& RedHat

Open Liberty 2020

Release Notes for Open Liberty 20.0.0.4 on
Red Hat OpenShift Container Platform

Release Notes for Open Liberty 2020 on Red Hat OpenShift Container Platform

Last Updated: 2020-04-13

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat
OpenShift Container Platform

Release Notes for Open Liberty 2020 on Red Hat OpenShift Container Platform

Legal Notice
Copyright © 2020 IBM Corp

Code and build scripts are licensed under the Eclipse Public License vl Documentation files are
licensed under Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)

Abstract

These release notes contain the latest information about new features, enhancements, fixes, and
issues contained in Open Liberty 2020 on Red Hat OpenShift Container Platform release.

Table of Contents

Table of Contents

CHAPTER L FEATURES . ittt it ettt et ettt et et e aeeeaaeeanneeaneeraneennneenns 3
1.1. RUN YOUR APPS USING 20.0.0.4 3
1.2. MICROPROFILE 3.3 SUPPORT 3
1.2.1. Easily determine HTTP headers on outgoing requests (MicroProfile Rest Client 1.4) 4
1.2.2. Monitor microservice applications easily wth metrics (MicroProfile Metrics 2.3) 4
1.2.3. Provide your own health check procedures (MicroProfile Health 2.2) 6
1.2.4. Monitor faults in your microservices (MicroProfile Fault Tolerance 2.1) 7
1.2.5. External configuration of your microservices (MicroProfile Config 1.4) 7

1.3. TRACK USAGE PATTERNS AND PERFORMANCE OF SERVICES (JAX-RS 2.1) 10
1.4. SUPPORT FOR YUM/APT-GET INSTALLATIONS 10
1.5. AUTOMATICALLY COMPRESS HTTP RESPONSES 12
1.5.1. Open Liberty Grafana dashboard now available at grafana.com 13
1.5.2. Support OpenShift service account credentials for authentication 15
CHAPTER 2. RESOLVED ISSUES ...ttt ettt ettt et eeateeaneeeaneenneeeaneenaneennneenneenns 17
CHAPTER 3. FIXED CVES it iiitttiitt ittt ettt ettt et eeaeeaaeeeaneeenneenneeeaneesaneennnesnneenns 18
CHAPTER 4. KNOWN ISSUES ..ottt ittt ettt ettt e ettt et aeeeaneeeenaenaneennneenneenns 19

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

CHAPTER 1. FEATURES

CHAPTER 1. FEATURES

Open Liberty 20.0.0.4 provides support for MicroProfile 3.3 which includes updates to MicroProfile
Rest Client, Fault Tolerance, Metrics, Health, and Config. Improved developer experience is also
achieved with support for yum/apt-get installs and the ability to track usage patterns with JAX-RS 2.1.
In Open Liberty 20.0.0.4:

® MicroProfile 3.3

o Easily determine HTTP headers on outgoing requests (MicroProfile Rest Client 1.4)
o Monitor microservice applications (MicroProfile Metrics 2.3)
o Provide health check procedures (MicroProfile Health 2.2)
o Monitor faults in your microservices (MicroProfile Fault Tolerance 2.1)
o External configuration of your microservices (MicroProfile Config 1.4)
® Track usage patterns and performance of services (JAX-RS 2.1)
® Support for yum/apt-get installations
® Automatically compress HTTP responses
® Open Liberty Grafana dashboard now available at grafana.com
® Support OpenShift service account credentials for authentication

View the list of fixed bugs in 20.0.0.4.

1.1. RUN YOUR APPS USING 20.0.0.4

If you're using Maven, here are the coordinates:

<dependency>
<groupld>io.openliberty</groupld>
<artifactld>openliberty-runtime</artifactld>
<version>20.0.0.4</version>
<type>zip</type>

</dependency>

Or for Gradle:

dependencies {
libertyRuntime group: 'io.openliberty', name: 'openliberty-runtime’, version: '[20.0.0.4,)'

}

Or if you're using Docker:

I FROM open-liberty

1.2. MICROPROFILE 3.3 SUPPORT

https://access.redhat.com/products/open-liberty/
https://github.com/OpenLiberty/open-liberty/issues?q=label%3Arelease%3A20004+label%3A%22release+bug%22+
https://openliberty.io/guides/maven-intro.html
https://openliberty.io/guides/gradle-intro.html

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

MicroProfile 3.3 improves developer experience with updates to the Rest Client, Fault Tolerance,
Metrics, Health, and Config features.

