which contains separate profiles for the backup and snapshot location credentials.

#### NOTE

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty `credentials-velero` file. If there is no default Secret, the installation will fail.

#### NOTE

Velero creates a secret named `velero-repo-credentials` in the OADP namespace, which contains a default backup repository password. You can update the secret with your own password encoded as base64 before you run your first backup targeted to the backup repository. The value of the key to update is `Data[repository-password]`.

After you create your DPA, the first time that you run a backup targeted to the backup repository, Velero creates a backup repository whose secret is `velero-repo-credentials`, which contains either the default password or the one you replaced it with. If you update the secret password after the first backup, the new password will not match the password in `velero-repo-credentials`, and therefore, Velero will not be able to connect with the older backups.

#### Procedure

1. Click **Operators → Installed Operators** and select the OADP Operator.
2. Under **Provided APIs**, click **Create instance** in the **DataProtectionApplication** box.

3. Click **YAML View** and update the parameters of the **DataProtectionApplication** manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
desp
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp
spec:
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws
 resourceTimeout: 10m
 restic:
 enable: true
 podConfig:
 nodeSelector: <node_selector>
 backupLocations:
 - name: default
 velero:
 provider: aws
 default: true
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
 config:
 region: <region>
 profile: "default"
 credential:
 key: cloud
 name: cloud-credentials
 snapshotLocations:
 - velero:
 provider: aws
 config:
 region: <region>
 profile: "default"
```

1. The **openshift** plugin is mandatory.

2. Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

3. Set this value to **false** if you want to disable the Restic installation. Restic deploys a daemon set, which means that Restic pods run on each working node. In OADP version 1.2 and later, you can configure Restic for backups by adding **spec.defaultVolumesToFsBackup: true** to the **Backup** CR. In OADP version 1.1, add **spec.defaultVolumesToRestic: true** to the **Backup** CR.

4. Specify on which nodes Restic is available. By default, Restic runs on all nodes.
Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, `velero`, if the bucket is used for multiple purposes.

Specify the name of the `Secret` object that you created. If you do not specify this value, the default name, `cloud-credentials`, is used. If you specify a custom name, the custom name is used for the backup location.

Specify a snapshot location, unless you use CSI snapshots or Restic to back up PVs.

The snapshot location must be in the same region as the PVs.

4. Click **Create**.

4.4.3.4.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```bash
 $ oc get all -n openshift-adp
   ```

   **Example output**

   ```
 NAME READY STATUS RESTARTS AGE
 pod/oadp-operator-controller-manager-67d9494d47-6l8z8 2/2 Running 0 2m8s
 pod/restic-9cq4q 1/1 Running 0 94s
 pod/restic-m4lts 1/1 Running 0 94s
 pod/restic-pv4kr 1/1 Running 0 95s
 pod/velero-588db7f655-n842v 1/1 Running 0 95s
 NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
 service/oadp-operator-controller-manager-metrics-service ClusterIP 172.30.70.140
 <none> 8443/TCP 2m8s
 NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
 SELECTOR AGE
 daemonset.apps/restic 3 3 3 3 3 <none> 96s
 NAME DESIRED CURRENT READY AGE
 deployment.apps/oadp-operator-controller-manager 1/1 1 1 2m9s
 deployment.apps/velero 1/1 1 1 96s
 NAME READY UP-TO-DATE AVAILABLE AGE
 replicaset.apps/oadp-operator-controller-manager-67d9494d47 1 1 1 2m9s
 replicaset.apps/velero-588db7f655 1 1 1 96s
   ```

2. Verify that the `DataProtectionApplication` (DPA) is reconciled by running the following command:

   ```bash
 $ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
   ```
Example output

```
{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":true,"type":"Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

   ```
 $ oc get backupStorageLocation -n openshift-adp
   ```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>LAST VALIDATED</th>
<th>AGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpa-sample-1</td>
<td>Available</td>
<td>1s</td>
<td>3d16h</td>
<td>true</td>
</tr>
</tbody>
</table>

### 4.4.3.5. Installing the Data Protection Application 1.3

You install the Data Protection Application (DPA) by creating an instance of the **DataProtectionApplication** API.

**Prerequisites**

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a **Secret** with the default name, **cloud-credentials**.
- If the backup and snapshot locations use different credentials, you must create a **Secret** with the default name, **cloud-credentials**, which contains separate profiles for the backup and snapshot location credentials.

**NOTE**

If you do not want to specify backup or snapshot locations during the installation, you can create a default **Secret** with an empty **credentials-velero** file. If there is no default **Secret**, the installation will fail.

**Procedure**

1. Click **Operators → Installed Operators** and select the OADP Operator.

2. Under **Provided APIs**, click **Create instance** in the **DataProtectionApplication** box.

3. Click **YAML View** and update the parameters of the **DataProtectionApplication** manifest:

   ```yaml
 apiVersion: oadm.openshift.io/v1alpha1
 kind: DataProtectionApplication
   ```
The default namespace for OADP is `openshift-adp`. The namespace is a variable and is configurable.

The `openshift` plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

The administrative agent that routes the administrative requests to servers.

Set this value to `true` if you want to enable `nodeAgent` and perform File System Backup.

Enter `kopia` or `restic` as your uploader. You cannot change the selection after the installation. For the Built-in DataMover you must use Kopia. The `nodeAgent` deploys a daemon set, which means that the `nodeAgent` pods run on each working node. You can configure File System Backup by adding `spec.defaultVolumesToFsBackup: true` to the Backup CR.
Specify the nodes on which Kopia or Restic are available. By default, Kopia or Restic run on all nodes.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, velero, if the bucket is used for multiple purposes.

Specify the name of the Secret object that you created. If you do not specify this value, the default name, cloud-credentials, is used. If you specify a custom name, the custom name is used for the backup location.

Specify a snapshot location, unless you use CSI snapshots or a File System Backup (FSB) to back up PVs.

The snapshot location must be in the same region as the PVs.

4. Click Create.

4.4.3.5.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   `$ oc get all -n openshift-adp`

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/node-agent-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td>&lt;none&gt; 8443/TCP 2m8s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>service/openshift-adp-velero-metrics-svc</td>
<td>ClusterIP</td>
<td>172.30.10.0</td>
<td>&lt;none&gt;</td>
</tr>
<tr>
<td>8085/TCP 8h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>NODE SELECTOR</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemonset.apps/node-agent</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>&lt;none&gt;</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployment.apps/oadp-operator-controller-manager</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>deployment.apps/velero</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>replicaset.apps/oadp-operator-controller-manager-67d9494d47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>replicaset.apps/velero-588db7f655</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>
2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

**Example output**

```
{"conditions": [{"lastTransitionTime": "2023-10-27T01:23:57Z", "message": "Reconcile complete", "reason": "Complete", "status": "True", "type": "Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```
$ oc get backupStorageLocation -n openshift-adp
```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>LAST VALIDATED</th>
<th>AGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpa-sample-1</td>
<td>Available</td>
<td>1s</td>
<td>3d16h</td>
<td>true</td>
</tr>
</tbody>
</table>

### 4.4.3.5.2. Enabling CSI in the DataProtectionApplication CR

You enable the Container Storage Interface (CSI) in the **DataProtectionApplication** custom resource (CR) in order to back up persistent volumes with CSI snapshots.

**Prerequisites**

- The cloud provider must support CSI snapshots.

**Procedure**

- Edit the **DataProtectionApplication** CR, as in the following example:

  ```yaml
 apiVersion: oadp.openshift.io/v1alpha1
 kind: DataProtectionApplication
 ...
 spec:
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - csi
```

1. Add the **csi** default plugin.

### 4.4.4. Configuring the OpenShift API for Data Protection with Microsoft Azure

You install the OpenShift API for Data Protection (OADP) with Microsoft Azure by installing the OADP Operator. The Operator installs **Velero 1.12**.
NOTE

Starting from OADP 1.0.4, all OADP 1.0.z versions can only be used as a dependency of the MTC Operator and are not available as a standalone Operator.

You configure Azure for Velero, create a default Secret, and then install the Data Protection Application. For more details, see Installing the OADP Operator.

To install the OADP Operator in a restricted network environment, you must first disable the default OperatorHub sources and mirror the Operator catalog. See Using Operator Lifecycle Manager on restricted networks for details.

4.4.4.1. Configuring Microsoft Azure

You configure Microsoft Azure for the OpenShift API for Data Protection (OADP).

Prerequisites

- You must have the Azure CLI installed.

Procedure

1. Log in to Azure:

   $ az login

2. Set the AZURE_RESOURCE_GROUP variable:

   $ AZURE_RESOURCE_GROUP=Velero_Backups

3. Create an Azure resource group:

   $ az group create -n $AZURE_RESOURCE_GROUP --location CentralUS

   Specify your location.

4. Set the AZURE_STORAGE_ACCOUNT_ID variable:

   $ AZURE_STORAGE_ACCOUNT_ID="velero$(uuidgen | cut -d '-' -f5 | tr '[A-Z]' '[a-z]')"

5. Create an Azure storage account:

   $ az storage account create \
   --name $AZURE_STORAGE_ACCOUNT_ID \
   --resource-group $AZURE_RESOURCE_GROUP \
   --sku Standard_GRS \
   --encryption-services blob \
   --https-only true \
   --kind BlobStorage \
   --access-tier Hot

6. Set the BLOB_CONTAINER variable:
7. Create an Azure Blob storage container:

```
$ BLOB_CONTAINER=velero

$ az storage container create \
 -n $BLOB_CONTAINER \
 --public-access off \
 --account-name $AZURE_STORAGE_ACCOUNT_ID
```

8. Obtain the storage account access key:

```
$ AZURE_STORAGE_ACCOUNT_ACCESS_KEY=`az storage account keys list \
 --account-name $AZURE_STORAGE_ACCOUNT_ID \
 --query '[?keyName == "key1"].value' -o tsv`
```

9. Create a custom role that has the minimum required permissions:

```
AZURE_ROLE=Velero
az role definition create --role-definition '{
 "Name": "'$AZURE_ROLE'",
 "Description": "Velero related permissions to perform backups, restores and deletions",
 "Actions": [
 "Microsoft.Compute/disks/read",
 "Microsoft.Compute/disks/write",
 "Microsoft.Compute/disks/endGetAccess/action",
 "Microsoft.Compute/disks/beginGetAccess/action",
 "Microsoft.Compute/snapshots/read",
 "Microsoft.Compute/snapshots/write",
 "Microsoft.Compute/snapshots/delete",
 "Microsoft.Storage/storageAccounts/listkeys/action",
 "Microsoft.Storage/storageAccounts/regeneratekey/action"
],
 "AssignableScopes": ["/subscriptions/"$AZURE_SUBSCRIPTION_ID""]
}'
```

10. Create a `credentials-velero` file:

```
$ cat << EOF > ./credentials-velero
AZURE_SUBSCRIPTION_ID=${AZURE_SUBSCRIPTION_ID}
AZURE_TENANT_ID=${AZURE_TENANT_ID}
AZURE_CLIENT_ID=${AZURE_CLIENT_ID}
AZURE_CLIENT_SECRET=${AZURE_CLIENT_SECRET}
AZURE_RESOURCE_GROUP=${AZURE_RESOURCE_GROUP}
AZURE_STORAGE_ACCOUNT_ACCESS_KEY=${AZURE_STORAGE_ACCOUNT_ACCESS_KEY}
AZURE_CLOUD_NAME=AzurePublicCloud
EOF
```

Mandatory. You cannot back up internal images if the `credentials-velero` file contains only the service principal credentials.

You use the `credentials-velero` file to create a Secret object for Azure before you install the Data Protection Application.
4.4.4.2. About backup and snapshot locations and their secrets

You specify backup and snapshot locations and their secrets in the **DataProtectionApplication** custom resource (CR).

**Backup locations**
You specify AWS S3-compatible object storage, such as Multicloud Object Gateway or MinIO, as a backup location.

Velero backs up OpenShift Container Platform resources, Kubernetes objects, and internal images as an archive file on object storage.

**Snapshot locations**
If you use your cloud provider’s native snapshot API to back up persistent volumes, you must specify the cloud provider as the snapshot location.

If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location because you will create a **VolumeSnapshotClass** CR to register the CSI driver.

If you use File System Backup (FSB), you do not need to specify a snapshot location because FSB backs up the file system on object storage.

**Secrets**
If the backup and snapshot locations use the same credentials or if you do not require a snapshot location, you create a default **Secret**.

If the backup and snapshot locations use different credentials, you create two secret objects:

- Custom **Secret** for the backup location, which you specify in the **DataProtectionApplication** CR.
- Default **Secret** for the snapshot location, which is not referenced in the **DataProtectionApplication** CR.

**IMPORTANT**

The Data Protection Application requires a default **Secret**. Otherwise, the installation will fail.

If you do not want to specify backup or snapshot locations during the installation, you can create a default **Secret** with an empty **credentials-velero** file.

4.4.4.2.1. Creating a default **Secret**

You create a default **Secret** if your backup and snapshot locations use the same credentials or if you do not require a snapshot location.

The default name of the **Secret** is **cloud-credentials-azure**.
NOTE

The **DataProtectionApplication** custom resource (CR) requires a default **Secret**. Otherwise, the installation will fail. If the name of the backup location **Secret** is not specified, the default name is used.

If you do not want to use the backup location credentials during the installation, you can create a **Secret** with the default name by using an empty **credentials-velero** file.

**Prerequisites**

- Your object storage and cloud storage, if any, must use the same credentials.
- You must configure object storage for Velero.
- You must create a **credentials-velero** file for the object storage in the appropriate format.

**Procedure**

- Create a **Secret** with the default name:

  ```bash
 $ oc create secret generic cloud-credentials-azure -n openshift-adp --from-file
 cloud=credentials-velero
  ```

  The **Secret** is referenced in the **spec.backupLocations.credential** block of the **DataProtectionApplication** CR when you install the Data Protection Application.

**4.4.4.2.2. Creating secrets for different credentials**

If your backup and snapshot locations use different credentials, you must create two **Secret** objects:

- Backup location **Secret** with a custom name. The custom name is specified in the **spec.backupLocations** block of the **DataProtectionApplication** custom resource (CR).
- Snapshot location **Secret** with the default name, **cloud-credentials-azure**. This **Secret** is not specified in the **DataProtectionApplication** CR.

**Procedure**

1. Create a **credentials-velero** file for the snapshot location in the appropriate format for your cloud provider.

2. Create a **Secret** for the snapshot location with the default name:

  ```bash
 $ oc create secret generic cloud-credentials-azure -n openshift-adp --from-file
 cloud=credentials-velero
  ```

3. Create a **credentials-velero** file for the backup location in the appropriate format for your object storage.

4. Create a **Secret** for the backup location with a custom name:

  ```bash
 $ oc create secret generic <custom_secret> -n openshift-adp --from-file cloud=credentials-velero
  ```
5. Add the **Secret** with the custom name to the **DataProtectionApplication** CR, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
custom: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp
spec:
 ...
 backupLocations:
 - velero:
 config:
 resourceGroup: <azure_resource_group>
 storageAccount: <azure_storage_account_id>
 subscriptionId: <azure_subscription_id>
 storageAccountKeyEnvVar: AZURE_STORAGE_ACCOUNT_ACCESS_KEY
credential:
 key: cloud
 name: <custom_secret>
 provider: azure
 default: true
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
 snapshotLocations:
 - velero:
 config:
 resourceGroup: <azure_resource_group>
 subscriptionId: <azure_subscription_id>
 incremental: "true"
 provider: azure
```

Backup location **Secret** with custom name.

### 4.4.4.3. Configuring the Data Protection Application

You can configure the Data Protection Application by setting Velero resource allocations or enabling self-signed CA certificates.

#### 4.4.4.3.1. Setting Velero CPU and memory resource allocations

You set the CPU and memory resource allocations for the **Velero** pod by editing the **DataProtectionApplication** custom resource (CR) manifest.

**Prerequisites**

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

**Procedure**

- Edit the values in the `spec.configuration.velero.podConfig.ResourceAllocations` block of the **DataProtectionApplication** CR manifest, as in the following example:
Specify the node selector to be supplied to Velero podSpec.

The resourceAllocations listed are for average usage.

NOTE

Kopia is an option in OADP 1.3 and later releases. You can use Kopia for file system backups, and Kopia is your only option for Data Mover cases with the built-in Data Mover.

Kopia is more resource intensive than Restic, and you might need to adjust the CPU and memory requirements accordingly.

4.4.4.3.2. Enabling self-signed CA certificates

You must enable a self-signed CA certificate for object storage by editing the DataProtectionApplication custom resource (CR) manifest to prevent a certificate signed by unknown authority error.

Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the spec.backupLocations.velero.objectStorage.caCert parameter and spec.backupLocations.velero.config parameters of the DataProtectionApplication CR manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
spec:
 ...
 configuration:
 velero:
 podConfig:
 nodeSelector: <node selector> # 1
 resourceAllocations: # 2
 limits:
 cpu: "1"
 memory: 1024Mi
 requests:
 cpu: 200m
 memory: 256Mi
```

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: <dpa_sample>
spec:
  ...
  configuration:
    velero:
      podConfig:
        nodeSelector: <node selector>  # 1
        resourceAllocations:  # 2
          limits:
            cpu: "1"
            memory: 1024Mi
          requests:
            cpu: 200m
            memory: 256Mi
Specify the Base64-encoded CA certificate string.

The `insecureSkipTLSVerify` configuration can be set to either "true" or "false". If set to "true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.

4.4.4.3.2.1. Using CA certificates with the velero command aliased for Velero deployment

You might want to use the Velero CLI without installing it locally on your system by creating an alias for it.

Prerequisites

- You must be logged in to the OpenShift Container Platform cluster as a user with the `cluster-admin` role.
- You must have the OpenShift CLI (`oc`) installed.

1. To use an aliased Velero command, run the following command:

   ```bash
 $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
   ```

2. Check that the alias is working by running the following command:

   ```bash
 $ velero version
 Client:
 Version: v1.12.1-OADP
 Git commit: -
 Server:
 Version: v1.12.1-OADP
   ```

3. To use a CA certificate with this command, you can add a certificate to the Velero deployment by running the following commands:

   ```bash
 $ CA_CERT=$(oc -n openshift-adp get dataprotectionapplications.oadp.openshift.io <dpa-name> -o jsonpath='{.spec.backupLocations[0].velero.objectStorage.caCert}')
 $ [[-n $CA_CERT]] && echo "$CA_CERT" | base64 -d | oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "cat >/tmp/your-cacert.txt" || echo "DPA BSL has no caCert"
   ```
$ velero -n openshift-adp describe backup <backup-name> --details --cacert /tmp/your-cacert.txt

4. If the Velero pod restarts, the /tmp/your-cacert.txt file disappears, and you must re-create the /tmp/your-cacert.txt file by re-running the commands from the previous step.

5. You can check if the /tmp/your-cacert.txt file still exists, in the file location where you stored it, by running the following command:

$ oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "ls /tmp/your-cacert.txt"

In a future release of OpenShift API for Data Protection (OADP), we plan to mount the certificate to the Velero pod so that this step is not required.

4.4.4.4. Installing the Data Protection Application 1.2 and earlier

You install the Data Protection Application (DPA) by creating an instance of the DataProtectionApplication API.

Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a Secret with the default name, cloud-credentials-azure.
- If the backup and snapshot locations use different credentials, you must create two Secrets:
  - Secret with a custom name for the backup location. You add this Secret to the DataProtectionApplication CR.
  - Secret with another custom name for the snapshot location. You add this Secret to the DataProtectionApplication CR.

**NOTE**

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty credentials-velero file. If there is no default Secret, the installation will fail.
NOTE

Velero creates a secret named `velero-repo-credentials` in the OADP namespace, which contains a default backup repository password. You can update the secret with your own password encoded as base64 before you run your first backup targeted to the backup repository. The value of the key to update is `Data[repository-password]`.

After you create your DPA, the first time that you run a backup targeted to the backup repository, Velero creates a backup repository whose secret is `velero-repo-credentials`, which contains either the default password or the one you replaced it with. If you update the secret password after the first backup, the new password will not match the password in `velero-repo-credentials`, and therefore, Velero will not be able to connect with the older backups.

Procedure

1. Click **Operators → Installed Operators** and select the OADP Operator.

2. Under **Provided APIs**, click **Create instance** in the **DataProtectionApplication** box.

3. Click **YAML View** and update the parameters of the **DataProtectionApplication** manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp
spec:
 configuration:
 velero:
 defaultPlugins:
 - azure
 - openshift
 resourceTimeout: 10m
 restic:
 enable: true
 podConfig:
 nodeSelector: <node_selector>
 backupLocations:
 - velero:
 config:
 resourceGroup: <azure_resource_group>
 storageAccount: <azure_storage_account_id>
 subscriptionId: <azure_subscription_id>
 storageAccountKeyEnvVar: AZURE_STORAGE_ACCOUNT_ACCESS_KEY
 credential:
 key: cloud
 name: cloud-credentials-azure
 provider: azure
 default: true
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
```

71
The openshift plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

Set this value to false if you want to disable the Restic installation. Restic deploys a daemon set, which means that Restic pods run on each working node. In OADP version 1.2 and later, you can configure Restic for backups by adding spec.defaultVolumesToFsBackup: true to the Backup CR. In OADP version 1.1, add spec.defaultVolumesToRestic: true to the Backup CR.

Specify on which nodes Restic is available. By default, Restic runs on all nodes.

Specify the Azure resource group.

Specify the Azure storage account ID.

Specify the Azure subscription ID.

If you do not specify this value, the default name, cloud-credentials-azure, is used. If you specify a custom name, the custom name is used for the backup location.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, velero, if the bucket is used for multiple purposes.

You do not need to specify a snapshot location if you use CSI snapshots or Restic to back up PVs.

4. Click Create.

4.4.4.4.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   $ oc get all -n openshift-adp

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/restic-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
</tbody>
</table>
2. Verify that the DataProtectionApplication (DPA) is reconciled by running the following command:

```bash
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

Example output

```json
{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
```

3. Verify the type is set to Reconciled.

4. Verify the backup storage location and confirm that the PHASE is Available by running the following command:

```bash
$ oc get backupStorageLocation -n openshift-adp
```

Example output

```plaintext
<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>LAST VALIDATED</th>
<th>AGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpa-sample-1</td>
<td>Available</td>
<td>1s</td>
<td>3d16h</td>
<td>true</td>
</tr>
</tbody>
</table>
```

4.4.4.5. Installing the Data Protection Application 1.3

You install the Data Protection Application (DPA) by creating an instance of the DataProtectionApplication API.

Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.

If the backup and snapshot locations use the same credentials, you must create a Secret with the default name, `cloud-credentials-azure`.

If the backup and snapshot locations use different credentials, you must create two Secrets:

- **Secret** with a custom name for the backup location. You add this **Secret** to the `DataProtectionApplication` CR.

- **Secret** with another custom name for the snapshot location. You add this **Secret** to the `DataProtectionApplication` CR.

**NOTE**

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty `credentials-velero` file. If there is no default Secret, the installation will fail.

**Procedure**

1. Click **Operators → Installed Operators** and select the OADP Operator.

2. Under **Provided APIs**, click **Create instance** in the `DataProtectionApplication` box.

3. Click **YAML View** and update the parameters of the `DataProtectionApplication` manifest:

   ```yaml
 apiVersion: oadp.openshift.io/v1alpha1
 kind: DataProtectionApplication
 metadata:
 name: <dpa_sample>
 namespace: openshift-adp
 spec:
 configuration:
 velero:
 defaultPlugins:
 - azure
 - openshift
 resourceTimeout: 10m
 nodeAgent:
 enable: true
 uploaderType: kopia
 podConfig:
 nodeSelector: <node_selector>
 backupLocations:
 - velero:
 config:
 resourceGroup: <azure_resource_group>
 storageAccount: <azure_storage_account_id>
 subscriptionId: <azure_subscription_id>
 storageAccountKeyEnvVar: AZURE_STORAGE_ACCOUNT_ACCESS_KEY
 credential:
 key: cloud
   ```
The default namespace for OADP is `openshift-adp`. The namespace is a variable and is configurable.

The `openshift` plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

The administrative agent that routes the administrative requests to servers.

Set this value to `true` if you want to enable `nodeAgent` and perform File System Backup.

Enter `kopia` or `restic` as your uploader. You cannot change the selection after the installation. For the Built-in DataMover you must use Kopia. The `nodeAgent` deploys a daemon set, which means that the `nodeAgent` pods run on each working node. You can configure File System Backup by adding `spec.defaultVolumesToFsBackup: true` to the `Backup` CR.

Specify the nodes on which Kopia or Restic are available. By default, Kopia or Restic run on all nodes.

Specify the Azure resource group.

Specify the Azure storage account ID.

Specify the Azure subscription ID.

If you do not specify this value, the default name, `cloud-credentials-azure`, is used. If you specify a custom name, the custom name is used for the backup location.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, `velero`, if the bucket is used for multiple purposes.

You do not need to specify a snapshot location if you use CSI snapshots or Restic to back up PVs.

4. Click **Create**.
4.4.4.5.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

```
$ oc get all -n openshift-adp
```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/node-agent-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
<tr>
<td>service/openshift-adp-velero-metrics-svc</td>
<td>ClusterIP</td>
<td>172.30.10.0</td>
<td>&lt;none&gt;</td>
</tr>
<tr>
<td>8085/TCP</td>
<td>8h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>NODE SELECTOR</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemonset.apps/node-agent</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>&lt;none&gt;</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployment.apps/oadp-operator-controller-manager</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>deployment.apps/velero</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>replicaset.apps/oadp-operator-controller-manager-67d9494d47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>replicaset.apps/velero-588db7f655</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

**Example output**

```json
{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```
$ oc get backupStorageLocation -n openshift-adp
```

**Example output**
4.4.4.5.2. Enabling CSI in the DataProtectionApplication CR

You enable the Container Storage Interface (CSI) in the DataProtectionApplication custom resource (CR) in order to back up persistent volumes with CSI snapshots.

Prerequisites

- The cloud provider must support CSI snapshots.

Procedure

- Edit the DataProtectionApplication CR, as in the following example:

```
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
...
spec:
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - csi
```

Add the csi default plugin.

4.4.5. Configuring the OpenShift API for Data Protection with Google Cloud Platform

You install the OpenShift API for Data Protection (OADP) with Google Cloud Platform (GCP) by installing the OADP Operator. The Operator installs Velero 1.12.

**NOTE**

Starting from OADP 1.0.4, all OADP 1.0.z versions can only be used as a dependency of the MTC Operator and are not available as a standalone Operator.

You configure GCP for Velero, create a default Secret, and then install the Data Protection Application. For more details, see Installing the OADP Operator.

To install the OADP Operator in a restricted network environment, you must first disable the default OperatorHub sources and mirror the Operator catalog. See Using Operator Lifecycle Manager on restricted networks for details.

4.4.5.1. Configuring Google Cloud Platform

You configure Google Cloud Platform (GCP) for the OpenShift API for Data Protection (OADP).

**Prerequisites**
You must have the `gcloud` and `gsutil` CLI tools installed. See the Google cloud documentation for details.

Procedure

1. Log in to GCP:
   
   ```
 $ gcloud auth login
   ```

2. Set the `BUCKET` variable:
   
   ```
 $ BUCKET=<bucket>
   ```
   
   Specify your bucket name.

3. Create the storage bucket:
   
   ```
 $ gsutil mb gs://$BUCKET/
   ```

4. Set the `PROJECT_ID` variable to your active project:
   
   ```
 $ PROJECT_ID=$(gcloud config get-value project)
   ```

5. Create a service account:
   
   ```
 $ gcloud iam service-accounts create velero
 --display-name "Velero service account"
   ```

6. List your service accounts:
   
   ```
 $ gcloud iam service-accounts list
   ```

7. Set the `SERVICE_ACCOUNT_EMAIL` variable to match its `email` value:
   
   ```
 $ SERVICE_ACCOUNT_EMAIL=$(gcloud iam service-accounts list
 --filter="displayName:Velero service account"
 --format 'value(email)')
   ```

8. Attach the policies to give the `velero` user the minimum necessary permissions:
   
   ```
 $ ROLE_PERMISSIONS=(
 compute.disks.get
 compute.disks.create
 compute.disks.createSnapshot
 compute.snapshots.get
 compute.snapshots.create
 compute.snapshots.useReadOnly
 compute.snapshots.delete
 compute.zones.get
 storage.objects.create
 storage.objects.delete
 storage.objects.get
   ```
Create the `velero.server` custom role:

```
$ gcloud iam roles create velero.server \
 --project $PROJECT_ID \
 --title "Velero Server" \
 --permissions "$(IFS=","; echo "$[ROLE_PERMISSIONS[*]]")"
```

Add IAM policy binding to the project:

```
$ gcloud projects add-iam-policy-binding $PROJECT_ID \
 --member serviceAccount:$SERVICE_ACCOUNT_EMAIL \
 --role projects/$PROJECT_ID/roles/velero.server
```

Update the IAM service account:

```
$ gsutil iam ch serviceAccount:$SERVICE_ACCOUNT_EMAIL:objectAdmin gs://$[BUCKET]
```

Save the IAM service account keys to the `credentials-velero` file in the current directory:

```
$ gcloud iam service-accounts keys create credentials-velero \
 --iam-account $SERVICE_ACCOUNT_EMAIL
```

You use the `credentials-velero` file to create a `Secret` object for GCP before you install the Data Protection Application.

### 4.4.5.2. About backup and snapshot locations and their secrets

You specify backup and snapshot locations and their secrets in the `DataProtectionApplication` custom resource (CR).

**Backup locations**

You specify AWS S3-compatible object storage, such as Multicloud Object Gateway or MinIO, as a backup location.

Velero backs up OpenShift Container Platform resources, Kubernetes objects, and internal images as an archive file on object storage.

**Snapshot locations**

If you use your cloud provider’s native snapshot API to back up persistent volumes, you must specify the cloud provider as the snapshot location.

If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location because you will create a `VolumeSnapshotClass` CR to register the CSI driver.

If you use File System Backup (FSB), you do not need to specify a snapshot location because FSB backs up the file system on object storage.

**Secrets**

If the backup and snapshot locations use the same credentials or if you do not require a snapshot location, you create a default `Secret`. 
If the backup and snapshot locations use different credentials, you create two secret objects:

- Custom Secret for the backup location, which you specify in the DataProtectionApplication CR.
- Default Secret for the snapshot location, which is not referenced in the DataProtectionApplication CR.

**IMPORTANT**

The Data Protection Application requires a default Secret. Otherwise, the installation will fail.

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty credentials-velero file.

### 4.4.5.2.1. Creating a default Secret

You create a default Secret if your backup and snapshot locations use the same credentials or if you do not require a snapshot location.

The default name of the Secret is cloud-credentials-gcp.

**NOTE**

The DataProtectionApplication custom resource (CR) requires a default Secret. Otherwise, the installation will fail. If the name of the backup location Secret is not specified, the default name is used.

If you do not want to use the backup location credentials during the installation, you can create a Secret with the default name by using an empty credentials-velero file.

**Prerequisites**

- Your object storage and cloud storage, if any, must use the same credentials.
- You must configure object storage for Velero.
- You must create a credentials-velero file for the object storage in the appropriate format.

**Procedure**

- Create a Secret with the default name:

  ```
 $ oc create secret generic cloud-credentials-gcp -n openshift-adp --from-file cloud=credentials-velero
  ```

  The Secret is referenced in the spec.backupLocations.credential block of the DataProtectionApplication CR when you install the Data Protection Application.

### 4.4.5.2.2. Creating secrets for different credentials

If your backup and snapshot locations use different credentials, you must create two Secret objects:

- Backup location Secret with a custom name. The custom name is specified in the
  
  ```
 $ oc create secret generic cloud-credentials-gcp -n openshift-adp --from-file cloud=credentials-velero
  ```

  OpenShift Container Platform 4.15 Backup and restore
• Backup location **Secret** with a custom name. The custom name is specified in the `spec.backupLocations` block of the **DataProtectionApplication** custom resource (CR).

• Snapshot location **Secret** with the default name, **cloud-credentials-gcp**. This **Secret** is not specified in the **DataProtectionApplication** CR.

**Procedure**

1. Create a **credentials-velero** file for the snapshot location in the appropriate format for your cloud provider.

2. Create a **Secret** for the snapshot location with the default name:

   ```bash
 $ oc create secret generic cloud-credentials-gcp -n openshift-adp --from-file cloud=credentials-velero
   ```

3. Create a **credentials-velero** file for the backup location in the appropriate format for your object storage.

4. Create a **Secret** for the backup location with a custom name:

   ```bash
 $ oc create secret generic <custom_secret> -n openshift-adp --from-file cloud=credentials-velero
   ```

5. Add the **Secret** with the custom name to the **DataProtectionApplication** CR, as in the following example:

   ```yaml
 apiVersion: oadp.openshift.io/v1alpha1
 kind: DataProtectionApplication
 metadata:
 name: <dpa_sample>
 namespace: openshift-adp
 spec:
 ...
 backupLocations:
 - velero:
 provider: gcp
 default: true
 credential:
 key: cloud
 name: <custom_secret> 1
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
 snapshotLocations:
 - velero:
 provider: gcp
 default: true
 config:
 project: <project>
 snapshotLocation: us-west1
   ```

   1 Backup location **Secret** with custom name.
4.4.5.3. Configuring the Data Protection Application

You can configure the Data Protection Application by setting Velero resource allocations or enabling self-signed CA certificates.

4.4.5.3.1. Setting Velero CPU and memory resource allocations

You set the CPU and memory resource allocations for the Velero pod by editing the DataProtectionApplication custom resource (CR) manifest.

Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the values in the spec.configuration.velero.podConfig.ResourceAllocations block of the DataProtectionApplication CR manifest, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
spec:
 ...
 configuration:
 velero:
 podConfig:
 nodeSelector: <node selector> 1
 resourceAllocations: 2
 limits:
 cpu: "1"
 memory: 1024Mi
 requests:
 cpu: 200m
 memory: 256Mi
```

1 Specify the node selector to be supplied to Velero podSpec.
2 The resourceAllocations listed are for average usage.

NOTE

Kopia is an option in OADP 1.3 and later releases. You can use Kopia for file system backups, and Kopia is your only option for Data Mover cases with the built-in Data Mover.

Kopia is more resource intensive than Restic, and you might need to adjust the CPU and memory requirements accordingly.

