
JBoss Enterprise Application Platform
Continuous Delivery 13

How to Configure Server Security

For Use with JBoss Enterprise Application Platform Continuous Delivery 13

Last Updated: 2018-07-05

JBoss Enterprise Application Platform Continuous Delivery 13 How to
Configure Server Security

For Use with JBoss Enterprise Application Platform Continuous Delivery 13

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The purpose of this document is to provide a practical guide to securing Red Hat JBoss Enterprise
Application Platform (JBoss EAP). More specifically, this guide details how to secure all of the
management interfaces on JBoss EAP. Before reading this guide, users should read through the
Security Architecture document for Red Hat JBoss Enterprise Application Platform and have a solid
understanding of how JBoss EAP handles security. This document also makes use of the JBoss
EAP CLI interface for performing configuration changes. When completing this document, readers
should have a solid, working understanding of how to secure JBoss EAP.

. .

. .

Table of Contents

PREFACE

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES
1.1. BUILDING BLOCKS

1.1.1. Interfaces and Socket Bindings
1.1.2. Elytron Subsystem

1.1.2.1. Enable Elytron Security Across the Server
1.1.2.2. Create an Elytron Security Domain

Add a Security Domain Using the Management CLI
Add a Security Domain Using the Management Console

1.1.2.3. Create an Elytron Security Realm
Add a Security Realm Using the Management CLI
Add a Security Realm Using the Management Console

1.1.2.4. Create an Elytron Role Decoder
Add a Role Decoder Using the Management CLI
Add a Role Decoder Using the Management Console

1.1.2.5. Create an Elytron Role Mapper
Adding a Role Mapper Takes the General Form
Adding a Role Mapper Using the Management Console

1.1.2.6. Create an Elytron Permission Set
Add a Permission Set Using the Management CLI

1.1.2.7. Create an Elytron Permission Mapper
Add a Permission Mapper Using the Management CLI
Add a Permission Mapper Using the Management Console

1.1.2.8. Creating an Authentication Configuration
Add an Authentication Configuration Using the Management CLI
Add an Authentication Configuration Using the Management Console

1.1.2.9. Creating an Authentication Context
Add an Authentication Context Using the Management CLI
Add an Authentication Context Using the Management Console

1.1.2.10. Create an Elytron Authentication Factory
Add an Authentication Factory Using the Management CLI
Add an Authentication Factory Using the Management Console

1.1.2.11. Create an Elytron Keystore
Add a Keystore Using the Management CLI
Add a Keystore Using the Management Console

1.1.2.12. Create an Elytron Key Manager
Add a Key Manager Using the Management CLI
Add a Key Manager Using the Management Console

1.1.2.13. Create an Elytron Truststore
1.1.2.14. Create an Elytron Trust Manager
1.1.2.15. Using the Out of the Box Elytron Components

1.1.2.15.1. Securing Management Interfaces
1.1.2.15.2. Securing Applications
1.1.2.15.3. Using SSL/TLS
1.1.2.15.4. Using Elytron with Other Subsystems

1.1.2.16. Elytron Audit Logging
File Audit Logging
Periodic Rotating File Audit Logging
Size Rotating File Audit Logging
Syslog Audit Logging

8

9
9
9
9
9

10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
14
14
14
14
14
15
15
15
15
15
16
16
16
17
18
18
18
19

Table of Contents

1

1.1.2.17. Enable and Disable the Elytron Subsystem
1.1.3. Legacy Security Subsystem

1.1.3.1. Enable and Disable the Security Subsystem
1.1.4. Legacy Security Realms
1.1.5. Using Authentication and Socket Bindings for Securing the Management Interfaces

1.2. HOW TO SECURE THE MANAGEMENT INTERFACES
Elytron Integration with the Management CLI
1.2.1. Configure Networking and Ports
1.2.2. Disabling the Management Console
1.2.3. Disabling Remote Access to JMX

Removing the Remoting Connector
1.2.4. Silent Authentication
1.2.5. Removing Undertow Response Headers
1.2.6. Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Using a Security Command
Using Elytron Subsystem Commands

1.2.7. Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
1.2.8. Enable SASL Authentication for the Management Interfaces Using the CLI Security Command

Reorder SASL Mechanisms
Disable SASL Authentication for the Management Interfaces

1.2.9. Enable HTTP Authentication for the Management Interfaces Using the CLI Security Command
Disable HTTP Authentication for the Management Interfaces

1.2.10. Configure the Management Interfaces for One-way SSL/TLS with Legacy Core Management
Authentication

Create a Keystore to Secure the Management Interfaces
Ensure the Management Interfaces Bind to HTTPS
Optional: Implement a Custom socket-binding-group
Create a New Security Realm
Configure the Management Interfaces to Use the New Security Realm
Configure the Management Interfaces to Use the Keystore
Update the jboss-cli.xml File

1.2.11. Setting up Two-way SSL/TLS for the Management Interfaces with Legacy Core Management
Authentication

Prerequisites
1.2.12. HTTPS Listener Reference

1.2.12.1. About Cipher Suites
1.2.13. Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat Enterprise Linux 7

1.2.13.1. Configuring the NSS database
1.2.13.2. Configure the Management CLI for FIPS 140-2 Compliant Cryptography for SSL/TLS
1.2.13.3. Configure the Elytron and Undertow Subsystems
1.2.13.4. Configure Undertow with the Legacy Core Management Authentication

1.2.14. FIPS 140-2 Compliant Cryptography on IBM JDK
1.2.14.1. Key Storage
1.2.14.2. Management CLI Configuration
1.2.14.3. Examine FIPS Provider Information

1.2.15. Starting a Managed Domain when the JVM is Running in FIPS Mode
1.3. SECURITY AUDITING

1.3.1. Configure Security Auditing for the Legacy Security Domains
1.4. CONFIGURE ONE-WAY AND TWO-WAY SSL/TLS FOR APPLICATIONS

1.4.1. Automatic Self-signed Certificate Creation for Applications
1.4.2. Using Elytron

1.4.2.1. Enable One-way SSL/TLS for Applications Using the Elytron Subsystem
Using a Security Command

20
20
20
21
21
22
22
23
23
23
23
23
24
25
25
26
27
31
32
32
32
33

33
33
34
34
35
36
36
37

38
38
41
41
41
42
45
46
47
49
49
50
50
50
53
53
54
54
55
55
55

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

2

Using Elytron Subsystem Commands
1.4.2.2. Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

1.4.3. Using Legacy Security Realms
1.4.3.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms
1.4.3.2. Enable Two-way SSL/TLS for Applications Using Legacy Security Realms

Update the Undertow Subsystem
1.5. ENABLE HTTP AUTHENTICATION FOR APPLICATIONS USING THE CLI SECURITY COMMAND

Disable HTTP Authentication for the Management Interfaces
1.6. SASL AUTHENTICATION MECHANISMS

1.6.1. Choosing SASL Authentication Mechanisms
1.6.2. Configuring SASL Authentication Mechanisms on the Server Side
1.6.3. Specifying SASL Authentication Mechanisms on the Client Side

sasl-mechanism-selector Grammar
1.6.4. Configuring SASL Authentication Mechanism Properties

1.7. ELYTRON INTEGRATION WITH THE MODCLUSTER SUBSYSTEM
1.7.1. Defining a Client SSL Context and Configuring ModCluster Subsystem

1.8. ELYTRON INTEGRATION WITH THE JGROUPS SUBSYSTEM
1.9. ELYTRON INTEGRATION WITH THE REMOTING SUBSYSTEM

1.9.1. Elytron Integration with Remoting Connectors
Enable One-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
Enable Two-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem

1.9.2. Elytron Integration with Remoting HTTP Connectors
Enable One-Way SSL on the Remoting HTTP Connector
Enable Two-way SSL/TLS on the Remoting HTTP Connectors

1.9.3. Elytron Integration with Remoting Outbound Connectors
1.10. SECURING A MANAGED DOMAIN

1.10.1. Configure Password Authentication Between Slaves and the Domain Controller Using Elytron
1.10.2. Configure Password Authentication Between Slaves and the Domain Controller Using Legacy Core
Management Authentication
1.10.3. Configuring SSL/TLS Between Domain and Host Controllers Using Elytron
1.10.4. Configuring SSL/TLS Between Domain and Host Controllers Using Legacy Core Management
Authentication

1.11. ADDITIONAL ELYTRON COMPONENTS FOR SSL/TLS
1.11.1. Using an ldap-key-store
1.11.2. Using a filtering-key-store
1.11.3. Reload a Keystore
1.11.4. Keystore Alias
1.11.5. Using a client-ssl-context
1.11.6. Using a server-ssl-context

Add a Server SSL Context Using the Management CLI
Add a Server SSL Context Using the Management Console

1.11.7. Custom Components
1.11.7.1. Add a Custom Component to Elytron
1.11.7.2. Using Custom Trust Managers with Elytron

Requirements for Implementing a Custom Trust Manager
Example Implementations
Adding the Custom Trust Manager

1.11.8. Using a Certificate Revocation List
1.11.9. Keystore Manipulation Operations

Generate a Key Pair
Generate a Certificate Signing Request
Import a Certificate or Certificate Chain
Export a Certificate

56
58
63
64
64
65
66
66
66
66
67
68
68
69
70
71
72
72
72
73
73
74
75
76
78
78
78

79
81

84
86
87
88
88
89
89
89
90
90
90
91
92
92
93
95
95
95
95
95
96
96

Table of Contents

3

. .

Change an Alias
Store Changes Made to Keystores

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES
2.1. USER AUTHENTICATION WITH ELYTRON

2.1.1. Default Configuration
2.1.1.1. Default Elytron HTTP Authentication Configuration
2.1.1.2. Default Elytron Management CLI Authentication

2.1.2. Secure the Management Interfaces with a New Identity Store
2.1.3. Adding Silent Authentication
2.1.4. Mapping Identity for Authenticated Management Users
2.1.5. Using Elytron Client with the Management CLI

2.2. IDENTITY PROPAGATION AND FORWARDING WITH ELYTRON
2.2.1. Propagating Security Identities for Remote Calls

Configure the Server for Security Propagation
Review the Example Application Code That Propagates a Security Identity

2.2.2. Utilizing Authorization Forwarding Mode
Configure the Authentication Client on the Forwarding Server
Configure the Authorization Forwarding on the Receiving Server

2.2.3. Retrieving Security Identity Credentials
2.2.4. Mechanisms That Support Security Identity Propagation

2.3. IDENTITY SWITCHING WITH ELYTRON
2.3.1. Switching Identities in Server-to-server EJB Calls

2.4. USER AUTHENTICATION WITH LEGACY CORE MANAGEMENT AUTHENTICATION
2.4.1. Default User Configuration
2.4.2. Adding Authentication via LDAP
2.4.3. Using JAAS for Securing the Management Interfaces

2.5. ROLE-BASED ACCESS CONTROL
2.5.1. Enabling Role-Based Access Control

CLI to Enable RBAC
Management CLI Command to Disable RBAC
XML Configuration to Enable or Disable RBAC

2.5.2. Changing the Permission Combination Policy
Setting the Permission Combination Policy

2.5.3. Managing Roles
2.5.3.1. Configure User Role Assignment Using the Management CLI

Viewing Role Assignment Configuration
Add a New Role
Add a User as Included in a Role
Add a User as Excluded in a Role
Remove User Role Include Configuration
Remove User Role Exclude Configuration

2.5.4. Configure User Role Assignment with the Elytron Subsystem
2.5.5. Roles and User Groups
2.5.6. Configure Group Role Assignment Using the Management CLI

Viewing Group Role Assignment Configuration
Add a New Role
Add a Group as Included in a Role
Add a Group as Excluded in a Role
Remove Group Role Include Configuration
Remove a User Group Exclude Entry

2.5.7. Using RBAC with LDAP
2.5.8. Scoped Roles

96
96

97
97
97
98
99

101
103
104
106
107
107
107
109
112
112
113
114
115
116
116
116
116
117
117
118
118
119
120
120
120
121
121
122
122
123
123
123
124
124
125
125
125
125
126
126
127
127
128
128
128

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

4

. .

. .

2.5.8.1. Configuring Scoped Roles from the Management CLI
Add a New Scoped Role
Viewing and Editing a Scoped Role Mapping
Delete a Scoped Role
Adding and Removing Users

2.5.8.2. Configuring Scoped Roles from the Management Console
Add a New Scoped Role
Edit a Scoped Role
View Scoped Role Members
Delete a Scoped Role
Adding and Removing Users

2.5.9. Configuring Constraints
2.5.9.1. Configure Sensitivity Constraints
2.5.9.2. List Sensitivity Constraints
2.5.9.3. Configure Application Resource Constraints
2.5.9.4. List Application Resource Constraints
2.5.9.5. Configure the Vault Expression Constraint

CHAPTER 3. SECURELY STORING CREDENTIALS
3.1. CREDENTIAL STORE

3.1.1. Create a Credential Store
Create a Credential Store for a Standalone Server
Create a Credential Store in a Managed Domain

3.1.2. Add a Credential to the Credential Store
Editing Credential Store Aliases Using the Management Console

3.1.3. Use a Stored Credential in a Configuration
3.1.4. List the Credentials in the Credential Store
3.1.5. Remove a Credential from the Credential Store
3.1.6. Obtain the Master Password for the Credential Store from an External Source
3.1.7. Define a FIPS 140-2 Compliant Credential Store
3.1.8. Use a Custom Implementation of the Credential Store
3.1.9. Create and Modify Credential Stores Offline with the WildFly Elytron Tool

3.1.9.1. Generate Masked Encrypted Strings Using the WildFly Elytron Tool
3.1.9.2. Convert a Password Vault to a Credential Store Using the WildFly Elytron Tool

3.1.10. Using Credential Stores with Elytron Client
3.1.11. Using Credential Stores in a Managed Domain

3.2. PASSWORD VAULT
3.2.1. Set Up a Password Vault
3.2.2. Initialize the Password Vault
3.2.3. Use a Password Vault
3.2.4. Store a Sensitive String in the Password Vault
3.2.5. Use an Encrypted Sensitive String in Configuration
3.2.6. Use an Encrypted Sensitive String in an Application
3.2.7. Check if a Sensitive String is in the Password Vault
3.2.8. Remove a Sensitive String from the Password Vault

Remove a Sensitive String Interactively
3.2.9. Configure Red Hat JBoss Enterprise Application Platform to Use a Custom Implementation of the
Password Vault
3.2.10. Obtain Keystore Password From External Source

CHAPTER 4. JAVA SECURITY MANAGER
4.1. ABOUT THE JAVA SECURITY MANAGER
4.2. DEFINE A JAVA SECURITY POLICY

129
129
130
130
130
130
131
131
131
131
132
132
132
133
134
135
135

137
137
138
138
138
139
139
139
140
140
141
142
142
143
146
146
148
149
149
150
151
154
154
157
158
158
161
162

163
164

165
165
165

Table of Contents

5

. .

4.2.1. Defining Policies in the Security Manager Subsystem
4.2.2. Defining Policies in the Deployment
4.2.3. Defining Policies in Modules

4.3. RUN JBOSS EAP WITH THE JAVA SECURITY MANAGER
4.4. CONSIDERATIONS MOVING FROM PREVIOUS VERSIONS

4.4.1. Defining Policies
4.4.2. JBoss EAP Configuration Changes
4.4.3. Custom Security Managers

APPENDIX A. REFERENCE MATERIAL
A.1. ELYTRON SUBSYSTEM COMPONENTS REFERENCE
A.2. SASL AUTHENTICATION MECHANISMS REFERENCE

A.2.1. Support Level for SASL Authentication Mechanisms
A.2.2. SASL Authentication Mechanism Properties

A.3. SECURITY AUTHORIZATION ARGUMENTS
Mechanism Specific Attributes

A.4. ELYTRON CLIENT SIDE ONE WAY EXAMPLE
A.5. ELYTRON CLIENT SIDE TWO WAY EXAMPLE

165
166
166
167
168
168
168
168

169
169
203
203
204
207
207
209
210

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

6

Table of Contents

7

PREFACE
This document is intended for use with the JBoss Enterprise Application Platform continuous delivery
release 13, which is a Technology Preview release available in the cloud only.

Some features described in this document might not work or might not be available on Red Hat
OpenShift Online and Red Hat OpenShift Container Platform. For specific details about the feature
differences in the JBoss EAP CD release, see the Release Limitations section in the JBoss EAP
Continuous Delivery 13 Release Notes.

IMPORTANT

This continuous delivery release for JBoss EAP is provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

8

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/jboss_eap_continuous_delivery_13_release_notes/#cd_release_limitations
https://access.redhat.com/support/offerings/techpreview

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

1.1. BUILDING BLOCKS

1.1.1. Interfaces and Socket Bindings

JBoss EAP utilizes its host’s interfaces, for example inet-address and nic, as well as ports for
communication for both its web applications as well as its management interfaces. These interfaces and
ports are defined and configured through the interfaces and socket-binding-groups settings in
the JBoss EAP.

For more information on how to define and configure interfaces and socket-binding-groups, see
the Socket Bindings section of the JBoss EAP Configuration Guide.

Example: Interfaces

Example: Socket Binding Group

1.1.2. Elytron Subsystem

1.1.2.1. Enable Elytron Security Across the Server

There is a simple way to enable Elytron across the server. JBoss EAP 7.1 introduces an example
configuration script that enables Elytron as the security provider. This script resides in the
EAP_HOME/docs/examples directory in the server installation.

Execute the following command to enable Elytron security across the server.

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

<socket-binding-group name="standard-sockets" default-interface="public"
port-offset="${jboss.socket.binding.port-offset:0}">
 <socket-binding name="management-http" interface="management"
port="${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management"
port="${jboss.management.https.port:9993}"/>
 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>
 <socket-binding name="http" port="${jboss.http.port:8080}"/>
 <socket-binding name="https" port="${jboss.https.port:8443}"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
 <outbound-socket-binding name="mail-smtp">
 <remote-destination host="localhost" port="25"/>
 </outbound-socket-binding>
</socket-binding-group>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

9

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#socket_bindings

$ EAP_HOME/bin/jboss-cli.sh --file=EAP_HOME/docs/examples/enable-
elytron.cli

1.1.2.2. Create an Elytron Security Domain

Security domains in the elytron subsystem, when used in conjunction with security realms, are used
for both core management authentication as well as for authentication with applications.

IMPORTANT

Deployments are limited to using one Elytron security domain per deployment. Scenarios
that may have required multiple legacy security domains can now be accomplished using
a single Elytron security domain.

Add a Security Domain Using the Management CLI

/subsystem=elytron/security-domain=domainName:add(realms=
[{realm=realmName,role-decoder=roleDecoderName}],default-
realm=realmName,permission-mapper=permissionMapperName,role-
mapper=roleMapperName,...)

Add a Security Domain Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Other.

3. Click on View. Select Security Domain from the list on the SSL tab. All security domain related
configurations can be done here.

1.1.2.3. Create an Elytron Security Realm

Security realms in the elytron subsystem, when used in conjunction with security domains, are used
for both core management authentication as well as for authentication with applications. Security realms
are also specifically typed based on their identity store, for example jdbc-realm, filesystem-
realm, properties-realm, etc.

Add a Security Realm Using the Management CLI

/subsystem=elytron/type-of-realm=realmName:add(....)

Examples of adding specific realms, such as jdbc-realm, filesystem-realm, and properties-
realm can be found in previous sections.

Add a Security Realm Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Security Realm /
Authentication.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

10

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview

3. Click on View. The Security Realm, Security Realm Mapper and Authentication tabs let you
configure all the security realm and authentication related attributes.

1.1.2.4. Create an Elytron Role Decoder

A role decoder converts attributes from the identity provided by the security realm into roles. Role
decoders are also specifically typed based on their functionality, for example empty-role-decoder,
simple-role-decoder, and custom-role-decoder.

Add a Role Decoder Using the Management CLI

/subsystem=elytron/ROLE-DECODER-TYPE=roleDeoderName:add(....)

Add a Role Decoder Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Mapper / Decoder.

3. Click on View. The Decoder tab lets you do all the role decoder related configurations.

1.1.2.5. Create an Elytron Role Mapper

A role mapper maps roles after they have been decoded to other roles. Examples include normalizing
role names or adding and removing specific roles from principals after they have been decoded. Role
mappers are also specifically typed based on their functionality, for example add-prefix-role-
mapper, add-suffix-role-mapper, and constant-role-mapper.

Adding a Role Mapper Takes the General Form

/subsystem=elytron/ROLE-MAPPER-TYPE=roleMapperName:add(...)

Adding a Role Mapper Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Mapper / Decoder.

3. Click on View. The Role Mapper tab lets you do all the role mapper related configurations.

1.1.2.6. Create an Elytron Permission Set

Permission sets can be used to assign permissions to an identity.

Add a Permission Set Using the Management CLI

/subsystem=elytron/permission-set=PermissionSetName:add(permissions=
[{class-name="...", module="...", target-name="...", action="..."}...])

The permissions parameter consists of a set of permissions, where each permission has the following
attributes:

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

11

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview

class-name is the fully qualified class name of the permission. This is the only permission
attribute that is required.

module is an optional module used to load the permission.

target-name is an optional target name passed to the permission as it is constructed.

action is an optional action passed to the permission as it is constructed.

1.1.2.7. Create an Elytron Permission Mapper

In addition to roles being assigned to a identity, permissions may also be assigned. A permission mapper
assigns permissions to an identity. Permission mappers are also specifically typed based on their
functionality, for example logical-permission-mapper, simple-permission-mapper, and
custom-permission-mapper.

Add a Permission Mapper Using the Management CLI

/subsystem=elytron/simple-permission-mapper=PermissionMapperName:add(...)

Add a Permission Mapper Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Mapper / Decoder.

3. Click on View. The Permission Mapper tab lets you do all the permission mapper related
configurations.

1.1.2.8. Creating an Authentication Configuration

An authentication configuration contains the credentials to use when making a connection. For more
information on authentication configurations, see Configure Client Authentication with Elytron Client in
How to Configure Identity Management for JBoss EAP.

NOTE

Instead of a credential store, you can configure an Elytron security domain to use the
credentials of the accessing user. For instance, a security domain can be used in
conjunction with Kerberos for authenticating incoming users. Follow the instructions in
Configure the Elytron Subsystem in How to Set Up SSO with Kerberos for JBoss EAP,
and set obtain-kerberos-ticket=true in the Kerberos security factory.

Add an Authentication Configuration Using the Management CLI

/subsystem=elytron/authentication-
configuration=AUTHENTICATION_CONFIGURATION_NAME:add(authentication-
name=AUTHENTICATION_NAME, credential-reference={clear-text=PASSWORD})

Add an Authentication Configuration Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

12

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_client_authentication
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_set_up_sso_with_kerberos/#elytron_http_auth_app
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview

2. Navigate to Configuration → Subsystems → Security - Elytron → Security
Realm/Authentication.

3. Click on View. Select Authentication Configuration from the list on the Authentication tab. All
authentication configuration related configurations can be done here.

For the full list of authentication-configuration attributes, see Elytron Subsystem Components
Reference.

1.1.2.9. Creating an Authentication Context

An authentication context contains a set of rules and either authentication configurations or SSL contexts
to use for establishing a connection. For more information on authentication contexts, see Configure
Client Authentication with Elytron Client in How to Configure Identity Management for JBoss EAP.

Add an Authentication Context Using the Management CLI
An authentication context can be created using the following management CLI command.

/subsystem=elytron/authentication-
context=AUTHENTICATION_CONTEXT_NAME:add()

Typically, an authentication context will contain a set of rules and either an authentication configuration or
a SSL context. The following CLI command provides demonstrates defining an authentication context
that only functions when the hostname is localhost.

/subsystem=elytron/authentication-
context=AUTHENTICATION_CONTEXT_NAME:add(match-rules=[{authentication-
configuration=AUTHENTICATION_CONFIGURATION_NAME, match-host=localhost}])

Add an Authentication Context Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Security
Realm/Authentication.

3. Click on View. Select Authentication Context from the list on the Authentication tab. All
authentication context related configurations can be done here.

For the full list of authentication-context attributes, see Elytron Subsystem Components
Reference.

1.1.2.10. Create an Elytron Authentication Factory

An authentication factory is an authentication policy used for specific authentication mechanisms.
Authentication factories are specifically based on the authentication mechanism, for example http-
authentication-factory, sasl-authentication-factory and kerberos-security-
factory.

Add an Authentication Factory Using the Management CLI

/subsystem=elytron/AUTH-FACTORY-TYPE=authFactoryName:add(....)

Add an Authentication Factory Using the Management Console

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

13

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_client_authentication
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Factory.

3. Click on View. All Elytron settings for factories can be configured here.

1.1.2.11. Create an Elytron Keystore

A key-store is the definition of a keystore or truststore including the type of keystore, its location, and
the credential for accessing it.

To generate an example keystore for use with the elytron subsystem, use the following command in
Red Hat Enterprise Linux 7.

Add a Keystore Using the Management CLI
To define a key-store in Elytron that references the newly made keystore, execute the following
management CLI command. This command species the path to the keystore, relative to the file system
path provided, the credential reference used for accessing the keystore, and the type of keystore.

/subsystem=elytron/key-store=newKeyStore:add(path=keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-
text=secret},type=JKS)

NOTE

The above command uses relative-to to reference the location of the keystore file.
Alternatively, you can specify the full path to the keystore in path and omit relative-
to.

Add a Keystore Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Other.

3. Click on View. The Key Store tab lets you do all the keystore related configurations.

1.1.2.12. Create an Elytron Key Manager

A key-manager references a key-store, and is used in conjunction with an SSL context.

Add a Key Manager Using the Management CLI
The following command specifies the underlying keystore to reference, the algorithm to use when
initializing the key manager, and the credential reference for accessing the entries in the underlying
keystore.

/subsystem=elytron/key-manager=newKeyManager:add(key-
store=KEY_STORE,algorithm="PKIX",credential-reference={clear-text=secret})

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity
365 -keystore keystore.jks -dname "CN=localhost" -keypass secret -
storepass secret

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

14

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview

IMPORTANT

If an algorithm is not specified, then it will be set to the default KeyManagerFactory
algorithm name.

The available key manager algorithms are provided by the JDK in use. For example, a
JDK that uses SunJSSE provides the PKIX and SunX509 algorithms.

Add a Key Manager Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Other.

3. Click on View. The Key Manager tab lets you do all the key manager related configurations.

1.1.2.13. Create an Elytron Truststore

To create a truststore in Elytron execute the following CLI command.

/subsystem=elytron/key-store=default-trust-store:add(type=JKS, relative-
to=jboss.server.config.dir, path=application.truststore, credential-
reference={clear-text=password})

In order to successfully execute the command above you must have an application.truststore
file inside your EAP_HOME/standalone/configuration directory. The truststore must contain the
certificates associated with the endpoint or a certificate chain in case the end point’s certificate is signed
by a CA.