1.2.1. Easily determine HTTP headers on outgoing requests (MicroProfile Rest Client
1.4)

MicroProfile Rest Client 1.4 adds injection into ClientHeadersFactory instances. When executing a Rest
Client inside a JAX-RS request, it can be useful to pull data from the JAX-RS request’s context or from
CDI to use to determine which HTTP headers to send on the outgoing request. With MP Rest Client 1.4,
this is now possible.

To enable MP Rest Client 1.4, add this feature to your server.xml: <feature>mpRestClient-
1.4</feature>

CDIl and/or JAX-RS injection into your ClientHeadersFactory will enable you to do things like:

@ApplicationScoped
public class MyCustomClientHeadersFactory implements ClientHeadersFactory {

@Context
private Urilnfo urilnfo;

@Inject
private Foo foo;

@Override
public MultivaluedMap <String, String> update(MultivaluedMap<String, String> incomingHeaders
MultivaluedMap<String, String> clientOutgoingHeaders) {
MultivaluedMap<String, String> myHeaders = new MultivaluedHashMap<>();
myHeaders.putSingle("X-HEADER_FROM_CUSTOM_CLIENTHEADERSFACTORY", "456");

URI uri = urilnfo.getAbsolutePath();
myHeaders.putSingle("X-INJECTED_URI_INFQ", uri == null ? "null" : uri.toString());

myHeaders.putSingle("X-INJECTED_FOQ", foo.getWord());

return myHeaders;

}
}

Learn more about MP Rest Client

1.2.2. Monitor microservice applications easily wth metrics (MicroProfile Metrics 2.3)

MicroProfile Metrics 2.3 introduces a new metric type called a Simple Timer (annotated with
@SimplyTimed) and runtime provided metrics that track REST resource method usage and is backed
by the new Simple Timer metric.

The new Simple Timer metric is a light-weight alternative to the existing Timer metric. It only tracks the
total timing duration and counts the amount of times it was invoked. The Timer metric on the other hand
is a performance heavy metric that continually calculates duration statistics and throughput statistics
resulting in 14 values.

The new REST stat metrics are gathered from REST resource method usage (i.e GET, POST, PUT,
DELETE, OPTIONS, PATCH, HEAD). Total time duration and total count of invocation is tracked (by

https://openliberty.io/guides/microprofile-rest-client.html

CHAPTER 1. FEATURES

use of the Simple Timer metric). This functionality is properly enabled when used in combination with
the jaxrs-2.1 feature. All REST stat metrics will use the REST.request metric name and will be
tagged/labeled with their fully qualified class name and method signature.

To enable the feature, include the following in the server.xml.

I <feature>mpMetrics-2.3</feature>

The monitor-1.0 feature will be activated with the mpMetrics-2.3 feature. As a result, vendor metrics
will be enabled due to the monitor-1.0 activation. To filter out this data you can configure the following
into the server.xml to choose the stats you want to see:

I <monitor filter="JVM, ThreadPool,WebContainer,Session,ConnectionPool, REST"/>

Alternatively, disable all monitor-1.0 stats:

I <monitor filter=""/> <!-- space required -->

To use the new SimpleTimer metric programmatically:

@Inject
MetricRegistry metricRegistry;

//create metric
Metadata metadata= Metadata.builder().withName("sampleSimpleTimer").build();
SimpleTimer simpleTimer = metricRegistry.simpleTimer(metadata);

//retrieve simple timer context (will start timing)
SimpleTimer.Context simpleTimerContext = simpleTimer.time()

doLogic();