4.4.5.3.2. Enabling self-signed CA certificates

You must enable a self-signed CA certificate for object storage by editing the DataProtectionApplication custom resource (CR) manifest to prevent a certificate signed by unknown authority error.
Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the `spec.backupLocations.velero.objectStorage.caCert` parameter and `spec.backupLocations.velero.config` parameters of the `DataProtectionApplication` CR manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
spec:
 ...
 backupLocations:
 - name: default
 velero:
 provider: aws
 default: true
 objectStorage:
 bucket: <bucket>
 prefix: <prefix>
 caCert: <base64_encoded_cert_string>
 config:
 insecureSkipTLSVerify: "false"
 ...
```

1. Specify the Base64-encoded CA certificate string.
2. The `insecureSkipTLSVerify` configuration can be set to either "true" or "false". If set to "true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.

4.4.5.3.2.1. Using CA certificates with the velero command aliased for Velero deployment

You might want to use the Velero CLI without installing it locally on your system by creating an alias for it.

Prerequisites

- You must be logged in to the OpenShift Container Platform cluster as a user with the `cluster-admin` role.
- You must have the OpenShift CLI (`oc`) installed.

1. To use an aliased Velero command, run the following command:

   ```bash
 $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
   ```

2. Check that the alias is working by running the following command:

   ```bash
 Example
   ```
3. To use a CA certificate with this command, you can add a certificate to the Velero deployment by running the following commands:

```bash
$ CA_CERT=$(oc -n openshift-adp get dataprotectionapplications.oadp.openshift.io <dpa-name> -o jsonpath='{.spec.backupLocations[0].velero.objectStorage.caCert}')
$ [[-n $CA_CERT]] && echo "$CA_CERT" | base64 -d | oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "cat > /tmp/your-cacert.txt" || echo "DPA BSL has no caCert"

$ velero -n openshift-adp describe backup <backup-name> --details --cacert /tmp/your-cacert.txt
```

4. If the Velero pod restarts, the /tmp/your-cacert.txt file disappears, and you must re-create the /tmp/your-cacert.txt file by re-running the commands from the previous step.

5. You can check if the /tmp/your-cacert.txt file still exists, in the file location where you stored it, by running the following command:

```bash
$ oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "ls /tmp/your-cacert.txt" /tmp/your-cacert.txt
```

In a future release of OpenShift API for Data Protection (OADP), we plan to mount the certificate to the Velero pod so that this step is not required.

**4.4.5.4. Installing the Data Protection Application 1.2 and earlier**

You install the Data Protection Application (DPA) by creating an instance of the `DataProtectionApplication` API.

**Prerequisites**

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a `Secret` with the default name, `cloud-credentials-gcp`.
- If the backup and snapshot locations use different credentials, you must create two `Secrets`:
  - `Secret` with a custom name for the backup location. You add this `Secret` to the `DataProtectionApplication` CR.
- **Secret** with another custom name for the snapshot location. You add this **Secret** to the **DataProtectionApplication** CR.

**NOTE**

If you do not want to specify backup or snapshot locations during the installation, you can create a default **Secret** with an empty **credentials-velero** file. If there is no default **Secret**, the installation will fail.

**NOTE**

Velero creates a secret named **velero-repo-credentials** in the OADP namespace, which contains a default backup repository password. You can update the secret with your own password encoded as base64 **before** you run your first backup targeted to the backup repository. The value of the key to update is `Data[repository-password]`.

After you create your DPA, the first time that you run a backup targeted to the backup repository, Velero creates a backup repository whose secret is **velero-repo-credentials**, which contains either the default password or the one you replaced it with. If you update the secret password **after** the first backup, the new password will not match the password in **velero-repo-credentials**, and therefore, Velero will not be able to connect with the older backups.

**Procedure**

1. Click **Operators → Installed Operators** and select the OADP Operator.
2. Under **Provided APIs**, click **Create instance** in the **DataProtectionApplication** box.
3. Click **YAML View** and update the parameters of the **DataProtectionApplication** manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp
spec:
 configuration:
 velero:
 defaultPlugins:
 - gcp
 - openshift
 resourceTimeout: 10m
 restic:
 enable: true
 podConfig:
 nodeSelector: <node_selector>
 backupLocations:
 - velero:
 provider: gcp
 default: true
 credential:
 key: cloud
```

---

CHAPTER 4. OADP APPLICATION BACKUP AND RESTORE
4 The openshift plugin is mandatory.

2 Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

3 Set this value to false if you want to disable the Restic installation. Restic deploys a daemon set, which means that Restic pods run on each working node. In OADP version 1.2 and later, you can configure Restic for backups by adding spec.defaultVolumesToFsBackup: true to the Backup CR. In OADP version 1.1, add spec.defaultVolumesToRestic: true to the Backup CR.

4 Specify on which nodes Restic is available. By default, Restic runs on all nodes.

5 Secret key that contains credentials. For Google workload identity federation cloud authentication use service_account.json.

6 Secret name that contains credentials. If you do not specify this value, the default name, cloud-credentials-gcp, is used.

7 Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

8 Specify a prefix for Velero backups, for example, velero, if the bucket is used for multiple purposes.

9 Specify a snapshot location, unless you use CSI snapshots or Restic to back up PVs.

10 The snapshot location must be in the same region as the PVs.

4. Click Create.

4.4.5.4.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   $ oc get all -n openshift-adp

   Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
</table>

86
pod/oadp-operator-controller-manager-67d9494d47-6l8z8 2/2 Running 0 2m8s
pod/restic-9cq4q 1/1 Running 0 94s
pod/restic-m4lts 1/1 Running 0 94s
pod/restic-pv4kr 1/1 Running 0 95s
pod/velero-588db7f655-n842v 1/1 Running 0 95s

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td>&lt;none&gt;</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>NODE SELECTOR</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemonset.apps/restic</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>&lt;none&gt;</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployment.apps/oadp-operator-controller-manager</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>deployment.apps/velero</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>replicaset.apps/oadp-operator-controller-manager-67d9494d47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>replicaset.apps/velero-588db7f655</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```bash
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

**Example output**

```
{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```bash
$ oc get backupStorageLocation -n openshift-adp
```

**Example output**

```
NAME PHASE LAST VALIDATED AGE DEFAULT
dpa-sample-1 Available 1s 3d16h true
```

### 4.4.5.5. Google workload identity federation cloud authentication

Applications running outside Google Cloud use service account keys, such as usernames and passwords, to gain access to Google Cloud resources. These service account keys might become a security risk if they are not properly managed.

With Google’s workload identity federation, you can use Identity and Access Management (IAM) to offer IAM roles, including the ability to impersonate service accounts, to external identities. This eliminates the maintenance and security risks associated with service account keys.
Workload identity federation handles encrypting and decrypting certificates, extracting user attributes, and validation. Identity federation externalizes authentication, passing it over to Security Token Services (STS), and reduces the demands on individual developers. Authorization and controlling access to resources remain the responsibility of the application.

**NOTE**

Google workload identity federation is available for OADP 1.3.x and later.

**NOTE**

For backing up volumes, OADP on GCP with Google workload identity federation authentication supports only CSI snapshots.

If you do not use Google workload identity federation cloud authentication, continue to *Installing the Data Protection Application*.

**Prerequisites**

- You have installed a cluster in manual mode with GCP Workload Identity configured.
- You have access to the Cloud Credential Operator utility (`ccoctl`) and to the associated workload identity pool.

**Procedure**

1. Create an `oadp-credrequest` directory by running the following command:

   ```bash
 $ mkdir -p oadp-credrequest
   ```

2. Create a `CredentialsRequest.yaml` file as following:

   ```yaml
 apiVersion: cloudcredential.openshift.io/v1
 kind: CredentialsRequest
 metadata:
 name: oadp-operator-credentials
 namespace: openshift-cloud-credential-operator
 spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: GCPProviderSpec
 permissions:
 - compute.disks.get
 - compute.disks.create
 - compute.disks.createSnapshot
 - compute.snapshots.get
 - compute.snapshots.create
 - compute.snapshots.useReadOnly
 - compute.snapshots.delete
 - compute.zones.get
 - storage.objects.create
 - storage.objects.delete
 - storage.objects.get
 - storage.objects.list
   ```
3. Use the `ccoctl` utility to process the `CredentialsRequest` objects in the `oadp-credrequest` directory by running the following command:

```bash
$ ccoctl gcp create-service-accounts \
 --name=<name> \
 --project=<gcp_project_id> \
 --credentials-requests-dir=oadp-credrequest \
 --workload-identity-pool=<pool_id> \
 --workload-identity-provider=<provider_id>
```

The `manifests/openshift-adp-cloud-credentials-gcp-credentials.yaml` file is now available to use in the following steps.

4. Create a namespace by running the following command:

```bash
$ oc create namespace <OPERATOR_INSTALL_NS>
```

5. Apply the credentials to the namespace by running the following command:

```bash
$ oc apply -f manifests/openshift-adp-cloud-credentials-gcp-credentials.yaml
```

### 4.4.5.6. Installing the Data Protection Application 1.3

You install the Data Protection Application (DPA) by creating an instance of the `DataProtectionApplication` API.

**Prerequisites**

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a `Secret` with the default name, `cloud-credentials-gcp`.
- If the backup and snapshot locations use different credentials, you must create two `Secrets`:
  - `Secret` with a custom name for the backup location. You add this `Secret` to the `DataProtectionApplication` CR.
  - `Secret` with another custom name for the snapshot location. You add this `Secret` to the `DataProtectionApplication` CR.

```yaml
- iam.serviceAccounts.signBlob
 skipServiceCheck: true
 secretRef:
 name: cloud-credentials-gcp
 namespace: <OPERATOR_INSTALL_NS>
 serviceAccountNames:
 - velero
 > oadp-credrequest/credrequest.yaml
```
NOTE

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty credentials-velero file. If there is no default Secret, the installation will fail.

Procedure

1. Click Operators → Installed Operators and select the OADP Operator.

2. Under Provided APIs, click Create instance in the DataProtectionApplication box.

3. Click YAML View and update the parameters of the DataProtectionApplication manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: <OPERATOR_INSTALL_NS>
spec:
 configuration:
 velero:
 defaultPlugins:
 - gcp
 - openshift
 resourceTimeout: 10m
 nodeAgent:
 enable: true
 uploaderType: kopia
 podConfig:
 nodeSelector: <node_selector>
 backupLocations:
 - velero:
 provider: gcp
 default: true
 credential:
 key: cloud
 name: cloud-credentials-gcp
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
 snapshotLocations:
 - velero:
 provider: gcp
 default: true
 config:
 project: <project>
 snapshotLocation: us-west1

1 The default namespace for OADP is openshift-adp. The namespace is a variable and is configurable.

2 The openshift plugin is mandatory.
```
Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository.

The administrative agent that routes the administrative requests to servers.

Set this value to `true` if you want to enable `nodeAgent` and perform File System Backup.

Enter `kopia` or `restic` as your uploader. You cannot change the selection after the installation. For the Built-in DataMover you must use Kopia. The `nodeAgent` deploys a daemon set, which means that the `nodeAgent` pods run on each working node. You can configure File System Backup by adding `spec.defaultVolumesToFsBackup: true` to the `Backup` CR.

Specify the nodes on which Kopia or Restic are available. By default, Kopia or Restic run on all nodes.

Secret key that contains credentials. For Google workload identity federation cloud authentication use `service_account.json`.

Secret name that contains credentials. If you do not specify this value, the default name, `cloud-credentials-gcp`, is used.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, `velero`, if the bucket is used for multiple purposes.

Specify a snapshot location, unless you use CSI snapshots or Restic to back up PVs.

The snapshot location must be in the same region as the PVs.

4. Click **Create**.

### 4.4.5.6.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```
 $ oc get all -n openshift-adp
   ```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-618z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/node-agent-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db71655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td>service/openshift-adp-velero-metrics-svc</td>
<td>ClusterIP</td>
<td>172.30.10.0</td>
<td></td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
</tbody>
</table>
2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```bash
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

**Example output**

```json
{"conditions": [{"lastTransitionTime": "2023-10-27T01:23:57Z", "message": "Reconcile complete", "reason": "Complete", "status": "True", "type": "Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```bash
$ oc get backupStorageLocation -n openshift-adp
```

**Example output**

```text
NAME PHASE LAST VALIDATED AGE DEFAULT
dpa-sample-1 Available 1s 3d16h true
```

**4.4.5.6.2. Enabling CSI in the DataProtectionApplication CR**

You enable the Container Storage Interface (CSI) in the **DataProtectionApplication** custom resource (CR) in order to back up persistent volumes with CSI snapshots.

**Prerequisites**

- The cloud provider must support CSI snapshots.

**Procedure**

- Edit the **DataProtectionApplication** CR, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
... spec:
```
Add the csi default plugin.

4.4.6. Configuring the OpenShift API for Data Protection with Multicloud Object Gateway

You install the OpenShift API for Data Protection (OADP) with Multicloud Object Gateway (MCG) by installing the OADP Operator. The Operator installs Velero 1.12.

NOTE
Starting from OADP 1.0.4, all OADP 1.0.z versions can only be used as a dependency of the MTC Operator and are not available as a standalone Operator.

You configure Multicloud Object Gateway as a backup location. MCG is a component of OpenShift Data Foundation. You configure MCG as a backup location in the DataProtectionApplication custom resource (CR).

IMPORTANT
The CloudStorage API, which automates the creation of a bucket for object storage, is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You create a Secret for the backup location and then you install the Data Protection Application. For more details, see Installing the OADP Operator.

To install the OADP Operator in a restricted network environment, you must first disable the default OperatorHub sources and mirror the Operator catalog. For details, see Using Operator Lifecycle Manager on restricted networks.

4.4.6.1. Retrieving Multicloud Object Gateway credentials

You must retrieve the Multicloud Object Gateway (MCG) credentials in order to create a Secret custom resource (CR) for the OpenShift API for Data Protection (OADP).

MCG is a component of OpenShift Data Foundation.

Prerequisites

- You must deploy OpenShift Data Foundation by using the appropriate OpenShift Data Foundation deployment guide.
Procedure

1. Obtain the S3 endpoint, `AWS_ACCESS_KEY_ID`, and `AWS_SECRET_ACCESS_KEY` by running the `describe` command on the NooBaa custom resource.

2. Create a `credentials-velero` file:

   ```
 $ cat << EOF > ./credentials-velero
 [default]
 aws_access_key_id=<AWS_ACCESS_KEY_ID>
 aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>
 EOF
   ```

   You use the `credentials-velero` file to create a `Secret` object when you install the Data Protection Application.

4.4.6.2. About backup and snapshot locations and their secrets

You specify backup and snapshot locations and their secrets in the `DataProtectionApplication` custom resource (CR).

**Backup locations**

You specify AWS S3-compatible object storage, such as Multicloud Object Gateway or MinIO, as a backup location.

Velero backs up OpenShift Container Platform resources, Kubernetes objects, and internal images as an archive file on object storage.

**Snapshot locations**

If you use your cloud provider’s native snapshot API to back up persistent volumes, you must specify the cloud provider as the snapshot location.

If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location because you will create a `VolumeSnapshotClass` CR to register the CSI driver.

If you use File System Backup (FSB), you do not need to specify a snapshot location because FSB backs up the file system on object storage.

**Secrets**

If the backup and snapshot locations use the same credentials or if you do not require a snapshot location, you create a default `Secret`.

If the backup and snapshot locations use different credentials, you create two secret objects:

- Custom `Secret` for the backup location, which you specify in the `DataProtectionApplication` CR.
- Default `Secret` for the snapshot location, which is not referenced in the `DataProtectionApplication` CR.
IMPORTANT

The Data Protection Application requires a default Secret. Otherwise, the installation will fail.

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty credentials-velero file.

4.4.6.2.1. Creating a default Secret

You create a default Secret if your backup and snapshot locations use the same credentials or if you do not require a snapshot location.

The default name of the Secret is cloud-credentials.

NOTE

The DataProtectionApplication custom resource (CR) requires a default Secret. Otherwise, the installation will fail. If the name of the backup location Secret is not specified, the default name is used.

If you do not want to use the backup location credentials during the installation, you can create a Secret with the default name by using an empty credentials-velero file.

Prerequisites

- Your object storage and cloud storage, if any, must use the same credentials.
- You must configure object storage for Velero.
- You must create a credentials-velero file for the object storage in the appropriate format.

Procedure

- Create a Secret with the default name:

  $ oc create secret generic cloud-credentials -n openshift-adp --from-file cloud=credentials-velero

  The Secret is referenced in the spec.backupLocations.credential block of the DataProtectionApplication CR when you install the Data Protection Application.

4.4.6.2.2. Creating secrets for different credentials

If your backup and snapshot locations use different credentials, you must create two Secret objects:

- Backup location Secret with a custom name. The custom name is specified in the spec.backupLocations block of the DataProtectionApplication custom resource (CR).
- Snapshot location Secret with the default name, cloud-credentials. This Secret is not specified in the DataProtectionApplication CR.

Procedure
1. Create a `credentials-velero` file for the snapshot location in the appropriate format for your cloud provider.

2. Create a `Secret` for the snapshot location with the default name:

   ```
 $ oc create secret generic cloud-credentials -n openshift-adp --from-file cloud=credentials-velero
   ```

3. Create a `credentials-velero` file for the backup location in the appropriate format for your object storage.

4. Create a `Secret` for the backup location with a custom name:

   ```
 $ oc create secret generic <custom_secret> -n openshift-adp --from-file cloud=credentials-velero
   ```

5. Add the `Secret` with the custom name to the `DataProtectionApplication` CR, as in the following example:

   ```yaml
 apiVersion: oadp.openshift.io/v1alpha1
 kind: DataProtectionApplication
 metadata:
 name: <dpa_sample>
 namespace: openshift-adp
 spec:
 ...
 backupLocations:
 - velero:
 config:
 profile: "default"
 region: minio
 s3Url: <url>
 insecureSkipTLSVerify: "true"
 s3ForcePathStyle: "true"
 provider: aws
 default: true
 credential:
 key: cloud
 name: <custom_secret>
 objectStorage:
 bucket: <bucket_name>
 prefix: <prefix>
   ```

   1 Backup location `Secret` with custom name.

### 4.4.6.3. Configuring the Data Protection Application

You can configure the Data Protection Application by setting Velero resource allocations or enabling self-signed CA certificates.

#### 4.4.6.3.1. Setting Velero CPU and memory resource allocations

You set the CPU and memory resource allocations for the `Velero` pod by editing the `DataProtectionApplication` custom resource (CR) manifest.
Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the values in the `spec.configuration.velero.podConfig.ResourceAllocations` block of the `DataProtectionApplication` CR manifest, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
spec:
 ...
 configuration:
 velero:
 podConfig:
 nodeSelector: <node selector> # 1
 resourceAllocations: # 2
 limits:
 cpu: "1"
 memory: 1024Mi
 requests:
 cpu: 200m
 memory: 256Mi
```

1. Specify the node selector to be supplied to Velero podSpec.
2. The `resourceAllocations` listed are for average usage.

**NOTE**

Kopia is an option in OADP 1.3 and later releases. You can use Kopia for file system backups, and Kopia is your only option for Data Mover cases with the built-in Data Mover.

Kopia is more resource intensive than Restic, and you might need to adjust the CPU and memory requirements accordingly.

4.4.6.3.2. Enabling self-signed CA certificates

You must enable a self-signed CA certificate for object storage by editing the `DataProtectionApplication` custom resource (CR) manifest to prevent a certificate signed by unknown authority error.

Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the `spec.backupLocations.velero.objectStorage.caCert` parameter and `spec.backupLocations.velero.config` parameters of the `DataProtectionApplication` CR manifest:
Specify the Base64-encoded CA certificate string.

The `insecureSkipTLSVerify` configuration can be set to either "true" or "false". If set to "true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.

4.4.6.3.2.1. Using CA certificates with the velero command aliased for Velero deployment

You might want to use the Velero CLI without installing it locally on your system by creating an alias for it.

**Prerequisites**

- You must be logged in to the OpenShift Container Platform cluster as a user with the `cluster-admin` role.

- You must have the OpenShift CLI (`oc`) installed.

1. To use an aliased Velero command, run the following command:

   ```bash
 $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
   ```

2. Check that the alias is working by running the following command:

   ```bash
 $ velero version
 Client:
 Version: v1.12.1-OADP
 Git commit: -
 Server:
 Version: v1.12.1-OADP
   ```

3. To use a CA certificate with this command, you can add a certificate to the Velero deployment by running the following commands:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
spec:
 ...
backupLocations:
 - name: default
 velero:
 provider: aws
 default: true
 objectStorage:
 bucket: <bucket>
 prefix: <prefix>
 caCert: <base64_encoded_cert_string> ¹
 config:
 insecureSkipTLSVerify: "false" ²
 ...
```

¹ Specify the Base64-encoded CA certificate string.
² The `insecureSkipTLSVerify` configuration can be set to either "true" or "false". If set to "true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.
4. If the Velero pod restarts, the /tmp/your-cacert.txt file disappears, and you must re-create the /tmp/your-cacert.txt file by re-running the commands from the previous step.

5. You can check if the /tmp/your-cacert.txt file still exists, in the file location where you stored it, by running the following command:

   ```bash
 $ CA_CERT=$(oc -n openshift-adp get dataprotectionapplications.oadp.openshift.io <dpa-name> -o jsonpath='{.spec.backupLocations[0].velero.objectStorage.caCert}')
 $ [[-n $CA_CERT]] && echo "$CA_CERT" | base64 -d | oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "cat > /tmp/your-cacert.txt" || echo "DPA BSL has no caCert"
 $ velero -n openshift-adp describe backup <backup-name> --details --cacert /tmp/your-cacert.txt

 $ oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "ls /tmp/your-cacert.txt" /tmp/your-cacert.txt

In a future release of OpenShift API for Data Protection (OADP), we plan to mount the certificate to the Velero pod so that this step is not required.

4.4.6.4. Installing the Data Protection Application 1.2 and earlier

You install the Data Protection Application (DPA) by creating an instance of the DataProtectionApplication API.

Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a Secret with the default name, cloud-credentials.
- If the backup and snapshot locations use different credentials, you must create two Secrets:
 - Secret with a custom name for the backup location. You add this Secret to the DataProtectionApplication CR.
 - Secret with another custom name for the snapshot location. You add this Secret to the DataProtectionApplication CR.

NOTE

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty credentials-velero file. If there is no default Secret, the installation will fail.
NOTE

Velero creates a secret named `velero-repo-credentials` in the OADP namespace, which contains a default backup repository password. You can update the secret with your own password encoded as base64 before you run your first backup targeted to the backup repository. The value of the key to update is `Data[repository-password]`.

After you create your DPA, the first time that you run a backup targeted to the backup repository, Velero creates a backup repository whose secret is `velero-repo-credentials`, which contains either the default password or the one you replaced it with. If you update the secret password after the first backup, the new password will not match the password in `velero-repo-credentials`, and therefore, Velero will not be able to connect with the older backups.

Procedure

1. Click **Operators → Installed Operators** and select the OADP Operator.

2. Under **Provided APIs**, click **Create instance** in the **DataProtectionApplication** box.

3. Click **YAML View** and update the parameters of the **DataProtectionApplication** manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
category: DataProtectionApplication
metadata:
  name: <dpa_sample>
  namespace: openshift-adp
spec:
  configuration:
    velero:
      defaultPlugins:
      - aws
      - openshift
      resourceTimeout: 10m
    restic:
      enable: true
      podConfig:
        nodeSelector: <node_selector>
    backupLocations:
      - velero:
          config:
            profile: "default"
            region: minio
            s3Url: <url>
            insecureSkipTLSVerify: "true"
            s3ForcePathStyle: "true"
            provider: aws
            default: true
            credential:
              key: cloud
              name: cloud-credentials
```
The *openShift* plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

Set this value to **false** if you want to disable the Restic installation. Restic deploys a daemon set, which means that Restic pods run on each working node. In OADP version 1.2 and later, you can configure Restic for backups by adding `spec.defaultVolumesToFsBackup: true` to the **Backup** CR. In OADP version 1.1, add `spec.defaultVolumesToRestic: true` to the **Backup** CR.

Specify on which nodes Restic is available. By default, Restic runs on all nodes.

Specify the URL of the S3 endpoint. If you do not specify this value, the default name, **cloud-credentials**, is used. If you specify a custom name, the custom name is used for the backup location.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, **velero**, if the bucket is used for multiple purposes.

4. Click **Create**.

4.4.6.4.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```
   $ oc get all -n openshift-adp
   ```

 Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-61828</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/restic-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td><none></td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
</tbody>
</table>

4. Click **Create**.

4.4.6.4.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```
   $ oc get all -n openshift-adp
   ```

 Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-61828</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/restic-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td><none></td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
</tbody>
</table>
2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status} '
```

Example output

```json
{"conditions": [{"lastTransitionTime": "2023-10-27T01:23:57Z", "message": "Reconcile complete", "reason": "Complete", "status": "True", "type": "Reconciled"}]}
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```
$ oc get backupStorageLocation -n openshift-adp
```

Example output

```
NAME           PHASE       LAST VALIDATED   AGE     DEFAULT
dpa-sample-1   Available   1s                 3d16h   true
```

4.4.6.5. Installing the Data Protection Application 1.3

You install the Data Protection Application (DPA) by creating an instance of the **DataProtectionApplication** API.

Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a **Secret** with the default name, **cloud-credentials**.
- If the backup and snapshot locations use different credentials, you must create two **Secrets**:
 - **Secret** with a custom name for the backup location. You add this **Secret** to the **DataProtectionApplication** CR.
- **Secret** with another custom name for the snapshot location. You add this **Secret** to the **DataProtectionApplication** CR.

NOTE

If you do not want to specify backup or snapshot locations during the installation, you can create a default **Secret** with an empty **credentials-velero** file. If there is no default **Secret**, the installation will fail.

Procedure

1. Click **Operators → Installed Operators** and select the OADP Operator.

2. Under **Provided APIs**, click **Create instance** in the **DataProtectionApplication** box.

3. Click **YAML View** and update the parameters of the **DataProtectionApplication** manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: <dpa_sample>
  namespace: openshift-adp 1
spec:
  configuration:
    velero:
      defaultPlugins:
        - aws
        - openshift 2
      resourceTimeout: 10m 3
    nodeAgent:
      enable: true 5
    uploaderType: kopia 6
    podConfig:
      nodeSelector: <node_selector> 7
  backupLocations:
    - velero:
        config:
          profile: "default"
          region: minio
          s3Url: <url> 8
          insecureSkipTLSVerify: "true"
          s3ForcePathStyle: "true"
          provider: aws
          default: true
          credential:
            key: cloud
            name: cloud-credentials 9
          objectStorage:
            bucket: <bucket_name> 10
            prefix: <prefix> 11
```

1. The default namespace for OADP is **openshift-adp**. The namespace is a variable and is configurable.
The **openshift** plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs, such as Velero CRD availability, volumeSnapshot deletion, and backup repository availability. The default is 10m.

The administrative agent that routes the administrative requests to servers.

Set this value to `true` if you want to enable **nodeAgent** and perform File System Backup.

Enter **kopia** or **restic** as your uploader. You cannot change the selection after the installation. For the Built-in DataMover you must use Kopia. The **nodeAgent** deploys a daemon set, which means that the **nodeAgent** pods run on each working node. You can configure File System Backup by adding `spec.defaultVolumesToFsBackup: true` to the **Backup** CR.

Specify the nodes on which Kopia or Restic are available. By default, Kopia or Restic run on all nodes.

Specify the URL of the S3 endpoint.

If you do not specify this value, the default name, **cloud-credentials**, is used. If you specify a custom name, the custom name is used for the backup location.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, **velero**, if the bucket is used for multiple purposes.

4. Click Create.

4.4.6.5.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```bash
   $ oc get all -n openshift-adp
   ```

 Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/node-agent-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-m4tds</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td><none></td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
<tr>
<td>service/openshift-adp-velero-metrics-svc</td>
<td>ClusterIP</td>
<td>172.30.10.0</td>
<td><none></td>
</tr>
<tr>
<td>8085/TCP</td>
<td></td>
<td>8h</td>
<td></td>
</tr>
</tbody>
</table>
2. Verify that the **DataProtectionApplication** (DPA) is reconciled by running the following command:

```
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

Example output

```
{
"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
```

3. Verify the **type** is set to **Reconciled**.

4. Verify the backup storage location and confirm that the **PHASE** is **Available** by running the following command:

```
$ oc get backupStorageLocation -n openshift-adp
```

Example output

```
NAME           PHASE       LAST VALIDATED   AGE     DEFAULT
dpa-sample-1   Available   1s            3d16h   true
```

4.4.6.5.2. Enabling CSI in the DataProtectionApplication CR

You enable the Container Storage Interface (CSI) in the **DataProtectionApplication** custom resource (CR) in order to back up persistent volumes with CSI snapshots.

Prerequisites

- The cloud provider must support CSI snapshots.

Procedure

- Edit the **DataProtectionApplication** CR, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
...
spec:
  configuration:
    velero:
```
4.4.7. Configuring the OpenShift API for Data Protection with OpenShift Data Foundation

You install the OpenShift API for Data Protection (OADP) with OpenShift Data Foundation by installing the OADP Operator and configuring a backup location and a snapshot location. Then, you install the Data Protection Application.

![NOTE]

Starting from OADP 1.0.4, all OADP 1.0.z versions can only be used as a dependency of the MTC Operator and are not available as a standalone Operator.

You can configure Multicloud Object Gateway or any AWS S3-compatible object storage as a backup location.

![IMPORTANT]

The CloudStorage API, which automates the creation of a bucket for object storage, is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You create a Secret for the backup location and then you install the Data Protection Application. For more details, see Installing the OADP Operator.

To install the OADP Operator in a restricted network environment, you must first disable the default OperatorHub sources and mirror the Operator catalog. For details, see Using Operator Lifecycle Manager on restricted networks.

4.4.7.1. About backup and snapshot locations and their secrets

You specify backup and snapshot locations and their secrets in the DataProtectionApplication custom resource (CR).

Backup locations
You specify AWS S3-compatible object storage, such as Multicloud Object Gateway or MinIO, as a backup location.

Velero backs up OpenShift Container Platform resources, Kubernetes objects, and internal images as an archive file on object storage.

Snapshot locations
If you use your cloud provider's native snapshot API to back up persistent volumes, you must specify the cloud provider as the snapshot location.

If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location because you will create a `VolumeSnapshotClass` CR to register the CSI driver.

If you use File System Backup (FSB), you do not need to specify a snapshot location because FSB backs up the file system on object storage.

Secrets
If the backup and snapshot locations use the same credentials or if you do not require a snapshot location, you create a default `Secret`.

If the backup and snapshot locations use different credentials, you create two secret objects:

- Custom `Secret` for the backup location, which you specify in the `DataProtectionApplication` CR.
- Default `Secret` for the snapshot location, which is not referenced in the `DataProtectionApplication` CR.

IMPORTANT
The Data Protection Application requires a default `Secret`. Otherwise, the installation will fail.

If you do not want to specify backup or snapshot locations during the installation, you can create a default `Secret` with an empty `credentials-velero` file.

Additional resources
- Creating an Object Bucket Claim using the OpenShift Web Console.

4.4.7.1.1. Creating a default Secret

You create a default `Secret` if your backup and snapshot locations use the same credentials or if you do not require a snapshot location.

NOTE
The `DataProtectionApplication` custom resource (CR) requires a default `Secret`. Otherwise, the installation will fail. If the name of the backup location `Secret` is not specified, the default name is used.

If you do not want to use the backup location credentials during the installation, you can create a `Secret` with the default name by using an empty `credentials-velero` file.

Prerequisites
- Your object storage and cloud storage, if any, must use the same credentials.
- You must configure object storage for Velero.
- You must create a `credentials-velero` file for the object storage in the appropriate format.
Procedure

- Create a Secret with the default name:

  ```
  $ oc create secret generic cloud-credentials -n openshift-adp --from-file cloud=credentials-velero
  ```

The Secret is referenced in the `spec.backupLocations.credential` block of the `DataProtectionApplication` CR when you install the Data Protection Application.

4.4.7.2. Configuring the Data Protection Application

You can configure the Data Protection Application by setting Velero resource allocations or enabling self-signed CA certificates.

4.4.7.2.1. Setting Velero CPU and memory resource allocations

You set the CPU and memory resource allocations for the Velero pod by editing the `DataProtectionApplication` custom resource (CR) manifest.

Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the values in the `spec.configuration.velero.podConfig.ResourceAllocations` block of the `DataProtectionApplication` CR manifest, as in the following example:

  ```yaml
  apiVersion: oadp.openshift.io/v1alpha1
  kind: DataProtectionApplication
  metadata:
    name: <dpa_sample>
  spec:
    ...
    configuration:
      velero:
        podConfig:
          nodeSelector: <node selector> 1
          resourceAllocations: 2
          limits:
            cpu: "1"
            memory: 1024Mi
          requests:
            cpu: 200m
            memory: 256Mi
  ```

 1 Specify the node selector to be supplied to Velero podSpec.
 2 The `resourceAllocations` listed are for average usage.
NOTE

Kopia is an option in OADP 1.3 and later releases. You can use Kopia for file system backups, and Kopia is your only option for Data Mover cases with the built-in Data Mover.

Kopia is more resource intensive than Restic, and you might need to adjust the CPU and memory requirements accordingly.

4.4.7.2.1.1. Adjusting Ceph CPU and memory requirements based on collected data

The following recommendations are based on observations of performance made in the scale and performance lab. The changes are specifically related to Red Hat OpenShift Data Foundation (ODF). If working with ODF, consult the appropriate tuning guides for official recommendations.

4.4.7.2.1.1.1. CPU and memory requirement for configurations

Backup and restore operations require large amounts of CephFS PersistentVolumes (PVs). To avoid Ceph MDS pods restarting with an out-of-memory (OOM) error, the following configuration is suggested:

<table>
<thead>
<tr>
<th>Configuration types</th>
<th>Request</th>
<th>Max limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Request changed to 3</td>
<td>Max limit to 3</td>
</tr>
<tr>
<td>Memory</td>
<td>Request changed to 8 Gi</td>
<td>Max limit to 128 Gi</td>
</tr>
</tbody>
</table>

4.4.7.2.2. Enabling self-signed CA certificates

You must enable a self-signed CA certificate for object storage by editing the DataProtectionApplication custom resource (CR) manifest to prevent a certificate signed by unknown authority error.