Red Hat recommends you to avoid using self-signed certificates. Ideally, certificates should be signed by
a CA and your truststore should contain a certificate chain representing your ROOT and intermediary CAs.

1.1.2.14. Create an Elytron Trust Manager

To define a trust manager in Elytron execute the following CLI command.

/subsystem=elytron/trust-manager=default-trust-manager:add(key-
store=TRUST-STORE-NAME)

This sets the defined truststore as the source of the certificates that the application server trusts.

1.1.2.15. Using the Out of the Box Elytron Components

JBoss EAP provides a default set of Elytron components configured in the elytron subsystem. You
can find more details on these pre-configured components in the Out of the Box section of the Security
Architecture guide.

1.1.2.15.1. Securing Management Interfaces

You can find more details on the enabling JBoss EAP to use the out of the box Elytron components for
securing the management interfaces in the User Authentication with Elytron section.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

15

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#elytron_ootb_example

1.1.2.15.2. Securing Applications

The elytron subsystem provides application-http-authentication for http-
authentication-factory by default, which can be used to secure applications. For more
information on how to configure application-http-authentication, see the Out of the Box
section of the Security Architecture guide.

To configure applications to use application-http-authentication, see Configure Web
Applications to Use Elytron or Legacy Security for Authentication in How to Configure Identity
Management Guide. You can also override the default behavior of all applications using the steps in the
Override an Application’s Authentication Configuration section of the JBoss EAP How to Configure
Identity Management Guide.

1.1.2.15.3. Using SSL/TLS

JBoss EAP does provide a default one-way SSL/TLS configuration using the legacy core management
authentication, but it does not provide one in the elytron subsystem. You can find more details on
configuring SSL/TLS using the elytron subsystem for both the management interfaces as well as for
applications in the following sections:

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-Way SSL/TLS for the Management Interfaces using the Elytron Subsystem

Enable One-way SSL/TLS for Applications using the Elytron Subsystem

Enable Two-Way SSL/TLS for Applications using the Elytron Subsystem

1.1.2.15.4. Using Elytron with Other Subsystems

In addition to securing applications and management interfaces, Elytron also integrates with other
subsystems in JBoss EAP.

batch-jberet

You can configure the batch-jberet subsystem to run batch jobs using an Elytron security
domain. For more information, see Configure Security for Batch Jobs in the Configuration Guide.

datasources

You can use a credential store or an Elytron security domain to provide authentication information in
a datasource definition. For more information, see Datasource Security in the Configuration Guide.

ejb3

You can create mappings for Elytron security domains in the ejb3 subsystem to be referenced by
deployments. For more information, see Elytron Integration with the EJB Subsystem in Developing
EJB Applications.

iiop-openjdk

You can use the elytron subsystem to configure SSL/TLS between clients and servers using the
iiop-openjdk subsystem. For more information, see Configure IIOP to use SSL/TLS with the
Elytron Subsystem in the Configuration Guide.

jca

You can use the elytron-enabled attribute to enable Elytron security for a work manager. For
more information, see Configuring the JCA Subsystem in the Configuration Guide.

jgroups

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

16

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#elytron_ootb_example
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#configure-app-authentication
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_override_deployment_config
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#configure_batch_job_security
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#datasource_security
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/developing_ejb_applications/#elytron_integration_ejb_subsystem
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#configure_iiop_ssl
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#configuring_jca_subsystem

You can configure the SYM_ENCRYPT and ASYM_ENCRYPT protocols to reference keystores or
credential references defined in the elytron subsystem. For more information, see Securing a
Cluster in the Configuration Guide.

mail

You can use a credential store to provide authentication information in a server definition in the mail
subsystem. For more information, see Use a Credential Store for Passwords in the Configuration
Guide.

messaging-activemq

You can secure remote connections to the remote connections used by the messaging-activemq
subsystem. For more information, see the Using the Elytron Subsystem section of Configuring
Messaging.

modcluster

You can use an Elytron client ssl-context to communicate with a load balancer using SSL/TLS.
For more information, see Elytron Integration with the ModCluster Subsystem.

remoting

You can configure inbound and outbound connections in the remoting subsystem to reference
authentication contexts, SASL authentication factories, and SSL contexts defined in the elytron
subsystem. For full details on configuring each type of connection, see Elytron Integration with the
Remoting Subsystem.

resource-adapters

You can secure connections to the resource adapter using Elytron. You can enable security inflow to
establish security credentials when submitting work to be executed by the work manager. For more
information, see Configure Resource Adapters to Use the Elytron Subsystem in the Configuration
Guide.

undertow

You can use the elytron subsystem to configure both SSL/TLS and application authentication. For
more information on configuring application authentication, see Using SSL/TLS and Configure Web
Applications to Use Elytron or Legacy Security for Authentication in How to Configure Identity
Management.

1.1.2.16. Elytron Audit Logging

Audit logging for the elytron subsystem enables logging of Elytron authentication and authorization
events within the application server. Audit log entries are stored in either JSON or SIMPLE, human
readable format. By default, file audit logging is enabled in Elytron.

You can configure the following log handlers for Elytron audit logging:

file audit logging - enabled by default

periodic rotating file audit logging

size rotating file audit logging

syslog audit logging

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

17

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#securing_cluster
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#mail_subsystem_cred_store
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuring_messaging/#using_the_elytron_subsystem
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#configure_resource_adapters_with_elytron
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#configure-app-authentication

IMPORTANT

Elytron audit logging is distinct from other audit logging, such as audit logging for the
JBoss EAP management interfaces. For more information on management interface audit
logging options, see the Management Audit Logging section in the JBoss EAP
Configuration Guide.

NOTE

You can disable Elytron audit logging by unsetting the security-event-listener
option of the security-domain attribute.

File Audit Logging
File audit logging stores audit log messages in one specified file in the file system, without dividing them
into multiple files.

An Elytron file audit logger, named local-audit, is enabled by default. It writes Elytron audit logs to
EAP_HOME/standalone/log/audit.log on a standalone server, or
EAP_HOME/domain/log/audit.log for a managed domain host.

The attributes of a file audit logger are:

path and relative-to: Defines the location of the log file.

synchronized: Specifies whether every event should be immediately written to disk.

format: Use SIMPLE for human readable text format, or JSON for storing individual events in
JSON.

You can use a command similar to the following to create a file audit log:

/subsystem=elytron/file-audit-
log=my_audit_log:add(path="my_audit.log",relative-
to="jboss.server.log.dir",format=SIMPLE,synchronized=true)

Periodic Rotating File Audit Logging
Periodic rotating file audit logging automatically rotates audit log files based on a configured schedule. It
has the same basic attributes as the default file audit logger, with the following additional attribute:

suffix: This must be in the java.text.SimpleDateFormat format, for example .yyyy-
MM-dd-HH. The period of the rotation is automatically calculated based on this suffix, and the
suffix is appended to the end of the log file names.

You can use a command similar to the following to create a periodic rotating file audit log:

/subsystem=elytron/periodic-rotating-file-audit-
log=my_periodic_audit_log:add(path="my_periodic_audit.log",relative-
to="jboss.server.log.dir",format=SIMPLE,synchronized=false,suffix=".yyyy-
MM-dd-HH")

Size Rotating File Audit Logging
Size rotating file audit logging automatically rotates audit log files when the log file reaches a configured
file size. It has the same basic attributes as the default file audit logger, with the following additional
attributes:

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

18

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_audit_logging

rotate-size: The maximum size that the log file can reach before being rotated. The default
is 2m for 2 megabytes.

max-backup-index: The maximum number of files to backup when rotating.

rotate-on-boot: By default, a new log file is not created on server restart. You can set this to
true to rotate the log on server restart.

suffix: This optionally adds a date suffix to a rotated log. This must be in the
java.text.SimpleDateFormat format, for example .yyyy-MM-dd-HH.

When the log file size exceeds the limit defined by the rotate-size attribute, the suffix .1 is appended
to the end of the current file and a new log file is created. If there are any existing log files, their suffixed
number is incremented by one, for example audit_log.1 is renamed to audit_log.2. This happens
until the maximum number of log files defined by max-backup-index is reached. When the max-
backup-index is exceeded, the file that is over limit, for example audit_log.99, is removed.

You can use a command similar to the following to create a size rotating file audit log:

/subsystem=elytron/size-rotating-file-audit-
log=my_size_log:add(path="my_size_audit.log",relative-
to="jboss.server.log.dir",format=SIMPLE,synchronized=false,rotate-
size="2m",max-backup-index=10)

Syslog Audit Logging
A syslog handler specifies the parameters by which audit log entries are sent to a syslog server,
specifically the syslog server’s host name and port on which the syslog server is listening. Sending audit
logging to a syslog server provides more security options than logging to a local file or local syslog
server. Multiple syslog handlers can be defined and be active at the same time.

1. Add a syslog handler.

/subsystem=elytron/syslog-audit-log=syslog-logger:add(host-
name=HOST_NAME, port=PORT, server-address=SERVER_ADDRESS,
format=JSON, transport=UDP)

2. Enable syslog audit logging.

/subsystem=elytron/security-domain=domain-with-syslog-logger:write-
attribute(name=security-event-listener, value=syslog-logger)

IMPORTANT

To send logs to syslog server over TLS, you can add the following configuration:

/subsystem=elytron/syslog-audit-log=remote-
audit:add(transport=SSL_TCP,server-
address=127.0.0.1,port=9898,host-name=Elytron,ssl-
context=audit-ssl)

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

19

NOTE

To send security events to more destinations, mainly loggers, the aggregate-
security-event-listener resource is used. This delivers all events to all listeners
specified in the aggregate listener definition.

1.1.2.17. Enable and Disable the Elytron Subsystem

The elytron subsystem comes pre-configured with the default JBoss EAP profiles alongside the legacy
security subsystem.

If you are using a profile where the elytron subsystem has not been configured, you can add it by
adding the elytron extension and enabling the elytron subsystem.

To add the elytron extension required for the elytron subsystem:

/extension=org.wildfly.extension.elytron:add()

To enable the elytron subsystem in JBoss EAP:

/subsystem=elytron:add

reload

To disable the elytron subsystem in JBoss EAP:

/subsystem=elytron:remove

reload

IMPORTANT

Other subsystems within JBoss EAP may have dependencies on the elytron
subsystem. If these dependencies are not resolved before disabling it, you will see errors
when starting JBoss EAP.

1.1.3. Legacy Security Subsystem

1.1.3.1. Enable and Disable the Security Subsystem

To disable the security subsystem in JBoss EAP:

/subsystem=security:remove

IMPORTANT

Other subsystems within JBoss EAP may have dependencies on the security subsystem.
If these dependencies are not resolved before disabling it, you will see errors when
starting JBoss EAP.

To enable the security subsystem in JBoss EAP:

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

20

/subsystem=security:add

1.1.4. Legacy Security Realms

JBoss EAP uses security realms to define authentication and authorization mechanisms, such as local,
LDAP, properties, which can then be used by the management interfaces. For more background
information on security realms, see the Security Realms section of the Red Hat JBoss Enterprise
Application Platform Security Architecture guide.

Example: Security Realms

NOTE

In addition to updating the existing security realms, JBoss EAP also allows you to create
new security realms. You can create new security realms via the management console as
well as invoking the following command from the management CLI:

/core-service=management/security-realm=NEW-REALM-NAME:add()

If you create a new security realm and want to use a properties file for authentication or
authorization, you must create a new properties file specifically for the new security
domain. JBoss EAP does not reuse existing files used by other security domains nor
does it automatically create new files specified in the configuration if they do not exist.

1.1.5. Using Authentication and Socket Bindings for Securing the Management
Interfaces

<security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local" skip-group-loading="true"/>
 <properties path="mgmt-users.properties" relative-
to="jboss.server.config.dir"/>
 </authentication>
 <authorization map-groups-to-roles="false">
 <properties path="mgmt-groups.properties" relative-
to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 <security-realm name="ApplicationRealm">
 <authentication>
 <local default-user="$local" allowed-users="*" skip-group-
loading="true"/>
 <properties path="application-users.properties" relative-
to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-
to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
</security-realms>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

21

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#security_realms

By default, JBoss EAP defines an http-interface to connect to the management interfaces:

[standalone@localhost:9990 /] /core-service=management:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "access" => {...},
 "ldap-connection" => undefined,
 "management-interface" => {"http-interface" => {
 "allowed-origins" => undefined,
 "console-enabled" => true,
 "http-authentication-factory" => "management-http-
authentication",
 "http-upgrade" => {
 "enabled" => true,
 "sasl-authentication-factory" => "management-sasl-
authentication"
 },
 "http-upgrade-enabled" => true,
 "sasl-protocol" => "remote",
 "secure-socket-binding" => undefined,
 "security-realm" => undefined,
 "server-name" => undefined,
 "socket-binding" => "management-http",
 "ssl-context" => undefined
 }},
 "security-realm" => {...},
 "service" => undefined
 }
}

You can use a combination socket-binding, http-authentication-factory and http-
upgrade to secure the management interfaces using the elytron subsystem. Alternatively, you can
use socket-binding with security-realm to secure the management interfaces with the legacy
core management authentication. You can also disable the management interfaces, and configure users
of the interfaces to have various roles and access rights.

1.2. HOW TO SECURE THE MANAGEMENT INTERFACES

The following sections show how to perform various operations related to securing the JBoss EAP
management interfaces and related subsystems.

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide.

Elytron Integration with the Management CLI
The management interfaces can be secured using resources from the elytron subsystem in the same
way as it is done by the legacy security realms.

The SSL configuration for connections comes from one of these locations:

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

22

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/management_cli_guide/

Any SSL configuration within the CLI specific configuration.

The default SSL configuration that automatically prompts users to accept the server’s certificate.

The java system property.

Client configuration can be modified using the wildfly-config.xml file.

NOTE

If you set the -Dwildfly.config.url property, any file can be used by the client for
configuration.

1.2.1. Configure Networking and Ports

Depending on the configuration of the host, JBoss EAP may be configured to use various network
interfaces and ports. This allows JBoss EAP to work with different host, networking, and firewall
requirements.

For more information on the networking and ports used by JBoss EAP, as well as how to configure these
settings, see the Network and Port Configuration section of the JBoss EAP Configuration Guide.

1.2.2. Disabling the Management Console

Other clients, such as JBoss Operations Network, operate using the HTTP interface for managing JBoss
EAP. In order to continue using these services, just the web-based management console itself may be
disabled. This is accomplished by setting the console-enabled attribute to false:

/core-service=management/management-interface=http-interface/:write-
attribute(name=console-enabled,value=false)

1.2.3. Disabling Remote Access to JMX

Remote access to the jmx subsystem allows for JDK and application management operations to be
triggered remotely. To disable remote access to JMX in JBoss EAP, remove the remoting connector in
the jmx subsystem:

Removing the Remoting Connector

/subsystem=jmx/remoting-connector=jmx/:remove

For more information on JMX, see the JMX section of the Red Hat JBoss Enterprise Application Platform
Security Architecture guide.

1.2.4. Silent Authentication

The default installation of JBoss EAP contains a method of silent authentication for a local management
CLI user. This allows the local user the ability to access the management CLI without user name or
password authentication. This functionality is enabled as a convenience, and to assist local users
running the management CLI scripts without requiring authentication. It is considered a useful feature
given that access to the local configuration typically also gives the user the ability to add their own user
details or otherwise disable security checks.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

23

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#network_and_port_configuration
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#jmx

The convenience of silent authentication for local users can be disabled where greater security control is
required. This can be achieved by removing the local element within the security-realm attribute of
the configuration file. This is applicable to both standalone instance as well as managed domain.

IMPORTANT

The removal of the local element should only be done if the impact on the JBoss EAP
instance and its configuration is fully understood.

To remove silent authentication when using the elytron subsystem:

[standalone@localhost:9990 /] /subsystem=elytron/sasl-authentication-
factory=managenet-sasl-authentication:read-resource
{
 "outcome" => "success",
 "result" => {
 "mechanism-configurations" => [
 {
 "mechanism-name" => "JBOSS-LOCAL-USER",
 "realm-mapper" => "local"
 },
 {
 "mechanism-name" => "DIGEST-MD5",
 "mechanism-realm-configurations" => [{"realm-name" =>
"ManagementRealm"}]
 }
],
 "sasl-server-factory" => "configured",
 "security-domain" => "ManagementDomain"
 }
}

/subsystem=elytron/sasl-authentication-factory=temp-sasl-
authentication:list-remove(name=mechanism-configurations,index=0)

reload

To remove silent authentication when using a legacy security realm:

/core-service=management/security-
realm=REALM_NAME/authentication=local:remove

1.2.5. Removing Undertow Response Headers

The default JBoss EAP undertow subsystem includes two response headers that are appended to
each HTTP response by the default-host:

Server, which is set to JBoss-EAP/7

X-Powered-By, which is set to Undertow/1

Although these can be useful for development and debugging purposes, you might want to remove these
headers if you do not want to disclose information about the server in use.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

24

Use the following management CLI commands to remove these response headers from the default-
host:

/subsystem=undertow/server=default-server/host=default-host/filter-
ref=server-header:remove

/subsystem=undertow/server=default-server/host=default-host/filter-ref=x-
powered-by-header:remove

reload

1.2.6. Enable One-way SSL/TLS for the Management Interfaces Using the Elytron
Subsystem

In JBoss EAP, one-way SSL/TLS for the management interfaces can be enabled either by using a
security command or by using the elytron subsystem commands.

Using a Security Command
The security enable-ssl-management command can be used to enable one-way SSL/TLS for the
management interfaces.

Example: Wizard Usage

security enable-ssl-management --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default management.keystore): keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct y/n [y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): n

SSL options:
key store file: keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown,
ST=Unknown, C=Unknown
password: secret
validity: 365
alias: localhost
Server keystore file keystore.jks, certificate file keystore.pem and
keystore.csr file
will be generated in server configuration directory.
Do you confirm y/n :y

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

25

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

Using Elytron Subsystem Commands
The elytron subsystem commands can also be used to enable one-way SSL/TLS for the management
interfaces.

1. Configure a key-store.

/subsystem=elytron/key-store=httpsKS:add(path=keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-
text=secret},type=JKS)

NOTE

The above command uses relative-to to reference the location of the
keystore file. Alternatively, you can specify the full path to the keystore in path
and omit relative-to.

If the keystore file does not exist yet, the following commands can be used to generate an
example key pair:

/subsystem=elytron/key-store=httpsKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-
size=1024,validity=365,credential-reference={clear-
text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=httpsKS:store()

2. Create a key-manager and server-ssl-context.

/subsystem=elytron/key-manager=httpsKM:add(key-
store=httpsKS,algorithm="SunX509",credential-reference={clear-
text=secret})

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-
manager=httpsKM,protocols=["TLSv1.2"])

IMPORTANT

You need to know what key manager algorithms are provided by the JDK you are
using. For example, a JDK that uses SunJSSE provides the PKIX and SunX509
algorithms. You also need to determine what HTTPS protocols you want to
support. The example commands above use TLSv1.2. You can use the
cipher-suite-filter argument to specify which cipher suites are allowed,
and the use-cipher-suites-order argument to honor server cipher suite
order. The use-cipher-suites-order attribute by default is set to true. This
differs from the legacy security subsystem behavior, which defaults to
honoring client cipher suite order.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

26

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

3. Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-
attribute(name=ssl-context, value=httpsSSC)

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

4. Reload the JBoss EAP instance.

reload

One-way SSL/TLS is now enabled for the management interfaces.

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

NOTE

You can disable one-way SSL/TLS for the management interfaces using the disable-
ssl-management command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

1.2.7. Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron
Subsystem

1. Obtain or generate your client keystores:

2. Export the client certificate:

3. In JBoss EAP, two-way SSL/TLS for the management interfaces can be enabled either by using
a security command or by using the elytron subsystem commands.

a. Using a security command:
The security enable-ssl-management command can be used to enable two-way
SSL/TLS for the management interfaces.

security disable-ssl-management

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -
validity 365 -keystore client.keystore.jks -dname "CN=client" -
keypass secret -storepass secret

$ keytool -exportcert -keystore client.keystore.jks -alias client -
keypass secret -storepass secret -file /path/to/client.cer

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

27

NOTE

The following example does not validate the certificate as no chain of trust
exists. If you are using a trusted certificate, then the client certificate can be
validated without issue.

Example: Wizard Usage

security enable-ssl-management --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default management.keystore):
server.keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown correct y/n [y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): y
Client certificate (path to pem file): /path/to/client.cer
Validate certificate y/n (blank y): n
Trust-store file name (management.truststore):
server.truststore.jks
Password (blank generated): secret

SSL options:
key store file: server.keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown,
L=Unknown, ST=Unknown, C=Unknown
password: secret
validity: 365
alias: localhost
client certificate: /path/to/client.cer
trust store file: server.trustore.jks
trust store password: secret
Server keystore file server.keystore.jks, certificate file
server.pem and server.csr file will be generated in server
configuration directory.
Server truststore file server.trustore.jks will be generated in
server configuration directory.
Do you confirm y/n: y

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

28

NOTE

Once the command is executed, the management CLI will reload the server
and attempt to reconnect to it.

To complete the two-way SSL/TLS authentication, you need to import the
server certificate into the client truststore and configure your client to present
the client certificate.

b. Using Elytron subsystem commands:
The elytron subsystem commands can also be used to enable two-way SSL/TLS for the
management interfaces.

i. Obtain or generate your keystore. Before enabling one-way SSL/TLS in JBoss EAP, you
must obtain or generate the keystores, truststores and certificates you plan on using. To
generate an example set of keystores, truststores, and certificates in Red Hat Enterprise
Linux 7, use the following commands.

A. Configure a key-store.

/subsystem=elytron/key-
store=twoWayKS:add(path=server.keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-
text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-
size=1024,validity=365,credential-reference={clear-
text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=twoWayKS:store()

NOTE

The above command uses relative-to to reference the location of
the keystore file. Alternatively, you can specify the full path to the
keystore in path and omit relative-to.

B. Export your server certificate.

/subsystem=elytron/key-store=twoWayKS:export-
certificate(alias=localhost,path=/path/to/server.cer,pem=tr
ue)

C. Create a key-store for the server trust store and import the client certificate into
the server truststore.

NOTE

The following example does not validate the certificate as no chain of
trust exists. If you are using a trusted certificate, then the client
certificate can be validated without issue.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

29

/subsystem=elytron/key-
store=twoWayTS:add(path=server.truststore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-
text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:import-
certificate(alias=client,path=/path/to/client.cer,credentia
l-reference={clear-text=secret},trust-
cacerts=true,validate=false)

/subsystem=elytron/key-store=twoWayTS:store()

ii. Configure a key-manager, trust-manager, and server-ssl-context for the
server keystore and truststore.

/subsystem=elytron/key-manager=twoWayKM:add(key-
store=twoWayKS,credential-reference={clear-text=secret})

/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS,algorithm="SunX509")

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-
manager=twoWayKM,protocols=["TLSv1.2"],trust-
manager=twoWayTM,want-client-auth=true,need-client-auth=true)

IMPORTANT

You need to know what key manager algorithms are provided by the JDK
you are using. For example, a JDK that uses SunJSSE provides the
PKIX and SunX509 algorithms. You also need to determine what HTTPS
protocols you want to support. The example commands above use
TLSv1.2. You can use the cipher-suite-filter argument to
specify which cipher suites are allowed, and the use-cipher-suites-
order argument to honor server cipher suite order. The use-cipher-
suites-order attribute by default is set to true. This differs from the
legacy security subsystem behavior, which defaults to honoring client
cipher suite order.

A. Enable HTTPS on the management interface.

/core-service=management/management-interface=http-
interface:write-attribute(name=ssl-context,
value=twoWaySSC)

/core-service=management/management-interface=http-
interface:write-attribute(name=secure-socket-binding,
value=management-https)

B. Reload the JBoss EAP instance.

reload

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

30

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

NOTE

To complete the two-way SSL/TLS authentication, you need to
import the server certificate into the client truststore and configure
your client to present the client certificate.

C. Configure your client to use the client certificate.
You need to configure your client to present the trusted client certificate to the
server to complete the two-way SSL/TLS authentication. For example, if using a
browser, you need to import the trusted certificate into the browser’s trust store.

This results in a forced two-way SSL/TLS authentication, without changing the
original authentication to the server management.

If you want to change the original authentication method, see Configure
Authentication with Certificates in How to Configure Identity Management for JBoss
EAP.

Two-way SSL/TLS is now enabled for the management interfaces.

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

NOTE

You can disable two-way SSL/TLS for the management interfaces using the disable-
ssl-management command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

1.2.8. Enable SASL Authentication for the Management Interfaces Using the CLI
Security Command

In JBoss EAP, SASL authentication, using an elytron SASL authentication factory, can be enabled for the
management interfaces with the security enable-sasl-management command. This command
creates all of the non-existing resources required to configure authentication. By default this command
associates the included SASL factory with the http-interface.

Example: Enable SASL Authentication

security enable-sasl-management

Server reloaded.
Command success.
Authentication configured for management http-interface
sasl authentication-factory=management-sasl-authentication
security-domain=ManagementDomain

security disable-ssl-management

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

31

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#configure_authentication_with_certificates

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

If a SASL factory already exists, then the factory is updated to use the mechanism defined by the --
mechanism argument.

For a list of arguments, see Authorization Security Arguments.

Reorder SASL Mechanisms
The order of defined SASL mechanisms dictate how the server authenticates the request, with the first
matching mechanism being sent to the client. This order can be changed by passing a comma-
separated list into the following command.

security reorder-sasl-management --mechanisms-
order=MECHANISM1,MECHANISM2,...

Disable SASL Authentication for the Management Interfaces
To remove the active SASL authentication factory use the following command.

security disable-sasl-management

Alternatively, the command can be used to remove specific mechanisms from the active SASL
authentication factory.

security disable-sasl-management --mechanism=MECHANISM

1.2.9. Enable HTTP Authentication for the Management Interfaces Using the CLI
Security Command

In JBoss EAP, HTTP authentication, using an elytron HTTP authentication factory, can be enabled for
the management interfaces with the security enable-http-auth-management command. This
command can only target the http-interface, and with no additional arguments the included HTTP
authentication factory will be associated with this interface.

Example: Enable HTTP Authentication

security enable-http-auth-management

Server reloaded.
Command success.
Authentication configured for management http-interface
http authentication-factory=management-http-authentication
security-domain=ManagementDomain

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

32

If a HTTP factory already exists, then the factory is updated to use the mechanism defined by the --
mechanism argument.

For a list of arguments, see Authorization Security Arguments.

