OpenShift Container Platform 4.13

Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform
Configuring and using the monitoring stack in OpenShift Container Platform
Abstract

Use metrics and customized alerts provided by the monitoring stack to track the health and performance of your applications running on OpenShift Container Platform clusters.
Table of Contents

CHAPTER 1. MONITORING OVERVIEW ... 7
1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING 7
1.2. UNDERSTANDING THE MONITORING STACK 7
 1.2.1. Default monitoring components 8
 1.2.2. Default monitoring targets 10
 1.2.3. Components for monitoring user-defined projects 10
 1.2.4. Monitoring targets for user-defined projects 11
1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING 11
1.4. ADDITIONAL RESOURCES 14
1.5. NEXT STEPS 14

CHAPTER 2. CONFIGURING THE MONITORING STACK 15
2.1. PREREQUISITES 15
2.2. MAINTENANCE AND SUPPORT FOR MONITORING 15
 2.2.1. Support considerations for monitoring 15
 2.2.2. Support policy for monitoring Operators 16
 2.2.3. Support version matrix for monitoring components 17
2.3. PREPARING TO CONFIGURE THE MONITORING STACK 17
 2.3.1. Creating a cluster monitoring config map 17
 2.3.2. Creating a user-defined workload monitoring config map 18
2.4. CONFIGURING THE MONITORING STACK 19
2.5. CONFIGURABLE MONITORING COMPONENTS 22
2.6. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS 23
 2.6.1. How node selectors work with other constraints 23
 2.6.2. Moving monitoring components to different nodes 24
2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS 26
2.8. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING 29
2.9. CONFIGURING A DEDICATED SERVICE MONITOR 30
 2.9.1. Enabling a dedicated service monitor 30
2.10. CONFIGURING PERSISTENT STORAGE 31
 2.10.1. Persistent storage prerequisites 31
 2.10.2. Configuring a local persistent volume claim 32
 2.10.3. Resizing a persistent storage volume 35
 2.10.4. Modifying the retention time and size for Prometheus metrics data 39
 2.10.5. Modifying the retention time for Thanos Ruler metrics data 42
2.11. CONFIGURING REMOTE WRITE STORAGE 44
 2.11.1. Supported remote write authentication settings 48
 2.11.2. Example remote write authentication settings 49
2.12. ADDING CLUSTER ID LABELS TO METRICS 54
 2.12.1. Creating cluster ID labels for metrics 55
2.13. CONFIGURING METRICS COLLECTION PROFILES 58
 2.13.1. About metrics collection profiles 59
 2.13.2. Choosing a metrics collection profile 59
2.14. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS 60
 2.14.1. Setting scrape sample and label limits for user-defined projects 61
 2.14.2. Creating scrape sample alerts 62

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES 65

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER 68
4.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION 68
4.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS 70
CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING 74
5.1. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR PROMETHEUS 74
5.2. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR ALERTMANAGER 75
5.3. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR THANOS RULER 77
5.4. SETTING LOG LEVELS FOR MONITORING COMPONENTS .. 78
5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS ... 81
5.6. ENABLING QUERY LOGGING FOR THANOS QUERIER .. 83
5.7. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER 85
5.8. DISABLING THE LOCAL ALERTMANAGER .. 87
5.9. NEXT STEPS .. 88

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS .. 89
6.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS .. 89
6.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS 91
 6.2.1. Granting user permissions by using the web console ... 91
 6.2.2. Granting user permissions by using the CLI ... 92
6.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS .. 93
6.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS 93
6.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING .. 95
6.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS ... 95
6.7. NEXT STEPS .. 96

CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS .. 97
7.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS 97
7.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING ... 97
7.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING ... 98
7.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS .. 99
7.5. NEXT STEPS .. 100

CHAPTER 8. MANAGING METRICS ... 101
8.1. UNDERSTANDING METRICS .. 101
8.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS 101
 8.2.1. Deploying a sample service ... 101
 8.2.2. Specifying how a service is monitored ... 103
8.3. VIEWING A LIST OF AVAILABLE METRICS .. 104
8.4. QUERYING METRICS .. 105
 8.4.1. Querying metrics for all projects as a cluster administrator ... 105
 8.4.2. Querying metrics for user-defined projects as a developer .. 107
8.5. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET 108

CHAPTER 9. MANAGING ALERTS .. 111
9.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES ... 111
9.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES 112
 Understanding alert filters ... 112
 Understanding silence filters .. 112
 Understanding alerting rule filters .. 113
 Searching and filtering alerts, silences, and alerting rules in the Developer perspective 114
9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES 114
9.4. MANAGING SILENCES .. 116
 9.4.1. Silencing alerts ... 116
 9.4.2. Editing silences .. 117
 9.4.3. Expiring silences .. 118
9.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS 119
 9.5.1. Optimizing alerting for user-defined projects ... 119
9.5.2. About creating alerting rules for user-defined projects 120
9.5.3. Creating alerting rules for user-defined projects 120
9.5.4. Accessing alerting rules for user-defined projects 121
9.5.5. Listing alerting rules for all projects in a single view 122
9.5.6. Removing alerting rules for user-defined projects 122
9.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING 123
 9.6.1. Modifying core platform alerting rules 123
 9.6.2. Creating new alerting rules 124
9.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS 126
 9.7.1. Configuring alert receivers 126
 9.7.2. Configuring different alert receivers for default platform alerts and user-defined alerts 128
 9.7.3. Creating alert routing for user-defined projects 128
9.8. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION 129
9.9. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER FOR USER-DEFINED ALERT ROUTING 131
9.10. NEXT STEPS 132

CHAPTER 10. REVIEWING MONITORING DASHBOARDS ... 133
10.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR 134
10.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER 135
10.3. NEXT STEPS 135

CHAPTER 11. ACCESSING MONITORING APIs BY USING THE CLI 137
11.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS 137
11.2. ACCESSING A MONITORING WEB SERVICE API 138
11.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS 138
11.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS 140
11.5. ADDITIONAL RESOURCES 141

CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES .. 142
12.1. INVESTIGATING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE 142
12.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE 145
12.3. RESOLVING THE KUBEPESTINENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS 147

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR 149
13.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE 149
13.2. ADDITIONAL ALERTMANAGERCONFIG 149
 13.2.1. Description 149
 13.2.2. Required 149
13.3. ALERTMANAGERMAINCONFIG 150
 13.3.1. Description 150
13.4. ALERTMANAGERUSERWORKLOADCONFIG 151
 13.4.1. Description 151
13.5. CLUSTERMONITORINGCONFIGURATION 153
 13.5.1. Description 153
13.6. DEDICATEDSERVICEMONITORS 154
 13.6.1. Description 154
13.7. K8SPROMETHEUSADAPTER 154
 13.7.1. Description 154
13.8. KUBESTATEMETRICSCONFIG 155
 13.8.1. Description 155
13.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG 155
 13.9.1. Description 155
13.10. NODEEXPORTERCOLLECTORCONFIG 156
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE</td>
<td>176</td>
</tr>
<tr>
<td>14.4.1. Deploying a sample service for Cluster Observability Operator</td>
<td>176</td>
</tr>
<tr>
<td>14.4.2. Specifying how a service is monitored by Cluster Observability Operator</td>
<td>177</td>
</tr>
<tr>
<td>14.4.3. Creating a MonitoringStack object for the Cluster Observability Operator</td>
<td>179</td>
</tr>
</tbody>
</table>
CHAPTER 1. MONITORING OVERVIEW

1.1. ABOUT OPENSIFT CONTAINER PLATFORM MONITORING

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring stack that provides monitoring for core platform components. You also have the option to enable monitoring for user-defined projects.

A cluster administrator can configure the monitoring stack with the supported configurations. OpenShift Container Platform delivers monitoring best practices out of the box.

A set of alerts are included by default that immediately notify administrators about issues with a cluster. Default dashboards in the OpenShift Container Platform web console include visual representations of cluster metrics to help you to quickly understand the state of your cluster. With the OpenShift Container Platform web console, you can view and manage metrics, alerts, and review monitoring dashboards.

In the Observe section of OpenShift Container Platform web console, you can access and manage monitoring features such as metrics, alerts, monitoring dashboards, and metrics targets.

After installing OpenShift Container Platform, cluster administrators can optionally enable monitoring for user-defined projects. By using this feature, cluster administrators, developers, and other users can specify how services and pods are monitored in their own projects. As a cluster administrator, you can find answers to common problems such as user metrics unavailability and high consumption of disk space by Prometheus in Troubleshooting monitoring issues.

1.2. UNDERSTANDING THE MONITORING STACK

The OpenShift Container Platform monitoring stack is based on the Prometheus open source project and its wider ecosystem. The monitoring stack includes the following:

- **Default platform monitoring components.** A set of platform monitoring components are installed in the openshift-monitoring project by default during an OpenShift Container Platform installation. This provides monitoring for core cluster components including Kubernetes services. The default monitoring stack also enables remote health monitoring for clusters. These components are illustrated in the Installed by default section in the following diagram.

- **Components for monitoring user-defined projects** After optionally enabling monitoring for user-defined projects, additional monitoring components are installed in the openshift-user-workload-monitoring project. This provides monitoring for user-defined projects. These components are illustrated in the User section in the following diagram.
1.2.1. Default monitoring components

By default, the OpenShift Container Platform 4.13 monitoring stack includes these components:

Table 1.1. Default monitoring stack components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Monitoring Operator</td>
<td>The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys, manages, and automatically updates Prometheus and Alertmanager instances, Thanos Querier, Telemeter Client, and metrics targets. The CMO is deployed by the Cluster Version Operator (CVO).</td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prometheus Operator</td>
<td>The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and manages platform Prometheus instances and Alertmanager instances. It also automatically generates monitoring target configurations based on Kubernetes label queries.</td>
</tr>
<tr>
<td>Prometheus</td>
<td>Prometheus is the monitoring system on which the OpenShift Container Platform monitoring stack is based. Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends alerts to Alertmanager for processing.</td>
</tr>
<tr>
<td>Prometheus Adapter</td>
<td>The Prometheus Adapter (PA in the preceding diagram) translates Kubernetes node and pod queries for use in Prometheus. The resource metrics that are translated include CPU and memory utilization metrics. The Prometheus Adapter exposes the cluster resource metrics API for horizontal pod autoscaling. The Prometheus Adapter is also used by the oc adm top nodes and oc adm top pods commands.</td>
</tr>
<tr>
<td>Alertmanager</td>
<td>The Alertmanager service handles alerts received from Prometheus. Alertmanager is also responsible for sending the alerts to external notification systems.</td>
</tr>
<tr>
<td>kube-state-metrics agent</td>
<td>The kube-state-metrics exporter agent (KSM in the preceding diagram) converts Kubernetes objects to metrics that Prometheus can use.</td>
</tr>
<tr>
<td>openshift-state-metrics agent</td>
<td>The openshift-state-metrics exporter (OSM in the preceding diagram) expands upon kube-state-metrics by adding metrics for OpenShift Container Platform-specific resources.</td>
</tr>
<tr>
<td>node-exporter agent</td>
<td>The node-exporter agent (NE in the preceding diagram) collects metrics about every node in a cluster. The node-exporter agent is deployed on every node.</td>
</tr>
<tr>
<td>Thanos Querier</td>
<td>Thanos Querier aggregates and optionally deduplicates core OpenShift Container Platform metrics and metrics for user-defined projects under a single, multi-tenant interface.</td>
</tr>
<tr>
<td>Telemeter Client</td>
<td>Telemeter Client sends a subsection of the data from platform Prometheus instances to Red Hat to facilitate Remote Health Monitoring for clusters.</td>
</tr>
</tbody>
</table>
All of the components in the monitoring stack are monitored by the stack and are automatically updated when OpenShift Container Platform is updated.

NOTE

All components of the monitoring stack use the TLS security profile settings that are centrally configured by a cluster administrator. If you configure a monitoring stack component that uses TLS security settings, the component uses the TLS security profile settings that already exist in the `tlsSecurityProfile` field in the global OpenShift Container Platform `apiservers.config.openshift.io/cluster` resource.

1.2.2. Default monitoring targets

In addition to the components of the stack itself, the default monitoring stack monitors:

- CoreDNS
- Elasticsearch (if Logging is installed)
- etcd
- Fluentd (if Logging is installed)
- HAProxy
- Image registry
- Kubelets
- Kubernetes API server
- Kubernetes controller manager
- Kubernetes scheduler
- OpenShift API server
- OpenShift Controller Manager
- Operator Lifecycle Manager (OLM)
- Vector (if Logging is installed)

NOTE

Each OpenShift Container Platform component is responsible for its monitoring configuration. For problems with the monitoring of an OpenShift Container Platform component, open a Jira issue against that component, not against the general monitoring component.

Other OpenShift Container Platform framework components might be exposing metrics as well. For details, see their respective documentation.

1.2.3. Components for monitoring user-defined projects
OpenShift Container Platform includes an optional enhancement to the monitoring stack that enables you to monitor services and pods in user-defined projects. This feature includes the following components:

Table 1.2. Components for monitoring user-defined projects

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prometheus Operator</td>
<td>The Prometheus Operator (PO) in the <code>openshift-user-workload-monitoring</code> project creates, configures, and manages Prometheus and Thanos Ruler instances in the same project.</td>
</tr>
<tr>
<td>Prometheus</td>
<td>Prometheus is the monitoring system through which monitoring is provided for user-defined projects. Prometheus sends alerts to Alertmanager for processing.</td>
</tr>
<tr>
<td>Thanos Ruler</td>
<td>The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process. In OpenShift Container Platform, Thanos Ruler provides rule and alerting evaluation for the monitoring of user-defined projects.</td>
</tr>
<tr>
<td>Alertmanager</td>
<td>The Alertmanager service handles alerts received from Prometheus and Thanos Ruler. Alertmanager is also responsible for sending user-defined alerts to external notification systems. Deploying this service is optional.</td>
</tr>
</tbody>
</table>

NOTE

The components in the preceding table are deployed after monitoring is enabled for user-defined projects.

All of these components are monitored by the stack and are automatically updated when OpenShift Container Platform is updated.

1.2.4. Monitoring targets for user-defined projects

When monitoring is enabled for user-defined projects, you can monitor:

- Metrics provided through service endpoints in user-defined projects.
- Pods running in user-defined projects.

1.3. GLOSSARY OF COMMON TERMS FOR OPENShift CONTAINER PLATFORM MONITORING

This glossary defines common terms that are used in OpenShift Container Platform architecture.

Alertmanager
Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending the alerts to external notification systems.

Alerting rules
Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are triggered when those conditions are true. An alerting rule can be assigned a severity that defines how the alerts are routed.

Cluster Monitoring Operator
The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys and manages Prometheus instances such as, the Thanos Querier, the Telemeter Client, and metrics targets to ensure that they are up to date. The CMO is deployed by the Cluster Version Operator (CVO).

Cluster Version Operator
The Cluster Version Operator (CVO) manages the lifecycle of cluster Operators, many of which are installed in OpenShift Container Platform by default.

config map
A config map provides a way to inject configuration data into pods. You can reference the data stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this data.

Container
A container is a lightweight and executable image that includes software and all its dependencies. Containers virtualize the operating system. As a result, you can run containers anywhere from a data center to a public or private cloud as well as a developer’s laptop.

custom resource (CR)
A CR is an extension of the Kubernetes API. You can create custom resources.

etcd
etcd is the key-value store for OpenShift Container Platform, which stores the state of all resource objects.

Fluentd
Fluentd is a log collector that resides on each OpenShift Container Platform node. It gathers application, infrastructure, and audit logs and forwards them to different outputs.

NOTE
Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

Kubelets
Runs on nodes and reads the container manifests. Ensures that the defined containers have started and are running.

Kubernetes API server
Kubernetes API server validates and configures data for the API objects.

Kubernetes controller manager
Kubernetes controller manager governs the state of the cluster.

Kubernetes scheduler
Kubernetes scheduler allocates pods to nodes.
labels
Labels are key-value pairs that you can use to organize and select subsets of objects such as a pod.

node
A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine (VM) or a physical machine.

Operator
The preferred method of packaging, deploying, and managing a Kubernetes application in an OpenShift Container Platform cluster. An Operator takes human operational knowledge and encodes it into software that is packaged and shared with customers.

Operator Lifecycle Manager (OLM)
OLM helps you install, update, and manage the lifecycle of Kubernetes native applications. OLM is an open source toolkit designed to manage Operators in an effective, automated, and scalable way.

Persistent storage
Stores the data even after the device is shut down. Kubernetes uses persistent volumes to store the application data.

Persistent volume claim (PVC)
You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without knowing the details of the cloud environment.

pod
The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to run in a worker node.

Prometheus
Prometheus is the monitoring system on which the OpenShift Container Platform monitoring stack is based. Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends alerts to Alertmanager for processing.

Prometheus adapter
The Prometheus Adapter translates Kubernetes node and pod queries for use in Prometheus. The resource metrics that are translated include CPU and memory utilization. The Prometheus Adapter exposes the cluster resource metrics API for horizontal pod autoscaling.

Prometheus Operator
The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and manages platform Prometheus and Alertmanager instances. It also automatically generates monitoring target configurations based on Kubernetes label queries.

Silences
A silence can be applied to an alert to prevent notifications from being sent when the conditions for an alert are true. You can mute an alert after the initial notification, while you work on resolving the underlying issue.

storage
OpenShift Container Platform supports many types of storage, both for on-premise and cloud providers. You can manage container storage for persistent and non-persistent data in an OpenShift Container Platform cluster.

Thanos Ruler
The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process. In OpenShift Container Platform, Thanos Ruler provides rule and alerting evaluation for the monitoring of user-defined projects.

Vector
Vector is a log collector that deploys to each OpenShift Container Platform node. It collects log data from each node, transforms the data, and forwards it to configured outputs.

web console
A user interface (UI) to manage OpenShift Container Platform.

1.4. ADDITIONAL RESOURCES

- About remote health monitoring
- Granting users permission to monitor user-defined projects
- Configuring TLS security profiles

1.5. NEXT STEPS

- Configuring the monitoring stack
CHAPTER 2. CONFIGURING THE MONITORING STACK

The OpenShift Container Platform installation program provides only a low number of configuration options before installation. Configuring most OpenShift Container Platform framework components, including the cluster monitoring stack, happens after the installation.

This section explains what configuration is supported, shows how to configure the monitoring stack, and demonstrates several common configuration scenarios.

IMPORTANT

Not all configuration parameters for the monitoring stack are exposed. Only the parameters and fields listed in the Config map reference for the Cluster Monitoring Operator are supported for configuration.

2.1. PREREQUISITES

- The monitoring stack imposes additional resource requirements. Consult the computing resources recommendations in Scaling the Cluster Monitoring Operator and verify that you have sufficient resources.

2.2. MAINTENANCE AND SUPPORT FOR MONITORING

Not all configuration options for the monitoring stack are exposed. The only supported way of configuring OpenShift Container Platform monitoring is by configuring the Cluster Monitoring Operator using the options described in the Config map reference for the Cluster Monitoring Operator. Do not use other configurations, as they are unsupported.

Configuration paradigms might change across Prometheus releases, and such cases can only be handled gracefully if all configuration possibilities are controlled. If you use configurations other than those described in the Config map reference for the Cluster Monitoring Operator, your changes will disappear because the Cluster Monitoring Operator automatically reconciles any differences and resets any unsupported changes back to the originally defined state by default and by design.

2.2.1. Support considerations for monitoring

NOTE

Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed.

The following modifications are explicitly not supported:

- Creating additional ServiceMonitor, PodMonitor, and PrometheusRule objects in the openshift-* and kube-* projects.

- Modifying any resources or objects deployed in the openshift-monitoring or openshift-user-workload-monitoring projects. The resources created by the OpenShift Container Platform monitoring stack are not meant to be used by any other resources, as there are no guarantees about their backward compatibility.
NOTE

The Alertmanager configuration is deployed as the `alertmanager-main` secret resource in the `openshift-monitoring` namespace. If you have enabled a separate Alertmanager instance for user-defined alert routing, an Alertmanager configuration is also deployed as the `alertmanager-user-workload` secret resource in the `openshift-user-workload-monitoring` namespace. To configure additional routes for any instance of Alertmanager, you need to decode, modify, and then encode that secret. This procedure is a supported exception to the preceding statement.

- **Modifying resources of the stack.** The OpenShift Container Platform monitoring stack ensures its resources are always in the state it expects them to be. If they are modified, the stack will reset them.

- **Deploying user-defined workloads to `openshift-*`, and `kube-*` projects.** These projects are reserved for Red Hat provided components and they should not be used for user-defined workloads.

- **Enabling symptom based monitoring by using the `Probe` custom resource definition (CRD) in Prometheus Operator.**

- **Manually deploying monitoring resources into namespaces that have the `openshift.io/cluster-monitoring: "true"` label.**

- **Adding the `openshift.io/cluster-monitoring: "true"` label to namespaces.** This label is reserved only for the namespaces with core OpenShift Container Platform components and Red Hat certified components.

- **Installing custom Prometheus instances on OpenShift Container Platform.** A custom instance is a Prometheus custom resource (CR) managed by the Prometheus Operator.

2.2.2. Support policy for monitoring Operators

Monitoring Operators ensure that OpenShift Container Platform monitoring resources function as designed and tested. If Cluster Version Operator (CVO) control of an Operator is overridden, the Operator does not respond to configuration changes, reconcile the intended state of cluster objects, or receive updates.

While overriding CVO control for an Operator can be helpful during debugging, this is unsupported and the cluster administrator assumes full control of the individual component configurations and upgrades.

Overriding the Cluster Version Operator

The `spec.overrides` parameter can be added to the configuration for the CVO to allow administrators to provide a list of overrides to the behavior of the CVO for a component. Setting the `spec.overrides[].unmanaged` parameter to `true` for a component blocks cluster upgrades and alerts the administrator after a CVO override has been set:

Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.
2.2.3. Support version matrix for monitoring components

The following matrix contains information about versions of monitoring components for OpenShift Container Platform 4.11 and later releases:

Table 2.1. OpenShift Container Platform and component versions

<table>
<thead>
<tr>
<th>OpenShift Container Platform</th>
<th>Prometheus Operator</th>
<th>Prometheus</th>
<th>Prometheus Adapter</th>
<th>Alertmanager</th>
<th>kube-state-metrics agent</th>
<th>node-exporter agent</th>
<th>Thanos</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>0.63.0</td>
<td>2.42.0</td>
<td>0.10.0</td>
<td>0.25.0</td>
<td>2.8.1</td>
<td>15.0</td>
<td>0.30.2</td>
</tr>
<tr>
<td>4.12</td>
<td>0.60.1</td>
<td>2.39.1</td>
<td>0.10.0</td>
<td>0.24.0</td>
<td>2.6.0</td>
<td>14.0</td>
<td>0.28.1</td>
</tr>
<tr>
<td>4.11</td>
<td>0.57.0</td>
<td>2.36.2</td>
<td>0.9.1</td>
<td>0.24.0</td>
<td>2.5.0</td>
<td>13.1</td>
<td>0.26.0</td>
</tr>
</tbody>
</table>

NOTE

The openshift-state-metrics agent and Telemeter Client are OpenShift-specific components. Therefore, their versions correspond with the versions of OpenShift Container Platform.

2.3. PREPARING TO CONFIGURE THE MONITORING STACK

You can configure the monitoring stack by creating and updating monitoring config maps. These config maps configure the Cluster Monitoring Operator (CMO), which in turn configures the components of the monitoring stack.

2.3.1. Creating a cluster monitoring config map

You can configure the core OpenShift Container Platform monitoring components by creating the `cluster-monitoring-config ConfigMap` object in the `openshift-monitoring` project. The Cluster Monitoring Operator (CMO) then configures the core components of the monitoring stack.
NOTE
When you save your changes to the `cluster-monitoring-config` ConfigMap object, some or all of the pods in the `openshift-monitoring` project might be redeployed. It can sometimes take a while for these components to redeploy.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Check whether the `cluster-monitoring-config` ConfigMap object exists:

   ```
   $ oc -n openshift-monitoring get configmap cluster-monitoring-config
   ```

2. If the ConfigMap object does not exist:
 a. Create the following YAML manifest. In this example the file is called `cluster-monitoring-config.yaml`:

   ```yaml
   apiVersion: v1
   kind: ConfigMap
   metadata:
     name: cluster-monitoring-config
     namespace: openshift-monitoring
   data:
     config.yaml:
   ```
 b. Apply the configuration to create the ConfigMap object:

   ```
   $ oc apply -f cluster-monitoring-config.yaml
   ```

2.3.2. Creating a user-defined workload monitoring config map

You can configure the user workload monitoring components with the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project. The Cluster Monitoring Operator (CMO) then configures the components that monitor user-defined projects.

NOTE

- If you enable monitoring for user-defined projects, the `user-workload-monitoring-config` ConfigMap object is created by default.
- When you save your changes to the `user-workload-monitoring-config` ConfigMap object, some or all of the pods in the `openshift-user-workload-monitoring` project might be redeployed. It can sometimes take a while for these components to redeploy.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the **user-workload-monitoring-config ConfigMap** object exists:

   ```bash
   $ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config
   ```

2. If the **user-workload-monitoring-config ConfigMap** object does not exist:
 a. Create the following YAML manifest. In this example the file is called **user-workload-monitoring-config.yaml**:

   ```yaml
   apiVersion: v1
   kind: ConfigMap
   metadata:
     name: user-workload-monitoring-config
     namespace: openshift-user-workload-monitoring
   data:
     config.yaml: |
   ```
 b. Apply the configuration to create the **ConfigMap** object:

   ```bash
   $ oc apply -f user-workload-monitoring-config.yaml
   ```

NOTE

Configurations applied to the **user-workload-monitoring-config ConfigMap** object are not activated unless a cluster administrator has enabled monitoring for user-defined projects.

Additional resources

- Enabling monitoring for user-defined projects

2.4. CONFIGURING THE MONITORING STACK

In OpenShift Container Platform 4.13, you can configure the monitoring stack using the **cluster-monitoring-config** or **user-workload-monitoring-config ConfigMap** objects. Config maps configure the Cluster Monitoring Operator (CMO), which in turn configures the components of the stack.

Prerequisites

- **If you are configuring core OpenShift Container Platform monitoring components**
 - You have access to the cluster as a user with the **cluster-admin** cluster role.
 - You have created the **cluster-monitoring-config ConfigMap** object.

- **If you are configuring components that monitor user-defined projects**
 - You have access to the cluster as a user with the **cluster-admin** cluster role, or as a user with the **user-workload-monitoring-config-edit** role in the **openshift-user-workload-monitoring** project.
A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `ConfigMap` object.

 - **To configure core OpenShift Container Platform monitoring components**

 a. Edit the `cluster-monitoring-config ConfigMap` object in the `openshift-monitoring` project:

        ```
        $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
        ```

 b. Add your configuration under `data/config.yaml` as a key-value pair
 `<component_name>: <component_configuration>`:

        ```yaml
        apiVersion: v1
        kind: ConfigMap
        metadata:
          name: cluster-monitoring-config
          namespace: openshift-monitoring
        data:
          config.yaml: |
          <component>
          <configuration_for_the_component>
        ```

 Substitute `<component>` and `<configuration_for_the_component>` accordingly.

 The following example `ConfigMap` object configures a persistent volume claim (PVC) for Prometheus. This relates to the Prometheus instance that monitors core OpenShift Container Platform components only:

        ```yaml
        apiVersion: v1
        kind: ConfigMap
        metadata:
          name: cluster-monitoring-config
          namespace: openshift-monitoring
        data:
          config.yaml: |
          prometheusK8s: 1
          volumeClaimTemplate:
            spec:
              storageClassName: fast
              volumeMode: Filesystem
              resources:
                requests:
                  storage: 40Gi
        ```

 1 Defines the Prometheus component and the subsequent lines define its configuration.

 - To configure components that monitor user-defined projects
a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-workload-monitoring project:

```
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

b. Add your configuration under data/config.yaml as a key-value pair

```
<component_name>: <component_configuration>
```

Substitute `<component>` and `<configuration_for_the_component>` accordingly.

The following example ConfigMap object configures a data retention period and minimum container resource requests for Prometheus. This relates to the Prometheus instance that monitors user-defined projects only:

```
apiVersion: v1
kind: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yaml: |
    <component>
      <configuration_for_the_component>

1 Defines the Prometheus component and the subsequent lines define its configuration.

2 Configures a twenty-four hour data retention period for the Prometheus instance that monitors user-defined projects.

3 Defines a minimum resource request of 200 millicores for the Prometheus container.

4 Defines a minimum pod resource request of 2 GiB of memory for the Prometheus container.
The Prometheus config map component is called `prometheusK8s` in the `cluster-monitoring-config ConfigMap` object and `prometheus` in the `user-workload-monitoring-config ConfigMap` object.