Prerequisites

- You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

- Edit the spec.backupLocations.velero.objectStorage.caCert parameter and spec.backupLocations.velero.config parameters of the DataProtectionApplication CR manifest:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
tp kind: DataProtectionApplication
nt metadata:
- name: <dpa_sample>
nt spec:
...  
nt backupLocations:
- name: default  
nt velero:
  provider: aws  
  default: true
```
4.4.7.2.2.1. Using CA certificates with the velero command aliased for Velero deployment

You might want to use the Velero CLI without installing it locally on your system by creating an alias for it.

Prerequisites

- You must be logged in to the OpenShift Container Platform cluster as a user with the `cluster-admin` role.
- You must have the OpenShift CLI (`oc`) installed.

1. To use an aliased Velero command, run the following command:

   ```
   $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
   ```

2. Check that the alias is working by running the following command:

   ```
   $ velero version
   Client:
   Version: v1.12.1-OADP
   Git commit: -
   Server:
   Version: v1.12.1-OADP
   ```

3. To use a CA certificate with this command, you can add a certificate to the Velero deployment by running the following commands:

   ```
   $ CA_CERT=$(oc -n openshift-adp get dataprotectionapplications.oadp.openshift.io <dpa-name> -o jsonpath='{.spec.backupLocations[0].velero.objectStorage.caCert}')
   $ [[ -n $CA_CERT ]] && echo "$CA_CERT" | base64 -d | oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "cat > /tmp/your-cacert.txt" || echo "DPA BSL has no caCert"
   $$ velero -n openshift-adp describe backup <backup-name> --details --cacert /tmp/your-cacert.txt
   ```

1. Specify the Base64-encoded CA certificate string.

2. The `insecureSkipTLSVerify` configuration can be set to either "true" or "false". If set to "true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.
4. If the Velero pod restarts, the /tmp/your-cacert.txt file disappears, and you must re-create the /tmp/your-cacert.txt file by re-running the commands from the previous step.

5. You can check if the /tmp/your-cacert.txt file still exists, in the file location where you stored it, by running the following command:

   ```
   $ oc exec -n openshift-adp -i deploy/velero -c velero -- bash -c "ls /tmp/your-cacert.txt" /tmp/your-cacert.txt
   ```

In a future release of OpenShift API for Data Protection (OADP), we plan to mount the certificate to the Velero pod so that this step is not required.

4.4.7.3. Installing the Data Protection Application 1.2 and earlier

You install the Data Protection Application (DPA) by creating an instance of the DataProtectionApplication API.

Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a Secret with the default name, cloud-credentials.

NOTE

If you do not want to specify backup or snapshot locations during the installation, you can create a default Secret with an empty credentials-velero file. If there is no default Secret, the installation will fail.

NOTE

Velero creates a secret named velero-repo-credentials in the OADP namespace, which contains a default backup repository password. You can update the secret with your own password encoded as base64 before you run your first backup targeted to the backup repository. The value of the key to update is Data[repository-password].

After you create your DPA, the first time that you run a backup targeted to the backup repository, Velero creates a backup repository whose secret is velero-repo-credentials, which contains either the default password or the one you replaced it with. If you update the secret password after the first backup, the new password will not match the password in velero-repo-credentials, and therefore, Velero will not be able to connect with the older backups.

Procedure

1. Click Operators → Installed Operators and select the OADP Operator.

2. Under Provided APIs, click Create instance in the DataProtectionApplication box.
3. Click YAML View and update the parameters of the DataProtectionApplication manifest:

4. Click Create.

4.4.7.3.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

```
$ oc get all -n openshift-adp
```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oadp-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/restic-9cq4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/restic-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>service/oadp-operator-controller-manager-metrics-service</td>
<td>ClusterIP</td>
<td>172.30.70.140</td>
<td></td>
</tr>
<tr>
<td><none></td>
<td>8443/TCP</td>
<td>2m8s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>NODE SELECTOR</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemonset.apps/restic</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td><none></td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>UP-TO-DATE</th>
<th>AVAILABLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployment.apps/oadp-operator-controller-manager</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>deployment.apps/velero</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIRED</th>
<th>CURRENT</th>
<th>READY</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>replicaset.apps/oadp-operator-controller-manager-67d9494d47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2m9s</td>
</tr>
<tr>
<td>replicaset.apps/velero-588db7f655</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>96s</td>
</tr>
</tbody>
</table>

2. Verify that the DataProtectionApplication (DPA) is reconciled by running the following command:

```
$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
```

Example output

```json
{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
```

3. Verify the type is set to Reconciled.

4. Verify the backup storage location and confirm that the PHASE is Available by running the following command:

```
$ oc get backupStorageLocation -n openshift-adp
```
4.4.7.4. Installing the Data Protection Application 1.3

You install the Data Protection Application (DPA) by creating an instance of the \texttt{DataProtectionApplication} API.

Prerequisites

- You must install the OADP Operator.
- You must configure object storage as a backup location.
- If you use snapshots to back up PVs, your cloud provider must support either a native snapshot API or Container Storage Interface (CSI) snapshots.
- If the backup and snapshot locations use the same credentials, you must create a \texttt{Secret} with the default name, \texttt{cloud-credentials}.

NOTE

If you do not want to specify backup or snapshot locations during the installation, you can create a default \texttt{Secret} with an empty \texttt{credentials-velero} file. If there is no default \texttt{Secret}, the installation will fail.

Procedure

1. Click \texttt{Operators} \rightarrow \texttt{Installed Operators} and select the OADP Operator.
2. Under \texttt{Provided APIs}, click \texttt{Create instance} in the \texttt{DataProtectionApplication} box.
3. Click \texttt{YAML View} and update the parameters of the \texttt{DataProtectionApplication} manifest:
4. Click \texttt{Create}.

4.4.7.4.1. Verifying the installation

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by running the following command:

   ```
   $ oc get all -n openshift-adp
   ```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/oapg-operator-controller-manager-67d9494d47-6l8z8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>2m8s</td>
</tr>
<tr>
<td>pod/node-agent-9c4q4q</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-m4lts</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>94s</td>
</tr>
<tr>
<td>pod/node-agent-pv4kr</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
<tr>
<td>pod/velero-588db7f655-n842v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>95s</td>
</tr>
</tbody>
</table>
2. Verify that the DataProtectionApplication (DPA) is reconciled by running the following command:

   ```
   $ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'
   ```

 Example output

   ```
   {"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile complete","reason":"Complete","status":"True","type":"Reconciled"}]
   ```

3. Verify the type is set to Reconciled.

4. Verify the backup storage location and confirm that the PHASE is Available by running the following command:

   ```
   $ oc get backupStorageLocation -n openshift-adp
   ```

 Example output

   ```
   NAME          PHASE     LAST VALIDATED  AGE   DEFAULT
   dpa-sample-1  Available 1s          3d16h  true
   ```

4.4.7.4.2. Creating an Object Bucket Claim for disaster recovery on OpenShift Data Foundation

If you use cluster storage for your Multicloud Object Gateway (MCG) bucket backupStorageLocation on OpenShift Data Foundation, create an Object Bucket Claim (OBC) using the OpenShift Web Console.
WARNING

Failure to configure an Object Bucket Claim (OBC) might lead to backups not being available.

NOTE

Unless specified otherwise, "NooBaa" refers to the open source project that provides lightweight object storage, while "Multicloud Object Gateway (MCG)" refers to the Red Hat distribution of NooBaa.

For more information on the MCG, see Accessing the Multicloud Object Gateway with your applications.

Procedure

- Create an Object Bucket Claim (OBC) using the OpenShift web console as described in Creating an Object Bucket Claim using the OpenShift Web Console.

4.4.7.4.3. Enabling CSI in the DataProtectionApplication CR

You enable the Container Storage Interface (CSI) in the DataProtectionApplication custom resource (CR) in order to back up persistent volumes with CSI snapshots.

Prerequisites

- The cloud provider must support CSI snapshots.

Procedure

- Edit the DataProtectionApplication CR, as in the following example:

  ```yaml
  apiVersion: oadm.openshift.io/v1alpha1
  kind: DataProtectionApplication
  ...  
  spec:
    configuration:
      velero:
        defaultPlugins:
          - openshift
          - csi
  
  Add the csi default plugin.
  
**4.5. UNINSTALLING OADP**

**4.5.1. Uninstalling the OpenShift API for Data Protection**
You uninstall the OpenShift API for Data Protection (OADP) by deleting the OADP Operator. See Deleting Operators from a cluster for details.

4.6. OADP BACKING UP

4.6.1. Backing up applications

You back up applications by creating a **Backup** custom resource (CR). See Creating a Backup CR.

- The **Backup** CR creates backup files for Kubernetes resources and internal images on S3 object storage.

- If your cloud provider has a native snapshot API or supports CSI snapshots, the **Backup** CR backs up persistent volumes (PVs) by creating snapshots. For more information about working with CSI snapshots, see Backing up persistent volumes with CSI snapshots.

For more information about CSI volume snapshots, see CSI volume snapshots.

**IMPORTANT**

The **CloudStorage** API, which automates the creation of a bucket for object storage, is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

**NOTE**

The **CloudStorage** API is a Technology Preview feature when you use a **CloudStorage** object and want OADP to use the **CloudStorage** API to automatically create an S3 bucket for use as a **BackupStorageLocation**.

The **CloudStorage** API supports manually creating a **BackupStorageLocation** object by specifying an existing S3 bucket. The **CloudStorage** API that creates an S3 bucket automatically is currently only enabled for AWS S3 storage.

- If your cloud provider does not support snapshots or if your applications are on NFS data volumes, you can create backups by using Kopia or Restic. See Backing up applications with File System Backup: Kopia or Restic.

**IMPORTANT**

The OpenShift API for Data Protection (OADP) does not support backing up volume snapshots that were created by other software.

You can create backup hooks to run commands before or after the backup operation. See Creating backup hooks.

You can schedule backups by creating a **Schedule** CR instead of a **Backup** CR. See Scheduling backups using Schedule CR.
4.6.1.1. Known issues

OpenShift Container Platform 4.15 enforces a pod security admission (PSA) policy that can hinder the readiness of pods during a Restic restore process.

This issue has been resolved in the OADP 1.1.6 and OADP 1.2.2 releases, therefore it is recommended that users upgrade to these releases.

For more information, see Restic restore partially failing on OCP 4.15 due to changed PSA policy.

Additional resources

- Installing Operators on clusters for administrators
- Installing Operators in namespaces for non-administrators

4.6.2. Creating a Backup CR

You back up Kubernetes images, internal images, and persistent volumes (PVs) by creating a Backup custom resource (CR).

Prerequisites

- You must install the OpenShift API for Data Protection (OADP) Operator.
- The DataProtectionApplication CR must be in a Ready state.
- Backup location prerequisites:
  - You must have S3 object storage configured for Velero.
  - You must have a backup location configured in the DataProtectionApplication CR.
- Snapshot location prerequisites:
  - Your cloud provider must have a native snapshot API or support Container Storage Interface (CSI) snapshots.
  - For CSI snapshots, you must create a VolumeSnapshotClass CR to register the CSI driver.
  - You must have a volume location configured in the DataProtectionApplication CR.

Procedure

1. Retrieve the backupStorageLocations CRs by entering the following command:

   $ oc get backupStorageLocations -n openshift-adp

   Example output

<table>
<thead>
<tr>
<th>NAMESPACE</th>
<th>NAME</th>
<th>PHASE</th>
<th>LAST VALIDATED</th>
<th>AGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>openshift-adp</td>
<td>velero-sample-1</td>
<td>Available</td>
<td>11s</td>
<td>31m</td>
<td></td>
</tr>
</tbody>
</table>

2. Create a Backup CR, as in the following example:
Specify an array of namespaces to back up.

Optional: Specify an array of resources to include in the backup. Resources might be shortcuts (for example, 'po' for 'pods') or fully-qualified. If unspecified, all resources are included.

Optional: Specify an array of resources to exclude from the backup. Resources might be shortcuts (for example, 'po' for 'pods') or fully-qualified.

Specify the name of the **backupStorageLocations** CR.

Map of {key,value} pairs of backup resources that have all the specified labels.

Map of {key,value} pairs of backup resources that have one or more of the specified labels.

3. Verify that the status of the **Backup** CR is **Completed**:

   ```bash
 $ oc get backup -n openshift-adp <backup> -o jsonpath='{.status.phase}'
   ```

### 4.6.3. Backing up persistent volumes with CSI snapshots

You back up persistent volumes with Container Storage Interface (CSI) snapshots by editing the **VolumeSnapshotClass** custom resource (CR) of the cloud storage before you create the **Backup** CR, see **CSI volume snapshots**.

For more information, see **Creating a Backup CR**.
Prerequisites

- The cloud provider must support CSI snapshots.
- You must enable CSI in the `DataProtectionApplication` CR.

Procedure

- Add the `metadata.labels.velero.io/csi-volumesnapshot-class: "true"` key-value pair to the `VolumeSnapshotClass` CR:

```yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: <volume_snapshot_class_name>
 labels:
 velero.io/csi-volumesnapshot-class: "true"
 driver: <csi_driver>
deletionPolicy: Retain
```

You can now create a `Backup` CR.

4.6.4. Backing up applications with File System Backup: Kopia or Restic

You can use OADP to back up and restore Kubernetes volumes attached to pods from the file system of the volumes. This process is called File System Backup (FSB) or Pod Volume Backup (PVB). It is accomplished by using modules from the open source backup tools Restic or Kopia.

If your cloud provider does not support snapshots or if your applications are on NFS data volumes, you can create backups by using FSB.

**NOTE**

Restic is installed by the OADP Operator by default. If you prefer, you can install Kopia instead.

FSB integration with OADP provides a solution for backing up and restoring almost any type of Kubernetes volumes. This integration is an additional capability of OADP and is not a replacement for existing functionality.

You back up Kubernetes resources, internal images, and persistent volumes with Kopia or Restic by editing the `Backup` custom resource (CR).

You do not need to specify a snapshot location in the `DataProtectionApplication` CR.

**NOTE**

In OADP version 1.3 and later, you can use either Kopia or Restic for backing up applications.

For the Built-in DataMover, you must use Kopia.

In OADP version 1.2 and earlier, you can only use Restic for backing up applications.
IMPORTANT

FSB does not support backing up `hostPath` volumes. For more information, see FSB limitations.

Prerequisites

- You must install the OpenShift API for Data Protection (OADP) Operator.
- You must not disable the default `nodeAgent` installation by setting `spec.configuration.nodeAgent.enable` to `false` in the `DataProtectionApplication` CR.
- You must select Kopia or Restic as the uploader by setting `spec.configuration.nodeAgent.uploaderType` to `kopia` or `restic` in the `DataProtectionApplication` CR.
- The `DataProtectionApplication` CR must be in a Ready state.

Procedure

- Create the `Backup` CR, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Backup
metadata:
 name: <backup>
 labels:
 velero.io/storage-location: default
 namespace: openshift-adp
spec:
 defaultVolumesToFsBackup: true
...
```

In OADP version 1.2 and later, add the `defaultVolumesToFsBackup: true` setting within the `spec` block. In OADP version 1.1, add `defaultVolumesToRestic: true`.

4.6.5. Creating backup hooks

When performing a backup, it is possible to specify one or more commands to execute in a container within a pod, based on the pod being backed up.

The commands can be configured to performed before any custom action processing (Pre hooks), or after all custom actions have been completed and any additional items specified by the custom action have been backed up (Post hooks).

You create backup hooks to run commands in a container in a pod by editing the `Backup` custom resource (CR).

Procedure

- Add a hook to the `spec.hooks` block of the `Backup` CR, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Backup
```
metadata:
  name: <backup>
namespace: openshift-adp
spec:
hooks:
  resources:
    - name: <hook_name>
      includedNamespaces:  
      excludedNamespaces:  
      includedResources: []
      excludedResources: []
      labelSelector:
        matchLabels:
          app: velero
          component: server
  pre:
    - exec:
      container: <container>
      command:
        - /bin/uname
        -a
      onError: Fail
      timeout: 30s
  post: ...
4.6.6. Scheduling backups using Schedule CR

The schedule operation allows you to create a backup of your data at a particular time, specified by a Cron expression.

You schedule backups by creating a Schedule custom resource (CR) instead of a Backup CR.

WARNING

Leave enough time in your backup schedule for a backup to finish before another backup is created.

For example, if a backup of a namespace typically takes 10 minutes, do not schedule backups more frequently than every 15 minutes.

Prerequisites

- You must install the OpenShift API for Data Protection (OADP) Operator.
- The DataProtectionApplication CR must be in a Ready state.

Procedure

1. Retrieve the backupStorageLocations CRs:

   ```bash
 $ oc get backupStorageLocations -n openshift-adp
   ```

   **Example output**

<table>
<thead>
<tr>
<th>NAMESPACE</th>
<th>NAME</th>
<th>PHASE</th>
<th>LAST VALIDATED</th>
<th>AGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>openshift-adp</td>
<td>velero-sample-1</td>
<td>Available</td>
<td>11s</td>
<td>31m</td>
<td></td>
</tr>
</tbody>
</table>

2. Create a Schedule CR, as in the following example:

   ```bash
 $ cat << EOF | oc apply -f -
 apiVersion: velero.io/v1
 kind: Schedule
 metadata:
 name: <schedule>
 namespace: openshift-adp
 spec:
 schedule: 0 7 * * * 1
 template:
 hooks: {}
 includedNamespaces:
 - <namespace>
 storageLocation: <velero-sample-1> 3
 EOF
   ```
cron expression to schedule the backup, for example, \texttt{0 7 **} to perform a backup every day at 7:00.

**NOTE**

To schedule a backup at specific intervals, enter the \texttt{<duration\_in\_minutes>\textunderscore} in the following format:

\texttt{schedule: "*/10 ** ** **"}

Enter the minutes value between quotation marks (" ").

1. Array of namespaces to back up.
2. Name of the \texttt{backupStorageLocations} CR.
3. Optional: In OADP version 1.2 and later, add the \texttt{defaultVolumesToFsBackup: true} key-value pair to your configuration when performing backups of volumes with Restic. In OADP version 1.1, add the \texttt{defaultVolumesToRestic: true} key-value pair when you back up volumes with Restic.

   1. Verify that the status of the \texttt{Schedule CR} is \texttt{Completed} after the scheduled backup runs:

   \texttt{$ oc get schedule -n openshift-adp <schedule> -o jsonpath='{.status.phase}'}

### 4.6.7. Deleting backups

You can remove backup files by deleting the \texttt{Backup} custom resource (CR).

**WARNING**

After you delete the \texttt{Backup CR} and the associated object storage data, you cannot recover the deleted data.

**Prerequisites**

- You created a \texttt{Backup CR}.
- You know the name of the \texttt{Backup CR} and the namespace that contains it.
- You downloaded the Velero CLI tool.
- You can access the Velero binary in your cluster.

**Procedure**
Choose one of the following actions to delete the Backup CR:

- To delete the Backup CR and keep the associated object storage data, run the following command:

  
  ```
 $ oc delete backup <backup_CR_name> -n <velero_namespace>
  ```

- To delete the Backup CR and delete the associated object storage data, run the following command:

  
  ```
 $ velero backup delete <backup_CR_name> -n <velero_namespace>
  ```

Where:

- `<backup_CR_name>`
  The name of the Backup custom resource.

- `<velero_namespace>`
  The namespace that contains the Backup custom resource.

4.6.8. About Kopia

Kopia is a fast and secure open-source backup and restore tool that allows you to create encrypted snapshots of your data and save the snapshots to remote or cloud storage of your choice.

Kopia supports network and local storage locations, and many cloud or remote storage locations, including:

- Amazon S3 and any cloud storage that is compatible with S3
- Azure Blob Storage
- Google Cloud Storage platform

Kopia uses content-addressable storage for snapshots:

- Snapshots are always incremental; data that is already included in previous snapshots is not re-uploaded to the repository. A file is only uploaded to the repository again if it is modified.
- Stored data is deduplicated; if multiple copies of the same file exist, only one of them is stored.
- If files are moved or renamed, Kopia can recognize that they have the same content and does not upload them again.

4.6.8.1. OADP integration with Kopia

OADP 1.3 supports Kopia as the backup mechanism for pod volume backup in addition to Restic. You must choose one or the other at installation by setting the `uploaderType` field in the `DataProtectionApplication` custom resource (CR). The possible values are `restic` or `kopia`. If you do not specify an `uploaderType`, OADP 1.3 defaults to using Kopia as the backup mechanism. The data is written to and read from a unified repository.

The following example shows a `DataProtectionApplication` CR configured for using Kopia:

```
apiVersion: oadp.openshift.io/v1alpha1
```
4.7. OADP RESTORING

4.7.1. Restoring applications

You restore application backups by creating a Restore custom resource (CR). See Creating a Restore CR.

You can create restore hooks to run commands in a container in a pod by editing the Restore CR. See Creating restore hooks.

4.7.1.1. Creating a Restore CR

You restore a Backup custom resource (CR) by creating a Restore CR.

Prerequisites

- You must install the OpenShift API for Data Protection (OADP) Operator.
- The DataProtectionApplication CR must be in a Ready state.
- You must have a Velero Backup CR.
- The persistent volume (PV) capacity must match the requested size at backup time. Adjust the requested size if needed.

Procedure

1. Create a Restore CR, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Restore
metadata:
 name: <restore>
namespace: openshift-adp
spec:
 backupName: <backup> # 1
 includedResources: [] # 2
 excludedResources:
 - nodes
 - events
 - events.events.k8s.io
 - backups.velero.io
```

```yaml
...
```
1. Name of the **Backup** CR.

2. Optional: Specify an array of resources to include in the restore process. Resources might be shortcuts (for example, `po` for `pods`) or fully-qualified. If unspecified, all resources are included.

3. Optional: The `restorePVs` parameter can be set to `false` to turn off restore of `PersistentVolumes` from `VolumeSnapshot` of Container Storage Interface (CSI) snapshots or from native snapshots when `VolumeSnapshotLocation` is configured.

2. Verify that the status of the **Restore** CR is **Completed** by entering the following command:

   ```bash
 $ oc get restore -n openshift-adp <restore> -o jsonpath='{.status.phase}'
   ```

3. Verify that the backup resources have been restored by entering the following command:

   ```bash
 $ oc get all -n <namespace>
   ```

1. **Namespace** that you backed up.

4. If you use Restic to restore **DeploymentConfig** objects or if you use post-restore hooks, run the `dc-restic-post-restore.sh` cleanup script by entering the following command:

   ```bash
 $ bash dc-restic-post-restore.sh <restore-name>
   ```

**Example 4.1. dc-restic-post-restore.sh cleanup script**

```bash
#!/bin/bash
set -e

if sha256sum exists, use it to check the integrity of the file
if command -v sha256sum >/dev/null 2>&1; then
 CHECKSUM_CMD="sha256sum"
else
 CHECKSUM_CMD="shasum -a 256"
fi

label_name() {

```
4.7.1.2. Creating restore hooks

You create restore hooks to run commands in a container in a pod by editing the `Restore` custom resource (CR).

You can create two types of restore hooks:

- An **init** hook adds an init container to a pod to perform setup tasks before the application container starts.
  If you restore a Restic backup, the `restic-wait` init container is added before the restore hook init container.

- An **exec** hook runs commands or scripts in a container of a restored pod.
Procedure

- Add a hook to the **spec.hooks** block of the **Restore** CR, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Restore
metadata:
 name: <restore>
 namespace: openshift-adp
spec:
 hooks:
 resources:
 - name: <hook_name>
 includedNamespaces:
 - <namespace>
 excludedNamespaces:
 - <namespace>
 includedResources:
 - pods
 excludedResources: []
 labelSelector: {}
 matchLabels:
 app: velero
 component: server
 postHooks:
 - init:
 initContainers:
 - name: restore-hook-init
 image: alpine:latest
 volumeMounts:
 - mountPath: /restores/pvc1-vm
 name: pvc1-vm
 command:
 - /bin/ash
 - -c
 timeout: 4m
 - exec:
 container: <container>
 command:
 - /bin/bash
 - -c
 - "psql < /backup/backup.sql"
 waitTimeout: 5m
 execTimeout: 1m
 onError: Continue

1 Optional: Array of namespaces to which the hook applies. If this value is not specified, the hook applies to all namespaces.

2 Currently, pods are the only supported resource that hooks can apply to.

3 Optional: This hook only applies to objects matching the label selector.

4 Optional: Timeout specifies the maximum length of time Velero waits for *initContainers* to complete.
Optional: If the container is not specified, the command runs in the first container in the pod.

This is the entrypoint for the init container being added.

Optional: How long to wait for a container to become ready. This should be long enough for the container to start and for any preceding hooks in the same container to complete. If not set, the restore process waits indefinitely.

Optional: How long to wait for the commands to run. The default is 30s.

Allowed values for error handling are Fail and Continue:

- Continue: Only command failures are logged.
- Fail: No more restore hooks run in any container in any pod. The status of the Restore CR will be PartiallyFailed.

4.8. OADP AND ROSA

4.8.1. Backing up applications on ROSA clusters using OADP

You can use OpenShift API for Data Protection (OADP) with Red Hat OpenShift Service on AWS (ROSA) clusters to back up and restore application data.

ROSA is a fully-managed, turnkey application platform that allows you to deliver value to your customers by building and deploying applications.

ROSA provides seamless integration with a wide range of Amazon Web Services compute, database, analytics, machine learning, networking, mobile, and other services to speed up the building and delivery of differentiating experiences to your customers.

You can subscribe to the service directly from your AWS account.

After you create your clusters, you can operate your clusters with the OpenShift Container Platform web console or through Red Hat OpenShift Cluster Manager. You can also use ROSA with OpenShift APIs and command-line interface (CLI) tools.

For additional information about ROSA installation, see Installing Red Hat OpenShift Service on AWS (ROSA) interactive walkthrough.

Before installing OpenShift API for Data Protection (OADP), you must set up role and policy credentials for OADP so that it can use the Amazon Web Services (AWS) API.

This process is performed in the following two stages:

1. Prepare AWS credentials
2. Install the OADP Operator and give it an IAM role

4.8.1.1. Preparing AWS credentials for OADP

An Amazon Web Services (AWS) account must be prepared and configured to accept an OpenShift API for Data Protection (OADP) installation.
Procedure

1. Create the following environment variables by running the following commands:

IMPORTANT

Change the cluster name to match your ROSA cluster, and ensure you are logged into the cluster as an administrator. Ensure that all fields are outputted correctly before continuing.

```bash
$ export CLUSTER_NAME=my-cluster
export ROSA_CLUSTER_ID=$(rosa describe cluster -c ${CLUSTER_NAME} --output json | jq -r .id)
export REGION=$(rosa describe cluster -c ${CLUSTER_NAME} --output json | jq -r .region.id)
export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
export CLUSTER_VERSION=$(rosa describe cluster -c ${CLUSTER_NAME} -o json | jq -r .version.raw_id | cut -f -2 -d '.')
export ROLE_NAME="${CLUSTER_NAME}-openshift-oadp-aws-cloud-credentials"
export SCRATCH="/tmp/${CLUSTER_NAME}/oadp"
mkdir -p ${SCRATCH}
```

1. Replace `my-cluster` with your ROSA cluster name.

2. On the AWS account, create an IAM policy to allow access to AWS S3:
 a. Check to see if the policy exists by running the following command:

   ```bash
   $ POLICY_ARN=$(aws iam list-policies --query "Policies[?PolicyName=='RosaOadpVer1'].{ARN:Arn}" --output text)
   
   1 Replace `RosaOadp` with your policy name.
   
   b. Enter the following command to create the policy JSON file and then create the policy in ROSA:

   ```bash
 $ if [[-z "$POLICY_ARN"]]; then
cat << EOF > ${SCRATCH}/policy.json
{
 "Version": "2012-10-17",
 "Statement": [

 "Effect": "Allow",

   ```
]}}
EOF

POLICY_ARN=$(aws iam create-policy --policy-name "RosaOadpVer1" --policy-document file:///${SCRATCH}/policy.json --query Policy.Arn --tags Key=rosa_openshift_version,Value=${CLUSTER_VERSION} Key=rosa_role_prefix,Value=ManagedOpenShift Key=operator_namespace,Value=openshift-oadp Key=operator_name,Value=openshift-oadp --output text)

$ echo ${POLICY_ARN}

1. **SCRATCH** is a name for a temporary directory created for the environment variables.

c. View the policy ARN by running the following command:

   ```bash
 $ echo ${POLICY_ARN}
   ```

3. Create an IAM role trust policy for the cluster:

   a. Create the trust policy file by running the following command:

   ```bash
 $ cat <<EOF > ${SCRATCH}/trust-policy.json
 {
 "Version":2012-10-17",
 "Statement": [
   ```
b. Create the role by running the following command:

```bash
$ ROLE_ARN=$(aws iam create-role --role-name \\
"${ROLE_NAME}" \
--assume-role-policy-document file://${SCRATCH}/trust-policy.json \
--tags Key=rosa_cluster_id,Value=${ROSA_CLUSTER_ID}
Key=rosa_openshift_version,Value=${CLUSTER_VERSION}
Key=rosa_role_prefix,Value=ManagedOpenShift
Key=operator_namespace,Value=openshift-oadp
Key=operator_name,Value=openshift-oadp
--query Role.Arn --output text)
```

c. View the role ARN by running the following command:

```bash
$ echo $ROLE_ARN
```

4. Attach the IAM policy to the IAM role by running the following command:

```bash
$ aws iam attach-role-policy --role-name "$ROLE_NAME" \\
--policy-arn ${POLICY_ARN}
```

### 4.8.1.2. Installing the OADP Operator and providing the IAM role

AWS Security Token Service (AWS STS) is a global web service that provides short-term credentials for IAM or federated users. OpenShift Container Platform (ROSA) with STS is the recommended credential mode for ROSA clusters. This document describes how to install OpenShift API for Data Protection (OADP) on ROSA with AWS STS.

**IMPORTANT**

Restic and Kopia are not supported in the OADP on ROSA with AWS STS environment. Verify that the Restic and Kopia node agent is disabled. For backing up volumes, OADP on ROSA with AWS STS supports only native snapshots and Container Storage Interface (CSI) snapshots.
**IMPORTANT**

In an Amazon ROSA cluster that uses STS authentication, restoring backed-up data in a different AWS region is not supported.

The Data Mover feature is not currently supported in ROSA clusters. You can use native AWS S3 tools for moving data.

**Prerequisites**

- An OpenShift Container Platform ROSA cluster with the required access and tokens. For instructions, see the previous procedure *Preparing AWS credentials for OADP*. If you plan to use two different clusters for backing up and restoring, you must prepare AWS credentials, including `ROLE_ARN`, for each cluster.

**Procedure**

1. Create an OpenShift Container Platform secret from your AWS token file by entering the following commands:
   
a. Create the credentials file:

   ```bash
 $ cat <<EOF > ${SCRATCH}/credentials
 [default]
 role_arn = ${ROLE_ARN}
 web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 EOF

 b. Create a namespace for OADP:

   ```bash
   $ oc create namespace openshift-adp
   
   c. Create the OpenShift Container Platform secret:

   ```bash
 $ oc -n openshift-adp create secret generic cloud-credentials \
 --from-file=${SCRATCH}/credentials
   ```

   **NOTE**

   In OpenShift Container Platform versions 4.14 and later, the OADP Operator supports a new standardized STS workflow through the Operator Lifecycle Manager (OLM) and Cloud Credentials Operator (CCO). In this workflow, you do not need to create the above secret, you only need to supply the role ARN during the installation of OLM-managed operators using the OpenShift Container Platform web console, for more information see *Installing from OperatorHub using the web console*.

   The preceding secret is created automatically by CCO.

2. Install the OADP Operator:

   a. In the OpenShift Container Platform web console, browse to **Operators → OperatorHub**.

   b. Search for the **OADP Operator**.
c. In the **role_ARN** field, paste the role_arn that you created previously and click **Install**.

3. Create AWS cloud storage using your AWS credentials by entering the following command:

   ```
 $ cat << EOF | oc create -f -
 apiVersion: oadp.openshift.io/v1alpha1
 kind: CloudStorage
 metadata:
 name: ${CLUSTER_NAME}-oadp
 namespace: openshift-adp
 spec:
 creationSecret:
 key: credentials
 name: cloud-credentials
 enableSharedConfig: true
 name: ${CLUSTER_NAME}-oadp
 provider: aws
 region: $REGION
 EOF
   ```

4. Check your application's storage default storage class by entering the following command:

   ```
 $ oc get pvc -n <namespace>
   ```

   **Example output**

   ```
 NAME STATUS VOLUME CAPACITY ACCESS MODES \n STORAGECLASS AGE
 applog Bound pvc-351791ae-b6ab-4e8b-88a4-30f73caf5ef8 1Gi RWO gp3-csi 4d19h
 mysql Bound pvc-16b8e009-a20a-4379-accc-bc81fedd0621 1Gi RWO gp3-csi 4d19h
   ```

5. Get the storage class by running the following command:

   ```
 $ oc get storageclass
   ```

   **Example output**

   ```
 NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
 gp2 kubernetes.io/aws-ebs Delete WaitForFirstConsumer true 4d21h
 gp2-csi ebs.csi.aws.com Delete WaitForFirstConsumer true 4d21h
 gp3 ebs.csi.aws.com Delete WaitForFirstConsumer true 4d21h
 gp3-csi (default) ebs.csi.aws.com Delete WaitForFirstConsumer true 4d21h
   ```
The following storage classes will work:

- gp3-csi
- gp2-csi
- gp3
- gp2

If the application or applications that are being backed up are all using persistent volumes (PVs) with Container Storage Interface (CSI), it is advisable to include the CSI plugin in the OADP DPA configuration.