//stops the simple timer from timing
simpleTimerContext.close();

To use the SimpleTimer metric with annotations:

@SimplyTimed(name="sampleSimpleTimer”)
public void doSomething() {

doLogic();
}

Resulting “OpenMetrics output:

TYPE application_sampleSimpleTimer_total counter
application_sampleSimpleTimer_total 12

TYPE application_sampleSimpleTimer_elapsedTime_seconds gauge
application_sampleSimpleTimer_elapsedTime_seconds 12.3200000

REST stat metrics will be enabled with the mpMetrics-2.3 feature given the following REST resource:

package org.eclipse.microprofile.metrics.demo;

@ApplicationScoped

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

public class RestDemo {

@POST
public void postMethod(String... s, Object 0){

}
}

Regarding REST stat metrics, the OpenMetrics formatted REST metrics would be:

TYPE base_REST_request_total counter

base_ REST_request_total{class="org.eclipse.microprofile.metrics.demo.RestDemo",method="postMeth
od_java.lang.String[]_java.lang.Object"} 1

TYPE base_REST_request_elapsedTime_seconds gauge

base_ REST_request_elapsedTime_seconds{class="org.eclipse.microprofile.metrics.demo.RestDemo",
method="postMethod_java.lang.String[]_java.lang.Object"} 1.000

1.2.3. Provide your own health check procedures (MicroProfile Health 2.2)

MicroProfile Health Check 2.2 enables you to provide your own health check procedures to be invoked
by Open Liberty to verify the health of your microservice.

In the mpHealth-2.2 feature, all of the supported Qualifiers (Liveness and Readiness) now have
annotation literals added in the specification. These ease programmatic lookup and support for inline
instantiation of the qualifiers, which was not supported in the previous versions.

Also, for better integration with third party frameworks, like MicroProfile Rest Client, the
HealthCheckResponse class declaration was changed from an abstract class to a concrete class with
constructors allowing for direct instantiation on the consuming end.

To enable the feature, include the following in the server.xmil:

I feature>mpHealth-2.2</feature>

Applications are expected to provide health check procedures by implementing the HealthCheck
interface with the @Liveness or @Readiness annotations. These are used by Open Liberty to verify
the Liveness or Readiness of the application, respectively. Add the logic of your health check in the

call() method, and return the HealthCheckResponse object, by using the simple up()/down() methods
from the API:

//Liveness Check

@Liveness

@ApplicationScoped

public class AppLiveCheck implements HealthCheck {

@Override
public HealthCheckResponse call() {

HealthCheckResponse.up("myCheck");

CHAPTER 1. FEATURES

To view the status of each health check, access the either the http://<hostnames:<port>/health/live or
http://<hosthames>:<port>/health/ready endpoints.

1.2.4. Monitor faults in your microservices (MicroProfile Fault Tolerance 2.1)
MicroProfile Fault Tolerance allows developers to easily apply strategies for mitigating failure to their
code. It provides annotations which developers can add to methods to use bulkhead, circuit breaker,

retry, timeout and fallback strategies. In addition, it provides an annotation which causes a method to be
run asynchronously.

MicroProfile Fault Tolerance 2.1includes the following changes:
® Adds new parameters applyOn and skipOn to @Fallback and adds skipOn to

@CircuitBreaker to give the user more control over which exceptions should trigger these
strategies, for example:

@Fallback(applyOn=IOException.class, skipOn=FileNotFoundException.class,
fallbackMethod="fallbackForService")
public String readTheFile() {

}

® Ensures that the CDI request context is active during the execution of methods annotated with
@Asynchronous.

® This Fault Tolerance release also adds more detail into the Javadoc and makes some minor
clarifications to the specification.

For more information:

® Get anintroduction to MicroProfile Fault Tolerance:

o Failing fast and recovering from errors
o Preventing repeated failed calls to microservices
® Reference the Javadoc
® Reference the full specification including the 2.1 release notes

® Report any issues on Github

1.2.5. External configuration of your microservices (MicroProfile Config 1.4)

The MicroProfile Config 1.4 feature provides an implementation of the Eclipse MicroProfile Config 1.4
APl which has mainly had changes to the built-in and implicit converters.