2. Save the file to apply the changes to the `ConfigMap` object. The pods affected by the new configuration are restarted automatically.

**WARNING**
When changes are saved to a monitoring config map, the pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

Additional resources
- Configuration reference for the `cluster-monitoring-config` config map
- Configuration reference for the `user-workload-monitoring-config` config map
- See [Preparing to configure the monitoring stack](#) for steps to create monitoring config maps
- Enabling monitoring for user-defined projects

### 2.5. CONFIGURABLE MONITORING COMPONENTS

This table shows the monitoring components you can configure and the keys used to specify the components in the `cluster-monitoring-config` and `user-workload-monitoring-config ConfigMap` objects.

<table>
<thead>
<tr>
<th>Component</th>
<th><code>cluster-monitoring-config</code> config map key</th>
<th><code>user-workload-monitoring-config</code> config map key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prometheus Operator</td>
<td><code>prometheusOperator</code></td>
<td><code>prometheusOperator</code></td>
</tr>
<tr>
<td>Prometheus</td>
<td><code>prometheusK8s</code></td>
<td><code>prometheus</code></td>
</tr>
<tr>
<td>Alertmanager</td>
<td><code>alertmanagerMain</code></td>
<td><code>alertmanager</code></td>
</tr>
<tr>
<td>kube-state-metrics</td>
<td><code>kubeStateMetrics</code></td>
<td></td>
</tr>
<tr>
<td>openshift-state-metrics</td>
<td><code>openshiftStateMetrics</code></td>
<td></td>
</tr>
<tr>
<td>Telemeter Client</td>
<td><code>telemeterClient</code></td>
<td></td>
</tr>
</tbody>
</table>
### 2.6. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS

By using the `nodeSelector` constraint with labeled nodes, you can move any of the monitoring stack components to specific nodes. By doing so, you can control the placement and distribution of the monitoring components across a cluster.

By controlling placement and distribution of monitoring components, you can optimize system resource use, improve performance, and segregate workloads based on specific requirements or policies.

#### 2.6.1. How node selectors work with other constraints

If you move monitoring components by using node selector constraints, be aware that other constraints to control pod scheduling might exist for a cluster:

- Topology spread constraints might be in place to control pod placement.
- Hard anti-affinity rules are in place for Prometheus, Thanos Querier, Alertmanager, and other monitoring components to ensure that multiple pods for these components are always spread across different nodes and are therefore always highly available.

When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when determining pod placement. That is, all constraints compound when the pod scheduler determines which pods will be placed on which nodes.

Therefore, if you configure a node selector constraint but existing constraints cannot all be satisfied, the pod scheduler cannot match all constraints and will not schedule a pod for placement onto a node.

To maintain resilience and high availability for monitoring components, ensure that enough nodes are available and match all constraints when you configure a node selector constraint to move a component.

#### Additional resources

- Understanding how to update labels on nodes
- Placing pods on specific nodes using node selectors
- Placing pods relative to other pods using affinity and anti-affinity rules
- Controlling pod placement by using pod topology spread constraints
- Configuring pod topology spread constraints for monitoring
- Kubernetes documentation about node selectors

2.6.2. Moving monitoring components to different nodes

To specify the nodes in your cluster on which monitoring stack components will run, configure the nodeSelector constraint in the component’s ConfigMap object to match labels assigned to the nodes.

**NOTE**

You cannot add a node selector constraint directly to an existing scheduled pod.

**Prerequisites**

- **If you are configuring core OpenShift Container Platform monitoring components**
  - You have access to the cluster as a user with the `cluster-admin` cluster role.
  - You have created the `cluster-monitoring-config` ConfigMap object.

- **If you are configuring components that monitor user-defined projects**
  - You have access to the cluster as a user with the `cluster-admin` cluster role or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
  - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (`oc`).

**Procedure**

1. If you have not done so yet, add a label to the nodes on which you want to run the monitoring components:

   ```bash
 $ oc label nodes <node-name> <node-label>
   ```

2. Edit the ConfigMap object:

   - **To move a component that monitors core OpenShift Container Platform projects**
     a. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` project:
        ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
        ```
     b. Specify the node labels for the nodeSelector constraint for the component under `data/config.yaml`:
        ```yaml
 apiVersion: v1
        ```
Substitute `<component>` with the appropriate monitoring stack component name.

Substitute `<node-label-1>` with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a **Pending** state after configuring the `nodeSelector` constraint, check the pod events for errors relating to taints and tolerations.

- To move a component that monitors user-defined projects

  a. Edit the `user-workload-monitoring-config ConfigMap` object in the `openshift-user-workload-monitoring` project:

```
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

  b. Specify the node labels for the `nodeSelector` constraint for the component under `data/config.yaml`:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
config.yaml: |
 <component>: 1
 nodeSelector:
 <node-label-1>: 2
 <node-label-2>: 3
 <...>
```

1. Substitute `<component>` with the appropriate monitoring stack component name.
2. Substitute `<node-label-1>` with the label you added to the node.
3. Optional: Specify additional labels. If you specify additional labels, the pods for the component are only scheduled on the nodes that contain all of the specified labels.

**NOTE**

If monitoring components remain in a **Pending** state after configuring the **nodeSelector** constraint, check the pod events for errors relating to taints and tolerations.

3. Save the file to apply the changes. The components specified in the new configuration are moved to the new nodes automatically.

**WARNING**

When you save changes to a monitoring config map, the pods and other resources in the project might be redeployed. The running monitoring processes in that project might also restart.

Additional resources

- See [Preparing to configure the monitoring stack](#) for steps to create monitoring config maps
- [Enabling monitoring for user-defined projects](#)
- [Understanding how to update labels on nodes](#)
- [Placing pods on specific nodes using node selectors](#)
- See the [Kubernetes documentation](#) for details on the **nodeSelector** constraint

### 2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS

You can assign tolerations to any of the monitoring stack components to enable moving them to tainted nodes.

**Prerequisites**

- **If you are configuring core OpenShift Container Platform monitoring components**
  - You have access to the cluster as a user with the **cluster-admin** cluster role.
  - You have created the **cluster-monitoring-config ConfigMap** object.

- **If you are configuring components that monitor user-defined projects**
  - You have access to the cluster as a user with the **cluster-admin** cluster role, or as a user with the **user-workload-monitoring-config-edit** role in the **openshift-user-workload-monitoring** project.
  - A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc).

Procedure

1. Edit the **ConfigMap** object:

   - To assign tolerations to a component that monitors core OpenShift Container Platform projects:
     
a. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` project:

     ```
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
     ```

     b. Specify **tolerations** for the component:

     ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>
     ```

     Substitute `<component>` and `<toleration_specification>` accordingly.

     For example, `oc adm taint nodes node1 key1=value1:NoSchedule` adds a taint to `node1` with the key `key1` and the value `value1`. This prevents monitoring components from deploying pods on `node1` unless a toleration is configured for that taint. The following example configures the `alertmanagerMain` component to tolerate the example taint:

     ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
 alertmanagerMain:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
     ```

   - To assign tolerations to a component that monitors user-defined projects
     
a. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:
Specify tolerations for the component:

Substitute `<component>` and `<toleration_specification>` accordingly.

For example, `oc adm taint nodes node1 key1=value1:NoSchedule` adds a taint to `node1` with the key `key1` and the value `value1`. This prevents monitoring components from deploying pods on `node1` unless a toleration is configured for that taint. The following example configures the `thanosRuler` component to tolerate the example taint:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>
```

2. Save the file to apply the changes. The new component placement configuration is applied automatically.

**WARNING**

When changes are saved to a monitoring config map, the pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

**Additional resources**

- See [Preparing to configure the monitoring stack](#) for steps to create monitoring config maps
2.8. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING

By default, no limit exists for the uncompressed body size for data returned from scraped metrics targets. You can set a body size limit to help avoid situations in which Prometheus consumes excessive amounts of memory when scraped targets return a response that contains a large amount of data. In addition, by setting a body size limit, you can reduce the impact that a malicious target might have on Prometheus and on the cluster as a whole.

After you set a value for `enforcedBodySizeLimit`, the alert `PrometheusScrapeBodySizeLimitHit` fires when at least one Prometheus scrape target replies with a response body larger than the configured value.

**NOTE**

If metrics data scraped from a target has an uncompressed body size exceeding the configured size limit, the scrape fails. Prometheus then considers this target to be down and sets its `up` metric value to 0, which can trigger the `TargetDown` alert.

**Prerequisites**

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have installed the OpenShift CLI (`oc`).

**Procedure**

1. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` namespace:

   ```
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

2. Add a value for `enforcedBodySizeLimit` to `data/config.yaml/prometheusK8s` to limit the body size that can be accepted per target scrape:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |-
 prometheusK8s:
 enforcedBodySizeLimit: 40MB
   ```

   Specify the maximum body size for scraped metrics targets. This `enforcedBodySizeLimit` example limits the uncompressed size per target scrape to 40 megabytes. Valid numeric values use the Prometheus data size format: B (bytes), KB (kilobytes), MB (megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes). The default value is 0,
which specifies no limit. You can also set the value to automatic to calculate the limit automatically based on cluster capacity.

3. Save the file to apply the changes automatically.

---

**WARNING**

When you save changes to a `cluster-monitoring-config` config map, the pods and other resources in the `openshift-monitoring` project might be redeployed. The running monitoring processes in that project might also restart.

---

Additional resources

- Prometheus scrape configuration documentation

---

2.9. CONFIGURING A DEDICATED SERVICE MONITOR

You can configure OpenShift Container Platform core platform monitoring to use dedicated service monitors to collect metrics for the resource metrics pipeline.

When enabled, a dedicated service monitor exposes two additional metrics from the kubelet endpoint and sets the value of the `honorTimestamps` field to true.

By enabling a dedicated service monitor, you can improve the consistency of Prometheus Adapter-based CPU usage measurements used by, for example, the `oc adm top pod` command or the Horizontal Pod Autoscaler.

2.9.1. Enabling a dedicated service monitor

You can configure core platform monitoring to use a dedicated service monitor by configuring the `dedicatedServiceMonitors` key in the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` namespace.

Prerequisites

- You have installed the OpenShift CLI (`oc`).
- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have created the `cluster-monitoring-config` ConfigMap object.

Procedure

1. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` namespace:

   ```
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```
2. Add an `enabled: true` key-value pair as shown in the following sample:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
namespace: openshift-monitoring
data:
 config.yaml: |
 k8sPrometheusAdapter:
 dedicatedServiceMonitors:
 enabled: true
```

1. Set the value of the `enabled` field to `true` to deploy a dedicated service monitor that exposes the kubelet `/metrics/resource` endpoint.

3. Save the file to apply the changes automatically.

### WARNING

When you save changes to a `cluster-monitoring-config` config map, the pods and other resources in the `openshift-monitoring` project might be redeployed. The running monitoring processes in that project might also restart.

---

### 2.10. CONFIGURING PERSISTENT STORAGE

Run cluster monitoring with persistent storage to gain the following benefits:

- Protect your metrics and alerting data from data loss by storing them in a persistent volume (PV). As a result, they can survive pods being restarted or recreated.

- Avoid getting duplicate notifications and losing silences for alerts when the Alertmanager pods are restarted.

For production environments, it is highly recommended to configure persistent storage. Because of the high IO demands, it is advantageous to use local storage.

#### 2.10.1. Persistent storage prerequisites

- Dedicate sufficient local persistent storage to ensure that the disk does not become full. How much storage you need depends on the number of pods.

- Verify that you have a persistent volume (PV) ready to be claimed by the persistent volume claim (PVC), one PV for each replica. Because Prometheus and Alertmanager both have two replicas, you need four PVs to support the entire monitoring stack. The PVs are available from the Local Storage Operator, but not if you have enabled dynamically provisioned storage.
Use **Filesystem** as the storage type value for the **volumeMode** parameter when you configure the persistent volume.

**NOTE**

If you use a local volume for persistent storage, do not use a raw block volume, which is described with **volumeMode: Block** in the **LocalVolume** object. Prometheus cannot use raw block volumes.

**IMPORTANT**

Prometheus does not support file systems that are not POSIX compliant. For example, some NFS file system implementations are not POSIX compliant. If you want to use an NFS file system for storage, verify with the vendor that their NFS implementation is fully POSIX compliant.

### 2.10.2. Configuring a local persistent volume claim

For monitoring components to use a persistent volume (PV), you must configure a persistent volume claim (PVC).

**Prerequisites**

- **If you are configuring core OpenShift Container Platform monitoring components**
  - You have access to the cluster as a user with the **cluster-admin** cluster role.
  - You have created the **cluster-monitoring-config** ConfigMap object.

- **If you are configuring components that monitor user-defined projects**
  - You have access to the cluster as a user with the **cluster-admin** cluster role, or as a user with the **user-workload-monitoring-config-edit** role in the **openshift-user-workload-monitoring** project.
  - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (**oc**).

**Procedure**

1. Edit the **ConfigMap** object:

   - To configure a PVC for a component that monitors core OpenShift Container Platform projects:
     a. Edit the **cluster-monitoring-config** ConfigMap object in the **openshift-monitoring** project:

        ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
        ```

     b. Add your PVC configuration for the component under **data/config.yaml**:

        ```yaml
 apiVersion: v1
 kind: ConfigMap
        ```
See the Kubernetes documentation on PersistentVolumeClaims for information on how to specify `volumeClaimTemplate`.

The following example configures a PVC that claims local persistent storage for the Prometheus instance that monitors core OpenShift Container Platform components:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>
```

In the above example, the storage class created by the Local Storage Operator is called `local-storage`.

The following example configures a PVC that claims local persistent storage for Alertmanager:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi
```

To configure a PVC for a component that monitors user-defined projects:

a. Edit the `user-workload-monitoring-config ConfigMap` object in the `openshift-user-workload-monitoring` project:

   ```shell
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
   ```

b. Add your PVC configuration for the component under `data/config.yaml`:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>

 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi
   ```

See the [Kubernetes documentation on PersistentVolumeClaims](https://kubernetes.io/docs/concepts/storage/persistent-volumes/) for information on how to specify `volumeClaimTemplate`.

The following example configures a PVC that claims local persistent storage for the Prometheus instance that monitors user-defined projects:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi
```

In the above example, the storage class created by the Local Storage Operator is called `local-storage`.

The following example configures a PVC that claims local persistent storage for Thanos Ruler:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
```
Storage requirements for the `thanosRuler` component depend on the number of rules that are evaluated and how many samples each rule generates.

2. Save the file to apply the changes. The pods affected by the new configuration are restarted automatically and the new storage configuration is applied.

### 2.10.3. Resizing a persistent storage volume

OpenShift Container Platform does not support resizing an existing persistent storage volume used by `StatefulSet` resources, even if the underlying `StorageClass` resource used supports persistent volume sizing. Therefore, even if you update the `storage` field for an existing persistent volume claim (PVC) with a larger size, this setting will not be propagated to the associated persistent volume (PV).

However, resizing a PV is still possible by using a manual process. If you want to resize a PV for a monitoring component such as Prometheus, Thanos Ruler, or Alertmanager, you can update the appropriate config map in which the component is configured. Then, patch the PVC, and delete and orphan the pods. Orphaning the pods recreates the `StatefulSet` resource immediately and automatically updates the size of the volumes mounted in the pods with the new PVC settings. No service disruption occurs during this process.

**Prerequisites**

- You have installed the OpenShift CLI (`oc`).
- **If you are configuring core OpenShift Container Platform monitoring components**
  - You have access to the cluster as a user with the `cluster-admin` cluster role.
  - You have created the `cluster-monitoring-config ConfigMap` object.
  - You have configured at least one PVC for core OpenShift Container Platform monitoring components.
- **If you are configuring components that monitor user-defined projects**
  - You have access to the cluster as a user with the `cluster-admin` cluster role, or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
  - A cluster administrator has enabled monitoring for user-defined projects.

```yaml
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi
```

**NOTE**

Storage requirements for the `thanosRuler` component depend on the number of rules that are evaluated and how many samples each rule generates.
You have configured at least one PVC for components that monitor user-defined projects.

**Procedure**

1. **Edit the ConfigMap object:**
   
   - To resize a PVC for a component that monitors core OpenShift Container Platform projects:
     
     a. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` project:

     ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

 b. Add a new storage size for the PVC configuration for the component under `data/config.yaml`:

     ```yaml
     apiVersion: v1
     kind: ConfigMap
     metadata:
       name: cluster-monitoring-config
       namespace: openshift-monitoring
     data:
       config.yaml: |
       <component>:
         volumeClaimTemplate:
           spec:
             storageClassName: <storage_class>
             resources:
               requests:
                 storage: <amount_of_storage>
     
     1 Specify the core monitoring component.
     2 Specify the storage class.
     3 Specify the new size for the storage volume.

     The following example configures a PVC that sets the local persistent storage to 100 gigabytes for the Prometheus instance that monitors core OpenShift Container Platform components:

     ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
     ```
The following example configures a PVC that sets the local persistent storage for Alertmanager to 40 gigabytes:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi
```

- To resize a PVC for a component that monitors user-defined projects

  **NOTE**

  You can resize the volumes for the Thanos Ruler and Prometheus instances that monitor user-defined projects.

  a. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:

  ```bash
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

 b. Update the PVC configuration for the monitoring component under `data/config.yaml`:

  ```yaml
  apiVersion: v1
  kind: ConfigMap
  metadata:
    name: user-workload-monitoring-config
    namespace: openshift-user-workload-monitoring
data:
config.yaml: |
  <component>: 1
    volumeClaimTemplate:
      spec:
        storageClassName: <storage_class> 2
        resources:
          requests:
            storage: <amount_of_storage> 3

1 Specify the core monitoring component.
Specify the storage class.

Specify the new size for the storage volume.

The following example configures the PVC size to 100 gigabytes for the Prometheus instance that monitors user-defined projects:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 100Gi
```

The following example sets the PVC size to 20 gigabytes for Thanos Ruler:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 20Gi
```

NOTE

Storage requirements for the `thanosRuler` component depend on the number of rules that are evaluated and how many samples each rule generates.

2. Save the file to apply the changes. The pods affected by the new configuration restart automatically.
3. Manually patch every PVC with the updated storage request. The following example resizes the storage size for the Prometheus component in the `openshift-monitoring` namespace to 100Gi:

```
$ for p in $(oc -n openshift-monitoring get pvc -l app.kubernetes.io/name=prometheus -o jsonpath='[range .items[*]][.metadata.name] {end}'); do \
 oc -n openshift-monitoring patch pvc/$p --patch '{"spec": {"resources": {"requests": {"storage":"100Gi"}}}}'; \
done
```

4. Delete the underlying StatefulSet with the `--cascade=orphan` parameter:

```
$ oc delete statefulset -l app.kubernetes.io/name=prometheus --cascade=orphan
```

### 2.10.4. Modifying the retention time and size for Prometheus metrics data

By default, Prometheus retains metrics data for the following durations:

- **Core platform monitoring**: 15 days
- **Monitoring for user-defined projects**: 24 hours

You can modify the retention time for Prometheus to change how soon the data is deleted. You can also set the maximum amount of disk space the retained metrics data uses. If the data reaches this size limit, Prometheus deletes the oldest data first until the disk space used is again below the limit.

Note the following behaviors of these data retention settings:

- The size-based retention policy applies to all data block directories in the `/prometheus` directory, including persistent blocks, write-ahead log (WAL) data, and m-mapped chunks.

- Data in the `/wal` and `/head_chunks` directories counts toward the retention size limit, but Prometheus never purges data from these directories based on size- or time-based retention policies. Thus, if you set a retention size limit lower than the maximum size set for the `/wal` and `/head_chunks` directories, you have configured the system not to retain any data blocks in the `/prometheus` data directories.

- The size-based retention policy is applied only when Prometheus cuts a new data block, which occurs every two hours after the WAL contains at least three hours of data.

- If you do not explicitly define values for either `retention` or `retentionSize`, retention time defaults to 15 days for core platform monitoring and 24 hours for user-defined project monitoring. Retention size is not set.
- If you define values for both `retention` and `retentionSize`, both values apply. If any data blocks exceed the defined retention time or the defined size limit, Prometheus purges these data blocks.

- If you define a value for `retentionSize` and do not define `retention`, only the `retentionSize` value applies.

- If you do not define a value for `retentionSize` and only define a value for `retention`, only the `retention` value applies.

- If you set the `retentionSize` or `retention` value to 0, the default settings apply. The default settings set retention time to 15 days for core platform monitoring and 24 hours for user-defined project monitoring. By default, retention size is not set.

**NOTE**

Data compaction occurs every two hours. Therefore, a persistent volume (PV) might fill up before compaction, potentially exceeding the `retentionSize` limit. In such cases, the `KubePersistentVolumeFillingUp` alert fires until the space on a PV is lower than the `retentionSize` limit.

**Prerequisites**

- If you are configuring core OpenShift Container Platform monitoring components
  - You have access to the cluster as a user with the `cluster-admin` cluster role.
  - You have created the `cluster-monitoring-config` ConfigMap object.

- If you are configuring components that monitor user-defined projects
  - You have access to the cluster as a user with the `cluster-admin` cluster role, or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
  - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (`oc`).

**Procedure**

1. Edit the ConfigMap object:

   - To modify the retention time and size for the Prometheus instance that monitors core OpenShift Container Platform projects:
     a. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` project:

        ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
        ```

     b. Add the retention time and size configuration under `data/config.yaml`:

        ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
        ```
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
  config.yaml: |
  prometheusK8s:
    retention: <time_specification> 1
    retentionSize: <size_specification> 2

1. The retention time: a number directly followed by **ms** (milliseconds), **s** (seconds), **m** (minutes), **h** (hours), **d** (days), **w** (weeks), or **y** (years). You can also combine time values for specific times, such as **1h30m15s**.

2. The retention size: a number directly followed by **B** (bytes), **KB** (kilobytes), **MB** (megabytes), **GB** (gigabytes), **TB** (terabytes), **PB** (petabytes), and **EB** (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10 gigabytes for the Prometheus instance that monitors core OpenShift Container Platform components:

```
apiVersion: v1
type: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: 24h
 retentionSize: 10GB
```

- To modify the retention time and size for the Prometheus instance that monitors user-defined projects:
  a. Edit the **user-workload-monitoring-config** ConfigMap object in the **openshift-user-workload-monitoring** project:

     $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

  b. Add the retention time and size configuration under **data/config.yaml**:

     ```yaml
 apiVersion: v1
 type: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: <time_specification> 1
 retentionSize: <size_specification> 2
     ```
The retention time: a number directly followed by ms (milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine

The retention size: a number directly followed by B (bytes), KB (kilobytes), MB (megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), or EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10 gigabytes for the Prometheus instance that monitors user-defined projects:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: 24h
 retentionSize: 10GB
```

2. Save the file to apply the changes. The pods affected by the new configuration restart automatically.

**WARNING**

When changes are saved to a monitoring config map, the pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

### 2.10.5. Modifying the retention time for Thanos Ruler metrics data

By default, for user-defined projects, Thanos Ruler automatically retains metrics data for 24 hours. You can modify the retention time to change how long this data is retained by specifying a time value in the `user-workload-monitoring-config` config map in the `openshift-user-workload-monitoring` namespace.

**Prerequisites**

- You have access to the cluster as a user with the `cluster-admin` cluster role or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
- A cluster administrator has enabled monitoring for user-defined projects.
- You have installed the OpenShift CLI (`oc`).

**Procedure**
1. Edit the **user-workload-monitoring-config** ConfigMap object in the **openshift-user-workload-monitoring** project:

   ```bash
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
   ```

2. Add the retention time configuration under **data/config.yaml**:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml: |
 thanosRuler:
 retention: <time_specification>
   ```

   Specify the retention time in the following format: a number directly followed by **ms** (milliseconds), **s** (seconds), **m** (minutes), **h** (hours), **d** (days), **w** (weeks), or **y** (years). You can also combine time values for specific times, such as **1h30m15s**. The default is **24h**.

   The following example sets the retention time to 10 days for Thanos Ruler data:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml: |
 thanosRuler:
 retention: 10d
   ```

3. Save the file to apply the changes. The pods affected by the new configuration automatically restart.

**WARNING**

Saving changes to a monitoring config map might restart monitoring processes and redeploy the pods and other resources in the related project. The running monitoring processes in that project might also restart.

**Additional resources**

- Creating a cluster monitoring config map
- Prometheus database storage requirements
- Recommended configurable storage technology
2.11. CONFIGURING REMOTE WRITE STORAGE

You can configure remote write storage to enable Prometheus to send ingested metrics to remote systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores metrics.

Prerequisites

- **If you are configuring core OpenShift Container Platform monitoring components:**
  - You have access to the cluster as a user with the `cluster-admin` cluster role.
  - You have created the `cluster-monitoring-config` ConfigMap object.

- **If you are configuring components that monitor user-defined projects:**
  - You have access to the cluster as a user with the `cluster-admin` cluster role or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
  - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (oc).

- You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint URL. See the Prometheus remote endpoints and storage documentation for information about endpoints that are compatible with the remote write feature.

**IMPORTANT**

Red Hat only provides information for configuring remote write senders and does not offer guidance on configuring receiver endpoints. Customers are responsible for setting up their own endpoints that are remote-write compatible. Issues with endpoint receiver configurations are not included in Red Hat production support.

- You have set up authentication credentials in a Secret object for the remote write endpoint. You must create the secret in the same namespace as the Prometheus object for which you configure remote write: the `openshift-monitoring` namespace for default platform monitoring or the `openshift-user-workload-monitoring` namespace for user workload monitoring.
WARNING
To reduce security risks, use HTTPS and authentication to send metrics to an endpoint.

Procedure

1. Edit the ConfigMap object:

   - To configure remote write for the Prometheus instance that monitors core OpenShift Container Platform projects:

     a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

        $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

     b. Add a remoteWrite: section under data/config.yaml/prometheusK8s.

     c. Add an endpoint URL and authentication credentials in this section:

        ```yaml
apiVersion: v1
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com" # The URL of the remote write endpoint.
 <endpoint_authentication_credentials> # The authentication method and credentials for the endpoint. Currently supported authentication methods are AWS Signature Version 4, authentication using HTTP in an Authorization request header, Basic authentication, OAuth 2.0, and TLS client. See Supported remote write authentication settings for sample configurations of supported authentication methods.

```

2. Add write relabel configuration values after the authentication credentials:

   ```yaml
apiVersion: v1
data:
 config.yaml: |

```
The write relabel configuration settings.

For `<your_write_relabel_configs>` substitute a list of write relabel configurations for metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called `my_metric`:

```yaml
apiVersion: v1
class: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 <your_write_relabel_configs>

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

To configure remote write for the Prometheus instance that monitors user-defined projects:

a. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:

```bash
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

b. Add a `remoteWrite` section under `data/config.yaml/prometheus`.

c. Add an endpoint URL and authentication credentials in this section:

```yaml
apiVersion: v1
class: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yaml: |
    prometheus:
      remoteWrite:
```
remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>

1. The URL of the remote write endpoint.

2. The authentication method and credentials for the endpoint. Currently supported authentication methods are AWS Signature Version 4, authentication using HTTP an Authorization request header, basic authentication, OAuth 2.0, and TLS client. See Supported remote write authentication settings below for sample configurations of supported authentication methods.

d. Add write relabel configuration values after the authentication credentials:

```yaml
apiVersion: v1
class: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yaml: |
    prometheus:
      remoteWrite:
        - url: "https://remote-write-endpoint.example.com"
          <endpoint_authentication_credentials>
          <your_write_relabel_configs>  
```

1. The write relabel configuration settings.

For <your_write_relabel_configs> substitute a list of write relabel configurations for metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yaml: |
    prometheus:
      remoteWrite:
        - url: "https://remote-write-endpoint.example.com"
          writeRelabelConfigs:
            - sourceLabels: [__name__]
              regex: 'my_metric'
              action: keep
```

See the Prometheus relabel_config documentation for information about write relabel configuration options.

