
OpenShift Container Platform 4.13

Hosted control planes

Using hosted control planes with OpenShift Container Platform

Last Updated: 2024-04-16

OpenShift Container Platform 4.13 Hosted control planes

Using hosted control planes with OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for managing hosted control planes for OpenShift Container
Platform. With hosted control planes, you create control planes as pods on a hosting cluster without
the need for dedicated physical or virtual machines for each control plane.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW
1.1. INTRODUCTION TO HOSTED CONTROL PLANES (TECHNOLOGY PREVIEW)

1.1.1. Architecture of hosted control planes
1.1.2. Benefits of hosted control planes

1.2. VERSIONING FOR HOSTED CONTROL PLANES

CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES
2.1. AMAZON WEB SERVICES (AWS)
2.2. BARE METAL
2.3. OPENSHIFT VIRTUALIZATION

CHAPTER 3. MANAGING HOSTED CONTROL PLANES
3.1. UPDATES FOR HOSTED CONTROL PLANES

3.1.1. Updates for the hosted cluster
3.1.2. Updates for node pools

3.1.2.1. Replace updates for node pools
3.1.2.2. In place updates for node pools

3.2. UPDATING NODE POOLS FOR HOSTED CONTROL PLANES
3.3. CONFIGURING NODE POOLS FOR HOSTED CONTROL PLANES
3.4. CONFIGURING NODE TUNING IN A HOSTED CLUSTER
3.5. DEPLOYING THE SR-IOV OPERATOR FOR HOSTED CONTROL PLANES
3.6. DELETING A HOSTED CLUSTER

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES
4.1. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER

4.1.1. Taking a snapshot of etcd on a hosted cluster
4.1.2. Restoring an etcd snapshot on a hosted cluster

4.2. DISASTER RECOVERY FOR A HOSTED CLUSTER WITHIN AN AWS REGION
4.2.1. Example environment and context
4.2.2. Overview of the backup and restore process
4.2.3. Backing up a hosted cluster
4.2.4. Restoring a hosted cluster
4.2.5. Deleting a hosted cluster from your source management cluster
4.2.6. Running a script to back up and restore a hosted cluster

3
3
3
4
5

6
6
6
6

7
7
7
7
7
8
8
8
9

12
13

14
14
14
15
16
17
18
23
28
31

33

Table of Contents

1

OpenShift Container Platform 4.13 Hosted control planes

2

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW
You can deploy OpenShift Container Platform clusters by using two different control plane
configurations: standalone or hosted control planes. The standalone configuration uses dedicated
virtual machines or physical machines to host the control plane. With hosted control planes for
OpenShift Container Platform, you create control planes as pods on a hosting cluster without the need
for dedicated virtual or physical machines for each control plane.

1.1. INTRODUCTION TO HOSTED CONTROL PLANES (TECHNOLOGY
PREVIEW)

You can use hosted control planes for Red Hat OpenShift Container Platform to reduce management
costs, optimize cluster deployment time, and separate management and workload concerns so that you
can focus on your applications.

You can enable hosted control planes as a Technology Preview feature by using the multicluster engine
for Kubernetes operator version 2.0 or later on Amazon Web Services (AWS), bare metal by using the
Agent provider, or OpenShift Virtualization.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.1.1. Architecture of hosted control planes

OpenShift Container Platform is often deployed in a coupled, or standalone, model, where a cluster
consists of a control plane and a data plane. The control plane includes an API endpoint, a storage
endpoint, a workload scheduler, and an actuator that ensures state. The data plane includes compute,
storage, and networking where workloads and applications run.

The standalone control plane is hosted by a dedicated group of nodes, which can be physical or virtual,
with a minimum number to ensure quorum. The network stack is shared. Administrator access to a
cluster offers visibility into the cluster’s control plane, machine management APIs, and other
components that contribute to the state of a cluster.

Although the standalone model works well, some situations require an architecture where the control
plane and data plane are decoupled. In those cases, the data plane is on a separate network domain with
a dedicated physical hosting environment. The control plane is hosted by using high-level primitives
such as deployments and stateful sets that are native to Kubernetes. The control plane is treated as any
other workload.

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW

3

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#cluster_mce_overview
https://access.redhat.com/support/offerings/techpreview/

1.1.2. Benefits of hosted control planes

With hosted control planes for OpenShift Container Platform, you can pave the way for a true hybrid-
cloud approach and enjoy several other benefits.

The security boundaries between management and workloads are stronger because the control
plane is decoupled and hosted on a dedicated hosting service cluster. As a result, you are less
likely to leak credentials for clusters to other users. Because infrastructure secret account
management is also decoupled, cluster infrastructure administrators cannot accidentally delete
control plane infrastructure.

With hosted control planes, you can run many control planes on fewer nodes. As a result,
clusters are more affordable.

Because the control planes consist of pods that are launched on OpenShift Container Platform,
control planes start quickly. The same principles apply to control planes and workloads, such as
monitoring, logging, and auto-scaling.

From an infrastructure perspective, you can push registries, HAProxy, cluster monitoring,
storage nodes, and other infrastructure components to the tenant’s cloud provider account,
isolating usage to the tenant.

From an operational perspective, multicluster management is more centralized, which results in
fewer external factors that affect the cluster status and consistency. Site reliability engineers
have a central place to debug issues and navigate to the cluster data plane, which can lead to
shorter Time to Resolution (TTR) and greater productivity.

OpenShift Container Platform 4.13 Hosted control planes

4

Additional resources

HyperShift add-on (Technology Preview)

Hosted control planes (Technology Preview)

1.2. VERSIONING FOR HOSTED CONTROL PLANES

With each major, minor, or patch version release of OpenShift Container Platform, two components of
hosted control planes are released:

HyperShift Operator

Command-line interface (CLI)

The HyperShift Operator manages the lifecycle of hosted clusters that are represented by
HostedCluster API resources. The HyperShift Operator is released with each OpenShift Container
Platform release. After the HyperShift Operator is installed, it creates a config map called supported-
versions in the HyperShift namespace, as shown in the following example. The config map describes
the HostedCluster versions that can be deployed.