The Open Liberty implementation already supported byte/Byte and short/Short but char/Character
has now been added.

If we have the following properties available in a ConfigSource:

byte1=128
short1=5
char1=\uOOF6

https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/org/eclipse/microprofile/faulttolerance/Bulkhead.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/org/eclipse/microprofile/faulttolerance/CircuitBreaker.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/org/eclipse/microprofile/faulttolerance/Retry.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/org/eclipse/microprofile/faulttolerance/Timeout.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/org/eclipse/microprofile/faulttolerance/Fallback.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/org/eclipse/microprofile/faulttolerance/Asynchronous.html
https://openliberty.io/guides/retry-timeout.html
https://openliberty.io/guides/circuit-breaker.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/apidocs/
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/microprofile-fault-tolerance-spec.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-2.1/microprofile-fault-tolerance-spec.html#release_notes_21
https://github.com/OpenLiberty/open-liberty

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

You can inject those properties into your application, either as primitives or as their boxed equivalents:

@Dependent
public class MyBean {

@Inject

@ConfigProperty(name = "byte1")
private Byte property1;

@Inject

@ConfigProperty(name = "byte1")
private byte property2;

@Inject

@ConfigProperty(name = "short1")
private Short property3;

@Inject

@ConfigProperty(name = "short1")
private short property4;

@Inject

@ConfigProperty(name = "char1")
private Character property5;
@Inject

@ConfigProperty(name = "char1")
private char property6;

}

The implicit converter order has been slightly changed. Previously the order was:
o of(String)
e valueOf(String)
® constructor(String)
e parse(CharSequence)
In version 1.4, the last two have been swapped:
o of(String)
e valueOf(String)
e parse(CharSequence)
e constructor(String)
The reason for this change is that static parse(CharSequence) methods typically have some built-in
caching of their results and are therefore faster in some cases. Also, in many cases throughout the JDK,

the String constructors have been deprecated.

In the following example, the MyType class has two possible implicit converter methods available; a
String constructor and a static parse(CharSequence) method:

CHAPTER 1. FEATURES

public class MyType {

private static final ConcurrentMap<CharSequence, MyType> cache = new ConcurrentHashMap<>

0;

private String value;

private MyType(CharSequence raw, boolean cached) {
if (cached) {
this.value = "Cached: " + raw;
} else {
this.value = "Constructor: " + raw;
}
}

public MyType(String raw) {
this(raw, false);

}

public static MyType parse(CharSequence raw) {
MyType cached = cache.get(raw);
if (cached == null) {
cached = new MyType(raw, true);
MyType previous = cache.putlfAbsent(raw, cached);
if (previous != null) {
cached = previous;
}
}

return cached;

}

@Override
public String toString() {
return value;

}
}

To enable the feature, include the following in the server.xmil:

I <feature>mpConfig-1.4</feature>

In MicroProfile Config 1.3, the String constructor would have been used to do the implicit conversion. In
version 1.4, the parse(CharSequence) method will be used instead. Notice that the parse method uses
a simple cache. If the same raw String (String extends CharSequence) is converted twice then the
same instance of MyType will be returned. This would not be possible with a String constructor.

We have also made a notable internal change to the Open Liberty implementation. In versions prior to
1.4, our implementation included a background update thread which frequently scanned through the
available ConfigSources and cached the results. This made calls to the Config APl very fast. However,
since the size and complexity of user provided ConfigSources is unknown, this was a potentially
expensive thing to be doing in the background.

The background update thread has been replaced with an expiry process. What this means is that the
first request for a property may be a little slower as it may need to go through all the available
ConfigSources to find a value. Once found, this value is then cached and a timer started to expire the
cache. If a second request is made for that property before the cache expires then the cached value is

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

used and will return quickly. In order to maintain the same dynamic characteristics of the previous
versions, the expiry time is set to only 500ms. This value may be increased by setting the
microprofile.config.refresh.rate system property. 500ms is the minimum expiry time allowed but if the
property is set to O or less then caching is disabled.