6. Create the `DataProtectionApplication` resource to configure the connection to the storage where the backups and volume snapshots are stored:

   a. If you are using only CSI volumes, deploy a Data Protection Application by entering the following command:

   ```bash
 $ cat << EOF | oc create -f -
 apiVersion: oadp.openshift.io/v1alpha1
class: DataProtectionApplication
metadata:
 name: ${CLUSTER_NAME}-dpa
 namespace: openshift-adp
spec:
 backupImages: true
 features:
 dataMover:
 enable: false
 backupLocations:
 - bucket:
 cloudStorageRef:
 name: ${CLUSTER_NAME}-oadp
 credential:
 key: credentials
 name: cloud-credentials
 prefix: velero
 default: true
 config:
 region: ${REGION}
configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws
 - csi
 restic:
 enable: false
EOF

 ROSA supports internal image backup. Set this field to `false` if you do not want to use image backup.
a. If you are using CSI or non-CSI volumes, deploy a Data Protection Application by entering the following command:

```bash
$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: ${CLUSTER_NAME}-dpa
  namespace: openshift-adp
spec:
  backupImages: true
  features:
    dataMover:
      enable: false
  backupLocations:
    - bucket:
      cloudStorageRef:
        name: ${CLUSTER_NAME}-oadp
      credential:
        key: credentials
        name: cloud-credentials
        prefix: velero
        default: true
      config:
        region: ${REGION}
configuration:
  velero:
    defaultPlugins:
    - openshift
    - aws
  nodeAgent:
    enable: false
    uploaderType: restic
  snapshotLocations:
    - velero:
      config:
        credentialsFile: /tmp/credentials/openshift-adp/cloud-credentials-credentials
        enableSharedConfig: "true"
        profile: default
        region: ${REGION}
        provider: aws
EOF
```

1. ROSA supports internal image backup. Set this field to false if you do not want to use image backup.

2. See the following note.

3. The `credentialsFile` field is the mounted location of the bucket credential on the pod.

4. The `enableSharedConfig` field allows the `snapshotLocations` to share or reuse the credential defined for the bucket.

5. Use the profile name set in the AWS credentials file.
Specify **region** as your AWS region. This must be the same as the cluster region.

You are now ready to back up and restore OpenShift Container Platform applications, as described in *Backing up applications*.

NOTE

The **enable** parameter of **restic** is set to **false** in this configuration, because OADP does not support Restic in ROSA environments.

If you use OADP 1.2, replace this configuration:

```yaml
nodeAgent:
  enable: false
uploaderType: restic
```

with the following configuration:

```yaml
restic:
  enable: false
```

NOTE

If you want to use two different clusters for backing up and restoring, the two clusters must have the same AWS S3 storage names in both the cloud storage CR and the OADP **DataProtectionApplication** configuration.

Additional resources

- Installing from OperatorHub using the web console.
- Backing up applications

4.8.1.3. Example: Backing up workload on OADP ROSA STS, with an optional cleanup

4.8.1.3.1. Performing a backup with OADP and ROSA STS

The following example **hello-world** application has no persistent volumes (PVs) attached. Perform a backup with OpenShift API for Data Protection (OADP) with Red Hat OpenShift Service on AWS (ROSA) STS.

Either Data Protection Application (DPA) configuration will work.

1. Create a workload to back up by running the following commands:

   ```bash
   $ oc create namespace hello-world
   $ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift
   ```

2. Expose the route by running the following command:

   ```bash
   $ oc expose service/hello-openshift -n hello-world
   ```
3. Check that the application is working by running the following command:

$ curl `oc get route/hello-openshift -n hello-world -o jsonpath="{.spec.host}"`

Example output

Hello OpenShift!

4. Back up the workload by running the following command:

$ cat << EOF | oc create -f -
apiVersion: velero.io/v1
kind: Backup
metadata:
 name: hello-world
 namespace: openshift-adp
spec:
 includedNamespaces:
 - hello-world
 storageLocation: ${CLUSTER_NAME}-dpa-1
 ttl: 720h0m0s
EOF

5. Wait until the backup is completed and then run the following command:

$ watch "oc -n openshift-adp get backup hello-world -o json | jq .status"

Example output

```
{
  "completionTimestamp": "2022-09-07T22:20:44Z",
  "expiration": "2022-10-07T22:20:22Z",
  "formatVersion": "1.1.0",
  "phase": "Completed",
  "progress": {
    "itemsBackedUp": 58,
    "totalItems": 58
  },
  "startTimestamp": "2022-09-07T22:20:22Z",
  "version": 1
}
```

6. Delete the demo workload by running the following command:

$ oc delete ns hello-world

7. Restore the workload from the backup by running the following command:

$ cat << EOF | oc create -f -
apiVersion: velero.io/v1
kind: Restore
metadata:
 name: hello-world
EOF
namespace: openshift-adp
spec:
 backupName: hello-world
EOF

8. Wait for the Restore to finish by running the following command:

```
$ watch "oc -n openshift-adp get restore hello-world -o json | jq .status"
```

Example output

```
{
  "completionTimestamp": "2022-09-07T22:25:47Z",
  "phase": "Completed",
  "progress": {
    "itemsRestored": 38,
    "totalItems": 38
  },
  "startTimestamp": "2022-09-07T22:25:28Z",
  "warnings": 9
}
```

9. Check that the workload is restored by running the following command:

```
$ oc -n hello-world get pods
```

Example output

```
NAME                              READY   STATUS    RESTARTS   AGE
hello-openshift-9f885f7c6-kdjpj   1/1     Running   0          90s
```

10. Check the JSONPath by running the following command:

```
$ curl `oc get route/hello-openshift -n hello-world -o jsonpath='{.spec.host}'`
```

Example output

```
Hello OpenShift!
```

NOTE

For troubleshooting tips, see the OADP team’s troubleshooting documentation.

4.8.1.3.2. Cleaning up a cluster after a backup with OADP and ROSA STS

If you need to uninstall the OpenShift API for Data Protection (OADP) Operator together with the backups and the S3 bucket from this example, follow these instructions.

Procedure

1. Delete the workload by running the following command:
Delete the Data Protection Application (DPA) by running the following command:

```
$ oc -n openshift-adp delete dpa ${CLUSTER_NAME}-dpa
```

3. Delete the cloud storage by running the following command:

```
$ oc -n openshift-adp delete cloudstorage ${CLUSTER_NAME}-oadp
```

4. If this command hangs, you might need to delete the finalizer by running the following command:

```
$ oc -n openshift-adp patch cloudstorage ${CLUSTER_NAME}-oadp -p '{"metadata":{"finalizers":null}}' --type=merge
```

5. If the Operator is no longer required, remove it by running the following command:

```
$ oc -n openshift-adp delete subscription oadp-operator
```

6. Remove the namespace from the Operator:

```
$ oc delete ns openshift-adp
```

7. If the backup and restore resources are no longer required, remove them from the cluster by running the following command:

```
$ oc delete backup hello-world
```

8. To delete backup, restore and remote objects in AWS S3 run the following command:

```
$ velero backup delete hello-world
```

9. If you no longer need the Custom Resource Definitions (CRD), remove them from the cluster by running the following command:

```
$ for CRD in `oc get crds | grep velero | awk '{print $1}'`; do oc delete crd $CRD; done
```

10. Delete the AWS S3 bucket by running the following commands:

```
$ aws s3 rm s3://${CLUSTER_NAME}-oadp --recursive
$ aws s3api delete-bucket --bucket ${CLUSTER_NAME}-oadp
```
10. Detach the policy from the role by running the following command:

```
$ aws iam detach-role-policy --role-name "${ROLE_NAME}" --policy-arn "${POLICY_ARN}"
```

11. Delete the role by running the following command:

```
$ aws iam delete-role --role-name "${ROLE_NAME}"
```

4.9. OADP 1.2 DATA MOVER

4.9.1. OADP Data Mover Introduction

OADP Data Mover allows you to restore stateful applications from the store if a failure, accidental deletion, or corruption of the cluster occurs.

IMPORTANT

The OADP 1.2 Data Mover is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

- You can use OADP Data Mover to back up Container Storage Interface (CSI) volume snapshots to a remote object store. See [Using Data Mover for CSI snapshots](#).
- You can use OADP 1.2 Data Mover to back up and restore application data for clusters that use CephFS, CephRBD, or both. See [Using OADP 1.2 Data Mover with Ceph storage](#).

NOTE

Post-migration hooks are not likely to work well with the OADP 1.3 Data Mover.

The OADP 1.2 Data Mover uses synchronous processes to back up and restore application data. Because the processes are synchronous, users can be sure that any post-restore hooks start only after the persistent volumes (PVs) of the related pods are released by the persistent volume claim (PVC) of the Data Mover.

However, the OADP 1.3 Data Mover uses an asynchronous process. As a result of this difference in sequencing, a post-restore hook might be called before the related PVs were released by the PVC of the Data Mover. If this happens, the pod remains in **Pending** status and cannot run the hook. The hook attempt might time out before the pod is released, leading to a **PartiallyFailed** restore operation.

4.9.1.1. OADP Data Mover prerequisites

- You have a stateful application running in a separate namespace.
- You have installed the OADP Operator by using Operator Lifecycle Manager (OLM).
- You have created an appropriate `VolumeSnapshotClass` and `StorageClass`.
- You have installed the VolSync operator using OLM.

4.9.2. Using Data Mover for CSI snapshots

The OADP Data Mover enables customers to back up Container Storage Interface (CSI) volume snapshots to a remote object store. When Data Mover is enabled, you can restore stateful applications, using CSI volume snapshots pulled from the object store if a failure, accidental deletion, or corruption of the cluster occurs.

The Data Mover solution uses the Restic option of VolSync.

Data Mover supports backup and restore of CSI volume snapshots only.

In OADP 1.2 Data Mover `VolumeSnapshotBackups` (VSBs) and `VolumeSnapshotRestores` (VSRs) are queued using the VolumeSnapshotMover (VSM). The VSM’s performance is improved by specifying a concurrent number of VSBs and VSRs simultaneously `InProgress`. After all async plugin operations are complete, the backup is marked as complete.

IMPORTANT

The OADP 1.2 Data Mover is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

NOTE

Red Hat recommends that customers who use OADP 1.2 Data Mover in order to back up and restore ODF CephFS volumes, upgrade or install OpenShift Container Platform version 4.12 or later for improved performance. OADP Data Mover can leverage CephFS shallow volumes in OpenShift Container Platform version 4.12 or later, which based on our testing, can improve the performance of backup times.

- CephFS ROX details

Prerequisites

- You have verified that the `StorageClass` and `VolumeSnapshotClass` custom resources (CRs) support CSI.

- You have verified that only one `VolumeSnapshotClass` CR has the annotation `snapshot.storage.kubernetes.io/is-default-class: "true"`.

NOTE

In OpenShift Container Platform version 4.12 or later, verify that this is the only default `VolumeSnapshotClass`.

- You have verified that `deletionPolicy` of the `VolumeSnapshotClass` CR is set to `Retain`.

142
- You have verified that only one StorageClass CR has the annotation `storageclass.kubernetes.io/is-default-class: "true"`.

- You have included the label `velero.io/csi-volumesnapshot-class: "true"` in your VolumeSnapshotClass CR.

- You have verified that the OADP namespace has the annotation `oc annotate --overwrite namespace/openshift-adp volsync.backup/privileged-movers="true"`.

NOTE

In OADP 1.2 the `privileged-movers` setting is not required in most scenarios. The restoring container permissions should be adequate for the Volsync copy. In some user scenarios, there may be permission errors that the `privileged-mover=true` setting should resolve.

- You have installed the VolSync Operator by using the Operator Lifecycle Manager (OLM).

NOTE

The VolSync Operator is required for using OADP Data Mover.

- You have installed the OADP operator by using OLM.

Procedure

1. Configure a Restic secret by creating a `.yaml` file as following:

   ```yaml
   apiVersion: v1
   kind: Secret
   metadata:
     name: <secret_name>
     namespace: openshift-adp
   type: Opaque
   stringData:
     RESTIC_PASSWORD: <secure_restic_password>
   ```

 NOTE

 By default, the Operator looks for a secret named `dm-credential`. If you are using a different name, you need to specify the name through a Data Protection Application (DPA) CR using `dpa.spec.features.dataMover.credentialName`.

2. Create a DPA CR similar to the following example. The default plugins include CSI.

Example Data Protection Application (DPA) CR

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: velero-sample
  namespace: openshift-adp
spec:
```
Optional: Specify the upper limit of the number of snapshots allowed to be queued for backup. The default value is 10.

Optional: Specify the upper limit of the number of snapshots allowed to be queued for restore. The default value is 10.

Optional: Specify the number of days between running Restic pruning on the repository. The prune operation repacks the data to free space, but it can also generate significant I/O traffic as a part of the process. Setting this option allows a trade-off between storage consumption, from no longer referenced data, and access costs.
Optional: Specify VolumeSync volume options for backup and restore.

The OADP Operator installs two custom resource definitions (CRDs), *VolumeSnapshotBackup* and *VolumeSnapshotRestore*.

Example VolumeSnapshotBackup CRD

```yaml
apiVersion: datamover.oadp.openshift.io/v1alpha1
kind: VolumeSnapshotBackup
metadata:
  name: <vsb_name>
  namespace: <namespace_name>
spec:
  volumeSnapshotContent:
    name: <snapcontent_name>
    protectedNamespace: <adp_namespace>
  resticSecretRef:
    name: <restic_secret_name>
```

1. Specify the namespace where the volume snapshot exists.
2. Specify the namespace where the OADP Operator is installed. The default is `openshift-adp`.

Example VolumeSnapshotRestore CRD

```yaml
apiVersion: datamover.oadp.openshift.io/v1alpha1
kind: VolumeSnapshotRestore
metadata:
  name: <vsr_name>
  namespace: <namespace_name>
spec:
  protectedNamespace: <protected_ns>
  resticSecretRef:
    name: <restic_secret_name>
  volumeSnapshotMoverBackupRef:
    sourcePVCData:
      name: <source_pvc_name>
      size: <source_pvc_size>
    resticRepository: <your_restic_repo>
  volumeSnapshotClassName: <vsclass_name>
```

1. Specify the namespace where the volume snapshot exists.
2. Specify the namespace where the OADP Operator is installed. The default is `openshift-adp`.

3. You can back up a volume snapshot by performing the following steps:
 a. Create a backup CR:
      ```yaml
      apiVersion: velero.io/v1
      ```
Specify the namespace where the Operator is installed. The default namespace is `openshift-adp`.

Specify the application namespace or namespaces to be backed up.

b. Wait up to 10 minutes and check whether the `VolumeSnapshotBackup` CR status is `Completed` by entering the following commands:

```
$ oc get vsb -n <app_ns>
$ oc get vsb <vsb_name> -n <app_ns> -o jsonpath="{.status.phase}"
```

A snapshot is created in the object store was configured in the DPA.

NOTE

If the status of the `VolumeSnapshotBackup` CR becomes `Failed`, refer to the Velero logs for troubleshooting.

4. You can restore a volume snapshot by performing the following steps:

a. Delete the application namespace and the `VolumeSnapshotContent` that was created by the Velero CSI plugin.

b. Create a `Restore` CR and set `restorePVs` to `true`.

Example Restore CR

```
apiVersion: velero.io/v1
kind: Restore
metadata:
  name: <restore_name>
  namespace: <protected_ns>
spec:
  backupName: <previous_backup_name>
  restorePVs: true
```

c. Wait up to 10 minutes and check whether the `VolumeSnapshotRestore` CR status is `Completed` by entering the following command:

```
$ oc get vsr -n <app_ns>
$ oc get vsr <vsr_name> -n <app_ns> -o jsonpath="{.status.phase}"
```
d. Check whether your application data and resources have been restored.

NOTE
If the status of the `VolumeSnapshotRestore` CR becomes 'Failed', refer to the Velero logs for troubleshooting.

4.9.3. Using OADP 1.2 Data Mover with Ceph storage

You can use OADP 1.2 Data Mover to backup and restore application data for clusters that use CephFS, CephRBD, or both.

OADP 1.2 Data Mover leverages Ceph features that support large-scale environments. One of these is the shallow copy method, which is available for OpenShift Container Platform 4.12 and later. This feature supports backing up and restoring `StorageClass` and `AccessMode` resources other than what is found on the source persistent volume claim (PVC).

IMPORTANT
The CephFS shallow copy feature is a backup feature. It is not part of restore operations.

4.9.3.1. Prerequisites for using OADP 1.2 Data Mover with Ceph storage

The following prerequisites apply to all back up and restore operations of data using OpenShift API for Data Protection (OADP) 1.2 Data Mover in a cluster that uses Ceph storage:

- You have installed OpenShift Container Platform 4.12 or later.
- You have installed the OADP Operator.
- You have created a secret `cloud-credentials` in the namespace `openshift-adp`.
- You have installed Red Hat OpenShift Data Foundation.
- You have installed the latest VolSync Operator by using Operator Lifecycle Manager.

4.9.3.2. Defining custom resources for use with OADP 1.2 Data Mover

When you install Red Hat OpenShift Data Foundation, it automatically creates default CephFS and a CephRBD `StorageClass` and `VolumeSnapshotClass` custom resources (CRs). You must define these CRs for use with OpenShift API for Data Protection (OADP) 1.2 Data Mover.

After you define the CRs, you must make several other changes to your environment before you can perform your back up and restore operations.

4.9.3.2.1. Defining CephFS custom resources for use with OADP 1.2 Data Mover

When you install Red Hat OpenShift Data Foundation, it automatically creates a default CephFS `StorageClass` custom resource (CR) and a default CephFS `VolumeSnapshotClass` CR. You can define these CRs for use with OpenShift API for Data Protection (OADP) 1.2 Data Mover.

Procedure

1. Define the `VolumeSnapshotClass` CR as in the following example:
Example VolumeSnapshotClass CR

```yaml
apiVersion: snapshot.storage.k8s.io/v1
deletionPolicy: Retain

driver: openshift-storage.cephfs.csi.ceph.com
kind: VolumeSnapshotClass

metadata:
  annotations:
    snapshot.storage.kubernetes.io/is-default-class: true
    velero.io/csi-volumesnapshot-class: true
  labels:
    velero.io/csi-volumesnapshot-class: true
  name: ocs-storagecluster-cephfsplugin-snapclass
parameters:
  clusterID: openshift-storage
csi.storage.k8s.io/snapshotter-secret-name: rook-csi-cephfs-provisioner
csi.storage.k8s.io/snapshotter-secret-namespace: openshift-storage
```

1. Must be set to **Retain**.
2. Must be set to **true**.
3. Must be set to **true**.

2. Define the **StorageClass** CR as in the following example:

Example StorageClass CR

```yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: ocs-storagecluster-cephfs
  annotations:
    description: Provides RWO and RWX Filesystem volumes
    storageclass.kubernetes.io/is-default-class: true
  provisioner: openshift-storage.cephfs.csi.ceph.com
parameters:
  clusterID: openshift-storage
csi.storage.k8s.io/controller-expand-secret-name: rook-csi-cephfs-provisioner
csi.storage.k8s.io/controller-expand-secret-namespace: openshift-storage
csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-node
csi.storage.k8s.io/node-stage-secret-namespace: openshift-storage
csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-provisioner
csi.storage.k8s.io/provisioner-secret-namespace: openshift-storage
fsName: ocs-storagecluster-cephfilesystem
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate
```

1. Must be set to **true**.

4.9.3.2.2. Defining CephRBD custom resources for use with OADP 1.2 Data Mover
When you install Red Hat OpenShift Data Foundation, it automatically creates a default CephRBD StorageClass custom resource (CR) and a default CephRBD VolumeSnapshotClass CR. You can define these CRs for use with OpenShift API for Data Protection (OADP) 1.2 Data Mover.

Procedure

1. Define the **VolumeSnapshotClass** CR as in the following example:

 Example VolumeSnapshotClass CR

   ```yaml
   apiVersion: snapshot.storage.k8s.io/v1
deletionPolicy: Retain
   driver: openshift-storage.rbd.csi.ceph.com
   kind: VolumeSnapshotClass
   metadata:
   labels:
     velero.io/csi-volumesnapshot-class: true
   name: ocs-storagecluster-rbdplugin-snapclass
   parameters:
   clusterID: openshift-storage
  csi.storage.k8s.io/snapshotter-secret-name: rook-csi-rbd-provisioner
  csi.storage.k8s.io/snapshotter-secret-namespace: openshift-storage
   
   # 1 Must be set to Retain.
   # 2 Must be set to true.
   ```

2. Define the **StorageClass** CR as in the following example:

 Example StorageClass CR

   ```yaml
   kind: StorageClass
   apiVersion: storage.k8s.io/v1
   metadata:
   name: ocs-storagecluster-ceph-rbd
   annotations:
   description: 'Provides RWO Filesystem volumes, and RWO and RWX Block volumes'
   provisioner: openshift-storage.rbd.csi.ceph.com
   parameters:
   csi.storage.k8s.io/fstype: ext4
   csi.storage.k8s.io/provisioner-secret-namespace: openshift-storage
   csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner
   csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node
   csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner
   imageFormat: '2'
   clusterID: openshift-storage
   imageFeatures: layering
   csi.storage.k8s.io/controller-expand-secret-namespace: openshift-storage
   pool: ocs-storagecluster-cephblockpool
   csi.storage.k8s.io/node-stage-secret-namespace: openshift-storage
   reclaimPolicy: Delete
   allowVolumeExpansion: true
   volumeBindingMode: Immediate
   ```
4.9.3.2.3. Defining additional custom resources for use with OADP 1.2 Data Mover

After you redefine the default **StorageClass** and CephRBD **VolumeSnapshotClass** custom resources (CRs), you must create the following CRs:

- A CephFS **StorageClass** CR defined to use the shallow copy feature
- A Restic **Secret** CR

Procedure

1. Create a CephFS **StorageClass** CR and set the `backingSnapshot` parameter set to `true` as in the following example:

 Example CephFS StorageClass CR with backingSnapshot set to true

   ```yaml
   kind: StorageClass
   apiVersion: storage.k8s.io/v1
   metadata:
     name: ocs-storagecluster-cephfs-shallow
   annotations:
     description: Provides RWO and RWX Filesystem volumes
     storageclass.kubernetes.io/is-default-class: false
   provisioner: openshift-storage.cephfs.csi.ceph.com
   parameters:
     csi.storage.k8s.io/provisioner-secret-namespace: openshift-storage
     csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-provisioner
     csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-node
     csi.storage.k8s.io/controller-expand-secret-name: rook-csi-cephfs-provisioner
     clusterID: openshift-storage
     fsName: ocs-storagecluster-cephfilesystem
     csi.storage.k8s.io/controller-expand-secret-namespace: openshift-storage
     backingSnapshot: true
     csi.storage.k8s.io/node-stage-secret-namespace: openshift-storage
     reclaimPolicy: Delete
     allowVolumeExpansion: true
     volumeBindingMode: Immediate
   ```

 1. Must be set to `true`.

 IMPORTANT

 Ensure that the CephFS **VolumeSnapshotClass** and **StorageClass** CRs have the same value for `provisioner`.

2. Configure a Restic **Secret** CR as in the following example:

 Example Restic Secret CR

   ```yaml
   apiVersion: v1
   kind: Secret
   metadata:
     name: <secret_name>
   ```
You can use OpenShift API for Data Protection (OADP) 1.2 Data Mover to back up and restore data using CephFS storage by enabling the shallow copy feature of CephFS.

Prerequisites

- A stateful application is running in a separate namespace with persistent volume claims (PVCs) using CephFS as the provisioner.
- The `StorageClass` and `VolumeSnapshotClass` custom resources (CRs) are defined for CephFS and OADP 1.2 Data Mover.
- There is a secret `cloud-credentials` in the `openshift-adp` namespace.

4.9.3.3.1. Creating a DPA for use with CephFS storage

You must create a Data Protection Application (DPA) CR before you use the OpenShift API for Data Protection (OADP) 1.2 Data Mover to back up and restore data using CephFS storage.

Procedure

1. Verify that the `deletionPolicy` field of the `VolumeSnapshotClass` CR is set to Retain by running the following command:

   ```bash
   $ oc get volumesnapshotclass -A -o jsonpath='{{range .items[*]}{"Name: "}{{.metadata.name}}
   {" "}{"Retention Policy: "}{{.deletionPolicy}}{"\n"}{end}"
   ```

2. Verify that the labels of the `VolumeSnapshotClass` CR are set to true by running the following command:

   ```bash
   $ oc get volumesnapshotclass -A -o jsonpath='{{range .items[*]}{"Name: "}{{.metadata.name}}
   {" "}{"labels: "}{{.metadata.labels}}{"\n"}{end}"
   ```

3. Verify that the `storageclass.kubernetes.io/is-default-class` annotation of the `StorageClass` CR is set to true by running the following command:

   ```bash
   $ oc get storageClass -A -o jsonpath='{{range .items[*]}{"Name: "}{{.metadata.name}}{" "}{
   "annotations: "}{.metadata.annotations}{"\n"}{end}"
   ```

4. Create a Data Protection Application (DPA) CR similar to the following example:

   ```yaml
   apiVersion: oadp.openshift.io/v1alpha1
   kind: DataProtectionApplication
   metadata:
     name: velero-sample
   ```
namespace: openshift-adp
spec:
 backupLocations:
 - velero:
 config:
 profile: default
 region: us-east-1
 credential:
 key: cloud
 name: cloud-credentials
 default: true
 objectStorage:
 bucket: <my_bucket>
 prefix: velero
 provider: aws
 configuration:
 restic:
 enable: false
 velero:
 defaultPlugins:
 - openshift
 - aws
 - csi
 - vsm
 features:
 dataMover:
 credentialName: <restic_secret_name>
 enable: true
 volumeOptionsForStorageClasses:
 ocs-storagecluster-cephfs:
 sourceVolumeOptions:
 accessMode: ReadOnlyMany
 cacheAccessMode: ReadWriteMany
 cacheStorageClassName: ocs-storagecluster-cephfs
 storageClassName: ocs-storagecluster-cephfs-shallow

There is no default value for the enable field. Valid values are true or false.

Use the Restic Secret that you created when you prepared your environment for working with OADP 1.2 Data Mover and Ceph. If you do not use your Restic Secret, the CR uses the default value dm-credential for this parameter.

There is no default value for the enable field. Valid values are true or false.

4.9.3.3.2. Backing up data using OADP 1.2 Data Mover and CephFS storage

You can use OpenShift API for Data Protection (OADP) 1.2 Data Mover to back up data using CephFS storage by enabling the shallow copy feature of CephFS storage.

Procedure

1. Create a **Backup** CR as in the following example:

 Example Backup CR
2. Monitor the progress of the `VolumeSnapshotBackup` CRs by completing the following steps:

 a. To check the progress of all the `VolumeSnapshotBackup` CRs, run the following command:

   ```
   $ oc get vsb -n <app_ns>
   ```

 b. To check the progress of a specific `VolumeSnapshotBackup` CR, run the following command:

   ```
   $ oc get vsb <vsb_name> -n <app_ns> -o jsonpath="{.status.phase}
   ```

3. Wait several minutes until the `VolumeSnapshotBackup` CR has the status `Completed`.

4. Verify that there is at least one snapshot in the object store that is given in the Restic `Secret`. You can check for this snapshot in your targeted `BackupStorageLocation` storage provider that has a prefix of `/<OADP_namespace>/`.

4.9.3.3.3. Restoring data using OADP 1.2 Data Mover and CephFS storage

You can use OpenShift API for Data Protection (OADP) 1.2 Data Mover to restore data using CephFS storage if the shallow copy feature of CephFS storage was enabled for the back up procedure. The shallow copy feature is not used in the restore procedure.

Procedure

1. Delete the application namespace by running the following command:

   ```
   $ oc delete vsb -n <app_namespace> --all
   ```

2. Delete any `VolumeSnapshotContent` CRs that were created during backup by running the following command:

   ```
   $ oc delete volumesnapshotcontent --all
   ```

3. Create a `Restore` CR as in the following example:

   ```
   apiVersion: velero.io/v1
   kind: Restore
   metadata:
      name: <restore_name>
   ```
Monitor the progress of the `VolumeSnapshotRestore` CRs by doing the following:

a. To check the progress of all the `VolumeSnapshotRestore` CRs, run the following command:

   ```
   $ oc get vsr -n <app_ns>
   ```

b. To check the progress of a specific `VolumeSnapshotRestore` CR, run the following command:

   ```
   $ oc get vsr <vsr_name> -n <app_ns> -o jsonpath="{.status.phase}
   ```

5. Verify that your application data has been restored by running the following command:

   ```
   $ oc get route <route_name> -n <app_ns> -o jsonpath="{.spec.host}"
   ```

4.9.3.4. Backing up and restoring data using OADP 1.2 Data Mover and split volumes (CephFS and Ceph RBD)

You can use OpenShift API for Data Protection (OADP) 1.2 Data Mover to back up and restore data in an environment that has *split volumes*, that is, an environment that uses both CephFS and Ceph RBD.

Prerequisites

- A stateful application is running in a separate namespace with persistent volume claims (PVCs) using CephFS as the provisioner.

- The `StorageClass` and `VolumeSnapshotClass` custom resources (CRs) are defined for CephFS and OADP 1.2 Data Mover.

- There is a secret `cloud-credentials` in the `openshift-adp` namespace.

4.9.3.4.1. Creating a DPA for use with split volumes

You must create a Data Protection Application (DPA) CR before you use the OpenShift API for Data Protection (OADP) 1.2 Data Mover to back up and restore data using split volumes.

Procedure

- Create a Data Protection Application (DPA) CR as in the following example:

  ```yaml
  apiVersion: oadp.openshift.io/v1alpha1
  kind: DataProtectionApplication
  metadata:
    name: velero-sample
    namespace: openshift-adp
  spec:
    backupLocations:
  ```
- velero:
 config:
 profile: default
 region: us-east-1
 credential:
 key: cloud
 name: cloud-credentials
 default: true
 objectStorage:
 bucket: <my-bucket>
 prefix: velero
 provider: aws
 configuration:
 restic:
 enable: false
 velero:
 defaultPlugins:
 - openshift
 - aws
 - csi
 - vsm
 features:
 dataMover:
 credentialName: <restic_secret_name>
 enable: true
 volumeOptionsForStorageClasses:
 ocs-storagecluster-cephfs:
 sourceVolumeOptions:
 accessMode: ReadOnlyMany
 cacheAccessMode: ReadWriteMany
 cacheStorageClassName: ocs-storagecluster-cephfs
 storageClassName: ocs-storagecluster-cephfs-shallow
 destinationVolumeOptions:
 storageClassName: ocs-storagecluster-cephfs-shallow
 cacheStorageClassName: ocs-storagecluster-cephfs-shallow

1. Use the Restic Secret that you created when you prepared your environment for working with OADP 1.2 Data Mover and Ceph. If you do not, then the CR will use the default value dm-credential for this parameter.

2. A different set of VolumeOptionsForStorageClass labels can be defined for each storageClass volume, thus allowing a backup to volumes with different providers.

4.9.3.4.2. Backing up data using OADP 1.2 Data Mover and split volumes

You can use OpenShift API for Data Protection (OADP) 1.2 Data Mover to back up data in an environment that has split volumes.

Procedure
1. Create a **Backup** CR as in the following example:

 Example Backup CR

   ```yaml
   apiVersion: velero.io/v1
   kind: Backup
   metadata:
     name: <backup_name>
     namespace: <protected_ns>
   spec:
     includedNamespaces:
     - <app_ns>
   storageLocation: velero-sample-1
   ```

2. Monitor the progress of the **VolumeSnapshotBackup** CRs by completing the following steps:

 a. To check the progress of all the **VolumeSnapshotBackup** CRs, run the following command:

   ```bash
   $ oc get vsb -n <app_ns>
   ```

 b. To check the progress of a specific **VolumeSnapshotBackup** CR, run the following command:

   ```bash
   $ oc get vsb <vsb_name> -n <app_ns> -ojsonpath="{.status.phase}"
   ```

3. Wait several minutes until the **VolumeSnapshotBackup** CR has the status **Completed**.

4. Verify that there is at least one snapshot in the object store that is given in the Restic **Secret**. You can check for this snapshot in your targeted **BackupStorageLocation** storage provider that has a prefix of `/<OADP_namespace>`.

4.9.3.4.3. Restoring data using OADP 1.2 Data Mover and split volumes

You can use OpenShift API for Data Protection (OADP) 1.2 Data Mover to restore data in an environment that has split volumes, if the shallow copy feature of CephFS storage was enabled for the backup procedure. The shallow copy feature is not used in the restore procedure.

Procedure

1. Delete the application namespace by running the following command:

   ```bash
   $ oc delete vsb -n <app_namespace> --all
   ```

2. Delete any **VolumeSnapshotContent** CRs that were created during backup by running the following command:

   ```bash
   $ oc delete volumesnapshotcontent --all
   ```

3. Create a **Restore** CR as in the following example:

 Example Restore CR
4. Monitor the progress of the *VolumeSnapshotRestore* CRs by doing the following:

a. To check the progress of all the *VolumeSnapshotRestore* CRs, run the following command:

   ```
   $ oc get vsr -n <app_ns>
   ```

b. To check the progress of a specific *VolumeSnapshotRestore* CR, run the following command:

   ```
   $ oc get vsr <vsr_name> -n <app_ns> -o=jsonpath='{.status.phase}'
   ```

5. Verify that your application data has been restored by running the following command:

   ```
   $ oc get route <route_name> -n <app_ns> -o=jsonpath='{.spec.host}'
   ```

4.10. OADP 1.3 DATA MOVER

4.10.1. About the OADP 1.3 Data Mover

OADP 1.3 includes a built-in Data Mover that you can use to move Container Storage Interface (CSI) volume snapshots to a remote object store. The built-in Data Mover allows you to restore stateful applications from the remote object store if a failure, accidental deletion, or corruption of the cluster occurs. It uses *Kopia* as the uploader mechanism to read the snapshot data and write to the unified repository.

OADP supports CSI snapshots on the following:

- Red Hat OpenShift Data Foundation
- Any other cloud storage provider with the Container Storage Interface (CSI) driver that supports the Kubernetes Volume Snapshot API

IMPORTANT

The OADP built-in Data Mover is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

4.10.1.1. Enabling the built-in Data Mover

```
apiVersion: velero.io/v1
kind: Restore
metadata:
  name: <restore_name>
  namespace: <protected_ns>
spec:
  backupName: <previous_backup_name>
```
To enable the built-in Data Mover, you must include the CSI plugin and enable the node agent in the `DataProtectionApplication` custom resource (CR). The node agent is a Kubernetes daemonset that hosts data movement modules. These include the Data Mover controller, uploader, and the repository.