Disable HTTP Authentication for the Management Interfaces
To remove the active HTTP authentication factory use the following command.

security disable-http-auth-management

Alternatively, you can use the following command to remove specific mechanisms from the active HTTP
authentication factory.

security disable-http-auth-management --mechanism=MECHANISM

1.2.10. Configure the Management Interfaces for One-way SSL/TLS with Legacy
Core Management Authentication

Configuring the JBoss EAP management interfaces for communication only using one-way SSL/TLS
provides increased security. All network traffic between the client and the management interfaces is
encrypted, which reduces the risk of security attacks such as a man-in-the-middle attack.

In this procedure unencrypted communication with the JBoss EAP instance is disabled. This procedure
applies to both standalone server and managed domain configurations. For a managed domain, prefix
the management CLI commands with the name of the host, for example: /host=master.

IMPORTANT

While performing the steps for enabling one-way SSL/TLS on the management interfaces,
do not reload the configuration unless explicitly instructed. Doing so may cause you to be
locked out of the management interfaces.

1. Create a keystore to secure the management interfaces.

2. Ensure the management interfaces bind to HTTPS.

3. Optional: Implement a custom socket-binding-group.

4. Create a new security realm.

5. Configure the management interfaces to use the new security realm.

6. Configure the management interfaces to use the keystore.

7. Update the jboss-cli.xml.

Create a Keystore to Secure the Management Interfaces

NOTE

This keystore must be in JKS format as the management interfaces are not compatible
with keystores in JCEKS format.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

33

Use the following to generate a keystore, replacing the example values for the parameters, for example
alias, keypass, keystore, storepass and dname, with the correct values for the environment.

NOTE

The parameter validity specifies for how many days the key is valid. A value of 730
equals two years.

Ensure the Management Interfaces Bind to HTTPS

Running a Standalone Server

To ensure the management interfaces bind to HTTPS, you must add the management-https
configuration and remove the management-http configuration.

Use the following CLI commands to bind the management interfaces to HTTPS:

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

/core-service=management/management-interface=http-interface:undefine-
attribute(name=socket-binding)

Running a Managed Domain

Change the socket element within the management-interface attribute by adding secure-port and
removing port configuration.

Use the following commands to bind the management interfaces to HTTPS:

/host=master/core-service=management/management-interface=http-
interface:write-attribute(name=secure-port,value=9993)

/host=master/core-service=management/management-interface=http-
interface:undefine-attribute(name=port)

Optional: Implement a Custom socket-binding-group
If you want to use a custom socket-binding-group, you must ensure the management-https
binding is defined, which by default is bound to port 9993. You can verify this from the socket-
binding-group attribute of the server’s configuration file or using the management CLI:

/socket-binding-group=standard-sockets/socket-binding=management-
https:read-resource(recursive=true)

{
 "outcome" => "success",
 "result" => {
 "client-mappings" => undefined,

$ keytool -genkeypair -alias appserver -storetype jks -keyalg RSA -keysize
2048 -keypass password1 -keystore
EAP_HOME/standalone/configuration/identity.jks -storepass password1 -dname
"CN=appserver,OU=Sales,O=Systems Inc,L=Raleigh,ST=NC,C=US" -validity 730 -
v

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

34

 "fixed-port" => false,
 "interface" => "management",
 "multicast-address" => undefined,
 "multicast-port" => undefined,
 "name" => "management-https",
 "port" => expression "${jboss.management.https.port:9993}"
 }
}

Create a New Security Realm
In this example, the new security realm using HTTPS, ManagementRealmHTTPS, uses a properties file
named https-mgmt-users.properties located in the
EAP_HOME/standalone/configuration/ directory for storing user names and passwords.

1. Create a properties file for storing user name and passwords.
User names and passwords can be added to the file later, but for now, you need to create an
empty file named https-mgmt-users.properties and save it to that location. The below
example shows using the touch command, but you may also use other mechanisms, such as a
text editor.

Example: Using the touch Command to Create an Empty File

2. Next, use the following management CLI commands to create a new security realm named
ManagementRealmHTTPS:

/core-service=management/security-realm=ManagementRealmHTTPS:add

/core-service=management/security-
realm=ManagementRealmHTTPS/authentication=properties:add(path=https-
mgmt-users.properties,relative-to=jboss.server.config.dir)

3. Add users to the properties file.
At this point, you have created a new security realm and configured it to use a properties file for
authentication. You must now add users to that properties file using the add-user script, which
is available in the EAP_HOME/bin/ directory. When running the add-user script, you must
specify both the properties file and the security realm using the -up and -r options respectively.
From there, the add-user script will interactively prompt you for the user name and password
information to store in the https-mgmt-users.properties file.

$ touch EAP_HOME/standalone/configuration/https-mgmt-
users.properties

$ EAP_HOME/bin/add-user.sh -up
EAP_HOME/standalone/configuration/https-mgmt-users.properties -r
ManagementRealmHTTPS
...
Enter the details of the new user to add.
Using realm 'ManagementRealmHTTPS' as specified on the command line.
...
Username : httpUser
Password requirements are listed below. To modify these restrictions
edit the add-user.properties configuration file.
 - The password must not be one of the following restricted values
{root, admin, administrator}

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

35

IMPORTANT

When configuring security realms that use properties files to store usernames and
passwords, it is recommended that each realm use a distinct properties file that is
not shared with another realm.

Configure the Management Interfaces to Use the New Security Realm
Use the following management CLI command to configure the management interfaces to use the new
security realm.

/core-service=management/management-interface=http-interface:write-
attribute(name=security-realm,value=ManagementRealmHTTPS)

Configure the Management Interfaces to Use the Keystore
Use the below management CLI command to configure the management interfaces to use the keystore.
For the parameters file, password and alias their values must be copied from the Create a Keystore to
Secure the Management Interfaces step.

/core-service=management/security-realm=ManagementRealmHTTPS/server-
identity=ssl:add(keystore-path=identity.jks,keystore-relative-
to=jboss.server.config.dir,keystore-password=password1, alias=appserver)

NOTE

To update the keystore password, use the following CLI command:

/core-service=management/security-
realm=ManagementRealmHTTPS/server-identity=ssl:write-
attribute(name=keystore-password,value=newpassword)

At this point, you need to reload the server’s configuration:

reload

 - The password must contain at least 8 characters, 1 alphabetic
character(s), 1 digit(s), 1 non-alphanumeric symbol(s)
 - The password must be different from the username
...
Password :
Re-enter Password :
About to add user 'httpUser' for realm 'ManagementRealmHTTPS'
...
Is this correct yes/no? yes
..
Added user 'httpUser' to file 'EAP_HOME/configuration/https-mgmt-
users.properties'
...
Is this new user going to be used for one AS process to connect to
another AS process?
e.g. for a slave host controller connecting to the master or for a
Remoting connection for server to server EJB calls.
yes/no? no

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

36

After reloading the server configuration, the log should contain the following, just before the text which
states the number of services that are started:

The management interfaces are now listening on port 9993, which confirms that the procedure was
successful.

IMPORTANT

At this point, the CLI will disconnect and will be unable to reconnect since the port
bindings have changed. Proceed to the next step to update the jboss-cli.xml file to
allow the management CLI to reconnect.

Update the jboss-cli.xml File
If using the management CLI to perform management actions, the following changes must to be made to
the EAP_HOME/bin/jboss-cli.xml file:

Update the value of <default-protocol> to https-remoting.

In <default-controller>, update the value of <protocol> to https-remoting.

In <default-controller>, update the value of <port> to 9993.

Example: jboss-cli.xml

The next time you connect to the management interface using the management CLI, you must accept
the server certificate and authenticate against the ManagementRealmHTTPS security realm:

Example: Accepting Server Certificate and Authenticating

13:50:54,160 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0061:
Http management interface listening on https://127.0.0.1:9993/management
13:50:54,162 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0052:
Admin console listening on https://127.0.0.1:9993

<jboss-cli xmlns="urn:jboss:cli:2.0">
 <default-protocol use-legacy-override="true">https-remoting</default-
protocol>
 <!-- The default controller to connect to when 'connect' command is
executed w/o arguments -->
 <default-controller>
 <protocol>https-remoting</protocol>
 <host>localhost</host>
 <port>9993</port>
 </default-controller>
...

$./jboss-cli.sh -c
Unable to connect due to unrecognised server certificate
Subject - CN=appserver,OU=Sales,O=Systems Inc,L=Raleigh,ST=NC,C=US
Issuer - CN=appserver, OU=Sales, O=Systems Inc, L=Raleigh, ST=NC, C=US
Valid From - Tue Jun 28 13:38:48 CDT 2016
Valid To - Thu Jun 28 13:38:48 CDT 2018
MD5 : 76:f4:81:8b:7e:c3:be:6d:ee:63:c1:7a:b7:b8:f0:fb
SHA1 : ea:e3:f1:eb:53:90:69:d0:c9:69:4a:5a:a3:20:8f:76:c1:e6:66:b6

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

37

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

1.2.11. Setting up Two-way SSL/TLS for the Management Interfaces with Legacy
Core Management Authentication

Two-way SSL/TLS authentication, also known as client authentication, authenticates both the client and
the server using SSL/TLS certificates. This differs from the Configure the Management Interfaces for
One-way SSL/TLS section in that both the client and server each have a certificate. This provides
assurance that not only is the server who it says it is, but the client is also who it says it is.

In this section the following conventions are used:

HOST1

The JBoss server hostname. For example: jboss.redhat.com.

HOST2

A suitable name for the client. For example: myclient. Note this is not necessarily an actual
hostname.

CA_HOST1

The DN (distinguished name) to use for the HOST1 certificate. For example:
cn=jboss,dc=redhat,dc=com.

CA_HOST2

The DN (distinguished name) to use for the HOST2 certificate. For example:
cn=myclient,dc=redhat,dc=com.

Prerequisites

NOTE

If a password vault is used to store the keystore and truststore passwords, which is
recommended, the password vault should already be created. For more information on the
password vault, see the Password Vault section as well as the Password Vault System
section of the Red Hat JBoss Enterprise Application Platform 7 Security Architecture
guide.

Accept certificate? [N]o, [T]emporarily, [P]ermenantly : p
Authenticating against security realm: ManagementRealmHTTPS
Username: httpUser
Password:
[standalone@localhost:9993 /]

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

38

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#password_vault_system

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly disabled in
favor of TLSv1.1 or TLSv1.2 in all affected packages.

1. Generate the keystores.

2. Export the certificates.

3. Import the certificates into the opposing truststores.

4. Define a CertificateRealm.
Define a CertificateRealm in the configuration for the server (host.xml or standalone.xml)
and point the interface to it. This can be done using the following commands:

/core-service=management/security-realm=CertificateRealm:add()

/core-service=management/security-realm=CertificateRealm/server-
identity=ssl:add(keystore-path=/path/to/HOST1.keystore.jks,
keystore-password=secret,alias=HOST1_alias)

/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-
path=/path/to/HOST1.truststore.jks,keystore-password=secret)

5. Change the security-realm of the http-interface to the new CertificateRealm.

/core-service=management/management-interface=http-interface:write-
attribute(name=security-realm,value=CertificateRealm)

$ keytool -genkeypair -alias HOST1_alias -keyalg RSA -keysize 1024 -
validity 365 -keystore HOST1.keystore.jks -dname "CA_HOST1" -keypass
secret -storepass secret

$ keytool -genkeypair -alias HOST2_alias -keyalg RSA -keysize 1024 -
validity 365 -keystore HOST2.keystore.jks -dname "CA_HOST2" -keypass
secret -storepass secret

$ keytool -exportcert -keystore HOST1.keystore.jks -alias
HOST1_alias -keypass secret -storepass secret -file HOST1.cer

$ keytool -exportcert -keystore HOST2.keystore.jks -alias
HOST2_alias -keypass secret -storepass secret -file HOST2.cer

$ keytool -importcert -keystore HOST1.truststore.jks -storepass
secret -alias HOST2_alias -trustcacerts -file HOST2.cer

$ keytool -importcert -keystore HOST2.truststore.jks -storepass
secret -alias HOST1_alias -trustcacerts -file HOST1.cer

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

39

6. Add the SSL/TLS configuration for the CLI.

IMPORTANT

In addition to adding the two-way SSL/TLS, the management interface should
also be configured to bind to HTTPS. For details, see Ensure the Management
Interfaces Bind to HTTPS in the section entitled Configure the Management
Interfaces for One-way SSL/TLS with Legacy Core Management Authentication.

Add the SSL/TLS configuration for the CLI, which uses EAP_HOME/bin/jboss-cli.xml as a
settings file.

To store the keystore and truststore passwords in plain text, edit EAP_HOME/bin/jboss-
cli.xml and add the SSL/TLS configuration using the appropriate values for the variables:

Example: jboss-cli.xml Storing Keystore and Truststore Passwords in Plain Text

To use the keystore and truststore passwords stored in a password vault, you need to add the
vault configuration and appropriate vault values to EAP_HOME/bin/jboss-cli.xml:

Example: jboss-cli.xml Storing Keystore and Truststore Passwords in a Password
Vault

<ssl>
 <alias>HOST2_alias</alias>
 <key-store>/path/to/HOST2.keystore.jks</key-store>
 <key-store-password>secret</key-store-password>
 <trust-store>/path/to/HOST2.truststore.jks</trust-store>
 <trust-store-password>secret</trust-store-password>
 <modify-trust-store>true</modify-trust-store>
</ssl>

<ssl>
 <vault>
 <vault-option name="KEYSTORE_URL" value="path-
to/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-
5WNXs8oEbrs"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="12345678"/>
 <vault-option name="ITERATION_COUNT" value="50"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
 </vault>
 <alias>HOST2_alias</alias>
 <key-store>/path/to/HOST2.keystore.jks</key-store>
 <key-store-password>VAULT::VB::cli_pass::1</key-store-password>
 <key-password>VAULT::VB::cli_pass::1</key-password>
 <trust-store>/path/to/HOST2.truststore.jks</trust-store>
 <trust-store-password>VAULT::VB::cli_pass::1</trust-store-
password>
 <modify-trust-store>true</modify-trust-store>
</ssl>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

40

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

1.2.12. HTTPS Listener Reference

For a full list of attributes available for the HTTPS listener, see the Undertow Subsystem Attributes
section in the JBoss EAP Configuration Guide.

1.2.12.1. About Cipher Suites

You can configure a list of the encryption ciphers which are allowed. For JSSE syntax, it must be a
comma-separated list. For OpenSSL syntax, it must be a colon-separated list. Ensure that only one
syntax is used. The default is the JVM default.

IMPORTANT

Using weak ciphers is a significant security risk. See NIST Guidelines for NIST
recommendations on cipher suites.

See the OpenSSL documentation for a list of available OpenSSL ciphers. Note that the following are not
supported:

@SECLEVEL

SUITEB128

SUITEB128ONLY

SUITEB192

See the Java documentation for a list of the standard JSSE ciphers.

To update the list of enabled cipher suites, use the enabled-cipher-suites attribute of the HTTPS listener
in the undertow subsystem.

Example: Management CLI Command for Updating the List of Enabled Cipher Suites

/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=enabled-cipher-
suites,value="TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA")

NOTE

The example only lists two possible ciphers, but real-world examples will likely use more.

1.2.13. Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat Enterprise Linux
7

You can configure Undertow to use FIPS 140-2 compliant cryptography for SSL/TLS. The scope of this
configuration example is limited to Red Hat Enterprise Linux 7, using the Mozilla NSS library in FIPS
mode.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

41

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#undertow-attribute-refs
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=915295
https://www.openssl.org/docs/man1.1.0/apps/ciphers.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#Cipher

IMPORTANT

Red Hat Enterprise Linux 7 must already be configured to be FIPS 140-2 compliant. For
more information, see the solution titled How can I make RHEL 6 or RHEL 7 FIPS 140-2
compliant?, which is located on the Red Hat Customer Portal.

WARNING

Using the TLS 1.2 protocol when running JBoss EAP in FIPS mode can cause a
NoSuchAlgorithmException to occur. More details on this issue can be found in
the solution titled NoSuchAlgorithmException: no such algorithm:
SunTls12MasterSecret, which is located on the Red Hat Customer Portal.

Therefore, it is not possible to configure HTTP/2 in FIPS mode because HTTP/2
requires the TLS 1.2 protocol. FIPS mode (PKCS11) supports the TLS 1 and the
TLS 1.1 protocols so you can use:

TLS 1.1 in case of Oracle/OpenJDK

TLS 1 in case of IBM java

To configure Undertow to use FIPS 140-2 compliant cryptography for SSL/TLS, you must do the
following:

Configure the NSS database.

Configure the management CLI for FIPS 140-2 compliant cryptography for SSL/TLS.

Configure the undertow subsystem to use either Elytron or the legacy core management
authentication.

NOTE

The OpenSSL provider requires a private key, but it is not possible to retrieve a private
key from the PKCS11 store. FIPS does not allow the export of unencrypted keys from
FIPS compliant cryptographic module. Therefore, for both the elytron subsystem as
well as legacy security, it is not possible to use the OpenSSL provider for TLS when in
FIPS mode.

1.2.13.1. Configuring the NSS database

1. Create a directory owned by the appropriate user to house the NSS database.

Example Commands for Creating the NSS Database Directory

$ mkdir -p /usr/share/jboss-as/nssdb
$ chown jboss /usr/share/jboss-as/nssdb
$ modutil -create -dbdir /usr/share/jboss-as/nssdb

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

42

https://access.redhat.com/knowledge/solutions/137833
https://access.redhat.com/solutions/1309153

NOTE

The jboss user is only an example. You need to replace it with a user on your
operating system that you plan on using for running JBoss EAP.

2. Create the NSS configuration file: /usr/share/jboss-as/nss_pkcsll_fips.cfg.
It must specify:

a name

the directory where the NSS library is located

the directory where the NSS database was created in the previous step

Example: nss_pkcsll_fips.cfg

name = nss-fips
nssLibraryDirectory=/usr/lib64
nssSecmodDirectory=/usr/share/jboss-as/nssdb
nssDbMode = readOnly
nssModule = fips

NOTE

If you are not running a 64-bit version of Red Hat Enterprise Linux 6 then set
nssLibraryDirectory to /usr/lib instead of /usr/lib64.

3. Edit the $JAVA_HOME/jre/lib/security/java.security configuration file.
Add the following line to $JAVA_HOME/jre/lib/security/java.security:

Example: java.security

security.provider.1=sun.security.pkcs11.SunPKCS11 /usr/share/jboss-
as/nss_pkcsll_fips.cfg

NOTE

The nss_pkcsll_fips.cfg configuration file specified in the above line is the
file created in the previous step.

You also need to update the following link in
$JAVA_HOME/jre/lib/security/java.security from:

security.provider.5=com.sun.net.ssl.internal.ssl.Provider

to

security.provider.5=com.sun.net.ssl.internal.ssl.Provider SunPKCS11-
nss-fips

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

43

IMPORTANT

Any other security.provider.X lines in this file, for example
security.provider.2, must have the value of their X increased by one to
ensure that this provider is given priority.

4. Run the modutil command on the NSS database directory you created in the previous step to
enable FIPS mode.

modutil -fips true -dbdir /usr/share/jboss-as/nssdb

NOTE

You may get a security library error at this point requiring you to regenerate the
library signatures for some of the NSS shared objects.

5. Set the password on the FIPS token.
The name of the token must be NSS FIPS 140-2 Certificate DB.

modutil -changepw "NSS FIPS 140-2 Certificate DB" -dbdir
/usr/share/jboss-as/nssdb

IMPORTANT

The password used for the FIPS token must be a FIPS compliant password. If the
password is not strong enough, you may receive an error: ERROR: Unable to
change password on token "NSS FIPS 140-2 Certificate DB".

6. Create a certificate using the NSS tools.

Example Command

7. Verify that the JVM can read the private key from the PKCS11 keystore by running the following
command:

$ keytool -list -storetype pkcs11

$ certutil -S -k rsa -n undertow -t "u,u,u" -x -s "CN=localhost,
OU=MYOU, O=MYORG, L=MYCITY, ST=MYSTATE, C=MY" -d /usr/share/jboss-
as/nssdb

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

44

IMPORTANT

Once you have FIPS enabled, you may see the following error when starting JBoss EAP:

10:16:13,993 ERROR [org.jboss.msc.service.fail] (MSC service
thread 1-1) MSC000001: Failed to start service
jboss.server.controller.management.security_realm.ApplicationRe
alm.key-manager: org.jboss.msc.service.StartException in
service
jboss.server.controller.management.security_realm.ApplicationRe
alm.key-manager: WFLYDM0018: Unable to start service
 at
org.jboss.as.domain.management.security.AbstractKeyManagerServi
ce.start(AbstractKeyManagerService.java:85)
 at
org.jboss.msc.service.ServiceControllerImpl$StartTask.startServ
ice(ServiceControllerImpl.java:1963)
 at
org.jboss.msc.service.ServiceControllerImpl$StartTask.run(Servi
ceControllerImpl.java:1896)
 at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExe
cutor.java:1142)
 at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolEx
ecutor.java:617)
 at java.lang.Thread.run(Thread.java:745)
Caused by: java.security.KeyStoreException: FIPS mode: KeyStore
must be from provider SunPKCS11-nss-fips
 at
sun.security.ssl.KeyManagerFactoryImpl$SunX509.engineInit(KeyMa
nagerFactoryImpl.java:67)
 at
javax.net.ssl.KeyManagerFactory.init(KeyManagerFactory.java:256
)
 at
org.jboss.as.domain.management.security.AbstractKeyManagerServi
ce.createKeyManagers(AbstractKeyManagerService.java:130)
 at
org.jboss.as.domain.management.security.AbstractKeyManagerServi
ce.start(AbstractKeyManagerService.java:83)
 ... 5 more

This message will appear if you have any existing key managers configured, such as the
default key manager in legacy core management authentication, that do not use FIPS
140-2 compliant cryptography.

1.2.13.2. Configure the Management CLI for FIPS 140-2 Compliant Cryptography for
SSL/TLS

You must configure the JBoss EAP management CLI to work in an environment with FIPS 140-2
compliant cryptography for SSL/TLS enabled. By default, if you try to use the management CLI in such
an environment, the following exception is thrown:

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

45

org.jboss.as.cli.CliInitializationException:
java.security.KeyManagementException: FIPS mode: only SunJSSE TrustManagers
may be used.

If you are using the legacy security subsystem:
Update the javax.net.ssl.keyStore and javax.net.ssl.trustStore system
properties in the jboss-cli.sh file, as shown below:

JAVA_OPTS="$JAVA_OPTS -Djavax.net.ssl.trustStore=NONE -
Djavax.net.ssl.trustStoreType=PKCS11"
JAVA_OPTS="$JAVA_OPTS -Djavax.net.ssl.keyStore=NONE -
Djavax.net.ssl.keyStoreType=PKCS11 -
Djavax.net.ssl.keyStorePassword=P@ssword123"

If you are using the elytron subsystem:

1. Create an XML configuration file for the management CLI with the following contents:

Example: cli-wildfly-config.xml

NOTE

If you are using the IBM JDK, see the IBM management CLI configuration
example for the specific configuration required.

2. When starting the management CLI, pass the configuration file to the management CLI script
using the -Dwildfly.config.url property. For example:

$ jboss-cli.sh -Dwildfly.config.url=cli-wildfly-config.xml

1.2.13.3. Configure the Elytron and Undertow Subsystems

1. Add the FIPS 140-2 compliant cryptography key-store, key-manager and ssl-context.

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <key-stores>
 <key-store name="truststore" type="PKCS11">
 <key-store-clear-password password="P@ssword123"/>
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-cli-context">
 <trust-store key-store-name="truststore"/>
 <cipher-suite selector="${cipher.suite.filter}"/>
 <protocol names="TLSv1.1"/>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-cli-context"/>
 </ssl-context-rules>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

46

/subsystem=elytron/key-
store=fipsKS:add(type=PKCS11,provider="SunPKCS11-nss-
fips",credential-reference={clear-text="P@ssword123"})

/subsystem=elytron/key-manager=fipsKM:add(key-
store=fipsKS,algorithm="SunX509",provider=SunPKCS11-nss-
fips,credential-reference={clear-text="P@ssword123"})

/subsystem=elytron/server-ssl-context=fipsSSC:add(key-
manager=fipsKM,protocols=["TLSv1.1"])

2. Update the undertow subsystem to use the new ssl-context.

NOTE

https-listener must always have either a security-realm or ssl-
context configured. When changing between the two configurations, the
commands must be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-context,value=fipsSSC)
run-batch

reload

In the elytron subsystem, OpenJDK and Oracle JDK in FIPS mode restrict the usage of any advanced
features that are based on providing custom KeyManager or TrustManager implementations. The
following configuration attributes do not work:

On the client:

ssl-context.key-store-ssl-certificate

On the server:

server-ssl-context.security-domain

trust-manager.certificate-revocation-list

1.2.13.4. Configure Undertow with the Legacy Core Management Authentication

Optionally, you can still use the legacy core management authentication instead of the elytron
subsystem to complete the setup of FIPS 140-2 compliant cryptography for SSL/TLS:

1. Configure Undertow to use SSL/TLS.

NOTE

The following commands below must either be run in batch mode, or the server
must be reloaded after adding the ssl server identity. The example below is
shown using batch mode.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

47

batch

/core-service=management/security-realm=HTTPSRealm:add

/core-service=management/security-realm=HTTPSRealm/server-
identity=ssl:add(keystore-provider=PKCS11, keystore-
password="strongP@ssword1")

/subsystem=undertow/server=default-server/https-
listener=https:add(socket-binding=https, security-realm=HTTPSRealm,
enabled-protocols="TLSv1.1")

run-batch

The basic details for configuring Undertow to SSL/TLS are covered in Setting up an SSL/TLS for
Applications.

2. Configure the cipher suites used by Undertow.
Once you have SSL/TLS configured, you need to configure the https listener and security realm
to have a specific set of cipher suites enabled:

Required Cipher Suites

SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA

The basics behind enabling cipher suites for the https listener are covered in About Cipher
Suites. To enable cipher suites on the https listener:

Example Command for Enabling Cipher Suites on the Https Listener

/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=enabled-cipher-
suites,value="SSL_RSA_WITH_3DES_EDE_CBC_SHA,SSL_DHE_RSA_WITH_3DES_ED
E_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_DSS_WITH_AES_128_CBC_
SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TL
S_DHE_DSS_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_
ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

48

,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_3DES_EDE_C
BC_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES
_256_CBC_SHA,TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_RSA_WITH_AE
S_128_CBC_SHA,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_3
DES_EDE_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WIT
H_AES_256_CBC_SHA,TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_anon_
WITH_AES_128_CBC_SHA,TLS_ECDH_anon_WITH_AES_256_CBC_SHA")

3. Enable cipher suites on the security realm.

Example Command for Enabling Cipher Suites on the Security Realm

/core-service=management/security-realm=HTTPSRealm/server-
identity=ssl:write-attribute(name=enabled-cipher-suites, value=
[SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA])

1.2.14. FIPS 140-2 Compliant Cryptography on IBM JDK

On the IBM JDK, the IBM Java Cryptographic Extension (JCE) IBMJCEFIPS provider and the IBM Java
Secure Sockets Extension (JSSE) FIPS 140-2 Cryptographic Module (IBMJSSE2) for multi-platforms
provide FIPS 140-2 compliant cryptography.