The CLI is a helper utility for development purposes. The CLI is released as part of any HyperShift
Operator release. No compatibility policies are guaranteed.

The API, hypershift.openshift.io, provides a way to create and manage lightweight, flexible,
heterogeneous OpenShift Container Platform clusters at scale. The API exposes two user-facing
resources: HostedCluster and NodePool. A HostedCluster resource encapsulates the control plane
and common data plane configuration. When you create a HostedCluster resource, you have a fully
functional control plane with no attached nodes. A NodePool resource is a scalable set of worker nodes
that is attached to a HostedCluster resource.

The API version policy generally aligns with the policy for Kubernetes API versioning.

 apiVersion: v1
 data:
 supported-versions: '{"versions":["4.13","4.12","4.11"]}'
 kind: ConfigMap
 metadata:
 labels:
 hypershift.openshift.io/supported-versions: "true"
 name: supported-versions
 namespace: hypershift

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW

5

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hypershift-addon-intro
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hosted-control-planes-intro
https://kubernetes.io/docs/reference/using-api/#api-versioning

CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES
To get started with hosted control planes for OpenShift Container Platform, you first configure your
hosted cluster on the provider that you want to use. Then, you complete a few management tasks.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can view the procedures by selecting from one of the following providers:

2.1. AMAZON WEB SERVICES (AWS)

Configuring the hosting cluster on AWS (Technology Preview): The tasks to configure a hosted
cluster on AWS include creating the AWS S3 OIDC secret, creating a routable public zone,
enabling external DNS, enabling AWS PrivateLink, enabling the hosted control planes feature,
and installing the hosted control planes CLI.

Managing hosted control plane clusters on AWS (Technology Preview) : Management tasks
include creating, importing, accessing, or deleting a hosted cluster on AWS.

2.2. BARE METAL

Configuring the hosting cluster on bare metal (Technology Preview) : Configure DNS before you
create a hosted cluster.

Managing hosted control plane clusters on bare metal (Technology Preview) : Create a hosted
cluster, create an InfraEnv resource, add agents, access the hosted cluster, scale the NodePool
object, handle Ingress, enable node auto-scaling, or delete a hosted cluster.

2.3. OPENSHIFT VIRTUALIZATION

Managing hosted control plane clusters on OpenShift Virtualization (Technology Preview) :
Create OpenShift Container Platform clusters with worker nodes that are hosted by KubeVirt
virtual machines.

OpenShift Container Platform 4.13 Hosted control planes

6

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hosting-service-cluster-configure-aws
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hosted-control-planes-manage-aws
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#configuring-hosting-service-cluster-configure-bm
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hosted-control-planes-manage-bm
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hosted-control-planes-manage-kubevirt

CHAPTER 3. MANAGING HOSTED CONTROL PLANES
After you configure your environment for hosted control planes and create a hosted cluster, you can
further manage your clusters and nodes.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.1. UPDATES FOR HOSTED CONTROL PLANES

Updates for hosted control planes involve updating the hosted cluster and the node pools. For a cluster
to remain fully operational during an update process, you must meet the requirements of the
Kubernetes version skew policy while completing the control plane and node updates.

3.1.1. Updates for the hosted cluster

The spec.release value dictates the version of the control plane. The HostedCluster object transmits
the intended spec.release value to the HostedControlPlane.spec.release value and runs the
appropriate Control Plane Operator version.

The hosted control plane manages the rollout of the new version of the control plane components along
with any OpenShift Container Platform components through the new version of the Cluster Version
Operator (CVO).

3.1.2. Updates for node pools

With node pools, you can configure the software that is running in the nodes by exposing the
spec.release and spec.config values. You can start a rolling node pool update in the following ways:

Changing the spec.release or spec.config values.

Changing any platform-specific field, such as the AWS instance type. The result is a set of new
instances with the new type.

Changing the cluster configuration, if the change propagates to the node.

Node pools support replace updates and in-place updates. The nodepool.spec.release value dictates
the version of any particular node pool. A NodePool object completes a replace or an in-place rolling
update according to the .spec.management.upgradeType value.

After you create a node pool, you cannot change the update type. If you want to change the update
type, you must create a node pool and delete the other one.

3.1.2.1. Replace updates for node pools

A replace update creates instances in the new version while it removes old instances from the previous

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

7

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/releases/version-skew-policy/

A replace update creates instances in the new version while it removes old instances from the previous
version. This update type is effective in cloud environments where this level of immutability is cost
effective.

Replace updates do not preserve any manual changes because the node is entirely re-provisioned.

3.1.2.2. In place updates for node pools

An in-place update directly updates the operating systems of the instances. This type is suitable for
environments where the infrastructure constraints are higher, such as bare metal.

In-place updates can preserve manual changes, but will report errors if you make manual changes to any
file system or operating system configuration that the cluster directly manages, such as kubelet
certificates.

3.2. UPDATING NODE POOLS FOR HOSTED CONTROL PLANES

On hosted control planes, you update your version of OpenShift Container Platform by updating the
node pools. The node pool version must not surpass the hosted control plane version.

Procedure

To start the process to update to a new version of OpenShift Container Platform, change the
spec.release.image value of the node pool by entering the following command:

Verification

To verify that the new version was rolled out, check the .status.version value and the status
conditions.

3.3. CONFIGURING NODE POOLS FOR HOSTED CONTROL PLANES

On hosted control planes, you can configure node pools by creating a MachineConfig object inside of a
config map in the management cluster.

Procedure

1. To create a MachineConfig object inside of a config map in the management cluster, enter the
following information:

$ oc -n NAMESPACE patch HC HCNAME --patch '{"spec":{"release":{"image": "example"}}}'
--type=merge

apiVersion: v1
kind: ConfigMap
metadata:
 name: <configmap-name>
 namespace: clusters
data:
 config: |
 apiVersion: machineconfiguration.openshift.io/v1
 kind: MachineConfig
 metadata:
 labels:

OpenShift Container Platform 4.13 Hosted control planes

8

1 Sets the path on the node where the MachineConfig object is stored.

2. After you add the object to the config map, you can apply the config map to the node pool as
follows:

3.4. CONFIGURING NODE TUNING IN A HOSTED CLUSTER

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

To set node-level tuning on the nodes in your hosted cluster, you can use the Node Tuning Operator. In
hosted control planes, you can configure node tuning by creating config maps that contain Tuned
objects and referencing those config maps in your node pools.