2. Save the file to apply the changes. The pods affected by the new configuration restart automatically.
2.11.1. Supported remote write authentication settings

You can use different methods to authenticate with a remote write endpoint. Currently supported authentication methods are AWS Signature Version 4, basic authentication, authorization, OAuth 2.0, and TLS client. The following table provides details about supported authentication methods for use with remote write.

<table>
<thead>
<tr>
<th>Authentication method</th>
<th>Config map field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Signature Version 4</td>
<td>sigv4</td>
<td>This method uses AWS Signature Version 4 authentication to sign requests. You cannot use this method simultaneously with authorization, OAuth 2.0, or Basic authentication.</td>
</tr>
<tr>
<td>Basic authentication</td>
<td>basicAuth</td>
<td>Basic authentication sets the authorization header on every remote write request with the configured username and password.</td>
</tr>
<tr>
<td>authorization</td>
<td>authorization</td>
<td>Authorization sets the Authorization header on every remote write request using the configured token.</td>
</tr>
<tr>
<td>OAuth 2.0</td>
<td>oauth2</td>
<td>An OAuth 2.0 configuration uses the client credentials grant type. Prometheus fetches an access token from tokenUrl with the specified client ID and client secret to access the remote write endpoint. You cannot use this method simultaneously with authorization, AWS Signature Version 4, or Basic authentication.</td>
</tr>
</tbody>
</table>
A TLS client configuration specifies the CA certificate, the client certificate, and the client key file information used to authenticate with the remote write endpoint server using TLS. The sample configuration assumes that you have already created a CA certificate file, a client certificate file, and a client key file.

<table>
<thead>
<tr>
<th>Authentication method</th>
<th>Config map field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS client</td>
<td>tlsConfig</td>
<td>A TLS client configuration specifies the CA certificate, the client certificate, and the client key file information used to authenticate with the remote write endpoint server using TLS. The sample configuration assumes that you have already created a CA certificate file, a client certificate file, and a client key file.</td>
</tr>
</tbody>
</table>

2.11.2. Example remote write authentication settings

The following samples show different authentication settings you can use to connect to a remote write endpoint. Each sample also shows how to configure a corresponding **Secret** object that contains authentication credentials and other relevant settings. Each sample configures authentication for use with default platform monitoring in the `openshift-monitoring` namespace.

Example 2.1. Sample YAML for AWS Signature Version 4 authentication

The following shows the settings for a **sigv4** secret named **sigv4-credentials** in the `openshift-monitoring` namespace:

```yaml
apiVersion: v1
class: Secret
metadata:
  name: sigv4-credentials
  namespace: openshift-monitoring
stringData:
  accessKey: <AWS_access_key>  <1>
  secretKey: <AWS_secret_key>  <2>
type: Opaque
```

1. The AWS API access key.
2. The AWS API secret key.

The following shows sample AWS Signature Version 4 remote write authentication settings that use a **Secret** object named **sigv4-credentials** in the `openshift-monitoring` namespace:

```yaml
apiVersion: v1
class: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    prometheusK8s:
      remoteWrite:
```

49
Example 2.2. Sample YAML for basic authentication

The following shows sample basic authentication settings for a **Secret** object named **rw-basic-auth** in the **openshift-monitoring** namespace:

```
apiVersion: v1
class: Secret
metadata:
  name: rw-basic-auth
  namespace: openshift-monitoring
stringData:
  user: <basic_username> 1
  password: <basic_password> 2
type: Opaque
```

1. The username.
2. The password.

The following sample shows a **basicAuth** remote write configuration that uses a **Secret** object named **rw-basic-auth** in the **openshift-monitoring** namespace. It assumes that you have already set up authentication credentials for the endpoint.

```
apiVersion: v1
class: ConfigMap
metadata:
  name: cluster-monitoring-config
```
The name of the Secret object that contains the authentication credentials.

The key that contains the username in the specified Secret object.

The key that contains the password in the specified Secret object.

Example 2.3. Sample YAML for authentication with a bearer token using a Secret Object

The following shows bearer token settings for a Secret object named `rw-bearer-auth` in the `openshift-monitoring` namespace:

```yaml
apiVersion: v1
class: Secret
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://authorization.example.com/api/write"
  basicAuth:
    name: rw-bearer-auth
    key: user
    password:
    name: rw-bearer-auth
    key: password

1 3 The name of the Secret object that contains the authentication credentials.
2 The key that contains the username in the specified Secret object.
4 The key that contains the password in the specified Secret object.

The following shows sample bearer token config map settings that use a Secret object named `rw-bearer-auth` in the `openshift-monitoring` namespace:

```yaml
apiVersion: v1
class: ConfigMap
data:
config.yaml: |
 enableUserWorkload: true
 prometheusK8s:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 authorization:
 type: Bearer
```

---
The authentication type of the request. The default value is **Bearer**.

The name of the **Secret** object that contains the authentication credentials.

The key that contains the authentication token in the specified **Secret** object.

---

**Example 2.4. Sample YAML for OAuth 2.0 authentication**

The following shows sample OAuth 2.0 settings for a **Secret** object named `oauth2-credentials` in the `openshift-monitoring` namespace:

```yaml
apiVersion: v1
kind: Secret
metadata:
 name: oauth2-credentials
 namespace: openshift-monitoring
stringData:
 id: <oauth2_id> 1
 secret: <oauth2_secret> 2
 token: <oauth2_authentication_token> 3
 type: Opaque
```

1. The Oauth 2.0 ID.
2. The OAuth 2.0 secret.
3. The OAuth 2.0 token.

The following shows an **oauth2** remote write authentication sample configuration that uses a **Secret** object named `oauth2-credentials` in the `openshift-monitoring` namespace:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
 remoteWrite:
 - url: "https://test.example.com/api/write"
oauth2:
 clientId:
 secret:
 name: oauth2-credentials 1
 key: id 2
 clientSecret:
 name: oauth2-credentials 3
```

---

1. The Oauth 2.0 ID.
2. The OAuth 2.0 secret.
3. The OAuth 2.0 token.
The name of the corresponding Secret object. Note that ClientId can alternatively refer to a ConfigMap object, although clientSecret must refer to a Secret object.

The key that contains the OAuth 2.0 credentials in the specified Secret object.

The URL used to fetch a token with the specified clientId and clientSecret.

The OAuth 2.0 scopes for the authorization request. These scopes limit what data the tokens can access.

The OAuth 2.0 authorization request parameters required for the authorization server.

Example 2.5. Sample YAML for TLS client authentication

The following shows sample TLS client settings for a tls Secret object named mtls-bundle in the openshift-monitoring namespace.

```yaml
apiVersion: v1
kind: Secret
metadata:
 name: mtls-bundle
 namespace: openshift-monitoring
data:
 ca.crt: <ca_cert>
 client.crt: <client_cert>
 client.key: <client_key>
type: tls
```

The CA certificate in the Prometheus container with which to validate the server certificate.

The client certificate for authentication with the server.

The client key.

The following sample shows a tlsConfig remote write authentication configuration that uses a TLS Secret object named mtls-bundle.

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
```
The name of the corresponding `Secret` object that contains the TLS authentication credentials. Note that `ca` and `cert` can alternatively refer to a `ConfigMap` object, though `keySecret` must refer to a `Secret` object.

The key in the specified `Secret` object that contains the CA certificate for the endpoint.

The key in the specified `Secret` object that contains the client certificate for the endpoint.

The key in the specified `Secret` object that contains the client key secret.

---

### 2.12. ADDING CLUSTER ID LABELS TO METRICS

If you manage multiple OpenShift Container Platform clusters and use the remote write feature to send metrics data from these clusters to an external storage location, you can add cluster ID labels to identify the metrics data coming from different clusters. You can then query these labels to identify the source cluster for a metric and distinguish that data from similar metrics data sent by other clusters.

This way, if you manage many clusters for multiple customers and send metrics data to a single centralized storage system, you can use cluster ID labels to query metrics for a particular cluster or customer.

Creating and using cluster ID labels involves three general steps:
Configuring the write relabel settings for remote write storage.

- Adding cluster ID labels to the metrics.
- Querying these labels to identify the source cluster or customer for a metric.

## 2.12.1. Creating cluster ID labels for metrics

You can create cluster ID labels for metrics for default platform monitoring and for user workload monitoring.

For default platform monitoring, you add cluster ID labels for metrics in the `write_relabel` settings for remote write storage in the `cluster-monitoring-config` ConfigMap in the `openshift-monitoring` namespace.

For user workload monitoring, you edit the settings in the `user-workload-monitoring-config` ConfigMap in the `openshift-user-workload-monitoring` namespace.

### NOTE

When Prometheus scrapes user workload targets that expose a `namespace` label, the system stores this label as `exported_namespace`. This behavior ensures that the final namespace label value is equal to the namespace of the target pod. You cannot override this default configuration by setting the value of the `honorLabels` field to `true` for PodMonitor or ServiceMonitor objects.

### Prerequisites

- **If you are configuring default platform monitoring components:**
  - You have access to the cluster as a user with the `cluster-admin` cluster role.
  - You have created the `cluster-monitoring-config` ConfigMap object.

- **If you are configuring components that monitor user-defined projects:**
  - You have access to the cluster as a user with the `cluster-admin` cluster role or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
  - A cluster administrator has enabled monitoring for user-defined projects.
  - You have installed the OpenShift CLI (`oc`).
  - You have configured remote write storage.

### Procedure

1. Edit the ConfigMap object:
   - To create cluster ID labels for core OpenShift Container Platform metrics:
     a. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` project:

```bash
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```
b. In the `writeRelabelConfigs:` section under `data/config.yaml/prometheusK8s/remoteWrite`, add cluster ID relabel configuration values:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 writeRelabelConfigs:
 - <relabel_config>
 sourceLabels:
 - __tmp_openshift_cluster_id__
 targetLabel: cluster_id
 action: replace
```

1. Add a list of write relabel configurations for metrics that you want to send to the remote endpoint.
2. Substitute the label configuration for the metrics sent to the remote write endpoint.

The following sample shows how to forward a metric with the cluster ID label `cluster_id` in default platform monitoring:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 sourceLabels:
 1. __tmp_openshift_cluster_id__
 targetLabel: cluster_id
 action: replace
```

1. The system initially applies a temporary cluster ID source label named `__tmp_openshift_cluster_id__`. This temporary label gets replaced by the cluster ID label name that you specify.
2. Specify the name of the cluster ID label for metrics sent to remote write storage. If you use a label name that already exists for a metric, that value is overwritten with the name of this cluster ID label. For the label name, do not use `__tmp_openshift_cluster_id__`. The final relabeling step removes labels that use this name.
3. The `replace` write relabel action replaces the temporary label with the target label.
To create cluster ID labels for user-defined project metrics:

a. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:

   ```bash
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
   ```

b. In the `writeRelabelConfigs`: section under `data/config.yaml/prometheus/remoteWrite`, add cluster ID relabel configuration values:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 endpoint_authentication_credentials>
 writeRelabelConfigs:
 - <relabel_config>
 sourceLabels:
 - __tmp_openshift_cluster_id__
 targetLabel: cluster_id
 action: replace
   ```

   1. Add a list of write relabel configurations for metrics that you want to send to the remote endpoint.
   2. Substitute the label configuration for the metrics sent to the remote write endpoint.

The following sample shows how to forward a metric with the cluster ID label `cluster_id` in user-workload monitoring:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels:
 - __tmp_openshift_cluster_id__
 targetLabel: cluster_id
 action: replace
```

1. The system initially applies a temporary cluster ID source label named `__tmp_openshift_cluster_id__`. This temporary label gets replaced by the cluster ID label name that you specify.
Specify the name of the cluster ID label for metrics sent to remote write storage. If you use a label name that already exists for a metric, that value is overwritten with the replace write relabel action replaces the temporary label with the target label for outgoing metrics. This action is the default and is applied if no action is specified.

2. Save the file to apply the changes to the ConfigMap object. The pods affected by the updated configuration automatically restart.

WARNING

Saving changes to a monitoring ConfigMap object might redeploy the pods and other resources in the related project. Saving changes might also restart the running monitoring processes in that project.

Additional resources

- For details about write relabel configuration, see Configuring remote write storage.
- For information about how to get your cluster ID, see Obtaining your cluster ID.

2.13. CONFIGURING METRICS COLLECTION PROFILES

IMPORTANT

Using a metrics collection profile is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview.

By default, Prometheus collects metrics exposed by all default metrics targets in OpenShift Container Platform components. However, you might want Prometheus to collect fewer metrics from a cluster in certain scenarios:

- If cluster administrators require only alert, telemetry, and console metrics and do not require other metrics to be available.
- If a cluster increases in size, and the increased size of the default metrics data collected now requires a significant increase in CPU and memory resources.

You can use a metrics collection profile to collect either the default amount of metrics data or a minimal amount of metrics data. When you collect minimal metrics data, basic monitoring features such as alerting continue to work. At the same time, the CPU and memory resources required by Prometheus
2.13.1. About metrics collection profiles

You can enable one of two metrics collection profiles:

- **full**: Prometheus collects metrics data exposed by all platform components. This setting is the default.
- **minimal**: Prometheus collects only the metrics data required for platform alerts, recording rules, telemetry, and console dashboards.

2.13.2. Choosing a metrics collection profile

To choose a metrics collection profile for core OpenShift Container Platform monitoring components, edit the `cluster-monitoring-config ConfigMap` object.

**Prerequisites**

- You have installed the OpenShift CLI (`oc`).
- You have enabled Technology Preview features by using the `FeatureGate` custom resource (CR).
- You have created the `cluster-monitoring-config ConfigMap` object.
- You have access to the cluster as a user with the `cluster-admin` cluster role.

**WARNING**

Saving changes to a monitoring config map might restart monitoring processes and redeploy the pods and other resources in the related project. The running monitoring processes in that project might also restart.

**Procedure**

1. **Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:**

   ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

2. **Add the metrics collection profile setting under `data/config.yaml/prometheusK8s`:**

   ```yaml
 apiVersion: v1
data:
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
name: cluster-monitoring-config
```
The name of the metrics collection profile. The available values are **full** or **minimal**. If you do not specify a value or if the `collectionProfile` key name does not exist in the config map, the default setting of **full** is used.

The following example sets the metrics collection profile to **minimal** for the core platform instance of Prometheus:

```yaml
apiVersion: v1
collectionProfile: minimal
kind: ConfigMap
data:
 config.yaml: |
 prometheusK8s:
 collectionProfile: minimal
```

3. Save the file to apply the changes. The pods affected by the new configuration restart automatically.

**Additional resources**

- See [Viewing a list of available metrics](#) for steps to view a list of metrics being collected for a cluster.
- See [Enabling features using feature gates](#) for steps to enable Technology Preview features.

### 2.14. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute that has an unlimited number of potential values is called an unbound attribute. For example, a `customer_id` attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels can result in an exponential increase in the number of time series created. This can impact Prometheus performance and can consume a lot of disk space.

Cluster administrators can use the following measures to control the impact of unbound metrics attributes in user-defined projects:

- Limit the number of samples that can be accepted per target scrape in user-defined projects
- Limit the number of scraped labels, the length of label names, and the length of label values
- Create alerts that fire when a scrape sample threshold is reached or when the target cannot be scraped
NOTE

Limiting scrape samples can help prevent the issues caused by adding many unbound attributes to labels. Developers can also prevent the underlying cause by limiting the number of unbound attributes that they define for metrics. Using attributes that are bound to a limited set of possible values reduces the number of potential key-value pair combinations.

2.14.1. Setting scrape sample and label limits for user-defined projects

You can limit the number of samples that can be accepted per target scrape in user-defined projects. You can also limit the number of scraped labels, the length of label names, and the length of label values.

WARNING

If you set sample or label limits, no further sample data is ingested for that target scrape after the limit is reached.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role, or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.

- A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `user-workload-monitoring-config ConfigMap` object in the `openshift-user-workload-monitoring` project:

   ```
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
   ```

2. Add the `enforcedSampleLimit` configuration to `data/config.yaml` to limit the number of samples that can be accepted per target scrape in user-defined projects:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml:
 prometheus:
 enforcedSampleLimit: 50000
   ```
A value is required if this parameter is specified. This `enforcedSampleLimit` example limits the number of samples that can be accepted per target scrape in user-defined projects to 50,000.

3. Add the `enforcedLabelLimit`, `enforcedLabelNameLengthLimit`, and `enforcedLabelValueLengthLimit` configurations to `data/config.yaml` to limit the number of scraped labels, the length of label names, and the length of label values in user-defined projects:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 data:
 config.yaml: |
 prometheus:
 enforcedLabelLimit: 500 1
 enforcedLabelNameLengthLimit: 50 2
 enforcedLabelValueLengthLimit: 600 3
   ```

   1. Specifies the maximum number of labels per scrape. The default value is 0, which specifies no limit.
   2. Specifies the maximum length in characters of a label name. The default value is 0, which specifies no limit.
   3. Specifies the maximum length in characters of a label value. The default value is 0, which specifies no limit.

4. Save the file to apply the changes. The limits are applied automatically.

**WARNING**

When changes are saved to the `user-workload-monitoring-config` ConfigMap object, the pods and other resources in the `openshift-user-workload-monitoring` project might be redeployed. The running monitoring processes in that project might also be restarted.

### 2.14.2. Creating scrape sample alerts

You can create alerts that notify you when:

- The target cannot be scraped or is not available for the specified `for` duration
- A scrape sample threshold is reached or is exceeded for the specified `for` duration

**Prerequisites**
You have access to the cluster as a user with the `cluster-admin` cluster role, or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.

A cluster administrator has enabled monitoring for user-defined projects.

You have limited the number of samples that can be accepted per target scrape in user-defined projects, by using `enforcedSampleLimit`.

You have installed the OpenShift CLI (`oc`).

**Procedure**

1. Create a YAML file with alerts that inform you when the targets are down and when the enforced sample limit is approaching. The file in this example is called `monitoring-stack-alerts.yaml`:

```yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 labels:
 prometheus: k8s
 role: alert-rules
 name: monitoring-stack-alerts
 namespace: ns1
spec:
groups:
- name: general.rules
 rules:
 - alert: TargetDown
 annotations:
 message: '{\printf %.4g $value }% of the {{ $labels.job }}/\{{ $labels.service \}} targets in \{{ $labels.namespace \}} namespace are down.'
 expr: 100 * (count(up == 0) BY (job, namespace, service)) / count(up) BY (job, namespace, service)) > 10
 for: 10m
 labels:
 severity: warning
 - alert: ApproachingEnforcedSamplesLimit
 annotations:
 message: '{\$labels.container} container of the {{ $labels.pod }} pod in the {{ $labels.namespace }} namespace consumes {{ $value | humanizePercentage }} of the samples limit budget.'
 expr: scrape_samples_scraped/50000 > 0.8
 for: 10m
 labels:
 severity: warning
```

1. Defines the name of the alerting rule.
2. Specifies the user-defined project where the alerting rule will be deployed.
3. The `TargetDown` alert will fire if the target cannot be scraped or is not available for the `for` duration.
The message that will be output when the **TargetDown** alert fires.

The conditions for the **TargetDown** alert must be true for this duration before the alert is fired.

Defines the severity for the **TargetDown** alert.

The **ApproachingEnforcedSamplesLimit** alert will fire when the defined scrape sample threshold is reached or exceeded for the specified for duration.

The message that will be output when the **ApproachingEnforcedSamplesLimit** alert fires.

The threshold for the **ApproachingEnforcedSamplesLimit** alert. In this example the alert will fire when the number of samples per target scrape has exceeded 80% of the enforced sample limit of **50000**. The for duration must also have passed before the alert will fire. The `<number>` in the expression `scrape_samples_scraped/<number> > <threshold>` must match the `enforcedSampleLimit` value defined in the `user-workload-monitoring-config ConfigMap` object.

The conditions for the **ApproachingEnforcedSamplesLimit** alert must be true for this duration before the alert is fired.

Defines the severity for the **ApproachingEnforcedSamplesLimit** alert.

2. Apply the configuration to the user-defined project:

   ```bash
 $ oc apply -f monitoring-stack-alerts.yaml
   ```

Additional resources

- Creating a user-defined workload monitoring config map
- Enabling monitoring for user-defined projects
- See Determining why Prometheus is consuming a lot of disk space for steps to query which metrics have the highest number of scrape samples.
CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

The OpenShift Container Platform monitoring stack includes a local Alertmanager instance that routes alerts from Prometheus. You can add external Alertmanager instances to route alerts for core OpenShift Container Platform projects or user-defined projects.

If you add the same external Alertmanager configuration for multiple clusters and disable the local instance for each cluster, you can then manage alert routing for multiple clusters by using a single external Alertmanager instance.

Prerequisites

- If you are configuring core OpenShift Container Platform monitoring components in the openshift-monitoring project:
  - You have access to the cluster as a user with the cluster-admin cluster role.
  - You have created the cluster-monitoring-config config map.

- If you are configuring components that monitor user-defined projects:
  - You have access to the cluster as a user with the cluster-admin cluster role, or as a user with the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring project.
  - A cluster administrator has enabled monitoring for user-defined projects.
  - You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

   - To configure additional Alertmanagers for routing alerts from core OpenShift Container Platform projects:
     a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

        ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
        ```
     
     b. Add an additionalAlertmanagerConfigs: section under data/config.yaml/prometheusK8s.

     c. Add the configuration details for additional Alertmanagers in this section:

        ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
        ```
For `<alertmanager_specification>`, substitute authentication and other configuration details for additional Alertmanager instances. Currently supported authentication methods are bearer token (`bearerToken`) and client TLS (`tlsConfig`). The following sample config map configures an additional Alertmanager using a bearer token with client TLS authentication:

```yaml
apiVersion: v1
class: ConfigMap
metadata:
 name: cluster-monitoring-config
namespace: openshift-monitoring
data:
 config.yaml:
 prometheusK8s:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>
```

To configure additional Alertmanager instances for routing alerts from user-defined projects:

a. Edit the `user-workload-monitoring-config` config map in the `openshift-user-workload-monitoring` project:

```
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

b. Add a `<component>/additionalAlertmanagerConfigs` section under `data/config.yaml`:

c. Add the configuration details for additional Alertmanagers in this section:

```
apiVersion: v1
```
For `<component>`, substitute one of two supported external Alertmanager components: `prometheus` or `thanosRuler`.

For `<alertmanager_specification>`, substitute authentication and other configuration details for additional Alertmanager instances. Currently supported authentication methods are bearer token (`bearerToken`) and client TLS (`tlsConfig`). The following sample config map configures an additional Alertmanager using Thanos Ruler with a bearer token and client TLS authentication:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com
```

2. Save the file to apply the changes to the `ConfigMap` object. The new component placement configuration is applied automatically.

3. Save the file to apply the changes to the `ConfigMap` object. The new component placement configuration is applied automatically.
CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

The OpenShift Container Platform monitoring stack includes Alertmanager, which routes alerts from Prometheus to endpoint receivers. If you need to authenticate with a receiver so that Alertmanager can send alerts to it, you can configure Alertmanager to use a secret that contains authentication credentials for the receiver.

For example, you can configure Alertmanager to use a secret to authenticate with an endpoint receiver that requires a certificate issued by a private Certificate Authority (CA). You can also configure Alertmanager to use a secret to authenticate with a receiver that requires a password file for Basic HTTP authentication. In either case, authentication details are contained in the Secret object rather than in the ConfigMap object.

4.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION

You can add secrets to the Alertmanager configuration for core platform monitoring components by editing the cluster-monitoring-config config map in the openshift-monitoring project.

After you add a secret to the config map, the secret is mounted as a volume at /etc/alertmanager/secrets/<secret_name> within the alertmanager container for the Alertmanager pods.

Prerequisites

- If you are configuring core OpenShift Container Platform monitoring components in the openshift-monitoring project:
  - You have access to the cluster as a user with the cluster-admin cluster role.
  - You have created the cluster-monitoring-config config map.
  - You have created the secret to be configured in Alertmanager in the openshift-monitoring project.

- If you are configuring components that monitor user-defined projects
  - You have access to the cluster as a user with the cluster-admin cluster role, or as a user with the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring project.
  - You have created the secret to be configured in Alertmanager in the openshift-user-workload-monitoring project.
  - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

   - To add a secret configuration to Alertmanager for core platform monitoring
     a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

     ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
     ```
b. Add a **secrets:** section under `data/config.yaml/alertmanagerMain` with the following configuration:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 secrets:
 - <secret_name_1>
 - <secret_name_2>
```

1. This section contains the secrets to be mounted into Alertmanager. The secrets must be located within the same namespace as the Alertmanager object.

2. The name of the **Secret** object that contains authentication credentials for the receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two **Secret** objects named `test-secret-basic-auth` and `test-secret-api-token`:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 secrets:
 - test-secret-basic-auth
 - test-secret-api-token
```

- To add a secret configuration to Alertmanager for user-defined project monitoring
  a. Edit the **user-workload-monitoring-config** config map in the `openshift-user-workload-monitoring` project:

    ```bash
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
    ```

  b. Add a **secrets:** section under `data/config.yaml/alertmanager/secrets` with the following configuration:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
```
This section contains the secrets to be mounted into Alertmanager. The secrets must be located within the same namespace as the Alertmanager object.

The name of the **Secret** object that contains authentication credentials for the receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two **Secret** objects named **test-secret** and **test-secret-api-token**:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true
 secrets:
 - test-secret
 - test-api-receiver-token
```

2. Save the file to apply the changes to the **ConfigMap** object. The new configuration is applied automatically.

### 4.2. Attaching Additional Labels to Your Time Series and Alerts

You can attach custom labels to all time series and alerts leaving Prometheus by using the external labels feature of Prometheus.

**Prerequisites**

- **If you are configuring core OpenShift Container Platform monitoring components**
  - You have access to the cluster as a user with the **cluster-admin** cluster role.
  - You have created the **cluster-monitoring-config** **ConfigMap** object.

- **If you are configuring components that monitor user-defined projects**
  - You have access to the cluster as a user with the **cluster-admin** cluster role, or as a user with the **user-workload-monitoring-config-edit** role in the **openshift-user-workload-monitoring** project.
  - A cluster administrator has enabled monitoring for user-defined projects.
  - You have installed the OpenShift CLI (**oc**).
Procedure

1. Edit the **ConfigMap** object:

   - To attach custom labels to all time series and alerts leaving the Prometheus instance that monitors core OpenShift Container Platform projects:

     a. Edit the **cluster-monitoring-config ConfigMap** object in the **openshift-monitoring** project:

        ```$ oc -n openshift-monitoring edit configmap cluster-monitoring-config```

 b. Define a map of labels you want to add for every metric under **data/config.yaml**:

        ```
        apiVersion: v1
        kind: ConfigMap
        metadata:
          name: cluster-monitoring-config
          namespace: openshift-monitoring
        data:
          config.yaml: |
          prometheusK8s:
            externalLabels:
              <key>: <value>
        ```

 1 Substitute `<key>: <value>` with a map of key-value pairs where `<key>` is a unique name for the new label and `<value>` is its value.

 WARNING

 - Do not use `prometheus` or `prometheus_replica` as key names, because they are reserved and will be overwritten.
 - Do not use `cluster` or `managed_cluster` as key names. Using them can cause issues where you are unable to see data in the developer dashboards.