For more information on the IBMJCEFIPS provider, see the IBM Documentation for IBM JCEFIPS and
NIST IBMJCEFIPS – Security Policy. For more information on IBMJSSE2, see Running IBMJSSE2 in
FIPS mode.

1.2.14.1. Key Storage

The IBM JCE does not provide a keystore. The keys are stored on the computer and do not leave its
physical boundary. If the keys are moved between computers they must be encrypted.

To run keytool in FIPS-compliant mode use the -providerClass option on each command like this:

keytool -list -storetype JCEKS -keystore mystore.jck -storepass mystorepass
-providerClass com.ibm.crypto.fips.provider.IBMJCEFIPS

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

49

https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/JCEFIPSDocs/ibmjcefips.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp497.pdf
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/runfips.html

1.2.14.2. Management CLI Configuration

To configure the management CLI for FIPS 140-2 compliant cryptography on the IBM JDK, you must use
a management CLI configuration file specifically for the IBM JDK, such as the following:

Example: cli-wildfly-config-ibm.xml

1.2.14.3. Examine FIPS Provider Information

To examine information about the IBMJCEFIPS used by the server, enable debug-level logging by
adding -Djavax.net.debug=true to the standalone.conf or domain.conf files. Information
about the FIPS provider is logged to the server.log file, for example:

04:22:45,685 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using
MessageDigest SHA from provider IBMJCEFIPS version 1.7
04:22:45,689 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH
KeyPairGenerator from provider from init IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using
KeyFactory DiffieHellman from provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using
KeyAgreement DiffieHellman from provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH
KeyAgreement from provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH
KeyAgreement from provider from initIBMJCEFIPS version 1.7

1.2.15. Starting a Managed Domain when the JVM is Running in FIPS Mode

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <key-stores>
 <key-store name="truststore" type="JKS">
 <file name="/path/to/truststore"/>
 <key-store-clear-password password="P@ssword123"/>
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-cli-context">
 <trust-store key-store-name="truststore"/>
 <cipher-suite selector="${cipher.suite.filter}"/>
 <protocol names="TLSv1"/>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-cli-context"/>
 </ssl-context-rules>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

50

IMPORTANT

It is assumed you have a managed domain, FIPS configured, as well as all necessary
certificates configured. This includes having imported the domain controller’s certificate
into each controller’s truststore. For more details on configuring a managed domain, see
the Domain Management section in the JBoss EAP Configuration Guide. For more details
on configuring FIPS, see Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat
Enterprise Linux 7.

You need to update each host controller and the master domain controller to use SSL/TLS for
communication.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly disabled in
favor of TLSv1.1 in all affected packages.

1. Create an SSL/TLS security realm on the master domain controller.
You need to create an SSL/TLS security realm on the master domain controller configured to
use your NSS database as a PKCS11 provider.

Example: Security Realm on the Master Domain Controller

2. Create an SSL/TLS security realm on each host controller.
You need to create a security realm with an SSL/TLS truststore for authentication.

Example: Security Realm on Each Host Controller

<security-realm name="HTTPSRealm">
 <server-identities>
 <ssl>
 <engine enabled-protocols="TLSv1.1"/>
 <keystore provider="PKCS11" keystore-
password="strongP@ssword1"/>
 </ssl>
 </server-identities>
 <authentication>
 <local default-user="\$local"/>
 <properties path="https-users.properties" relative-
to="jboss.domain.config.dir"/>
 </authentication>
</security-realm>

<security-realm name="HTTPSRealm">
 <authentication>
 <truststore provider="PKCS11" keystore-
password="strongP@ssword1"/>
 </authentication>
</security-realm>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

51

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#domain_management

NOTE

You need to repeat this process on each host.

3. Secure the native interface on the master domain controller.
You need to ensure that the native interface on the master domain controller is secured with the
security realm you just created.

Example: Native Interface

4. Use the SSL/TLS realm on each host controller to connect to the master domain controller.
You need to update the security realm used for connecting to the master domain controller. This
change must be done directly in the host controller’s configuration file, for example host.xml or
host-slave.xml, while the server is not running.

Example: Host Controller Configuration File

5. Update how each server connects back to its host controller.
You also need to update how each server connects back to its host controller.

Example: Server Configuration

6. Configure two-way SSL/TLS in a managed domain.
To enable two-way SSL/TLS, add a truststore authentication method to the SSL/TLS security
realm for the master domain controller, execute the following management CLI commands:

/host=master/core-service=management/security-
realm=HTTPSRealm/authentication=truststore:add(keystore-
provider="PKCS11",keystore-password="strongP@ssword1")

<management-interfaces>
 ...
 <native-interface security-realm="HTTPSRealm">
 <socket interface="management"
port="${jboss.management.native.port:9999}"/>
 </native-interface>
</management-interfaces>

<domain-controller>
 <remote security-realm="HTTPSRealm">
 <discovery-options>
 <static-discovery name="primary"
protocol="${jboss.domain.master.protocol:remote}"
host="${jboss.domain.master.address}"
port="${jboss.domain.master.port:9999}"/>
 </discovery-options>
 </remote>
</domain-controller>

<server name="my-server" group="my-server-group">
 <ssl ssl-protocol="TLS" trust-manager-algorithm="SunX509"
truststore-type="PKCS11" truststore-password="strongP@ssword1"/>
</server>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

52

reload --host=master

You also need to update each host controller’s security realm to have an SSL server identity,
execute the following management CLI commands:

/host=host1/core-service=management/security-
realm=HTTPSRealm/server-identity=ssl:add(keystore-provider=PKCS11,
keystore-password="strongP@ssword1",enabled-protocols=["TLSv1.1"])

reload --host=host1

IMPORTANT

You also need to ensure that each host’s certificate is imported into the domain
controller’s truststore.

1.3. SECURITY AUDITING

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem or the management interfaces. Auditing mechanisms are
configured as part of a security domain or management interface.

Auditing uses provider modules. Both included provider modules as well as custom implementations
may be used.

1.3.1. Configure Security Auditing for the Legacy Security Domains

To configure security auditing settings for a security domain, the following steps must be performed from
the management console:

1. Open the security domain’s detailed view.

a. Click Configuration at the top of the screen.

b. In a managed domain, select a profile to modify from the Profile selection box at the top left.

c. Click on Subsystems, then Security.

d. Click on the security domain to edit and click View.

2. Navigate to the auditing configuration.
Click on Audit on the left side of the screen.

The configuration area is divided into two areas: Provider Modules and Details. The provider
module is the basic unit of configuration. A security domain can include several provider
modules each of which can include attributes and options.

3. Add a provider module.
Click Add and fill in the Code section with the class name of the provider module. Also fill in the
Name section with the desired name.

4. Verify that the module is working.
The goal of an audit module is to provide a way to monitor the events in the security
subsystem. This monitoring can be done by means of writing to a log file, email notifications, or
any other measurable auditing mechanism.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

53

For example, JBoss EAP includes the
org.jboss.security.audit.providers.LogAuditProvider module by default. If
enabled following the steps above, this audit module writes security notifications to an
audit.log file in the log subfolder within the EAP_HOME directory.

To verify if the steps above have worked in the context of the
org.jboss.security.audit.providers.LogAuditProvider, perform an action that is
likely to trigger a notification and then check the audit log file.

5. Optional: Add, edit, or remove module options.
To add options to your module, click its entry in the Modules list, and select the Module
Options tab in the Details section of the page. Click Add, and provide the key and value for the
option.

To edit an option that already exists, click Remove to remove it, and click Add to add it again
with the correct options.

1.4. CONFIGURE ONE-WAY AND TWO-WAY SSL/TLS FOR
APPLICATIONS

1.4.1. Automatic Self-signed Certificate Creation for Applications

When using the legacy security realms, JBoss EAP provides automatic generation of self-signed
certificate for development purposes.

Example: Server Log Showing Self-signed Certificate Creation

15:26:09,031 WARN [org.jboss.as.domain.management.security] (MSC service
thread 1-7) WFLYDM0111: Keystore
/path/to/jboss/standalone/configuration/application.keystore not found, it
will be auto generated on first use with a self signed certificate for
host localhost
...
15:26:10,076 WARN [org.jboss.as.domain.management.security] (MSC service
thread 1-2) WFLYDM0113: Generated self signed certificate at
/path/to/jboss/configuration/application.keystore. Please note that self
signed certificates are not secure, and should only be used for testing
purposes. Do not use this self signed certificate in production.
SHA-1 fingerprint of the generated key is
00:11:22:33:44:55:66:77:88:99:aa:bb:cc:dd:ee:ff:00:11:22:33
SHA-256 fingerprint of the generated key is
00:11:22:33:44:55:66:77:88:99:00:aa:bb:cc:dd:ee:ff:00:11:22:33:44:55:66:77
:88:99:aa:bb:cc:dd:ee
...

This certificate is created for testing purposes and is assigned to the HTTPS interface used by
applications. The keystore containing the certificate will be generated if the file does not exist the first
time the HTTPS interface is accessed.

Example: Default ApplicationRealm Using the Self-signed Certificate

<security-realm name="ApplicationRealm">
 <server-identities>
 <ssl>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

54

Example: Default HTTPS Interface Configuration

NOTE

If you want to disable the self-signed certificate creation, you will need to remove the
generate-self-signed-certificate-host="localhost" from the server
keystore configuration. The generate-self-signed-certificate-host attribute
holds the host name for which the self-signed certificate should be generated.

WARNING

This self-signed certificate is intended for testing purposes only and is not intended
for use in production environments. For more information on configuring SSL/TLS
for applications with Elytron, see the Enable One-way SSL/TLS for Applications
using the Elytron Subsystem and Enable Two-way SSL/TLS for Applications using
the Elytron Subsystem sections. For more information on configuring SSL/TLS for
applications with legacy security, see the Enable One-way SSL/TLS for Applications
Using Legacy Security Realms and Enable Two-way SSL/TLS for Applications Using
Legacy Security Realms sections.

1.4.2. Using Elytron

1.4.2.1. Enable One-way SSL/TLS for Applications Using the Elytron Subsystem

In JBoss EAP, one-way SSL/TLS for deployed applications can be enabled either by using a security
command or by using the elytron subsystem commands.

Using a Security Command
The security enable-ssl-http-server command can be used to enable one-way SSL/TLS for
deployed applications.

 <keystore path="application.keystore" relative-
to="jboss.server.config.dir" keystore-password="password" alias="server"
key-password="password" generate-self-signed-certificate-
host="localhost"/>
 </ssl>
 </server-identities>
 ...
</security-realm>

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 ...
 <server name="default-server">
 ...
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost">
 ...

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

55

Example: Wizard Usage

NOTE

Once the command is executed, the management CLI will reload the server.

One-way SSL/TLS is now enabled for applications.

Using Elytron Subsystem Commands
In JBoss EAP, you can use the elytron subsystem, along with the undertow subsystem, to enable
one-way SSL/TLS for deployed applications.

1. Configure a key-store in JBoss EAP.

/subsystem=elytron/key-store=httpsKS:add(path=/path/to/keystore.jks,
credential-reference={clear-text=secret}, type=JKS)

If the keystore file does not exist yet, the following commands can be used to generate an
example key pair:

/subsystem=elytron/key-store=httpsKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-
size=1024,validity=365,credential-reference={clear-

security enable-ssl-http-server --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default default-server.keystore): keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct y/n [y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): n

SSL options:
key store file: keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown,
ST=Unknown, C=Unknown
password: secret
validity: 365
alias: localhost
Server keystore file keystore.jks, certificate file keystore.pem and
keystore.csr file
will be generated in server configuration directory.
Do you confirm y/n: y

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

56

text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=httpsKS:store()

2. Configure a key-manager that references your key-store.

/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,
algorithm="SunX509", credential-reference={clear-text=secret})

IMPORTANT

You need to know what key manager algorithms are provided by the JDK you are
using. For example, a JDK that uses SunJSSE provides the PKIX and SunX509
algorithms.

The example command above uses SunX509 for the key manager algorithm.

3. Configure a server-ssl-context that references your key-manager.

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-
manager=httpsKM, protocols=["TLSv1.2"])

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The
example command above uses TLSv1.2. You can use the cipher-suite-
filter argument to specify which cipher suites are allowed, and the use-
cipher-suites-order argument to honor server cipher suite order. The use-
cipher-suites-order attribute by default is set to true. This differs from the
legacy security subsystem behavior, which defaults to honoring client cipher
suite order.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

4. Check and see if the https-listener is configured to use a legacy security realm for its SSL
configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-
attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

57

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

ApplicationRealm legacy security realm for its SSL configuration. Undertow cannot
reference both a legacy security realm and an ssl-context in Elytron at the same time so you
must remove the reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to the
security realm in the next step.

5. Remove the reference to the legacy security realm, and update the https-listener to use
the ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or ssl-
context configured. When changing between the two configurations, the
commands must be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-context, value=httpsSSC)
run-batch

6. Reload the server.

reload

One-way SSL/TLS is now enabled for applications.

NOTE

You can disable one-way SSL/TLS for deployed applications using the disable-ssl-
http-server command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

1.4.2.2. Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

1. Obtain or generate your client keystores:

2. Export the client certificate:

security disable-ssl-http-server

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -
validity 365 -keystore client.keystore.jks -dname "CN=client" -
keypass secret -storepass secret

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

58

3. Enable two-way SSL/TLS for deployed applications.
In JBoss EAP, two-way SSL/TLS for deployed applications can be enabled either by using a
security command or by using the elytron subsystem commands.

a. Using a security command.
The security enable-ssl-http-server command can be used to enable two-way
SSL/TLS for the deployed applications.

NOTE

The following example does not validate the certificate as no chain of trust
exists. If you are using a trusted certificate, then the client certificate can be
validated without issue.

Example: Wizard Usage

keytool -exportcert -keystore client.keystore.jks -alias client -
keypass secret -storepass secret -file /path/to/client.cer

security enable-ssl-http-server --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default default-server.keystore):
server.keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown correct y/n [y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): y
Client certificate (path to pem file): /path/to/client.cer
Validate certificate y/n (blank y): n
Trust-store file name (management.truststore):
server.truststore.jks
Password (blank generated): secret

SSL options:
key store file: server.keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown,
L=Unknown, ST=Unknown, C=Unknown
password: secret
validity: 365
alias: localhost
client certificate: /path/to/client.cer
trust store file: server.trustore.jks
trust store password: secret
Server keystore file server.keystore.jks, certificate file
server.pem and server.csr file will be generated in server

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

59

NOTE

Once the command is executed, the management CLI will reload the server.

To complete the two-way SSL/TLS authentication, you need to import the
server certificate into the client truststore and configure your client to present
the client certificate.

b. Using elytron subsystem commands.
In JBoss EAP, you can also use the elytron subsystem, along with the undertow
subsystem, to enable two-way SSL/TLS for deployed applications.

i. Obtain or generate your keystore.
Before enabling two-way SSL/TLS in JBoss EAP, you must obtain or generate the
keystores, truststores and certificates you plan on using.

A. Create a server keystore:

/subsystem=elytron/key-
store=twoWayKS:add(path=/PATH/TO/server.keystore.jks,creden
tial-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-
size=1024,validity=365,credential-reference={clear-
text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=twoWayKS:store()

NOTE

The command above uses an absolute path to the keystore.
Alternatively you can use the relative-to attribute to specify the
base directory variable and path specify a relative path.

/subsystem=elytron/key-
store=twoWayKS:add(path=server.keystore.jks,rela
tive-to=jboss.server.config.dir,credential-
reference={clear-text=secret},type=JKS)

B. Export the server certificate:

/subsystem=elytron/key-store=twoWayKS:export-
certificate(alias=localhost,path=/path/to/server.cer,pem=tr
ue)

ii. Create a keystore for the server truststore and import the client certificate into the server
truststore.

configuration directory.
Server truststore file server.trustore.jks will be generated in
server configuration directory.
Do you confirm y/n: y

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

60

NOTE

The following example does not validate the certificate as no chain of
trust exists. If you are using a trusted certificate, then the client certificate
can be validated without issue.

/subsystem=elytron/key-
store=twoWayTS:add(path=/path/to/server.truststore.jks,credent
ial-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:import-
certificate(alias=client,path=/path/to/client.cer,credential-
reference={clear-text=secret},trust-
cacerts=true,validate=false)

/subsystem=elytron/key-store=twoWayTS:store()

iii. Configure a key-manager that references your keystore key-store.

/subsystem=elytron/key-manager=twoWayKM:add(key-
store=twoWayKS, algorithm="SunX509", credential-reference=
{clear-text=secret})

IMPORTANT

You need to know what key manager algorithms are provided by the JDK
you are using. For example, a JDK that uses SunJSSE provides the
PKIX and SunX509 algorithms.

The example command below uses SunX509 for the key manager
algorithm.

iv. Configure a trust-manager that references your truststore key-store.

/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS, algorithm="SunX509")

IMPORTANT

You need to know what key manager algorithms are provided by the JDK
you are using. For example, a JDK that uses SunJSSE provides the
PKIX and SunX509 algorithms.

The example command above uses SunX509 for the key manager
algorithm.

v. Configure a server-ssl-context that references your key-manager, trust-
manager, and enables client authentication:

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-
manager=twoWayKM, protocols=["TLSv1.2"], trust-
manager=twoWayTM, need-client-auth=true)

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

61

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The
example command above uses TLSv1.2. You can use the cipher-
suite-filter argument to specify which cipher suites are allowed, and
the use-cipher-suites-order argument to honor server cipher suite
order. The use-cipher-suites-order attribute by default is set to
true. This differs from the legacy security subsystem behavior, which
defaults to honoring client cipher suite order.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

vi. Check and see if the https-listener is configured to use a legacy security realm for
its SSL configuration.

/subsystem=undertow/server=default-server/https-
listener=https:read-attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the
ApplicationRealm legacy security realm for its SSL configuration. Undertow cannot
reference both a legacy security realm and an ssl-context in the elytron
subsystem at the same time. So you must remove the reference to the legacy security
realm.

NOTE

If the result is undefined, you do not need to remove the reference to
the security realm in the next step.

vii. Remove the reference to the legacy security realm, and update the https-listener
to use the ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or
ssl-context configured. When changing between the two
configurations, the commands must be executed as a single batch, as
shown below.

batch
/subsystem=undertow/server=default-server/https-

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

62

listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-context,
value=twoWaySSC)
run-batch

viii. Reload the server.

reload

NOTE

To complete the two-way SSL/TLS authentication, you need to import the
server certificate into the client truststore and configure your client to
present the client certificate.

$ keytool -importcert -keystore
client.truststore.jks -storepass secret -alias
localhost -trustcacerts -file /path/to/server.cer

ix. Configure your client to use the client certificate.
You need to configure your client to present the trusted client certificate to the server to
complete the two-way SSL/TLS authentication. For example, if using a browser, you
need to import the trusted certificate into the browser’s trust store.

This procedure forces a two-way SSL/TLS but it does not change the original
authentication method of the application.

If you want to change the original authentication method, see Configure Authentication
with Certificates in How to Configure Identity Management for JBoss EAP.

Two-way SSL/TLS is now enabled for applications.

NOTE

You can disable two-way SSL/TLS for deployed applications using the disable-ssl-
http-server command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

1.4.3. Using Legacy Security Realms

security disable-ssl-http-server

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

63

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#configure_authentication_with_certificates

IMPORTANT

As a prerequisite, an SSL/TLS encryption key and certificate should be created and
placed in an accessible directory. Additionally, relevant information, such as keystore
aliases and passwords, desired cipher suites, should also be accessible. For examples on
generating SSL/TLS Keys and Certificates, see the first two steps in the Setting up Two-
way SSL/TLS for the Management Interfaces section. For more information about the
HTTPS listener, including cipher suites, see the HTTPS Listener Reference section.

1.4.3.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms

This example assumes that the keystore, identity.jks, has been copied to the server configuration
directory and configured with the given properties. Administrators should substitute their own values for
the example ones.

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide.

1. Add and configure an HTTPS security realm first. Once the HTTPS security realm has been
configured, configure an https-listener in the undertow subsystem that references the
security realm:

batch

/core-service=management/security-realm=HTTPSRealm:add

/core-service=management/security-realm=HTTPSRealm/server-
identity=ssl:add(keystore-path=identity.jks, keystore-relative-
to=jboss.server.config.dir, keystore-password=password1,
alias=appserver)

/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=security-realm,
value=HTTPSRealm)

run-batch

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

2. Restart the JBoss EAP instance for the changes to take effect.

1.4.3.2. Enable Two-way SSL/TLS for Applications Using Legacy Security Realms

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

64

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/management_cli_guide/

Setting up two-way SSL/TLS for applications follows many of the same procedures outlined in Setting up
Two-way SSL/TLS for the Management Interfaces. To set up two-way SSL/TLS for applications, you
need to do the following:

1. Generate the stores for both the client and server

2. Export the certificates for both the client and server

3. Import the certificates into the opposing truststores

4. Define a security realm, for example CertificateRealm, on the server that uses the server’s
keystore and truststore

5. Update the undertow subsystem to use the security realm and require client verification

The first four steps are covered in Setting up Two-way SSL/TLS for the Management Interfaces.

IMPORTANT

If the server has not been reloaded since the new security realm has been added, you
must reload the server before performing the next step.

Update the Undertow Subsystem
Once the keystores, certificates, truststores, and security realms have been created and configured, you
need to add an HTTPS listener to the undertow subsystem, use the security realm you created, and
require client verification:

/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=security-realm, value=CertificateRealm)

/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=verify-client, value=REQUIRED)

IMPORTANT

You must reload the server for these changes to take effect.

IMPORTANT

Any client connecting to a JBoss EAP instance with two-way SSL/TLS enabled for
applications must have access to a client certificate or keystore, in other words a client
keystore whose certificate is included in the server’s truststore. If the client is using a
browser to connect to the JBoss EAP instance, you need to import that certificate or
keystore into the browser’s certificate manager.

NOTE

More details on using certificate-based authentication in applications, in addition to two-
way SSL/TLS with applications, can be found in the Configuring a Security Domain to
Use Certificate-based Authentication section of the JBoss EAP How to Configure Identity
Management Guide.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

65

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#cert_based_auth_security_domain

1.5. ENABLE HTTP AUTHENTICATION FOR APPLICATIONS USING THE
CLI SECURITY COMMAND

In JBoss EAP, HTTP authentication, using an elytron HTTP authentication factory, can be enabled for
the undertow security domain with the security enable-http-auth-http-server command. By
default this command associates the application HTTP factory to the specified security domain.

Example: Enable HTTP Authentication on the Undertow Security Domain

security enable-http-auth-http-server --security-domain=SECURITY_DOMAIN

Server reloaded.
Command success.
Authentication configured for security domain SECURITY_DOMAIN
http authentication-factory=application-http-authentication
security-domain=SECURITY_DOMAIN

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

If a HTTP factory already exists, then the factory is updated to use the mechanism defined by the --
mechanism argument.

For a list of arguments, see Authorization Security Arguments.

Disable HTTP Authentication for the Management Interfaces
To remove the active HTTP authentication factory use the following command.

security disable-http-auth-http-server --security-domain=SECURITY_DOMAIN

Alternatively, you can use the following command to remove specific mechanisms from the active SASL
authentication factory.

security disable-http-auth-http-server --mechanism=MECHANISM --security-
domain=SECURITY_DOMAIN

1.6. SASL AUTHENTICATION MECHANISMS

Simple Authentication and Security Layer (SASL) authentication mechanisms are used for defining the
mechanisms for authenticating connections to a JBoss EAP server using the elytron subsystem, and
for clients connecting to servers. Clients can be other JBoss EAP instances, or Elytron Client. SASL
authentication mechanisms in JBoss EAP are also significantly used in Elytron integration with the
remoting subsystem.

1.6.1. Choosing SASL Authentication Mechanisms

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

66

https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer

NOTE

Although JBoss EAP and Elytron Client work with a variety of SASL authentication
mechanisms, you must ensure that the mechanisms you use are supported. See this list
for the support levels for SASL authentication mechanisms.

The authentication mechanisms you use depends on your environment and desired authentication
method. The following list summarizes the use of some of the supported SASL authentication
mechanisms:

ANONYMOUS

Unauthenticated guest access.

DIGEST-MD5

Uses HTTP digest authentication as a SASL mechanism.

EXTERNAL

Uses authentication credentials that are implied in the context of the request. For example, IPsec or
TLS authentication.

Mechanisms beginning with GS

Authentication using Kerberos.

JBOSS-LOCAL-USER

Provides authentication by testing that the client has the same file access as the local user that is
running the JBoss EAP server. This is useful for other JBoss EAP instances running on the same
machine.

OAUTHBEARER

Uses authentication provided by OAuth as a SASL mechanism.

PLAIN

Plain text username and password authentication.

Mechanisms beginning with SCRAM

Salted Challenge Response Authentication Mechanism (SCRAM) that uses a specified hashing
function.

Mechanisms ending with -PLUS

Indicates a channel binding variant of a particular authentication mechanism. You should use these
variants when the underlying connection uses SSL/TLS.

For more information on individual SASL authentication mechanisms, see the IANA SASL mechanism list
and individual mechanism memos.

1.6.2. Configuring SASL Authentication Mechanisms on the Server Side

Configuring SASL authentication mechanisms on the server side is done using SASL authentication
factories.

There are two levels of configuration required:

A sasl-authentication-factory, where you specify authentication mechanisms.

A configurable-sasl-server-factory that aggregates one or more of sasl-
authentication-factory, and configures mechanism properties as well as optionally
applying filters to enable or disable certain authentication mechanisms.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

67

https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xml

The following example demonstrates creating a new configurable-sasl-server-factory, and a
sasl-authentication-factory that uses DIGEST-MD5 as a SASL authentication mechanism for
application clients.

/subsystem=elytron/configurable-sasl-server-
factory=mySASLServerFactory:add(sasl-server-factory=elytron)

/subsystem=elytron/sasl-authentication-factory=mySASLAuthFactory:add(sasl-
server-factory=mySASLServerFactory,security-
domain=ApplicationDomain,mechanism-configurations=[{mechanism-name=DIGEST-
MD5,mechanism-realm-configurations=[{realm-name=ApplicationRealm}]}])

1.6.3. Specifying SASL Authentication Mechanisms on the Client Side

SASL authentication mechanisms used by a client are specified using a sasl-mechanism-selector.
You can specify any supported SASL authentication mechanisms that are exposed by the server that the
client is connecting to.