Procedure

1. Create a config map that contains a valid tuned manifest, and reference the manifest in a node
pool. In the following example, a Tuned manifest defines a profile that sets vm.dirty_ratio to 55
on nodes that contain the tuned-1-node-label node label with any value. Save the following
ConfigMap manifest in a file named tuned-1.yaml:

 machineconfiguration.openshift.io/role: worker
 name: <machineconfig-name>
 spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:...
 mode: 420
 overwrite: true
 path: ${PATH} 1

spec:
 config:
 - name: ${CONFIGMAP_NAME}

 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: tuned-1
 namespace: clusters
 data:

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

9

https://access.redhat.com/support/offerings/techpreview/

NOTE

If you do not add any labels to an entry in the spec.recommend section of the
Tuned spec, node-pool-based matching is assumed, so the highest priority
profile in the spec.recommend section is applied to nodes in the pool. Although
you can achieve more fine-grained node-label-based matching by setting a label
value in the Tuned .spec.recommend.match section, node labels will not persist
during an upgrade unless you set the .spec.management.upgradeType value of
the node pool to InPlace.

2. Create the ConfigMap object in the management cluster:

3. Reference the ConfigMap object in the spec.tuningConfig field of the node pool, either by
editing a node pool or creating one. In this example, assume that you have only one NodePool,
named nodepool-1, which contains 2 nodes.

NOTE

 tuning: |
 apiVersion: tuned.openshift.io/v1
 kind: Tuned
 metadata:
 name: tuned-1
 namespace: openshift-cluster-node-tuning-operator
 spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift profile
 include=openshift-node
 [sysctl]
 vm.dirty_ratio="55"
 name: tuned-1-profile
 recommend:
 - priority: 20
 profile: tuned-1-profile

$ oc --kubeconfig="$MGMT_KUBECONFIG" create -f tuned-1.yaml

 apiVersion: hypershift.openshift.io/v1alpha1
 kind: NodePool
 metadata:
 ...
 name: nodepool-1
 namespace: clusters
 ...
 spec:
 ...
 tuningConfig:
 - name: tuned-1
 status:
 ...

OpenShift Container Platform 4.13 Hosted control planes

10

NOTE

You can reference the same config map in multiple node pools. In hosted control
planes, the Node Tuning Operator appends a hash of the node pool name and
namespace to the name of the Tuned CRs to distinguish them. Outside of this
case, do not create multiple TuneD profiles of the same name in different Tuned
CRs for the same hosted cluster.

Verification

Now that you have created the ConfigMap object that contains a Tuned manifest and referenced it in a
NodePool, the Node Tuning Operator syncs the Tuned objects into the hosted cluster. You can verify
which Tuned objects are defined and which TuneD profiles are applied to each node.

1. List the Tuned objects in the hosted cluster:

Example output

2. List the Profile objects in the hosted cluster:

Example output

NOTE

If no custom profiles are created, the openshift-node profile is applied by
default.

3. To confirm that the tuning was applied correctly, start a debug shell on a node and check the
sysctl values:

Example output

$ oc --kubeconfig="$HC_KUBECONFIG" get tuned.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

NAME AGE
default 7m36s
rendered 7m36s
tuned-1 65s

$ oc --kubeconfig="$HC_KUBECONFIG" get profile.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

NAME TUNED APPLIED DEGRADED AGE
nodepool-1-worker-1 tuned-1-profile True False 7m43s
nodepool-1-worker-2 tuned-1-profile True False 7m14s

$ oc --kubeconfig="$HC_KUBECONFIG" debug node/nodepool-1-worker-1 -- chroot /host
sysctl vm.dirty_ratio

vm.dirty_ratio = 55

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

11

3.5. DEPLOYING THE SR-IOV OPERATOR FOR HOSTED CONTROL
PLANES

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

After you configure and deploy your hosting service cluster, you can create a subscription to the SR-IOV
Operator on a hosted cluster. The SR-IOV pod runs on worker machines rather than the control plane.

Prerequisites

You must configure and deploy the hosted cluster on AWS. For more information, see Configuring the
hosting cluster on AWS (Technology Preview).

Procedure

1. Create a namespace and an Operator group:

2. Create a subscription to the SR-IOV Operator:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subsription
 namespace: openshift-sriov-network-operator
spec:
 channel: "4.13"
 name: sriov-network-operator
 config:
 nodeSelector:

OpenShift Container Platform 4.13 Hosted control planes

12

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hosting-service-cluster-configure-aws

Verification

1. To verify that the SR-IOV Operator is ready, run the following command and view the resulting
output:

Example output

2. To verify that the SR-IOV pods are deployed, run the following command:

3.6. DELETING A HOSTED CLUSTER

The steps to delete a hosted cluster differ depending on which provider you use.

Procedure

If the cluster is on AWS, follow the instructions in Destroying a hosted cluster on AWS .

If the cluster is on bare metal, follow the instructions in Destroying a hosted cluster on bare
metal.

If the cluster is on OpenShift Virtualization, follow the instructions in Destroying a hosted
cluster on OpenShift Virtualization.

Next steps

If you want to disable the hosted control plane feature, see Disabling the hosted control plane feature .

 node-role.kubernetes.io/worker: ""
 source: s/qe-app-registry/redhat-operators
 sourceNamespace: openshift-marketplace

$ oc get csv -n openshift-sriov-network-operator

NAME DISPLAY VERSION REPLACES
PHASE
sriov-network-operator.4.13.0-202211021237 SR-IOV Network Operator 4.13.0-
202211021237 sriov-network-operator.4.13.0-202210290517 Succeeded

$ oc get pods -n openshift-sriov-network-operator

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

13

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hypershift-cluster-destroy-aws
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hypershift-cluster-destroy-bm
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#hypershift-cluster-destroy-kubevirt
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#disable-hosted-control-planes

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY
FOR HOSTED CONTROL PLANES

If you need to back up and restore etcd on a hosted cluster or provide disaster recovery for a hosted
cluster, see the following procedures.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

4.1. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER

If you use hosted control planes on OpenShift Container Platform, the process to back up and restore
etcd is different from the usual etcd backup process.