Example `DataProtectionApplication` manifest

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: dpa-sample
spec:
  configuration:
    nodeAgent:
      enable: true
      uploaderType: kopia
    velero:
      defaultPlugins:
      - openshift
      - aws
      - csi
    # ...
```

1. The flag to enable the node agent.
2. The type of uploader. The possible values are `restic` or `kopia`. The built-in Data Mover uses Kopia as the default uploader mechanism regardless of the value of the `uploaderType` field.
3. The CSI plugin included in the list of default plugins.

4.10.1.2. Built-in Data Mover controller and custom resource definitions (CRDs)

The built-in Data Mover feature introduces three new API objects defined as CRDs for managing backup and restore:

- **DataDownload**: Represents a data download of a volume snapshot. The CSI plugin creates one `DataDownload` object per volume to be restored. The `DataDownload` CR includes information about the target volume, the specified Data Mover, the progress of the current data download, the specified backup repository, and the result of the current data download after the process is complete.

- **DataUpload**: Represents a data upload of a volume snapshot. The CSI plugin creates one `DataUpload` object per CSI snapshot. The `DataUpload` CR includes information about the specified snapshot, the specified Data Mover, the specified backup repository, the progress of the current data upload, and the result of the current data upload after the process is complete.

- **BackupRepository**: Represents and manages the lifecycle of the backup repositories. OADP creates a backup repository per namespace when the first CSI snapshot backup or restore for a namespace is requested.

4.10.2. Backing up and restoring CSI snapshots

You can back up and restore persistent volumes by using the OADP 1.3 Data Mover.
4.10.2.1. Backing up persistent volumes with CSI snapshots

You can use the OADP Data Mover to back up Container Storage Interface (CSI) volume snapshots to a remote object store.

Prerequisites

- You have access to the cluster with the `cluster-admin` role.
- You have installed the OADP Operator.
- You have included the CSI plugin and enabled the node agent in the `DataProtectionApplication` custom resource (CR).
- You have an application with persistent volumes running in a separate namespace.
- You have added the `metadata.labels.velero.io/csi-volumesnapshot-class: "true"` key-value pair to the `VolumeSnapshotClass` CR.

Procedure

1. Create a YAML file for the `Backup` object, as in the following example:

   ```yaml
   kind: Backup
   apiVersion: velero.io/v1
   metadata:
     name: backup
     namespace: openshift-adp
   spec:
     csiSnapshotTimeout: 10m0s
     defaultVolumesToFsBackup: false
     includedNamespaces:
       - mysql-persistent
     itemOperationTimeout: 4h0m0s
     snapshotMoveData: true
     storageLocation: default
     ttl: 720h0m0s
     volumeSnapshotLocations:
       - dpa-sample-1
     # ...
   ```

 1 Set to `true` to enable movement of CSI snapshots to remote object storage.

2. Apply the manifest:

   ```bash
   $ oc create -f backup.yaml
   ```

 A `DataUpload` CR is created after the snapshot creation is complete.

Verification

- Verify that the snapshot data is successfully transferred to the remote object store by
monitoring the `status.phase` field of the `DataUpload` CR. Possible values are **In Progress, Completed, Failed, or Canceled**. The object store is configured in the `backupLocations` stanza of the `DataProtectionApplication` CR.

- Run the following command to get a list of all `DataUpload` objects:

  ```
  $ oc get datauploads -A
  ```

 Example output
  ```
  NAMESPACE       NAME                  STATUS      STARTED   BYTES DONE   TOTAL BYTES   STORAGE LOCATION   AGE     NODE
  openshift-adp   backup-test-1-sw76b   Completed   9m47s     108104082    108104082 dpa-sample-1   9m47s     ip-10-0-150-57.us-west-2.compute.internal
  openshift-adp   mongo-block-7dtpf     Completed   14m       1073741824   1073741824 dpa-sample-1   14m     ip-10-0-150-57.us-west-2.compute.internal
  ```

- Check the value of the `status.phase` field of the specific `DataUpload` object by running the following command:

  ```
  $ oc get datauploads <dataupload_name> -o yaml
  ```

 Example output
  ```yaml
  apiVersion: velero.io/v2alpha1
  kind: DataUpload
  metadata:
    name: backup-test-1-sw76b
    namespace: openshift-adp
  spec:
    backupStorageLocation: dpa-sample-1
    csiSnapshot:
      snapshotClass: ""
      storageClass: gp3-csi
      volumeSnapshot: velero-mysql-fq8sl
    operationTimeout: 10m0s
    operationType: CSI
    sourceNamespace: mysql-persistent
    sourcePVC: mysql
  status:
    completionTimestamp: "2023-11-02T16:57:02Z"
    node: ip-10-0-150-57.us-west-2.compute.internal
    path: /host_pods/15116bac-cc01-4d9b-8e87-609c3bef6bde/volumes/kubernetes.io~csi/pvc-eaad8167-556b-461a-b3ec-441749e291c4/mount
    phase: Completed
    progress:
      bytesDone: 108104082
      totalBytes: 108104082
    snapshotID: 8da1c5febf25225f4577ada2aeb9f899
    startTimestamp: "2023-11-02T16:56:22Z"
  ```

 Indicates that snapshot data is successfully transferred to the remote object store.
4.10.2.2. Restoring CSI volume snapshots

You can restore a volume snapshot by creating a **Restore** CR.

NOTE

You cannot restore Volsync backups from OADP 1.2 with the OAPD 1.3 built-in Data Mover. It is recommended to do a file system backup of all of your workloads with Restic prior to upgrading to OADP 1.3.

Prerequisites

- You have access to the cluster with the `cluster-admin` role.
- You have an OADP **Backup** CR from which to restore the data.

Procedure

1. Create a YAML file for the **Restore** CR, as in the following example:

 Example Restore CR

   ```yaml
   apiVersion: velero.io/v1
   kind: Restore
   metadata:
     name: restore
     namespace: openshift-adp
   spec:
     backupName: <backup>
     # ...
   ```

2. Apply the manifest:

   ```
   $ oc create -f restore.yaml
   ```

 A **DataDownload** CR is created when the restore starts.

Verification

- You can monitor the status of the restore process by checking the `status.phase` field of the **DataDownload** CR. Possible values are In Progress, Completed, Failed, or Canceled.

- To get a list of all **DataDownload** objects, run the following command:

  ```
  $ oc get datadownloads -A
  ```

Example output

<table>
<thead>
<tr>
<th>NAMESPACE</th>
<th>NAME</th>
<th>STATUS</th>
<th>STARTED</th>
<th>BYTES DONE</th>
<th>TOTAL BYTES STORAGE LOCATION</th>
<th>AGE NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>openshift-adp</td>
<td>restore-test-1-sk7lg</td>
<td>Completed</td>
<td>7m11s</td>
<td>108104082</td>
<td>108104082</td>
<td>ip-10-0-150-57.us-west-2.compute.internal</td>
</tr>
<tr>
<td>dpa-sample-1</td>
<td>7m11s</td>
<td></td>
<td></td>
<td>108104082</td>
<td>108104082</td>
<td></td>
</tr>
</tbody>
</table>
Enter the following command to check the value of the `status.phase` field of the specific `DataDownload` object:

```bash
$ oc get datadownloads <datadownload_name> -o yaml
```

Example output

```yaml
apiVersion: velero.io/v2alpha1
kind: DataDownload
metadata:
  name: restore-test-1-sk7lg
  namespace: openshift-adp
spec:
  backupStorageLocation: dpa-sample-1
  operationTimeout: 10m0s
  snapshotID: 8da1c5febf25225f4577ada2aeb9f899
  sourceNamespace: mysql-persistent
  targetVolume:
    namespace: mysql-persistent
    pv: ""
    pvc: mysql
status:
  completionTimestamp: "2023-11-02T17:01:24Z"
  node: ip-10-0-150-57.us-west-2.compute.internal
  phase: Completed
  progress:
    bytesDone: 108104082
    totalBytes: 108104082
  startTimestamp: "2023-11-02T17:00:52Z"
```

1 Indicates that the CSI snapshot data is successfully restored.

4.11. TROUBLESHOOTING

You can debug Velero custom resources (CRs) by using the OpenShift CLI tool or the Velero CLI tool. The Velero CLI tool provides more detailed logs and information.

You can check installation issues, backup and restore CR issues, and Restic issues.

You can collect logs and CR information by using the must-gather tool.

You can obtain the Velero CLI tool by:

- Downloading the Velero CLI tool
- Accessing the Velero binary in the Velero deployment in the cluster

4.11.1. Downloading the Velero CLI tool

You can download and install the Velero CLI tool by following the instructions on the Velero documentation page.

The page includes instructions for:
• macOS by using Homebrew
• GitHub
• Windows by using Chocolatey

Prerequisites

• You have access to a Kubernetes cluster, v1.16 or later, with DNS and container networking enabled.

• You have installed `kubectl` locally.

Procedure

1. Open a browser and navigate to "Install the CLI" on the Velero website.

2. Follow the appropriate procedure for macOS, GitHub, or Windows.

3. Download the Velero version appropriate for your version of OADP and OpenShift Container Platform.

4.1.1.1. OADP–Velero–OpenShift Container Platform version relationship

<table>
<thead>
<tr>
<th>OADP version</th>
<th>Velero version</th>
<th>OpenShift Container Platform version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.1</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.2</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.3</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.4</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.5</td>
<td>1.9</td>
<td>4.9 and later</td>
</tr>
<tr>
<td>1.1.6</td>
<td>1.9</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.1.7</td>
<td>1.9</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.0</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.1</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.2</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
<tr>
<td>1.2.3</td>
<td>1.11</td>
<td>4.11 and later</td>
</tr>
</tbody>
</table>
4.11.2. Accessing the Velero binary in the Velero deployment in the cluster

You can use a shell command to access the Velero binary in the Velero deployment in the cluster.

Prerequisites

- Your `DataProtectionApplication` custom resource has a status of **Reconcile complete**.

Procedure

- Enter the following command to set the needed alias:

  ```bash
  $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
  ```

4.11.3. Debugging Velero resources with the OpenShift CLI tool

You can debug a failed backup or restore by checking Velero custom resources (CRs) and the Velero pod log with the OpenShift CLI tool.

Velero CRs

Use the `oc describe` command to retrieve a summary of warnings and errors associated with a **Backup** or **Restore** CR:

```bash
$ oc describe <velero_cr> <cr_name>
```

Velero pod logs

Use the `oc logs` command to retrieve the Velero pod logs:

```bash
$ oc logs pod/<velero>
```

Velero pod debug logs

You can specify the Velero log level in the `DataProtectionApplication` resource as shown in the following example.

```
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: velero-sample
spec:
  configuration:
    velero:
      logLevel: warning
```

NOTE

This option is available starting from OADP 1.0.3.
The following `logLevel` values are available:

- trace
- debug
- info
- warning
- error
- fatal
- panic

It is recommended to use `debug` for most logs.

4.11.4. Debugging Velero resources with the Velero CLI tool

You can debug `Backup` and `Restore` custom resources (CRs) and retrieve logs with the Velero CLI tool.

The Velero CLI tool provides more detailed information than the OpenShift CLI tool.

Syntax

Use the `oc exec` command to run a Velero CLI command:

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero \n<backup_restore_cr> <command> <cr_name>
```

Example

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero \nbackup describe 0e44ae00-5dc3-11eb-9ca8-df7e5254778b-2d8ql
```

Help option

Use the `velero --help` option to list all Velero CLI commands:

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero \n--help
```

Describe command

Use the `velero describe` command to retrieve a summary of warnings and errors associated with a `Backup` or `Restore` CR:

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero \n<backup_restore_cr> describe <cr_name>
```

Example

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero \nbackup describe 0e44ae00-5dc3-11eb-9ca8-df7e5254778b-2d8ql
```
The following types of restore errors and warnings are shown in the output of a `velero describe` request:

- **Velero**: A list of messages related to the operation of Velero itself, for example, messages related to connecting to the cloud, reading a backup file, and so on.
- **Cluster**: A list of messages related to backing up or restoring cluster-scoped resources.
- **Namespaces**: A list of list of messages related to backing up or restoring resources stored in namespaces.

One or more errors in one of these categories results in a **Restore** operation receiving the status of **PartiallyFailed** and not **Completed**. Warnings do not lead to a change in the completion status.

IMPORTANT

- For resource-specific errors, that is, **Cluster** and **Namespaces** errors, the `restore describe --details` output includes a resource list that lists all resources that Velero succeeded in restoring. For any resource that has such an error, check to see if the resource is actually in the cluster.

- If there are **Velero** errors, but no resource-specific errors, in the output of a `describe` command, it is possible that the restore completed without any actual problems in restoring workloads, but carefully validate post-restore applications. For example, if the output contains **PodVolumeRestore** or node agent-related errors, check the status of **PodVolumeRestores** and **DataDownloads**. If none of these are failed or still running, then volume data might have been fully restored.

Logs command

Use the `velero logs` command to retrieve the logs of a **Backup** or **Restore** CR:

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero 
<backup_restore_cr> logs <cr_name>
```

Example

```
$ oc -n openshift-adp exec deployment/velero -c velero -- ./velero 
restore logs ccc7c2d0-6017-11eb-afab-85d0007f5a19-x4lbf
```

4.11.5. Pods crash or restart due to lack of memory or CPU

If a Velero or Restic pod crashes due to a lack of memory or CPU, you can set specific resource requests for either of those resources.

Additional resources

- **CPU and memory requirements**

4.11.5.1. Setting resource requests for a Velero pod

You can use the `configuration.velero.podConfig.resourceAllocations` specification field in the `oadp_v1alpha1_dpa.yaml` file to set specific resource requests for a **Velero** pod.
Procedure

- Set the **cpu** and **memory** resource requests in the YAML file:

Example Velero file

```yaml
apiVersion: oadm.openshift.io/v1alpha1
kind: DataProtectionApplication
...
configuration:
  velero:
    podConfig:
      resourceAllocations: 1
        requests:
          cpu: 200m
          memory: 256Mi
```

The **resourceAllocations** listed are for average usage.

4.11.5.2. Setting resource requests for a Restic pod

You can use the `configuration.restic.podConfig.resourceAllocations` specification field to set specific resource requests for a Restic pod.

Procedure

- Set the **cpu** and **memory** resource requests in the YAML file:

Example Restic file

```yaml
apiVersion: oadm.openshift.io/v1alpha1
kind: DataProtectionApplication
...
configuration:
  restic:
    podConfig:
      resourceAllocations: 1
        requests:
          cpu: 1000m
          memory: 16Gi
```

The **resourceAllocations** listed are for average usage.
The values for the resource request fields must follow the same format as Kubernetes resource requirements. Also, if you do not specify `configuration.velero.podConfig.resourceAllocations` or `configuration.retic.podConfig.resourceAllocations`, the default resources specification for a Velero pod or a Restic pod is as follows:

<table>
<thead>
<tr>
<th>requests:</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu: 500m</td>
</tr>
<tr>
<td>memory: 128Mi</td>
</tr>
</tbody>
</table>

4.11.6. Issues with Velero and admission webhooks

Velero has limited abilities to resolve admission webhook issues during a restore. If you have workloads with admission webhooks, you might need to use an additional Velero plugin or make changes to how you restore the workload.

Typically, workloads with admission webhooks require you to create a resource of a specific kind first. This is especially true if your workload has child resources because admission webhooks typically block child resources.

For example, creating or restoring a top-level object such as `service.serving.knative.dev` typically creates child resources automatically. If you do this first, you will not need to use Velero to create and restore these resources. This avoids the problem of child resources being blocked by an admission webhook that Velero might use.

4.11.6.1. Restoring workarounds for Velero backups that use admission webhooks

This section describes the additional steps required to restore resources for several types of Velero backups that use admission webhooks.

4.11.6.1.1. Restoring Knative resources

You might encounter problems using Velero to back up Knative resources that use admission webhooks.

You can avoid such problems by restoring the top level `Service` resource first whenever you back up and restore Knative resources that use admission webhooks.

Procedure

- Restore the top level `service.serving.knative.dev Service` resource:

  ```bash
  velero restore <restore_name> --from-backup=<backup_name> --include-resources service.serving.knative.dev
  ```

4.11.6.1.2. Restoring IBM AppConnect resources

If you experience issues when you use Velero to a restore an IBM® AppConnect resource that has an admission webhook, you can run the checks in this procedure.

Procedure
1. Check if you have any mutating admission plugins of kind: `MutatingWebhookConfiguration` in the cluster:

```bash
$ oc get mutatingwebhookconfigurations
```

2. Examine the YAML file of each kind: `MutatingWebhookConfiguration` to ensure that none of its rules block creation of the objects that are experiencing issues. For more information, see the official Kubernetes documentation.

3. Check that any `spec.version` in type: `Configuration.appconnect.ibm.com/v1beta1` used at backup time is supported by the installed Operator.

4.11.6.2. Velero plugins returning "received EOF, stopping recv loop" message

NOTE

Velero plugins are started as separate processes. After the Velero operation has completed, either successfully or not, they exit. Receiving a **received EOF, stopping recv loop** message in the debug logs indicates that a plugin operation has completed. It does not mean that an error has occurred.

Additional resources

- Admission plugins
- Webhook admission plugins
- Types of webhook admission plugins

4.11.7. Installation issues

You might encounter issues caused by using invalid directories or incorrect credentials when you install the Data Protection Application.

4.11.7.1. Backup storage contains invalid directories

The **Velero** pod log displays the error message, **Backup storage contains invalid top-level directories**.

Cause

The object storage contains top-level directories that are not Velero directories.

Solution

If the object storage is not dedicated to Velero, you must specify a prefix for the bucket by setting the `spec.backupLocations.velero.objectStorage.prefix` parameter in the **DataProtectionApplication** manifest.

4.11.7.2. Incorrect AWS credentials

The **oadp-aws-registry** pod log displays the error message, **InvalidAccessKeyId: The AWS Access Key Id you provided does not exist in our records**.

The **Velero** pod log displays the error message, **NoCredentialProviders: no valid providers in chain**.
Cause

The `credentials-velero` file used to create the Secret object is incorrectly formatted.

Solution

Ensure that the `credentials-velero` file is correctly formatted, as in the following example:

Example credentials-velero file

```
[default]
1  aws_access_key_id=AKIAIOSFODNN7EXAMPLE
2  aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
```

1 AWS default profile.

2 Do not enclose the values with quotation marks ("", ").

4.11.8. OADP Operator issues

The OpenShift API for Data Protection (OADP) Operator might encounter issues caused by problems it is not able to resolve.

4.11.8.1. OADP Operator fails silently

The S3 buckets of an OADP Operator might be empty, but when you run the command `oc get po -n `<OADP_Operator_namespace>`>, you see that the Operator has a status of Running. In such a case, the Operator is said to have failed silently because it incorrectly reports that it is running.

Cause

The problem is caused when cloud credentials provide insufficient permissions.

Solution

Retrieve a list of backup storage locations (BSLs) and check the manifest of each BSL for credential issues.

Procedure

1. Run one of the following commands to retrieve a list of BSLs:

 a. Using the OpenShift CLI:

   ```
   $ oc get backupstoragelocation -A
   ```

 b. Using the Velero CLI:

   ```
   $ velero backup-location get -n `<OADP_Operator_namespace>`
   ```

2. Using the list of BSLs, run the following command to display the manifest of each BSL, and examine each manifest for an error.

   ```
   $ oc get backupstoragelocation -n `<namespace>` -o yaml
   ```
4.11.9. OADP timeouts

Extending a timeout allows complex or resource-intensive processes to complete successfully without premature termination. This configuration can reduce the likelihood of errors, retries, or failures.

Ensure that you balance timeout extensions in a logical manner so that you do not configure excessively long timeouts that might hide underlying issues in the process. Carefully consider and monitor an appropriate timeout value that meets the needs of the process and the overall system performance.

The following are various OADP timeouts, with instructions of how and when to implement these parameters:
4.11.9.1. Restic timeout

timeout defines the Restic timeout. The default value is **1h**.

Use the Restic **timeout** for the following scenarios:

- For Restic backups with total PV data usage that is greater than 500GB.
- If backups are timing out with the following error:

  ```
  level=error msg="Error backing up item" backup=velero/monitoring error="timed out waiting for all PodVolumeBackups to complete"
  ```

Procedure

- Edit the values in the **spec.configuration.restic.timeout** block of the **DataProtectionApplication** CR manifest, as in the following example:

  ```yaml
  apiVersion: oadp.openshift.io/v1alpha1
  kind: DataProtectionApplication
  metadata:
    name: <dpa_name>
  spec:
    configuration:
      restic:
        timeout: 1h
  # ...
  ```

4.11.9.2. Velero resource timeout

resourceTimeout defines how long to wait for several Velero resources before timeout occurs, such as Velero custom resource definition (CRD) availability, **volumeSnapshot** deletion, and repository availability. The default is **10m**.

Use the **resourceTimeout** for the following scenarios:

- For backups with total PV data usage that is greater than 1TB. This parameter is used as a timeout value when Velero tries to clean up or delete the Container Storage Interface (CSI) snapshots, before marking the backup as complete.
 - A sub-task of this cleanup tries to patch VSC and this timeout can be used for that task.
- To create or ensure a backup repository is ready for filesystem based backups for Restic or Kopia.
- To check if the Velero CRD is available in the cluster before restoring the custom resource (CR) or resource from the backup.

Procedure

- Edit the values in the **spec.configuration.velero.resourceTimeout** block of the **DataProtectionApplication** CR manifest, as in the following example:

  ```yaml
  apiVersion: oadp.openshift.io/v1alpha1
  kind: DataProtectionApplication
  ```
4.11.9.3. Data Mover timeout

timeout is a user-supplied timeout to complete VolumeSnapshotBackup and VolumeSnapshotRestore. The default value is 10m.

Use the Data Mover timeout for the following scenarios:

- If creation of VolumeSnapshotBackups (VSBs) and VolumeSnapshotRestores (VSRs), times out after 10 minutes.
- For large scale environments with total PV data usage that is greater than 500GB. Set the timeout for 1h.
- With the VolumeSnapshotMover (VSM) plugin.
- Only with OADP 1.1.x.

Procedure

- Edit the values in the spec.features.dataMover.timeout block of the DataProtectionApplication CR manifest, as in the following example:

```yaml
metadata:
  name: <dpa_name>
spec:
  configuration:
    velero:
      resourceTimeout: 10m
# ...
```

4.11.9.4. CSI snapshot timeout

CSISnapshotTimeout specifies the time during creation to wait until the CSI VolumeSnapshot status becomes ReadyToUse, before returning error as timeout. The default value is 10m.

Use the CSISnapshotTimeout for the following scenarios:

- With the CSI plugin.
- For very large storage volumes that may take longer than 10 minutes to snapshot. Adjust this timeout if timeouts are found in the logs.
NOTE

Typically, the default value for `CSISnapshotTimeout` does not require adjustment, because the default setting can accommodate large storage volumes.

Procedure

- Edit the values in the `spec.csiSnapshotTimeout` block of the `Backup` CR manifest, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Backup
metadata:
  name: <backup_name>
spec:
  csiSnapshotTimeout: 10m
# ...
```

4.11.9.5. Velero default item operation timeout

`defaultItemOperationTimeout` defines how long to wait on asynchronous `BackupItemActions` and `RestoreItemActions` to complete before timing out. The default value is `1h`.

Use the `defaultItemOperationTimeout` for the following scenarios:

- Only with Data Mover 1.2.x.

- To specify the amount of time a particular backup or restore should wait for the Asynchronous actions to complete. In the context of OADP features, this value is used for the Asynchronous actions involved in the Container Storage Interface (CSI) Data Mover feature.

- When `defaultItemOperationTimeout` is defined in the Data Protection Application (DPA) using the `defaultItemOperationTimeout`, it applies to both backup and restore operations. You can use `ItemOperationTimeout` to define only the backup or only the restore of those CRs, as described in the following "Item operation timeout - restore", and "Item operation timeout - backup" sections.

Procedure

- Edit the values in the `spec.configuration.velero.defaultItemOperationTimeout` block of the `DataProtectionApplication` CR manifest, as in the following example:

```yaml
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: <dpa_name>
spec:
  configuration:
    velero:
      defaultItemOperationTimeout: 1h
# ...
```

4.11.9.6. Item operation timeout - restore
ItemOperationTimeout specifies the time that is used to wait for **RestoreItemAction** operations. The default value is **1h**.

Use the restore **ItemOperationTimeout** for the following scenarios:

- Only with Data Mover 1.2.x.
- For Data Mover uploads and downloads to or from the **BackupStorageLocation**. If the restore action is not completed when the timeout is reached, it will be marked as failed. If Data Mover operations are failing due to timeout issues, because of large storage volume sizes, then this timeout setting may need to be increased.

Procedure

- Edit the values in the **Restore.spec.itemOperationTimeout** block of the **Restore** CR manifest, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Restore
metadata:
  name: <restore_name>
spec:
  itemOperationTimeout: 1h
  # ...
```

4.11.9.7. Item operation timeout - backup

ItemOperationTimeout specifies the time used to wait for asynchronous **BackupItemAction** operations. The default value is **1h**.

Use the backup **ItemOperationTimeout** for the following scenarios:

- Only with Data Mover 1.2.x.
- For Data Mover uploads and downloads to or from the **BackupStorageLocation**. If the backup action is not completed when the timeout is reached, it will be marked as failed. If Data Mover operations are failing due to timeout issues, because of large storage volume sizes, then this timeout setting may need to be increased.

Procedure

- Edit the values in the **Backup.spec.itemOperationTimeout** block of the **Backup** CR manifest, as in the following example:

```yaml
apiVersion: velero.io/v1
kind: Backup
metadata:
  name: <backup_name>
spec:
  itemOperationTimeout: 1h
  # ...
```

4.11.10. Backup and Restore CR issues

You might encounter these common issues with **Backup** and **Restore** custom resources (CRs).
4.11.10.1. Backup CR cannot retrieve volume

The Backup CR displays the error message, InvalidVolume.NotFound: The volume ‘vol-xxxx’ does not exist.

Cause

The persistent volume (PV) and the snapshot locations are in different regions.

Solution

1. Edit the value of the spec.snapshotLocations.velero.config.region key in the DataProtectionApplication manifest so that the snapshot location is in the same region as the PV.
2. Create a new Backup CR.

4.11.10.2. Backup CR status remains in progress

The status of a Backup CR remains in the InProgress phase and does not complete.

Cause

If a backup is interrupted, it cannot be resumed.

Solution

1. Retrieve the details of the Backup CR:

```
$ oc -n {namespace} exec deployment/velero -c velero -- ./velero \
    backup describe <backup>
```

2. Delete the Backup CR:

```
$ oc delete backup <backup> -n openshift-adp
```

You do not need to clean up the backup location because a Backup CR in progress has not uploaded files to object storage.

3. Create a new Backup CR.

4.11.10.3. Backup CR status remains in PartiallyFailed

The status of a Backup CR without Restic in use remains in the PartiallyFailed phase and does not complete. A snapshot of the affiliated PVC is not created.

Cause

If the backup is created based on the CSI snapshot class, but the label is missing, CSI snapshot plugin fails to create a snapshot. As a result, the Velero pod logs an error similar to the following:

```
time="2023-02-17T16:33:13Z" level=error msg="Error backing up item" backup=openshift-adp/user1- 
    backup-check5 error="error executing custom action (groupResource=persistentvolumeclaims, 
    namespace=busy1, name=pvc1-user1): rpc error: code = Unknown desc = failed to get 
    volumesnapshotclass for storageclass ocs-storagecluster-ceph-rbd: failed to get
```
Solution

1. Delete the Backup CR:

   ```bash
   $ oc delete backup <backup> -n openshift-adp
   ```

2. If required, clean up the stored data on the BackupStorageLocation to free up space.

3. Apply label `velero.io/csi-volumesnapshot-class=true` to the VolumeSnapshotClass object:

   ```bash
   $ oc label volumesnapshotclass/<snapclass_name> velero.io/csi-volumesnapshot-class=true
   ```

4. Create a new Backup CR.

4.11.11. Restic issues

You might encounter these issues when you back up applications with Restic.

4.11.11.1. Restic permission error for NFS data volumes with root_squash enabled

The Restic pod log displays the error message: `controller=pod-volume-backup error="fork/exec/usr/bin/restic: permission denied"`.

Cause

If your NFS data volumes have `root_squash` enabled, Restic maps to `nfsnobody` and does not have permission to create backups.

Solution

You can resolve this issue by creating a supplemental group for Restic and adding the group ID to the DataProtectionApplication manifest:

1. Create a supplemental group for Restic on the NFS data volume.

2. Set the setgid bit on the NFS directories so that group ownership is inherited.

3. Add the `spec.configuration.restic.supplementalGroups` parameter and the group ID to the DataProtectionApplication manifest, as in the following example:

   ```yaml
   spec:
     configuration:
       restic:
         enable: true
         supplementalGroups:
           - <group_id>  # Specify the supplemental group ID.
   ```

4. Wait for the Restic pods to restart so that the changes are applied.
4.11.11.2. Restic Backup CR cannot be recreated after bucket is emptied

If you create a Restic Backup CR for a namespace, empty the object storage bucket, and then recreate the Backup CR for the same namespace, the recreated Backup CR fails.

The velero pod log displays the following error message: `stderr=Fatal: unable to open config file: Stat: The specified key does not exist. Is there a repository at the following location?`

Cause

Velero does not recreate or update the Restic repository from the ResticRepository manifest if the Restic directories are deleted from object storage. See Velero issue 4421 for more information.

Solution

- Remove the related Restic repository from the namespace by running the following command:

  ```bash
  $ oc delete resticrepository openshift-adp <name_of_the_restitc_repository>
  ```

In the following error log, *mysql-persistent* is the problematic Restic repository. The name of the repository appears in italics for clarity.

```
time="2021-12-29T18:29:14Z" level=info msg="1 errors encountered backup up item" backup=velero/backup65
logSource="pkg/backup/backup.go:431" name=mysql-7d99fc949-qbkds
time="2021-12-29T18:29:14Z" level=error msg="Error backing up item"
error.function="github.com/vmware-tanzu/velero/pkg/restic.(*backupper).BackupPodVolumes"
logSource="pkg/backup/backup.go:435" name=mysql-7d99fc949-qbkds
```

4.11.11.3. Restic restore partially failing on OCP 4.14 due to changed PSA policy

OpenShift Container Platform 4.14 enforces a Pod Security Admission (PSA) policy that can hinder the readiness of pods during a Restic restore process.

If a SecurityContextConstraints (SCC) resource is not found when a pod is created, and the PSA policy on the pod is not set up to meet the required standards, pod admission is denied.

This issue arises due to the resource restore order of Velero.

Sample error

```
\"level=error\" in line#2273: time="2023-06-12T06:50:04Z\"
level=error msg="error restoring mysql-869f9f44f6-tp5lv: pods\"
"mysql-869f9f44f6-tp5lv\" is forbidden: violates PodSecurity\n"restricted:v1.24\": privileges (container \"mysql\"
" must not set securityContext.privileged=true), allowPrivilegeEscalation != false (containers \
```
"restic-wait\\", "mysql\\" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (containers \\ "restic-wait\\", "mysql\\" must set securityContext.capabilities.drop=["ALL"]), seccompProfile (pod or containers \\ "restic-wait\\", "mysql\\" must set securityContext.seccompProfile.type to \\ "RuntimeDefault" or "Localhost""
velero container contains "level=error" in line#2447: time="2023-06-12T06:50:05Z" level=error msg="Namespace todolist-mariadb, resource restore error: error restoring pods/todolist-mariadb/mysql-869f9f44f6-tp5lv: pods \\ "mysql-869f9f44f6-tp5lv\\" is forbidden: violates PodSecurity \\ "restricted:v1.24": privileged (container \\ "mysql\\" must not set securityContext.privileged=true), allowPrivilegeEscalation != false (containers \\ "restic-wait\\", "mysql\\" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (containers \\ "restic-wait\\", "mysql\\" must set securityContext.capabilities.drop=["ALL"]), seccompProfile (pod or containers \\ "restic-wait\\", "mysql\\" must set securityContext.seccompProfile.type to \\ "RuntimeDefault" or "Localhost")"
logSource="/remote-source/velero/app/pkg/controller/restore_controller.go:510"
restore=openshift-adp/todolist-backup-0780518c-08ed-11ee-805c-0a580a80e92c"

Solution

1. In your DPA custom resource (CR), check or set the restore-resource-priorities field on the Velero server to ensure that securitycontextconstraints is listed in order before pods in the list of resources:

 $ oc get dpa -o yaml

Example DPA CR

```
# ...
configuration:
  restic:
    enable: true
  velero:
    args:
      - restore-resource-priorities:
        - securitycontextconstraints
        - customresourcedefinitions
        - namespaces
        - storageclasses
        - volumesnap:
          hotclass
          snapshot.storage.k8s.io
          volumesnapshotcontents.snapshot.storage.k8s.io
          volumesnap:
          hots.snapshot.storage.k8s.io
          datauploads.velero.io
          persistentvolumes
          persistentvolumeclaims
          serviceaccounts
          secrets
          configmaps
          limitranges
          pods
          replicasets.apps
          clusterclasses.cluster.x-k8s.io
          endpoints
          services
          - clusterbootstraps.run.tanzu.vmware.com
          clusters.cluster.x-k8s.io
          - addons.cluster.x-k8s.io
          defaultPlugins:
            - gcp
            - openshift
```

1. If you have an existing restore resource priority list, ensure you combine that existing list with the complete list.
2. Ensure that the security standards for the application pods are aligned, as provided in Fixing PodSecurity Admission warnings for deployments, to prevent deployment warnings. If the application is not aligned with security standards, an error can occur regardless of the SCC.

NOTE
This solution is temporary, and ongoing discussions are in progress to address it.

Additional resources
- Fixing PodSecurity Admission warnings for deployments

4.11.12. Using the must-gather tool

You can collect logs, metrics, and information about OADP custom resources by using the must-gather tool.

The must-gather data must be attached to all customer cases.

Prerequisites
- You must be logged in to the OpenShift Container Platform cluster as a user with the cluster-admin role.
- You must have the OpenShift CLI (oc) installed.
- You must use Red Hat Enterprise Linux (RHEL) 8.x with OADP 1.2.
- You must use Red Hat Enterprise Linux (RHEL) 9.x with OADP 1.3.

Procedure
1. Navigate to the directory where you want to store the must-gather data.
2. Run the oc adm must-gather command for one of the following data collection options:
 a. For OADP 1.2, use the following command:

 oc adm must-gather --image=registry.redhat.io/oadp/oadp-mustgather-rhel8:v1.2

 b. For OADP 1.3, use the following command:

 oc adm must-gather --image=registry.redhat.io/oadp/oadp-mustgather-rhel9:v1.3

 The data is saved as must-gather/must-gather.tar.gz. You can upload this file to a support case on the Red Hat Customer Portal.

 c. For OADP 1.2, use the following command:

 oc adm must-gather --image=registry.redhat.io/oadp/oadp-mustgather-rhel8:v1.2 -- /usr/bin/gather_metrics_dump

 d. For OADP 1.3, use the following command:
4.11.12.1. Combining options when using the must-gather tool

Currently, it is not possible to combine must-gather scripts, for example specifying a timeout threshold while permitting insecure TLS connections. In some situations, you can get around this limitation by setting up internal variables on the must-gather command line, such as the following example:

```
oc adm must-gather --image=registry.redhat.io/oadp/oadp-mustgather-rhel9:v1.3 -- skip_tls=true /usr/bin/gather_with_timeout <timeout_value_in_seconds>
```

In this example, set the `skip_tls` variable before running the `gather_with_timeout` script. The result is a combination of `gather_with_timeout` and `gather_without_tls`.

The only other variables that you can specify this way are the following:

- `logs_since`, with a default value of `72h`
- `request_timeout`, with a default value of `0s`

If `DataProtectionApplication` custom resource (CR) is configured with `s3Url` and `insecureSkipTLS: true`, the CR does not collect the necessary logs because of a missing CA certificate. To collect those logs, run the `must-gather` command with the following option:

```
$ oc adm must-gather --image=registry.redhat.io/oadp/oadp-mustgather-rhel9:v1.3 -- /usr/bin/gather_without_tls true
```

4.11.13. OADP Monitoring

The OpenShift Container Platform provides a monitoring stack that allows users and administrators to effectively monitor and manage their clusters, as well as monitor and analyze the workload performance of user applications and services running on the clusters, including receiving alerts if an event occurs.

Additional resources

- Monitoring stack

4.11.13.1. OADP monitoring setup

The OADP Operator leverages an OpenShift User Workload Monitoring provided by the OpenShift Monitoring Stack for retrieving metrics from the Velero service endpoint. The monitoring stack allows creating user-defined Alerting Rules or querying metrics by using the OpenShift Metrics query front end.

With enabled User Workload Monitoring, it is possible to configure and use any Prometheus-compatible third-party UI, such as Grafana, to visualize Velero metrics.

Monitoring metrics requires enabling monitoring for the user-defined projects and creating a `ServiceMonitor` resource to scrape those metrics from the already enabled OADP service endpoint that resides in the `openshift-adp` namespace.
Prerequisites

- You have access to an OpenShift Container Platform cluster using an account with cluster-admin permissions.
- You have created a cluster monitoring config map.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring namespace:

   ```shell
   $ oc edit configmap cluster-monitoring-config -n openshift-monitoring
   ```

2. Add or enable the enableUserWorkload option in the data section’s config.yaml field:

   ```yaml
   apiVersion: v1
data:
   config.yaml:
     enableUserWorkload: true
   kind: ConfigMap
metadata:
  # ...
   