A sasl-mechanism-selector is defined in Elytron configurations where authentication is configured:

In the elytron subsystem, this is an attribute of an authentication-configuration. For
example:

/subsystem=elytron/authentication-configuration=myAuthConfig:write-
attribute(name=sasl-mechanism-selector,value="DIGEST-MD5")

An example of using an authentication-configuration with a sasl-mechanism-
selector can be seen in Configuring SSL/TLS Between Domain and Host Controllers Using
Elytron.

For Elytron Client, it is specified under the configuration element of authentication-
configurations in the client configuration file, usually named wildfly-config.xml. For
example:

See How to Configure Identity Management for more information on configuring client authentication with
Elytron Client.

sasl-mechanism-selector Grammar
The selector string for sasl-mechanism-selector has a specific grammar.

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <authentication-rules>
 <rule use-configuration="default" />
 </authentication-rules>
 <authentication-configurations>
 <configuration name="default">
 <sasl-mechanism-selector selector="#ALL" />
 ...
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

68

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_client_authentication

In a simple form, individual mechanisms are specified by listing their names in order, separated by a
spaces. For example, to specify DIGEST-MD5, SCRAM-SHA-1, and SCRAM-SHA-256 as allowed
authentication mechanisms, use the following string: DIGEST-MD5 SCRAM-SHA-1 SCRAM-SHA-256.

More advanced usage of the grammar can use the following special tokens:

#ALL: All mechanisms.

#FAMILY(NAME): Mechanisms belonging to the specified mechanism family. For example, the
family could be DIGEST, EAP, GS2, SCRAM, or IEC-ISO-9798.

#PLUS: Mechanisms that use channel binding. For example, SCRAM-SHA-XXX-PLUS or
GS2-XXX-PLUS.

#MUTUAL: Mechanisms that authenticate the server in some way, for example making the server
prove that the server knows the password. #MUTUAL includes families such as
#FAMILY(SCRAM) and #FAMILY(GS2).

#HASH(ALGORITHM): Mechanisms that use the specified hash algorithm. For example, the
algorithm could be MD5, SHA-1, SHA-256, SHA-384, or SHA-512.

The above tokens and names can also be used with the following operations and predicates:

-: Forbids

!: Inverts

&&: And

||: Or

==: Equals

?: If

#TLS: Is true when TLS is active, otherwise false.

Below are some examples of sasl-mechanism-selector strings and their meaning:

#TLS && !#MUTUAL: When TLS is active, all mechanisms without mutual authentication.

#ALL -ANONYMOUS: All mechanisms, except for ANONYMOUS.

SCRAM-SHA-1 SCRAM-SHA-256: Adds those two mechanisms in that order.

(SCRAM-SHA-1 || SCRAM-SHA-256): Adds the two mechanisms in the order that the
provider or server presents them.

!#HASH(MD5): Any mechanism that does not use the MD5 hashing algorithm.

#FAMILY(DIGEST): Any digest mechanism.

1.6.4. Configuring SASL Authentication Mechanism Properties

You can configure authentication mechanism properties on both the server side and on the client side.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

69

On the server side, you define authentication mechanism properties in the configurable-
sasl-server-factory. The following example defines the
com.sun.security.sasl.digest.utf8 property with a value of false.

/subsystem=elytron/configurable-sasl-server-
factory=mySASLServerFactory:map-
put(name=properties,key=com.sun.security.sasl.digest.utf8,value=fals
e)

On the client side, you define authentication mechanisms properties in the client’s authentication
configuration:

In the elytron subsystem, define the authentication mechanism properties in your
authentication-configuration. The following example defines the
wildfly.sasl.local-user.quiet-auth property with a value of true.

/subsystem=elytron/authentication-configuration=myAuthConfig:map-
put(name=mechanism-properties,key=wildfly.sasl.local-user.quiet-
auth,value=true)

For Elytron Client, authentication mechanism properties are specified under the
configuration element of authentication-configurations in the client
configuration file, usually named wildfly-config.xml. For example:

You can see a list of standard Java SASL authentication mechanism properties in the Java
documentation. Other JBoss EAP-specific SASL authentication mechanism properties are listed in the
Authentication Mechanisms Reference.

1.7. ELYTRON INTEGRATION WITH THE MODCLUSTER SUBSYSTEM

One of the security capabilities exposed by elytron subsystem is a client ssl-context that can be
used to configure the modcluster subsystem to communicate with a load balancer using SSL/TLS.

When protecting the communication between the application server and the load balancer, you need to
define a client ssl-context in order to:

Define a truststore holding the certificate chain that will be used to validate load balancer’s
certificate.

Define a trust manager to perform validations against the load balancer’s certificate.

...
<authentication-configurations>
 <configuration name="default">
 <sasl-mechanism-selector selector="#ALL" />
 <set-mechanism-properties>
 <property key="wildfly.sasl.local-user.quiet-auth"
value="true" />
 </set-mechanism-properties>
 ...
 </configuration>
</authentication-configurations>
...

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

70

https://docs.oracle.com/javase/8/docs/api/javax/security/sasl/Sasl.html#field.summary

1.7.1. Defining a Client SSL Context and Configuring ModCluster Subsystem

The following procedure requires that a truststore and trust manager be configured. For information on
creating these see Create an Elytron Truststore and Create an Elytron Trust Manager.

1. Create the client SSL context.
This SSL context is going to be used by the modcluster subsystem when connecting to the
load balancer using SSL/TLS:

/subsystem=elytron/client-ssl-context=modcluster-client-ssl-
context:add(trust-manager=default-trust-manager)

2. Reference the newly created client SSL context using one of the following options.

Configure the modcluster subsystem by setting the ssl-context.

/subsystem=modcluster/mod-cluster-config=configuration:write-
attribute(name=ssl-context, value=modcluster-client-ssl-context)

Configure the undertow subsystem by defining the ssl-context attribute of the mod-
cluster filter.

/subsystem=undertow/configuration=filter/mod-
cluster=modcluster:write-attribute(name=ssl-
context,value=modcluster-client-ssl-context)

3. Reload the server.

reload

For configuring the modcluster subsystem and using two-way authentication, along with the trust
manager, the key manager also needs to be configured.

1. Create the keystore.

/subsystem=elytron/key-
store=twoWayKS:add(path=/path/to/client.keystore.jks, credential-
reference={clear-text=secret},type=JKS)

2. Configure the key manager.

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,
algorithm="SunX509", credential-reference={clear-text=secret})

3. Create the client SSL context.

/subsystem=elytron/client-ssl-context=modcluster-client-ssl-
context:add(trust-manager=default-trust-manager, key-
manager=twoWayKM)

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

71

NOTE

If you already have an existing client SSL context, you can add the key-
manager to it as follows:

/subsystem=elytron/client-ssl-context=modcluster-client-
ssl-context:write-attribute(name=key-manager,
value=twoWayKM)

4. Reload the server.

reload

1.8. ELYTRON INTEGRATION WITH THE JGROUPS SUBSYSTEM

Components in the elytron subsystem may be referenced when defining authorization or encryption
protocols in the jgroups subsystem. Full instructions on configuring these protocols are found in the
Securing a Cluster section of the Configuration Guide.

1.9. ELYTRON INTEGRATION WITH THE REMOTING SUBSYSTEM

1.9.1. Elytron Integration with Remoting Connectors

A remoting connector is specified by a SASL authentication factory, a socket binding, and an optional
SSL context. In particular, the attributes for a connector are as follows:

sasl-authentication-factory

A reference to the SASL authentication factory to use for authenticating requests to this connector.
For more information on creating this factory, see Create an Elytron Authentication Factory.

socket-binding

A reference to the socket binding, detailing the interface and port where the connector should listen
for incoming requests.

ssl-context

An optional reference to the server-side SSL Context to use for this connector. The SSL Context
contains the server key manager and trust manager to be used, and should be defined in instances
where SSL is desired.

For example, a connector can be added as follows, where SASL_FACTORY_NAME is an already defined
authentication factory and SOCKET_BINDING_NAME is an existing socket binding.

/subsystem=remoting/connector=CONNECTOR_NAME:add(sasl-authentication-
factory=SASL_FACTORY_NAME,socket-binding=SOCKET_BINDING_NAME)

If SSL is desired, a preconfigured server-ssl-context may be referenced using the ssl-context
attribute, as seen below.

/subsystem=remoting/connector=CONNECTOR_NAME:add(sasl-authentication-
factory=SASL_FACTORY_NAME,socket-binding=SOCKET_BINDING_NAME,ssl-
context=SSL_CONTEXT_NAME)

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

72

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#securing_cluster

Enable One-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
Before enabling one-way SSL/TLS in JBoss EAP, you must configure a key-store, key-manager,
and a server-ssl-context that references the defined key-manager.

The following SASL mechanisms support channel binding to external secure channels, such as
SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Create a socket-binding for the connector. The following command defines the
oneWayBinding binding that listens on port 11199.

/socket-binding-group=standard-sockets/socket-
binding=oneWayBinding:add(port=11199)

2. Create a connector that references the SASL authentication factory, the previously created
socket binding, and the SSL context.

/subsystem=remoting/connector=oneWayConnector:add(sasl-
authentication-factory=SASL_FACTORY,socket-
binding=oneWayBinding,ssl-context=SSL_CONTEXT)

IMPORTANT

In cases where you have both a security-realm and ssl-context defined,
JBoss EAP will use the SSL/TLS configuration provided by ssl-context.

3. Configure the client to trust the server certificate. A generic example client is found at Elytron
Client Side One Way Example. This example configures an ssl-context using the client
trust-store.

Enable Two-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
Before enabling two-way SSL/TLS in JBoss EAP, you must configure a separate key-store
components for the client and server certificates, a key-manager for the server key-store, a trust-
manager for the server trust-store, and a server-ssl-context that references the defined key-
manager and trust-manager.

The following SASL mechanisms support channel binding to external secure channels, such as
SSL/TLS:

GS2-KRB5-PLUS

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

73

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Create a socket-binding for the connector. The following command defines the
twoWayBinding binding that listens on port 11199.

/socket-binding-group=standard-sockets/socket-
binding=twoWayBinding:add(port=11199)

2. Create a connector that references the SASL authentication factory, the previously created
socket binding, and the SSL context.

/subsystem=remoting/connector=twoWayConnector:add(sasl-
authentication-factory=SASL_FACTORY,socket-
binding=twoWayBinding,ssl-context=SSL_CONTEXT)

IMPORTANT

In cases where you have both a security-realm and ssl-context defined,
JBoss EAP will use the SSL/TLS configuration provided by ssl-context.

3. Configure your client to trust the server certificate, and to present its certificate to the server.
You need to configure your client to present the trusted client certificate to the server to
complete the two-way SSL/TLS authentication. For example, if using a browser, you need to
import the trusted certificate into the browser’s truststore. A generic example client is found at
Elytron Client Side Two Way Example. This example configures an ssl-context using the
client trust-store and key-store.

Two-way SSL/TLS is now enabled on the remoting connector.

1.9.2. Elytron Integration with Remoting HTTP Connectors

A remote HTTP connection is specified by referencing a connector in the undertow system and a SASL
authentication factory defined in the elytron subsystem. The HTTP connector provides the
configuration for the HTTP upgrade-based remoting connector, and connects to an HTTP listener
specified by the connector-ref attribute.

The attributes for a connector are as follows:

connector-ref

A reference to a predefined undertow listener.

sasl-authentication-factory

A reference to the SASL authentication factory to use for authenticating requests to this connector.
For more information on creating this factory, see Create an Elytron Authentication Factory.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

74

For example, a http-connector can be added as follows, where CONNECTOR_NAME references the
undertow listener, and SASL_FACTORY_NAME is an already defined authentication factory in the
elytron subsystem.

/subsystem=remoting/http-connector=HTTP_CONNECTOR_NAME:add(connector-
ref=CONNECTOR_NAME,sasl-authentication-factory=SASL_FACTORY_NAME)

Enable One-Way SSL on the Remoting HTTP Connector
Before enabling one-way SSL/TLS in JBoss EAP, you must configure a key-store, key-manager,
and a server-ssl-context that references the defined key-manager.

The following SASL mechanisms support channel binding to external secure channels, such as
SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Check whether the https-listener is configured to use a legacy security realm for its SSL
configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-
attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the
ApplicationRealm legacy security realm for its SSL configuration. Undertow cannot
reference both a legacy security realm and an ssl-context in Elytron at the same time so you
must remove the reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to the
security realm in the next step.

2. Remove the reference to the legacy security realm, and update the https-listener to use
the ssl-context from Elytron.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

75

NOTE

https-listener must always have either a security-realm or ssl-
context configured. When changing between the two configurations, the
commands must be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-context,
value=SERVER_SSL_CONTEXT)
run-batch

3. Create an HTTP connector that references the HTTPS listener and the SASL authentication
factory.

/subsystem=remoting/http-connector=ssl-http-connector:add(connector-
ref=https,sasl-authentication-factory=SASL_FACTORY)

4. Reload the server.

reload

5. Configure the client to trust the server certificate. For example, if using a browser, you need to
import the trusted certificate into the browser’s truststore.

Enable Two-way SSL/TLS on the Remoting HTTP Connectors
Before enabling two-way SSL/TLS in JBoss EAP, you must configure separate key-store components
for the client and server certificates, a key-manager for the server key-store, a trust-manager for
the server trust-store, and a server-ssl-context that references the defined key-manager and
trust-manager.

The following SASL mechanisms support channel binding to external secure channels, such as
SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Check whether the https-listener is configured to use a legacy security realm for its SSL
configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

76

attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the
ApplicationRealm legacy security realm for its SSL configuration. Undertow cannot
reference both a legacy security realm and an ssl-context in Elytron at the same time so you
must remove the reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to the
security realm in the next step.

2. Remove the reference to the legacy security realm, and update the https-listener to use
the ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or ssl-
context configured. When changing between the two configurations, the
commands must be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-context,
value=SERVER_SSL_CONTEXT)
run-batch

3. Create an HTTP connector that references the HTTPS listener and the SASL authentication
factory.

/subsystem=remoting/http-connector=ssl-http-connector:add(connector-
ref=https,sasl-authentication-factory=SASL_FACTORY)

4. Reload the server.

reload

5. Configure your client to trust the server certificate, and to present its certificate to the server.
You need to configure your client to present the trusted client certificate to the server to
complete the two-way SSL/TLS authentication. For example, if using a browser, you need to
import the trusted certificate into the browser’s truststore.

Two-way SSL/TLS is now enabled on the remoting HTTP connector.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

77

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

1.9.3. Elytron Integration with Remoting Outbound Connectors

A remote outbound connection is specified by an outbound socket binding and an authentication context.
The authentication context provides all of the security information that is needed for the connection. In
particular, the attributes for a remote-outbound-connection are as follows:

outbound-socket-binding-ref - The name of the outbound socket binding, which is used
to determine the destination address and port for the connection.

authentication-context - A reference to the authentication context, which contains the
authentication configuration and the defined SSL context, if one exists, required for the
connection. For information on defining an authentication context, see Creating an
Authentication Context.

For example, a remote-outbound-connection can be added as follows, where
OUTBOUND_SOCKET_BINDING_NAME is an already defined outbound-socket-binding and
AUTHENTICATION_CONTEXT_NAME is an authentication-context that has already been
defined in the elytron subsystem configuration.

/subsystem=remoting/remote-outbound-
connection=OUTBOUND_CONNECTION_NAME:add(authentication-
context=AUTHENTICATION_CONTEXT_NAME, outbound-socket-binding-
ref=OUTBOUND_SOCKET_BINDING_NAME)

1.10. SECURING A MANAGED DOMAIN

In addition to securing the management interfaces, you can also secure communication between JBoss
EAP instances in a managed domain.

For information on concepts and general configuration for the managed domain operating mode, see the
Domain Management section of the JBoss EAP Configuration Guide.

1.10.1. Configure Password Authentication Between Slaves and the Domain
Controller Using Elytron

1. Add a user on the master domain controller.
A user needs to be added on the master domain controller for the slave controller to use for
authentication. If you are using the default file based user and group authentication mechanism,
this can be done by running EAP_HOME/bin/adduser.sh. Add the username, password and
other configurations when prompted.

The add-user utility can be used to manage both the users in the ManagementRealm and the
users in the ApplicationRealm.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

78

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#domain_management

NOTE

The server caches the contents of the properties files in memory. However, the
server does check the modified time of the properties files on each authentication
request and reloads if the time has been updated. This means that all changes
made by the add-user utility are immediately applied to any running server.

The slave controller attemps to authenticate using the native interface. If the native interface has
been secured with the ManagementRealm Elytron security realm, then you would need to add a
user to ManagementRealm for the slave controller to use.

NOTE

The default name of the realm for management users is ManagementRealm.
When the add-user utility prompts for the realm name, just accept the default
unless you have switched to a different realm.

The following example assumes the user slave with the password password1! has been
added to ManagementRealm.

2. Add an authentication-configuration to the slave controller.

/host=slave/subsystem=elytron/authentication-
configuration=slave:add(authentication-name=slave, credential-
reference={clear-text=password1!})

3. Add an authentication-context to the slave controller.

/host=slave/subsystem=elytron/authentication-context=slave-
context:add(match-rules=[{authentication-configuration=slave}])

4. Specify the domain controller location and authentication-context in the slave controller.

<domain-controller>
 <remote protocol="remote" host="localhost" port="9999"
authentication-context="slave-context"/>
</domain-controller>

1.10.2. Configure Password Authentication Between Slaves and the Domain
Controller Using Legacy Core Management Authentication

When configuring a managed domain, by default, the master domain controller is configured to require
authentication for each slave controller that connects to it. To configure slave controllers with the proper
credentials, you must do the following:

1. Add a user to the master domain controller
You need to add a user to the master domain controller using the add-user script. Specifically,
you will need to ensure that the user is added to the same realm the master uses to secure its
management interface, which by default is ManagementRealm. You also need to ensure you
answer yes to the Is this new user going to be used for one AS process to connect to another
AS process? question.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

79

IMPORTANT

After adding the user, the script will output a <secret> element, which will be used
in the next step. You must keep this value for use in the next step.

Example: Adding a Slave User

$ EAP_HOME/bin/add-user.sh

What type of user do you wish to add?
 a) Management User (mgmt-users.properties)
 b) Application User (application-users.properties)
(a): a

Enter the details of the new user to add.
Using realm 'ManagementRealm' as discovered from the existing
property files.
Username : slave-user
Password recommendations are listed below. To modify these
restrictions edit the add-user.properties configuration file.
 - The password should be different from the username
 - The password should not be one of the following restricted values
{root, admin, administrator}
 - The password should contain at least 8 characters, 1 alphabetic
character(s), 1 digit(s), 1 non-alphanumeric symbol(s)
Password :
Re-enter Password :
What groups do you want this user to belong to? (Please enter a
comma separated list, or leave blank for none)[]:
About to add user 'slave-user' for realm 'ManagementRealm'
Is this correct yes/no? yes
Added user 'slave-user' to file '/home/user/EAP-
7.1.0/standalone/configuration/mgmt-users.properties'
Added user 'slave-user' to file '/home/user/EAP-
7.1.0/domain/configuration/mgmt-users.properties'
Added user 'slave-user' with groups to file '/home/user/EAP-
7.1.0/standalone/configuration/mgmt-groups.properties'
Added user 'slave-user' with groups to file '/home/user/EAP-
7.1.0/domain/configuration/mgmt-groups.properties'
Is this new user going to be used for one AS process to connect to
another AS process?
e.g. for a slave host controller connecting to the master or for a
Remoting connection for server to server EJB calls.
yes/no? yes
To represent the user add the following to the server-identities
definition <secret value="ABCzc3dv11Qx" />

2. Configure the slave controllers to use the credential.
Once you have created the user on the master domain controller, you will need to update each
slave controller to use that credential in the host configuration file, for example host.xml or
host-slave.xml. To do so, you need to add the user name to the <remote> element in the
domain controller configuration. You will also need to add the <secret> to the server
identities of the realm used to secure the <remote> element. Both the user name and
<secret> were obtained when adding the user to the master domain controller in the previous
step.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

80

Example: Configuring Slave Controllers

1.10.3. Configuring SSL/TLS Between Domain and Host Controllers Using Elytron

IMPORTANT

When you configure SSL/TLS to be used between JBoss EAP instances in a managed
domain, each instance can have a client or server role depending on the interaction. This
includes all host controllers as well as domain controllers. As a result, it is recommended
that you set up two-way SSL/TLS between endpoints.

You can configure JBoss EAP instances in a managed domain to use SSL/TLS when communicating
with each other, in other words, between the master domain controller and host controllers. To do so
using Elytron, use the following procedure.

1. Generate and configure all necessary certificates and keystores.
In order to set up two-way SSL/TLS between endpoints, you need to generate and configure
certificates and keystores for the master domain controller as well as each host controller. You
also need to import the certificate of the master domain controller into each host controller’s
keystore as well as import each host controller’s certificate into the master domain controller’s
keystore. The specifics of this process is covered in Enable Two-way SSL/TLS for the
Management Interfaces Using the Elytron Subsystem.

2. Add a user on the master domain controller.
A user needs to be added on the master domain controller for the slave controller to use for
authentication. If you are using the default file based user and group authentication mechanism,
this can be done by running EAP_HOME/bin/adduser.sh. Add the username, password and
other configurations when prompted.

The add-user utility can be used to manage both the users in the ManagementRealm and the
users in the ApplicationRealm.

...
<security-realm name="ManagementRealm">
 <server-identities>
 <!-- Replace this with either a base64 password of your own,
or use a vault with a vault expression -->
 <secret value="ABCzc3dv11Qx"/>
 </server-identities>
...
<domain-controller>
 <remote security-realm="ManagementRealm" username="slave-user">
 <discovery-options>
 <static-discovery name="primary"
protocol="${jboss.domain.master.protocol:remote}"
host="${jboss.domain.master.address}"
port="${jboss.domain.master.port:9999}"/>
 </discovery-options>
 </remote>
</domain-controller>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

81

NOTE

The server caches the contents of the properties files in memory. However, the
server does check the modified time of the properties files on each authentication
request and reloads if the time has been updated. This means that all changes
made by the add-user utility are immediately applied to any running server.

The slave controller attemps to authenticate using the native interface. If the native interface has
been secured with the ManagementRealm Elytron security realm, then you would need to add a
user to ManagementRealm for the slave controller to use.

NOTE

The default name of the realm for management users is ManagementRealm.
When the add-user utility prompts for the realm name, just accept the default
unless you have switched to a different realm.

The following example assumes the user slave with the password password1! has been
added to ManagementRealm.

3. Configure the master domain controller to use SSL/TLS.
The commands below configure the domain controller’s key-store, key-manager, trust-
manager, and server-ssl-context for the server keystore and truststore.

/host=master/subsystem=elytron/key-
store=twoWayKS:add(path=/path/to/server.keystore.jks,credential-
reference={clear-text=secret},type=JKS)

/host=master/subsystem=elytron/key-
store=twoWayTS:add(path=/path/to/server.truststore.jks,credential-
reference={clear-text=secret},type=JKS)

/host=master/subsystem=elytron/key-manager=twoWayKM:add(key-
store=twoWayKS,algorithm="SunX509",credential-reference={clear-
text=secret})

/host=master/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS,algorithm="SunX509")

/host=master/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-
manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,want-
client-auth=true,need-client-auth=true)

/host=master/core-service=management/management-interface=native-
interface:write-attribute(name=ssl-context, value=twoWaySSC)

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

82

IMPORTANT

You need to know what key manager algorithms are provided by the JDK you are
using. For example, a JDK that uses SunJSSE provides the PKIX and SunX509
algorithms. You also need to determine what HTTPS protocols you want to
support. The example commands above use TLSv1.2. You can use the
cipher-suite-filter argument to specify which cipher suites are allowed,
and the use-cipher-suites-order argument to honor server cipher suite
order. The use-cipher-suites-order attribute by default is set to true. This
differs from the legacy security subsystem behavior, which defaults to
honoring client cipher suite order.

4. Configure an authentication context and domain controller location on each slave host controller.
The following example configuration assumes the domain controller exists on localhost.
Ensure you specify the correct management user, password, and domain controller location for
your environment.

/host=slave1/subsystem=elytron/authentication-
context=slaveHostSSLContext:add()

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:add()

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-attribute(name=sasl-
mechanism-selector,value=DIGEST-MD5)

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-
attribute(name=authentication-name,value=slave)

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-
attribute(name=realm,value=ManagementRealm)

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-
attribute(name=credential-reference,value={clear-text=password1!})

/host=slave1/subsystem=elytron/authentication-
context=slaveHostSSLContext:write-attribute(name=match-rules,value=
[{match-host=localhost,authentication-
configuration=slaveHostSSLConfiguration}]

/host=slave1:write-remote-domain-
controller(host=localhost,port=9999,protocol=remote,authentication-
context=slaveHostSSLContext)

5. Configure each slave host controller to use SSL/TLS.
The commands below configure a slave host controller’s key-store, key-manager, trust-
manager, client-ssl-context for the server keystore and truststore, as well as the
authentication-context.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

83

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

The following example configuration assumes the domain controller exists on localhost.
Ensure you specify the correct domain controller location for your environment.

/host=slave1/subsystem=elytron/key-
store=twoWayKS:add(path=/path/to/client.keystore.jks,credential-
reference={clear-text=secret},type=JKS)

/host=slave1/subsystem=elytron/key-
store=twoWayTS:add(path=/path/to/client.truststore.jks,credential-
reference={clear-text=secret},type=JKS)

/host=slave1/subsystem=elytron/key-manager=twoWayKM:add(key-
store=twoWayKS,algorithm="SunX509",credential-reference={clear-
text=secret})

/host=slave1/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS,algorithm="SunX509")

/host=slave1/subsystem=elytron/client-ssl-context=twoWayCSC:add(key-
manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM)

/host=slave1/subsystem=elytron/authentication-
context=slaveHostSSLContext:write-attribute(name=match-rules,value=
[{match-host=localhost,authentication-
configuration=slaveHostSSLConfiguration,ssl-context=twoWayCSC}])

6. Reload all the JBoss EAP hosts in your managed domain.

1.10.4. Configuring SSL/TLS Between Domain and Host Controllers Using Legacy
Core Management Authentication

IMPORTANT

When you configure SSL/TLS to be used between JBoss EAP instances in a managed
domain, each instance can have a client or server role depending on the interaction. This
includes all host controllers as well as domain controllers. As a result, it is recommended
that you set up two-way SSL/TLS between endpoints.