For example, to add metadata about the region and environment to all time series and alerts, use the following example:

```
apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
  prometheusK8s:
    externalLabels:
```
To attach custom labels to all time series and alerts leaving the Prometheus instance that monitors user-defined projects:

a. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:

```
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

b. Define a map of labels you want to add for every metric under `data/config.yaml`:

```
apiVersion: v1
kind: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yaml: |
    prometheus:
      externalLabels:
        <key>: <value>  
```

Substitute `<key>: <value>` with a map of key-value pairs where `<key>` is a unique name for the new label and `<value>` is its value.

WARNING

- Do not use `prometheus` or `prometheus_replica` as key names, because they are reserved and will be overwritten.
- Do not use `cluster` or `managed_cluster` as key names. Using them can cause issues where you are unable to see data in the developer dashboards.

NOTE

In the `openshift-user-workload-monitoring` project, Prometheus handles metrics and Thanos Ruler handles alerting and recording rules. Setting `externalLabels` for `prometheus` in the `user-workload-monitoring-config` ConfigMap object will only configure external labels for metrics and not for any rules.

For example, to add metadata about the region and environment to all time series and alerts related to user-defined projects, use the following example:
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml:
 prometheus:
 externalLabels:
 region: eu
 environment: prod

2. Save the file to apply the changes. The new configuration is applied automatically.

WARNING

When changes are saved to a monitoring config map, the pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

Additional resources

- See `Preparation to configure the monitoring stack` for steps to create monitoring config maps.
- `Enabling monitoring for user-defined projects`
CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

You can use pod topology spread constraints to control how Prometheus, Thanos Ruler, and Alertmanager pods are spread across a network topology when OpenShift Container Platform pods are deployed in multiple availability zones.

Pod topology spread constraints are suitable for controlling pod scheduling within hierarchical topologies in which nodes are spread across different infrastructure levels, such as regions and zones within those regions. Additionally, by being able to schedule pods in different zones, you can improve network latency in certain scenarios.

Additional resources

- Controlling pod placement by using pod topology spread constraints
- Kubernetes Pod Topology Spread Constraints documentation

5.1. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR PROMETHEUS

For core OpenShift Container Platform platform monitoring, you can set up pod topology spread constraints for Prometheus to fine tune how pod replicas are scheduled to nodes across zones. Doing so helps ensure that Prometheus pods are highly available and run more efficiently, because workloads are spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Prometheus in the `cluster-monitoring-config` config map.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have created the `cluster-monitoring-config ConfigMap` object.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `cluster-monitoring-config ConfigMap` object in the `openshift-monitoring` namespace:

   ```bash
   $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

2. Add values for the following settings under `data/config.yaml/prometheusK8s` to configure pod topology spread constraints:

   ```yaml
   apiVersion: v1
   kind: ConfigMap
   metadata:
     name: cluster-monitoring-config
   namespace: openshift-monitoring
   data:
   ```
Specify a numeric value for `maxSkew`, which defines the degree to which pods are allowed to be unevenly distributed. This field is required, and the value must be greater than zero. The value specified has a different effect depending on what value you specify for `whenUnsatisfiable`.

Specify a key of node labels for `topologyKey`. This field is required. Nodes that have a label with this key and identical values are considered to be in the same topology. The scheduler will try to put a balanced number of pods into each domain.

Specify a value for `whenUnsatisfiable`. This field is required. Available options are `DoNotSchedule` and `ScheduleAnyway`. Specify `DoNotSchedule` if you want the `maxSkew` value to define the maximum difference allowed between the number of matching pods in the target topology and the global minimum. Specify `ScheduleAnyway` if you want the scheduler to still schedule the pod but to give higher priority to nodes that might reduce the skew.

Specify a value for `matchLabels`. This value is used to identify the set of matching pods to which to apply the constraints.

3. Save the file to apply the changes automatically.

WARNING

When you save changes to the `cluster-monitoring-config` config map, the pods and other resources in the `openshift-monitoring` project might be redeployed. The running monitoring processes in that project might also restart.

5.2. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR ALERTMANAGER

For core OpenShift Container Platform platform monitoring, you can set up pod topology spread constraints for Alertmanager to fine tune how pod replicas are scheduled to nodes across zones. Doing so helps ensure that Alertmanager pods are highly available and run more efficiently, because workloads are spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Alertmanager in the `cluster-monitoring-config` config map.
Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have created the `cluster-monitoring-config` ConfigMap object.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` namespace:

   ```bash
   $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

2. Add values for the following settings under `data/config.yaml/alertmanagermain` to configure pod topology spread constraints:

   ```yaml
   apiVersion: v1
   kind: ConfigMap
   metadata:
     name: cluster-monitoring-config
     namespace: openshift-monitoring
   data:
     config.yaml: |
     alertmanagerMain:
       topologySpreadConstraints:
         - maxSkew: 1
         topologyKey: monitoring
         whenUnsatisfiable: DoNotSchedule
         labelSelector:
           matchLabels:
           app.kubernetes.io/name: alertmanager
   ```

 1 Specify a numeric value for `maxSkew`, which defines the degree to which pods are allowed to be unevenly distributed. This field is required, and the value must be greater than zero. The value specified has a different effect depending on what value you specify for `whenUnsatisfiable`.

 2 Specify a key of node labels for `topologyKey`. This field is required. Nodes that have a label with this key and identical values are considered to be in the same topology. The scheduler will try to put a balanced number of pods into each domain.

 3 Specify a value for `whenUnsatisfiable`. This field is required. Available options are `DoNotSchedule` and `ScheduleAnyway`. Specify `DoNotSchedule` if you want the `maxSkew` value to define the maximum difference allowed between the number of matching pods in the target topology and the global minimum. Specify `ScheduleAnyway` if you want the scheduler to still schedule the pod but to give higher priority to nodes that might reduce the skew.

 4 Specify a value for `matchLabels`. This value is used to identify the set of matching pods to which to apply the constraints.

3. Save the file to apply the changes automatically.
5.3. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR THANOS RULER

For user-defined monitoring, you can set up pod topology spread constraints for Thanos Ruler to fine tune how pod replicas are scheduled to nodes across zones. Doing so helps ensure that Thanos Ruler pods are highly available and run more efficiently, because workloads are spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Thanos Ruler in the `user-workload-monitoring-config` config map.

Prerequisites

- A cluster administrator has enabled monitoring for user-defined projects.
- You have access to the cluster as a user with the `cluster-admin` cluster role, or as a user with the `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `user-workload-monitoring-config` config map in the `openshift-user-workload-monitoring` namespace:

   ```bash
   $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
   ```

2. Add values for the following settings under `data/config.yaml/thanosRuler` to configure pod topology spread constraints:

   ```yaml
   apiVersion: v1
group: user-workload-monitoring
kind: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yaml: |
    thanosRuler:
      topologySpreadConstraints:
        - maxSkew: 1
          topologyKey: monitoring
          whenUnsatisfiable: ScheduleAnyway
   ```
Specify a numeric value for `maxSkew`, which defines the degree to which pods are allowed to be unevenly distributed. This field is required, and the value must be greater than zero. The value specified has a different effect depending on what value you specify for `whenUnsatisfiable`.

Specify a key of node labels for `topologyKey`. This field is required. Nodes that have a label with this key and identical values are considered to be in the same topology. The scheduler will try to put a balanced number of pods into each domain.

Specify a value for `whenUnsatisfiable`. This field is required. Available options are `DoNotSchedule` and `ScheduleAnyway`. Specify `DoNotSchedule` if you want the `maxSkew` value to define the maximum difference allowed between the number of matching pods in the target topology and the global minimum. Specify `ScheduleAnyway` if you want the scheduler to still schedule the pod but to give higher priority to nodes that might reduce the skew.

Specify a value for `matchLabels`. This value is used to identify the set of matching pods to which to apply the constraints.

3. Save the file to apply the changes automatically.

WARNING

When you save changes to the `user-workload-monitoring-config` config map, the pods and other resources in the `openshift-user-workload-monitoring` project might be redeployed. The running monitoring processes in that project might also restart.

5.4. SETTING LOG LEVELS FOR MONITORING COMPONENTS

You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, Thanos Querier, and Thanos Ruler.

The following log levels can be applied to the relevant component in the `cluster-monitoring-config` and `user-workload-monitoring-config` ConfigMap objects:

- **debug**: Log debug, informational, warning, and error messages.
- **info**: Log informational, warning, and error messages.
- **warn**: Log warning and error messages only.
- **error**: Log error messages only.

The default log level is **info**.
Prerequisites

- If you are setting a log level for Alertmanager, Prometheus Operator, Prometheus, or Thanos Querier in the openshift-monitoring project:
 - You have access to the cluster as a user with the cluster-admin cluster role.
 - You have created the cluster-monitoring-config ConfigMap object.

- If you are setting a log level for Prometheus Operator, Prometheus, or Thanos Ruler in the openshift-user-workload-monitoring project:
 - You have access to the cluster as a user with the cluster-admin cluster role, or as a user with the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring project.
 - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

 - To set a log level for a component in the openshift-monitoring project:
 a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

       ```bash
       $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
       ```
 b. Add `logLevel: <log_level>` for a component under data/config.yaml:

       ```yaml
       apiVersion: v1
       kind: ConfigMap
       metadata:
         name: cluster-monitoring-config
         namespace: openshift-monitoring
data:
       config.yaml: |
         <component>: |
           logLevel: <log_level>

       1 The monitoring stack component for which you are setting a log level. For default platform monitoring, available component values are prometheusK8s, alertmanagerMain, prometheusOperator, and thanosQuerier.
       2 The log level to set for the component. The available values are error, warn, info, and debug. The default value is info.

   - To set a log level for a component in the openshift-user-workload-monitoring project:
     a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-workload-monitoring project:
b. Add `logLevel: <log_level>` for a component under `data/config.yaml`:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>
 logLevel: <log_level>
```

1. The monitoring stack component for which you are setting a log level. For user workload monitoring, available component values are `alertmanager`, `prometheus`, `prometheusOperator`, and `thanosRuler`.

2. The log level to apply to the component. The available values are `error`, `warn`, `info`, and `debug`. The default value is `info`.

2. Save the file to apply the changes. The pods for the component restart automatically when you apply the log-level change.

---

**WARNING**

When changes are saved to a monitoring config map, the pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

---

3. Confirm that the log-level has been applied by reviewing the deployment or pod configuration in the related project. The following example checks the log level in the `prometheus-operator` deployment in the `openshift-user-workload-monitoring` project:

```
$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep "log-level"
```

**Example output**

```
- --log-level=debug
```

4. Check that the pods for the component are running. The following example lists the status of pods in the `openshift-user-workload-monitoring` project:

```
$ oc -n openshift-user-workload-monitoring get pods
```
NOTE

If an unrecognized LogLevel value is included in the ConfigMap object, the pods for the component might not restart successfully.

5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

You can configure Prometheus to write all queries that have been run by the engine to a log file. You can do so for default platform monitoring and for user-defined workload monitoring.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you need to troubleshoot an issue. After you finish troubleshooting, disable query logging by reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

- If you are enabling the query log file feature for Prometheus in the openshift-monitoring project:
  - You have access to the cluster as a user with the cluster-admin cluster role.
  - You have created the cluster-monitoring-config ConfigMap object.

- If you are enabling the query log file feature for Prometheus in the openshift-user-workload-monitoring project:
  - You have access to the cluster as a user with the cluster-admin cluster role, or as a user with the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring project.
  - A cluster administrator has enabled monitoring for user-defined projects.

- You have installed the OpenShift CLI (oc).

Procedure

- To set the query log file for Prometheus in the openshift-monitoring project:
  1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

```
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```

  2. Add queryLogFile: <path> for prometheusK8s under data/config.yaml:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
```

```yaml
queryLogFile: /var/log/prometheus/query.log
```
The full path to the file in which queries will be logged.

3. Save the file to apply the changes.

**WARNING**

When you save changes to a monitoring config map, pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

4. Verify that the pods for the component are running. The following sample command lists the status of pods in the `openshift-monitoring` project:

```bash
$ oc -n openshift-monitoring get pods
```

5. Read the query log:

```bash
$ oc -n openshift-monitoring exec prometheus-k8s-0 -- cat <path>
```

**IMPORTANT**

Revert the setting in the config map after you have examined the logged query information.

- To set the query log file for Prometheus in the `openshift-user-workload-monitoring` project:

1. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:

```bash
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

2. Add `queryLogFile: <path>` for `prometheus` under `data/config.yaml`:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 queryLogFile: <path>
```
The full path to the file in which queries will be logged.

3. Save the file to apply the changes.

**WARNING**

When you save changes to a monitoring config map, pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

4. Verify that the pods for the component are running. The following example command lists the status of pods in the openshift-user-workload-monitoring project:

```bash
$ oc -n openshift-user-workload-monitoring get pods
```

5. Read the query log:

```bash
$ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat <path>
```

**IMPORTANT**

Revert the setting in the config map after you have examined the logged query information.

Additional resources

- See [Preparing to configure the monitoring stack](#) for steps to create monitoring config maps
- See [Enabling monitoring for user-defined projects](#) for steps to enable user-defined monitoring.

### 5.6. ENABLING QUERY LOGGING FOR THANOS QUERIER

For default platform monitoring in the openshift-monitoring project, you can enable the Cluster Monitoring Operator to log all queries run by Thanos Querier.

**IMPORTANT**

Because log rotation is not supported, only enable this feature temporarily when you need to troubleshoot an issue. After you finish troubleshooting, disable query logging by reverting the changes you made to the ConfigMap object to enable the feature.

**Prerequisites**

- You have installed the OpenShift CLI (oc).
You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

You can enable query logging for Thanos Querier in the openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

```
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```

2. Add a thanosQuerier section under data/config.yaml and add values as shown in the following example:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml:
 thanosQuerier:
 enableRequestLogging: <value> 1
 logLevel: <value> 2
```

1. Set the value to true to enable logging and false to disable logging. The default value is false.

2. Set the value to debug, info, warn, or error. If no value exists for logLevel, the log level defaults to error.

3. Save the file to apply the changes.

**WARNING**

When you save changes to a monitoring config map, pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

Verification

1. Verify that the Thanos Querier pods are running. The following sample command lists the status of pods in the openshift-monitoring project:

```
$ oc -n openshift-monitoring get pods
```

2. Run a test query using the following sample commands as a model:
Run the following command to read the query log:

```bash
$ oc -n openshift-monitoring logs <thanos_querier_pod_name> -c thanos-query
```

NOTE

Because the thanos-querier pods are highly available (HA) pods, you might be able to see logs in only one pod.

4. After you examine the logged query information, disable query logging by changing the `enableRequestLogging` value to `false` in the config map.

Additional resources

- See Preparing to configure the monitoring stack for steps to create monitoring config maps.

5.7. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER

In default platform monitoring, you can configure the audit log level for the Prometheus Adapter.

Prerequisites

- You have installed the OpenShift CLI (`oc`).
- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have created the `cluster-monitoring-config` ConfigMap object.

Procedure

You can set an audit log level for the Prometheus Adapter in the default `openshift-monitoring` project:

1. Edit the `cluster-monitoring-config` ConfigMap object in the `openshift-monitoring` project:

```bash
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```

2. Add `profile:` in the `k8sPrometheusAdapter/audit` section under `data/config.yaml`:

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 k8sPrometheusAdapter:
 audit:
 profile: <audit_log_level> 1
```
1. The audit log level to apply to the Prometheus Adapter.

3. Set the audit log level by using one of the following values for the **profile** parameter:
   - **None**: Do not log events.
   - **Metadata**: Log only the metadata for the request, such as user, timestamp, and so forth. Do not log the request text and the response text. **Metadata** is the default audit log level.
   - **Request**: Log only the metadata and the request text but not the response text. This option does not apply for non-resource requests.
   - **RequestResponse**: Log event metadata, request text, and response text. This option does not apply for non-resource requests.

4. Save the file to apply the changes. The pods for the Prometheus Adapter restart automatically when you apply the change.

**WARNING**

When changes are saved to a monitoring config map, the pods and other resources in the related project might be redeployed. The running monitoring processes in that project might also be restarted.

**Verification**

1. In the config map, under `k8sPrometheusAdapter/audit/profile`, set the log level to **Request** and save the file.

2. Confirm that the pods for the Prometheus Adapter are running. The following example lists the status of pods in the `openshift-monitoring` project:

   ```
 $ oc -n openshift-monitoring get pods
   ```

3. Confirm that the audit log level and audit log file path are correctly configured:

   ```
 $ oc -n openshift-monitoring get deploy prometheus-adapter -o yaml
   ```

   **Example output**

   ```
 ...
 - --audit-policy-file=/etc/audit/request-profile.yaml
 - --audit-log-path=/var/log/adapter/audit.log
   ```

4. Confirm that the correct log level has been applied in the `prometheus-adapter` deployment in the `openshift-monitoring` project:

   ```
 $ oc -n openshift-monitoring exec deploy/prometheus-adapter -c prometheus-adapter -- cat /etc/audit/request-profile.yaml
   ```
Example output

```
"apiVersion": "audit.k8s.io/v1"
"kind": "Policy"
"metadata":
 "name": "Request"
"omitStages":
 - "RequestReceived"
"rules":
 - "level": "Request"
```

NOTE

If you enter an unrecognized profile value for the Prometheus Adapter in the ConfigMap object, no changes are made to the Prometheus Adapter, and an error is logged by the Cluster Monitoring Operator.

5. Review the audit log for the Prometheus Adapter:

```
$ oc -n openshift-monitoring exec -c <prometheus_adapter_pod_name> -- cat /var/log/adapter/audit.log
```

Additional resources

- See Preparing to configure the monitoring stack for steps to create monitoring config maps.

5.8. DISABLING THE LOCAL ALERTMANAGER

A local Alertmanager that routes alerts from Prometheus instances is enabled by default in the openshift-monitoring project of the OpenShift Container Platform monitoring stack.

If you do not need the local Alertmanager, you can disable it by configuring the cluster-monitoring-config config map in the openshift-monitoring project.

Prerequisites

- You have access to the cluster as a user with the cluster-admin cluster role.
- You have created the cluster-monitoring-config config map.
- You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

```
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```

2. Add enabled: false for the alertmanagerMain component under data/config.yaml:

```
apiVersion: v1
kind: ConfigMap
metadata:
```
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
  config.yaml:
    alertmanagerMain:
      enabled: false

3. Save the file to apply the changes. The Alertmanager instance is disabled automatically when you apply the change.

Additional resources

- Prometheus Alertmanager documentation
- xref:[Managing alerts]

5.9. NEXT STEPS

- Enabling monitoring for user-defined projects
- Learn about remote health reporting and, if necessary, opt out of it.
In OpenShift Container Platform 4.13, you can enable monitoring for user-defined projects in addition to the default platform monitoring. You can monitor your own projects in OpenShift Container Platform without the need for an additional monitoring solution. Using this feature centralizes monitoring for core platform components and user-defined projects.

**NOTE**

Versions of Prometheus Operator installed using Operator Lifecycle Manager (OLM) are not compatible with user-defined monitoring. Therefore, custom Prometheus instances installed as a Prometheus custom resource (CR) managed by the OLM Prometheus Operator are not supported in OpenShift Container Platform.

### 6.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS

Cluster administrators can enable monitoring for user-defined projects by setting the `enableUserWorkload: true` field in the cluster monitoring ConfigMap object.

**IMPORTANT**

In OpenShift Container Platform 4.13 you must remove any custom Prometheus instances before enabling monitoring for user-defined projects.

**NOTE**

You must have access to the cluster as a user with the `cluster-admin` cluster role to enable monitoring for user-defined projects in OpenShift Container Platform. Cluster administrators can then optionally grant users permission to configure the components that are responsible for monitoring user-defined projects.

**Prerequisites**

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have installed the OpenShift CLI (`oc`).
- You have created the `cluster-monitoring-config` ConfigMap object.
- You have optionally created and configured the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project. You can add configuration options to this ConfigMap object for the components that monitor user-defined projects.

**NOTE**

Every time you save configuration changes to the `user-workload-monitoring-config` ConfigMap object, the pods in the `openshift-user-workload-monitoring` project are redeployed. It might sometimes take a while for these components to redeploy.

**Procedure**
1. Edit the `cluster-monitoring-config` ConfigMap object:

   ```
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

2. Add `enableUserWorkload: true` under `data/config.yaml`:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml:
 enableUserWorkload: true
   ```

   When set to `true`, the `enableUserWorkload` parameter enables monitoring for user-defined projects in a cluster.

3. Save the file to apply the changes. Monitoring for user-defined projects is then enabled automatically.

   **NOTE**
   
   If you enable monitoring for user-defined projects, the `user-workload-monitoring-config` ConfigMap object is created by default.

   **WARNING**
   
   When changes are saved to the `cluster-monitoring-config` ConfigMap object, the pods and other resources in the `openshift-monitoring` project might be redeployed. The running monitoring processes in that project might also be restarted.

4. Verify that the `prometheus-operator`, `prometheus-user-workload`, and `thanos-ruler-user-workload` pods are running in the `openshift-user-workload-monitoring` project. It might take a short while for the pods to start:

   ```
 $ oc -n openshift-user-workload-monitoring get pod
   ```

   **Example output**
   
<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prometheus-operator-6f7b748d5b-t7nbg</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>3h</td>
</tr>
<tr>
<td>prometheus-user-workload-0</td>
<td>4/4</td>
<td>Running</td>
<td>1</td>
<td>3h</td>
</tr>
<tr>
<td>prometheus-user-workload-1</td>
<td>4/4</td>
<td>Running</td>
<td>1</td>
<td>3h</td>
</tr>
<tr>
<td>thanos-ruler-user-workload-0</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>3h</td>
</tr>
<tr>
<td>thanos-ruler-user-workload-1</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>3h</td>
</tr>
</tbody>
</table>
Additional resources
- Creating a user-defined workload monitoring config map
- Configuring the monitoring stack
- Granting users permission to configure monitoring for user-defined projects

6.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS

Cluster administrators can monitor all core OpenShift Container Platform and user-defined projects.

Cluster administrators can grant developers and other users permission to monitor their own projects. Privileges are granted by assigning one of the following monitoring roles:

- The `monitoring-rules-view` cluster role provides read access to `PrometheusRule` custom resources for a project.

- The `monitoring-rules-edit` cluster role grants a user permission to create, modify, and delete `PrometheusRule` custom resources for a project. It also grants a user the ability to silence alerts.

- The `monitoring-edit` cluster role grants the same privileges as the `monitoring-rules-edit` cluster role. Additionally, it enables a user to create new scrape targets for services or pods. With this role, you can also create, modify, and delete `ServiceMonitor` and `PodMonitor` resources.

You can also grant users permission to configure the components that are responsible for monitoring user-defined projects:

- The `user-workload-monitoring-config-edit` role in the `openshift-user-workload-monitoring` project enables you to edit the `user-workload-monitoring-config` ConfigMap object. With this role, you can edit the ConfigMap object to configure Prometheus, Prometheus Operator, and Thanos Ruler for user-defined workload monitoring.

You can also grant users permission to configure alert routing for user-defined projects:

- The `alert-routing-edit` cluster role grants a user permission to create, update, and delete `AlertmanagerConfig` custom resources for a project.

This section provides details on how to assign these roles by using the OpenShift Container Platform web console or the CLI.

6.2.1. Granting user permissions by using the web console

You can grant users permissions to monitor their own projects, by using the OpenShift Container Platform web console.

Prerequisites
- You have access to the cluster as a user with the `cluster-admin` cluster role.
- The user account that you are assigning the role to already exists.

Procedure
1. In the **Administrator** perspective within the OpenShift Container Platform web console, navigate to **User Management → RoleBindings → Create binding**.

2. In the **Binding Type** section, select the "Namespace Role Binding" type.

3. In the **Name** field, enter a name for the role binding.

4. In the **Namespace** field, select the user-defined project where you want to grant the access.

   **IMPORTANT**

   The monitoring role will be bound to the project that you apply in the **Namespace** field. The permissions that you grant to a user by using this procedure will apply only to the selected project.

5. Select **monitoring-rules-view, monitoring-rules-edit, or monitoring-edit** in the **Role Name** list.

6. In the **Subject** section, select **User**.

7. In the **Subject Name** field, enter the name of the user.

8. Select **Create** to apply the role binding.

### 6.2.2. Granting user permissions by using the CLI

You can grant users permissions to monitor their own projects, by using the OpenShift CLI (**oc**).

**Prerequisites**

- You have access to the cluster as a user with the **cluster-admin** cluster role.
- The user account that you are assigning the role to already exists.
- You have installed the OpenShift CLI (**oc**).

**Procedure**

- Assign a monitoring role to a user for a project:

  ```
 $ oc policy add-role-to-user <role> <user> -n <namespace> ①
  ```

  **①** Substitute `<role>` with **monitoring-rules-view, monitoring-rules-edit, or monitoring-edit**.

  **IMPORTANT**

  Whichever role you choose, you must bind it against a specific project as a cluster administrator.

  As an example, substitute `<role>` with **monitoring-edit**, `<user>` with **johnsmith**, and `<namespace>` with **ns1**. This assigns the user **johnsmith** permission to set up metrics collection and to create alerting rules in the **ns1** namespace.
6.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS

As a cluster administrator, you can assign the `user-workload-monitoring-config-edit` role to a user. This grants permission to configure and manage monitoring for user-defined projects without giving them permission to configure and manage core OpenShift Container Platform monitoring components.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- The user account that you are assigning the role to already exists.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Assign the `user-workload-monitoring-config-edit` role to a user in the `openshift-user-workload-monitoring` project:

   ```
 $ oc -n openshift-user-workload-monitoring adm policy add-role-to-user user-workload-monitoring-config-edit <user> --role-namespace openshift-user-workload-monitoring
   ```

2. Verify that the user is correctly assigned to the `user-workload-monitoring-config-edit` role by displaying the related role binding:

   ```
 $ oc describe rolebinding <role_binding_name> -n openshift-user-workload-monitoring
   ```

Example command

```
$ oc describe rolebinding user-workload-monitoring-config-edit -n openshift-user-workload-monitoring
```

Example output

```
Name: user-workload-monitoring-config-edit
Labels: <none>
Annotations: <none>
Role:
 Kind: Role
 Name: user-workload-monitoring-config-edit
Subjects:
 Kind Name Namespace
 --- ------ --------
 User user1 1
```

In this example, `user1` is assigned to the `user-workload-monitoring-config-edit` role.

6.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
You can query Prometheus metrics from outside the cluster when monitoring your own services with user-defined projects. Access this data from outside the cluster by using the `thanos-querier` route.

This access only supports using a Bearer Token for authentication.

**Prerequisites**

- You have deployed your own service, following the "Enabling monitoring for user-defined projects" procedure.
- You are logged in to an account with the `cluster-monitoring-view` cluster role, which provides permission to access the Thanos Querier API.
- You are logged in to an account that has permission to get the Thanos Querier API route.

**NOTE**

If your account does not have permission to get the Thanos Querier API route, a cluster administrator can provide the URL for the route.

**Procedure**

1. Extract an authentication token to connect to Prometheus by running the following command:
   ```bash
 $ TOKEN=$(oc whoami -t)
   ```

2. Extract the `thanos-querier` API route URL by running the following command:
   ```bash
 $ HOST=$(oc -n openshift-monitoring get route thanos-querier -ojsonpath={.spec.host})
   ```

3. Set the namespace to the namespace in which your service is running by using the following command:
   ```bash
 $ NAMESPACE=ns1
   ```

4. Query the metrics of your own services in the command line by running the following command:
   ```bash
   ```

   The output shows the status for each application pod that Prometheus is scraping:

   ```json
 {"status":"success","data":{"resultType":"vector","result":[{"metric":{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-jztp2","service":"prometheus-example-app"},"value":[1591881154.748,"1"]}]}}
   ```

**Additional resources**

- [Enabling monitoring for user-defined projects](#)
6.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

Individual user-defined projects can be excluded from user workload monitoring. To do so, add the `openshift.io/user-monitoring` label to the project’s namespace with a value of `false`.

Procedure

1. Add the label to the project namespace:

   ```bash
 $ oc label namespace my-project 'openshift.io/user-monitoring=false'
   ```

2. To re-enable monitoring, remove the label from the namespace:

   ```bash
 $ oc label namespace my-project 'openshift.io/user-monitoring=-'
   ```

   NOTE

   If there were any active monitoring targets for the project, it may take a few minutes for Prometheus to stop scraping them after adding the label.

6.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS

After enabling monitoring for user-defined projects, you can disable it again by setting `enableUserWorkload: false` in the cluster monitoring `ConfigMap` object.

```
NOTE

Alternatively, you can remove `enableUserWorkload: true` to disable monitoring for user-defined projects.
```

Procedure

1. Edit the `cluster-monitoring-config` `ConfigMap` object:

   ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

   a. Set `enableUserWorkload:` to `false` under `data/config.yaml`:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
 enableUserWorkload: false
   ```

2. Save the file to apply the changes. Monitoring for user-defined projects is then disabled automatically.

3. Check that the `prometheus-operator`, `prometheus-user-workload` and `thanos-ruler-user-workload` pods are terminated in the `openshift-user-workload-monitoring` project. This might take a short while:
$ oc -n openshift-user-workload-monitoring get pod

Example output

No resources found in openshift-user-workload-monitoring project.