4.1.1. Taking a snapshot of etcd on a hosted cluster

As part of the process to back up etcd for a hosted cluster, you take a snapshot of etcd. After you take
the snapshot, you can restore it, for example, as part of a disaster recovery operation.

IMPORTANT

This procedure requires API downtime.

Procedure

1. Pause reconciliation of the hosted cluster by entering this command:

2. Stop all etcd-writer deployments by entering this command:

3. Take an etcd snapshot by using the exec command in each etcd container:

4. Copy the snapshot data to a location where you can retrieve it later, such as an S3 bucket, as

$ oc patch -n clusters hostedclusters/${CLUSTER_NAME} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge

$ oc scale deployment -n ${HOSTED_CLUSTER_NAMESPACE} --replicas=0 kube-
apiserver openshift-apiserver openshift-oauth-apiserver

$ oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- env ETCDCTL_API=3
/usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert /etc/etcd/tls/client/etcd-
client.crt --key /etc/etcd/tls/client/etcd-client.key --endpoints=localhost:2379 snapshot save
/var/lib/data/snapshot.db
$ oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- env ETCDCTL_API=3
/usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db

OpenShift Container Platform 4.13 Hosted control planes

14

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd

4. Copy the snapshot data to a location where you can retrieve it later, such as an S3 bucket, as
shown in the following example.

NOTE

The following example uses signature version 2. If you are in a region that
supports signature version 4, such as the us-east-2 region, use signature version
4. Otherwise, if you use signature version 2 to copy the snapshot to an S3 bucket,
the upload fails and signature version 2 is deprecated.

Example

5. If you want to be able to restore the snapshot on a new cluster later, save the encryption secret
that the hosted cluster references, as shown in this example:

Example

Next steps

Restore the etcd snapshot.

4.1.2. Restoring an etcd snapshot on a hosted cluster

If you have a snapshot of etcd from your hosted cluster, you can restore it. Currently, you can restore an
etcd snapshot only during cluster creation.

To restore an etcd snapshot, you modify the output from the create cluster --render command and
define a restoreSnapshotURL value in the etcd section of the HostedCluster specification.

Prerequisites

BUCKET_NAME=somebucket
FILEPATH="/${BUCKET_NAME}/${CLUSTER_NAME}-snapshot.db"
CONTENT_TYPE="application/x-compressed-tar"
DATE_VALUE=`date -R`
SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"
ACCESS_KEY=accesskey
SECRET_KEY=secret
SIGNATURE_HASH=`echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac
${SECRET_KEY} -binary | base64`

oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- curl -X PUT -T
"/var/lib/data/snapshot.db" \
 -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
 -H "Date: ${DATE_VALUE}" \
 -H "Content-Type: ${CONTENT_TYPE}" \
 -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
 https://${BUCKET_NAME}.s3.amazonaws.com/${CLUSTER_NAME}-snapshot.db

oc get hostedcluster $CLUSTER_NAME -o=jsonpath='{.spec.secretEncryption.aescbc}'
{"activeKey":{"name":"CLUSTER_NAME-etcd-encryption-key"}}

Save this secret, or the key it contains so the etcd data can later be decrypted
oc get secret ${CLUSTER_NAME}-etcd-encryption-key -o=jsonpath='{.data.key}'

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

15

You took an etcd snapshot on a hosted cluster.

Procedure

1. On the aws command-line interface (CLI), create a pre-signed URL so that you can download
your etcd snapshot from S3 without passing credentials to the etcd deployment:

2. Modify the HostedCluster specification to refer to the URL:

3. Ensure that the secret that you referenced from the spec.secretEncryption.aescbc value
contains the same AES key that you saved in the previous steps.

4.2. DISASTER RECOVERY FOR A HOSTED CLUSTER WITHIN AN AWS
REGION

In a situation where you need disaster recovery (DR) for a hosted cluster, you can recover a hosted
cluster to the same region within AWS. For example, you need DR when the upgrade of a management
cluster fails and the hosted cluster is in a read-only state.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The DR process involves three main steps:

1. Backing up the hosted cluster on the source management cluster

2. Restoring the hosted cluster on a destination management cluster

3. Deleting the hosted cluster from the source management cluster

Your workloads remain running during the process. The Cluster API might be unavailable for a period,

ETCD_SNAPSHOT=${ETCD_SNAPSHOT:-"s3://${BUCKET_NAME}/${CLUSTER_NAME}-
snapshot.db"}
ETCD_SNAPSHOT_URL=$(aws s3 presign ${ETCD_SNAPSHOT})

spec:
 etcd:
 managed:
 storage:
 persistentVolume:
 size: 4Gi
 type: PersistentVolume
 restoreSnapshotURL:
 - "${ETCD_SNAPSHOT_URL}"
 managementType: Managed

OpenShift Container Platform 4.13 Hosted control planes

16

https://access.redhat.com/support/offerings/techpreview/

Your workloads remain running during the process. The Cluster API might be unavailable for a period,
but that will not affect the services that are running on the worker nodes.

IMPORTANT

Both the source management cluster and the destination management cluster must
have the --external-dns flags to maintain the API server URL, as shown in this example:

Example: External DNS flags

That way, the server URL ends with https://api-sample-hosted.sample-
hosted.aws.openshift.com.

If you do not include the --external-dns flags to maintain the API server URL, the hosted
cluster cannot be migrated.

4.2.1. Example environment and context

Consider an scenario where you have three clusters to restore. Two are management clusters, and one is
a hosted cluster. You can restore either the control plane only or the control plane and the nodes. Before
you begin, you need the following information:

Source MGMT Namespace: The source management namespace

Source MGMT ClusterName: The source management cluster name

Source MGMT Kubeconfig: The source management kubeconfig file

Destination MGMT Kubeconfig: The destination management kubeconfig file

HC Kubeconfig: The hosted cluster kubeconfig file

SSH key file: The SSH public key

Pull secret: The pull secret file to access the release images

AWS credentials

AWS region

Base domain: The DNS base domain to use as an external DNS

S3 bucket name: The bucket in the AWS region where you plan to upload the etcd backup

This information is shown in the following example environment variables.