You can configure JBoss EAP instances in a managed domain to use SSL/TLS when communicating
with each other, in other words, between the master domain controller and host controllers. To do so
using legacy core management authentication, use the following procedure.

1. Generate and configure all necessary certificates and keystores.
In order to set up two-way SSL/TLS between endpoints, you need to generate and configure
certificates and keystores for the master domain controller as well as each host controller. You
also need to import the certificate of the master domain controller into each host controller’s
keystore as well as import each host controller’s certificate into the master domain controller’s
keystore. The specifics of this process is covered in Setting up Two-way SSL/TLS for the
Management Interfaces with Legacy Core Management Authentication.

2. Configure the master domain controller to use SSL/TLS.
Once you have configured all certificates and keystores, you need to configure a security realm
to use two-way SSL/TLS. This is done by configuring a security realm to use SSL/TLS and to
require it for authentication. That security realm is then used to secure the management

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

84

interface used for connecting between host controllers and the master domain controller.

NOTE

The following commands below must either be run in batch mode, or the server
must be reloaded after adding the ssl server identity. The example below is
shown using batch mode.

batch

/host=master/core-service=management/security-
realm=CertificateRealm:add()

/host=master/core-service=management/security-
realm=CertificateRealm/server-
identity=ssl:add(alias=domaincontroller,keystore-relative-
to=jboss.domain.config.dir,keystore-
path=domaincontroller.jks,keystore-password=secret)

/host=master/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-
relative-to=jboss.domain.config.dir,keystore-
path=domaincontroller.jks,keystore-password=secret)

/host=master/core-service=management/security-
realm=CertificateRealm/authentication=local:add(default-
user=\$local)

/host=master/core-service=management/security-
realm=CertificateRealm/authentication=properties:add(relative-
to=jboss.domain.config.dir,path=mgmt-users.properties)

/host=master/core-service=management/management-interface=native-
interface:write-attribute(name=security-
realm,value=CertificateRealm)

run-batch

3. Configure all host controllers to use SSL/TLS.
Once you have the master domain controller configured to use two-way SSL/TLS, you need to
configure each host controller to use it as well. The process is very much the same as the
master domain controller configuration, except you will need to use the keystore specific to each
host.

NOTE

The following commands below must either be run in batch mode, or the server
must be reloaded after adding the ssl server identity. The example below is
shown using batch mode.

batch

/host=instance1/core-service=management/security-
realm=CertificateRealm:add()

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

85

/host=instance1/core-service=management/security-
realm=CertificateRealm/server-
identity=ssl:add(alias=instance1,keystore-relative-
to=jboss.domain.config.dir,keystore-path=instance1.jks,keystore-
password=secret)

/host=instance1/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-
relative-to=jboss.domain.config.dir,keystore-
path=instance1.jks,keystore-password=secret)

/host=instance1/core-service=management/security-
realm=CertificateRealm/authentication=local:add(default-
user="\$local")

/host=instance1/core-service=management/security-
realm=CertificateRealm/authentication=properties:add(relative-
to=jboss.domain.config.dir,path=mgmt-users.properties)

/host=instance1/core-service=management/management-interface=native-
interface:write-attribute(name=security-
realm,value=CertificateRealm)

run-batch

Additionally, you will need to update the security realm used when connecting the master
domain controller. This change must be done directly in the host controller’s configuration file, for
example host.xml or host-slave.xml, while the server is not running.

Example: Host Controller Configuration File

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

1.11. ADDITIONAL ELYTRON COMPONENTS FOR SSL/TLS

<domain-controller>
 <remote security-realm="CertificateRealm" username="slave-user">
 <discovery-options>
 <static-discovery name="primary"
protocol="${jboss.domain.master.protocol:remote}"
host="${jboss.domain.master.address}"
port="${jboss.domain.master.port:9999}"/>
 </discovery-options>
 </remote>
</domain-controller>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

86

The basic concepts behind configuring one-way SSL/TLS and two-way SSL/TLS are covered in the
following:

Enable One-way SSL/TLS for Applications Using the Elytron Subsystem

Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Elytron also offers some additional components for configuring SSL/TLS.

1.11.1. Using an ldap-key-store

An ldap-key-store allows you to use a keystore stored in an LDAP server. You can use an ldap-
key-store in the same way as you use a key-store.

NOTE

It is not possible to use a JMX ObjectName to decrypt the LDAP credentials. Instead,
credentials can be secured by using a credential store.

To create and use an ldap-key-store:

1. Configure a dir-context.
To connect to the LDAP server from JBoss EAP, you need to configure a dir-context that
provides the URL as well as the principal used to connect to the server.

Example: dir-context

/subsystem=elytron/dir-
context=exampleDC:add(url="ldap://127.0.0.1:10389",
principal="uid=admin,ou=system", credential-reference={clear-
text="secret"})

2. Configure an ldap-key-store.
When you configure an ldap-key-store, you need to specify both the dir-context used to
connect to the LDAP server as well as how to locate the keystore stored in the LDAP server. At
a minimum, this requires you to specify a search-path.

Example: ldap-key-store

/subsystem=elytron/ldap-key-store=ldapKS:add(dir-context=exampleDC,
search-path="ou=Keystores,dc=wildfly,dc=org")

3. Use the ldap-key-store.
Once you have defined your ldap-key-store, you can use it in the same places where a
key-store could be used. For example, you could use an ldap-key-store when configuring
One-way SSL/TLS and Two-way SSL/TLS for applications.

For the full list of attributes for ldap-key-store as well as other Elytron components, see Elytron
Subsystem Components Reference.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

87

1.11.2. Using a filtering-key-store

A filtering-key-store allows you to expose a subset of aliases from an existing key-store, and
use it in the same places you could use a key-store. For example, if a keystore contained alias1,
alias2, and alias3, but you only wanted to expose alias1 and alias3, a filtering-key-store
provides you several ways to do that.

To create a filtering-key-store:

1. Configure a key-store.

/subsystem=elytron/key-store=myKS:add(path=keystore.jks, relative-
to=jboss.server.config.dir, credential-reference={clear-
text=secret}, type=JKS)

2. Configure a filtering-key-store.
When you configure a filtering-key-store, you specify which key-store you want to
filter and the alias-filter for filtering aliases from the key-store. The filter can be
specified in one of the following formats:

alias1,alias3, which is a comma-delimited list of aliases to expose.

ALL:-alias2, which exposes all aliases in the keystore except the ones listed.

NONE:+alias1:+alias3, which exposes no aliases in the keystore except the ones listed.
This example uses a comma-delimted list to expose alias1 and alias3.

/subsystem=elytron/filtering-key-store=filterKS:add(key-
store=myKS, alias-filter="alias1,alias3")

NOTE

The alias-filter attribute is case sensitive. Because the use of mixed-
case or uppercase aliases, such as elytronAppServer, might not be
recognized by some keystore providers, it is recommended to use lowercase
aliases, such as elytronappserver.

3. Use the filtering-key-store.
Once you have defined your filtering-key-store, you can use it in the same places where
a key-store could be used. For example, you could use a filtering-key-store when
configuring One-way SSL/TLS and Two-way SSL/TLS for applications.

For the full list of attributes for filtering-key-store as well as other Elytron components, see
Elytron Subsystem Components Reference.

1.11.3. Reload a Keystore

You can reload a keystore configured in JBoss EAP from the management CLI. This is useful in cases
where you have made changes to certificates referenced by a keystore.

To reload a keystore:

/subsystem=elytron/key-store=httpsKS:load

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

88

1.11.4. Keystore Alias

The alias denotes the stored secret or credential in the store. If you add a keystore to the elytron
subsystem using the key-store component, you can check the keystore’s contents using the alias
related key-store operations.

The different operations for alias manipulation are:

read-alias - Read an alias from a keystore.

read-aliases - Read aliases from a keystore.

remove-alias - Remove an alias from a keystore.

For example, to read an alias:

/subsystem=elytron/key-store=httpsKS/:read-alias(alias=localhost)

1.11.5. Using a client-ssl-context

A client-ssl-context is used for providing an SSL context when the JBoss EAP instance creates
an SSL connection as a client, such as using SSL in remoting.

To create a client-ssl-context:

1. Create key-store, key-manager, and trust-manager components as needed.
If establishing a two-way SSL/TLS connection, you need to create separate key-store
components for the client and server certificates, a key-manager for the client key-store,
and a trust-manager for the server key-store. Alternatively, if you are doing a one-way
SSL/TLS connection, you need to create a key-store for the server certificate and a trust-
manager that references it. Examples on creating keystores and truststores are available in the
Enable Two-way SSL/TLS for Applications using the Elytron Subsystem section.

2. Create a client-ssl-context.
Create a client-ssl-context referencing keystores, truststores, as well as any other
necessary configuration options.

Example: client-ssl-context

/subsystem=elytron/client-ssl-context=exampleCSC:add(key-
manager=clientKM, trust-manager=clientTM, protocols=["TLSv1.2"])

3. Reference the client-ssl-context.

For the full list of attributes for client-ssl-context as well as other Elytron components, see Elytron
Subsystem Components Reference.

1.11.6. Using a server-ssl-context

A server-ssl-context is used for providing a server-side SSL context. In addition to the usual
configuration for an SSL context, it is possible to configure additional items such as cipher suites and
protocols. The SSL context will wrap any additional items that are configured.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

89

1. Create key-store, key-manager, and trust-manager components as needed.
If establishing a two-way SSL/TLS connection, you need to create separate key-store
components for the client and server certificates, a key-manager for the server key-store,
and a trust-manager for the server trust-store. Alternatively, if you are doing a one-way
SSL/TLS connection, you need to create a key-store for the server certificate and a key-
manager that references it. Examples on creating keystores and truststores are available in the
Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem section.

2. Create a server-ssl-context.
Create a server-ssl-context that references the key manager, trust manager, or any other
desired configuration options using one of the options outlined below.

Add a Server SSL Context Using the Management CLI

/subsystem=elytron/server-ssl-context=newServerSSLContext:add(key-
manager=KEY_MANAGER,protocols=["TLSv1.2"])

IMPORTANT

You need to determine what HTTPS protocols will be supported. The example commands
above use TLSv1.2. You can use the cipher-suite-filter argument to specify
which cipher suites are allowed, and the use-cipher-suites-order argument to
honor server cipher suite order. The use-cipher-suites-order attribute by default is
set to true. This differs from the legacy security subsystem behavior, which defaults
to honoring client cipher suite order.

Add a Server SSL Context Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security - Elytron → Other.

3. Click on View. The Server SSL Context tab lets you do all the server SSL context related
configurations.

For the full list of attributes for server-ssl-context as well as other Elytron components, see Elytron
Subsystem Components Reference.

1.11.7. Custom Components

When configuring SSL/TLS in the elytron subsystem, you can provide and use custom
implementations of the following components:

key-store

key-manager

trust-manager

client-ssl-context

server-ssl-context

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

90

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#management_console_overview

WARNING

It is not recommended to provide custom implementations of any component outside
of the trust-manager without an intimate knowledge of the Java Secure Socket
Extension (JSSE).

IMPORTANT

When using FIPS it is not possible to utilize a custom trust manager or key manager, as
FIPS requires these managers be embedded in the JDK for security reasons. Similar
behavior can be accomplished by implementing a SecurityRealm that validates X509
evidences.

When creating custom implementations of Elytron components, they must present the appropriate
capabilities and requirements. For more details on capabilities and requirements, see the Capabilities
and Requirements section of the JBoss EAP Security Architecture guide. Implementation details for each
component are provided by the JDK vendor.

1.11.7.1. Add a Custom Component to Elytron

The following steps describe adding a custom component within Elytron.

1. Add the JAR containing the provider for the custom component as a module into JBoss EAP,
declaring any required dependencies, such as javax.api:

module add --name=MODULE_NAME --resources=FACTORY_JAR --
dependencies=javax.api,DEPENDENCY_LIST

IMPORTANT

Using the module management CLI command to add and remove modules is
provided as Technology Preview only. This command is not appropriate for use in
a managed domain or when connecting to the management CLI remotely.
Modules should be added and removed manually in a production environment.
For more information, see the Create a Custom Module Manually and Remove a
Custom Module Manually sections of the JBoss EAP Configuration Guide.

Technology Preview features are not supported with Red Hat production service
level agreements (SLAs), might not be functionally complete, and Red Hat does
not recommend to use them for production. These features provide early access
to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

2. When the component is added to the elytron subsystem the java.util.ServiceLoader
will be used to discover the provider. Alternatively, a reference to the provider can be provided
by defining a provider-loader. There are two methods of creating the loader, and only one

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

91

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#capabilities_and_requirements
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#create_module_manually
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#remove_module_manually
https://access.redhat.com/support/offerings/techpreview
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html

should be implemented for each component.

Reference the provider directly when defining the provider-loader:

/subsystem=elytron/provider-loader=LOADER_NAME:add(class-names=
[CLASS_NAME],module=MODULE_NAME)

Include a reference to the provider in META-INF/services/java.security.Provider.
This reference is automatically created when using the @MetaInfServices annotation in
org.kohsuke.metainf-services. When using this method only the module needs to be
referenced by the provider-loader, as seen below:

/subsystem=elytron/provider-
loader=LOADER_NAME:add(module=MODULE_NAME)

3. Add the custom component into Elytron’s configuration, using the appropriate element for the
type to be added and referencing any defined providers.

/subsystem=elytron/COMPONENT_NAME=NEW_COMPONENT:add(providers=LOADER
_NAME,...)

For instance, to define a trust manager, the trust-manager element would be used, as seen
in the following command:

Example: Adding a Custom Trust Manager

/subsystem=elytron/trust-
manager=newTrustManager:add(algorithm=MyX509,providers=customProvide
r,key-store=sampleKeystore)

4. Once defined, the component can be referenced from other elements.

1.11.7.2. Using Custom Trust Managers with Elytron

By implementing a custom trust manager, it is possible to extend the validation of certificates when using
HTTPS in Undertow, LDAPS in a dir-context, or any place where Elytron is used for SSL
connections. This component is responsible for making trust decisions for the server, and it is strongly
recommended that these be implemented if a custom trust manager is used.

IMPORTANT

When using FIPS it is not possible to utilize a custom trust manager, as FIPS requires this
manager be embedded in the JDK for security reasons. Similar behavior can be
accomplished by implementing a SecurityRealm that validates X509 evidences.

Requirements for Implementing a Custom Trust Manager
When using a custom trust manager, the following must be implemented:

A trust manager that implements the X509ExtendedTrustManager interface.

A trust manager factory that extends TrustManagerFactorySpi.

The provider of the trust manager factory.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

92

The provider must be included in the JAR file to be added into JBoss EAP. Any implemented classes
must be included in JBoss EAP as a module. Classes are not required to be in one module, and can be
loaded from module dependencies.

Example Implementations
The following example demonstrates a provider that registers the custom trust manager factory as a
service.

Example: Provider

The following example demonstrates a custom trust manager. This trust manager contains overloaded
methods on checking if a client or server is trusted.

Example: TrustManager

import org.kohsuke.MetaInfServices;
import javax.net.ssl.TrustManagerFactory;
import java.security.Provider;
import java.util.Collections;
import java.util.List;
import java.util.Map;

@MetaInfServices(Provider.class)
public class CustomProvider extends Provider {

 public CustomProvider() {
 super("CustomProvider", 1.0, "Demo provider");

 System.out.println("CustomProvider initialization.");

 final List<String> emptyList = Collections.emptyList();
 final Map<String, String> emptyMap = Collections.emptyMap();

 putService(new Service(this,
TrustManagerFactory.class.getSimpleName(),"CustomAlgorithm",
CustomTrustManagerFactorySpi.class.getName(), emptyList, emptyMap));
 }

}

import javax.net.ssl.SSLEngine;
import javax.net.ssl.X509ExtendedTrustManager;
import java.net.Socket;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;

public class CustomTrustManager extends X509ExtendedTrustManager {

 public void checkClientTrusted(X509Certificate[] x509Certificates,
String s, Socket socket) throws CertificateException {
 // Insert your code here
 }

 public void checkServerTrusted(X509Certificate[] x509Certificates,
String s, Socket socket) throws CertificateException {
 // Insert your code here

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

93

The following example is a factory used to return instances of the trust manager.

Example: TrustManagerFactorySpi

 }

 public void checkClientTrusted(X509Certificate[] x509Certificates,
String s, SSLEngine sslEngine) throws CertificateException {
 // Insert your code here
 }

 public void checkServerTrusted(X509Certificate[] x509Certificates,
String s, SSLEngine sslEngine) throws CertificateException {
 // Insert your code here
 }

 public void checkClientTrusted(X509Certificate[] x509Certificates,
String s) throws CertificateException {
 // Insert your code here
 }

 public void checkServerTrusted(X509Certificate[] x509Certificates,
String s) throws CertificateException {
 // Insert your code here
 }

 public X509Certificate[] getAcceptedIssuers() {
 // Insert your code here
 }

}

import javax.net.ssl.ManagerFactoryParameters;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactorySpi;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyStore;
import java.security.KeyStoreException;

public class CustomTrustManagerFactorySpi extends TrustManagerFactorySpi {

 protected void engineInit(KeyStore keyStore) throws KeyStoreException
{
 // Insert your code here
 }

 protected void engineInit(ManagerFactoryParameters
managerFactoryParameters) throws InvalidAlgorithmParameterException {
 // Insert your code here
 }

 protected CustomTrustManager[] engineGetTrustManagers() {
 // Insert your code here
 }

}

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

94

Adding the Custom Trust Manager
Once the provider and trust manager have been created, add them to the elytron subsystem by using
the steps outlined in Add a Custom Component to Elytron.

1.11.8. Using a Certificate Revocation List

If you want to validate a certificate against a certificate revocation list (CRL), you can configure this using
the certificate-revocation-list attribute for a trust manager in the elytron subsystem. For
example:

/subsystem=elytron/trust-manager=TRUST_MANAGER:write-
attribute(name=certificate-revocation-list,value=
{path=/path/to/CRL_FILE.crl.pem}

For more information on the available attributes for a trust manager, see the trust-manager Attributes
table.

NOTE

Your truststore must contain the certificate chain in order to check the validity of both the
certification revocation list and the certificate. The truststore should not contain end-entity
certificates, just certificate authority and intermediate certificates.

You can instruct the trust manager to reload the certificate revocation list by using the reload-
certificate-revocation-list operation.

/subsystem=elytron/trust-manager=TRUST_MANAGER:reload-certificate-
revocation-list

1.11.9. Keystore Manipulation Operations

It is possible to perform various keystore manipulation operations on an Elytron key-store resource
using the management CLI.

Generate a Key Pair
The generate-key-pair command generates a key pair and wraps the resulting public key in a self-
signed X.509 certificate. The generated private key and self-signed certificate will be added to the
keystore.

/subsystem=elytron/key-
store=httpsKS:add(path=/path/to/server.keystore.jks,credential-reference=
{clear-text=secret},type=JKS)

/subsystem=elytron/key-store=httpsKS:generate-key-
pair(alias=example,algorithm=RSA,key-size=1024,validity=365,credential-
reference={clear-text=secret},distinguished-name="CN=www.example.com")

Generate a Certificate Signing Request
The generate-certificate-signing-request command generates a PKCS #10 certificate
signing request using a PrivateKeyEntry from the keystore. The generated certificate signing request
will be written to a file.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

95

/subsystem=elytron/key-store=httpsKS:generate-certificate-signing-
request(alias=example,path=server.csr,relative-
to=jboss.server.config.dir,distinguished-
name="CN=www.example.com",extensions=
[{critical=false,name=KeyUsage,value=digitalSignature}],credential-
reference={clear-text=secret})

Import a Certificate or Certificate Chain
The import-certificate command imports a certificate or certificate chain from a file into an entry in
the keystore.

/subsystem=elytron/key-store=httpsKS:import-
certificate(alias=example,path=/path/to/certificate_or_chain/file,relative
-to=jboss.server.config.dir,credential-reference={clear-
text=secret},trust-cacerts=true)

Export a Certificate
The export-certificate command exports a certificate from an entry in the keystore to a file.

/subsystem=elytron/key-store=httpsKS:export-
certificate(alias=example,path=serverCert.cer,relative-
to=jboss.server.config.dir,pem=true)

Change an Alias
The change-alias command moves an existing keystore entry to a new alias.

/subsystem=elytron/key-store=httpsKS:change-alias(alias=example,new-
alias=newExample,credential-reference={clear-text=secret})

Store Changes Made to Keystores
The store command persists any changes that have been made to the file that backs the keystore.

/subsystem=elytron/key-store=httpsKS:store()

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

96

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS
MANAGEMENT INTERFACES

2.1. USER AUTHENTICATION WITH ELYTRON

2.1.1. Default Configuration

By default, the JBoss EAP management interfaces are secured by the legacy core management
authentication.

Example: Default Configuration

/core-service=management/management-interface=http-interface:read-
resource()
{
 "outcome" => "success",
 "result" => {
 "allowed-origins" => undefined,
 "console-enabled" => true,
 "http-authentication-factory" => undefined,
 "http-upgrade" => {"enabled" => true},
 "http-upgrade-enabled" => true,
 "sasl-protocol" => "remote",
 "secure-socket-binding" => undefined,
 "security-realm" => "ManagementRealm",
 "server-name" => undefined,
 "socket-binding" => "management-http",
 "ssl-context" => undefined
 }

JBoss EAP does provide management-http-authentication and management-sasl-
authentication in the elytron subsystem for securing the management interfaces as well.

To update JBoss EAP to use the default Elytron components:

1. Set http-authentication-factory to use management-http-authentication:

/core-service=management/management-interface=http-interface:write-
attribute(name=http-authentication-factory, value=management-http-
authentication)

2. Set sasl-authentication-factory to use management-sasl-authentication:

/core-service=management/management-interface=http-interface:write-
attribute(name=http-upgrade.sasl-authentication-factory,
value=management-sasl-authentication)

3. Undefine security-realm:

/core-service=management/management-interface=http-
interface:undefine-attribute(name=security-realm)

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

97

4. Reload JBoss EAP for the changes to take affect:

reload

The management interfaces are now secured using the default components provided by the elytron
subsystem.

2.1.1.1. Default Elytron HTTP Authentication Configuration

When you access the management interface over http, for example when using the web-based
management console, JBoss EAP will use the management-http-authentication http-
authentication-factory.

/subsystem=elytron/http-authentication-factory=management-http-
authentication:read-resource()
{
 "outcome" => "success",
 "result" => {
 "http-server-mechanism-factory" => "global",
 "mechanism-configurations" => [{
 "mechanism-name" => "DIGEST",
 "mechanism-realm-configurations" => [{"realm-name" =>
"ManagementRealm"}]
 }],
 "security-domain" => "ManagementDomain"
 }
}

The management-http-authentication http-authentication-factory, is configured to use the
ManagementDomain security domain.

/subsystem=elytron/security-domain=ManagementDomain:read-resource()
{
 "outcome" => "success",
 "result" => {
 "default-realm" => "ManagementRealm",
 "permission-mapper" => "default-permission-mapper",
 "post-realm-principal-transformer" => undefined,
 "pre-realm-principal-transformer" => undefined,
 "principal-decoder" => undefined,
 "realm-mapper" => undefined,
 "realms" => [
 {
 "realm" => "ManagementRealm",
 "role-decoder" => "groups-to-roles"
 },
 {
 "realm" => "local",
 "role-mapper" => "super-user-mapper"
 }
],
 "role-mapper" => undefined,
 "trusted-security-domains" => undefined
 }
}

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

98

The ManagementDomain security domain is backed by the ManagementRealm Elytron security realm,
which is a properties-based realm.

IMPORTANT

A properties-based realm is only read when the server starts. Any users added after
server start, either manually or by using an add-user script, will require a server reload.
This reload is accomplished by running the reload command from the management CLI.

reload

/subsystem=elytron/properties-realm=ManagementRealm:read-resource()
{
 "outcome" => "success",
 "result" => {
 "groups-attribute" => "groups",
 "groups-properties" => {
 "path" => "mgmt-groups.properties",
 "relative-to" => "jboss.server.config.dir"
 },
 "plain-text" => false,
 "users-properties" => {
 "path" => "mgmt-users.properties",
 "relative-to" => "jboss.server.config.dir"
 }
 }
}

2.1.1.2. Default Elytron Management CLI Authentication

By default, the management CLI (jboss-cli.sh) is configured to connect over remote+http.

Example: Default jboss-cli.xml

This will establish a connection over HTTP and use HTTP upgrade to change the communication
protocol to Remoting. The HTTP upgrade connection is secured in the http-upgrade section of the
http-interface using a sasl-authentication-factory.

Example: Configuration with Default Components

<jboss-cli xmlns="urn:jboss:cli:3.1">

 <default-protocol use-legacy-override="true">remote+http</default-
protocol>

 <!-- The default controller to connect to when 'connect' command is
executed w/o arguments -->
 <default-controller>
 <protocol>remote+http</protocol>
 <host>localhost</host>
 <port>9990</port>
 </default-controller>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

99

/core-service=management/management-interface=http-interface:read-
resource()
{
 "outcome" => "success",
 "result" => {
 "allowed-origins" => undefined,
 "console-enabled" => true,
 "http-authentication-factory" => "management-http-authentication",
 "http-upgrade" => {
 "enabled" => true,
 "sasl-authentication-factory" => "management-sasl-
authentication"
 },
 "http-upgrade-enabled" => true,
 "sasl-protocol" => "remote",
 "secure-socket-binding" => undefined,
 "security-realm" => undefined,
 "server-name" => undefined,
 "socket-binding" => "management-http",
 "ssl-context" => undefined
 }
}

The default sasl-authentication-factory is management-sasl-authentication.

/subsystem=elytron/sasl-authentication-factory=management-sasl-
authentication:read-resource()
{
 "outcome" => "success",
 "result" => {
 "mechanism-configurations" => [
 {
 "mechanism-name" => "JBOSS-LOCAL-USER",
 "realm-mapper" => "local"
 },
 {
 "mechanism-name" => "DIGEST-MD5",
 "mechanism-realm-configurations" => [{"realm-name" =>
"ManagementRealm"}]
 }
],
 "sasl-server-factory" => "configured",
 "security-domain" => "ManagementDomain"
 }
}

The management-sasl-authentication sasl-authentication-factory specifies JBOSS-LOCAL-USER
and DIGEST-MD5 mechanisms.

The ManagementRealm Elytron security realm, used in DIGEST-MD5, is the same realm used in the
management-http-authentication http-authentication-factory.

Example: JBOSS-LOCAL-USER Realm

/subsystem=elytron/identity-realm=local:read-resource()

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

100

{
 "outcome" => "success",
 "result" => {
 "attribute-name" => undefined,
 "attribute-values" => undefined,
 "identity" => "$local"
 }
}

The local Elytron security realm is for handling silent authentication for local users.