   1 Add this option or set to true
   ```

3. Wait a short period of time to verify the User Workload Monitoring Setup by checking if the following components are up and running in the openshift-user-workload-monitoring namespace:

   ```shell
   $ oc get pods -n openshift-user-workload-monitoring
   ```

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prometheus-operator-6844b4b99c-b57j9</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>43s</td>
</tr>
<tr>
<td>prometheus-user-workload-0</td>
<td>5/5</td>
<td>Running</td>
<td>0</td>
<td>32s</td>
</tr>
<tr>
<td>prometheus-user-workload-1</td>
<td>5/5</td>
<td>Running</td>
<td>0</td>
<td>32s</td>
</tr>
<tr>
<td>thanos-ruler-user-workload-0</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>32s</td>
</tr>
<tr>
<td>thanos-ruler-user-workload-1</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>32s</td>
</tr>
</tbody>
</table>

4. Verify the existence of the user-workload-monitoring-config ConfigMap in the openshift-user-workload-monitoring. If it exists, skip the remaining steps in this procedure.

   ```shell
   $ oc get configmap user-workload-monitoring-config -n openshift-user-workload-monitoring
   ```

 Example output

   ```shell
   Error from server (NotFound): configmaps "user-workload-monitoring-config" not found
   ```

5. Create a user-workload-monitoring-config ConfigMap object for the User Workload Monitoring, and save it under the 2_configure_user_workload_monitoring.yaml file name:
4.11.13.2. Creating OADP service monitor

OADP provides an `openshift-adp-velero-metrics-svc` service which is created when the DPA is configured. The service monitor used by the user workload monitoring must point to the defined service.

Get details about the service by running the following commands:

Procedure

1. Ensure the `openshift-adp-velero-metrics-svc` service exists. It should contain `app.kubernetes.io/name=velero` label, which will be used as selector for the `ServiceMonitor` object.

   ```bash
   $ oc get svc -n openshift-adp -l app.kubernetes.io/name=velero
   NAME                               TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
   openshift-adp-velero-metrics-svc   ClusterIP   172.30.38.244   <none>        8085/TCP   1h
   ```

2. Create a `ServiceMonitor` YAML file that matches the existing service label, and save the file as `3_create_oadp_service_monitor.yaml`. The service monitor is created in the `openshift-adp` namespace where the `openshift-adp-velero-metrics-svc` service resides.

Example ServiceMonitor object

```yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    app: oadp-service-monitor
    name: oadp-service-monitor
    namespace: openshift-adp
spec:
  endpoints:
  - interval: 30s
    path: /metrics
    targetPort: 8085
```
3. Apply the `3_create_oadp_service_monitor.yaml` file:

```
$ oc apply -f 3_create_oadp_service_monitor.yaml
```

Example output

```
servicemonitor.monitoring.coreos.com/oadp-service-monitor created
```

Verification

- Confirm that the new service monitor is in an **Up** state by using the **Administrator** perspective of the OpenShift Container Platform web console:

a. Navigate to the **Observe → Targets** page.

 b. Ensure the **Filter** is unselected or that the **User** source is selected and type **openshift-adp** in the **Text** search field.

 c. Verify that the status for the **Status** for the service monitor is **Up**.

Figure 4.1. OADP metrics targets

4.11.13.3. Creating an alerting rule

The OpenShift Container Platform monitoring stack allows to receive Alerts configured using Alerting Rules. To create an Alerting rule for the OADP project, use one of the Metrics which are scraped with the user workload monitoring.

Procedure

1. Create a **PrometheusRule** YAML file with the sample **OADPBackupFailing** alert and save it as `4_create_oadp_alert_rule.yaml`.

Sample OADPBackupFailing alert

```
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
```
In this sample, the Alert displays under the following conditions:

- There is an increase of new failing backups during the 2 last hours that is greater than 0 and the state persists for at least 5 minutes.

- If the time of the first increase is less than 5 minutes, the Alert will be in a Pending state, after which it will turn into a Firing state.

2. Apply the `4_create_oadp_alert_rule.yaml` file, which creates the PrometheusRule object in the openshift-adp namespace:

```
$ oc apply -f 4_create_oadp_alert_rule.yaml
```

Example output

```
prometheusrule.monitoring.coreos.com/sample-oadp-alert created
```

Verification

- After the Alert is triggered, you can view it in the following ways:
 - In the Developer perspective, select the Observe menu.
 - In the Administrator perspective under the Observe → Alerting menu, select User in the Filter box. Otherwise, by default only the Platform Alerts are displayed.
Figure 4.2. OADP backup failing alert

Additional resources

- Managing alerts

4.11.13.4. List of available metrics

These are the list of metrics provided by the OADP together with their Types.

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>kopia_content_cache_hit_bytes</td>
<td>Number of bytes retrieved from the cache</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_cache_hit_count</td>
<td>Number of times content was retrieved from the cache</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_cache_malformed</td>
<td>Number of times malformed content was read from the cache</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_cache_miss_count</td>
<td>Number of times content was not found in the cache and fetched</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_cache_missed_bytes</td>
<td>Number of bytes retrieved from the underlying storage</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_cache_missed_error_count</td>
<td>Number of times content could not be found in the underlying storage</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_cache_store_error_count</td>
<td>Number of times content could not be saved in the cache</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_get_bytes</td>
<td>Number of bytes retrieved using GetContent()</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_get_count</td>
<td>Number of times GetContent() was called</td>
<td>Counter</td>
</tr>
<tr>
<td>Metric name</td>
<td>Description</td>
<td>Type</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>kopia_content_get_error_count</td>
<td>Number of times <code>GetContent()</code> was called and the result was an error</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_get_not_found_count</td>
<td>Number of times <code>GetContent()</code> was called and the result was not found</td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_write_bytes</td>
<td>Number of bytes passed to <code>WriteContent()</code></td>
<td>Counter</td>
</tr>
<tr>
<td>kopia_content_write_count</td>
<td>Number of times <code>WriteContent()</code> was called</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_attempt_total</td>
<td>Total number of attempted backups</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_deletion_attempt_total</td>
<td>Total number of attempted backup deletions</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_deletion_failure_total</td>
<td>Total number of failed backup deletions</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_deletion_success_total</td>
<td>Total number of successful backup deletions</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_duration_seconds</td>
<td>Time taken to complete backup, in seconds</td>
<td>Histogram</td>
</tr>
<tr>
<td>velero_backup_failure_total</td>
<td>Total number of failed backups</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_items_errors</td>
<td>Total number of errors encountered during backup</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_backup_items_total</td>
<td>Total number of items backed up</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_backup_last_status</td>
<td>Last status of the backup. A value of 1 is success, 0.</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_backup_last_successful_timestamp</td>
<td>Last time a backup ran successfully, Unix timestamp in seconds</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_backup_partial_failure_total</td>
<td>Total number of partially failed backups</td>
<td>Counter</td>
</tr>
<tr>
<td>Metric name</td>
<td>Description</td>
<td>Type</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>velero_backup_success_total</td>
<td>Total number of successful backups</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_tarball_size_bytes</td>
<td>Size, in bytes, of a backup</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_backup_total</td>
<td>Current number of existent backups</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_backup_validation_failure_total</td>
<td>Total number of validation failed backups</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_backup_warning_total</td>
<td>Total number of warned backups</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_csi_snapshot_attempt_total</td>
<td>Total number of CSI attempted volume snapshots</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_csi_snapshot_failure_total</td>
<td>Total number of CSI failed volume snapshots</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_csi_snapshot_success_total</td>
<td>Total number of CSI successful volume snapshots</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_restore_attempt_total</td>
<td>Total number of attempted restores</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_restore_failed_total</td>
<td>Total number of failed restores</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_restore_partial_failure_total</td>
<td>Total number of partially failed restores</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_restore_success_total</td>
<td>Total number of successful restores</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_restore_total</td>
<td>Current number of existent restores</td>
<td>Gauge</td>
</tr>
<tr>
<td>velero_restore_validation_failed_total</td>
<td>Total number of failed restores failing validations</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_volume_snapshot_attempt_total</td>
<td>Total number of attempted volume snapshots</td>
<td>Counter</td>
</tr>
<tr>
<td>velero_volume_snapshot_failure_total</td>
<td>Total number of failed volume snapshots</td>
<td>Counter</td>
</tr>
</tbody>
</table>
Viewing metrics using the Observe UI

You can view metrics in the OpenShift Container Platform web console from the **Administrator** or **Developer** perspective, which must have access to the `openshift-adp` project.

Procedure

- **Navigate to the Observe → Metrics page:**
 - If you are using the **Developer** perspective, follow these steps:
 1. Select **Custom query**, or click on the **Show PromQL** link.
 2. Type the query and click **Enter**.
 - If you are using the **Administrator** perspective, type the expression in the text field and select **Run Queries**.

Figure 4.3. OADP metrics query

APIs USED WITH OADP

The document provides information about the following APIs that you can use with OADP:

- **Velero API**
- **OADP API**

4.12.1. Velero API
Velero API documentation is maintained by Velero, not by Red Hat. It can be found at [Velero API types](#).

4.12.2. OADP API

The following tables provide the structure of the OADP API:

Table 4.2. DataProtectionApplicationSpec

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backupLocations</td>
<td>[] BackupLocation</td>
<td>Defines the list of configurations to use for BackupStorageLocations.</td>
</tr>
<tr>
<td>snapshotLocations</td>
<td>[] SnapshotLocation</td>
<td>Defines the list of configurations to use for VolumeSnapshotLocations.</td>
</tr>
<tr>
<td>unsupportedOverrides</td>
<td>map [UnsupportedImageKey] string</td>
<td>Can be used to override the deployed dependent images for development. Options are veleroImageFqin, awsPluginImageFqin, openshiftPluginImageFqin, azurePluginImageFqin, gcpPluginImageFqin, csiPluginImageFqin, dataMoverImageFqin, resticRestoreImageFqin, kubevirtPluginImageFqin, and operator-type.</td>
</tr>
<tr>
<td>podAnnotations</td>
<td>map [string] string</td>
<td>Used to add annotations to pods deployed by Operators.</td>
</tr>
<tr>
<td>podDnsPolicy</td>
<td>DNSPolicy</td>
<td>Defines the configuration of the DNS of a pod.</td>
</tr>
<tr>
<td>podDnsConfig</td>
<td>PodDNSConfig</td>
<td>Defines the DNS parameters of a pod in addition to those generated from DNSPolicy.</td>
</tr>
<tr>
<td>backupImages</td>
<td>*bool</td>
<td>Used to specify whether or not you want to deploy a registry for enabling backup and restore of images.</td>
</tr>
<tr>
<td>configuration</td>
<td>*ApplicationConfig</td>
<td>Used to define the data protection application's server configuration.</td>
</tr>
</tbody>
</table>
Features

Defines the configuration for the DPA to enable the Technology Preview features.

Table 4.3. BackupLocation

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>velero</td>
<td>*velero.BackupStorageLocationSpec</td>
<td>Location to store volume snapshots, as described in Backup Storage Location.</td>
</tr>
<tr>
<td>bucket</td>
<td>*CloudStorageLocation</td>
<td>[Technology Preview] Automates creation of a bucket at some cloud storage providers for use as a backup storage location.</td>
</tr>
</tbody>
</table>

IMPORTANT

The `bucket` parameter is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

Complete schema definitions for the type `BackupLocation`.

Table 4.4. SnapshotLocation

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>velero</td>
<td>*VolumeSnapshotLocationSpec</td>
<td>Location to store volume snapshots, as described in Volume Snapshot Location.</td>
</tr>
</tbody>
</table>

IMPORTANT

Complete schema definitions for the type `SnapshotLocation`.

Table 4.5. ApplicationConfig
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>velero</td>
<td>*VeleroConfig</td>
<td>Defines the configuration for the Velero server.</td>
</tr>
<tr>
<td>restic</td>
<td>*ResticConfig</td>
<td>Defines the configuration for the Restic server.</td>
</tr>
</tbody>
</table>

Table 4.6. VeleroConfig

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>featureFlags</td>
<td>[] string</td>
<td>Defines the list of features to enable for the Velero instance.</td>
</tr>
<tr>
<td>defaultPlugins</td>
<td>[] string</td>
<td>The following types of default Velero plugins can be installed: <code>aws</code>, <code>azure</code>, <code>csi</code>, <code>gcp</code>, <code>kubevirt</code>, and <code>openshift</code>.</td>
</tr>
<tr>
<td>customPlugins</td>
<td>[] CustomPlugin</td>
<td>Used for installation of custom Velero plugins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default and custom plugins are described in OADP plugins.</td>
</tr>
<tr>
<td>restoreResourcesVersionPriority</td>
<td>string</td>
<td>Represents a config map that is created if defined for use in conjunction with the <code>EnableAPIGroupVersions</code> feature flag. Defining this field automatically adds <code>EnableAPIGroupVersions</code> to the Velero server feature flag.</td>
</tr>
<tr>
<td>noDefaultBackupLocation</td>
<td>bool</td>
<td>To install Velero without a default backup storage location, you must set the <code>noDefaultBackupLocation</code> flag in order to confirm installation.</td>
</tr>
<tr>
<td>podConfig</td>
<td>*PodConfig</td>
<td>Defines the configuration of the Velero pod.</td>
</tr>
</tbody>
</table>

Complete schema definitions for the type `ApplicationConfig`.

OpenShift Container Platform 4.15 Backup and restore
Table 4.7. CustomPlugin

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>Name of custom plugin.</td>
</tr>
<tr>
<td>image</td>
<td>string</td>
<td>Image of custom plugin.</td>
</tr>
</tbody>
</table>

Table 4.8. ResticConfig

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>*bool</td>
<td>If set to true, enables backup and restore using Restic. If set to false, snapshots are needed.</td>
</tr>
<tr>
<td>supplementalGroups</td>
<td>[]int64</td>
<td>Defines the Linux groups to be applied to the Restic pod.</td>
</tr>
<tr>
<td>timeout</td>
<td>string</td>
<td>A user-supplied duration string that defines the Restic timeout. Default value is 1hr (1 hour). A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as 300ms, -1.5h, or 2h45m. Valid time units are ns, us (or µs), ms, s, m, and h.</td>
</tr>
<tr>
<td>podConfig</td>
<td>*PodConfig</td>
<td>Defines the configuration of the Restic pod.</td>
</tr>
</tbody>
</table>

Table 4.9. PodConfig

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Complete schema definitions for the type **VeleroConfig**.

Complete schema definitions for the type **CustomPlugin**.

Complete schema definitions for the type **ResticConfig**.

Complete schema definitions for the type **ResticConfig**.
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodeSelector</td>
<td>map [string] string</td>
<td>Defines the nodeSelector to be supplied to a Velero podSpec or a Restic podSpec.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]Toleration</td>
<td>Defines the list of tolerations to be applied to a Velero deployment or a Restic daemonset.</td>
</tr>
<tr>
<td>resourceAllocations</td>
<td>ResourceRequirements</td>
<td>Set specific resource limits and requests for a Velero pod or a Restic pod as described in Setting Velero CPU and memory resource allocations.</td>
</tr>
<tr>
<td>labels</td>
<td>map [string] string</td>
<td>Labels to add to pods.</td>
</tr>
</tbody>
</table>

Complete schema definitions for the type **PodConfig**.

Table 4.10. Features

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataMover</td>
<td>*DataMover</td>
<td>Defines the configuration of the Data Mover.</td>
</tr>
</tbody>
</table>

Complete schema definitions for the type **Features**.

Table 4.11. DataMover

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>bool</td>
<td>If set to true, deploys the volume snapshot mover controller and a modified CSI Data Mover plugin. If set to false, these are not deployed.</td>
</tr>
<tr>
<td>credentialName</td>
<td>string</td>
<td>User-supplied Restic Secret name for Data Mover.</td>
</tr>
</tbody>
</table>
Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>string</td>
<td>A user-supplied duration string for <code>VolumeSnapshotBackup</code> and <code>VolumeSnapshotRestore</code> to complete. Default is 10m (10 minutes). A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as 300ms, -1.5h or 2h45m. Valid time units are ns, us (or µs), ms, s, m, and h.</td>
</tr>
</tbody>
</table>

The OADP API is more fully detailed in [OADP Operator](#).

4.13. ADVANCED OADP FEATURES AND FUNCTIONALITIES

This document provides information about advanced features and functionalities of OpenShift API for Data Protection (OADP).

4.13.1. Working with different Kubernetes API versions on the same cluster

4.13.1.1. Listing the Kubernetes API group versions on a cluster

A source cluster might offer multiple versions of an API, where one of these versions is the preferred API version. For example, a source cluster with an API named `Example` might be available in the `example.com/v1` and `example.com/v1beta2` API groups.

If you use Velero to back up and restore such a source cluster, Velero backs up only the version of that resource that uses the preferred version of its Kubernetes API.

To return to the above example, if `example.com/v1` is the preferred API, then Velero only backs up the version of a resource that uses `example.com/v1`. Moreover, the target cluster needs to have `example.com/v1` registered in its set of available API resources in order for Velero to restore the resource on the target cluster.

Therefore, you need to generate a list of the Kubernetes API group versions on your target cluster to be sure the preferred API version is registered in its set of available API resources.

Procedure

- Enter the following command:

  ```bash
  $ oc api-resources
  ```

4.13.1.2. About Enable API Group Versions

By default, Velero only backs up resources that use the preferred version of the Kubernetes API. However, Velero also includes a feature, [Enable API Group Versions](#), that overcomes this limitation. When enabled on the source cluster, this feature causes Velero to back up all Kubernetes API group versions.
versions that are supported on the cluster, not only the preferred one. After the versions are stored in the backup .tar file, they are available to be restored on the destination cluster.

For example, a source cluster with an API named Example might be available in the example.com/v1 and example.com/v1beta2 API groups, with example.com/v1 being the preferred API.

Without the Enable API Group Versions feature enabled, Velero backs up only the preferred API group version for Example, which is example.com/v1. With the feature enabled, Velero also backs up example.com/v1beta2.

When the Enable API Group Versions feature is enabled on the destination cluster, Velero selects the version to restore on the basis of the order of priority of API group versions.

NOTE
Enable API Group Versions is still in beta.

Velero uses the following algorithm to assign priorities to API versions, with 1 as the top priority:

1. Preferred version of the destination cluster
2. Preferred version of the source cluster
3. Common non-preferred supported version with the highest Kubernetes version priority

Additional resources

- Enable API Group Versions Feature

4.13.1.3. Using Enable API Group Versions

You can use Velero’s Enable API Group Versions feature to back up all Kubernetes API group versions that are supported on a cluster, not only the preferred one.

NOTE
Enable API Group Versions is still in beta.

Procedure

- Configure the **EnableAPIServiceGroups** feature flag:

```yaml
apiVersion: oadp.openshift.io/vialpha1
kind: DataProtectionApplication
...
spec:
  configuration:
    velero:
      featureFlags:
        - EnableAPIServiceGroups
```

Additional resources

- Enable API Group Versions Feature
4.13.2. Backing up data from one cluster and restoring it to another cluster

4.13.2.1. About backing up data from one cluster and restoring it to another cluster

OpenShift API for Data Protection (OADP) is designed to back up and restore application data in the same OpenShift Container Platform cluster. Migration Toolkit for Containers (MTC) is designed to migrate containers, including application data, from one OpenShift Container Platform cluster to another cluster.

You can use OADP to back up application data from one OpenShift Container Platform cluster and restore it on another cluster. However, doing so is more complicated than using MTC or using OADP to back up and restore on the same cluster.

To successfully use OADP to back up data from one cluster and restore it to another cluster, you must take into account the following factors, in addition to the prerequisites and procedures that apply to using OADP to back up and restore data on the same cluster:

- Operators
- Use of Velero
- UID and GiD ranges

4.13.2.1.1. Operators

You must exclude Operators from the backup of an application for backup and restore to succeed.

4.13.2.1.2. Use of Velero

Velero, which OADP is built upon, does not natively support migrating persistent volume snapshots across cloud providers. To migrate volume snapshot data between cloud platforms, you must either enable the Velero Restic file system backup option, which backs up volume contents at the file system level, or use the OADP Data Mover for CSI snapshots.

NOTE

In OADP 1.1 and earlier, the Velero Restic file system backup option is called restic. In OADP 1.2 and later, the Velero Restic file system backup option is called file-system-backup.

- You must also use Velero’s File System Backup to migrate data between AWS regions or between Microsoft Azure regions.
- Velero does not support restoring data to a cluster with an earlier Kubernetes version than the source cluster.
- It is theoretically possible to migrate workloads to a destination with a later Kubernetes version than the source, but you must consider the compatibility of API groups between clusters for each custom resource. If a Kubernetes version upgrade breaks the compatibility of core or native API groups, you must first update the impacted custom resources.

4.13.2.2. About determining which pod volumes to back up
Before you start a backup operation by using File System Backup (FSB), you must specify which pods contain a volume that you want to back up. Velero refers to this process as “discovering” the appropriate pod volumes.

Velero supports two approaches for determining pod volumes:

- **Opt-in approach**: The opt-in approach requires that you actively indicate that you want to include - opt-in - a volume in a backup. You do this by labelling each pod that contains a volume to be backed up with the name of the volume. When Velero finds a persistent volume (PV), it checks the pod that mounted the volume. If the pod is labelled with the name of the volume, Velero backs up the pod.

- **Opt-out approach**: With the opt-out approach, you must actively specify that you want to exclude a volume from a backup. You do this by labelling each pod that contains a volume you do not want to back up with the name of the volume. When Velero finds a PV, it checks the pod that mounted the volume. If the pod is labelled with the volume’s name, Velero does not back up the pod.

4.13.2.2.1. Limitations

- FSB does not support backing up and restoring **hostpath** volumes. However, FSB does support backing up and restoring local volumes.

- Velero uses a static, common encryption key for all backup repositories it creates. **This static key means that anyone who can access your backup storage can also decrypt your backup data.** It is essential that you limit access to backup storage.

- For PVCs, every incremental backup chain is maintained across pod reschedules. For pod volumes that are not PVCs, such as **emptyDir** volumes, if a pod is deleted or recreated, for example, by a ReplicaSet or a deployment, the next backup of those volumes will be a full backup and not an incremental backup. It is assumed that the lifecycle of a pod volume is defined by its pod.

- Even though backup data can be kept incrementally, backing up large files, such as a database, can take a long time. This is because FSB uses deduplication to find the difference that needs to be backed up.

- FSB reads and writes data from volumes by accessing the file system of the node on which the pod is running. For this reason, FSB can only back up volumes that are mounted from a pod and not directly from a PVC. Some Velero users have overcome this limitation by running a staging pod, such as a BusyBox or Alpine container with an infinite sleep, to mount these PVC and PV pairs before performing a Velero backup.

- FSB expects volumes to be mounted under `<hostPath>/<pod UID>`, with `<hostPath>` being configurable. Some Kubernetes systems, for example, vCluster, do not mount volumes under the `<pod UID>` subdirectory, and VFSB does not work with them as expected.

4.13.2.2.2. Backing up pod volumes by using the opt-in method

You can use the opt-in method to specify which volumes need to be backed up by File System Backup (FSB). You can do this by using the `backup.velero.io/backup-volumes` command.

Procedure

- On each pod that contains one or more volumes that you want to back up, enter the following command:
4.13.2.2.3. Backing up pod volumes by using the opt-out method

When using the opt-out approach, all pod volumes are backed up by using File System Backup (FSB), although there are some exceptions:

- Volumes that mount the default service account token, secrets, and configuration maps.
- `hostPath` volumes

You can use the opt-out method to specify which volumes not to back up. You can do this by using the `backup.velero.io/backup-volumes-excludes` command.

Procedure

- On each pod that contains one or more volumes that you do not want to back up, run the following command:

  ```
  $ oc -n <your_pod_namespace> annotate pod/<your_pod_name> \
  backup.velero.io/backup-volumes=<your_volume_name_1>, \
  <your_volume_name_2>>,\n  <your_volume_name_n>
  
  $ oc -n <your_pod_namespace> annotate pod/<your_pod_name> \
  backup.velero.io/backup-volumes-excludes=<your_volume_name_1>, \
  <your_volume_name_2>>,\n  <your_volume_name_n>
  ```

 where:

 `<your_volume_name_x>`

 specifies the name of the xth volume in the pod specification.

 NOTE

 You can enable this behavior for all Velero backups by running the `velero install` command with the `--default-volumes-to-fs-backup` flag.

4.13.2.3. UID and GID ranges

If you back up data from one cluster and restore it to another cluster, problems might occur with UID (User ID) and GID (Group ID) ranges. The following section explains these potential issues and mitigations:

Summary of the issues

The namespace UID and GID ranges might change depending on the destination cluster. OADP does not back up and restore OpenShift UID range metadata. If the backed up application requires a specific UID, ensure the range is available upon restore. For more information about OpenShift’s UID and GID ranges, see [A Guide to OpenShift and UIDs](https://docs.openshift.com/container-platform/4.8/admin_guide/uidRanges.html).

Detailed description of the issues

When you create a namespace in OpenShift Container Platform by using the shell command `oc`
create namespace. OpenShift Container Platform assigns the namespace a unique User ID (UID) range from its available pool of UIDs, a Supplemental Group (GID) range, and unique SELinux MCS labels. This information is stored in the metadata.annotations field of the cluster. This information is part of the Security Context Constraints (SCC) annotations, which comprise of the following components:

- openshift.io/sa.scc.mcs
- openshift.io/sa.scc.supplemental-groups
- openshift.io/sa.scc.uid-range

When you use OADP to restore the namespace, it automatically uses the information in metadata.annotations without resetting it for the destination cluster. As a result, the workload might not have access to the backed up data if any of the following is true:

- There is an existing namespace with other SCC annotations, for example, on another cluster. In this case, OADP uses the existing namespace during the backup instead of the namespace you want to restore.

- A label selector was used during the backup, but the namespace in which the workloads are executed does not have the label. In this case, OADP does not back up the namespace, but creates a new namespace during the restore that does not contain the annotations of the backed up namespace. This results in a new UID range being assigned to the namespace. This can be an issue for customer workloads if OpenShift Container Platform assigns a pod a securityContext UID to a pod based on namespace annotations that have changed since the persistent volume data was backed up.

- The UID of the container no longer matches the UID of the file owner.

- An error occurs because OpenShift Container Platform has not changed the UID range of the destination cluster to match the backup cluster data. As a result, the backup cluster has a different UID than the destination cluster, which means that the application cannot read or write data on the destination cluster.

Mitigations

You can use one or more of the following mitigations to resolve the UID and GID range issues:

- **Simple mitigations:**
 - If you use a label selector in the Backup CR to filter the objects to include in the backup, be sure to add this label selector to the namespace that contains the workspace.

 - Remove any pre-existing version of a namespace on the destination cluster before attempting to restore a namespace with the same name.

- **Advanced mitigations:**

 - Fix UID ranges after migration by Resolving overlapping UID ranges in OpenShift namespaces after migration. Step 1 is optional.

For an in-depth discussion of UID and GID ranges in OpenShift Container Platform with an emphasis on overcoming issues in backing up data on one cluster and restoring it on another, see A Guide to OpenShift and UIDs.
4.13.2.4. Backing up data from one cluster and restoring it to another cluster

In general, you back up data from one OpenShift Container Platform cluster and restore it on another OpenShift Container Platform cluster in the same way that you back up and restore data to the same cluster. However, there are some additional prerequisites and differences in the procedure when backing up data from one OpenShift Container Platform cluster and restoring it on another.

Prerequisites

- All relevant prerequisites for backing up and restoring on your platform (for example, AWS, Microsoft Azure, GCP, and so on), especially the prerequisites for the Data Protection Application (DPA), are described in the relevant sections of this guide.

Procedure

- Make the following additions to the procedures given for your platform:
 - Ensure that the backup store location (BSL) and volume snapshot location have the same names and paths to restore resources to another cluster.
 - Share the same object storage location credentials across the clusters.
 - For best results, use OADP to create the namespace on the destination cluster.
 - If you use the Velero file-system-backup option, enable the --default-volumes-to-fs-backup flag for use during backup by running the following command:

    ```
    $ velero backup create <backup_name> --default-volumes-to-fs-backup <any_other_options>
    ```

 NOTE
 In OADP 1.2 and later, the Velero Restic option is called file-system-backup.

4.13.3. Additional resources

For more information about API group versions, see Working with different Kubernetes API versions on the same cluster.

For more information about OADP Data Mover, see Using Data Mover for CSI snapshots.

For more information about using Restic with OADP, see Backing up applications with File System Backup: Kopia or Restic.
CHAPTER 5. CONTROL PLANE BACKUP AND RESTORE

5.1. BACKING UP ETCD

etcd is the key-value store for OpenShift Container Platform, which persists the state of all resource objects.

Back up your cluster’s etcd data regularly and store in a secure location ideally outside the OpenShift Container Platform environment. Do not take an etcd backup before the first certificate rotation completes, which occurs 24 hours after installation, otherwise the backup will contain expired certificates. It is also recommended to take etcd backups during non-peak usage hours because the etcd snapshot has a high I/O cost.

Be sure to take an etcd backup after you upgrade your cluster. This is important because when you restore your cluster, you must use an etcd backup that was taken from the same z-stream release. For example, an OpenShift Container Platform 4.y.z cluster must use an etcd backup that was taken from 4.y.z.

IMPORTANT

Back up your cluster’s etcd data by performing a single invocation of the backup script on a control plane host. Do not take a backup for each control plane host.

After you have an etcd backup, you can **restore to a previous cluster state**.

5.1.1. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for the static pods. This backup can be saved and used at a later time if you need to restore etcd.

IMPORTANT

Only save a backup from a single control plane host. Do not take a backup from each control plane host in the cluster.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` role.
- You have checked whether the cluster-wide proxy is enabled.

TIP

You can check whether the proxy is enabled by reviewing the output of `oc get proxy cluster -o yaml`. The proxy is enabled if the `httpProxy`, `httpsProxy`, and `noProxy` fields have values set.

Procedure

1. Start a debug session as root for a control plane node:

   ```
   $ oc debug --as-root node/<node_name>
   ```
2. Change your root directory to `/host` in the debug shell:

```
sh-4.4# chroot /host
```

3. If the cluster-wide proxy is enabled, be sure that you have exported the `NO_PROXY`, `HTTP_PROXY`, and `HTTPS_PROXY` environment variables.

4. Run the `cluster-backup.sh` script in the debug shell and pass in the location to save the backup to.

TIP

The `cluster-backup.sh` script is maintained as a component of the etcd Cluster Operator and is a wrapper around the `etcdctl snapshot save` command.

```
sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup
```

Example script output

```
found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-manager-pod-7
found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
etcdctl version: 3.4.14
API version: 3.4
"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"
"level":"info","ts":2021-06-25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream; downloading"
"level":"info","ts":1624647639.031006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching snapshot","endpoint":"https://10.0.0.5:2379"
"level":"info","ts":2021-06-25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read; closing"
"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved",
"path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"
Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336
snapshot db and kube resources are successfully saved to /home/core/assets/backup
```

In this example, two files are created in the `/home/core/assets/backup` directory on the control plane host:

- **snapshot_<datetimestamp>.db**: This file is the etcd snapshot. The `cluster-backup.sh` script confirms its validity.
- **static_kuberesources_<datetimestamp>.tar.gz**: This file contains the resources for the static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd snapshot.
NOTE

If etcd encryption is enabled, it is recommended to store this second file separately from the etcd snapshot for security reasons. However, this file is required to restore from the etcd snapshot.

Keep in mind that etcd encryption only encrypts values, not keys. This means that resource types, namespaces, and object names are unencrypted.

5.1.2. Additional resources

- Backing up and restoring etcd on a hosted cluster

5.1.3. Creating automated etcd backups

The automated backup feature for etcd supports both recurring and single backups. Recurring backups create a cron job that starts a single backup each time the job triggers.

IMPORTANT

Automating etcd backups is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

5.1.3.1. Enabling automated etcd backups

Follow these steps to enable automated backups for etcd.

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster prevents minor version updates. The TechPreviewNoUpgrade feature set cannot be disabled. Do not enable this feature set on production clusters.

Prerequisites

- You have access to the cluster as a user with the cluster-admin role.
- You have access to the OpenShift CLI (oc).

Procedure

1. Create a FeatureGate custom resource (CR) file named enable-tech-preview-no-upgrade.yaml with the following contents:
Apply the CR and enable automated backups:

```
$ oc apply -f enable-tech-preview-no-upgrade.yaml
```

3. It takes time to enable the related APIs. Verify the creation of the custom resource definition (CRD) by running the following command:

```
$ oc get crd | grep backup
```

Example output

```
backups.config.openshift.io 2023-10-25T13:32:43Z
etcdbackups.operator.openshift.io 2023-10-25T13:32:04Z
```

5.1.3.2. Creating a single etcd backup

Follow these steps to create a single etcd backup by creating and applying a custom resource (CR).

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` role.
- You have access to the OpenShift CLI (`oc`).
- You have a PVC to save backup data to.

Procedure

1. Create a CR file named `etcd-single-backup.yaml` with contents such as the following example:

   ```yaml
   apiVersion: operator.openshift.io/v1alpha1
   kind: EtcdBackup
   metadata:
     name: etcd-single-backup
     namespace: openshift-etcd
   spec:
     pvcName: etcd-backup-pvc
   
   <.> The name of the persistent volume claim (PVC) to save the backup to. Adjust this value according to your environment.
   
   2. Apply the CR to start a single backup:

   ```
 $ oc apply -f etcd-single-backup.yaml
   ```
5.1.3.3. Creating recurring etcd backups

Follow these steps to create automated recurring backups of etcd.

Use dynamically-provisioned storage to keep the created etcd backup data in a safe, external location if possible. If dynamically-provisioned storage is not available, consider storing the backup data on an NFS share to make backup recovery more accessible.

Prerequisites

- You have access to the cluster as a user with the cluster-admin role.
- You have access to the OpenShift CLI (oc).

Procedure

1. If dynamically-provisioned storage is available, complete the following steps to create automated recurring backups:

   a. Create a persistent volume claim (PVC) named etcd-backup-pvc.yaml with contents such as the following example:

      ```yaml
 kind: PersistentVolumeClaim
 apiVersion: v1
 metadata:
 name: etcd-backup-pvc
 namespace: openshift-etcd
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 200Gi
 storageClassName: standard-csi
 volumeMode: Filesystem

 <!-- The amount of storage available to the PVC. Adjust this value for your requirements. -->
 <!-- The name of the StorageClass required by the claim. Adjust this value according to your environment. -->
      ```
NOTE

Each of the following providers require changes to the `accessModes` and `storageClassName` keys:

<table>
<thead>
<tr>
<th>Provider</th>
<th><code>accessModes</code> value</th>
<th><code>storageClassName</code> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS with the versioned-installer-efc_operator-ci profile</td>
<td>- ReadWriteMany</td>
<td>efs-sc</td>
</tr>
<tr>
<td>Google Cloud Platform</td>
<td>- ReadWriteMany</td>
<td>filestore-csi</td>
</tr>
<tr>
<td>Microsoft Azure</td>
<td>- ReadWriteMany</td>
<td>azurefile-csi</td>
</tr>
</tbody>
</table>

b. Apply the PVC by running the following command:

```
$ oc apply -f etcd-backup-pvc.yaml
```

c. Verify the creation of the PVC by running the following command:

```
$ oc get pvc
```

**Example output**

+ NAME               + STATUS + VOLUME + CAPACITY + ACCESS MODES + STORAGECLASS + AGE 
+-------------------+--------+---------+------------+----------------+-------------+--------+
+ etcd-backup-pvc   + Pending+         +            + standard-csi  + etcd-backup-pvc + 51s

**NOTE**

Dynamic PVCs stay in the Pending state until they are mounted.

2. If dynamically-provisioned storage is unavailable, create a local storage PVC by completing the following steps:

**WARNING**

If you delete or otherwise lose access to the node that contains the stored backup data, you can lose data.

a. Create a StorageClass CR file named `etcd-backup-local-storage.yaml` with the following contents:
Apply the **StorageClass** CR by running the following command:

```
$ oc apply -f etcd-backup-local-storage.yaml
```

Create a PV named **etcd-backup-pv-fs.yaml** from the applied **StorageClass** with content such as the following example:

```
apiVersion: v1
kind: PersistentVolume
metadata:
 name: etcd-backup-pv-fs
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <example-master-node>
```

<!-- The amount of storage available to the PV. Adjust this value for your requirements. -->

Replace this value with the node to attach this PV to.

**TIP**

Run the following command to list the available nodes:

```
$ oc get nodes
```

d. Verify the creation of the PV by running the following command:

```
$ oc get pv
```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAPACITY</th>
<th>ACCESS MODES</th>
<th>RECLAIM POLICY</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Container Platform 4.15 Backup and restore</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Create a PVC named `etcd-backup-pvc.yaml` with contents such as the following example:

```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: etcd-backup-pvc
spec:
 accessModes:
 - ReadWriteMany
 volumeMode: Filesystem
 resources:
 requests:
 storage: 10Gi
 storageClassName: local-storage
```

<> The amount of storage available to the PVC. Adjust this value for your requirements.

Apply the PVC by running the following command:

```shell
$ oc apply -f etcd-backup-pvc.yaml
```

3. Create a custom resource definition (CRD) file named `etcd-recurring-backups.yaml`. The contents of the created CRD define the schedule and retention type of automated backups. For the default retention type of `RetentionNumber` with 15 retained backups, use contents such as the following example:

```yaml
apiVersion: config.openshift.io/v1alpha1
kind: Backup
metadata:
 name: etcd-recurring-backup
spec:
 etcd:
 schedule: "20 4 * * *"
 timeZone: "UTC"
 pvcName: etcd-backup-pvc
```

<> The CronTab schedule for recurring backups. Adjust this value for your needs.

To use retention based on the maximum number of backups, add the following key-value pairs to the `etcd` key:

```yaml
spec:
 etcd:
 retentionPolicy:
 retentionType: RetentionNumber
 retentionNumber:
 maxNumberOfBackups: 5
```

<> The retention type. Defaults to `RetentionNumber` if unspecified. <> The maximum number of backups to retain. Adjust this value for your needs. Defaults to 15 backups if unspecified.
WARNING
A known issue causes the number of retained backups to be one greater than the configured value.

For retention based on the file size of backups, use the following:

```yaml
spec:
 etcd:
 retentionPolicy:
 retentionType: RetentionSize
 retentionSize:
 maxSizeOfBackupsGb: 20
```

<> The maximum file size of the retained backups in gigabytes. Adjust this value for your needs. Defaults to 10 GB if unspecified.

WARNING
A known issue causes the maximum size of retained backups to be up to 10 GB greater than the configured value.