For more information:

® Changes to the APl since 1.3

1.3. TRACK USAGE PATTERNS AND PERFORMANCE OF SERVICES
(JAX-RS 2.1)

The JAX-RS 2.1 auto-feature is enabled whenever the jaxrs-2.0 (or jaxrs-2.1) features are specified
within the server.xml along with the monitor-1.0 feature. This auto-feature introduces the capability to
collect statistics related to the execution of an application’s RESTful resource methods (specifically the
number of invocations and the cumulative execution time. This data is useful for design, debug, and
monitoring purposes. RESTful metrics can be accessed via the monitor-1.0 feature in combination with
the mpMetrics-2.3 feature. This information is also accessible via JMX (JConsole, etc...).

Include the following in the server.xml for JMX/PMI access:

<feature>jaxrs-2.0</feature> (or jaxrs-2.1)
<feature>monitor-1.0</feature>

The JMX/PMI data collected is per-method and is aggregated to the class and web module level. For
example, suppose a server has two web modules, each with identically named classes containing two
resource methods, the results for the REST_Stats in jconsole will look like the following:

Overview Memory Threads Classes WM Summary ==
» [0 IMImplementation Attribute value
v [WebSphere Mame Value
» [DynaCache RequestCount 1
> @ Jvmstats Refresh
» |7 PluginUtilicy
v [REST Stats MBeanAttributelnfo
» @ gateway/io.openliberty.sample.repro.Resource/getDefaultResource() Name Value
v @ gateway/io.openliberty.sample.repro.Resource / getRe moteResource(java.lang.String Attribute:

v Auributes Mame RequestCount
RequestCountDetalls E:;cd';ztl:m :\reu:uestCnunt
ResponseTimeDetails Writable false
MethodName Is false
Description Type long
AppName
ResponseTime

b @ gateway2 fio.openliberty. sample.repro.Resource /getDefaultResourcal)
» @ gateway2 fio.openliberty.sample.repro.Resource /getRemoteResource(java.lang. Strin
» | 7] ServletStats T
» || SessionStats
» [ThreadPoolstats . Veue
— Attribute:
» [com.ibm.websphere.application.Applicatic openType javax.management.openmbean.SimpleType(name=java.lang.Long)
» @ com.ibm.websphere.config.mbeans FeatureListMBean originalType long
» @@ com.ibm.websphere.config.mbeans.ServerX MLConfigurationMBean |

1.4. SUPPORT FOR YUM/APT-GET INSTALLATIONS

Open Liberty is now available as a native linux .deb or .rpm package so can now use native OS tools
(yum/apt) to manage your Open Liberty installations. To access Open Liberty rpms/debs, you'll have
to configure your machine to use the Open Liberty repository.

On Ubuntu systems:

Append the following line to file /etc/apt/sources.list:

10

https://github.com/eclipse/microprofile-config/milestone/7?closed=1

CHAPTER 1. FEATURES

deb https://public.dhe.ibm.com/ibmdl/export/pub/software/openliberty/runtime/os-native-
packages/deb/ /

Add the repositories' public key with command:

sudo wget -O http://public.dhe.ibm.com/iomdl/export/pub/software/openliberty/runtime/os-native-
packages/public.key | sudo apt-key add -

Run command:

I sudo apt-get update

The latest version of Open Liberty can then be installed from the repository by running:

I sudo apt-get install openliberty

On Red Hat Systems:

Create the following file named /etc/yum.repos.d/openliberty.repo:

[olrepo]

name=olrepo
baseurl=http://public.dhe.ibom.com/ibmdl/export/pub/software/openliberty/runtime/os-native-
packages/rpm/

enabled=1

gpgcheck=1

repo_gpgcheck=1
gpgkey=https://public.dhe.ibm.com/iomdl/export/pub/software/openliberty/runtime/os-native-
packages/public.key

The latest Open Liberty can then be installed by:

sudo yum update
sudo yum install openliberty

After the openliberty.rpm or openliberty.deb are installed, the empty defaultServer is created and
configured to run as a service.