2.1.2. Secure the Management Interfaces with a New Identity Store

1. Create a security domain and any supporting security realms, decoders, or mappers for your
identity store.
This process is covered in the Elytron Subsystem section of JBoss EAP How to Configure
Identity Management Guide. For example, if you wanted to secure the management interfaces
using a filesystem-based identity store, you would follow the steps in Configure Authentication
with a Filesystem-based Identity Store.

2. Create an http-authentication-factory or sasl-authentication-factory.

Example: http-authentication-factory

/subsystem=elytron/http-authentication-factory=example-http-
auth:add(http-server-mechanism-factory=global, security-
domain=exampleSD, mechanism-configurations=[{mechanism-name=DIGEST,
mechanism-realm-configurations=[{realm-
name=exampleManagementRealm}]}])

Example: sasl-authentication-factory

/subsystem=elytron/sasl-authentication-factory=example-sasl-
auth:add(sasl-server-factory=configured, security-domain=exampleSD,
mechanism-configurations=[{mechanism-name=DIGEST-MD5, mechanism-
realm-configurations=[{realm-name=exampleManagementRealm}]}])

3. Add pattern-filter to the configured configurable-sasl-server-factory.

Example: Add GSSAPI to the Configured configurable-sasl-server-factory

/subsystem=elytron/configurable-sasl-server-factory=configured:list-
add(name=filters, value={pattern-filter=GSSAPI})

This is an optional step. When a client attempts to connect to the HTTP management interfaces,
JBoss EAP sends back an HTTP response with a status code of 401 Unauthorized, and a
set of headers that list the supported authentication mechanisms, for example, Digest, GSSAPI,
and so on. For more information, see the Local and Remote Client Authentication with the HTTP
Interface section in the JBoss EAP Security Architecture guide.

4. Update the management interfaces to use your http-authentication-factory or sasl-
authentication-factory.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

101

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_secure_apps
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_apps_filesystemAuth
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#local_and_remote_client_authentication_with_http_interfaces

Example: Update http-authentication-factory

/core-service=management/management-interface=http-interface:write-
attribute(name=http-authentication-factory, value=example-http-auth)

reload

Example: Update sasl-authentication-factory

/core-service=management/management-interface=http-interface:write-
attribute(name=http-upgrade.sasl-authentication-factory,
value=example-sasl-auth)

reload

You can also update the native interface to use a sasl-authentication-factory.

NOTE

The native interface is not enabled by default.

Example: Add Native Interface and Use sasl-authentication-factory

/socket-binding-group=standard-sockets/socket-
binding=native:add(interface=management, port=9999)

/core-service=management/management-interface=native-
interface:add(socket-binding=native)

/core-service=management/management-interface=native-
interface:write-attribute(name=sasl-authentication-factory,
value=example-sasl-auth)

reload

NOTE

When using legacy core management authentication, you can only secure the http
management interface with a single legacy security realm. This forces the HTTP and
SASL configuration to appear in a single legacy security realm. When using the elytron
subsystem, you can configure the http-authentication-factory and sasl-
authentication-factory separately, allowing you to use distinct security domains
for securing the HTTP and SASL mechanisms of the http management interface.

NOTE

If two different attributes with similar implementation in legacy security and Elytron,
respectively, are configured in the management interface, only the Elytron related
configurations are used. For example, if security-realm for legacy security and
http-authentication-factory for Elytron are configured, then authentication is
handled by http-authentication-factory configuration.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

102

NOTE

When the management interface includes both http-authentication-factory, or
sasl-authentication-factory for the native interface, as well as the security-
realm, and the ssl-context attribute is not used, the authentication is handled by
Elytron and the SSL is handled by the legacy security realm.

When the management interface includes both the security-realm and the ssl-
context, and the http-authentication-factory or sasl-authentication-
factory for the native interface is not used, then authentication is handled by the legacy
security realm and SSL is handled by Elytron.

2.1.3. Adding Silent Authentication

By default, JBoss EAP provides an authentication mechanism for local users, also know as silent
authentication, through the local security realm. You can find more details on silent authentication in
the Silent Authentication section.

Silent authentication must be added to a sasl-authentication-factory.

To add silent authentication to an existing sasl-authentication-factory:

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:list-
add(name=mechanism-configurations, value={mechanism-name=JBOSS-LOCAL-USER,
realm-mapper=local})

reload

To create a new sasl-server-factory with silent authentication:

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-
server-factory=configured,security-domain=ManagementDomain,mechanism-
configurations=[{mechanism-name=DIGEST-MD5,mechanism-realm-configurations=
[{realm-name=exampleManagementRealm}]},{mechanism-name=JBOSS-LOCAL-USER,
realm-mapper=local}])

reload

NOTE

The above example uses the existing ManagementDomain security domain, but you can
also create and use other security domains. You can find more examples of creating
security domains in the Elytron Subsystem section of the JBoss EAP How to Configure
Identity Management Guide.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

103

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_secure_apps

IMPORTANT

If the Elytron security is used and an authentication attempt comes in using the JBOSS-
LOCAL-USER SASL mechanism with an authentication name that does not correspond to
a real identity, authentication fails.

Choosing a custom user name for JBOSS-LOCAL-USER is possible with legacy
security subsystem. There the authentication proceeds by mapping the user name to a
special identity.

2.1.4. Mapping Identity for Authenticated Management Users

When using the elytron subsystem to secure the management interfaces, you can provide a security
domain to the management interfaces for identity mapping of authenticated users. This allows
authenticated users to appear with the appropriate identity when logged into the management interfaces.

The application server exposes more than one kind of management interface. Each type of interface can
be associated with an independent authentication-factory to handle the authentication
requirements of that interface.

To make the authorization decision, the current security identity is obtained from the security domain.
The returned security identity has the role mapping and permission assignment, based on the rules
defined within that security domain.

NOTE

In most cases, a common security domain is used for all management; for authentication
of the management interfaces as well as for obtaining the security identity used for the
authorization decisions. In these cases, the security domain is associated with the
authentication factory of the management interface and no special access=identity
needs to be defined.

In some cases, a different security domain is used to obtain the identity for the
authorization decisions. Here, the access=identity resource is defined. It contains a
reference to a security domain to obtain the identity for authorization.

The below example assumes you have secured the management interfaces with the exampleSD Elytron
security domain and have it exposed as exampleManagementRealm.

To define the identity mapping, add the identity resource to the management interfaces.

Example: Add the identity Resource

/core-service=management/access=identity:add(security-domain=exampleSD)

Once you have added the identity resource, the identity of an authenticated user will appear when
accessing the management interfaces. When the identity resource is not added, then the identity of
the security domain used for authentication is used.

For example, if you logged into the management CLI as user1, your identity will properly appear.

Example: Display the Identity of an Authenticated User from the Management CLI

:whoami

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

104

{
 "outcome" => "success",
 "result" => {"identity" => {"username" => "user1"}}
}

IMPORTANT

If the identity resource is added and legacy security realms are used to secure the
management interfaces, authenticated users will always have the anonymous identity.
Once the identity resource is removed, users authenticated from the legacy security
realms will appear with the appropriate identity.

Authorization for management operation always uses the security domain, which is the domain specified
on access=identity. If not specified, it is the domain used for authentication. Any role mapping is
always in the context of the security domain.

The identity resource for the current request will return a set of roles as mapped using the Elytron
configuration. When an RBAC based role mapping definition is in use, the roles from the identity
resource will be taken as groups and fed into the management RoleMapping to obtain the management
roles for the current request.

Table 2.1. Identity to be Used for Different Scenarios

Scenario No access=identity
definition

access=identity
referencing an Elytron
security-domain

HTTP management interface using legacy
security-realm

Identity from connection. Unsupported or
anonymous identity.

HTTP management interface using elytron HTTP
authentication factory backed by security-
domain

Identity from connection. Identity from referenced
security-domain if
it was successfully
inflowed.

Native management, including over HTTP Upgrade,
interface using legacy security-realm

Identity from connection. Unsupported or
anonymous identity.

Native management, including over HTTP Upgrade,
interface using elytron SASL authentication
factory backed by security-domain

Identity from connection. Identity from referenced
security-domain if
it was successfully
inflowed.

NOTE

If security domain used in the identity resource does not trust the security domain from
authentication, anonymous identity is used.

The security domain used in the identity resource does not need to trust the security
domain from authentication, when both are using an identical security realm.

The trusted security domains is not transitive.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

105

Where no access=identity resource is defined, then the identity established during authentication
against the management interface will be used. Identities established using connections, through the
remoting subsystem or using applications, will not be usable in this case.

Where an access=identity resource is defined but the security domain used by the management
interfaces is different and not listed in the list of domains to inflow from, no identity will be established. An
inflow will be attempted using the identity established during authentication. Identities established using
connections through the remoting subsystem or using applications will not be inflowed in this way.

IMPORTANT

Where the management interfaces are secured using the legacy security realms, the
identity will not be sharable across different security domains. In that case no
access=identity resource should be defined. So the identity established during
authentication can be used directly. Thus, applications secured using PicketBox are not
supported for the identity resource.

2.1.5. Using Elytron Client with the Management CLI

You can configure the management CLI to use Elytron Client for providing security information when
connecting to JBoss EAP.

1. Secure the management interfaces with Elytron.
In order to use Elytron Client with the management CLI, you must secure the management
interfaces with Elytron. You can find more details on securing the management interfaces with
Elytron in User Authentication with Elytron.

2. Create an Elytron Client configuration file.
You need to create an Elytron Client configuration file that houses your authentication
configuration as well as rules for using that configuration. You can find more details on creating
an authentication configuration in the The Configuration File Approach section of the JBoss EAP
How to Configure Identity Management Guide.

Example: custom-config.xml

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <authentication-rules>
 <rule use-configuration="configuration1">
 <match-host name="localhost" />
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="configuration1">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="user1" />
 <credentials>
 <clear-password password="password123" />
 </credentials>
 <set-mechanism-realm name="exampleManagementRealm"
/>
 </configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

106

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_client_configuration_file_approach

3. Use the Elytron Client configuration file with management CLI script.

$./jboss-cli.sh -c -Dwildfly.config.url=/path/to/custom-config.xml

2.2. IDENTITY PROPAGATION AND FORWARDING WITH ELYTRON

2.2.1. Propagating Security Identities for Remote Calls

JBoss EAP 7.1 introduces the ability to easily configure the server and your applications to propagate a
security identity from a client to the server for remoting calls. You can also configure server components
to run within the security identity of a given user.

The example in this section demonstrates how to forward security identity credentials. It propagates the
security identity of a client and an EJB to a remote EJB. It returns a string containing the name of the
Principal that called the remote EJB along with the user’s authorized role information. The example
consists of the following components.

A secured EJB that contains a single method, accessible by all users, that returns authorization
information about the caller.

An intermediate EJB that contains a single method. It makes use of a remote connection and
invokes the method on the secured EJB.

A remote standalone client application that invokes the intermediate EJB.

A META-INF/wildfly-config.xml file that contains the identity information used for
authentication.

You must first enable security identity propagation by configuring the server. Next review the example
application code that uses the WildFlyInitialContextFactory to look up and invoke the remote
EJB.

Configure the Server for Security Propagation

1. Configure the ejb3 subsystem to use the Elytron ApplicationDomain.

/subsystem=ejb3/application-security-domain=quickstart-
domain:add(security-domain=ApplicationDomain)

This adds the following application-security-domain configuration to the ejb3
subsystem.

 </authentication-configurations>
 </authentication-client>
</configuration>

<subsystem xmlns="urn:jboss:domain:ejb3:5.0">

 <application-security-domains>
 <application-security-domain name="quickstart-domain"
security-domain="ApplicationDomain"/>
 </application-security-domains>
</subsystem>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

107

2. Add the PLAIN authentication configuration to send plain text user names and passwords, and
the authentication context that is to be used for outbound connections. See Mechanisms That
Support Security Identity Propagation for the list of mechanisms that support identity
propagation.

/subsystem=elytron/authentication-configuration=ejb-outbound-
configuration:add(security-domain=ApplicationDomain,sasl-mechanism-
selector="PLAIN")
/subsystem=elytron/authentication-context=ejb-outbound-
context:add(match-rules=[{authentication-configuration=ejb-outbound-
configuration}])

This adds the following authentication-client configuration to the elytron subsystem.

3. Add the remote destination outbound socket binding to the standard-sockets socket binding
group.

/socket-binding-group=standard-sockets/remote-destination-outbound-
socket-binding=ejb-outbound:add(host=localhost,port=8080)

This adds the following ejb-outbound outbound socket binding to the standard-sockets
socket binding group.

4. Add the remote outbound connection and set the SASL authentication factory in the HTTP
connector.

/subsystem=remoting/remote-outbound-connection=ejb-outbound-
connection:add(outbound-socket-binding-ref=ejb-outbound,
authentication-context=ejb-outbound-context)

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">
 <authentication-client>
 <authentication-configuration name="ejb-outbound-
configuration" security-domain="ApplicationDomain" sasl-mechanism-
selector="PLAIN"/>
 <authentication-context name="ejb-outbound-context">
 <match-rule authentication-configuration="ejb-outbound-
configuration"/>
 </authentication-context>
 </authentication-client>

</subsystem>

<socket-binding-group name="standard-sockets" default-
interface="public" port-offset="${jboss.socket.binding.port-
offset:0}">

 <outbound-socket-binding name="ejb-outbound">
 <remote-destination host="localhost" port="8080"/>
 </outbound-socket-binding>
</socket-binding-group>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

108

/subsystem=remoting/http-connector=http-remoting-connector:write-
attribute(name=sasl-authentication-factory,value=application-sasl-
authentication)

This adds the following http-remoting-connector and ejb-outbound-connection
configuration to the remoting subsystem.

5. Configure the Elytron SASL authentication to use the PLAIN mechanism.

/subsystem=elytron/sasl-authentication-factory=application-sasl-
authentication:write-attribute(name=mechanism-configurations,value=
[{mechanism-name=PLAIN},{mechanism-name=JBOSS-LOCAL-USER,realm-
mapper=local},{mechanism-name=DIGEST-MD5,mechanism-realm-
configurations=[{realm-name=ApplicationRealm}]}])

This adds the following application-sasl-authentication configuration to the elytron
subsystem.

The server is now configured to enable security propagation for the following example application.

Review the Example Application Code That Propagates a Security Identity

<subsystem xmlns="urn:jboss:domain:remoting:4.0">

 <http-connector name="http-remoting-connector" connector-
ref="default" security-realm="ApplicationRealm" sasl-authentication-
factory="application-sasl-authentication"/>
 <outbound-connections>
 <remote-outbound-connection name="ejb-outbound-connection"
outbound-socket-binding-ref="ejb-outbound" authentication-
context="ejb-outbound-context"/>
 </outbound-connections>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">

 <sasl>

 <sasl-authentication-factory name="application-sasl-
authentication" sasl-server-factory="configured" security-
domain="ApplicationDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="PLAIN"/>
 <mechanism mechanism-name="JBOSS-LOCAL-USER" realm-
mapper="local"/>
 <mechanism mechanism-name="DIGEST-MD5">
 <mechanism-realm realm-name="ApplicationRealm"/>
 </mechanism>
 </mechanism-configuration>
 </sasl-authentication-factory>
 </sasl>

</subsystem>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

109

Once security identity propagation is enabled in the server configuration, the EJB client application can
use the WildFlyInitialContextFactory to look up and invoke the EJB proxy. The EJB is invoked
as the user that authenticated in the client example shown below. The following abbreviated code
examples are taken from the ejb-security-context-propagation quickstart that ships with JBoss
EAP 7.1. See that quickstart for a complete working example of security identity propagation.

To invoke the EJB as a different user, you can set the Context.SECURITY_PRINCIPAL and
Context.SECURITY_CREDENTIALS in the context properties.

Example: Remote Client

Example: Intermediate EJB

public class RemoteClient {

 public static void main(String[] args) throws Exception {
 // invoke the intermediate bean using the identity configured in
wildfly-config.xml
 invokeIntermediateBean();

 // now lets programmatically setup an authentication context to
switch users before invoking the intermediate bean
 AuthenticationConfiguration superUser =
AuthenticationConfiguration.empty().setSaslMechanismSelector(SaslMechanism
Selector.NONE.addMechanism("PLAIN")).
 useName("superUser").usePassword("superPwd1!");
 final AuthenticationContext authCtx =
AuthenticationContext.empty().
 with(MatchRule.ALL, superUser);

AuthenticationContext.getContextManager().setThreadDefault(authCtx);
 invokeIntermediateBean();
 }

 private static void invokeIntermediateBean() throws Exception {
 final Hashtable<String, String> jndiProperties = new Hashtable<>
();
 jndiProperties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.wildfly.naming.client.WildFlyInitialContextFactory");
 jndiProperties.put(Context.PROVIDER_URL,
"remote+http://localhost:8080");
 final Context context = new InitialContext(jndiProperties);
 IntermediateEJBRemote intermediate = (IntermediateEJBRemote)
context.lookup("ejb:/ejb-security-context-propagation/IntermediateEJB!"
 + IntermediateEJBRemote.class.getName());
 // Call the intermediate EJB
 System.out.println(intermediate.makeRemoteCalls());
 }
}

@Stateless
@Remote(IntermediateEJBRemote.class)
@SecurityDomain("quickstart-domain")
@PermitAll

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

110

Example: Secured EJB

Example: wildfly-config.xml File

public class IntermediateEJB implements IntermediateEJBRemote {

 @EJB(lookup="ejb:/ejb-security-context-
propagation/SecuredEJB!org.jboss.as.quickstarts.ejb_security_context_propa
gation.SecuredEJBRemote")
 private SecuredEJBRemote remote;

 @Resource
 private EJBContext context;

 public String makeRemoteCalls() {
 try {
 StringBuilder sb = new StringBuilder("** ").
 append(context.getCallerPrincipal()).
 append(" * * \n\n");
 sb.append("Remote Security Information: ").
 append(remote.getSecurityInformation()).
 append("\n");

 return sb.toString();
 } catch (Exception e) {
 if (e instanceof RuntimeException) {
 throw (RuntimeException) e;
 }
 throw new RuntimeException("Teasting failed.", e);
 }
 }
}

@Stateless
@Remote(SecuredEJBRemote.class)
@SecurityDomain("quickstart-domain")
public class SecuredEJB implements SecuredEJBRemote {

 @Resource
 private SessionContext context;

 @PermitAll
 public String getSecurityInformation() {
 StringBuilder sb = new StringBuilder("[");
 sb.append("Principal=[").
 append(context.getCallerPrincipal().getName()).
 append("], ");
 userInRole("guest", sb).append(", ");
 userInRole("user", sb).append(", ");
 userInRole("admin", sb).append("]");
 return sb.toString();
 }
}

<?xml version="1.0" encoding="UTF-8"?>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

111

2.2.2. Utilizing Authorization Forwarding Mode

In addition to credential forwarding, Elytron supports the trusted use of identities between peers. This
can be useful in the following cases.

Requirements are such that you cannot send passwords over the wire.

The authentication type is one that does not support credential forwarding.

The environment requires a need to limit which systems are allowed to receive the propagated
requests.

To utilize authorization forwarding, you first configure an authentication client on the forwarding server
and then configure the receiving server to accept and handle the authorization.

Configure the Authentication Client on the Forwarding Server
To enable authorization forwarding, you must configure an authentication client configuration in the
forwarding server configuration.

The following management CLI commands create a default authentication client configuration to enable
authentication forwarding. You can configure a more advanced rule based selection if you need one.

Example: Management CLI Command to Create the Authentication Client Configuration

/subsystem=elytron/authentication-
configuration=forwardit:add(authentication-name=theserver1,security-
domain=ApplicationDomain,realm=ApplicationRealm,forwarding-
mode=authorization,credential-reference={clear-
text=thereallysecretpassword})
/subsystem=elytron/authentication-context=forwardctx:add(match-rules=
[{authentication-configuration=forwardit,match-no-user=true}])

These commands add the following authentication-configuration and authentication-
context configuration to the elytron subsystem.

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <authentication-rules>
 <rule use-configuration="default"/>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="default">
 <set-user-name name="quickstartUser"/>
 <credentials>
 <clear-password password="quickstartPwd1!"/>
 </credentials>
 <sasl-mechanism-selector selector="PLAIN"/>
 <providers>
 <use-service-loader />
 </providers>
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

112

Example: Authentication Client Configuration

When the forwarding server contacts the receiving server, instead of using the default authentication-
based user name and credentials, it uses the predefined server login name theserver1 to establish the
trust relationship.

Configure the Authorization Forwarding on the Receiving Server
For the forwarding to complete successfully, the receiving server configuration needs to be configured
with the identity matching the one passed by the forwarding server. In this case, you must configure a
user named theserver1 on the receiving server with the correct credentials.

You must also configure a "RunAs" permission mapping in the elytron subsystem to allow the identity
switch for the theserver1 identity that is passed from the forwarding server. For more information
about permission mapping, see Create an Elytron Permission Mapper in How to Configure Server
Security for JBoss EAP.

The command below adds a simple-permission-mapper named auth-forwarding-
permission-mapper that includes the following configurations.

A permission mapping for the user anonymous. This user has no permissions, which prevents
an anonymous user from being able to log in.

A permission mapping for the user theserver1. This user is assigned the
RunAsPrincipalPermission permission of *, which gives this user global permissions to run
as any identity. You can restrict the permission to a specific identity if you prefer.

A permission mapping for all other users.

Example: Management CLI Command to the Create Simple Permission Mapper

/subsystem=elytron/permission-set=run-as-principal-
permission:add(permissions=[{class-
name="org.wildfly.security.auth.permission.RunAsPrincipalPermission",targe
t-name="*"}])

/subsystem=elytron/simple-permission-mapper=auth-forwarding-permission-
mapper:add(permission-mappings=[{principals=["anonymous"]},{principals=
["theserver1"],permission-sets=[{permission-set=login-permission},
{permission-set=default-permissions},{permission-set=run-as-principal-
permission}]},{match-all=true,permission-sets=[{permission-set=login-
permission},{permission-set=default-permissions}]}]

<authentication-client>
 <authentication-configuration name="forwardit" authentication-
name="theserver1" security-domain="ApplicationDomain" forwarding-
mode="authorization" realm="ApplicationRealm">
 <credential-reference clear-text="thereallysecretpassword"/>
 </authentication-configuration>
 <authentication-context name="forwardctx">
 <match-rule match-no-user="true" authentication-
configuration="forwardit"/>
 </authentication-context>
</authentication-client>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

113

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_server_security/#create_an_elytron_permission_mapper

This command adds the following simple-permission-mapper configuration to the elytron
subsystem.

Example: Simple Permission Mapper Configuration

NOTE

The login-permission and default-permissions permission sets are already
present in the default configuration.

In cases where principal transformers are used after forwarding authorization, then those transformers
are applied on both the authentication and the authorization principals.

2.2.3. Retrieving Security Identity Credentials

<mappers>
 <simple-permission-mapper name="auth-forwarding-permission-mapper">
 <permission-mapping>
 <principal name="anonymous"/>
 <!-- No permissions: Deny any permission to anonymous! -->
 </permission-mapping>
 <permission-mapping>
 <principal name="theserver1"/>
 <permission-set name="login-permission"/>
 <permission-set name="default-permissions"/>
 <permission-set name="run-as-principal-permission"/>
 </permission-mapping>
 <permission-mapping match-all="true">
 <permission-set name="login-permission"/>
 <permission-set name="default-permissions"/>
 </permission-mapping>
 </simple-permission-mapper>
</mappers>
<permission-sets>
 <permission-set name="login-permission">
 <permission class-
name="org.wildfly.security.auth.permission.LoginPermission"/>
 </permission-set>
 <permission-set name="default-permissions">
 <permission class-
name="org.wildfly.extension.batch.jberet.deployment.BatchPermission"
module="org.wildfly.extension.batch.jberet" target-name="*"/>
 <permission class-
name="org.wildfly.transaction.client.RemoteTransactionPermission"
module="org.wildfly.transaction.client"/>
 <permission class-name="org.jboss.ejb.client.RemoteEJBPermission"
module="org.jboss.ejb-client"/>
 </permission-set>
 <permission-set name="run-as-principal-permission">
 <permission class-
name="org.wildfly.security.auth.permission.RunAsPrincipalPermission"
target-name="*"/>
 </permission-set>
</permission-sets>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

114

There might be situations where you need to retrieve identity credentials for use in outgoing calls, for
example, by an HTTP client. The following example demonstrates how to retrieve security credentials
programmatically.

2.2.4. Mechanisms That Support Security Identity Propagation

The following SASL mechanisms support propagation of security identities:

PLAIN

OAUTHBEARER

GSSAPI

GS2-KRB5

The following HTTP mechanisms support propagation of security identities:

import org.wildfly.security.auth.server.IdentityCredentials;
import org.wildfly.security.auth.server.SecurityDomain;
import org.wildfly.security.auth.server.SecurityIdentity;
import org.wildfly.security.credential.PasswordCredential;
import org.wildfly.security.password.interfaces.ClearPassword;

SecurityIdentity securityIdentity = null;
ClearPassword password = null;

// Obtain the SecurityDomain for the current deployment.
// The calling code requires the
//
org.wildfly.security.permission.ElytronPermission("getSecurityDomain")
permission
// if running with a security manager.
SecurityDomain securityDomain = SecurityDomain.getCurrent();
if (securityDomain != null) {
 // Obtain the current security identity from the security domain.
 // This always returns an identity, but it could be the representation
 // of the anonymous identity if no authenticated identity is
available.
 securityIdentity = securityDomain.getCurrentSecurityIdentity();
 // The private credentials can be accessed to obtain any credentials
delegated to the identity.
 // The calling code requires the
 //
org.wildfly.security.permission.ElytronPermission("getPrivateCredentials")
 // permission if running with a security manager.
 IdentityCredentials credentials =
securityIdentity.getPrivateCredentials();
 if (credentials.contains(PasswordCredential.class)) {
 password =
credentials.getCredential(PasswordCredential.class).getPassword(ClearPassw
ord.class);
 }
}

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

115

FORM 1

BASIC

BEARER_TOKEN

SPNEGO

1 FORM authentication is not automatically handled by the web browser. For this reason, you cannot use
identity propagation with web applications that use FORM authentication when running in an HA cluster.
Other mechanisms, such as BASIC and SPNEGO, support identity propagation in an HA cluster
environment.

2.3. IDENTITY SWITCHING WITH ELYTRON

2.3.1. Switching Identities in Server-to-server EJB Calls

By default, when you make a remote call to an EJB deployed to an application server, the identity used
for authentication on the remote server is the same one that was used on the source server. In some
cases, you might want to run the remote secured EJB within the security context of a different identity.

You can use the Elytron API to switch identities in server-to-server EJB calls. When you do that, the
request received over the connection is executed as a new request, using the identity specified
programmatically in the API call.