4. Create the cron job defined by the CRD by running the following command:

   ```
 $ oc create -f etcd-recurring-backup.yaml
   ```

5. To find the created cron job, run the following command:

   ```
 $ oc get cronjob -n openshift-etcd
   ```

5.2. REPLACING AN UNHEALTHY ETCD MEMBER

This document describes the process to replace a single unhealthy etcd member.

This process depends on whether the etcd member is unhealthy because the machine is not running or the node is not ready, or whether it is unhealthy because the etcd pod is crashlooping.
NOTE

If you have lost the majority of your control plane hosts, follow the disaster recovery procedure to **restore to a previous cluster state** instead of this procedure.

If the control plane certificates are not valid on the member being replaced, then you must follow the procedure to **recover from expired control plane certificates** instead of this procedure.

If a control plane node is lost and a new one is created, the etcd cluster Operator handles generating the new TLS certificates and adding the node as an etcd member.

5.2.1. Prerequisites

- Take an **etcd backup** prior to replacing an unhealthy etcd member.

5.2.2. Identifying an unhealthy etcd member

You can identify if your cluster has an unhealthy etcd member.

**Prerequisites**

- Access to the cluster as a user with the **cluster-admin** role.

**Procedure**

1. Check the status of the **EtcdMembersAvailable** status condition using the following command:

   ```
 $ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?(@.type=="EtcdMembersAvailable")]}{.message}{"\n"}'
   ```

   2 of 3 members are available, ip-10-0-131-183.ec2.internal is unhealthy

   This example output shows that the **ip-10-0-131-183.ec2.internal** etcd member is unhealthy.

5.2.3. Determining the state of the unhealthy etcd member

The steps to replace an unhealthy etcd member depend on which of the following states your etcd member is in:

- The machine is not running or the node is not ready
- The etcd pod is crashlooping

This procedure determines which state your etcd member is in. This enables you to know which procedure to follow to replace the unhealthy etcd member.
NOTE
If you are aware that the machine is not running or the node is not ready, but you expect it to return to a healthy state soon, then you do not need to perform a procedure to replace the etcd member. The etcd cluster Operator will automatically sync when the machine or node returns to a healthy state.

Prerequisites
- You have access to the cluster as a user with the `cluster-admin` role.
- You have identified an unhealthy etcd member.

Procedure
1. Determine if the **machine is not running**.

   ```bash
 $ oc get machines -A -o jsonpath='{range .items[*]}{@.status.nodeRef.name}{\"\\t\"}{@.status.providerStatus.instanceState}{\"\\n\"} | grep -v running

 Example output

 ip-10-0-131-183.ec2.internal stopped

 1 This output lists the node and the status of the node's machine. If the status is anything other than **running**, then the **machine is not running**.

 If the **machine is not running**, then follow the Replacing an unhealthy etcd member whose machine is not running or whose node is not ready procedure.

2. Determine if the **node is not ready**.

 If either of the following scenarios are true, then the **node is not ready**.
 - If the machine is running, then check whether the node is unreachable:

     ```bash
     $ oc get nodes -o jsonpath='{range .items[*]}{\"\\n\"}{.metadata.name}{\"\\t\"}{range .spec.taints[*]{\"\\\"}{.key}{\"\\\"} } | grep unreachable
     
     Example output
     
     ip-10-0-131-183.ec2.internal node-role.kubernetes.io/master node.kubernetes.io/unreachable node.kubernetes.io/unreachable
     
     1 If the node is listed with an **unreachable** taint, then the **node is not ready**.

   - If the node is still reachable, then check whether the node is listed as **NotReady**:

     ```bash
 $ oc get nodes -l node-role.kubernetes.io/master | grep "NotReady"

 Example output
If the node is listed as *NotReady*, then the **node is not ready**.

If the **node is not ready**, then follow the *Replacing an unhealthy etcd member whose machine is not running or whose node is not ready* procedure.

3. Determine if the **etcd pod is crashlooping**
 If the machine is running and the node is ready, then check whether the etcd pod is crashlooping.
 a. Verify that all control plane nodes are listed as *Ready*:
      ```
      $ oc get nodes -l node-role.kubernetes.io/master
      
      Example output
      
      | NAME                        | STATUS | ROLES     | AGE       | VERSION |
      |-----------------------------|--------|-----------|-----------|---------|
      | ip-10-0-131-183.ec2.internal | Ready  | master    | 6h13m     | v1.28.5 |
      | ip-10-0-164-97.ec2.internal  | Ready  | master    | 6h13m     | v1.28.5 |
      | ip-10-0-154-204.ec2.internal | Ready  | master    | 6h13m     | v1.28.5 |
      
      Example output
      
      $ oc -n openshift-etcd get pods -l k8s-app=etcd
      
      Example output
      
      | NAME                        | STATUS | AGE  |
      |-----------------------------|--------|------|
      | etcd-ip-10-0-131-183.ec2.internal | Error | 7    |
      | etcd-ip-10-0-164-97.ec2.internal | Running | 0   |
      | etcd-ip-10-0-154-204.ec2.internal | Running | 0   |
      
      Since this status of this pod is **Error**, then the **etcd pod is crashlooping**
      If the **etcd pod is crashlooping** then follow the *Replacing an unhealthy etcd member whose etcd pod is crashlooping* procedure.

5.2.4. Replacing the unhealthy etcd member

Depending on the state of your unhealthy etcd member, use one of the following procedures:

- Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
- Replacing an unhealthy etcd member whose etcd pod is crashlooping
- Replacing an unhealthy stopped baremetal etcd member

5.2.4.1. Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
This procedure details the steps to replace an etcd member that is unhealthy either because the machine is not running or because the node is not ready.

**NOTE**

If your cluster uses a control plane machine set, see "Recovering a degraded etcd Operator" in "Troubleshooting the control plane machine set" for a more simple etcd recovery procedure.

**Prerequisites**

- You have identified the unhealthy etcd member.
- You have verified that either the machine is not running or the node is not ready.

**IMPORTANT**

You must wait if the other control plane nodes are powered off. The control plane nodes must remain powered off until the replacement of an unhealthy etcd member is complete.

- You have access to the cluster as a user with the `cluster-admin` role.
- You have taken an etcd backup.

**IMPORTANT**

It is important to take an etcd backup before performing this procedure so that your cluster can be restored if you encounter any issues.

**Procedure**

1. Remove the unhealthy member.
   a. Choose a pod that is **not** on the affected node:
      In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

      ```
 $ oc -n openshift-etcd get pods -l k8s-app=etcd
      ```
      **Example output**
      ```
 etcd-ip-10-0-131-183.ec2.internal 3/3 Running 0 123m
 etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 123m
 etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 124m
      ```
      
      b. Connect to the running etcd container, passing in the name of a pod that is not on the affected node:
      In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

      ```
 $ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal
      ```
c. View the member list:

```
sh-4.2# etcdctl member list -w table
```

**Example output**

```
+------------------+---------+------------------------------+---------------------------+-------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDR |
|------------------|---------+------------------------------+---------------------------+-------------------|
+------------------|---------+------------------------------+---------------------------+-------------------+
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 | https://10.0.154.204:2379 |
+------------------|---------+------------------------------+---------------------------+-------------------+
```

Take note of the ID and the name of the unhealthy etcd member, because these values are needed later in the procedure. The `$ etcdctl endpoint health` command will list the removed member until the procedure of replacement is finished and a new member is added.

d. Remove the unhealthy etcd member by providing the ID to the `etcdctl member remove` command:

```
sh-4.2# etcdctl member remove 6fc1e7c9db35841d
```

**Example output**

```
Member 6fc1e7c9db35841d removed from cluster ead669ce1f86b346
```

e. View the member list again and verify that the member was removed:

```
sh-4.2# etcdctl member list -w table
```

**Example output**

```
+------------------+---------+------------------------------+---------------------------+-------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDR |
|------------------|---------+------------------------------+---------------------------+-------------------|
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 | https://10.0.154.204:2379 |
+------------------|---------+------------------------------+---------------------------+-------------------+
```

CHAPTER 5. CONTROL PLANE BACKUP AND RESTORE
You can now exit the node shell.

2. Turn off the quorum guard by entering the following command:

   ```bash
 $ oc patch etcd/cluster --type=merge -p '{"unsupportedConfigOverrides":
 {"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}'

 This command ensures that you can successfully re-create secrets and roll out the static pods.

 IMPORTANT

 After you turn off the quorum guard, the cluster might be unreachable for a short time while the remaining etcd instances reboot to reflect the configuration change.

 NOTE

 etcd cannot tolerate any additional member failure when running with two members. Restarting either remaining member breaks the quorum and causes downtime in your cluster. The quorum guard protects etcd from restarts due to configuration changes that could cause downtime, so it must be disabled to complete this procedure.

3. Delete the affected node by running the following command:

   ```bash
   $ oc delete node <node_name>
   ```

4. Remove the old secrets for the unhealthy etcd member that was removed.

 a. List the secrets for the unhealthy etcd member that was removed.

      ```bash
      $ oc get secrets -n openshift-etcd | grep ip-10-0-131-183.ec2.internal
      
      etcd-peer-ip-10-0-131-183.ec2.internal      kubernetes.io/tls       2      47m
      etcd-serving-ip-10-0-131-183.ec2.internal    kubernetes.io/tls       2      47m
      etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
      
      $ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal
      
      Pass in the name of the unhealthy etcd member that you took note of earlier in this procedure.

      There is a peer, serving, and metrics secret as shown in the following output:

      **Example output**

      | Secret                           | Type               | Age   | |
|---|---|---|---|
      | etcd-peer-ip-10-0-131-183.ec2.internal | kubernetes.io/tls | 2     | 47m |
      | etcd-serving-ip-10-0-131-183.ec2.internal | kubernetes.io/tls | 2     | 47m |
      | etcd-serving-metrics-ip-10-0-131-183.ec2.internal | kubernetes.io/tls | 2     | 47m |

   b. Delete the secrets for the unhealthy etcd member that was removed.

      i. Delete the peer secret:

         ```bash
 $ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal

 ii. Delete the serving secret:

         ```bash
         ```
$ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal

iii. Delete the metrics secret:

$ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-183.ec2.internal

5. Delete and re-create the control plane machine. After this machine is re-created, a new revision is forced and etcd scales up automatically.

If you are running installer-provisioned infrastructure, or you used the Machine API to create your machines, follow these steps. Otherwise, you must create the new master using the same method that was used to originally create it.

a. Obtain the machine for the unhealthy member.

In a terminal that has access to the cluster as a **cluster-admin** user, run the following command:

$ oc get machines -n openshift-machine-api -o wide

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>TYPE</th>
<th>REGION</th>
<th>ZONE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>clustername-8qw5l-master-0</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1a</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-master-1</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1b</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-master-2</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1c</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1a-wbtgd</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1</td>
<td>us-east-1a</td>
<td>3h28m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1b-lrdxb</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1</td>
<td>us-east-1b</td>
<td>3h28m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1c-pkg26</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1</td>
<td>us-east-1c</td>
<td>3h28m</td>
</tr>
</tbody>
</table>

This is the control plane machine for the unhealthy node, **ip-10-0-131-183.ec2.internal**.

b. Save the machine configuration to a file on your file system:

$ oc get machine clustername-8qw5l-master-0 -n openshift-machine-api -o yaml > new-master-machine.yaml

Specify the name of the control plane machine for the unhealthy node.

c. Edit the **new-master-machine.yaml** file that was created in the previous step to assign a new name and remove unnecessary fields.
i. Remove the entire `status` section:

```yaml
status:
  addresses:
  - address: 10.0.131.183
    type: InternalIP
  - address: ip-10-0-131-183.ec2.internal
    type: InternalDNS
  - address: ip-10-0-131-183.ec2.internal
    type: Hostname
lastUpdated: "2020-04-20T17:44:29Z"
nodeRef:
  kind: Node
  name: ip-10-0-131-183.ec2.internal
  uid: acca4411-af0d-4387-b73e-52b2484295ad
phase: Running
providerStatus:
  apiVersion: awsproviderconfig.openshift.io/v1beta1
  conditions:
  - lastProbeTime: "2020-04-20T16:53:50Z"
    lastTransitionTime: "2020-04-20T16:53:50Z"
    message: machine successfully created
    reason: MachineCreationSucceeded
    status: "True"
    type: MachineCreation
  instanceId: i-0fdb85790d76d0c3f
  instanceState: stopped
  kind: AWSMachineProviderStatus
```

ii. Change the `metadata.name` field to a new name.
It is recommended to keep the same base name as the old machine and change the ending number to the next available number. In this example, `clustername-8qw5l-master-0` is changed to `clustername-8qw5l-master-3`.

For example:

```yaml
apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
  ...
  name: clustername-8qw5l-master-3
  ...
```

iii. Remove the `spec.providerID` field:

```bash
providerID: aws:///us-east-1a/i-0fdb85790d76d0c3f
```

d. Delete the machine of the unhealthy member:

```bash
$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0
```

Specify the name of the control plane machine for the unhealthy node.
1. Verify that the machine was deleted:

```bash
$ oc get machines -n openshift-machine-api -o wide
```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>TYPE</th>
<th>REGION</th>
<th>ZONE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>clustername-8qw5l-master-1</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1b</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-master-2</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1c</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1a-wbtgd</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1a</td>
<td>running</td>
<td>3h28m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1b-lrdxb</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1b</td>
<td>running</td>
<td>3h28m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1c-pkg26</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1c</td>
<td>running</td>
<td>3h28m</td>
</tr>
</tbody>
</table>

2. Create the new machine using the **new-master-machine.yaml** file:

```bash
$ oc apply -f new-master-machine.yaml
```

3. Verify that the new machine has been created:

```bash
$ oc get machines -n openshift-machine-api -o wide
```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>TYPE</th>
<th>REGION</th>
<th>ZONE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>clustername-8qw5l-master-1</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1b</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-master-2</td>
<td>Running</td>
<td>m4.xlarge</td>
<td>us-east-1</td>
<td>us-east-1c</td>
<td>3h37m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1a-wbtgd</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1a</td>
<td>running</td>
<td>3h28m</td>
</tr>
<tr>
<td>clustername-8qw5l-worker-us-east-1b-lrdxb</td>
<td>Running</td>
<td>m4.large</td>
<td>us-east-1b</td>
<td>running</td>
<td>3h28m</td>
</tr>
</tbody>
</table>

1. The new machine, **clustername-8qw5l-master-3** is being created and is ready once the phase changes from **Provisioning** to **Running**.
6. Turn the quorum guard back on by entering the following command:

 $ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

7. You can verify that the `unsupportedConfigOverrides` section is removed from the object by entering this command:

 $ oc get etcd/cluster -oyaml

8. If you are using single-node OpenShift, restart the node. Otherwise, you might encounter the following error in the etcd cluster Operator:

 Example output

 EtcdCertSignerControllerDegraded: [Operation cannot be fulfilled on secrets "etcd-peer-sno-0": the object has been modified; please apply your changes to the latest version and try again, Operation cannot be fulfilled on secrets "etcd-serving-sno-0": the object has been modified; please apply your changes to the latest version and try again, Operation cannot be fulfilled on secrets "etcd-serving-metrics-sno-0": the object has been modified; please apply your changes to the latest version and try again]

Verification

1. Verify that all etcd pods are running properly.

 In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

 $ oc -n openshift-etcd get pods -l k8s-app=etcd

 Example output

 | etcd-ip-10-0-133-53.ec2.internal | 3/3 Running 0 7m49s |
 | etcd-ip-10-0-164-97.ec2.internal | 3/3 Running 0 123m |
 | etcd-ip-10-0-154-204.ec2.internal | 3/3 Running 0 124m |

 If the output from the previous command only lists two pods, you can manually force an etcd redeployment. In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

 $ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "$\{\$(date --rfc-3339=ns \}\)\}'} --type=merge

 The `forceRedeploymentReason` value must be unique, which is why a timestamp is appended.

2. Verify that there are exactly three etcd members.

 a. Connect to the running etcd container, passing in the name of a pod that was not on the affected node:

 $ oc -n openshift-etcd exec etcd-ip-10-0-133-53.ec2.internal -- etcdctl member list
In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

```
$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal
```

b. View the member list:

```
sh-4.2# etcdctl member list -w table
```

Example output

```
+------------------+---------+------------------------------+---------------------------+---------------------------+
|        ID        | STATUS  |             NAME             |        PEER ADDRS         |       CLIENT ADDR          |
|------------------+---------+------------------------------+---------------------------+---------------------------|
| 5eb0d6b8ca24730c | started | ip-10-0-133-53.ec2.internal |  https://10.0.133.53:2380 | https://10.0.133.53:2379   |
| ca8c2990a0a29d1  | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 | https://10.0.154.204:2379   |
+------------------+---------+------------------------------+---------------------------+---------------------------+
```

If the output from the previous command lists more than three etcd members, you must carefully remove the unwanted member.

WARNING

Be sure to remove the correct etcd member; removing a good etcd member might lead to quorum loss.

Additional resources

- Recovering a degraded etcd Operator

5.2.4.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping

This procedure details the steps to replace an etcd member that is unhealthy because the etcd pod is crashlooping.

Prerequisites

- You have identified the unhealthy etcd member.
- You have verified that the etcd pod is crashlooping.
You have access to the cluster as a user with the **cluster-admin** role.

You have taken an etcd backup.

IMPORTANT

It is important to take an etcd backup before performing this procedure so that your cluster can be restored if you encounter any issues.

Procedure

1. Stop the crashlooping etcd pod.

a. Debug the node that is crashlooping.

 In a terminal that has access to the cluster as a **cluster-admin** user, run the following command:

   ```bash
   $ oc debug node/ip-10-0-131-183.ec2.internal
   
   Replace this with the name of the unhealthy node.
   
   Example output
   ```

 b. Change your root directory to `/host`:

   ```bash
   sh-4.2# chroot /host
   ```

 c. Move the existing etcd pod file out of the kubelet manifest directory:

   ```bash
   sh-4.2# mkdir /var/lib/etcd-backup
   sh-4.2# mv /etc/kubernetes/manifests/etcd-pod.yaml /var/lib/etcd-backup/
   ```

 d. Move the etcd data directory to a different location:

   ```bash
   sh-4.2# mv /var/lib/etcd/ /tmp
   ```

 You can now exit the node shell.

2. Remove the unhealthy member.

a. Choose a pod that is *not* on the affected node.

 In a terminal that has access to the cluster as a **cluster-admin** user, run the following command:

   ```bash
   $ oc -n openshift-etcd get pods -l k8s-app=etcd
   ```

 Example output
   ```
   etcd-ip-10-0-131-183.ec2.internal                2/3     Error       7          6h9m
   etcd-ip-10-0-164-97.ec2.internal                 3/3     Running     0          6h6m
   etcd-ip-10-0-154-204.ec2.internal                3/3     Running     0          6h6m
   ```
b. Connect to the running etcd container, passing in the name of a pod that is not on the
affected node.

In a terminal that has access to the cluster as a *cluster-admin* user, run the following
command:

```
$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal
```

c. View the member list:

```
sh-4.2# etcdctl member list -w table
```

Example output

```
+------------------+---------+------------------------------+---------------------------+---------------------------+
|        ID        | STATUS  |             NAME             |        PEER ADDRS         |       CLIENT ADDR         |
+------------------+---------+------------------------------+---------------------------+---------------------------+
| d022e10b498760d5 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 | https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+---------------------------+
```

Take note of the ID and the name of the unhealthy etcd member, because these values are
needed later in the procedure.

d. Remove the unhealthy etcd member by providing the ID to the *etcdctl member remove*
command:

```
sh-4.2# etcdctl member remove 62bcf33650a7170a
```

Example output

```
Member 62bcf33650a7170a removed from cluster ead669ce1fbfb346
```

e. View the member list again and verify that the member was removed:

```
sh-4.2# etcdctl member list -w table
```

Example output

```
+------------------+---------+------------------------------+---------------------------+---------------------------+
|        ID        | STATUS  |             NAME             |        PEER ADDRS         |       CLIENT ADDR         |
+------------------+---------+------------------------------+---------------------------+---------------------------+
+------------------+---------+------------------------------+---------------------------+---------------------------+
```
You can now exit the node shell.

3. Turn off the quorum guard by entering the following command:

   ```bash
   $ oc patch etcd/cluster --type=merge -p '{"spec": {"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}'
   
   This command ensures that you can successfully re-create secrets and roll out the static pods.

4. Remove the old secrets for the unhealthy etcd member that was removed.
   a. List the secrets for the unhealthy etcd member that was removed.

      ```bash
 $ oc get secrets -n openshift-etcd | grep ip-10-0-131-183.ec2.internal

 etcd-peer-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
 etcd-serving-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
 etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m

 $ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal
 $ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal
 $ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-183.ec2.internal

 $ oc patch etcd cluster -p='{"forceRedeploymentReason": "$(date --rfc-3339=ns)"}' --type=merge

 This procedure is required if you added a single master etcd member to your deployment.

 There is a peer, serving, and metrics secret as shown in the following output:

 Example output

 etcd-peer-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
 etcd-serving-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
 etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m

 b. Delete the secrets for the unhealthy etcd member that was removed.

 i. Delete the peer secret:

            ```bash
            $ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal
            
            ii. Delete the serving secret:

            ```bash
 $ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal

 iii. Delete the metrics secret:

            ```bash
            $ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-183.ec2.internal
            
            5. Force etcd redeployment.
           
           In a terminal that has access to the cluster as a **cluster-admin** user, run the following command:

           ```bash
 $ oc patch etcd cluster -p="{"forceRedeploymentReason": "single-master-recovery-""$(date --rfc-3339=ns)""}}" --type=merge
           ```
The `forceRedeploymentReason` value must be unique, which is why a timestamp is appended.

When the etcd cluster Operator performs a redeployment, it ensures that all control plane nodes have a functioning etcd pod.

6. Turn the quorum guard back on by entering the following command:

   ```bash
 $ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'
   ```

7. You can verify that the `unsupportedConfigOverrides` section is removed from the object by entering this command:

   ```bash
 $ oc get etcd/cluster -oyaml
   ```

8. If you are using single-node OpenShift, restart the node. Otherwise, you might encounter the following error in the etcd cluster Operator:

   **Example output**

   ```
 EtcdCertSignerControllerDegraded: [Operation cannot be fulfilled on secrets "etcd-peer-sno-0": the object has been modified; please apply your changes to the latest version and try again, Operation cannot be fulfilled on secrets "etcd-serving-sno-0": the object has been modified; please apply your changes to the latest version and try again, Operation cannot be fulfilled on secrets "etcd-serving-metrics-sno-0": the object has been modified; please apply your changes to the latest version and try again]
   ```

**Verification**

- Verify that the new member is available and healthy.
  
  a. Connect to the running etcd container again.
     
     In a terminal that has access to the cluster as a cluster-admin user, run the following command:

     ```bash
 $ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal
     ```

     b. Verify that all members are healthy:

     ```bash
 sh-4.2# etcdctl endpoint health
     ```

   **Example output**

   ```
 https://10.0.131.183:2379 is healthy: successfully committed proposal: took = 16.671434ms
 https://10.0.164.97:2379 is healthy: successfully committed proposal: took = 16.621645ms
   ```
5.2.4.3. Replacing an unhealthy bare metal etcd member whose machine is not running or whose node is not ready

This procedure details the steps to replace a bare metal etcd member that is unhealthy either because the machine is not running or because the node is not ready.

If you are running installer-provisioned infrastructure or you used the Machine API to create your machines, follow these steps. Otherwise you must create the new control plane node using the same method that was used to originally create it.

Prerequisites

- You have identified the unhealthy bare metal etcd member.
- You have verified that either the machine is not running or the node is not ready.
- You have access to the cluster as a user with the `cluster-admin` role.
- You have taken an etcd backup.

**IMPORTANT**

You must take an etcd backup before performing this procedure so that your cluster can be restored if you encounter any issues.

Procedure

1. Verify and remove the unhealthy member.
   
   a. Choose a pod that is not on the affected node:
      
      In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

      ```
 $ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide
      ```

      **Example output**

      ```
 etcd-openshift-control-plane-0 5/5 Running 11 3h56m 192.168.10.9 openshift-control-plane-0 <none> <none>
 etcd-openshift-control-plane-1 5/5 Running 0 3h54m 192.168.10.10 openshift-control-plane-1 <none> <none>
 etcd-openshift-control-plane-2 5/5 Running 0 3h58m 192.168.10.11 openshift-control-plane-2 <none> <none>
      ```

      b. Connect to the running etcd container, passing in the name of a pod that is not on the affected node:
      
      In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

      ```
 $ oc rsh -n openshift-etcd etcd-openshift-control-plane-0
      ```

      sh-4.2# etcdctl member list -w table
Take note of the ID and the name of the unhealthy etcd member, because these values are required later in the procedure. The `etcdctl endpoint health` command will list the removed member until the replacement procedure is completed and the new member is added.

d. Remove the unhealthy etcd member by providing the ID to the `etcdctl member remove` command:

```
sh-4.2# etcdctl member remove 7a8197040a5126c8
```

Example output

```
Member 7a8197040a5126c8 removed from cluster b23536c33f2cdd1b
```

e. View the member list again and verify that the member was removed:

```
sh-4.2# etcdctl member list -w table
```

Example output

```
+------------------+---------+--------------------+---------------------------+--------------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDR |
+------------------+---------+--------------------+---------------------------+--------------------------+
| 7a8197040a5126c8 | started | openshift-control-plane-2 | https://192.168.10.11:2380/ | https://192.168.10.11:2379/ |
| 8d5abe969a39192 | started | openshift-control-plane-1 | https://192.168.10.10:2380/ | https://192.168.10.10:2379/ |
| cc3830a72fc3579f | started | openshift-control-plane-0 | https://192.168.10.9:2380/ | https://192.168.10.9:2379/ |
+------------------+---------+--------------------+---------------------------+--------------------------+
```

**WARNING**

Be sure to remove the correct etcd member; removing a good etcd member might lead to quorum loss.
You can now exit the node shell.

**IMPORTANT**

After you remove the member, the cluster might be unreachable for a short time while the remaining etcd instances reboot.

2. Turn off the quorum guard by entering the following command:

```
$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides":
 {"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}
```

This command ensures that you can successfully re-create secrets and roll out the static pods.

3. Remove the old secrets for the unhealthy etcd member that was removed by running the following commands.

   a. List the secrets for the unhealthy etcd member that was removed.

```
$ oc get secrets -n openshift-etcd | grep openshift-control-plane-2
```

Pass in the name of the unhealthy etcd member that you took note of earlier in this procedure.

There is a peer, serving, and metrics secret as shown in the following output:

```
etcd-peer-openshift-control-plane-2 kubernetes.io/tls 2 134m
etcd-serving-metrics-openshift-control-plane-2 kubernetes.io/tls 2 134m
etcd-serving-openshift-control-plane-2 kubernetes.io/tls 2 134m
```

   b. Delete the secrets for the unhealthy etcd member that was removed.

      i. Delete the peer secret:

```
$ oc delete secret etcd-peer-openshift-control-plane-2 -n openshift-etcd
secret "etcd-peer-openshift-control-plane-2" deleted
```

      ii. Delete the serving secret:

```
$ oc delete secret etcd-serving-metrics-openshift-control-plane-2 -n openshift-etcd
secret "etcd-serving-metrics-openshift-control-plane-2" deleted
```

      iii. Delete the metrics secret:
4. Delete the control plane machine.
If you are running installer-provisioned infrastructure, or you used the Machine API to create your machines, follow these steps. Otherwise, you must create the new control plane node using the same method that was used to originally create it.

a. Obtain the machine for the unhealthy member.
In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

```bash
$ oc delete secret etcd-serving-openshift-control-plane-2 -n openshift-etcd
secret "etcd-serving-openshift-control-plane-2" deleted
```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>TYPE</th>
<th>REGION</th>
<th>ZONE</th>
<th>AGE</th>
<th>NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>examplecluster-control-plane-0</td>
<td>Running</td>
<td></td>
<td></td>
<td></td>
<td>3h11m</td>
<td>openshift-control-plane-0</td>
</tr>
<tr>
<td>examplecluster-control-plane-1</td>
<td>Running</td>
<td></td>
<td></td>
<td></td>
<td>3h11m</td>
<td>openshift-control-plane-1</td>
</tr>
<tr>
<td>examplecluster-control-plane-2</td>
<td>Running</td>
<td></td>
<td></td>
<td></td>
<td>3h11m</td>
<td>openshift-control-plane-2</td>
</tr>
<tr>
<td>examplecluster-compute-0</td>
<td>Running</td>
<td></td>
<td></td>
<td></td>
<td>165m</td>
<td>openshift-compute-0</td>
</tr>
<tr>
<td>examplecluster-compute-1</td>
<td>Running</td>
<td></td>
<td></td>
<td></td>
<td>165m</td>
<td>openshift-compute-1</td>
</tr>
<tr>
<td>examplecluster-compute-2</td>
<td>Running</td>
<td></td>
<td></td>
<td></td>
<td>165m</td>
<td>openshift-compute-2</td>
</tr>
</tbody>
</table>

This is the control plane machine for the unhealthy node, `examplecluster-control-plane-2`.

b. Save the machine configuration to a file on your file system:

```bash
$ oc get machines -n openshift-machine-api -o wide
```

```yaml
Example output

NAME PHASE TYPE REGION | ZONE | AGE | NODE
examplecluster-control-plane-0 Running | | | | | 3h11m | openshift-control-plane-0
examplecluster-control-plane-1 Running | | | | | 3h11m | openshift-control-plane-1
examplecluster-control-plane-2 Running | | | | | 3h11m | openshift-control-plane-2
examplecluster-compute-0 Running | | | | | 165m | openshift-compute-0 |
examplecluster-compute-1 Running | | | | | 165m | openshift-compute-1 |
examplecluster-compute-2 Running | | | | | 165m | openshift-compute-2 |

1 Specify the name of the control plane machine for the unhealthy node.

c. Edit the `new-master-machine.yaml` file that was created in the previous step to assign a new name and remove unnecessary fields.

i. Remove the entire `status` section:
5. Change the `metadata.name` field to a new name. It is recommended to keep the same base name as the old machine and change the ending number to the next available number. In this example, `examplecluster-control-plane-2` is changed to `examplecluster-control-plane-3`.

For example:

```yaml
status:
  addresses:
  - address: ""
    type: InternalIP
  - address: fe80::4:1ff:fe00:8aa1%ens1f1.373
    type: InternalDNS
  - address: fe80::4:1ff:fe00:8aa1%ens1f1.371
    type: Hostname
lastUpdated: "2020-04-20T17:44:29Z"

nodeRef:
  kind: Machine
  name: fe80::4:1ff:fe00:8aa1%ens1f1.372
  uid: acca4411-af0d-4387-b73e-52b2484295ad

phase: Running

providerStatus:
  apiVersion: machine.openshift.io/v1beta1
  conditions:
  - lastProbeTime: "2020-04-20T16:53:50Z"
    lastTransitionTime: "2020-04-20T16:53:50Z"
    message: machine successfully created
    reason: MachineCreationSucceeded
    status: "True"
    type: MachineCreation
  instanceId: i-0f8b85790d76d0c3f
  instanceState: stopped
  kind: Machine

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
  ...
  name: examplecluster-control-plane-3
  ...

a. Remove the `spec.providerID` field:

```yaml
providerID: baremetalhost:///openshift-machine-api/openshift-control-plane-2/3354bdac-61d8-410f-be5b-6a395b056135
```

b. Remove the `metadata.annotations` and `metadata.generation` fields:

```yaml
annotations:
 machine.openshift.io/instance-state: externally provisioned
...

generation: 2
```

c. Remove the `spec.conditions`, `spec.lastUpdated`, `spec.nodeRef` and `spec.phase` fields:
6. Ensure that the Bare Metal Operator is available by running the following command:

```
$ oc get clusteroperator baremetal
```

**Example output**

```
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
baremetal 4.15.0 True False False 3d15h
```

7. Remove the old **BareMetalHost** object by running the following command:

```
$ oc delete bmh openshift-control-plane-2 -n openshift-machine-api
```

**Example output**

```
baremetalhost.metal3.io "openshift-control-plane-2" deleted
```

8. Delete the machine of the unhealthy member by running the following command:

```
$ oc delete machine -n openshift-machine-api examplecluster-control-plane-2
```

After you remove the **BareMetalHost** and **Machine** objects, then the **Machine** controller automatically deletes the **Node** object.

If deletion of the machine is delayed for any reason or the command is obstructed and delayed, you can force deletion by removing the machine object finalizer field.
IMPORTANT

Do not interrupt machine deletion by pressing Ctrl+c. You must allow the command to proceed to completion. Open a new terminal window to edit and delete the finalizer fields.

a. Edit the machine configuration by running the following command:

   $ oc edit machine -n openshift-machine-api examplecluster-control-plane-2

b. Delete the following fields in the Machine custom resource, and then save the updated file:

   finalizers:
   - machine.machine.openshift.io

   Example output

   machine.machine.openshift.io/examplecluster-control-plane-2 edited

9. Verify that the machine was deleted by running the following command:

   $ oc get machines -n openshift-machine-api -o wide

   Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHASE</th>
<th>TYPE</th>
<th>REGION</th>
<th>ZONE</th>
<th>AGE</th>
<th>NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>examplecluster-control-plane-0</td>
<td>Running</td>
<td>3h11m</td>
<td>externally provisioned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baremetalhost:///openshift-machine-api/openshift-control-plane-0/da1ebe11-3ff2-41c5-b099-0aa41222964e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>examplecluster-control-plane-1</td>
<td>Running</td>
<td>3h11m</td>
<td>externally provisioned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baremetalhost:///openshift-machine-api/openshift-control-plane-1/d9f9acbc-329c-475e-8d81-03b20280a3e1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>examplecluster-compute-0</td>
<td>Running</td>
<td>165m</td>
<td>provisioned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baremetalhost:///openshift-machine-api/openshift-compute-0/3d685b81-7410-4bb3-80ec-13a31858241f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>examplecluster-compute-1</td>
<td>Running</td>
<td>165m</td>
<td>provisioned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baremetalhost:///openshift-machine-api/openshift-compute-1/0fdae6eb-2066-4241-91dc-e7ea72ab13b9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Verify that the node has been deleted by running the following command:

   $ oc get nodes

   Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>ROLES</th>
<th>AGE</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>openshift-control-plane-0</td>
<td>Ready</td>
<td>master</td>
<td>3h24m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>openshift-control-plane-1</td>
<td>Ready</td>
<td>master</td>
<td>3h24m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>openshift-compute-0</td>
<td>Ready</td>
<td>worker</td>
<td>176m</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>openshift-compute-1</td>
<td>Ready</td>
<td>worker</td>
<td>176m</td>
<td>v1.28.5</td>
</tr>
</tbody>
</table>

11. Create the new BareMetalHost object and the secret to store the BMC credentials:

   $ cat <<EOF | oc apply -f -

   "OpenShift Container Platform 4.15 Backup and restore"
NOTE

The username and password can be found from the other bare metal host’s secrets. The protocol to use in `bmc:address` can be taken from other bmh objects.

IMPORTANT

If you reuse the `BareMetalHost` object definition from an existing control plane host, do not leave the `externallyProvisioned` field set to `true`.

Existing control plane `BareMetalHost` objects may have the `externallyProvisioned` flag set to `true` if they were provisioned by the OpenShift Container Platform installation program.

After the inspection is complete, the `BareMetalHost` object is created and available to be provisioned.

12. Verify the creation process using available `BareMetalHost` objects:

   ```bash
 $ oc get bmh -n openshift-machine-api
   ```
Create the new control plane machine using the `new-master-machine.yaml` file:

```bash
$ oc apply -f new-master-machine.yaml
```

Verify that the new machine has been created:

```bash
$ oc get machines -n openshift-machine-api -o wide
```

**Example output**

```console
NAME PHASE TYPE REGION ZONE AGE NODE PROVIDERID STATE
examplecluster-control-plane-0 Running 3h11m openshift-control-plane-0 baremetalhost:///openshift-machine-api/openshift-control-plane-0/da1ebe11-3ff2-41c5-b099-0aa41222964e externally provisioned
examplecluster-control-plane-1 Running 3h11m openshift-control-plane-1 baremetalhost:///openshift-machine-api/openshift-control-plane-1/d9f9acbc-329c-475e-8d81-03b20280a3e1 externally provisioned
examplecluster-control-plane-2 Running 3h11m openshift-control-plane-2 baremetalhost:///openshift-machine-api/openshift-control-plane-2/3354bdac-61d8-410f-be5b-6a395b056135 externally provisioned
examplecluster-control-plane-3 Running 47m openshift-control-plane-3 baremetalhost:///openshift-machine-api/openshift-control-plane-3/1c2a9591-34f7-4e2b-8d7c-4b829f9f3f8f externally provisioned
examplecluster-compute-0 Running 4h48m openshift-compute-0 baremetalhost:///openshift-machine-api/openshift-compute-0/3d685b81-7410-4bb3-80ec-13a31858241f provisioned
examplecluster-compute-1 Running 4h48m openshift-compute-1 baremetalhost:///openshift-machine-api/openshift-compute-1/0fdae6eb-2066-4241-91dc-e7ea72ab13b9 provisioned
```

The new machine, `clustername-8qw5l-master-3` is being created and is ready after the phase changes from **Provisioning** to **Running**.

It should take a few minutes for the new machine to be created. The etcd cluster Operator will automatically sync when the machine or node returns to a healthy state.

c. Verify that the bare metal host becomes provisioned and no error reported by running the following command:

```bash
$ oc get bmh -n openshift-machine-api
```

**Example output**

```console
NAME STATE CONSUMER ONLINE ERROR AGE
openshift-control-plane-0 externally provisioned examplecluster-control-plane-0 true 4h48m
```
d. Verify that the new node is added and in a ready state by running this command:

```bash
$ oc get nodes
```

**Example output**

```
NAME STATUS ROLES AGE VERSION
openshift-control-plane-0 Ready master 4h26m v1.28.5
openshift-control-plane-1 Ready master 4h26m v1.28.5
openshift-control-plane-2 Ready master 12m v1.28.5
openshift-compute-0 Ready worker 3h58m v1.28.5
openshift-compute-1 Ready worker 3h58m v1.28.5
```

13. Turn the quorum guard back on by entering the following command:

```bash
$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'
```

14. You can verify that the `unsupportedConfigOverrides` section is removed from the object by entering this command:

```bash
$ oc get etcd/cluster -oyaml
```

15. If you are using single-node OpenShift, restart the node. Otherwise, you might encounter the following error in the etcd cluster Operator:

**Example output**

```
EtcdCertSignerControllerDegraded: [Operation cannot be fulfilled on secrets "etcd-peer-sno-0": the object has been modified; please apply your changes to the latest version and try again, Operation cannot be fulfilled on secrets "etcd-serving-sno-0": the object has been modified; please apply your changes to the latest version and try again, Operation cannot be fulfilled on secrets "etcd-serving-metrics-sno-0": the object has been modified; please apply your changes to the latest version and try again]
```

### Verification

1. Verify that all etcd pods are running properly.
   In a terminal that has access to the cluster as a **cluster-admin** user, run the following command:

```bash
$ oc -n openshift-etcd get pods -l k8s-app=etcd
```

**Example output**
If the output from the previous command only lists two pods, you can manually force an etcd redeployment. In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

```
$ oc patch etcd cluster -p="{"forceRedeploymentReason": "recovery-"$(date --rfc-3339=ns)"}"
```

1. The `forceRedeploymentReason` value must be unique, which is why a timestamp is appended.

To verify there are exactly three etcd members, connect to the running etcd container, passing in the name of a pod that was not on the affected node. In a terminal that has access to the cluster as a `cluster-admin` user, run the following command:

```
$ oc rsh -n openshift-etcd etcd-openshift-control-plane-0
```

2. View the member list:

```
sh-4.2# etcdctl member list -w table
```

**Example output**

```
+----------------+---------+--------------------+---------------------------+---------------------------+---
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS |
| IS LEARNER |---------+--------------------+---------------------------+---------------------------+---
+----------------+---------+--------------------+---------------------------+---------------------------+---
| 7a8197040a5126c8 | started | openshift-control-plane-2 | https://192.168.10.11:2380 | https://192.168.10.11:2379 | false |
| 8d5abe9669a39192 | started | openshift-control-plane-1 | https://192.168.10.10:2380 | https://192.168.10.10:2379 | false |
| cc3830a72fc357f9 | started | openshift-control-plane-0 | https://192.168.10.9:2380 | https://192.168.10.9:2379 | false |
+----------------+---------+--------------------+---------------------------+---------------------------+---
```

3. Verify that all etcd members are healthy by running the following command:

```
etcdctl endpoint health --cluster
```

**Example output**

```
4. Validate that all nodes are at the latest revision by running the following command:

   ```
   $ oc get etcd -o=jsonpath='{range.items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{.message}'
   ```

 `AllNodesAtLatestRevision`

5.2.5. Additional resources

- Quorum protection with machine lifecycle hooks

5.3. DISASTER RECOVERY

5.3.1. About disaster recovery

The disaster recovery documentation provides information for administrators on how to recover from several disaster situations that might occur with their OpenShift Container Platform cluster. As an administrator, you might need to follow one or more of the following procedures to return your cluster to a working state.

IMPORTANT

Disaster recovery requires you to have at least one healthy control plane host.

Restoring to a previous cluster state

This solution handles situations where you want to restore your cluster to a previous state, for example, if an administrator deletes something critical. This also includes situations where you have lost the majority of your control plane hosts, leading to etcd quorum loss and the cluster going offline. As long as you have taken an etcd backup, you can follow this procedure to restore your cluster to a previous state. If applicable, you might also need to recover from expired control plane certificates.

WARNING

Restoring to a previous cluster state is a destructive and destabilizing action to take on a running cluster. This procedure should only be used as a last resort.

Prior to performing a restore, see About restoring cluster state for more information on the impact to the cluster.
NOTE

If you have a majority of your masters still available and have an etcd quorum, then follow the procedure to replace a single unhealthy etcd member.

Recovering from expired control plane certificates

This solution handles situations where your control plane certificates have expired. For example, if you shut down your cluster before the first certificate rotation, which occurs 24 hours after installation, your certificates will not be rotated and will expire. You can follow this procedure to recover from expired control plane certificates.

5.3.2. Restoring to a previous cluster state

To restore the cluster to a previous state, you must have previously backed up etcd data by creating a snapshot. You will use this snapshot to restore the cluster state.

5.3.2.1. About restoring cluster state

You can use an etcd backup to restore your cluster to a previous state. This can be used to recover from the following situations:

- The cluster has lost the majority of control plane hosts (quorum loss).
- An administrator has deleted something critical and must restore to recover the cluster.

WARNING

Restoring to a previous cluster state is a destructive and destabilizing action to take on a running cluster. This should only be used as a last resort.

If you are able to retrieve data using the Kubernetes API server, then etcd is available and you should not restore using an etcd backup.

Restoring etcd effectively takes a cluster back in time and all clients will experience a conflicting, parallel history. This can impact the behavior of watching components like kubelets, Kubernetes controller managers, SDN controllers, and persistent volume controllers.

It can cause Operator churn when the content in etcd does not match the actual content on disk, causing Operators for the Kubernetes API server, Kubernetes controller manager, Kubernetes scheduler, and etcd to get stuck when files on disk conflict with content in etcd. This can require manual actions to resolve the issues.

In extreme cases, the cluster can lose track of persistent volumes, delete critical workloads that no longer exist, reimage machines, and rewrite CA bundles with expired certificates.

5.3.2.2. Restoring to a previous cluster state

You can use a saved etcd backup to restore a previous cluster state or restore a cluster that has lost the majority of control plane hosts.
NOTE

If your cluster uses a control plane machine set, see “Troubleshooting the control plane machine set” for a more simple etcd recovery procedure.

IMPORTANT

When you restore your cluster, you must use an etcd backup that was taken from the same z-stream release. For example, an OpenShift Container Platform 4.7.2 cluster must use an etcd backup that was taken from 4.7.2.

Prerequisites

- Access to the cluster as a user with the cluster-admin role through a certificate-based kubeconfig file, like the one that was used during installation.
- A healthy control plane host to use as the recovery host.
- SSH access to control plane hosts.
- A backup directory containing both the etcd snapshot and the resources for the static pods, which were from the same backup. The file names in the directory must be in the following formats: snapshot_<datetimestamp>.db and static_kuberesources_<datetimestamp>.tar.gz.

IMPORTANT

For non-recovery control plane nodes, it is not required to establish SSH connectivity or to stop the static pods. You can delete and recreate other non-recovery, control plane machines, one by one.

Procedure

1. Select a control plane host to use as the recovery host. This is the host that you will run the restore operation on.

2. Establish SSH connectivity to each of the control plane nodes, including the recovery host. kube-apiserver becomes inaccessible after the restore process starts, so you cannot access the control plane nodes. For this reason, it is recommended to establish SSH connectivity to each control plane host in a separate terminal.

IMPORTANT

If you do not complete this step, you will not be able to access the control plane hosts to complete the restore procedure, and you will be unable to recover your cluster from this state.

3. Copy the etcd backup directory to the recovery control plane host. This procedure assumes that you copied the backup directory containing the etcd snapshot and the resources for the static pods to the /home/core/ directory of your recovery control plane host.

4. Stop the static pods on any other control plane nodes.
NOTE

You do not need to stop the static pods on the recovery host.

a. Access a control plane host that is not the recovery host.

b. Move the existing etcd pod file out of the kubelet manifest directory by running:

\[
\texttt{\$ sudo mv -v /etc/kubernetes/manifests/etcd-pod.yaml /tmp}
\]

c. Verify that the etcd pods are stopped by using:

\[
\texttt{\$ sudo crictl ps | grep etcd | egrep -v "operator|etcd-guard"}
\]

If the output of this command is not empty, wait a few minutes and check again.

d. Move the existing kube-apiserver file out of the kubelet manifest directory by running:

\[
\texttt{\$ sudo mv -v /etc/kubernetes/manifests/kube-apiserver-pod.yaml /tmp}
\]

e. Verify that the kube-apiserver containers are stopped by running:

\[
\texttt{\$ sudo crictl ps | grep kube-apiserver | egrep -v "operator|guard"}
\]

If the output of this command is not empty, wait a few minutes and check again.

f. Move the existing kube-controller-manager file out of the kubelet manifest directory by using:

\[
\texttt{\$ sudo mv -v /etc/kubernetes/manifests/kube-controller-manager-pod.yaml /tmp}
\]

g. Verify that the kube-controller-manager containers are stopped by running:

\[
\texttt{\$ sudo crictl ps | grep kube-controller-manager | egrep -v "operator|guard"}
\]

If the output of this command is not empty, wait a few minutes and check again.

h. Move the existing kube-scheduler file out of the kubelet manifest directory by using:

\[
\texttt{\$ sudo mv -v /etc/kubernetes/manifests/kube-scheduler-pod.yaml /tmp}
\]

i. Verify that the kube-scheduler containers are stopped by using:

\[
\texttt{\$ sudo crictl ps | grep kube-scheduler | egrep -v "operator|guard"}
\]

If the output of this command is not empty, wait a few minutes and check again.

j. Move the etcd data directory to a different location with the following example:

\[
\texttt{\$ sudo mv -v /var/lib/etcd/ /tmp}
\]

k. If the /etc/kubernetes/manifests/keepalived.yaml file exists and the node is deleted, follow these steps:
i. Move the `/etc/kubernetes/manifests/keepalived.yaml` file out of the kubelet manifest directory:

```
$ sudo mv -v /etc/kubernetes/manifests/keepalived.yaml /tmp
```

ii. Verify that any containers managed by the `keepalived` daemon are stopped:

```
$ sudo crictl ps --name keepalived
```

The output of this command should be empty. If it is not empty, wait a few minutes and check again.

iii. Check if the control plane has any Virtual IPs (VIPs) assigned to it:

```
$ ip -o address | egrep '<api_vip>|<ingress_vip>'
```

iv. For each reported VIP, run the following command to remove it:

```
$ sudo ip address del <reported_vip> dev <reported_vip_device>
```

v. Repeat this step on each of the other control plane hosts that is not the recovery host.

5. Access the recovery control plane host.

6. If the `keepalived` daemon is in use, verify that the recovery control plane node owns the VIP:

```
$ ip -o address | grep <api_vip>
```

The address of the VIP is highlighted in the output if it exists. This command returns an empty string if the VIP is not set or configured incorrectly.

7. If the cluster-wide proxy is enabled, be sure that you have exported the `NO_PROXY`, `HTTP_PROXY`, and `HTTPS_PROXY` environment variables.

TIP

You can check whether the proxy is enabled by reviewing the output of `oc get proxy cluster -o yaml`. The proxy is enabled if the `httpProxy`, `httpsProxy`, and `noProxy` fields have values set.

8. Run the restore script on the recovery control plane host and pass in the path to the `etcd` backup directory:

```
$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/assets/backup
```

Example script output

```
...stopping kube-scheduler-pod.yaml
...stopping kube-controller-manager-pod.yaml
...stopping etcd-pod.yaml
...stopping kube-apiserver-pod.yaml
Waiting for container etcd to stop
.complete
Waiting for container etcdctl to stop
```
The cluster-restore.sh script must show that etcd, kube-apiserver, kube-controller-manager, and kube-scheduler pods are stopped and then started at the end of the restore process.

NOTE

The restore process can cause nodes to enter the NotReady state if the node certificates were updated after the last etcd backup.

9. Check the nodes to ensure they are in the Ready state.

 a. Run the following command:


   ```
   $ oc get nodes -w
   
   Sample output
   ```

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>ROLES</th>
<th>AGE</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>host-172-25-75-28</td>
<td>Ready</td>
<td>master</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-38</td>
<td>Ready</td>
<td>infra,worker</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-40</td>
<td>Ready</td>
<td>master</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-65</td>
<td>Ready</td>
<td>master</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-74</td>
<td>Ready</td>
<td>infra,worker</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-79</td>
<td>Ready</td>
<td>worker</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-86</td>
<td>Ready</td>
<td>worker</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
<tr>
<td>host-172-25-75-98</td>
<td>Ready</td>
<td>infra,worker</td>
<td>3d20h</td>
<td>v1.28.5</td>
</tr>
</tbody>
</table>

 It can take several minutes for all nodes to report their state.

 b. If any nodes are in the NotReady state, log in to the nodes and remove all of the PEM files from the /var/lib/kubelet/pki directory on each node. You can SSH into the nodes or use the terminal window in the web console.

   ```
   $ ssh -i <ssh-key-path> core@<master-hostname>
   
   Sample pki directory
   ```
10. Restart the kubelet service on all control plane hosts.
 a. From the recovery host, run:

      ```
      $ sudo systemctl restart kubelet.service
      ```
 b. Repeat this step on all other control plane hosts.

11. Approve the pending Certificate Signing Requests (CSRs):

 NOTE
 Clusters with no worker nodes, such as single-node clusters or clusters consisting of three schedulable control plane nodes, will not have any pending CSRs to approve. You can skip all the commands listed in this step.

 a. Get the list of current CSRs by running:

       ```
       $ oc get csr
       ```

 Example output

    ```
    NAME        AGE    SIGNERNAME                                    REQUESTOR         CONDITION
    csr-2s94x   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name> Pending
    csr-4bd6t   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name> Pending
    csr-4hl85   13m    kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
    csr-zhhhp   3m8s   kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
    ...
    ```

 1. A pending kubelet service
 2. A pending node-bootstrapper CSR.

 a. Review the details of a CSR to verify that it is valid by running:

       ```
       $ oc describe csr <csr_name> 1
       ```

 1. `<csr_name>` is the name of a CSR from the list of current CSRs.
b. Approve each valid node-bootstrapper CSR by running:

   ```
   $ oc adm certificate approve <csr_name>
   ```

c. For user-provisioned installations, approve each valid kubelet service CSR by running:

   ```
   $ oc adm certificate approve <csr_name>
   ```

 1. Verify that the single member control plane has started successfully.

d. From the recovery host, verify that the **etcd** container is running by using:

   ```
   $ sudo crictl ps | grep etcd | egrep -v "operator|etcd-guard"
   ```

 Example output

   ```
   3ad41b7908e32
   36f8e6e2eaaaffe662df0d21041eb22b8198e0e58abbeaae8743c3e6e977e8009
   About a minute ago   Running       etcd                          0
   7c05f8af362f0
   ```

 e. From the recovery host, verify that the **etcd** pod is running by using:

   ```
   $ oc -n openshift-etcd get pods -l k8s-app=etcd
   ```

 Example output

   ```
   NAME                                             READY   STATUS      RESTARTS AGE
   etcd-ip-10-0-143-125.ec2.internal                1/1     Running     1          2m47s
   ```

 If the status is **Pending**, or the output lists more than one running **etcd** pod, wait a few minutes and check again.

 1. If you are using the OVNKubernetes network plugin, you must restart **ovnkube-controlplane** pods.

f. Delete all of the **ovnkube-controlplane** pods by running:

   ```
   $ oc -n openshift-ovn-kubernetes delete pod -l app=ovnkube-control-plane
   ```

g. Verify that all of the **ovnkube-controlplane** pods were redeployed by using:

   ```
   $ oc -n openshift-ovn-kubernetes get pod -l app=ovnkube-control-plane
   ```

 1. If you are using the OVN-Kubernetes network plugin, restart the Open Virtual Network (OVN) Kubernetes pods on all the nodes one by one. Use the following steps to restart OVN-Kubernetes pods on each node:
IMPORTANT

Restart OVN-Kubernetes pods in the following order:

1. The recovery control plane host
2. The other control plane hosts (if available)
3. The other nodes

NOTE

Validating and mutating admission webhooks can reject pods. If you add any additional webhooks with the `failurePolicy` set to `Fail`, then they can reject pods and the restoration process can fail. You can avoid this by saving and deleting webhooks while restoring the cluster state. After the cluster state is restored successfully, you can enable the webhooks again.

Alternatively, you can temporarily set the `failurePolicy` to `Ignore` while restoring the cluster state. After the cluster state is restored successfully, you can set the `failurePolicy` to `Fail`.

h. Remove the northbound database (nbdb) and southbound database (sbdb). Access the recovery host and the remaining control plane nodes by using Secure Shell (SSH) and run:

```
$ sudo rm -f /var/lib/ovn-ic/etc/*.db
```

i. Restart the OpenVSwitch services. Access the node by using Secure Shell (SSH) and run the following command:

```
$ sudo systemctl restart ovs-vswitchd ovsdb-server
```

j. Delete the `ovnkube-node` pod on the node by running the following command, replacing `<node>` with the name of the node that you are restarting:

```
$ oc -n openshift-ovn-kubernetes delete pod -l app=ovnkube-node --field-selector=spec.nodeName==<node>
```

k. Verify that the `ovnkube-node` pod is running again with:

```
$ oc -n openshift-ovn-kubernetes get pod -l app=ovnkube-node --field-selector=spec.nodeName==<node>
```

NOTE

It might take several minutes for the pods to restart.

1. Delete and re-create other non-recovery, control plane machines, one by one. After the machines are re-created, a new revision is forced and `etcd` automatically scales up.

 - If you use a user-provisioned bare metal installation, you can re-create a control plane machine by using the same method that you used to originally create it. For more information, see "Installing a user-provisioned cluster on bare metal".
If you are running installer-provisioned infrastructure, or you used the Machine API to create your machines, follow these steps:

For bare metal installations on installer-provisioned infrastructure, control plane machines are not re-created. For more information, see "Replacing a bare-metal control plane node".

1. Obtain the machine for one of the lost control plane hosts.
 In a terminal that has access to the cluster as a cluster-admin user, run the following command:

   ```
s $ oc get machines -n openshift-machine-api -o wide
   
   Example output:
   NAME PROVIDERID PHASE TYPE REGION ZONE AGE NODE
   clustername-8qw5l-master-0 Running m4.xlarge us-east-1 us-east-1a 3h37m
   ip-10-0-131-183.ec2.internal aws:///us-east-1a/i-0ec2782f8287dfb7e stopped
   
   clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b 3h37m
   ip-10-0-143-125.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
   
   clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c 3h37m
   ip-10-0-154-194.ec2.internal aws:///us-east-1c/i-02626f1fda9ed5bba running
   
   clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-east-1a 3h28m
   ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced running
   
   clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-east-1b 3h28m
   ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
   
   clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-east-1c 3h28m
   ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c00007751b0a running
   
   This is the control plane machine for the lost control plane host, **ip-10-0-131-183.ec2.internal**.
   
   m. Save the machine configuration to a file on your file system by running:

   ```
 $ oc get machine clustername-8qw5l-master-0 -n openshift-machine-api
   ```
Specify the name of the control plane machine for the lost control plane host.

n. Edit the `new-master-machine.yaml` file that was created in the previous step to assign a new name and remove unnecessary fields.
   
i. Remove the entire `status` section by running:

   ```
 status:
 addresses:
 - address: 10.0.131.183
 type: InternalIP
 - address: ip-10-0-131-183.ec2.internal
 type: InternalDNS
 - address: ip-10-0-131-183.ec2.internal
 type: Hostname
 lastUpdated: "2020-04-20T17:44:29Z"
 nodeRef:
 kind: Node
 name: ip-10-0-131-183.ec2.internal
 uid: acca4411-af0d-4387-b73e-52b2484295ad
 phase: Running
 providerStatus:
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 conditions:
 - lastProbeTime: "2020-04-20T16:53:50Z"
 lastTransitionTime: "2020-04-20T16:53:50Z"
 message: machine successfully created
 reason: MachineCreationSucceeded
 status: "True"
 type: MachineCreation
 instanceId: i-0fdb85790d76d0c3f
 instanceState: stopped
 kind: AWSMachineProviderStatus
   ```

   ii. Change the `metadata.name` field to a new name by running:

   It is recommended to keep the same base name as the old machine and change the ending number to the next available number. In this example, `clusternam-8qw5l-master-0` is changed to `clusternam-8qw5l-master-3`:

   ```
 apiVersion: machine.openshift.io/v1beta1
 kind: Machine
 metadata:
 ...
 name: clusternam-8qw5l-master-3
 ...
   ```

   iii. Remove the `spec.providerID` field by running:

   ```
 providerID: aws:///us-east-1a/i-0fdb85790d76d0c3f
   ```

   iv. Remove the `metadata.annotations` and `metadata.generation` fields by running:
v. Remove the metadata.resourceVersion and metadata.uid fields by running:

```yaml
resourceVersion: "13291"
uid: a282eb70-40a2-4e89-8009-d05dd420d31a
```

o. Delete the machine of the lost control plane host by running:

```bash
$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0
```

Specify the name of the control plane machine for the lost control plane host.

p. Verify that the machine was deleted by running:

```bash
$ oc get machines -n openshift-machine-api -o wide
```

Example output:

```
NAME PHASE TYPE REGION ZONE AGE NODE
PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b 3h37m
ip-10-0-143-125.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c 3h37m
ip-10-0-154-194.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba running
c advertise-8qw5l-worker-us-east-1a-wbtdg Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced running
```

q. Create a machine by using the `new-master-machine.yaml` file by running:

```bash
$ oc apply -f new-master-machine.yaml
```

r. Verify that the new machine has been created by running:

```bash
$ oc get machines -n openshift-machine-api -o wide
```

Example output:

```
NAME PHASE TYPE REGION ZONE AGE NODE
PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-143-125.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
```

```
capital-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-154-194.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba running
capital-8qw5l-worker-us-east-1a-wbtdg Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced running
```

```
capital-8qw5l-worker-us-east-1b-bxkdv Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
capital-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c0007751b0a running
```

```
capital-8qw5l-worker-us-east-1c-qk23t Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-174-265.ec2.internal aws:///us-east-1c/i-0c9796a979a74a55b running
```

```
capital-8qw5l-worker-us-east-1a-bsfrd Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-179-240.ec2.internal aws:///us-east-1a/i-0b3e3e5c65d7f9b3c running
```

```
capital-8qw5l-worker-us-east-1b-nkz7t Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-175-225.ec2.internal aws:///us-east-1b/i-0ab9e5634e6f7f6b running
```

```
capital-8qw5l-worker-us-east-1c-srjkr Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-176-244.ec2.internal aws:///us-east-1c/i-0cc518f6fc5b9445 running
```

```
capital-8qw5l-worker-us-east-1a-qrfrp Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-177-251.ec2.internal aws:///us-east-1a/i-0f1576a4f6a7f3f0 running
```

```
capital-8qw5l-worker-us-east-1b-xlrdx Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
capital-8qw5l-worker-us-east-1c-qk23t Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c0007751b0a running
```

```
capital-8qw5l-worker-us-east-1a-bsfrd Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-179-240.ec2.internal aws:///us-east-1a/i-0b3e3e5c65d7f9b3c running
```

```
capital-8qw5l-worker-us-east-1b-nkz7t Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-175-225.ec2.internal aws:///us-east-1b/i-0ab9e5634e6f7f6b running
```

```
capital-8qw5l-worker-us-east-1c-srjkr Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-176-244.ec2.internal aws:///us-east-1c/i-0cc518f6fc5b9445 running
```

```
capital-8qw5l-worker-us-east-1a-qrfrp Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-177-251.ec2.internal aws:///us-east-1a/i-0f1576a4f6a7f3f0 running
```

```
capital-8qw5l-worker-us-east-1b-xlrdx Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
capital-8qw5l-worker-us-east-1c-qk23t Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c0007751b0a running
```

```
capital-8qw5l-worker-us-east-1a-bsfrd Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-179-240.ec2.internal aws:///us-east-1a/i-0b3e3e5c65d7f9b3c running
```

```
capital-8qw5l-worker-us-east-1b-nkz7t Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-175-225.ec2.internal aws:///us-east-1b/i-0ab9e5634e6f7f6b running
```

```
capital-8qw5l-worker-us-east-1c-srjkr Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-176-244.ec2.internal aws:///us-east-1c/i-0cc518f6fc5b9445 running
```

```
capital-8qw5l-worker-us-east-1a-qrfrp Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-177-251.ec2.internal aws:///us-east-1a/i-0f1576a4f6a7f3f0 running
```

```
capital-8qw5l-worker-us-east-1b-xlrdx Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
capital-8qw5l-worker-us-east-1c-qk23t Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c0007751b0a running
```
The new machine, `clusternam€8qw5l-mas†er-3` is being created and is ready after the phase changes from `Provisioning` to `Running`.

It might take a few minutes for the new machine to be created. The etcd cluster Operator will automatically sync when the machine or node returns to a healthy state.

s. Repeat these steps for each lost control plane host that is not the recovery host.

1. Turn off the quorum guard by entering:

   ```bash
 $ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": {
 "useUnsupportedUnsafeNonHANonProductionUnstableEtcd": false}}}'
   ```

   This command ensures that you can successfully re-create secrets and roll out the static pods.

2. In a separate terminal window within the recovery host, export the recovery `kubeconfig` file by running:

   ```bash
 $ export KUBECONFIG=/etc/kubernetes/static-pod-resources/kube-apiserver-certs/secrets/node-kubeconfigs/localhost-recovery.kubeconfig
   ```

3. Force etcd redeployment.
   In the same terminal window where you exported the recovery `kubeconfig` file, run:

   ```bash
 $ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-"$(date --rfc-3339=ns)"}}' --type=merge
   ```

   The `forceRedeploymentReason` value must be unique, which is why a timestamp is appended.

   When the etcd cluster Operator performs a redeployment, the existing nodes are started with new pods similar to the initial bootstrap scale up.

4. Turn the quorum guard back on by entering:

   ```bash
 $ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'
   ```

5. You can verify that the `unsupportedConfigOverrides` section is removed from the object by running:

   ```bash
 $ oc get etcd/cluster -oyaml
   ```

6. Verify all nodes are updated to the latest revision.
   In a terminal that has access to the cluster as a `cluster-admin` user, run:
Review the `NodeInstallerProgressing` status condition for `etcd` to verify that all nodes are at the latest revision. The output shows `AllNodesAtLatestRevision` upon successful update:

```
AllNodesAtLatestRevision
3 nodes are at revision 7
```

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

7. After `etcd` is redeployed, force new rollouts for the control plane. `kube-apiserver` will reinstall itself on the other nodes because the kubelet is connected to API servers using an internal load balancer.

In a terminal that has access to the cluster as a `cluster-admin` user, run:

t. Force a new rollout for `kube-apiserver`:

```
$ oc patch kubeapiserver cluster -p="{"forceRedeploymentReason": "recovery."$(date --rfc-3339=ns)"}" --type=merge
```

Verify all nodes are updated to the latest revision.

```
$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{.message}'
```

Review the `NodeInstallerProgressing` status condition to verify that all nodes are at the latest revision. The output shows `AllNodesAtLatestRevision` upon successful update:

```
AllNodesAtLatestRevision
3 nodes are at revision 7
```

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

u. Force a new rollout for the Kubernetes controller manager by running the following command:

```
$ oc patch kubecontrollermanager cluster -p="{"forceRedeploymentReason": "recovery."$(date --rfc-3339=ns)"}" --type=merge
```

Verify all nodes are updated to the latest revision by running:

```
$ oc get kubecontrollermanager -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{.message}'
```
CHAPTER 5. CONTROL PLANE BACKUP AND RESTORE

Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest
revision. The output shows AllNodesAtLatestRevision upon successful update:
AllNodesAtLatestRevision
3 nodes are at revision 7 1
1

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes
are at revision 7, this means that the update is still in progress. Wait a few minutes and try
again.
v. Force a new rollout for the kube-scheduler by running:
$ oc patch kubescheduler cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(
date --rfc-3339=ns )"'"}}' --type=merge
Verify all nodes are updated to the latest revision by using:
$ oc get kubescheduler -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'
Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest
revision. The output shows AllNodesAtLatestRevision upon successful update:
AllNodesAtLatestRevision
3 nodes are at revision 7 1
1

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes
are at revision 7, this means that the update is still in progress. Wait a few minutes and try
again.
1. Verify that all control plane hosts have started and joined the cluster.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:
$ oc -n openshift-etcd get pods -l k8s-app=etcd

Example output
etcd-ip-10-0-143-125.ec2.internal
etcd-ip-10-0-154-194.ec2.internal
etcd-ip-10-0-173-171.ec2.internal

2/2
2/2
2/2

Running
Running
Running

0
0
0

9h
9h
9h

To ensure that all workloads return to normal operation following a recovery procedure, restart each pod
that stores kube-apiserver information. This includes OpenShift Container Platform components such
as routers, Operators, and third-party components.

NOTE

251


NOTE

On completion of the previous procedural steps, you might need to wait a few minutes for all services to return to their restored state. For example, authentication by using `oc login` might not immediately work until the OAuth server pods are restarted.

Consider using the `system:admin kubectl` file for immediate authentication. This method bas its authentication on SSL/TLS client certificates as against OAuth tokens. You can authenticate with this file by issuing the following command:

```
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig
```

Issue the following command to display your authenticated user name:

```
$ oc whoami
```

### 5.3.2.3. Additional resources

- Installing a user-provisioned cluster on bare metal
- Creating a bastion host to access OpenShift Container Platform instances and the control plane nodes with SSH
- Replacing a bare-metal control plane node

### 5.3.2.4. Issues and workarounds for restoring a persistent storage state

If your OpenShift Container Platform cluster uses persistent storage of any form, a state of the cluster is typically stored outside etcd. It might be an Elasticsearch cluster running in a pod or a database running in a `StatefulSet` object. When you restore from an etcd backup, the status of the workloads in OpenShift Container Platform is also restored. However, if the etcd snapshot is old, the status might be invalid or outdated.

**IMPORTANT**

The contents of persistent volumes (PVs) are never part of the etcd snapshot. When you restore an OpenShift Container Platform cluster from an etcd snapshot, non-critical workloads might gain access to critical data, or vice-versa.

The following are some example scenarios that produce an out-of-date status:

- MySQL database is running in a pod backed up by a PV object. Restoring OpenShift Container Platform from an etcd snapshot does not bring back the volume on the storage provider, and does not produce a running MySQL pod, despite the pod repeatedly attempting to start. You must manually restore this pod by restoring the volume on the storage provider, and then editing the PV to point to the new volume.

- Pod P1 is using volume A, which is attached to node X. If the etcd snapshot is taken while another pod uses the same volume on node Y, then when the etcd restore is performed, pod P1 might not be able to start correctly due to the volume still being attached to node Y. OpenShift Container Platform is not aware of the attachment, and does not automatically detach it. When this occurs, the volume must be manually detached from node Y so that the volume can attach on node X, and then pod P1 can start.
- Cloud provider or storage provider credentials were updated after the etcd snapshot was taken. This causes any CSI drivers or Operators that depend on those credentials to not work. You might have to manually update the credentials required by those drivers or Operators.

- A device is removed or renamed from OpenShift Container Platform nodes after the etcd snapshot is taken. The Local Storage Operator creates symlinks for each PV that it manages from /dev/disk/by-id or /dev directories. This situation might cause the local PVs to refer to devices that no longer exist.
  To fix this problem, an administrator must:
  1. Manually remove the PVs with invalid devices.
  2. Remove symlinks from respective nodes.
  3. Delete LocalVolume or LocalVolumeSet objects (see Storage → Configuring persistent storage → Persistent storage using local volumes → Deleting the Local Storage Operator Resources).

### 5.3.3. Recovering from expired control plane certificates

#### 5.3.3.1. Recovering from expired control plane certificates

The cluster can automatically recover from expired control plane certificates.

However, you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. For user-provisioned installations, you might also need to approve pending kubelet serving CSRs.

Use the following steps to approve the pending CSRs:

**Procedure**

1. Get the list of current CSRs:

   ```bash
 $ oc get csr
   ```

   **Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>SIGNERNAME</th>
<th>REQUESTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>csr-2s94x</td>
<td>8m3s</td>
<td>kubernetes.io/kubelet-serving</td>
<td>system:node:&lt;node_name&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pending 1</td>
</tr>
<tr>
<td>csr-4bd6t</td>
<td>8m3s</td>
<td>kubernetes.io/kubelet-serving</td>
<td>system:node:&lt;node_name&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pending 1</td>
</tr>
<tr>
<td>csr-4hl85</td>
<td>13m</td>
<td>kubernetes.io/kube-apiserver-client-kubelet</td>
<td>system:serviceaccount:openshift-machine-config-operator:node-bootstrapper</td>
</tr>
<tr>
<td>csr-zhhhp</td>
<td>3m8s</td>
<td>kubernetes.io/kube-apiserver-client-kubelet</td>
<td>system:serviceaccount:openshift-machine-config-operator:node-bootstrapper</td>
</tr>
</tbody>
</table>

   1 A pending kubelet service CSR (for user-provisioned installations).
   2 A pending node-bootstrapper CSR.
2. Review the details of a CSR to verify that it is valid:

```bash
$ oc describe csr <csr_name>
```

<csr_name> is the name of a CSR from the list of current CSRs.

3. Approve each valid node-bootstrapper CSR:

```bash
$ oc adm certificate approve <csr_name>
```

4. For user-provisioned installations, approve each valid kubelet serving CSR:

```bash
$ oc adm certificate approve <csr_name>
```