® Open Liberty services will run as user openliberty
® The serveris located in /var/lib/openliberty/usr/servers/defaultServer
® | ogs will be stored in /var/log/openliberty/defaultServer
e PID for server is in /var/run/openliberty/defaultServer.pid
You can use the following standard linux service commands:
o systemctl status openliberty@defaultServer.service
e systemctl start openliberty@defaultServer.service

o systemctl restart openliberty@defaultServer.service

1

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

e systemctl stop openliberty@defaultServer.service

1.5. AUTOMATICALLY COMPRESS HTTP RESPONSES
You can now try out HTTP response compression.

Previous to this feature, Open Liberty only considered compression through the use of the $WSZIP
private header. There was no way for a customer to configure the compression of response messages.
Support now mainly consists of using the Accept-Encoding header in conjunction with the Content-
Type header, of determining if compression of the response message is possible and supported. It
allows the Liberty server to compress response messages when possible. It is beneficial because
customers will want to use the compression feature to help reduce network traffic, therefore reducing
bandwidth and decreasing the exchange times between clients and Liberty servers.

A new element, <compressions, has been made available within the <httpEndpoint> for a user to be
able to opt-in to using the compression support.

The optional types attribute will allow the user to configure a comma-delimited list of content types
that should or should not be considered for compression. This list supports the use of the plus “+” and
minus “-" characters, to add or remove content types to and from the default list. Content types contain
a type and a subtype separated by a slash “/” character. A wild card "*" character can be used as the

subtype to indicate all subtypes for a specific type.
The default value of the types optional attribute is: text/*, application/javascript.

Configuring the optional serverPreferredAlgorithm attribute, the configured value is verified against
the “Accept-Encoding” header values. If the client accepts the configured value, this is set as the
compression algorithm to use. If the client does not accept the configured value, or if the configured
value is set to ‘none’, the client preferred compression algorithm is chosen by default.

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9080"
httpsPort="9443">
<compression types="+application/pdf, -text’/html”
serverPreferredAlgorithm="gzip”/></httpEndpoint>

Open Liberty supports the following compression algorithms: gzip, x-gzip, deflate, zlib, and identity
(no compression)

The Http Response Compression functionality has been designed from the following Open Liberty

Epic: #7502. The design is outlined within the Epic for more detailed reading. The basic flow of the
design is shown in the below diagrams:

12

https://github.com/OpenLiberty/open-liberty/issues/7502

CHAPTER 1. FEATURES

©

HTTP request
Client indicates content SR LELEL @

encodings it supports

Original response
HTTP CLIENT HTTP Response body is compressed
HTTP response Processing with client accepted
l— encoding

Compressed response
body

®

1.5.1. Open Liberty Grafana dashboard now available at grafana.com

The Grafana dashboard provides a wide range of time-series visualizations of MicroProfile Metrics data
such as CPU, Servlet, Connection Pool, and Garbage Collection metrics. It is powered by a Prometheus
datasource which is configured to ingest data from one or more Liberty servers' /metrics endpoint,
enabling us to view on Grafana in near real-time.

This new dashboard works with Liberty instances outside of OpenShift Container Platform. For Liberty
servers running on OCP use the Grafana dashboards published here. The new Grafana dashboard is
intended for Open Liberty servers, with mpMetrics-2.x, that are not running on OCP.

You can use this dashboard to help spot performance issues when running your applications in Open
Liberty. For instance, metrics such as servlet response times, CPU or heap usage when seen as a time-

series on Grafana, could be indicative of an underlying performance issue or memory leak.