NOTE

The user-workload-monitoring-config ConfigMap object in the openshift-user-workload-monitoring project is not automatically deleted when monitoring for user-defined projects is disabled. This is to preserve any custom configurations that you may have created in the ConfigMap object.

6.7. NEXT STEPS

- Managing metrics
CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS

In OpenShift Container Platform 4.13, a cluster administrator can enable alert routing for user-defined projects. This process consists of two general steps:

- Enable alert routing for user-defined projects to use the default platform Alertmanager instance or, optionally, a separate Alertmanager instance only for user-defined projects.
- Grant users permission to configure alert routing for user-defined projects.

After you complete these steps, developers and other users can configure custom alerts and alert routing for their user-defined projects.

7.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS

As a cluster administrator, you can enable alert routing for user-defined projects. With this feature, you can allow users with the `alert-routing-edit` role to configure alert notification routing and receivers for user-defined projects. These notifications are routed by the default Alertmanager instance or, if enabled, an optional Alertmanager instance dedicated to user-defined monitoring.

Users can then create and configure user-defined alert routing by creating or editing the `AlertmanagerConfig` objects for their user-defined projects without the help of an administrator.

After a user has defined alert routing for a user-defined project, user-defined alert notifications are routed as follows:

- To the `alertmanager-main` pods in the `openshift-monitoring` namespace if using the default platform Alertmanager instance.
- To the `alertmanager-user-workload` pods in the `openshift-user-workload-monitoring` namespace if you have enabled a separate instance of Alertmanager for user-defined projects.

**NOTE**

The following are limitations of alert routing for user-defined projects:

- For user-defined alerting rules, user-defined routing is scoped to the namespace in which the resource is defined. For example, a routing configuration in namespace `ns1` only applies to `PrometheusRules` resources in the same namespace.
- When a namespace is excluded from user-defined monitoring, `AlertmanagerConfig` resources in the namespace cease to be part of the Alertmanager configuration.

7.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING

You can allow users to create user-defined alert routing configurations that use the main platform instance of Alertmanager.

**Prerequisites**
Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `cluster-monitoring-config` ConfigMap object:

   ```bash
 $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

2. Add `enableUserAlertmanagerConfig: true` in the `alertmanagerMain` section under `data/config.yaml`:

   ```yaml
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml:
 alertmanagerMain:
 enableUserAlertmanagerConfig: true
   ```

   Set the `enableUserAlertmanagerConfig` value to `true` to allow users to create user-defined alert routing configurations that use the main platform instance of Alertmanager.

3. Save the file to apply the changes.

7.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING

In some clusters, you might want to deploy a dedicated Alertmanager instance for user-defined projects, which can help reduce the load on the default platform Alertmanager instance and can better separate user-defined alerts from default platform alerts. In these cases, you can optionally enable a separate instance of Alertmanager to send alerts for user-defined projects only.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have enabled monitoring for user-defined projects.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Edit the `user-workload-monitoring-config` ConfigMap object:

   ```bash
 $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
   ```

2. Add `enabled: true` and `enableAlertmanagerConfig: true` in the `alertmanager` section under `data/config.yaml`:

   ```yaml
   ```
Set the `enabled` value to `true` to enable a dedicated instance of the Alertmanager for user-defined projects in a cluster. Set the value to `false` or omit the key entirely to disable the Alertmanager for user-defined projects. If you set this value to `false` or if the key is omitted, user-defined alerts are routed to the default platform Alertmanager instance.

Set the `enableAlertmanagerConfig` value to `true` to enable users to define their own alert routing configurations with `AlertmanagerConfig` objects.

3. Save the file to apply the changes. The dedicated instance of Alertmanager for user-defined projects starts automatically.

**Verification**

- Verify that the `user-workload` Alertmanager instance has started:

  ```
 # oc -n openshift-user-workload-monitoring get alertmanager
  ```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>VERSION</th>
<th>REPLICAS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-workload</td>
<td>0.24.0</td>
<td>2</td>
<td>100s</td>
</tr>
</tbody>
</table>

### 7.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS

You can grant users permission to configure alert routing for user-defined projects.

**Prerequisites**

- You have access to the cluster as a user with the `cluster-admin` cluster role.
- You have enabled monitoring for user-defined projects.
- The user account that you are assigning the role to already exists.
- You have installed the OpenShift CLI (`oc`).

**Procedure**

- Assign the `alert-routing-edit` cluster role to a user in the user-defined project:
$ oc -n <namespace> adm policy add-role-to-user alert-routing-edit <user>  

For `<namespace>`, substitute the namespace for the user-defined project, such as `ns1`. For `<user>`, substitute the username for the account to which you want to assign the role.

### Additional resources

- Enabling monitoring for user defined projects
- Creating alert routing for user-defined projects

### 7.5. NEXT STEPS

- Managing alerts
CHAPTER 8. MANAGING METRICS

You can collect metrics to monitor how cluster components and your own workloads are performing.

8.1. UNDERSTANDING METRICS

In OpenShift Container Platform 4.13, cluster components are monitored by scraping metrics exposed through service endpoints. You can also configure metrics collection for user-defined projects. Metrics enable you to monitor how cluster components and your own workloads are performing.

You can define the metrics that you want to provide for your own workloads by using Prometheus client libraries at the application level.

In OpenShift Container Platform, metrics are exposed through an HTTP service endpoint under the /metrics canonical name. You can list all available metrics for a service by running a `curl` query against `http://<endpoint>/metrics`. For instance, you can expose a route to the `prometheus-example-app` example application and then run the following to view all of its available metrics:

```
$ curl http://<example_app_endpoint>/metrics
```

Example output

```
HELP http_requests_total Count of all HTTP requests
TYPE http_requests_total counter
http_requests_total{code="200",method="get"} 4
http_requests_total{code="404",method="get"} 2
HELP version Version information about this binary
TYPE version gauge
version{version="v0.1.0"} 1
```

Additional resources

- Prometheus client library documentation

8.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS

You can create a `ServiceMonitor` resource to scrape metrics from a service endpoint in a user-defined project. This assumes that your application uses a Prometheus client library to expose metrics to the /metrics canonical name.

This section describes how to deploy a sample service in a user-defined project and then create a `ServiceMonitor` resource that defines how that service should be monitored.

8.2.1. Deploying a sample service

To test monitoring of a service in a user-defined project, you can deploy a sample service.

Procedure

1. Create a YAML file for the service configuration. In this example, it is called `prometheus-example-app.yaml`.  

2. Add the following deployment and service configuration details to the file:

```yaml
apiVersion: v1
kind: Namespace
metadata:
 name: ns1

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-example-app
name: prometheus-example-app
namespace: ns1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-example-app
 template:
 metadata:
 labels:
 app: prometheus-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.2
 imagePullPolicy: IfNotPresent
 name: prometheus-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-example-app
name: prometheus-example-app
namespace: ns1
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-example-app
 type: ClusterIP
```

This configuration deploys a service named `prometheus-example-app` in the user-defined `ns1` project. This service exposes the custom `version` metric.

3. Apply the configuration to the cluster:

   ```bash
 $ oc apply -f prometheus-example-app.yaml
   ```

   It takes some time to deploy the service.

4. You can check that the pod is running:
8.2.2. Specifying how a service is monitored

To use the metrics exposed by your service, you must configure OpenShift Container Platform monitoring to scrape metrics from the `/metrics` endpoint. You can do this using a `ServiceMonitor` custom resource definition (CRD) that specifies how a service should be monitored, or a `PodMonitor` CRD that specifies how a pod should be monitored. The former requires a `Service` object, while the latter does not, allowing Prometheus to directly scrape metrics from the metrics endpoint exposed by a pod.

This procedure shows you how to create a `ServiceMonitor` resource for a service in a user-defined project.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role or the `monitoring-edit` cluster role.
- You have enabled monitoring for user-defined projects.
- For this example, you have deployed the `prometheus-example-app` sample service in the `ns1` project.

NOTE

The `prometheus-example-app` sample service does not support TLS authentication.

Procedure

1. Create a YAML file for the `ServiceMonitor` resource configuration. In this example, the file is called `example-app-service-monitor.yaml`.

2. Add the following `ServiceMonitor` resource configuration details:

   ```yaml
 apiVersion: monitoring.coreos.com/v1
 kind: ServiceMonitor
 metadata:
 labels:
 k8s-app: prometheus-example-monitor
 spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http
   ```
This defines a `ServiceMonitor` resource that scrapes the metrics exposed by the `prometheus-example-app` sample service, which includes the `version` metric.

**NOTE**

A `ServiceMonitor` resource in a user-defined namespace can only discover services in the same namespace. That is, the `namespaceSelector` field of the `ServiceMonitor` resource is always ignored.

3. Apply the configuration to the cluster:

```
$ oc apply -f example-app-service-monitor.yaml
```

It takes some time to deploy the `ServiceMonitor` resource.

4. You can check that the `ServiceMonitor` resource is running:

```
$ oc -n ns1 get servicemonitor
```

```
NAME AGE
prometheus-example-monitor 81m
```

**Example output**

**Additional resources**

- [Enabling monitoring for user-defined projects](#)
- [How to scrape metrics using TLS in a ServiceMonitor configuration in a user-defined project](#)
- [PodMonitor API](#)
- [ServiceMonitor API](#)

**8.3. VIEWING A LIST OF AVAILABLE METRICS**

As a cluster administrator or as a user with view permissions for all projects, you can view a list of metrics available in a cluster and output the list in JSON format.

**Prerequisites**

- You are a cluster administrator, or you have access to the cluster as a user with the `cluster-monitoring-view` cluster role.
- You have installed the OpenShift Container Platform CLI (`oc`).
- You have obtained the OpenShift Container Platform API route for Thanos Querier.
- You are able to get a bearer token by using the `oc whoami -t` command.
IMPORTANT

You can only use bearer token authentication to access the Thanos Querier API route.

Procedure

1. If you have not obtained the OpenShift Container Platform API route for Thanos Querier, run the following command:

   
   ```bash
 $ oc get routes -n openshift-monitoring thanos-querier -o jsonpath='{.status.ingress[0].host}'
   ```

2. Retrieve a list of metrics in JSON format from the Thanos Querier API route by running the following command. This command uses `oc` to authenticate with a bearer token.

   ```bash
   ```

Replace `<thanos_querier_route>` with the OpenShift Container Platform API route for Thanos Querier.

8.4. QUERYING METRICS

The OpenShift Container Platform monitoring dashboard enables you to run Prometheus Query Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator, you can query metrics for all core OpenShift Container Platform and user-defined projects.

As a developer, you must specify a project name when querying metrics. You must have the required privileges to view metrics for the selected project.

8.4.1. Querying metrics for all projects as a cluster administrator

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all default OpenShift Container Platform and user-defined projects in the Metrics UI.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role or with view permissions for all projects.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. From the Administrator perspective in the OpenShift Container Platform web console, select Observe → Metrics.

2. To add one or more queries, do any of the following:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a custom query.</td>
<td>Add your Prometheus Query Language (PromQL) query to the <strong>Expression</strong> field. As you type a PromQL expression, autocomplete suggestions appear in a drop-down list. These suggestions include functions, metrics, labels, and time tokens. You can use the keyboard arrows to select one of these suggested items and then press Enter to add the item to your expression. You can also move your mouse pointer over a suggested item to view a brief description of that item.</td>
</tr>
<tr>
<td>Add multiple queries.</td>
<td>Select <strong>Add query</strong>.</td>
</tr>
<tr>
<td>Duplicate an existing query.</td>
<td>Select the Options menu next to the query, then choose <strong>Duplicate query</strong>.</td>
</tr>
<tr>
<td>Disable a query from being run.</td>
<td>Select the Options menu next to the query and choose <strong>Disable query</strong>.</td>
</tr>
</tbody>
</table>

3. To run queries that you created, select **Run queries**. The metrics from the queries are visualized on the plot. If a query is invalid, the UI shows an error message.

**NOTE**

Queries that operate on large amounts of data might time out or overload the browser when drawing time series graphs. To avoid this, select **Hide graph** and calibrate your query using only the metrics table. Then, after finding a feasible query, enable the plot to draw the graphs.

**NOTE**

By default, the query table shows an expanded view that lists every metric and its current value. You can select ▼ to minimize the expanded view for a query.

4. Optional: The page URL now contains the queries you ran. To use this set of queries again in the future, save this URL.

5. Explore the visualized metrics. Initially, all metrics from all enabled queries are shown on the plot. You can select which metrics are shown by doing any of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>

106
### Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide all metrics from a query.</td>
<td>Click the Options menu for the query and click <strong>Hide all series</strong>.</td>
</tr>
<tr>
<td>Hide a specific metric.</td>
<td>Go to the query table and click the colored square near the metric name.</td>
</tr>
<tr>
<td>Zoom into the plot and change the time range.</td>
<td>Either:</td>
</tr>
<tr>
<td></td>
<td>● Visually select the time range by clicking and dragging on the plot horizontally.</td>
</tr>
<tr>
<td></td>
<td>● Use the menu in the left upper corner to select the time range.</td>
</tr>
<tr>
<td>Reset the time range.</td>
<td>Select <strong>Reset zoom</strong>.</td>
</tr>
<tr>
<td>Display outputs for all queries at a specific point in time.</td>
<td>Hold the mouse cursor on the plot at that point. The query outputs will appear in a pop-up box.</td>
</tr>
<tr>
<td>Hide the plot.</td>
<td>Select <strong>Hide graph</strong>.</td>
</tr>
</tbody>
</table>

### Additional resources

- For more information about creating PromQL queries, see the [Prometheus query documentation](#).

### 8.4.2. Querying metrics for user-defined projects as a developer

You can access metrics for a user-defined project as a developer or as a user with view permissions for the project.

In the **Developer** perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and network packet queries for the selected project. You can also run custom Prometheus Query Language (PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

**NOTE**

Developers can only use the **Developer** perspective and not the **Administrator** perspective. As a developer, you can only query metrics for one project at a time.

### Prerequisites

- You have access to the cluster as a developer or as a user with view permissions for the project that you are viewing metrics for.
- You have enabled monitoring for user-defined projects.
You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define how the service is monitored.

Procedure

1. From the Developer perspective in the OpenShift Container Platform web console, select Observe → Metrics.

2. Select the project that you want to view metrics for in the Project: list.

3. Select a query from the Select query list, or create a custom PromQL query based on the selected query by selecting Show PromQL. The metrics from the queries are visualized on the plot.

   **NOTE**
   
   In the Developer perspective, you can only run one query at a time.

4. Explore the visualized metrics by doing any of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom into the plot and change the time range</td>
<td>Either:</td>
</tr>
<tr>
<td></td>
<td>- Visually select the time range by clicking and dragging on the plot horizontally.</td>
</tr>
<tr>
<td></td>
<td>- Use the menu in the left upper corner to select the time range.</td>
</tr>
<tr>
<td>Reset the time range.</td>
<td>Select Reset zoom.</td>
</tr>
<tr>
<td>Display outputs for all queries at a specific point in time</td>
<td>Hold the mouse cursor on the plot at that point. The query outputs appear in a pop-up box.</td>
</tr>
</tbody>
</table>

**Additional resources**

- For more information about creating PromQL queries, see the Prometheus query documentation.

**8.5. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET**

In the Administrator perspective in the OpenShift Container Platform web console, you can use the Metrics targets page to view, search, and filter the endpoints that are currently targeted for scraping, which helps you to identify and troubleshoot problems. For example, you can view the current status of targeted endpoints to see when OpenShift Container Platform Monitoring is not able to scrape metrics from a targeted component.

The Metrics targets page shows targets for default OpenShift Container Platform projects and for user-defined projects.
Prerequisites

- You have access to the cluster as an administrator for the project for which you want to view metrics targets.

Procedure

1. In the Administrator perspective, select Observe → Targets. The Metrics targets page opens with a list of all service endpoint targets that are being scraped for metrics. This page shows details about targets for default OpenShift Container Platform and user-defined projects. This page lists the following information for each target:
   - Service endpoint URL being scraped
   - ServiceMonitor component being monitored
   - The up or down status of the target
   - Namespace
   - Last scrape time
   - Duration of the last scrape

2. Optional: The list of metrics targets can be long. To find a specific target, do any of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter the targets by status and source.</td>
<td>Select filters in the Filter list.</td>
</tr>
<tr>
<td></td>
<td>The following filtering options are available:</td>
</tr>
<tr>
<td></td>
<td>- <strong>Status filters:</strong></td>
</tr>
<tr>
<td></td>
<td>- <strong>Up.</strong> The target is currently up and being actively scraped for metrics.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Down.</strong> The target is currently down and not being scraped for metrics.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Source filters:</strong></td>
</tr>
<tr>
<td></td>
<td>- <strong>Platform.</strong> Platform-level targets relate only to default Red Hat OpenShift Service on AWS projects. These projects provide core Red Hat OpenShift Service on AWS functionality.</td>
</tr>
<tr>
<td></td>
<td>- <strong>User.</strong> User targets relate to user-defined projects. These projects are user-created and can be customized.</td>
</tr>
<tr>
<td>Search for a target by name or label.</td>
<td>Enter a search term in the Text or Label field next to the search box.</td>
</tr>
</tbody>
</table>
3. Click the URL in the **Endpoint** column for a target to navigate to its **Target details** page. This page provides information about the target, including the following:

- The endpoint URL being scraped for metrics
- The current **Up** or **Down** status of the target
- A link to the namespace
- A link to the ServiceMonitor details
- Labels attached to the target
- The most recent time that the target was scraped for metrics
CHAPTER 9. MANAGING ALERTS

In OpenShift Container Platform 4.13, the Alerting UI enables you to manage alerts, silences, and alerting rules.

- **Alerting rules.** Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are triggered when those conditions are true. An alerting rule can be assigned a severity that defines how the alerts are routed.

- **Alerts.** An alert is fired when the conditions defined in an alerting rule are true. Alerts provide a notification that a set of circumstances are apparent within an OpenShift Container Platform cluster.

- **Silences.** A silence can be applied to an alert to prevent notifications from being sent when the conditions for an alert are true. You can mute an alert after the initial notification, while you work on resolving the underlying issue.

**NOTE**

The alerts, silences, and alerting rules that are available in the Alerting UI relate to the projects that you have access to. For example, if you are logged in as a user with the `cluster-admin` role, you can access all alerts, silences, and alerting rules.

If you are a non-administrator user, you can create and silence alerts if you are assigned the following user roles:

- The `cluster-monitoring-view` cluster role, which allows you to access Alertmanager

- The `monitoring-alertmanager-edit` role, which permits you to create and silence alerts in the Administrator perspective in the web console

- The `monitoring-rules-edit` cluster role, which permits you to create and silence alerts in the Developer perspective in the web console

9.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES

The Alerting UI is accessible through the **Administrator** perspective and the **Developer** perspective of the OpenShift Container Platform web console.

- In the **Administrator** perspective, go to **Observe** → **Alerting**. The three main pages in the Alerting UI in this perspective are the **Alerts**, **Silences**, and **Alerting rules** pages.

- In the **Developer** perspective, go to **Observe** → `<project_name>` → **Alerts**. In this perspective, alerts, silences, and alerting rules are all managed from the **Alerts** page. The results shown in the **Alerts** page are specific to the selected project.

**NOTE**

In the **Developer** perspective, you can select from core OpenShift Container Platform and user-defined projects that you have access to in the **Project: `<project_name>`** list. However, alerts, silences, and alerting rules relating to core OpenShift Container Platform projects are not displayed if you are not logged in as a cluster administrator.
9.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES

You can filter the alerts, silences, and alerting rules that are displayed in the Alerting UI. This section provides a description of each of the available filtering options.

Understanding alert filters
In the Administrator perspective, the Alerts page in the Alerting UI provides details about alerts relating to default OpenShift Container Platform and user-defined projects. The page includes a summary of severity, state, and source for each alert. The time at which an alert went into its current state is also shown.

You can filter by alert state, severity, and source. By default, only Platform alerts that are Firing are displayed. The following describes each alert filtering option:

- **State filters:**
  - **Firing.** The alert is firing because the alert condition is true and the optional for duration has passed. The alert continues to fire while the condition remains true.
  - **Pending.** The alert is active but is waiting for the duration that is specified in the alerting rule before it fires.
  - **Silenced.** The alert is now silenced for a defined time period. Silences temporarily mute alerts based on a set of label selectors that you define. Notifications are not sent for alerts that match all the listed values or regular expressions.

- **Severity filters:**
  - **Critical.** The condition that triggered the alert could have a critical impact. The alert requires immediate attention when fired and is typically paged to an individual or to a critical response team.
  - **Warning.** The alert provides a warning notification about something that might require attention to prevent a problem from occurring. Warnings are typically routed to a ticketing system for non-immediate review.
  - **Info.** The alert is provided for informational purposes only.
  - **None.** The alert has no defined severity.

You can also create custom severity definitions for alerts relating to user-defined projects.

- **Source filters:**
  - **Platform.** Platform-level alerts relate only to default OpenShift Container Platform projects. These projects provide core OpenShift Container Platform functionality.
  - **User.** User alerts relate to user-defined projects. These alerts are user-created and are customizable. User-defined workload monitoring can be enabled postinstallation to provide observability into your own workloads.

Understanding silence filters
In the Administrator perspective, the Silences page in the Alerting UI provides details about silences applied to alerts in default OpenShift Container Platform and user-defined projects. The page includes a summary of the state of each silence and the time at which a silence ends.
You can filter by silence state. By default, only **Active** and **Pending** silences are displayed. The following describes each silence state filter option:

- **State** filters:
  - **Active**. The silence is active and the alert will be muted until the silence is expired.
  - **Pending**. The silence has been scheduled and it is not yet active.
  - **Expired**. The silence has expired and notifications will be sent if the conditions for an alert are true.

**Understanding alerting rule filters**

In the **Administrator** perspective, the **Alerting rules** page in the Alerting UI provides details about alerting rules relating to default OpenShift Container Platform and user-defined projects. The page includes a summary of the state, severity, and source for each alerting rule.

You can filter alerting rules by alert state, severity, and source. By default, only **Platform** alerting rules are displayed. The following describes each alerting rule filtering option:

- **Alert state** filters:
  - **Firing**. The alert is firing because the alert condition is true and the optional **for** duration has passed. The alert continues to fire while the condition remains true.
  - **Pending**. The alert is active but is waiting for the duration that is specified in the alerting rule before it fires.
  - **Silenced**. The alert is now silenced for a defined time period. Silences temporarily mute alerts based on a set of label selectors that you define. Notifications are not sent for alerts that match all the listed values or regular expressions.
  - **Not Firing**. The alert is not firing.

- **Severity** filters:
  - **Critical**. The conditions defined in the alerting rule could have a critical impact. When true, these conditions require immediate attention. Alerts relating to the rule are typically paged to an individual or to a critical response team.
  - **Warning**. The conditions defined in the alerting rule might require attention to prevent a problem from occurring. Alerts relating to the rule are typically routed to a ticketing system for non-immediate review.
  - **Info**. The alerting rule provides informational alerts only.
  - **None**. The alerting rule has no defined severity.

  You can also create custom severity definitions for alerting rules relating to user-defined projects.

- **Source** filters:
  - **Platform**. Platform-level alerting rules relate only to default OpenShift Container Platform projects. These projects provide core OpenShift Container Platform functionality.
- User. User-defined workload alerting rules relate to user-defined projects. These alerting rules are user-created and are customizable. User-defined workload monitoring can be enabled postinstallation to provide observability into your own workloads.

**Searching and filtering alerts, silences, and alerting rules in the Developer perspective**

In the Developer perspective, the Alerts page in the Alerting UI provides a combined view of alerts and silences relating to the selected project. A link to the governing alerting rule is provided for each displayed alert.

In this view, you can filter by alert state and severity. By default, all alerts in the selected project are displayed if you have permission to access the project. These filters are the same as those described for the Administrator perspective.

### 9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

**Prerequisites**

- You have access to the cluster as a developer or as a user with view permissions for the project that you are viewing alerts for.

**Procedure**

**To obtain information about alerts in the Administrator perspective**

1. Open the OpenShift Container Platform web console and go to the Observe → Alerting → Alerts page.

2. Optional: Search for alerts by name by using the Name field in the search list.

3. Optional: Filter alerts by state, severity, and source by selecting filters in the Filter list.

4. Optional: Sort the alerts by clicking one or more of the Name, Severity, State, and Source column headers.

5. Click the name of an alert to view its Alert details page. The page includes a graph that illustrates alert time series data. It also provides the following information about the alert:

   - A description of the alert
   - Messages associated with the alert
   - Labels attached to the alert
   - A link to its governing alerting rule
   - Silences for the alert, if any exist

**To obtain information about silences in the Administrator perspective**

1. Go to the Observe → Alerting → Silences page.

2. Optional: Filter the silences by name using the Search by name field.
3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and Pending filters are applied.

4. Optional: Sort the silences by clicking one or more of the Name, Firing alerts, State, and Creator column headers.

5. Select the name of a silence to view its Silence details page. The page includes the following details:
   - Alert specification
   - Start time
   - End time
   - Silence state
   - Number and list of firing alerts

To obtain information about alerting rules in the Administrator perspective

1. Go to the Observe → Alerting → Alerting rules page.

2. Optional: Filter alerting rules by state, severity, and source by selecting filters in the Filter list.

3. Optional: Sort the alerting rules by clicking one or more of the Name, Severity, Alert state, and Source column headers.

4. Select the name of an alerting rule to view its Alerting rule details page. The page provides the following details about the alerting rule:
   - Alerting rule name, severity, and description.
   - The expression that defines the condition for firing the alert.
   - The time for which the condition should be true for an alert to fire.
   - A graph for each alert governed by the alerting rule, showing the value with which the alert is firing.
   - A table of all alerts governed by the alerting rule.

To obtain information about alerts, silences, and alerting rules in the Developer perspective

1. Go to the Observe → <project_name> → Alerts page.

2. View details for an alert, silence, or an alerting rule:
   - Alert details can be viewed by clicking a greater than symbol (>) next to an alert name and then selecting the alert from the list.
   - Silence details can be viewed by clicking a silence in the Silenced by section of the Alert details page. The Silence details page includes the following information:
     - Alert specification
     - Start time
     - End time
- Silence state
- Number and list of firing alerts

- **Alerting rule details** can be viewed by clicking the menu next to an alert in the *Alerts* page and then clicking *View Alerting Rule*.

**NOTE**

Only alerts, silences, and alerting rules relating to the selected project are displayed in the *Developer* perspective.

Additional resources

- See the *Cluster Monitoring Operator runbooks* to help diagnose and resolve issues that trigger specific OpenShift Container Platform monitoring alerts.

### 9.4. MANAGING SILENCES

You can create a silence to stop receiving notifications about an alert when it is firing. It might be useful to silence an alert after being first notified, while you resolve the underlying issue.

When creating a silence, you must specify whether it becomes active immediately or at a later time. You must also set a duration period after which the silence expires.

You can view, edit, and expire existing silences.

**NOTE**

When you create silences, they are replicated across Alertmanager pods. However, if you do not configure persistent storage for Alertmanager, silences might be lost. This can happen, for example, if all Alertmanager pods restart at the same time.

**Additional resources**

- [Configuring persistent storage](#)

### 9.4.1. Silencing alerts

You can either silence a specific alert or silence alerts that match a specification that you define.

**Prerequisites**

- If you are a cluster administrator, you have access to the cluster as a user with the *cluster-admin* role.

- If you are a non-administrator user, you have access to the cluster as a user with the following user roles:
  - The *cluster-monitoring-view* cluster role, which allows you to access Alertmanager.
  - The *monitoring-alertmanager-edit* role, which permits you to create and silence alerts in the *Administrator* perspective in the web console.
The `monitoring-rules-edit` cluster role, which permits you to create and silence alerts in the Developer perspective in the web console.

### Procedure

To silence a specific alert:

- **In the Administrator perspective:**
  1. Navigate to the **Observe → Alerting → Alerts** page of the OpenShift Container Platform web console.
  2. For the alert that you want to silence, select the in the right-hand column and select **Silence Alert**. The **Silence Alert** form will appear with a pre-populated specification for the chosen alert.
  3. Optional: Modify the silence.
  4. You must add a comment before creating the silence.
  5. To create the silence, select **Silence**.

- **In the Developer perspective:**
  1. Navigate to the **Observe → `<project_name>` → Alerts** page in the OpenShift Container Platform web console.
  2. Expand the details for an alert by selecting greater than symbol (>) to the left of the alert name. Select the name of the alert in the expanded view to open the Alert Details page for the alert.
  3. Select **Silence Alert**. The **Silence Alert** form will appear with a prepopulated specification for the chosen alert.
  4. Optional: Modify the silence.
  5. You must add a comment before creating the silence.
  6. To create the silence, select **Silence**.

To silence a set of alerts by creating an alert specification in the Administrator perspective:

1. Navigate to the **Observe → Alerting → Silences** page in the OpenShift Container Platform web console.
2. Select **Create Silence**.
3. Set the schedule, duration, and label details for an alert in the Create Silence form. You must also add a comment for the silence.
4. To create silences for alerts that match the label sectors that you entered in the previous step, select **Silence**.

### 9.4.2. Editing silences
You can edit a silence, which will expire the existing silence and create a new one with the changed configuration.

**Procedure**

To edit a silence in the **Administrator** perspective:

1. Navigate to the **Observe** → **Alerting** → **Silences** page.

2. For the silence you want to modify, select the in the last column and choose **Edit silence**. Alternatively, you can select **Actions** → **Edit Silence** in the **Silence Details** page for a silence.

3. In the **Edit Silence** page, enter your changes and select **Silence**. This will expire the existing silence and create one with the chosen configuration.

To edit a silence in the **Developer** perspective:

1. Navigate to the **Observe** → `<project_name>` → **Alerts** page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of the alert in the expanded view to open the **Alert Details** page for the alert.

3. Select the name of a silence in the **Silenced By** section in that page to navigate to the **Silence Details** page for the silence.

4. Select the name of a silence to navigate to its **Silence Details** page.

5. Select **Actions** → **Edit Silence** in the **Silence Details** page for a silence.

6. In the **Edit Silence** page, enter your changes and select **Silence**. This will expire the existing silence and create one with the chosen configuration.

### 9.4.3. Expiring silences

You can expire a silence. Expiring a silence deactivates it forever.

**NOTE**

You cannot delete expired, silenced alerts. Expired silences older than 120 hours are garbage collected.

**Procedure**

To expire a silence in the **Administrator** perspective:

1. Navigate to the **Observe** → **Alerting** → **Silences** page.

2. For the silence you want to modify, select the in the last column and choose **Expire silence**. Alternatively, you can select **Actions** → **Expire Silence** in the **Silence Details** page for a silence.

To expire a silence in the **Developer** perspective:
1. Navigate to the **Observe → <project_name> → Alerts** page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of the alert in the expanded view to open the **Alert Details** page for the alert.

3. Select the name of a silence in the **Silenced By** section in that page to navigate to the **Silence Details** page for the silence.

4. Select the name of a silence to navigate to its **Silence Details** page.

5. Select **Actions → Expire Silence** in the **Silence Details** page for a silence.

### 9.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS

OpenShift Container Platform monitoring ships with a set of default alerting rules. As a cluster administrator, you can view the default alerting rules.

In OpenShift Container Platform 4.13, you can create, view, edit, and remove alerting rules in user-defined projects.

**Alerting rule considerations**

- The default alerting rules are used specifically for the OpenShift Container Platform cluster.

- Some alerting rules intentionally have identical names. They send alerts about the same event with different thresholds, different severity, or both.

- Inhibition rules prevent notifications for lower severity alerts that are firing when a higher severity alert is also firing.

### 9.5.1. Optimizing alerting for user-defined projects

You can optimize alerting for your own projects by considering the following recommendations when creating alerting rules:

- **Minimize the number of alerting rules that you create for your project** Create alerting rules that notify you of conditions that impact you. It is more difficult to notice relevant alerts if you generate many alerts for conditions that do not impact you.

- **Create alerting rules for symptoms instead of causes** Create alerting rules that notify you of conditions regardless of the underlying cause. The cause can then be investigated. You will need many more alerting rules if each relates only to a specific cause. Some causes are then likely to be missed.

- **Plan before you write your alerting rules** Determine what symptoms are important to you and what actions you want to take if they occur. Then build an alerting rule for each symptom.

- **Provide clear alert messaging** State the symptom and recommended actions in the alert message.

- **Include severity levels in your alerting rules** The severity of an alert depends on how you need to react if the reported symptom occurs. For example, a critical alert should be triggered if a symptom requires immediate attention by an individual or a critical response team.

**Additional resources**
9.5.2. About creating alerting rules for user-defined projects

If you create alerting rules for a user-defined project, consider the following key behaviors and important limitations when you define the new rules:

- A user-defined alerting rule can include metrics exposed by its own project in addition to the default metrics from core platform monitoring. You cannot include metrics from another user-defined project. For example, an alerting rule for the ns1 user-defined project can use metrics exposed by the ns1 project in addition to core platform metrics, such as CPU and memory metrics. However, the rule cannot include metrics from a different ns2 user-defined project.

- To reduce latency and to minimize the load on core platform monitoring components, you can add the openshift.io/prometheus-rule-evaluation-scope: leaf-prometheus label to a rule. This label forces only the Prometheus instance deployed in the openshift-user-workload-monitoring project to evaluate the alerting rule and prevents the Thanos Ruler instance from doing so.

**IMPORTANT**

If an alerting rule has this label, your alerting rule can use only those metrics exposed by your user-defined project. Alerting rules you create based on default platform metrics might not trigger alerts.

9.5.3. Creating alerting rules for user-defined projects

You can create alerting rules for user-defined projects. Those alerting rules will trigger alerts based on the values of the chosen metrics.

**NOTE**

- When you create an alerting rule, a project label is enforced on it even if a rule with the same name exists in another project.

- To help users understand the impact and cause of the alert, ensure that your alerting rule contains an alert message and severity value.

**Prerequisites**

- You have enabled monitoring for user-defined projects.

- You are logged in as a user that has the monitoring-rules-edit cluster role for the project where you want to create an alerting rule.

- You have installed the OpenShift CLI (oc).

**Procedure**

1. Create a YAML file for alerting rules. In this example, it is called example-app-alerting-rule.yaml.
2. Add an alerting rule configuration to the YAML file. The following example creates a new alerting rule named `example-alert`. The alerting rule fires an alert when the `version` metric exposed by the sample service becomes 0:

```yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: example-alert
 namespace: ns1
spec:
groups:
 - name: example
 rules:
 - alert: VersionAlert
 for: 1m
 expr: version{job="prometheus-example-app"} == 0
 labels:
 severity: warning
 annotations:
 message: This is an example alert.
```

1. The name of the alerting rule you want to create.
2. The duration for which the condition should be true before an alert is fired.
3. The PromQL query expression that defines the new rule.
4. The severity that alerting rule assigns to the alert.
5. The message associated with the alert.

3. Apply the configuration file to the cluster:

```
$ oc apply -f example-app-alerting-rule.yaml
```

Additional resources

- See Monitoring overview for details about OpenShift Container Platform 4.13 monitoring architecture.

9.5.4. Accessing alerting rules for user-defined projects

To list alerting rules for a user-defined project, you must have been assigned the `monitoring-rules-view` cluster role for the project.

Prerequisites

- You have enabled monitoring for user-defined projects.
- You are logged in as a user that has the `monitoring-rules-view` cluster role for your project.
- You have installed the OpenShift CLI (`oc`).

Procedure
Procedure

1. To list alerting rules in `<project>`:
   
   ```bash
 $ oc -n <project> get prometheusrule
   ```

2. To list the configuration of an alerting rule, run the following:

   ```bash
 $ oc -n <project> get prometheusrule <rule> -o yaml
   ```

9.5.5. Listing alerting rules for all projects in a single view

As a cluster administrator, you can list alerting rules for core OpenShift Container Platform and user-defined projects together in a single view.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` role.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. In the **Administrator** perspective, navigate to **Observe → Alerting → Alerting rules**.

2. Select the **Platform** and **User** sources in the **Filter** drop-down menu.

   **NOTE**

   The **Platform** source is selected by default.

9.5.6. Removing alerting rules for user-defined projects

You can remove alerting rules for user-defined projects.

Prerequisites

- You have enabled monitoring for user-defined projects.
- You are logged in as a user that has the `monitoring-rules-edit` cluster role for the project where you want to create an alerting rule.
- You have installed the OpenShift CLI (`oc`).

Procedure

- To remove rule `<foo>` in `<namespace>`, run the following:

  ```bash
 $ oc -n <namespace> delete prometheusrule <foo>
  ```

Additional resources

- See the **Alertmanager documentation**
9.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING

**IMPORTANT**

Creating and modifying alerting rules for core platform monitoring is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

OpenShift Container Platform 4.13 monitoring ships with a large set of default alerting rules for platform metrics. As a cluster administrator, you can customize this set of rules in two ways:

- Modify the settings for existing platform alerting rules by adjusting thresholds or by adding and modifying labels. For example, you can change the `severity` label for an alert from `warning` to `critical` to help you route and triage issues flagged by an alert.

- Define and add new custom alerting rules by constructing a query expression based on core platform metrics in the `openshift-monitoring` namespace.

Core platform alerting rule considerations

- New alerting rules must be based on the default OpenShift Container Platform monitoring metrics.

- You must create the `AlertingRule` and `AlertRelabelConfig` objects in the `openshift-monitoring` namespace.

- You can only add and modify alerting rules. You cannot create new recording rules or modify existing recording rules.

- If you modify existing platform alerting rules by using an `AlertRelabelConfig` object, your modifications are not reflected in the Prometheus alerts API. Therefore, any dropped alerts still appear in the OpenShift Container Platform web console even though they are no longer forwarded to Alertmanager. Additionally, any modifications to alerts, such as a changed `severity` label, do not appear in the web console.

9.6.1. Modifying core platform alerting rules

As a cluster administrator, you can modify core platform alerts before Alertmanager routes them to a receiver. For example, you can change the severity label of an alert, add a custom label, or exclude an alert from being sent to Alertmanager.

**Prerequisites**

- You have access to the cluster as a user with the `cluster-admin` cluster role.

- You have installed the OpenShift CLI (`oc`).
- You have enabled Technology Preview features, and all nodes in the cluster are ready.

**Procedure**

1. Create a new YAML configuration file named `example-modified-alerting-rule.yaml`.

2. Add an `AlertRelabelConfig` resource to the YAML file. The following example modifies the `severity` setting to `critical` for the default platform `watchdog` alerting rule:

```yaml
apiVersion: monitoring.openshift.io/v1alpha1
kind: AlertRelabelConfig
metadata:
 name: watchdog
 namespace: openshift-monitoring
spec:
 configs:
 - sourceLabels: [alertname,severity]
 regex: "Watchdog;none"
 targetLabel: severity
 replacement: critical
 action: Replace
```

1. Ensure that the namespace is `openshift-monitoring`.
2. The source labels for the values you want to modify.
3. The regular expression against which the value of `sourceLabels` is matched.
4. The target label of the value you want to modify.
5. The new value to replace the target label.
6. The relabel action that replaces the old value based on regex matching. The default action is Replace. Other possible values are Keep, Drop, HashMod, LabelMap, LabelDrop, and LabelKeep.

**IMPORTANT**

You must create the `AlertRelabelConfig` object in the `openshift-monitoring` namespace. Otherwise, the alert label will not change.

3. Apply the configuration file to the cluster:

```bash
$ oc apply -f example-modified-alerting-rule.yaml
```

**9.6.2. Creating new alerting rules**

As a cluster administrator, you can create new alerting rules based on platform metrics. These alerting rules trigger alerts based on the values of chosen metrics.
NOTE

- If you create a customized AlertingRule resource based on an existing platform alerting rule, silence the original alert to avoid receiving conflicting alerts.

- To help users understand the impact and cause of the alert, ensure that your alerting rule contains an alert message and severity value.

Prerequisites

- You have access to the cluster as a user that has the cluster-admin cluster role.

- You have installed the OpenShift CLI (oc).

- You have enabled Technology Preview features, and all nodes in the cluster are ready.

Procedure

1. Create a new YAML configuration file named example-alerting-rule.yaml.

2. Add an AlertingRule resource to the YAML file. The following example creates a new alerting rule named example, similar to the default Watchdog alert:

```yaml
apiVersion: monitoring.openshift.io/v1alpha1
kind: AlertingRule
metadata:
 name: example
 namespace: openshift-monitoring
spec:
groups:
- name: example-rules
 rules:
 - alert: ExampleAlert
 for: 1m
 expr: vector(1)
 labels:
 severity: warning
 annotations:
 message: This is an example alert.
```

1. Ensure that the namespace is openshift-monitoring.

2. The name of the alerting rule you want to create.

3. The duration for which the condition should be true before an alert is fired.

4. The PromQL query expression that defines the new rule.

5. The severity that alerting rule assigns to the alert.

6. The message associated with the alert.
IMPORTANT

You must create the AlertingRule object in the openshift-monitoring namespace. Otherwise, the alerting rule is not accepted.

3. Apply the configuration file to the cluster:

$ oc apply -f example-alerting-rule.yaml

Additional resources

- See Monitoring overview for details about OpenShift Container Platform 4.13 monitoring architecture.
- See the Alertmanager documentation for information about alerting rules.
- See the Prometheus relabeling documentation for information about how relabeling works.
- See the Prometheus alerting documentation for further guidelines on optimizing alerts.

9.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Container Platform 4.13, firing alerts can be viewed in the Alerting UI. Alerts are not configured by default to be sent to any notification systems. You can configure OpenShift Container Platform to send alerts to the following receiver types:

- PagerDuty
- Webhook
- Email
- Slack

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when failures occur. For example, critical alerts require immediate attention and are typically paged to an individual or a critical response team. Alerts that provide non-critical warning notifications might instead be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously. Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This mechanism helps you quickly identify any communication issues between Alertmanager and the notification provider.

9.7.1. Configuring alert receivers

You can configure alert receivers to ensure that you learn about important issues with your cluster.

Prerequisites

- You have access to the cluster as a user with the cluster-admin cluster role.
Procedure

1. In the Administrator perspective, go to Administration → Cluster Settings → Configuration → Alertmanager.

   NOTE

   Alternatively, you can go to the same page through the notification drawer. Select the bell icon at the top right of the OpenShift Container Platform web console and choose Configure in the AlertmanagerReceiverNotConfigured alert.

2. Click Create Receiver in the Receivers section of the page.

3. In the Create Receiver form, add a Receiver name and choose a Receiver type from the list.

4. Edit the receiver configuration:

   - For PagerDuty receivers:
     a. Choose an integration type and add a PagerDuty integration key.
     b. Add the URL of your PagerDuty installation.
     c. Click Show advanced configuration if you want to edit the client and incident details or the severity specification.
   
   - For webhook receivers:
     a. Add the endpoint to send HTTP POST requests to.
     b. Click Show advanced configuration if you want to edit the default option to send resolved alerts to the receiver.

   - For email receivers:
     a. Add the email address to send notifications to.
     b. Add SMTP configuration details, including the address to send notifications from, the smarthost and port number used for sending emails, the hostname of the SMTP server, and authentication details.
     c. Select whether TLS is required.
     d. Click Show advanced configuration if you want to edit the default option not to send resolved alerts to the receiver or edit the body of email notifications configuration.

   - For Slack receivers:
     a. Add the URL of the Slack webhook.
     b. Add the Slack channel or user name to send notifications to.
     c. Select Show advanced configuration if you want to edit the default option not to send resolved alerts to the receiver or edit the icon and username configuration. You can also choose whether to find and link channel names and usernames.
By default, firing alerts with labels that match all of the selectors are sent to the receiver. If you want label values for firing alerts to be matched exactly before they are sent to the receiver, perform the following steps:

a. Add routing label names and values in the Routing labels section of the form.

b. Select Regular expression if want to use a regular expression.

c. Click Add label to add further routing labels.

6. Click Create to create the receiver.

9.7.2. Configuring different alert receivers for default platform alerts and user-defined alerts

You can configure different alert receivers for default platform alerts and user-defined alerts to ensure the following results:

- All default platform alerts are sent to a receiver owned by the team in charge of these alerts.
- All user-defined alerts are sent to another receiver so that the team can focus only on platform alerts.

You can achieve this by using the `openshift_io_alert_source="platform"` label that is added by the Cluster Monitoring Operator to all platform alerts:

- Use the `openshift_io_alert_source="platform"` matcher to match default platform alerts.
- Use the `openshift_io_alert_source!="platform"` or `'openshift_io_alert_source=""` matcher to match user-defined alerts.

**NOTE**

This configuration does not apply if you have enabled a separate instance of Alertmanager dedicated to user-defined alerts.

9.7.3. Creating alert routing for user-defined projects

If you are a non-administrator user who has been given the alert-routing-edit cluster role, you can create or edit alert routing for user-defined projects.

**Prerequisites**

- A cluster administrator has enabled monitoring for user-defined projects.
- A cluster administrator has enabled alert routing for user-defined projects.
- You are logged in as a user that has the alert-routing-edit cluster role for the project for which you want to create alert routing.
- You have installed the OpenShift CLI (oc).

**Procedure**

1. Create a YAML file for alert routing. The example in this procedure uses a file called example-app-alert-routing.yaml.
2. Add an AlertmanagerConfig YAML definition to the file. For example:

```yaml
apiVersion: monitoring.coreos.com/v1beta1
kind: AlertmanagerConfig
metadata:
 name: example-routing
 namespace: ns1
spec:
 route:
 receiver: default
 groupBy: [job]
 receivers:
 - name: default
 webhookConfigs:
 - url: https://example.org/post
```

NOTE

For user-defined alerting rules, user-defined routing is scoped to the namespace in which the resource is defined. For example, a routing configuration defined in the AlertmanagerConfig object for namespace ns1 only applies to PrometheusRules resources in the same namespace.

3. Save the file.

4. Apply the resource to the cluster:

   ```
 $ oc apply -f example-app-alert-routing.yaml
 $ oc -n openshift-monitoring get secret alertmanager-main --template='{{ index .data "alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

 The configuration is automatically applied to the Alertmanager pods.

9.8. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION

You can overwrite the default Alertmanager configuration by editing the alertmanager-main secret in the openshift-monitoring namespace for the platform instance of Alertmanager.

Prerequisites

- You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

To change the Alertmanager configuration from the CLI:

1. Print the currently active Alertmanager configuration into file alertmanager.yaml:

   ```
   $ oc -n openshift-monitoring get secret alertmanager-main --template="{{ index .data "alertmanager.yaml" }}" | base64 --decode > alertmanager.yaml
   ```

2. Edit the configuration in alertmanager.yaml:

   ```
global:
  resolve_timeout: 5m
route:
```
The **group_wait** value specifies how long Alertmanager waits before sending an initial notification for a group of alerts. This value controls how long Alertmanager waits while collecting initial alerts for the same group before sending a notification.

The **group_interval** value specifies how much time must elapse before Alertmanager sends a notification about new alerts added to a group of alerts for which an initial notification was already sent.

The **repeat_interval** value specifies the minimum amount of time that must pass before an alert notification is repeated. If you want a notification to repeat at each group interval, set the **repeat_interval** value to less than the **group_interval** value. However, the repeated notification can still be delayed, for example, when certain Alertmanager pods are restarted or rescheduled.

The **service** value specifies the service that fires the alerts.

The **<your_matching_rules>** value specifies the target alerts.

The **receiver** value specifies the receiver to use for the alert.

NOTE

Use the **matchers** key name to indicate the matchers that an alert has to fulfill to match the node. Do not use the **match** or **match_re** key names, which are both deprecated and planned for removal in a future release.

In addition, if you define inhibition rules, use the **target_matchers** key name to indicate the target matchers and the **source_matchers** key name to indicate the source matchers. Do not use the **target_match**, **target_match_re**, **source_match**, or **source_match_re** key names, which are deprecated and planned for removal in a future release.

The following Alertmanager configuration example configures PagerDuty as an alert receiver:
With this configuration, alerts of **critical** severity that are fired by the **example-app** service are sent using the **team-frontend-page** receiver. Typically these types of alerts would be paged to an individual or a critical response team.

3. **Apply the new configuration in the file:**

   ```sh
   $ oc -n openshift-monitoring create secret generic alertmanager-main --from-file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-monitoring replace secret -f -filename=-
   ```

To change the Alertmanager configuration from the OpenShift Container Platform web console:

1. Go to the **Administration → Cluster Settings → Configuration → Alertmanager → YAML** page of the web console.

2. Modify the YAML configuration file.

3. Click **Save**.

9.9. Applying a Custom Configuration to Alertmanager for User-Defined Alert Routing

If you have enabled a separate instance of Alertmanager dedicated to user-defined alert routing, you can overwrite the configuration for this instance of Alertmanager by editing the **alertmanager-user-workload** secret in the **openshift-user-workload-monitoring** namespace.

Prerequisites

- You have access to the cluster as a user with the **cluster-admin** cluster role.
• You have installed the OpenShift CLI (oc).

Procedure

1. Print the currently active Alertmanager configuration into the file `alertmanager.yaml`:

```
$ oc -n openshift-user-workload-monitoring get secret alertmanager-user-workload --template='{{ index .data "alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml
```

2. Edit the configuration in `alertmanager.yaml`:

```
route:
  receiver: Default
  group_by:
    - name: Default
  routes:
    - matchers:
      - "service = prometheus-example-monitor"

receiver: <receiver>
```

1. Specifies which alerts match the route. This example shows all alerts that have the `service="prometheus-example-monitor"` label.

2. Specifies the receiver to use for the alerts group.

3. Apply the new configuration in the file:

```
$ oc -n openshift-user-workload-monitoring create secret generic alertmanager-user-workload --from-file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-user-workload-monitoring replace secret --filename=-
```

Additional resources

• See the PagerDuty official site for more information on PagerDuty.

• See the PagerDuty Prometheus Integration Guide to learn how to retrieve the `service_key`.

• See Alertmanager configuration for configuring alerting through different alert receivers.

• See Enabling alert routing for user-defined projects to learn how to enable a dedicated instance of Alertmanager for user-defined alert routing.

9.10. NEXT STEPS

• Reviewing monitoring dashboards
OpenShift Container Platform 4.13 provides a comprehensive set of monitoring dashboards that help you understand the state of cluster components and user-defined workloads.

Use the **Administrator** perspective to access dashboards for the core OpenShift Container Platform components, including the following items:

- API performance
- etcd
- Kubernetes compute resources
- Kubernetes network resources
- Prometheus
- USE method dashboards relating to cluster and node performance

Figure 10.1. Example dashboard in the Administrator perspective

Use the **Developer** perspective to access Kubernetes compute resources dashboards that provide the following application metrics for a selected project:

- CPU usage
- Memory usage
- Bandwidth information
- Packet rate information
10.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR

In the Administrator perspective, you can view dashboards relating to core OpenShift Container Platform cluster components.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.

Procedure

1. In the Administrator perspective in the OpenShift Container Platform web console, navigate to Observe → Dashboards.

2. Choose a dashboard in the Dashboard list. Some dashboards, such as `etcd` and `Prometheus` dashboards, produce additional sub-menus when selected.

3. Optional: Select a time range for the graphs in the Time Range list.
 - Select a pre-defined time period.
 - Set a custom time range by selecting Custom time range in the Time Range list.
a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

4. Optional: Select a Refresh Interval

5. Hover over each of the graphs within a dashboard to display detailed information about specific items.

10.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

In the Developer perspective, you can view dashboards relating to a selected project. You must have access to monitor a project to view dashboard information for it.

Prerequisites

- You have access to the cluster as a developer or as a user.
- You have view permissions for the project that you are viewing the dashboard for.

Procedure

1. In the Developer perspective in the OpenShift Container Platform web console, navigate to Observe → Dashboard.

2. Select a project from the Project: drop-down list.

3. Select a dashboard from the Dashboard drop-down list to see the filtered metrics.

 NOTE

 All dashboards produce additional sub-menus when selected, except Kubernetes / Compute Resources / Namespace (Pods)

4. Optional: Select a time range for the graphs in the Time Range list.
 - Select a pre-defined time period.
 - Set a custom time range by selecting Custom time range in the Time Range list.
 a. Input or select the From and To dates and times.
 b. Click Save to save the custom time range.

5. Optional: Select a Refresh Interval

6. Hover over each of the graphs within a dashboard to display detailed information about specific items.

Additional resources

- Monitoring project and application metrics using the Developer perspective

10.3. NEXT STEPS
- Accessing monitoring APIs by using the CLI
In OpenShift Container Platform 4.13, you can access web service APIs for some monitoring components from the command line interface (CLI).

IMPORTANT

In certain situations, accessing API endpoints can degrade the performance and scalability of your cluster, especially if you use endpoints to retrieve, send, or query large amounts of metrics data.

To avoid these issues, follow these recommendations:

- Avoid querying endpoints frequently. Limit queries to a maximum of one every 30 seconds.
- Do not try to retrieve all metrics data via the `/federate` endpoint for Prometheus. Query it only when you want to retrieve a limited, aggregated data set. For example, retrieving fewer than 1,000 samples for each request helps minimize the risk of performance degradation.

11.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS

You can directly access web service API endpoints from the command line for the following monitoring stack components:

- Prometheus
- Alertmanager
- Thanos Ruler
- Thanos Querier

NOTE

To access Thanos Ruler and Thanos Querier service APIs, the requesting account must have `get` permission on the namespaces resource, which can be granted by binding the `cluster-monitoring-view` cluster role to the account.

When you access web service API endpoints for monitoring components, be aware of the following limitations:

- You can only use Bearer Token authentication to access API endpoints.
- You can only access endpoints in the `/api` path for a route. If you try to access an API endpoint in a web browser, an **Application is not available** error occurs. To access monitoring features in a web browser, use the OpenShift Container Platform web console to review monitoring dashboards.

Additional resources

- Reviewing monitoring dashboards
11.2. ACCESSING A MONITORING WEB SERVICE API

The following example shows how to query the service API receivers for the Alertmanager service used in core platform monitoring. You can use a similar method to access the prometheus-k8s service for core platform Prometheus and the thanos-ruler service for Thanos Ruler.

Prerequisites

- You are logged in to an account that is bound against the monitoring-alertmanager-edit role in the openshift-monitoring namespace.
- You are logged in to an account that has permission to get the Alertmanager API route.

NOTE

If your account does not have permission to get the Alertmanager API route, a cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token by running the following command:

   ```bash
   $ TOKEN=$(oc whoami -t)
   ```

2. Extract the alertmanager-main API route URL by running the following command:

   ```bash
   $ HOST=$(oc -n openshift-monitoring get route alertmanager-main -ojsonpath={.spec.host})
   ```

3. Query the service API receivers for Alertmanager by running the following command:

   ```bash
   ```

11.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS

You can use the federation endpoint for Prometheus to scrape platform and user-defined metrics from a network location outside the cluster. To do so, access the Prometheus `/federate` endpoint for the cluster via an OpenShift Container Platform route.
IMPORTANT

A delay in retrieving metrics data occurs when you use federation. This delay can affect the accuracy and timeliness of the scraped metrics.

Using the federation endpoint can also degrade the performance and scalability of your cluster, especially if you use the federation endpoint to retrieve large amounts of metrics data. To avoid these issues, follow these recommendations:

- Do not try to retrieve all metrics data via the federation endpoint for Prometheus. Query it only when you want to retrieve a limited, aggregated data set. For example, retrieving fewer than 1,000 samples for each request helps minimize the risk of performance degradation.

- Avoid frequent querying of the federation endpoint for Prometheus. Limit queries to a maximum of one every 30 seconds.

If you need to forward large amounts of data outside the cluster, use remote write instead. For more information, see the Configuring remote write storage section.

Prerequisites

- You have installed the OpenShift CLI (oc).

- You have access to the cluster as a user with the cluster-monitoring-view cluster role or have obtained a bearer token with get permission on the namespaces resource.

NOTE

You can only use bearer token authentication to access the Prometheus federation endpoint.

- You are logged in to an account that has permission to get the Prometheus federation route.

NOTE

If your account does not have permission to get the Prometheus federation route, a cluster administrator can provide the URL for the route.