Example environment variables

--external-dns-provider=aws \
--external-dns-credentials=<AWS Credentials location> \
--external-dns-domain-filter=<DNS Base Domain>

SSH_KEY_FILE=${HOME}/.ssh/id_rsa.pub
BASE_PATH=${HOME}/hypershift
BASE_DOMAIN="aws.sample.com"
PULL_SECRET_FILE="${HOME}/pull_secret.json"

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

17

https://api-sample-hosted.sample-hosted.aws.openshift.com

4.2.2. Overview of the backup and restore process

The backup and restore process works as follows:

1. On management cluster 1, which you can think of as the source management cluster, the control
plane and workers interact by using the external DNS API. The external DNS API is accessible,
and a load balancer sits between the management clusters.

AWS_CREDS="${HOME}/.aws/credentials"
AWS_ZONE_ID="Z02718293M33QHDEQBROL"

CONTROL_PLANE_AVAILABILITY_POLICY=SingleReplica
HYPERSHIFT_PATH=${BASE_PATH}/src/hypershift
HYPERSHIFT_CLI=${HYPERSHIFT_PATH}/bin/hypershift
HYPERSHIFT_IMAGE=${HYPERSHIFT_IMAGE:-"quay.io/${USER}/hypershift:latest"}
NODE_POOL_REPLICAS=${NODE_POOL_REPLICAS:-2}

MGMT Context
MGMT_REGION=us-west-1
MGMT_CLUSTER_NAME="${USER}-dev"
MGMT_CLUSTER_NS=${USER}
MGMT_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT_CLUSTER_NS}-
${MGMT_CLUSTER_NAME}"
MGMT_KUBECONFIG="${MGMT_CLUSTER_DIR}/kubeconfig"

MGMT2 Context
MGMT2_CLUSTER_NAME="${USER}-dest"
MGMT2_CLUSTER_NS=${USER}
MGMT2_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT2_CLUSTER_NS}-
${MGMT2_CLUSTER_NAME}"
MGMT2_KUBECONFIG="${MGMT2_CLUSTER_DIR}/kubeconfig"

Hosted Cluster Context
HC_CLUSTER_NS=clusters
HC_REGION=us-west-1
HC_CLUSTER_NAME="${USER}-hosted"
HC_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}"
HC_KUBECONFIG="${HC_CLUSTER_DIR}/kubeconfig"
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

BUCKET_NAME="${USER}-hosted-${MGMT_REGION}"

DNS
AWS_ZONE_ID="Z07342811SH9AA102K1AC"
EXTERNAL_DNS_DOMAIN="hc.jpdv.aws.kerbeross.com"

OpenShift Container Platform 4.13 Hosted control planes

18

2. You take a snapshot of the hosted cluster, which includes etcd, the control plane, and the
worker nodes. During this process, the worker nodes continue to try to access the external DNS
API even if it is not accessible, the workloads are running, the control plane is saved in a local
manifest file, and etcd is backed up to an S3 bucket. The data plane is active and the control
plane is paused.

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

19

3. On management cluster 2, which you can think of as the destination management cluster, you
restore etcd from the S3 bucket and restore the control plane from the local manifest file.
During this process, the external DNS API is stopped, the hosted cluster API becomes
inaccessible, and any workers that use the API are unable to update their manifest files, but the
workloads are still running.

OpenShift Container Platform 4.13 Hosted control planes

20

4. The external DNS API is accessible again, and the worker nodes use it to move to management
cluster 2. The external DNS API can access the load balancer that points to the control plane.

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

21

5. On management cluster 2, the control plane and worker nodes interact by using the external
DNS API. The resources are deleted from management cluster 1, except for the S3 backup of
etcd. If you try to set up the hosted cluster again on mangagement cluster 1, it will not work.

OpenShift Container Platform 4.13 Hosted control planes

22

You can manually back up and restore your hosted cluster, or you can run a script to complete the
process. For more information about the script, see "Running a script to back up and restore a hosted
cluster".

4.2.3. Backing up a hosted cluster

To recover your hosted cluster in your target management cluster, you first need to back up all of the
relevant data.

Procedure

1. Create a configmap file to declare the source management cluster by entering this command:

2. Shut down the reconciliation in the hosted cluster and in the node pools by entering these
commands:

$ oc create configmap mgmt-parent-cluster -n default --from-
literal=from=${MGMT_CLUSTER_NAME}

PAUSED_UNTIL="true"
oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-
apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

23

3. Back up etcd and upload the data to an S3 bucket by running this bash script:

TIP

Wrap this script in a function and call it from the main function.

PAUSED_UNTIL="true"
oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
oc patch -n ${HC_CLUSTER_NS} nodepools/${NODEPOOLS} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-
apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator

ETCD Backup
ETCD_PODS="etcd-0"
if ["${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable"]; then
 ETCD_PODS="etcd-0 etcd-1 etcd-2"
fi

for POD in ${ETCD_PODS}; do
 # Create an etcd snapshot
 oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env
ETCDCTL_API=3 /usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert
/etc/etcd/tls/client/etcd-client.crt --key /etc/etcd/tls/client/etcd-client.key --
endpoints=localhost:2379 snapshot save /var/lib/data/snapshot.db
 oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env
ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db

 FILEPATH="/${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-snapshot.db"
 CONTENT_TYPE="application/x-compressed-tar"
 DATE_VALUE=`date -R`
 SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"

 set +x
 ACCESS_KEY=$(grep aws_access_key_id ${AWS_CREDS} | head -n1 | cut -d= -f2 | sed
"s/ //g")
 SECRET_KEY=$(grep aws_secret_access_key ${AWS_CREDS} | head -n1 | cut -d= -f2 |
sed "s/ //g")
 SIGNATURE_HASH=$(echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac
"${SECRET_KEY}" -binary | base64)
 set -x

 # FIXME: this is pushing to the OIDC bucket
 oc exec -it etcd-0 -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- curl -X PUT -T
"/var/lib/data/snapshot.db" \
 -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
 -H "Date: ${DATE_VALUE}" \
 -H "Content-Type: ${CONTENT_TYPE}" \
 -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
 https://${BUCKET_NAME}.s3.amazonaws.com/${HC_CLUSTER_NAME}-${POD}-
snapshot.db
done

OpenShift Container Platform 4.13 Hosted control planes

24

For more information about backing up etcd, see "Backing up and restoring etcd on a hosted
cluster".