To configure the dashboard, first add the mpMetrics-2.3 feature. This will automatically enable the
monitor-1.0 feature:

<featureManager>
<feature>mpMetrics-2.3</feature>
</featureManager>

<mpMetrics authentication="false" />

For metrics on a secure endpoint:

<featureManager>
<feature>mpMetrics-2.3</feature>
</featureManager>

<quickStartSecurity userName="<your-username>" userPassword="<your-password>" />
Run the server using the following command:
I ./server run DashboardTest

Then, download Prometheus. Once unpackaged, it should contain a startup script called prometheus
alongside a configuration file, prometheus.yml. Within prometheus.yml, append to scrape_configs
one of the following jobs:

13

https://github.com/OpenLiberty/open-liberty-operator/tree/master/deploy/dashboards/metrics
https://prometheus.io/download/

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

For mpMetrics on an insecure endpoint:

- job_name: 'liberty’
scrape_interval: 5s
static_configs:

- targets: ['localhost:9080']

For mpMetrics on a secure endpoint:

- job_name: 'liberty-secure'
scrape_interval: 5s
static_configs:

- targets: ['localhost:9443']
basic_auth:

username: "<your-username>"

password: "<your-password>"
tls_config:

insecure_skip_verify: true
scheme: "https"

Start the prometheus script and visit http://localhost:9090/targets, where you should see your Open
Liberty server listed as one of the targets.

liberty-secure (1/1up),

Last Scrape
Endpoint State Labels Scrape Duration Error
https://localhost:9443/metrics UP 159ms ago 9.381ms

job="liberty-secure"

Download Grafana and once finished, visit https://localhost:3000.

When navigated to Grafana, click the gear icon and select Data Source. Add a new Prometheus
datasource with the URL as http://localhost:9090. Then click Save & Test

To import the dashboard, click the plus icon, select Import, paste the dashboard ID 11706, and when
prompted in the dropdown menu, link it to the new data source you have just created.

14

http://localhost:9090/targets
https://grafana.com/docs/grafana/latest/installation/
https://localhost:3000

CHAPTER 1. FEATURES

28 Open Liberty (mpMetrics-2.x) -

Servlets
Slowest Servlets Over Last [10m] by Average Response Time
servlet Average Response Time v

com_ibm_ws_microprofile_metrics_public_PublicMetricsRESTProxyServiet 119 ms

Request Count Over Last [10m] d Average Response Time per Request Over Last [10m]
240.0025 1.60 ms

240.0000 - 1.50ms

239.9975 \ e 1.40ms

239.9950 - — / 130 ms
239.9925 — =i = 120ms
239.9900 110ms
13:06 1308 1810 1812 1814 1816 1318 1306 13:08 1310 1812 1314 1316 1318
current min max

— instance: localhost:9443, serviet: com_ibm_ws_microprofile_metrics_public_PublicMetricsRESTProxyServiet 239.99919 — instance: localhost:9443, serviet: com_ibm_ws_microprofile_metrics_public_PublicMetricsRESTProxyServiet 1194ms 1.45ms

Request Count by Servlet Over Last [10m] Average Response Time per Request Over Last [10m] by Serviet

240.005
240.000

239.995

239.990
13:06 13:08 1310 1312 3; 1318 13:06 13:08 1310 1312 13116 13:18

current min max avg

— servlet: com_ibm_ws_microprofile_metrics_public_PublicMetricsRESTProxyServlet 239.99919 — servlet: com_ibm_ws_microprofile_metrics_public_PublicMetricsRESTProxyServlet 119ms 146ms 136ms
Connection Pool (9 panel
Sessions (2 pan:

Threadpools (3p

Garbage Collection

For more informtation:
® The dashboard found on Grafana’'s website

® Using Prometheus to create your own custom visualizations

1.5.2. Support OpenShift service account credentials for authentication

The socialLogin-1.0 feature can now be configured to use OpenShift service accounts to authenticate
and authorize protected resource requests. This allows server administrators to secure, for example,
monitoring and metrics endpoints that might produce sensitive information but require repeated access
by an automated process or non-human entity. The new behavior allows service accounts to
authenticate themselves by providing in the request a service account token that was created within the
OpenShift cluster.

A new <okdServiceLogin> configuration element is now provided to support this behavior. The
socialLogin-1.0 feature must be enabled to gain access to this new element.