Procedure

1. Retrieve the bearer token by running the following the command:

 $ TOKEN=$(oc whoami -t)

2. Get the Prometheus federation route URL by running the following command:

 $ HOST=$(oc -n openshift-monitoring get route prometheus-k8s-federate -ojsonpath={.spec.host})

3. Query metrics from the /federate route. The following example command queries up metrics:

11.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS

You can query Prometheus metrics from outside the cluster when monitoring your own services with user-defined projects. Access this data from outside the cluster by using the thanos-querier route.

This access only supports using a Bearer Token for authentication.

Prerequisites

- You have deployed your own service, following the "Enabling monitoring for user-defined projects" procedure.
- You are logged in to an account with the cluster-monitoring-view cluster role, which provides permission to access the Thanos Querier API.
- You are logged in to an account that has permission to get the Thanos Querier API route.

NOTE

If your account does not have permission to get the Thanos Querier API route, a cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token to connect to Prometheus by running the following command:

   ```bash
   $ TOKEN=$(oc whoami -t)
   ```

2. Extract the thanos-querier API route URL by running the following command:

   ```bash
   $ HOST=$(oc -n openshift-monitoring get route thanos-querier -ojsonpath={.spec.host})
   ```

3. Set the namespace to the namespace in which your service is running by using the following command:

   ```bash
   # TYPE up untyped
   up{apiserver="kube-apiserver",endpoint="https",instance="10.0.143.148:6443",job="apiserver",namespace="default",service="kubernetes",prometheus="openshift-monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035322214
   up{apiserver="kube-apiserver",endpoint="https",instance="10.0.148.166:6443",job="apiserver",namespace="default",service="kubernetes",prometheus="openshift-monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035338597
   up{apiserver="kube-apiserver",endpoint="https",instance="10.0.173.16:6443",job="apiserver",namespace="default",service="kubernetes",prometheus="openshift-monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035343834
   ...
   ```
$ NAMESPACE=ns1

4. Query the metrics of your own services in the command line by running the following command:

```bash
```

The output shows the status for each application pod that Prometheus is scraping:

Example output

```
{"status":"success","data":{"resultType":"vector","result":[{"metric":{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-jztp2","service":"prometheus-example-app"},"value":[1591881154.748,1]}}}
```

11.5. ADDITIONAL RESOURCES

- Enabling monitoring for user-defined projects
- Configuring remote write storage
- Managing metrics
- Managing alerts
CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES

Find troubleshooting steps for common issues with core platform and user-defined project monitoring.

12.1. INVESTIGATING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE

ServiceMonitor resources enable you to determine how to use the metrics exposed by a service in user-defined projects. Follow the steps outlined in this procedure if you have created a ServiceMonitor resource but cannot see any corresponding metrics in the Metrics UI.

Prerequisites

- You have access to the cluster as a user with the cluster-admin role.
- You have installed the OpenShift CLI (oc).
- You have enabled and configured monitoring for user-defined projects.
- You have created a ServiceMonitor resource.

Procedure

1. Check that the corresponding labels match in the service and ServiceMonitor resource configurations.
 a. Obtain the label defined in the service. The following example queries the prometheus-example-app service in the ns1 project:

   ```
   $ oc -n ns1 get service prometheus-example-app -o yaml
   ```

 Example output

   ```
   labels:
   app: prometheus-example-app
   ```

 b. Check that the matchLabels definition in the ServiceMonitor resource configuration matches the label output in the preceding step. The following example queries the prometheus-example-monitor service monitor in the ns1 project:

   ```
   $ oc -n ns1 get servicemonitor prometheus-example-monitor -o yaml
   ```

 Example output

   ```
   apiVersion: v1
   kind: ServiceMonitor
   metadata:
   name: prometheus-example-monitor
   namespace: ns1
   spec:
   endpoints:
   - interval: 30s
     port: web
   ```
NOTE
You can check service and ServiceMonitor resource labels as a developer with view permissions for the project.

2. Inspect the logs for the Prometheus Operator in the openshift-user-workload-monitoring project.
 a. List the pods in the openshift-user-workload-monitoring project:

```
s $ oc -n openshift-user-workload-monitoring get pods
```

Example output

```
NAME                                   READY STATUS    RESTARTS AGE
prometheus-operator-776fcbbd56-2nbfm   2/2  Running   0   132m
prometheus-user-workload-0             5/5   Running  1   132m
prometheus-user-workload-1             5/5   Running  1   132m
thanos-ruler-user-workload-0           3/3   Running  0   132m
thanos-ruler-user-workload-1           3/3   Running  0   132m
```

b. Obtain the logs from the prometheus-operator container in the prometheus-operator pod. In the following example, the pod is called prometheus-operator-776fcbbd56-2nbfm:

```
$ oc -n openshift-user-workload-monitoring logs prometheus-operator-776fcbbd56-2nbfm -c prometheus-operator
```

If there is an issue with the service monitor, the logs might include an error similar to this example:

```
level=warn ts=2020-08-10T11:48:20.906739623Z caller=operator.go:1829
component=prometheusoperator msg="skipping servicemonitor" error="it accesses file system via bearer token file which Prometheus specification prohibits"
          servicemonitor=eagle/eagle namespace=openshift-user-workload-monitoring
          prometheus=user-workload
```

3. Review the target status for your endpoint on the Metrics targets page in the OpenShift Container Platform web console UI.
 a. Log in to the OpenShift Container Platform web console and navigate to Observe ➔ Targets in the Administrator perspective.
 b. Locate the metrics endpoint in the list, and review the status of the target in the Status column.
 c. If the Status is Down, click the URL for the endpoint to view more information on the Target Details page for that metrics target.
4. Configure debug level logging for the Prometheus Operator in the `openshift-user-workload-monitoring` project.

a. Edit the `user-workload-monitoring-config` ConfigMap object in the `openshift-user-workload-monitoring` project:

```bash
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
```

b. Add `logLevel: debug` for `prometheusOperator` under `data/config.yaml` to set the log level to `debug`:

```yaml
apiVersion: v1
class: ConfigMap
metadata:
  name: user-workload-monitoring-config
  namespace: openshift-user-workload-monitoring
data:
  config.yml: |
    prometheusOperator:
      logLevel: debug
# ...
```

c. Save the file to apply the changes.

NOTE

The `prometheus-operator` in the `openshift-user-workload-monitoring` project restarts automatically when you apply the log-level change.

d. Confirm that the `debug` log-level has been applied to the `prometheus-operator` deployment in the `openshift-user-workload-monitoring` project:

```bash
$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep "log-level"
```

Example output

```
- --log-level=debug
```

Debug level logging will show all calls made by the Prometheus Operator.

e. Check that the `prometheus-operator` pod is running:

```bash
$ oc -n openshift-user-workload-monitoring get pods
```

NOTE

If an unrecognized Prometheus Operator `loglevel` value is included in the config map, the `prometheus-operator` pod might not restart successfully.

f. Review the debug logs to see if the Prometheus Operator is using the ServiceMonitor resource. Review the logs for other related errors.
12.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute that has an unlimited number of potential values is called an unbound attribute. For example, a `customer_id` attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels can result in an exponential increase in the number of time series created. This can impact Prometheus performance and can consume a lot of disk space.

You can use the following measures when Prometheus consumes a lot of disk:

- **Check the time series database (TSDB) status using the Prometheus HTTP API** for more information about which labels are creating the most time series data. Doing so requires cluster administrator privileges.

- **Check the number of scrape samples** that are being collected.

- **Reduce the number of unique time series that are created** by reducing the number of unbound attributes that are assigned to user-defined metrics.

 NOTE

 Using attributes that are bound to a limited set of possible values reduces the number of potential key-value pair combinations.

- **Enforce limits on the number of samples that can be scraped** across user-defined projects. This requires cluster administrator privileges.

Prerequisites

- You have access to the cluster as a user with the `cluster-admin` cluster role.

- You have installed the OpenShift CLI (`oc`).

Procedure

1. In the **Administrator** perspective, navigate to **Observe → Metrics**.

2. Enter a Prometheus Query Language (PromQL) query in the **Expression** field. The following example queries help to identify high cardinality metrics that might result in high disk space consumption:
By running the following query, you can identify the ten jobs that have the highest number of scrape samples:

```
(topk(10, max by(namespace, job) (topk by(namespace, job) (1, scrape_samples_post_metric_relabeling))))
```

By running the following query, you can pinpoint time series churn by identifying the ten jobs that have created the most time series data in the last hour:

```
(topk(10, sum by(namespace, job) (sum_over_time(scrape_series_added[1h]))))
```

3. Investigate the number of unbound label values assigned to metrics with higher than expected scrape sample counts:

- **If the metrics relate to a user-defined project** review the metrics key-value pairs assigned to your workload. These are implemented through Prometheus client libraries at the application level. Try to limit the number of unbound attributes referenced in your labels.

- **If the metrics relate to a core OpenShift Container Platform project** create a Red Hat support case on the Red Hat Customer Portal.

4. Review the TSDB status using the Prometheus HTTP API by following these steps when logged in as a cluster administrator:

 a. Get the Prometheus API route URL by running the following command:

   ```
   $ HOST=$(oc -n openshift-monitoring get route prometheus-k8s -ojsonpath={.spec.host})
   ```

 b. Extract an authentication token by running the following command:

   ```
   $ TOKEN=$(oc whoami -t)
   ```

 c. Query the TSDB status for Prometheus by running the following command:

   ```
   $ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v1/status/tsdb"
   ```

Example output

```
"status": "success", "data": {"headStats": {"numSeries": 507473, "numLabelPairs": 19832, "chunkCount": 946298, "minTime": 1712253600010, "maxTime": 1712257935346}, "seriesCountByMetricName": [{"name": "etcd_request_duration_seconds_bucket", "value": 51840}, {"name": "apiserver_request_sli_duration_seconds_bucket", "value": 47718}, ...
```

Additional resources

- Accessing monitoring APIs by using the CLI
- Setting a scrape sample limit for user-defined projects
- Submitting a support case
12.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS

As a cluster administrator, you can resolve the KubePersistentVolumeFillingUp alert being triggered for Prometheus.

The critical alert fires when a persistent volume (PV) claimed by a prometheus-k8s-* pod in the openshift-monitoring project has less than 3% total space remaining. This can cause Prometheus to function abnormally.

NOTE
There are two KubePersistentVolumeFillingUp alerts:

- **Critical alert**: The alert with the severity="critical" label is triggered when the mounted PV has less than 3% total space remaining.

- **Warning alert**: The alert with the severity="warning" label is triggered when the mounted PV has less than 15% total space remaining and is expected to fill up within four days.

To address this issue, you can remove Prometheus time-series database (TSDB) blocks to create more space for the PV.

Prerequisites

- You have access to the cluster as a user with the cluster-admin cluster role.

- You have installed the OpenShift CLI (oc).

Procedure

1. List the size of all TSDB blocks, sorted from oldest to newest, by running the following command:

   ```bash
   $ oc debug <prometheus_k8s_pod_name> -n openshift-monitoring -c prometheus --image=$(oc get po -n openshift-monitoring <prometheus_k8s_pod_name> -o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') -- sh -c 'cd /prometheus/;du -hs $(ls -dt */ | grep -Eo "[0-9|A-Z]{26}")'
   ``

Replace `<prometheus_k8s_pod_name>` with the pod mentioned in the KubePersistentVolumeFillingUp alert description.

Example output

```
308M 01HVKMPKQWZYWS8WVDAYQHNMLW6
52M 01HVK64DTDA81799TBR9QDECEZ
102M 01HVK64DS7TRZWF2756KHS5X
140M 01HVJS9K11FBVAPVY57Q8Z11
90M 01HVH2A5Z58ST810EM6B9AT50
152M 01HV8ZDVQMX41MKCN84S32RRZ1
354M 01HV6Q2N26BK63G4RYTST71FBF
```
2. Identify which and how many blocks could be removed, then remove the blocks. The following example command removes the three oldest Prometheus TSDB blocks from the `prometheus-k8s-0` pod:

```bash
$ oc debug prometheus-k8s-0 -n openshift-monitoring \
 -c prometheus --image=$(oc get po -n openshift-monitoring prometheus-k8s-0 \
 -o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') \
 -- sh -c 'ls -latr /prometheus/ | egrep -o "[0-9|A-Z]{26}" | head -3 | \n while read BLOCK; do rm -r /prometheus/$BLOCK; done'
```

3. Verify the usage of the mounted PV and ensure there is enough space available by running the following command:

```bash
$ oc debug <prometheus_k8s_pod_name> -n openshift-monitoring \
 --image=$(oc get po -n openshift-monitoring <prometheus_k8s_pod_name> \
 -o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') -- df -h /prometheus/
```

Replace `<prometheus_k8s_pod_name>` with the pod mentioned in the `KubePersistentVolumeFillingUp` alert description.

The following example output shows the mounted PV claimed by the `prometheus-k8s-0` pod that has 63% of space remaining:

**Example output**

```
Starting pod/prometheus-k8s-0-debug-j82w4 ...
Filesystem Size Used Avail Use% Mounted on
/dev/nvme0n1p4 40G 15G 40G 37% /prometheus