4. Back up Kubernetes and OpenShift Container Platform objects by entering the following
commands. You need to back up the following objects:

HostedCluster and NodePool objects from the HostedCluster namespace

HostedCluster secrets from the HostedCluster namespace

HostedControlPlane from the Hosted Control Plane namespace

Cluster from the Hosted Control Plane namespace

AWSCluster, AWSMachineTemplate, and AWSMachine from the Hosted Control Plane
namespace

MachineDeployments, MachineSets, and Machines from the Hosted Control Plane
namespace

ControlPlane secrets from the Hosted Control Plane namespace

mkdir -p ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
chmod 700 ${BACKUP_DIR}/namespaces/

HostedCluster
echo "Backing Up HostedCluster Objects:"
oc get hc ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
echo "--> HostedCluster"
sed -i '' -e '/^status:$/,$d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}.yaml

NodePool
oc get np ${NODEPOOLS} -n ${HC_CLUSTER_NS} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-${NODEPOOLS}.yaml
echo "--> NodePool"
sed -i '' -e '/^status:$/,$ d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-
${NODEPOOLS}.yaml

Secrets in the HC Namespace
echo "--> HostedCluster Secrets:"
for s in $(oc get secret -n ${HC_CLUSTER_NS} | grep "^${HC_CLUSTER_NAME}" |
awk '{print $1}'); do
 oc get secret -n ${HC_CLUSTER_NS} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-${s}.yaml
done

Secrets in the HC Control Plane Namespace
echo "--> HostedCluster ControlPlane Secrets:"
for s in $(oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} | egrep -v
"docker|service-account-token|oauth-openshift|NAME|token-${HC_CLUSTER_NAME}" |
awk '{print $1}'); do
 oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/secret-
${s}.yaml

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

25

done

Hosted Control Plane
echo "--> HostedControlPlane:"
oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
-o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/hcp-${HC_CLUSTER_NAME}.yaml

Cluster
echo "--> Cluster:"
CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.*} | grep
${HC_CLUSTER_NAME})
oc get cluster ${CL_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml
> ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/cl-
${HC_CLUSTER_NAME}.yaml

AWS Cluster
echo "--> AWS Cluster:"
oc get awscluster ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awscl-
${HC_CLUSTER_NAME}.yaml

AWS MachineTemplate
echo "--> AWS Machine Template:"
oc get awsmachinetemplate ${NODEPOOLS} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsmt-
${HC_CLUSTER_NAME}.yaml

AWS Machines
echo "--> AWS Machine:"
CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.*} | grep
${HC_CLUSTER_NAME})
for s in $(oc get awsmachines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --no-
headers | grep ${CL_NAME} | cut -f1 -d\); do
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} awsmachines $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsm-
${s}.yaml
done

MachineDeployments
echo "--> HostedCluster MachineDeployments:"
for s in $(oc get machinedeployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
-o name); do
 mdp_name=$(echo ${s} | cut -f 2 -d /)
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machinedeployment-${mdp_name}.yaml
done

MachineSets
echo "--> HostedCluster MachineSets:"
for s in $(oc get machineset -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o

OpenShift Container Platform 4.13 Hosted control planes

26

5. Clean up the ControlPlane routes by entering this command:

By entering that command, you enable the ExternalDNS Operator to delete the Route53
entries.

6. Verify that the Route53 entries are clean by running this script:

name); do
 ms_name=$(echo ${s} | cut -f 2 -d /)
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machineset-${ms_name}.yaml
done

Machines
echo "--> HostedCluster Machine:"
for s in $(oc get machine -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name);
do
 m_name=$(echo ${s} | cut -f 2 -d /)
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machine-${m_name}.yaml
done

$ oc delete routes -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all

function clean_routes() {

 if [[-z "${1}"]];then
 echo "Give me the NS where to clean the routes"
 exit 1
 fi

 # Constants
 if [[-z "${2}"]];then
 echo "Give me the Route53 zone ID"
 exit 1
 fi

 ZONE_ID=${2}
 ROUTES=10
 timeout=40
 count=0

 # This allows us to remove the ownership in the AWS for the API route
 oc delete route -n ${1} --all

 while [${ROUTES} -gt 2]
 do
 echo "Waiting for ExternalDNS Operator to clean the DNS Records in AWS Route53
where the zone id is: ${ZONE_ID}..."
 echo "Try: (${count}/${timeout})"
 sleep 10
 if [[$count -eq timeout]];then
 echo "Timeout waiting for cleaning the Route53 DNS records"
 exit 1

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

27

Verification

Check all of the OpenShift Container Platform objects and the S3 bucket to verify that everything looks
as expected.

Next steps

Restore your hosted cluster.

4.2.4. Restoring a hosted cluster

Gather all of the objects that you backed up and restore them in your destination management cluster.

Prerequisites

You backed up the data from your source management cluster.

TIP

Ensure that the kubeconfig file of the destination management cluster is placed as it is set in the
KUBECONFIG variable or, if you use the script, in the MGMT2_KUBECONFIG variable. Use export
KUBECONFIG=<Kubeconfig FilePath> or, if you use the script, use export
KUBECONFIG=${MGMT2_KUBECONFIG}.