The minimum configuration requires only that an <okdServicelLogin> element be specified in the server
xml:

<server>
<!I-- Enable features -->
<featureManager>
<feature>appSecurity-3.0</feature>
<feature>socialLogin-1.0</feature>
</featureManager>
<okdServicelLogin />

</server>

15

https://grafana.com/grafana/dashboards/11706
https://prometheus.io/docs/prometheus/latest/querying/basics/

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

The minimum configuration assumes that the Liberty server is packaged and deployed within an
OpenShift cluster. By default, the <okdServiceLogin> element will be used to authenticate all
protected resource requests that the Liberty server receives.

Incoming requests to protected resources must include a service account token. The token must be
specified as a bearer token in the Authorization header of the request. The Liberty server will use the
service account token to query information about the associated service account from the OpenShift
cluster. The OpenShift project that the service account is in will be used as the group for the service
account when making authorization decisions. The OpenShift project name is concatenated with the
name of the service account to create the user name.

If the Liberty server is not deployed within an OpenShift cluster, the userValidationApi attribute should
be configured and set to the value for the appropriate User APl endpoint in the OpenShift cluster:

<okdServiceLogin
userValidationApi="https://cluster.domain.example.com/apis/user.openshift.io/vi/users/~" />

Multiple <okdServiceLogin> elements can be configured as long as each element has a unique id
attribute specified. In those cases, authentication filters should also be configured to ensure the
appropriate endpoints are protected by a unique <okdServicelLogin> instance.

More information about OpenShift service accounts can be found in the OpenShift documentation for
Understanding and creating service accounts.

16

https://docs.openshift.com/container-platform/4.3/authentication/understanding-and-creating-service-accounts.html

CHAPTER 2. RESOLVED ISSUES

CHAPTER 2. RESOLVED ISSUES

See the Open Liberty 20.0.0.4 issues that were resolved for this release .

17

https://github.com/OpenLiberty/open-liberty/issues?q=label%3A%22release+bug%22+label%3Arelease%3A20004+is%3Aclosed+

Open Liberty 2020 Release Notes for Open Liberty 20.0.0.4 on Red Hat OpenShift Container Platform

CHAPTER 3. FIXED CVES

For alist of CVEs that were fixed in Open Liberty 20.0.0.4, see security vulnerabilities.

18

https://openliberty.io/docs/ref/general/#security-vulnerabilities.html

CHAPTER 4. KNOWN ISSUES

CHAPTER 4. KNOWN ISSUES

See the list of issues that were found but not fixed during the development of 20.0.0.4 .

19

https://github.com/OpenLiberty/open-liberty/issues?utf8=%E2%9C%93&q=is%3Aissue+label%3A%22release+bug%22+created%3A2020-3-13..2020-4-09+-label%3Arelease%3A20003+

	Table of Contents
	CHAPTER 1. FEATURES
	1.1. RUN YOUR APPS USING 20.0.0.4
	1.2. MICROPROFILE 3.3 SUPPORT
	1.2.1. Easily determine HTTP headers on outgoing requests (MicroProfile Rest Client 1.4)
	1.2.2. Monitor microservice applications easily wth metrics (MicroProfile Metrics 2.3)
	1.2.3. Provide your own health check procedures (MicroProfile Health 2.2)
	1.2.4. Monitor faults in your microservices (MicroProfile Fault Tolerance 2.1)
	1.2.5. External configuration of your microservices (MicroProfile Config 1.4)

	1.3. TRACK USAGE PATTERNS AND PERFORMANCE OF SERVICES (JAX-RS 2.1)
	1.4. SUPPORT FOR YUM/APT-GET INSTALLATIONS
	1.5. AUTOMATICALLY COMPRESS HTTP RESPONSES
	1.5.1. Open Liberty Grafana dashboard now available at grafana.com
	1.5.2. Support OpenShift service account credentials for authentication

	CHAPTER 2. RESOLVED ISSUES
	CHAPTER 3. FIXED CVES
	CHAPTER 4. KNOWN ISSUES