Removing debug pod ...
```
13.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE

Parts of OpenShift Container Platform cluster monitoring are configurable. The API is accessible by setting parameters defined in various config maps.

- To configure monitoring components, edit the `ConfigMap` object named `cluster-monitoring-config` in the `openshift-monitoring` namespace. These configurations are defined by `ClusterMonitoringConfiguration`.

- To configure monitoring components that monitor user-defined projects, edit the `ConfigMap` object named `user-workload-monitoring-config` in the `openshift-user-workload-monitoring` namespace. These configurations are defined by `UserWorkloadConfiguration`.

The configuration file is always defined under the `config.yaml` key in the config map data.

**IMPORTANT**

- Not all configuration parameters for the monitoring stack are exposed. Only the parameters and fields listed in this reference are supported for configuration. For more information about supported configurations, see Maintenance and support for monitoring.

- Configuring cluster monitoring is optional.

- If a configuration does not exist or is empty, default values are used.

- If the configuration is invalid YAML data, the Cluster Monitoring Operator stops reconciling the resources and reports `Degraded=True` in the status conditions of the Operator.

13.2. ADDITIONALALERTMANAGERCONFIG

13.2.1. Description

The `AdditionalAlertmanagerConfig` resource defines settings for how a component communicates with additional Alertmanager instances.

13.2.2. Required

- `apiVersion`
### Property	Type	Description
apiVersion | string | Defines the API version of Alertmanager. Possible values are v1 or v2. The default is v2.
bearerToken | *v1.SecretKeySelector | Defines the secret key reference containing the bearer token to use when authenticating to Alertmanager.
pathPrefix | string | Defines the path prefix to add in front of the push endpoint path.
scheme | string | Defines the URL scheme to use when communicating with Alertmanager instances. Possible values are http or https. The default value is http.
staticConfigs | []string | A list of statically configured Alertmanager endpoints in the form of <hosts>:<port>.
timeout | *string | Defines the timeout value used when sending alerts.
tlsConfig | TLSConfig | Defines the TLS settings to use for Alertmanager connections.

### 13.3. ALERTMANAGERMAINCONFIG

#### 13.3.1. Description

The `AlertmanagerMainConfig` resource defines settings for the Alertmanager component in the `openshift-monitoring` namespace.

Appears in: `ClusterMonitoringConfiguration`
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enableUserAlertmanagerConfig</td>
<td>bool</td>
<td>A Boolean flag that enables or disables user-defined namespaces to be selected for AlertmanagerConfig lookups. This setting only applies if the user workload monitoring instance of Alertmanager is not enabled. The default value is false.</td>
</tr>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level setting for Alertmanager. The possible values are: error, warn, info, debug. The default value is info.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the Pods are scheduled.</td>
</tr>
<tr>
<td>resources</td>
<td>*v1.ResourceRequirements</td>
<td>Defines resource requests and limits for the Alertmanager container.</td>
</tr>
<tr>
<td>secrets</td>
<td>[]string</td>
<td>Defines a list of secrets to be mounted into Alertmanager. The secrets must reside within the same namespace as the Alertmanager object. They are added as volumes named secret-&lt;secret-name&gt; and mounted at /etc/alertmanager/secrets/&lt;secret-name&gt; in the alertmanager container of the Alertmanager pods.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
<tr>
<td>topologySpreadConstraints</td>
<td>[]v1.TopologySpreadConstraint</td>
<td>Defines a pod’s topology spread constraints.</td>
</tr>
<tr>
<td>volumeClaimTemplate</td>
<td>*monv1.EmbeddedPersistentVolumeClaim</td>
<td>Defines persistent storage for Alertmanager. Use this setting to configure the persistent volume claim, including storage class, volume size, and name.</td>
</tr>
</tbody>
</table>

### 13.4. ALERTMANAGERUSERWORKLOADCONFIG

#### 13.4.1. Description
The **AlertmanagerUserWorkloadConfig** resource defines the settings for the Alertmanager instance used for user-defined projects.

**Appears in:** UserWorkloadConfiguration

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>bool</td>
<td>A Boolean flag that enables or disables a dedicated instance of Alertmanager for user-defined alerts in the <code>openshift-user-workload-monitoring</code> namespace. The default value is <strong>false</strong>.</td>
</tr>
<tr>
<td>enableAlertmanagerConfig</td>
<td>bool</td>
<td>A Boolean flag to enable or disable user-defined namespaces to be selected for <code>AlertmanagerConfig</code> lookup. The default value is <strong>false</strong>.</td>
</tr>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level setting for Alertmanager for user workload monitoring. The possible values are <strong>error</strong>, <strong>warn</strong>, <strong>info</strong>, and <strong>debug</strong>. The default value is <strong>info</strong>.</td>
</tr>
<tr>
<td>resources</td>
<td>*v1.ResourceRequirements</td>
<td>Defines resource requests and limits for the Alertmanager container.</td>
</tr>
<tr>
<td>secrets</td>
<td>[]string</td>
<td>Defines a list of secrets to be mounted into Alertmanager. The secrets must be located within the same namespace as the Alertmanager object. They are added as volumes named <code>secret-&lt;secret-name&gt;</code> and mounted at <code>/etc/alertmanager/secrets/&lt;secret-name&gt;</code> in the <code>alertmanager</code> container of the Alertmanager pods.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
</tbody>
</table>
13.5. CLUSTERMONITORINGCONFIGURATION

13.5.1. Description

The `ClusterMonitoringConfiguration` resource defines settings that customize the default platform monitoring stack through the `cluster-monitoring-config` config map in the `openshift-monitoring` namespace.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>volumeClaimTemplate</td>
<td>*monv1.EmbeddedPersistentVolumeClaim</td>
<td>Defines persistent storage for Alertmanager. Use this setting to configure the persistent volume claim, including storage class, volume size and name.</td>
</tr>
<tr>
<td>alertmanagerMain</td>
<td>*AlertmanagerMainConfig</td>
<td><code>AlertmanagerMainConfig</code> defines settings for the Alertmanager component in the <code>openshift-monitoring</code> namespace.</td>
</tr>
<tr>
<td>enableUserWorkload</td>
<td>*bool</td>
<td><code>UserWorkloadEnabled</code> is a Boolean flag that enables monitoring for user-defined projects.</td>
</tr>
<tr>
<td>k8sPrometheusAdapter</td>
<td>*K8sPrometheusAdapter</td>
<td><code>K8sPrometheusAdapter</code> defines settings for the Prometheus Adapter component.</td>
</tr>
<tr>
<td>kubeStateMetrics</td>
<td>*KubeStateMetricsConfig</td>
<td><code>KubeStateMetricsConfig</code> defines settings for the <code>kube-state-metrics</code> agent.</td>
</tr>
<tr>
<td>prometheusK8s</td>
<td>*PrometheusK8sConfig</td>
<td><code>PrometheusK8sConfig</code> defines settings for the Prometheus component.</td>
</tr>
<tr>
<td>openshiftStateMetrics</td>
<td>*OpenShiftStateMetricsConfig</td>
<td><code>OpenShiftMetricsConfig</code> defines settings for the <code>openshift-state-metrics</code> agent.</td>
</tr>
</tbody>
</table>
### 13.6. DEDICATEDSERVICEMONITORS

#### 13.6.1. Description

You can use the **DedicatedServiceMonitors** resource to configure dedicated Service Monitors for the Prometheus Adapter.

Appears in: **K8sPrometheusAdapter**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>telemeterClient</td>
<td><em>TelemeterClientConfig</em></td>
<td><strong>TelemeterClientConfig</strong> defines settings for the Telemeter Client component.</td>
</tr>
<tr>
<td>thanosQuerier</td>
<td><em>ThanosQuerierConfig</em></td>
<td><strong>ThanosQuerierConfig</strong> defines settings for the Thanos Querier component.</td>
</tr>
<tr>
<td>nodeExporter</td>
<td>NodeExporterConfig</td>
<td><strong>NodeExporterConfig</strong> defines settings for the node-exporter agent.</td>
</tr>
</tbody>
</table>

---

### 13.7. K8SPROMETHEUSADAPTER

#### 13.7.1. Description

When **enabled** is set to **true**, the Cluster Monitoring Operator (CMO) deploys a dedicated Service Monitor that exposes the kubelet `/metrics/resource` endpoint. This Service Monitor sets **honorTimestamps: true** and only keeps metrics that are relevant for the pod resource queries of Prometheus Adapter. Additionally, Prometheus Adapter is configured to use these dedicated metrics. Overall, this feature improves the consistency of Prometheus Adapter-based CPU usage measurements used by, for example, the `oc adm top pod` command or the Horizontal Pod Autoscaler.

---

**OpenShift Container Platform 4.13 Monitoring**
The **K8sPrometheusAdapter** resource defines settings for the Prometheus Adapter component.

Appears in: **ClusterMonitoringConfiguration**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>audit</td>
<td>*Audit</td>
<td>Defines the audit configuration used by the Prometheus Adapter instance. Possible profile values are: <em>metadata, request, requestresponse, and none.</em> The default value is <em>metadata.</em></td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
<tr>
<td>dedicatedServiceMonitors</td>
<td>*DedicatedServiceMonitors</td>
<td>Defines dedicated service monitors.</td>
</tr>
</tbody>
</table>

### 13.8. KUBESTATEMETRICSCONFIG

#### 13.8.1. Description

The **KubeStateMetricsConfig** resource defines settings for the **kube-state-metrics** agent.

Appears in: **ClusterMonitoringConfiguration**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
</tbody>
</table>

### 13.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG

#### 13.9.1. Description

The **NodeExporterCollectorBuddyInfoConfig** resource works as an on/off switch for the **buddyinfo** collector of the **node-exporter** agent. By default, the **buddyinfo** collector is disabled.

Appears in: **NodeExporterCollectorConfig**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
A Boolean flag that enables or disables the `buddyinfo` collector.

### 13.10. NODEEXPORTERCOLLECTORCONFIG

#### 13.10.1. Description

The `NodeExporterCollectorConfig` resource defines settings for individual collectors of the `node-exporter` agent.

Appears in: `NodeExporterConfig`

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>bool</td>
<td>A Boolean flag that enables or disables the <code>buddyinfo</code> collector.</td>
</tr>
<tr>
<td>cpufreq</td>
<td><code>NodeExporterCollectorCpufreqConfig</code></td>
<td>Defines the configuration of the <code>cpufreq</code> collector, which collects CPU frequency statistics. Disabled by default.</td>
</tr>
<tr>
<td>tcpstat</td>
<td><code>NodeExporterCollectorTcpStatConfig</code></td>
<td>Defines the configuration of the <code>tcpstat</code> collector, which collects TCP connection statistics. Disabled by default.</td>
</tr>
<tr>
<td>netdev</td>
<td><code>NodeExporterCollectorNetDevConfig</code></td>
<td>Defines the configuration of the <code>netdev</code> collector, which collects network devices statistics. Enabled by default.</td>
</tr>
<tr>
<td>netclass</td>
<td><code>NodeExporterCollectorNetClassConfig</code></td>
<td>Defines the configuration of the <code>netclass</code> collector, which collects information about network devices. Enabled by default.</td>
</tr>
<tr>
<td>buddyinfo</td>
<td><code>NodeExporterCollectorBuddyInfoConfig</code></td>
<td>Defines the configuration of the <code>buddyinfo</code> collector, which collects statistics about memory fragmentation from the <code>node_buddyinfo_blocks</code> metric. This metric collects data from <code>/proc/buddyinfo</code>. Disabled by default.</td>
</tr>
</tbody>
</table>

### 13.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG

#### 13.11.1. Description
The **NodeExporterCollectorCpuFreqConfig** resource works as an on/off switch for the **cpufreq** collector of the **node-exporter** agent. By default, the **cpufreq** collector is disabled. Under certain circumstances, enabling the cpufreq collector increases CPU usage on machines with many cores. If you enable this collector and have machines with many cores, monitor your systems closely for excessive CPU usage.

Appears in: **NodeExporterCollectorConfig**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>bool</td>
<td>A Boolean flag that enables or disables the <strong>cpufreq</strong> collector.</td>
</tr>
</tbody>
</table>

### 13.12. **NODEEXPORTERCOLLECTORNETCLASSCONFIG**

#### 13.12.1. Description

The **NodeExporterCollectorNetClassConfig** resource works as an on/off switch for the **netclass** collector of the **node-exporter** agent. By default, the **netclass** collector is enabled. If disabled, these metrics become unavailable: **node_network_info**, **node_network_address_assign_type**, **node_network_carrier**, **node_network_carrier_changes_total**, **node_network_carrier_up_changes_total**, **node_network_carrier_down_changes_total**, **node_network_device_id**, **node_network_dormant**, **node_network_flags**, **node_network_iface_id**, **node_network_iface_link**, **node_network_iface_link_mode**, **node_network_mtu_bytes**, **node_network_name_assign_type**, **node_network_net_dev_group**, **node_network_speed_bytes**, **node_network_transmit_queue_length**, **node_network_protocol_type**.

Appears in: **NodeExporterCollectorConfig**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>bool</td>
<td>A Boolean flag that enables or disables the <strong>netclass</strong> collector.</td>
</tr>
</tbody>
</table>
| useNetlink        | bool    | A Boolean flag that activates the **netlink** implementation of the **netclass** collector. By default, it is disabled. This implementation improves the performance of the **netclass** collector by omitting these metrics: **node_network_address_assign_type**, **node_network_name_assign_type**, **node_network_device_id**, **node_network_speed_bytes**. In addition, the **node_network_info** metric lacks the **duplex** label.
13.13. NODEEXPORTERCOLLECTORNETDEVCONFIG

13.13.1. Description

The `NodeExporterCollectorNetDevConfig` resource works as an on/off switch for the `netdev` collector of the `node-exporter` agent. By default, the `netdev` collector is enabled. If disabled, these metrics become unavailable:

- `node_network_receive_bytes_total`
- `node_network_receive_compressed_total`
- `node_network_receive_drop_total`
- `node_network_receive_errs_total`
- `node_network_receive_fifo_total`
- `node_network_receive_frame_total`
- `node_network_receive_multicast_total`
- `node_network_receive_nohandler_total`
- `node_network_receive_packets_total`
- `node_network_transmit_bytes_total`
- `node_network_transmit_carrier_total`
- `node_network_transmit_colls_total`
- `node_network_transmit_compressed_total`
- `node_network_transmit_drop_total`
- `node_network_transmit_errs_total`
- `node_network_transmit_fifo_total`
- `node_network_transmit_packets_total`.

Appears in: `NodeExporterCollectorConfig`

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>bool</td>
<td>A Boolean flag that enables or disables the <code>netdev</code> collector.</td>
</tr>
</tbody>
</table>

13.14. NODEEXPORTERCOLLECTORTCPSTATCONFIG

13.14.1. Description

The `NodeExporterCollectorTcpStatConfig` resource works as an on/off switch for the `tcpstat` collector of the `node-exporter` agent. By default, the `tcpstat` collector is disabled.

Appears in: `NodeExporterCollectorConfig`

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>bool</td>
<td>A Boolean flag that enables or disables the <code>tcpstat</code> collector.</td>
</tr>
</tbody>
</table>

13.15. NODEEXPORTERCONFIG

13.15.1. Description

The `NodeExporterConfig` resource defines settings for the `node-exporter` agent.

Appears in: `ClusterMonitoringConfiguration`

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
13.16. OPENSIFHTSTATEMETRICSCONFIG

13.16.1. Description

The OpenShiftStateMetricsConfig resource defines settings for the openshift-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
</tbody>
</table>

13.17. PROMETHEUSK8SCONFIG

13.17.1. Description

The PrometheusK8sConfig resource defines settings for the Prometheus component.

Appears in: ClusterMonitoringConfiguration

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>additionalAlertmanagerConfs</td>
<td>[]AdditionalAlertmanagerConfig</td>
<td>Configures additional Alertmanager instances that receive alerts from the Prometheus component. By default, no additional Alertmanager instances are configured.</td>
</tr>
<tr>
<td>Property</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>enforcedBodySizeLimit</td>
<td>string</td>
<td>Enforces a body size limit for Prometheus scraped metrics. If a scraped target’s body response is larger than the limit, the scrape will fail. The following values are valid: an empty value to specify no limit, a numeric value in Prometheus size format (such as \texttt{64MB}), or the string \texttt{automatic}, which indicates that the limit will be automatically calculated based on cluster capacity. The default value is empty, which indicates no limit.</td>
</tr>
<tr>
<td>externalLabels</td>
<td>map[string]string</td>
<td>Defines labels to be added to any time series or alerts when communicating with external systems such as federation, remote storage, and Alertmanager. By default, no labels are added.</td>
</tr>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level setting for Prometheus. The possible values are: \texttt{error}, \texttt{warn}, \texttt{info}, and \texttt{debug}. The default value is \texttt{info}.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>queryLogFile</td>
<td>string</td>
<td>Specifies the file to which PromQL queries are logged. This setting can be either a filename, in which case the queries are saved to an \texttt{emptyDir} volume at \texttt{/var/log/prometheus}, or a full path to a location where an \texttt{emptyDir} volume will be mounted and the queries saved. Writing to \texttt{/dev/stderr}, \texttt{/dev/stdout} or \texttt{/dev/null} is supported, but writing to any other \texttt{/dev/} path is not supported. Relative paths are also not supported. By default, PromQL queries are not logged.</td>
</tr>
<tr>
<td>Property</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>remoteWrite</td>
<td>[]RemoteWriteSpec</td>
<td>Defines the remote write configuration, including URL, authentication, and relabeling settings.</td>
</tr>
<tr>
<td>resources</td>
<td>*v1.ResourceRequirements</td>
<td>Defines resource requests and limits for the Prometheus container.</td>
</tr>
<tr>
<td>retention</td>
<td>string</td>
<td>Defines the duration for which Prometheus retains data. This definition must be specified using the following regular expression pattern: ([0-9]+(ms</td>
</tr>
<tr>
<td>retentionSize</td>
<td>string</td>
<td>Defines the maximum amount of disk space used by data blocks plus the write-ahead log (WAL). Supported values are B, KB, KiB, MB, MiB, GB, GiB, TB, TiB, PB, PiB, EB, and EiB. By default, no limit is defined.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
<tr>
<td>topologySpreadConstraints</td>
<td>[]v1.TopologySpreadConstraint</td>
<td>Defines the pod's topology spread constraints.</td>
</tr>
<tr>
<td>collectionProfile</td>
<td>CollectionProfile</td>
<td>Defines the metrics collection profile that Prometheus uses to collect metrics from the platform components. Supported values are full or minimal. In the full profile (default), Prometheus collects all metrics that are exposed by the platform components. In the minimal profile, Prometheus only collects metrics necessary for the default platform alerts, recording rules, telemetry, and console dashboards.</td>
</tr>
</tbody>
</table>
### 13.18. PROMETHEUSOPERATORCONFIG

#### 13.18.1. Description

The **PrometheusOperatorConfig** resource defines settings for the Prometheus Operator component.

Appears in: `ClusterMonitoringConfiguration`, `UserWorkloadConfiguration`

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>volumeClaimTemplate</td>
<td><code>*monv1.EmbeddedPersistentVolumeClaim</code></td>
<td>Defines persistent storage for Prometheus. Use this setting to configure the persistent volume claim, including storage class, volume size and name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level settings for Prometheus Operator. The possible values are <code>error</code>, <code>warn</code>, <code>info</code>, and <code>debug</code>. The default value is <code>info</code>.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
</tbody>
</table>

### 13.19. PROMETHEUSRESTRICTEDCONFIG

#### 13.19.1. Description

The **PrometheusRestrictedConfig** resource defines the settings for the Prometheus component that monitors user-defined projects.

Appears in: `UserWorkloadConfiguration`

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>additionalAlertmanagerConfigs</td>
<td>[]AdditionalAlertmanagerConfig</td>
<td>Configures additional Alertmanager instances that receive alerts from the Prometheus component. By default, no additional Alertmanager instances are configured.</td>
</tr>
<tr>
<td>Property</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>enforcedLabelLimit</td>
<td>*uint64</td>
<td>Specifies a per-scrape limit on the number of labels accepted for a sample. If the number of labels exceeds this limit after metric relabeling, the entire scrape is treated as failed. The default value is 0, which means that no limit is set.</td>
</tr>
<tr>
<td>enforcedLabelNameLengthLimit</td>
<td>*uint64</td>
<td>Specifies a per-scrape limit on the length of a label name for a sample. If the length of a label name exceeds this limit after metric relabeling, the entire scrape is treated as failed. The default value is 0, which means that no limit is set.</td>
</tr>
<tr>
<td>enforcedLabelValueLengthLimit</td>
<td>*uint64</td>
<td>Specifies a per-scrape limit on the length of a label value for a sample. If the length of a label value exceeds this limit after metric relabeling, the entire scrape is treated as failed. The default value is 0, which means that no limit is set.</td>
</tr>
<tr>
<td>enforcedSampleLimit</td>
<td>*uint64</td>
<td>Specifies a global limit on the number of scraped samples that will be accepted. This setting overrides the SampleLimit value set in any user-defined ServiceMonitor or PodMonitor object if the value is greater than enforcedTargetLimit. Administrators can use this setting to keep the overall number of samples under control. The default value is 0, which means that no limit is set.</td>
</tr>
<tr>
<td>Property</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>enforcedTargetLimit</td>
<td>*uint64</td>
<td>Specifies a global limit on the number of scraped targets. This setting overrides the TargetLimit value set in any user-defined ServiceMonitor or PodMonitor object if the value is greater than enforcedSampleLimit. Administrators can use this setting to keep the overall number of targets under control. The default value is 0.</td>
</tr>
<tr>
<td>externalLabels</td>
<td>map[string]string</td>
<td>Defines labels to be added to any time series or alerts when communicating with external systems such as federation, remote storage, and Alertmanager. By default, no labels are added.</td>
</tr>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level setting for Prometheus. The possible values are error, warn, info, and debug. The default setting is info.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>queryLogFile</td>
<td>string</td>
<td>Specifies the file to which PromQL queries are logged. This setting can be either a filename, in which case the queries are saved to an emptyDir volume at /var/log/prometheus, or a full path to a location where an emptyDir volume will be mounted and the queries saved. Writing to /dev/stderr, /dev/stdout or /dev/null is supported, but writing to any other /dev/ path is not supported. Relative paths are also not supported. By default, PromQL queries are not logged.</td>
</tr>
<tr>
<td>Property</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>remoteWrite</td>
<td>[]RemoteWriteSpec</td>
<td>Defines the remote write configuration, including URL, authentication, and relabeling settings.</td>
</tr>
<tr>
<td>resources</td>
<td>*vl.ResourceRequirements</td>
<td>Defines resource requests and limits for the Prometheus container.</td>
</tr>
<tr>
<td>retention</td>
<td>string</td>
<td>Defines the duration for which Prometheus retains data. This definition must be specified using the following regular expression pattern: [0-9]+(ms</td>
</tr>
<tr>
<td>retentionSize</td>
<td>string</td>
<td>Defines the maximum amount of disk space used by data blocks plus the write-ahead log (WAL). Supported values are B, KB, KiB, MB, MiB, GB, GiB, TB, TiB, PB, PiB, EB, and EiB. The default value is nil.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]vl.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
<tr>
<td>volumeClaimTemplate</td>
<td>*monvl.EmbeddedPersistentVolumeClaim</td>
<td>Defines persistent storage for Prometheus. Use this setting to configure the storage class and size of a volume.</td>
</tr>
</tbody>
</table>

### 13.20. REMOTEWRITESPEC

#### 13.20.1. Description

The RemoteWriteSpec resource defines the settings for remote write storage.

#### 13.20.2. Required

- url

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorization</td>
<td>*monv1.SafeAuthorization</td>
<td>Defines the authorization settings for remote write storage.</td>
</tr>
<tr>
<td>basicAuth</td>
<td>*monv1.BasicAuth</td>
<td>Defines basic authentication settings for the remote write endpoint URL.</td>
</tr>
<tr>
<td>bearerTokenFile</td>
<td>string</td>
<td>Defines the file that contains the bearer token for the remote write endpoint. However, because you cannot mount secrets in a pod, in practice you can only reference the token of the service account.</td>
</tr>
<tr>
<td>headers</td>
<td>map[string]string</td>
<td>Specifies the custom HTTP headers to be sent along with each remote write request. Headers set by Prometheus cannot be overwritten.</td>
</tr>
<tr>
<td>metadataConfig</td>
<td>*monv1.MetadataConfig</td>
<td>Defines settings for sending series metadata to remote write storage.</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Defines the name of the remote write queue. This name is used in metrics and logging to differentiate queues. If specified, this name must be unique.</td>
</tr>
<tr>
<td>oauth2</td>
<td>*monv1.OAuth2</td>
<td>Defines OAuth2 authentication settings for the remote write endpoint.</td>
</tr>
<tr>
<td>proxyUrl</td>
<td>string</td>
<td>Defines an optional proxy URL.</td>
</tr>
<tr>
<td>queueConfig</td>
<td>*monv1.QueueConfig</td>
<td>Allows tuning configuration for remote write queue parameters.</td>
</tr>
<tr>
<td>remoteTimeout</td>
<td>string</td>
<td>Defines the timeout value for requests to the remote write endpoint.</td>
</tr>
<tr>
<td>sigv4</td>
<td>*monv1.Sigv4</td>
<td>Defines AWS Signature Version 4 authentication settings.</td>
</tr>
</tbody>
</table>
### 13.21. TLSConfig

#### 13.21.1. Description

The **TLSConfig** resource configures the settings for TLS connections.

#### 13.21.2. Required

- **insecureSkipVerify**

Appears in: [AdditionalAlertmanagerConfig](#)

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tlsConfig</code></td>
<td><code>*monv1.SafeTLSConfig</code></td>
<td>Defines TLS authentication settings for the remote write endpoint.</td>
</tr>
<tr>
<td><code>url</code></td>
<td><code>string</code></td>
<td>Defines the URL of the remote write endpoint to which samples will be sent.</td>
</tr>
<tr>
<td><code>writeRelabelConfigs</code></td>
<td><code>[]monv1.RelabelConfig</code></td>
<td>Defines the list of remote write relabel configurations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ca</code></td>
<td><code>*v1.SecretKeySelector</code></td>
<td>Defines the secret key reference containing the Certificate Authority (CA) to use for the remote host.</td>
</tr>
<tr>
<td><code>cert</code></td>
<td><code>*v1.SecretKeySelector</code></td>
<td>Defines the secret key reference containing the public certificate to use for the remote host.</td>
</tr>
<tr>
<td><code>key</code></td>
<td><code>*v1.SecretKeySelector</code></td>
<td>Defines the secret key reference containing the private key to use for the remote host.</td>
</tr>
<tr>
<td><code>serverName</code></td>
<td><code>string</code></td>
<td>Used to verify the hostname on the returned certificate.</td>
</tr>
<tr>
<td><code>insecureSkipVerify</code></td>
<td><code>bool</code></td>
<td>When set to <strong>true</strong>, disables the verification of the remote host’s certificate and name.</td>
</tr>
</tbody>
</table>
13.22.1. Description

**TelemeterClientConfig** defines settings for the Telemeter Client component.

13.22.2. Required

- **nodeSelector**
- **tolerations**

Appears in: **ClusterMonitoringConfiguration**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
</tbody>
</table>

13.23. THANOSQUERIERCONFIG

13.23.1. Description

The **ThanosQuerierConfig** resource defines settings for the Thanos Querier component.

Appears in: **ClusterMonitoringConfiguration**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enableRequestLogging</td>
<td>bool</td>
<td>A Boolean flag that enables or disables request logging. The default value is <code>false</code>.</td>
</tr>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level setting for Thanos Querier. The possible values are <code>error</code>, <code>warn</code>, <code>info</code>, and <code>debug</code>. The default value is <code>info</code>.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the pods are scheduled.</td>
</tr>
<tr>
<td>resources</td>
<td>*v1.ResourceRequirements</td>
<td>Defines resource requests and limits for the Thanos Querier container.</td>
</tr>
<tr>
<td>tolerations</td>
<td>[]v1.Toleration</td>
<td>Defines tolerations for the pods.</td>
</tr>
</tbody>
</table>

13.24. THANOSRULERCONFIG
13.24.1. Description

The **ThanosRulerConfig** resource defines configuration for the Thanos Ruler instance for user-defined projects.

**Appears in:** UserWorkloadConfiguration

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>additionalAlertmanagerConfigs</td>
<td>[]AdditionalAlertmanagerConfig</td>
<td>Configures how the Thanos Ruler component communicates with additional Alertmanager instances. The default value is <code>nil</code>.</td>
</tr>
<tr>
<td>logLevel</td>
<td>string</td>
<td>Defines the log level setting for Thanos Ruler. The possible values are <code>error</code>, <code>warn</code>, <code>info</code>, and <code>debug</code>. The default value is <code>info</code>.</td>
</tr>
<tr>
<td>nodeSelector</td>
<td>map[string]string</td>
<td>Defines the nodes on which the Pods are scheduled.</td>
</tr>
<tr>
<td>resources</td>
<td>*v1.ResourceRequirements</td>
<td>Defines resource requests and limits for the Thanos Ruler container.</td>
</tr>
</tbody>
</table>
| retention                        | string                                       | Defines the duration for which Prometheus retains data. This definition must be specified using the following regular expression pattern: 
                                      | `[0-9]+(ms|m|s|h|d|w|y)` (ms = milliseconds, s = seconds, m = minutes, h = hours, d = days, w = weeks, y = years). The default value is `15d`. |
| tolerations                      | []v1.Toleration                              | Defines tolerations for the pods.                                                                                                           |
| volumeClaimTemplate              | *monv1.EmbeddedPersistentVolumeClaim         | Defines persistent storage for Thanos Ruler. Use this setting to configure the storage class and size of a volume.                          |

13.25. USERWORKLOADCONFIGURATION

13.25.1. Description

The **UserWorkloadConfiguration** resource defines the settings responsible for user-defined projects.
in the `user-workload-monitoring-config` config map in the `openshift-user-workload-monitoring` namespace. You can only enable `UserWorkloadConfiguration` after you have set `enableUserWorkload` to `true` in the `cluster-monitoring-config` config map under the `openshift-monitoring` namespace.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alertmanager</td>
<td>*AlertmanagerUserWorkloadConfig</td>
<td>Defines the settings for the Alertmanager component in user workload monitoring.</td>
</tr>
<tr>
<td>prometheus</td>
<td>*PrometheusRestrictedConfig</td>
<td>Defines the settings for the Prometheus component in user workload monitoring.</td>
</tr>
<tr>
<td>prometheusOperator</td>
<td>*PrometheusOperatorConfig</td>
<td>Defines the settings for the Prometheus Operator component in user workload monitoring.</td>
</tr>
<tr>
<td>thanosRuler</td>
<td>*ThanosRulerConfig</td>
<td>Defines the settings for the Thanos Ruler component in user workload monitoring.</td>
</tr>
</tbody>
</table>
14.1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES

**IMPORTANT**

The Cluster Observability Operator is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

The Cluster Observability Operator (COO) is an optional OpenShift Container Platform Operator that enables administrators to create standalone monitoring stacks that are independently configurable for use by different services and users.

The COO complements the built-in monitoring capabilities of OpenShift Container Platform. You can deploy it in parallel with the default platform and user workload monitoring stacks managed by the Cluster Monitoring Operator (CMO).

These release notes track the development of the Cluster Observability Operator in OpenShift Container Platform.

### 14.1.1. Cluster Observability Operator 0.2.0

The following advisory is available for Cluster Observability Operator 0.2.0:

- RHEA-2024:2662 Cluster Observability Operator 0.2.0

#### 14.1.1.1. New features and enhancements

- With this release, the Cluster Observability Operator supports installing and managing observability-related plugins for the OpenShift Container Platform web console user interface (UI). (COO-58)

### 14.1.2. Cluster Observability Operator 0.1.3

The following advisory is available for Cluster Observability Operator 0.1.3:

- RHEA-2024:1744 Cluster Observability Operator 0.1.3

#### 14.1.2.1. Bug fixes

- Previously, if you tried to access the Prometheus web user interface (UI) at `http://<prometheus_url>:9090/graph`, the following error message would display: **Error opening React index.html: open web/ui/static/react/index.html: no such file or directory.** This release resolves the issue, and the Prometheus web UI now displays correctly. (COO-34)
14.1.3. Cluster Observability Operator 0.1.2

The following advisory is available for Cluster Observability Operator 0.1.2:

- RHEA-2024:1534 Cluster Observability Operator 0.1.2

14.1.3.1. CVEs

- CVE-2023-45142

14.1.3.2. Bug fixes

- Previously, certain cluster service version (CSV) annotations were not included in the metadata for COO. Because of these missing annotations, certain COO features and capabilities did not appear in the package manifest or in the OperatorHub user interface. This release adds the missing annotations, thereby resolving this issue. (COO-11)

- Previously, automatic updates of the COO did not work, and a newer version of the Operator did not automatically replace the older version, even though the newer version was available in OperatorHub. This release resolves the issue. (COO-12)

- Previously, Thanos Querier only listened for network traffic on port 9090 of 127.0.0.1 (localhost), which resulted in a 502 Bad Gateway error if you tried to reach the Thanos Querier service. With this release, the Thanos Querier configuration has been updated so that the component now listens on the default port (10902), thereby resolving the issue. As a result of this change, you can also now modify the port via server side apply (SSA) and add a proxy chain, if required. (COO-14)

14.1.4. Cluster Observability Operator 0.1.1

The following advisory is available for Cluster Observability Operator 0.1.1:

- 2024:0550 Cluster Observability Operator 0.1.1

14.1.4.1. New features and enhancements

This release updates the Cluster Observability Operator to support installing the Operator in restricted networks or disconnected environments.

14.1.5. Cluster Observability Operator 0.1

This release makes a Technology Preview version of the Cluster Observability Operator available on OperatorHub.

14.2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW
The Cluster Observability Operator (COO) is an optional component of the OpenShift Container Platform. You can deploy it to create standalone monitoring stacks that are independently configurable for use by different services and users.

The COO deploys the following monitoring components:

- Prometheus
- Thanos Querier (optional)
- Alertmanager (optional)

The COO components function independently of the default in-cluster monitoring stack, which is deployed and managed by the Cluster Monitoring Operator (CMO). Monitoring stacks deployed by the two Operators do not conflict. You can use a COO monitoring stack in addition to the default platform monitoring components deployed by the CMO.

### 14.2.1. Understanding the Cluster Observability Operator

A default monitoring stack created by the Cluster Observability Operator (COO) includes a highly available Prometheus instance capable of sending metrics to an external endpoint by using remote write.

Each COO stack also includes an optional Thanos Querier component, which you can use to query a highly available Prometheus instance from a central location, and an optional Alertmanager component, which you can use to set up alert configurations for different services.

### 14.2.1. Advantages of using the Cluster Observability Operator

The `MonitoringStack` CRD used by the COO offers an opinionated default monitoring configuration for COO-deployed monitoring components, but you can customize it to suit more complex requirements.

Deploying a COO-managed monitoring stack can help meet monitoring needs that are difficult or impossible to address by using the core platform monitoring stack deployed by the Cluster Monitoring Operator (CMO). A monitoring stack deployed using COO has the following advantages over core platform and user workload monitoring:

**Extendability**

Users can add more metrics to a COO-deployed monitoring stack, which is not possible with core platform monitoring without losing support. In addition, COO-managed stacks can receive certain cluster-specific metrics from core platform monitoring by using federation.

**Multi-tenancy support**

The COO can create a monitoring stack per user namespace. You can also deploy multiple stacks per
namespace or a single stack for multiple namespaces. For example, cluster administrators, SRE teams, and development teams can all deploy their own monitoring stacks on a single cluster, rather than having to use a single shared stack of monitoring components. Users on different teams can then independently configure features such as separate alerts, alert routing, and alert receivers for their applications and services.

Scalability

You can create COO-managed monitoring stacks as needed. Multiple monitoring stacks can run on a single cluster, which can facilitate the monitoring of very large clusters by using manual sharding. This ability addresses cases where the number of metrics exceeds the monitoring capabilities of a single Prometheus instance.

Flexibility

Deploying the COO with Operator Lifecycle Manager (OLM) decouples COO releases from OpenShift Container Platform release cycles. This method of deployment enables faster release iterations and the ability to respond rapidly to changing requirements and issues. Additionally, by deploying a COO-managed monitoring stack, users can manage alerting rules independently of OpenShift Container Platform release cycles.

Highly customizable

The COO can delegate ownership of single configurable fields in custom resources to users by using Server-Side Apply (SSA), which enhances customization.

Additional resources

- Kubernetes documentation for Server-Side Apply (SSA)

14.3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

As a cluster administrator, you can install or remove the Cluster Observability Operator (COO) from OperatorHub by using the OpenShift Container Platform web console. OperatorHub is a user interface that works in conjunction with Operator Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

14.3.1. Installing the Cluster Observability Operator in the web console

Install the Cluster Observability Operator (COO) from OperatorHub by using the OpenShift Container Platform web console.

Prerequisites

- You have access to the cluster as a user with the cluster-admin cluster role.
You have logged in to the OpenShift Container Platform web console.

Procedure

1. In the OpenShift Container Platform web console, click **Operators → OperatorHub**.
2. Type **cluster observability operator** in the **Filter by keyword** box.
3. Click **Cluster Observability Operator** in the list of results.
4. Read the information about the Operator, and review the following default installation settings:
   - **Update channel** → development
   - **Version** → `<most_recent_version>`
   - **Installation mode** → All namespaces on the cluster (default)
   - **Installed Namespace** → openshift-operators
   - **Update approval** → Automatic
5. Optional: Change default installation settings to suit your requirements. For example, you can select to subscribe to a different update channel, to install an older released version of the Operator, or to require manual approval for updates to new versions of the Operator.
6. Click **Install**.

Verification

- Go to **Operators → Installed Operators**, and verify that the **Cluster Observability Operator** entry appears in the list.

Additional resources

**Adding Operators to a cluster**

**14.3.2. Uninstalling the Cluster Observability Operator using the web console**

If you have installed the Cluster Observability Operator (COO) by using OperatorHub, you can uninstall it in the OpenShift Container Platform web console.

Prerequisites

- You have access to the cluster as a user with the **cluster-admin** cluster role.
- You have logged in to the OpenShift Container Platform web console.

Procedure

1. Go to **Operators → Installed Operators**.
2. Locate the **Cluster Observability Operator** entry in the list.
3. Click for this entry and select **Uninstall Operator**.
### 14.4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE

**IMPORTANT**

The Cluster Observability Operator is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see [Technology Preview Features Support Scope](#).

You can monitor metrics for a service by configuring monitoring stacks managed by the Cluster Observability Operator (COO).

To test monitoring a service, follow these steps:

- Deploy a sample service that defines a service endpoint.
- Create a `ServiceMonitor` object that specifies how the service is to be monitored by the COO.
- Create a `MonitoringStack` object to discover the `ServiceMonitor` object.

#### 14.4.1. Deploying a sample service for Cluster Observability Operator

This configuration deploys a sample service named `prometheus-coo-example-app` in the user-defined `ns1-coo` project. The service exposes the custom `version` metric.

**Prerequisites**

- You have access to the cluster as a user with the `cluster-admin` cluster role or as a user with administrative permissions for the namespace.

**Procedure**

1. Create a YAML file named `prometheus-coo-example-app.yaml` that contains the following configuration details for a namespace, deployment, and service:

   ```yaml
 apiVersion: v1
 kind: Namespace
 metadata:
 name: ns1-coo

 apiVersion: apps/v1
 kind: Deployment
 metadata:
   ```
2. Save the file.

3. Apply the configuration to the cluster by running the following command:

   ```
 $ oc apply -f prometheus-coo-example-app.yaml
   ```

4. Verify that the pod is running by running the following command and observing the output:

   ```
 $ oc -n ns1-coo get pod
   ```

   **Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prometheus-coo-example-app-0927545cb7-anskj</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>81m</td>
</tr>
</tbody>
</table>

**14.4.2. Specifying how a service is monitored by Cluster Observability Operator**
To use the metrics exposed by the sample service you created in the “Deploying a sample service for Cluster Observability Operator” section, you must configure monitoring components to scrape metrics from the /metrics endpoint.

You can create this configuration by using a ServiceMonitor object that specifies how the service is to be monitored, or a PodMonitor object that specifies how a pod is to be monitored. The ServiceMonitor object requires a Service object. The PodMonitor object does not, which enables the MonitoringStack object to scrape metrics directly from the metrics endpoint exposed by a pod.

This procedure shows how to create a ServiceMonitor object for a sample service named prometheus-coo-example-app in the ns1-coo namespace.

Prerequisites

- You have access to the cluster as a user with the cluster-admin cluster role or as a user with administrative permissions for the namespace.
- You have installed the Cluster Observability Operator.
- You have deployed the prometheus-coo-example-app sample service in the ns1-coo namespace.

NOTE

The prometheus-coo-example-app sample service does not support TLS authentication.

Procedure

1. Create a YAML file named example-coo-app-service-monitor.yaml that contains the following ServiceMonitor object configuration details:

   ```yaml
 apiVersion: monitoring.rhobs/v1
 kind: ServiceMonitor
 metadata:
 labels:
 k8s-app: prometheus-coo-example-monitor
 name: prometheus-coo-example-monitor
 namespace: ns1-coo
 spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http
 selector:
 matchLabels:
 app: prometheus-coo-example-app

 This configuration defines a ServiceMonitor object that the MonitoringStack object will reference to scrape the metrics data exposed by the prometheus-coo-example-app sample service.

2. Apply the configuration to the cluster by running the following command:

   ```bash
   $ oc apply -f example-app-service-monitor.yaml
   ```
3. Verify that the **ServiceMonitor** resource is created by running the following command and observing the output:

```
$ oc -n ns1-coo get servicemonitors.monitoring.rhobs
```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prometheus-coo-example-monitor</td>
<td>81m</td>
</tr>
</tbody>
</table>

14.4.3. Creating a MonitoringStack object for the Cluster Observability Operator

To scrape the metrics data exposed by the target `prometheus-coo-example-app` service, create a **MonitoringStack** object that references the **ServiceMonitor** object you created in the "Specifying how a service is monitored for Cluster Observability Operator" section. This **MonitoringStack** object can then discover the service and scrape the exposed metrics data from it.

Prerequisites

- You have access to the cluster as a user with the **cluster-admin** cluster role or as a user with administrative permissions for the namespace.
- You have installed the Cluster Observability Operator.
- You have deployed the `prometheus-coo-example-app` sample service in the **ns1-coo** namespace.
- You have created a **ServiceMonitor** object named `prometheus-coo-example-monitor` in the **ns1-coo** namespace.

Procedure

1. Create a YAML file for the **MonitoringStack** object configuration. For this example, name the file `example-coo-monitoring-stack.yaml`.

2. Add the following **MonitoringStack** object configuration details:

 Example MonitoringStack object

   ```yaml
   apiVersion: monitoring.rhobs/v1alpha1
   kind: MonitoringStack
   metadata:
     name: example-coo-monitoring-stack
     namespace: ns1-coo
   spec:
     logLevel: debug
     retention: 1d
     resourceSelector:
       matchLabels:
         k8s-app: prometheus-coo-example-monitor
   ```

3. Apply the **MonitoringStack** object by running the following command:

```
$ oc apply -f example-coo-monitoring-stack.yaml
```
4. Verify that the **MonitoringStack** object is available by running the following command and inspecting the output:

```
$ oc -n ns1-coo get monitoringstack
```

Example output

```
NAME                          AGE
example-coo-monitoring-stack  81m
```