Procedure

1. Verify that the new management cluster does not contain any namespaces from the cluster that
you are restoring by entering these commands:

2. Re-create the deleted namespaces by entering these commands:

3. Restore the secrets in the HC namespace by entering this command:

 fi
 count=$((count+1))
 ROUTES=$(aws route53 list-resource-record-sets --hosted-zone-id ${ZONE_ID} --max-
items 10000 --output json | grep -c ${EXTERNAL_DNS_DOMAIN})
 done
}

SAMPLE: clean_routes "<HC ControlPlane Namespace>" "<AWS_ZONE_ID>"
clean_routes "${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}" "${AWS_ZONE_ID}"

Just in case
export KUBECONFIG=${MGMT2_KUBECONFIG}
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

Namespace deletion in the destination Management cluster
$ oc delete ns ${HC_CLUSTER_NS} || true
$ oc delete ns ${HC_CLUSTER_NS}-{HC_CLUSTER_NAME} || true

Namespace creation
$ oc new-project ${HC_CLUSTER_NS}
$ oc new-project ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}

OpenShift Container Platform 4.13 Hosted control planes

28

4. Restore the objects in the HostedCluster control plane namespace by entering these
commands:

5. If you are recovering the nodes and the node pool to reuse AWS instances, restore the objects
in the HC control plane namespace by entering these commands:

6. Restore the etcd data and the hosted cluster by running this bash script:

$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-*

Secrets
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/secret-*

Cluster
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/hcp-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/cl-*

AWS
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/awscl-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/awsmt-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/awsm-*

Machines
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machinedeployment-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machineset-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machine-*

ETCD_PODS="etcd-0"
if ["${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable"]; then
 ETCD_PODS="etcd-0 etcd-1 etcd-2"
fi

HC_RESTORE_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}-restore.yaml
HC_BACKUP_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}.yaml
HC_NEW_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}-new.yaml
cat ${HC_BACKUP_FILE} > ${HC_NEW_FILE}
cat > ${HC_RESTORE_FILE} <<EOF
 restoreSnapshotURL:
EOF

for POD in ${ETCD_PODS}; do
 # Create a pre-signed URL for the etcd snapshot
 ETCD_SNAPSHOT="s3://${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

29

7. If you are recovering the nodes and the node pool to reuse AWS instances, restore the node
pool by entering this command:

Verification

To verify that the nodes are fully restored, use this function:

snapshot.db"
 ETCD_SNAPSHOT_URL=$(AWS_DEFAULT_REGION=${MGMT2_REGION} aws s3
presign ${ETCD_SNAPSHOT})

 # FIXME no CLI support for restoreSnapshotURL yet
 cat >> ${HC_RESTORE_FILE} <<EOF
 - "${ETCD_SNAPSHOT_URL}"
EOF
done

cat ${HC_RESTORE_FILE}

if ! grep ${HC_CLUSTER_NAME}-snapshot.db ${HC_NEW_FILE}; then
 sed -i '' -e "/type: PersistentVolume/r ${HC_RESTORE_FILE}" ${HC_NEW_FILE}
 sed -i '' -e '/pausedUntil:/d' ${HC_NEW_FILE}
fi

HC=$(oc get hc -n ${HC_CLUSTER_NS} ${HC_CLUSTER_NAME} -o name || true)
if [[${HC} == ""]];then
 echo "Deploying HC Cluster: ${HC_CLUSTER_NAME} in ${HC_CLUSTER_NS}
namespace"
 oc apply -f ${HC_NEW_FILE}
else
 echo "HC Cluster ${HC_CLUSTER_NAME} already exists, avoiding step"
fi

oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-*

timeout=40
count=0
NODE_STATUS=$(oc get nodes --kubeconfig=${HC_KUBECONFIG} | grep -v NotReady |
grep -c "worker") || NODE_STATUS=0

while [${NODE_POOL_REPLICAS} != ${NODE_STATUS}]
do
 echo "Waiting for Nodes to be Ready in the destination MGMT Cluster:
${MGMT2_CLUSTER_NAME}"
 echo "Try: (${count}/${timeout})"
 sleep 30
 if [[$count -eq timeout]];then
 echo "Timeout waiting for Nodes in the destination MGMT Cluster"
 exit 1
 fi
 count=$((count+1))
 NODE_STATUS=$(oc get nodes --kubeconfig=${HC_KUBECONFIG} | grep -v NotReady |
grep -c "worker") || NODE_STATUS=0
done

OpenShift Container Platform 4.13 Hosted control planes

30

Next steps

Shut down and delete your cluster.

4.2.5. Deleting a hosted cluster from your source management cluster

After you back up your hosted cluster and restore it to your destination management cluster, you shut
down and delete the hosted cluster on your source management cluster.

Prerequisites

You backed up your data and restored it to your source management cluster.

TIP

Ensure that the kubeconfig file of the destination management cluster is placed as it is set in the
KUBECONFIG variable or, if you use the script, in the MGMT_KUBECONFIG variable. Use export
KUBECONFIG=<Kubeconfig FilePath> or, if you use the script, use export
KUBECONFIG=${MGMT_KUBECONFIG}.

Procedure

1. Scale the deployment and statefulset objects by entering these commands:

2. Delete the NodePool objects by entering these commands:

3. Delete the machine and machineset objects by entering these commands:

4. Delete the cluster object by entering these commands:

Just in case
export KUBECONFIG=${MGMT_KUBECONFIG}

Scale down deployments
oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 --all
oc scale statefulset.apps -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 --
all
sleep 15

NODEPOOLS=$(oc get nodepools -n ${HC_CLUSTER_NS} -o=jsonpath='{.items[?
(@.spec.clusterName=="'${HC_CLUSTER_NAME}'")].metadata.name}')
if [[! -z "${NODEPOOLS}"]];then
 oc patch -n "${HC_CLUSTER_NS}" nodepool ${NODEPOOLS} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]'
 oc delete np -n ${HC_CLUSTER_NS} ${NODEPOOLS}
fi

Machines
for m in $(oc get machines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
 oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]' || true
 oc delete -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} || true
done

oc delete machineset -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all || true

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

31

5. Delete the AWS machines (Kubernetes objects) by entering these commands. Do not worry
about deleting the real AWS machines. The cloud instances will not be affected.

6. Delete the HostedControlPlane and ControlPlane HC namespace objects by entering these
commands:

7. Delete the HostedCluster and HC namespace objects by entering these commands:

Verification

To verify that everything works, enter these commands:

Cluster
C_NAME=$(oc get cluster -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name)
oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${C_NAME} --type=json --
patch='[{ "op":"remove", "path": "/metadata/finalizers" }]'
oc delete cluster.cluster.x-k8s.io -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all

AWS Machines
for m in $(oc get awsmachine.infrastructure.cluster.x-k8s.io -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o name)
do
 oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]' || true
 oc delete -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} || true
done

Delete HCP and ControlPlane HC NS
oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
hostedcontrolplane.hypershift.openshift.io ${HC_CLUSTER_NAME} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]'
oc delete hostedcontrolplane.hypershift.openshift.io -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} --all
oc delete ns ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} || true

Delete HC and HC Namespace
oc -n ${HC_CLUSTER_NS} patch hostedclusters ${HC_CLUSTER_NAME} -p '{"metadata":
{"finalizers":null}}' --type merge || true
oc delete hc -n ${HC_CLUSTER_NS} ${HC_CLUSTER_NAME} || true
oc delete ns ${HC_CLUSTER_NS} || true

Validations
export KUBECONFIG=${MGMT2_KUBECONFIG}

oc get hc -n ${HC_CLUSTER_NS}
oc get np -n ${HC_CLUSTER_NS}
oc get pod -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
oc get machines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}

Inside the HostedCluster
export KUBECONFIG=${HC_KUBECONFIG}
oc get clusterversion
oc get nodes

OpenShift Container Platform 4.13 Hosted control planes

32

Next steps

Delete the OVN pods in the hosted cluster so that you can connect to the new OVN control plane that
runs in the new management cluster:

1. Load the KUBECONFIG environment variable with the hosted cluster’s kubeconfig path.

2. Enter this command:

4.2.6. Running a script to back up and restore a hosted cluster

To expedite the process to back up a hosted cluster and restore it within the same region on AWS, you
can modify and run a script.

Procedure

1. Replace the variables in the following script with your information:

$ oc delete pod -n openshift-ovn-kubernetes --all

Fill the Common variables to fit your environment, this is just a sample
SSH_KEY_FILE=${HOME}/.ssh/id_rsa.pub
BASE_PATH=${HOME}/hypershift
BASE_DOMAIN="aws.sample.com"
PULL_SECRET_FILE="${HOME}/pull_secret.json"
AWS_CREDS="${HOME}/.aws/credentials"
CONTROL_PLANE_AVAILABILITY_POLICY=SingleReplica
HYPERSHIFT_PATH=${BASE_PATH}/src/hypershift
HYPERSHIFT_CLI=${HYPERSHIFT_PATH}/bin/hypershift
HYPERSHIFT_IMAGE=${HYPERSHIFT_IMAGE:-"quay.io/${USER}/hypershift:latest"}
NODE_POOL_REPLICAS=${NODE_POOL_REPLICAS:-2}

MGMT Context
MGMT_REGION=us-west-1
MGMT_CLUSTER_NAME="${USER}-dev"
MGMT_CLUSTER_NS=${USER}
MGMT_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT_CLUSTER_NS}-
${MGMT_CLUSTER_NAME}"
MGMT_KUBECONFIG="${MGMT_CLUSTER_DIR}/kubeconfig"

MGMT2 Context
MGMT2_CLUSTER_NAME="${USER}-dest"
MGMT2_CLUSTER_NS=${USER}
MGMT2_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT2_CLUSTER_NS}-
${MGMT2_CLUSTER_NAME}"
MGMT2_KUBECONFIG="${MGMT2_CLUSTER_DIR}/kubeconfig"

Hosted Cluster Context
HC_CLUSTER_NS=clusters
HC_REGION=us-west-1
HC_CLUSTER_NAME="${USER}-hosted"
HC_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}"
HC_KUBECONFIG="${HC_CLUSTER_DIR}/kubeconfig"
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

33

2. Save the script to your local file system.

3. Run the script by entering the following command:

where: env_file is the name of the file where you saved the script.

The migration script is maintained at the following repository:
https://github.com/openshift/hypershift/blob/main/contrib/migration/migrate-hcp.sh.

BUCKET_NAME="${USER}-hosted-${MGMT_REGION}"

DNS
AWS_ZONE_ID="Z026552815SS3YPH9H6MG"
EXTERNAL_DNS_DOMAIN="guest.jpdv.aws.kerbeross.com"

source <env_file>

OpenShift Container Platform 4.13 Hosted control planes

34

https://github.com/openshift/hypershift/blob/main/contrib/migration/migrate-hcp.sh

	Table of Contents
	CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW
	1.1. INTRODUCTION TO HOSTED CONTROL PLANES (TECHNOLOGY PREVIEW)
	1.1.1. Architecture of hosted control planes
	1.1.2. Benefits of hosted control planes

	1.2. VERSIONING FOR HOSTED CONTROL PLANES

	CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES
	2.1. AMAZON WEB SERVICES (AWS)
	2.2. BARE METAL
	2.3. OPENSHIFT VIRTUALIZATION

	CHAPTER 3. MANAGING HOSTED CONTROL PLANES
	3.1. UPDATES FOR HOSTED CONTROL PLANES
	3.1.1. Updates for the hosted cluster
	3.1.2. Updates for node pools
	3.1.2.1. Replace updates for node pools
	3.1.2.2. In place updates for node pools

	3.2. UPDATING NODE POOLS FOR HOSTED CONTROL PLANES
	3.3. CONFIGURING NODE POOLS FOR HOSTED CONTROL PLANES
	3.4. CONFIGURING NODE TUNING IN A HOSTED CLUSTER
	3.5. DEPLOYING THE SR-IOV OPERATOR FOR HOSTED CONTROL PLANES
	3.6. DELETING A HOSTED CLUSTER

	CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES
	4.1. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER
	4.1.1. Taking a snapshot of etcd on a hosted cluster
	4.1.2. Restoring an etcd snapshot on a hosted cluster

	4.2. DISASTER RECOVERY FOR A HOSTED CLUSTER WITHIN AN AWS REGION
	4.2.1. Example environment and context
	4.2.2. Overview of the backup and restore process
	4.2.3. Backing up a hosted cluster
	4.2.4. Restoring a hosted cluster
	4.2.5. Deleting a hosted cluster from your source management cluster
	4.2.6. Running a script to back up and restore a hosted cluster