The following code example demonstrates how to switch the identity that is used for authentication on a
remote EJB. The remoteUsername and remotePassword arguments passed in the
securityDomain.authenticate() method are the identity credentials that are to be used for
authentication on the target server.

Example: Switching Identities in Server-to-server EJB Calls

2.4. USER AUTHENTICATION WITH LEGACY CORE MANAGEMENT
AUTHENTICATION

2.4.1. Default User Configuration

All management interfaces in JBoss EAP are secured by default and users can access them in two

SecurityDomain securityDomain = SecurityDomain.getCurrent();
Callable<T> forwardIdentityCallable = () -> {
 return AuthenticationContext.empty()
 .with(MatchRule.ALL,
 AuthenticationConfiguration.empty()
 .setSaslMechanismSelector(SaslMechanismSelector.ALL)
 .useForwardedIdentity(securityDomain))
 .runCallable(callable);
};

securityDomain.authenticate(remoteUsername, new
PasswordGuessEvidence(remotePassword.toCharArray())).runAs(forwardIdentity
Callable);

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

116

different ways: local interfaces and remote interfaces. The basics of both of these authentication
mechanisms are covered in the Default Security and JBoss EAP Out of the Box sections of the JBoss
EAP Security Architecture guide. By default, access to these interfaces is configured in the Management
Realm security realm. Initially, the local interface is enabled and requires access to the host machine
running the JBoss EAP instance. Remote access is also enabled and is configured to use a file-based
identity store. By default it uses mgmt-users.properties file to store user names and passwords,
and mgmt-groups.properties to store user group information.

User information is added to these files by using the included adduser script located in the
EAP_HOME/bin/ directory.

To add a user via the adduser script:

1. Run the add-user.sh or add-user.bat command.

2. Choose whether to add a management user or application user.

3. Choose the realm the user will be added to. By default, the only available realms are
ManagementRealm and ApplicationRealm. If a custom realm has been added, its name
can be manually entered instead.

4. Type the desired user name, password, and optional roles when prompted. The changes are
written to each of the properties files for the security realm.

2.4.2. Adding Authentication via LDAP

JBoss EAP also supports using LDAP authentication for securing the management interfaces. The
basics of LDAP and how it works with JBoss EAP are covered in the LDAP, Using LDAP with the
Management Interfaces, and Using LDAP with the ManagementRealm sections of the Red Hat JBoss
Enterprise Application Platform 7 Security Architecture guide. For more specifics on how to secure the
management interfaces using LDAP authentication, see the Securing the Management Interfaces with
LDAP section of the JBoss EAP How to Configure Identity Management Guide.

2.4.3. Using JAAS for Securing the Management Interfaces

JAAS is a declarative security API used by JBoss EAP to manage security. For more details and
background regarding JAAS and declarative security, see the Declarative Security and JAAS section of
the Red Hat JBoss Enterprise Application Platform Security Architecture guide.

NOTE

When JBoss EAP instances are configured to run in ADMIN_ONLY mode, using JAAS to
secure the management interfaces is not supported. For more information on
ADMIN_ONLY mode, see the Running JBoss EAP in ADMIN_ONLY Mode section of the
JBoss EAP Configuration Guide.

To use JAAS to authenticate to the management interfaces, the following steps must be performed:

1. Create a security domain.
In this example, a security domain is created with the UserRoles login module, but other login
modules may be used as well:

/subsystem=security/security-domain=UsersLMDomain:add(cache-
type=default)

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

117

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#default_security
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#how_red_hat_jboss_enterprise_application_platform_7_handles_security_out_of_the_box
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#ldap
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#using_ldap_with_the_management_interfaces
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#using_ldap_management_realm
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#securing_the_management_interfaces_with_ldap
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#declarative_security_and_jaas
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#running_eap_in_admin_only_mode

/subsystem=security/security-
domain=UsersLMDomain/authentication=classic:add

/subsystem=security/security-
domain=UsersLMDomain/authentication=classic/login-
module=UsersRoles:add(code=UsersRoles, flag=required,module-options=
[("usersProperties"=>"users.properties"),
("rolesProperties"=>"roles.properties")])

2. Create a security realm with JAAS authentication.

/core-service=management/security-realm=SecurityDomainAuthnRealm:add

/core-service=management/security-
realm=SecurityDomainAuthnRealm/authentication=jaas:add(name=UsersLMD
omain)

3. Update the http-interface management interface to use new security realm.

/core-service=management/management-interface=http-interface/:write-
attribute(name=security-realm,value=SecurityDomainAuthnRealm)

4. Optional: Assign group membership.
The attribute assign-groups determines whether loaded user membership information from
the security domain is used for group assignment in the security realm. When set to true, this
group assignment is used for Role-Based Access Control (RBAC).

/core-service=management/security-
realm=SecurityDomainAuthnRealm/authentication=jaas:write-
attribute(name=assign-groups,value=true)

2.5. ROLE-BASED ACCESS CONTROL

The basics of Role-Based Access Control are covered in the Role-Based Access Control and Adding
RBAC to the Management Interfaces sections of the JBoss EAP Security Architecture guide.

2.5.1. Enabling Role-Based Access Control

By default the Role-Based Access Control (RBAC) system is disabled. It is enabled by changing the
provider attribute from simple to rbac. provider is an attribute of the access-control element
of the management element. This can be done using the management CLI or by editing the server
configuration XML file if the server is offline. When RBAC is disabled or enabled on a running server, the
server configuration must be reloaded before it takes effect.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

118

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#role_based_access_control
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#adding_rbac_to_the_management_interfaces

WARNING

Before changing the provider to rbac, be sure your configuration has a user who will
be mapped to one of the RBAC roles, preferably with at least one in the
Administrator or SuperUser role. Otherwise your installation will not be
manageable except by shutting it down and editing the XML configuration. If you
have started with one of the standard XML configurations shipped with JBoss EAP,
the $local user will be mapped to the SuperUser role and the local
authentication scheme will be enabled. This will allow a user, running the CLI on the
same system as the JBoss EAP process, to have full administrative permissions.
Remote CLI users and web-based management console users will have no
permissions.

It is recommended to map at least one user, besides $local, before switching the
provider to rbac. You can do all of the configuration associated with the rbac
provider even when the provider is set to simple.

Once enabled it can only be disabled by a user of the Administrator or SuperUser roles. By default
the management CLI runs as the SuperUser role if it is run on the same machine as the server.

CLI to Enable RBAC
To enable RBAC with the management CLI, use the write-attribute operation of the access
authorization resource to set the provider attribute to rbac.

/core-service=management/access=authorization:write-
attribute(name=provider, value=rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

reload

In a managed domain, the access control configuration is part of the domain wide configuration, so the
resource address is the same as above, but the management CLI is connected to the master domain
controller.

/core-service=management/access=authorization:write-
attribute(name=provider,value=rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 },
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

119

 "server-one" => {"response" => {
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
 }},
 "server-two" => {"response" => {
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
 }}
 }}}}
}

reload --host=master

NOTE

As with a standalone server, a reload or restart is required for the change to take effect. In
a managed domain, all hosts and servers in the domain will need to be reloaded or
restarted, starting with the master domain controller.

Management CLI Command to Disable RBAC
To disable RBAC with the management CLI, use the write-attribute operation of the access
authorization resource to set the provider attribute to simple.

/core-service=management/access=authorization:write-
attribute(name=provider, value=simple)

XML Configuration to Enable or Disable RBAC
If the server is offline the XML configuration can be edited to enable or disable RBAC. To do this, edit the
provider attribute of the access-control element of the management element. Set the value to rbac to
enable, and simple to disable.

Example: XML Configuration to Enable or Disable RBAC

2.5.2. Changing the Permission Combination Policy

<management>
 <access-control provider="rbac">
 <role-mapping>
 <role name="SuperUser">
 <include>
 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
 </access-control>
</management>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

120

The Permission Combination Policy determines how permissions are determined if a user is assigned
more than one role. This can be set to permissive or rejecting. The default is permissive.

When set to permissive, if any role is assigned to the user that permits an action, then the action is
allowed.

When set to rejecting, if multiple roles are assigned to a user, then no action is allowed. This means
that when the policy is set to rejecting each user should only be assigned one role. Users with multiple
roles will not be able to use the management console or the management CLI when the policy is set to
rejecting.

The Permission Combination Policy is configured by setting the permission-combination-policy
attribute to either permissive or rejecting. This can be done using the management CLI or by
editing the server configuration XML file if the server is offline. The permission-combination-
policy attribute is part of the access-control element and the access-control element can be
found in the management element.

Setting the Permission Combination Policy
Use the write-attribute operation of the access authorization resource to set the permission-combination-
policy attribute to the required policy name.

/core-service=management/access=authorization:write-
attribute(name=permission-combination-policy, value=POLICYNAME)

The valid policy names are rejecting and permissive.

Example: Management CLI Command for Rejecting Permission Combination Policy

/core-service=management/access=authorization:write-
attribute(name=permission-combination-policy, value=rejecting)

If the server is offline the XML configuration can be edited to change the permission combination policy
value. To do this, edit the permission-combination-policy attribute of the access-control
element.

Example: XML Configuration for Rejecting Permission Combination Policy

2.5.3. Managing Roles

When Role-Based Access Control (RBAC) is enabled, what a management user is permitted to do is
determined by the roles to which the user is assigned. JBoss EAP 7 uses a system of includes and
excludes based on both the user and group membership to determine to which role a user belongs.

A user is considered to be assigned to a role if the user is:

<access-control provider="rbac" permission-combination-policy="rejecting">
 <role-mapping>
 <role name="SuperUser">
 <include>
 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
</access-control>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

121

listed as a user to be included in the role, or

a member of a group that is listed to be included in the role.

A user is also considered to be assigned to a role if the user is not:

listed as a user to exclude from the role, or

a member of a group that is listed to be excluded from the role.

Exclusions take priority over inclusions.

Role include and exclude settings for users and groups can be configured using both the management
console and the management CLI.

Only users of the SuperUser or Administrator roles can perform this configuration.

2.5.3.1. Configure User Role Assignment Using the Management CLI

The configuration of mapping users and groups to roles is located at: /core-
service=management/access=authorization as role-mapping elements.

Only users of the SuperUser or Administrator roles can perform this configuration.

Viewing Role Assignment Configuration
Use the :read-children-names operation to get a complete list of the configured roles:

/core-service=management/access=authorization:read-children-names(child-
type=role-mapping)
{
 "outcome" => "success",
 "result" => [
 "Administrator",
 "Deployer",
 "Maintainer",
 "Monitor",
 "Operator",
 "SuperUser"
]
}

Use the read-resource operation of a specified role-mapping to get the full details of a specific role:

/core-service=management/access=authorization/role-mapping=ROLENAME:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

122

 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}

Add a New Role
This procedure shows how to add a role-mapping entry for a role. This must be done before the role can
be configured.

Use the add operation to add a new role configuration.

/core-service=management/access=authorization/role-mapping=ROLENAME:add

ROLENAME is the name of the role that the new mapping is for, such as Auditor.

Example: Management CLI Command for New Role Configuration

/core-service=management/access=authorization/role-mapping=Auditor:add

Add a User as Included in a Role
This procedure shows how to add a user to the included list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a user entry to the includes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:add(name=USERNAME, type=USER)

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends the use of a naming convention
for aliases, such as user-USERNAME (for example, user-max).

USERNAME is the name of the user being added to the include list, such as max.

Example: Management CLI Command for User Included in a Role

/core-service=management/access=authorization/role-
mapping=Auditor/include=user-max:add(name=max, type=USER)

Add a User as Excluded in a Role
This procedure shows how to add a user to the excluded list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

123

Use the add operation to add a user entry to the excludes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:add(name=USERNAME, type=USER)

ROLENAME is the name of the role being configured, for example Auditor.

USERNAME is the name of the user being added to the exclude list, for example max.

ALIAS is a unique name for this mapping. Red Hat recommends that the use of a naming
convention for aliases, such as user-USERNAME (for example, user-max).

Example: Management CLI Command User Excluded in a Role

/core-service=management/access=authorization/role-
mapping=Auditor/exclude=user-max:add(name=max, type=USER)

Remove User Role Include Configuration
This procedure shows how to remove a user include entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that the use of a naming
convention for aliases, such as user-USERNAME (for example, user-max).

Example: Management CLI Command for Removing User Role Include Configuration

/core-service=management/access=authorization/role-
mapping=Auditor/include=user-max:remove

NOTE

Removing the user from the list of includes does not remove the user from the system, nor
does it guarantee that the role will not be assigned to the user. The role might still be
assigned based on group membership.

Remove User Role Exclude Configuration
This procedure shows how to remove an user exclude entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that the use of a naming
convention for aliases, such as user-USERNAME (for example, user-max).

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

124

/core-service=management/access=authorization/role-
mapping=Auditor/exclude=user-max:remove

NOTE

Removing the user from the list of excludes does not remove the user from the system,
nor does it guarantee the role will be assigned to the user. Roles might still be excluded
based on group membership.

2.5.4. Configure User Role Assignment with the Elytron Subsystem

In addition to adding role mappings for users directly, as covered in Managing Roles section, you can
also configure RBAC roles to be directly taken from the identity provided by the elytron subsystem.

To configure the RBAC system to use roles provided by the elytron subsystem:

/core-service=management/access=authorization:write-attribute(name=use-
identity-roles,value=true)

IMPORTANT

RBAC must be enabled to use this functionality, and the principal must have RBAC roles.

2.5.5. Roles and User Groups

A user group is an arbitrary label that can be assigned to one or more users. When authenticating using
the management interfaces, users are assigned groups from either the elytron subsystem or core
management authentication, depending on how the management interfaces are secured. The RBAC
system can be configured to automatically assign roles to users depending on what user groups they are
members of. It can also exclude users from roles based on group membership.

2.5.6. Configure Group Role Assignment Using the Management CLI

Groups to be included or excluded from a role can be configured in the management console and the
management CLI. This topic only shows using the management CLI.

The configuration of mapping users and groups to roles is located in the management API at: /core-
service=management/access=authorization as role-mapping elements.

Only users in the SuperUser or Administrator roles can perform this configuration.

Viewing Group Role Assignment Configuration
Use the read-children-names operation to get a complete list of the configured roles:

/core-service=management/access=authorization:read-children-names(child-
type=role-mapping)
{
 "outcome" => "success",
 "result" => [
 "Administrator",
 "Deployer",
 "Maintainer",
 "Monitor",

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

125

 "Operator",
 "SuperUser"
]
}

Use the read-resource operation of a specified role-mapping to get the full details of a specific role:

/core-service=management/access=authorization/role-mapping=ROLENAME:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },
 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}

Add a New Role
This procedure shows how to add a role-mapping entry for a role. This must be done before the role can
be configured.

Use the add operation to add a new role configuration.

/core-service=management/access=authorization/role-mapping=ROLENAME:add

Add a Group as Included in a Role
This procedure shows how to add a group to the included list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a group entry to the includes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:add(name=GROUPNAME, type=GROUP)

ROLENAME is the name of the role being configured, such as Auditor.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

126

GROUPNAME is the name of the group being added to the include list, such as
investigators.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-
investigators).

Example: Management CLI Command for Adding a Group as Included in a Role

/core-service=management/access=authorization/role-
mapping=Auditor/include=group-investigators:add(name=investigators,
type=GROUP)

Add a Group as Excluded in a Role
This procedure shows how to add a group to the excluded list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be created first.

Use the add operation to add a group entry to the excludes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:add(name=GROUPNAME, type=GROUP)

ROLENAME is the name of the role being configured, such as Auditor.

GROUPNAME is the name of the group being added to the include list, such as supervisors.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-supervisors).

Example: Management CLI Command for Adding a Group as Excluded in a Role

/core-service=management/access=authorization/role-
mapping=Auditor/exclude=group-supervisors:add(name=supervisors,
type=GROUP)

Remove Group Role Include Configuration
This procedure shows how to remove a group include entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-
investigators).

Example: Management CLI Command for Removing Group Role Include Configuration

/core-service=management/access=authorization/role-
mapping=Auditor/include=group-investigators:remove

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

127

NOTE

Removing the group from the list of includes does not remove the group from the system,
nor does it guarantee that the role will not be assigned to users in this group. The role
might still be assigned to users in the group individually.

Remove a User Group Exclude Entry
This procedure shows how to remove a group exclude entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-supervisors).

/core-service=management/access=authorization/role-
mapping=Auditor/exclude=group-supervisors:remove

NOTE

Removing the group from the list of excludes does not remove the group from the system.
It also does not guarantee the role will be assigned to members of the group. Roles might
still be excluded based on group membership.

2.5.7. Using RBAC with LDAP

The basics of using RBAC with LDAP as well as how to configure JBoss EAP to use RBAC with LDAP
are covered in the LDAP and RBAC section of the JBoss EAP How to Configure Identity Management
Guide.

2.5.8. Scoped Roles

Scoped roles are user-defined roles that grant the permissions of one of the standard roles but only for
one or more specified server groups or hosts in an JBoss EAP managed domain. Scoped roles allow for
management users to be granted permissions that are limited to only those server groups or hosts that
are required.

IMPORTANT

Scoped roles can be created by users assigned the Administrator or SuperUser
roles.

They are defined by five characteristics:

A unique name.

The standard roles which it is based on.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

128

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#ldap_and_rbac

If it applies to server groups or hosts.

The list of server groups or hosts that it is restricted to.

If all users are automatically included. This defaults to false.

Once created a scoped role can be assigned to users and groups the same way that the standard roles
are.

Creating a scoped role does not allow for defining new permissions. Scoped roles can only be used to
apply the permissions of an existing role in a limited scope. For example, a scoped role could be created
based on the Deployer role which is restricted to a single server group.

There are only two scopes that roles can be limited to:

Host-scoped roles

A role that is host-scoped restricts the permissions of that role to one or more hosts. This means
access is provided to the relevant /host=*/ resource trees but resources that are specific to other
hosts are hidden.

Server-group-scoped roles

A role that is server-group-scoped restricts the permissions of that role to one or more server groups.
Additionally the role permissions will also apply to the profile, socket binding group, server
configuration, and server resources that are associated with the specified server-groups. Any sub-
resources within any of those that are not logically related to the server-group will not be visible to the
user.

IMPORTANT

Some resources are non-addressable to server-group and host scoped roles in order
to provide a simplified view of the management model to improve usability. This is distinct
from resources that are non-addressable to protect sensitive data.

For host scoped roles this means that resources in the /host=* portion of the
management model will not be visible if they are not related to the server groups specified
for the role.

For server-group scoped roles, this means that resources in the profile, socket-
binding-group, deployment, deployment-overlay, server-group, server-
config and server portions of the management model will not be visible if they are not
related to the server groups specified for the role.

2.5.8.1. Configuring Scoped Roles from the Management CLI

IMPORTANT

Only users in the SuperUser or Administrator roles can perform this configuration.

Add a New Scoped Role
To add a new scoped role, the following operations must be done:

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-
ROLE:add

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

129

/core-service=management/access=authorization/server-group-scoped-
role=NEW-SCOPED-ROLE:add(base-role=BASE-ROLE, server-groups=[SERVER-GROUP-
NAME])

Replace NEW-SCOPED-ROLE, BASE-ROLE, and SERVER-GROUP-NAME with the proper information.

Viewing and Editing a Scoped Role Mapping
A scoped role’s details, including members, can be viewed by using the following command:

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-
ROLE:read-resource(recursive=true)

Replace NEW-SCOPED-ROLE with the proper information.

To edit a scoped role’s details, the write-attribute command may be used. For example:

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-
ROLE:write-attribute(name=include-all, value=true)

Replace NEW-SCOPED-ROLE with the proper information.

Delete a Scoped Role

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-
ROLE:remove

/core-service=management/access=authorization/server-group-scoped-
role=NEW-SCOPED-ROLE:remove

Replace NEW-SCOPED-ROLE with the proper information.

IMPORTANT

A scoped role cannot be deleted if users or groups are assigned to it. Remove the role
assignments first, and then delete it.

Adding and Removing Users
Adding and removing users to and from scoped roles follows the same process as adding and removing
standard roles.

2.5.8.2. Configuring Scoped Roles from the Management Console

IMPORTANT

Only users in the SuperUser or Administrator roles can perform this configuration.

Scoped role configuration in the management console can be found by following these steps:

1. Log in to the management console

2. Click on the Access Control tab

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

130

3. Click on the Roles menu on the left and all roles, including scoped roles, are displayed.

The following procedures show how to perform configuration tasks for scoped roles.

Add a New Scoped Role

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click Add.

5. Specify the following details:

Name, the unique name for the new scoped role.

Base Role, the role which this role will base its permissions on.

Type, whether this role will be restricted to hosts or server groups.

Scope, the list of hosts or server groups that the role is restricted to. Multiple entries can be
selected.

Include All, should this role automatically include all users. Defaults to no.

6. Click Save and the dialog will close and the newly created role will appear in the table.

Edit a Scoped Role

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click on the desired scoped role to edit and click Edit.

5. Update the desired details to change and click the Save button.

View Scoped Role Members

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click on the desired scoped role and choose Include or Exclude to view the included or
excluded members.

Delete a Scoped Role

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

131

4. Click on the desired scoped role, click the drop-down arrow next to the Edit button and click
Remove.

5. Click Confirm. The dialog closes and the role is removed.

IMPORTANT

A scoped role cannot be deleted if users or groups are assigned to it. Remove the role
assignments first, and then delete it.

Adding and Removing Users
Adding and removing users to and from scoped roles follows the same process as adding and removing
standard roles. To update a user’s scoped roles:

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click on the desired scoped role and choose Include or Exclude to view the included or
excluded members.

5. To add a member, click Add, choose the member to include or exclude, and click Save.

6. To remove a member, select the desired member to remove and click Remove.

2.5.9. Configuring Constraints

2.5.9.1. Configure Sensitivity Constraints

Each sensitivity constraint defines a set of resources that are considered sensitive. A sensitive resource
is generally one that either should be secret, like passwords, or one that will have serious impact on the
server, like networking, JVM configuration, or system properties. The access control system itself is also
considered sensitive. Resource sensitivity limits which roles are able to read, write or address a specific
resource.

Sensitivity constraint configuration is at /core-
service=management/access=authorization/constraint=sensitivity-
classification.

Within the management model each sensitivity constraint is identified as a classification. The
classifications are then grouped into types. Each classification has an applies-to element which is a
list of path patterns to which the classifications configuration applies.

To configure a sensitivity constraint, use the write-attribute operation to set the configured-
requires-read, configured-requires-write, or configured-requires-addressable
attribute. To make that type of operation sensitive set the value of the attribute to true, otherwise to
make it nonsensitive set it to false. By default these attributes are not set and the values of default-
requires-read, default-requires-write, and default-requires-addressable are used.
Once the configured attribute is set it is that value that is used instead of the default. The default values
cannot be changed.

Example: Make Reading System Properties a Sensitive Operation

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

132

/core-service=management/access=authorization/constraint=sensitivity-
classification/type=core/classification=system-property:write-
attribute(name=configured-requires-read,value=true)

Example: Result

/core-service=management/access=authorization/constraint=sensitivity-
classification/type=core/classification=system-property:read-resource

{
 "outcome" => "success",
 "result" => {
 "configured-requires-addressable" => undefined,
 "configured-requires-read" => true,
 "configured-requires-write" => undefined,
 "default-requires-addressable" => false,
 "default-requires-read" => false,
 "default-requires-write" => true,
 "applies-to" => {
 "/core-service=platform-mbean/type=runtime" => undefined,
 "/system-property=*" => undefined,
 "/" => undefined
 }
 }
}

The roles, and the respective operations that they are able to perform, depend on the configuration of the
attributes. This is summarized in the following table:

Table 2.2. Sensitivity Constraint Configuration Outcomes

Value requires-read requires-write requires-addressable

true Read is sensitive. Only
Auditor,
Administrator,
SuperUser can read.

Write is sensitive. Only
Administrator and
SuperUser can write.

Addressing is sensitive.
Only Auditor,
Administrator,
SuperUser can
address.

false Read is not sensitive.
Any management user
can read.

Write is not sensitive.
Only Maintainer,
Administrator and
SuperUser can write.
Deployer can also
write the resource is an
application resource.

Addressing is not
sensitive. Any
management user can
address.

2.5.9.2. List Sensitivity Constraints

You can see a list of the available sensitivity constraints directly from the JBoss EAP management model
using the following management CLI command:

/core-service=management/access=authorization/constraint=sensitivity-

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

133

classification:read-resource(include-runtime=true,recursive=true)

2.5.9.3. Configure Application Resource Constraints

Each application resource constraint defines a set of resources, attributes and operations that are usually
associated with the deployment of applications and services. When an application resource constraint is
enabled management users of the Deployer role are granted access to the resources that it applies to.

Application constraint configuration is at /core-
service=management/access=authorization/constraint=application-
classification/.

Each application resource constraint is identified as a classification. The classifications are then grouped
into types. Each classification has an applies-to element which is a list of path patterns to which the
classifications configuration applies.

By default the only application resource classification that is enabled is core. Core includes deployments,
deployment overlays, and the deployment operations.

To enable an application resource, use the write-attribute operation to set the configured-
application attribute of the classification to true. To disable an application resource, set this
attribute to false. By default these attributes are not set and the value of default-application
attribute is used. The default value cannot be changed.

Example: Enabling the logger-profile Application Resource Classification

/core-service=management/access=authorization/constraint=application-
classification/type=logging/classification=logging-profile:write-
attribute(name=configured-application,value=true)

Example: Result

/core-service=management/access=authorization/constraint=application-
classification/type=logging/classification=logging-profile:read-resource

{
 "outcome" => "success",
 "result" => {
 "configured-application" => true,
 "default-application" => false,
 "applies-to" => {"/subsystem=logging/logging-profile=*" =>
undefined}
 }
}

IMPORTANT

Application resource constraints apply to all resources that match its configuration. For
example, it is not possible to grant a Deployer user access to one datasource resource
but not another. If this level of separation is required then it is recommended to configure
the resources in different server groups and create different scoped Deployer roles for
each group.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

134

2.5.9.4. List Application Resource Constraints

You can see a list of the available application resource constraints directly from the JBoss EAP
management model using the following management CLI command:

/core-service=management/access=authorization/constraint=application-
classification:read-resource(include-runtime=true,recursive=true)

2.5.9.5. Configure the Vault Expression Constraint

By default, reading and writing vault expressions are sensitive operations. Configuring the vault
expression constraint allows either or both of those operations to be set to nonsensitive. Changing this
constraint allows a greater number of roles to read and write vault expressions.

The vault expression constraint is found at /core-
service=management/access=authorization/constraint=vault-expression.

To configure the vault expression constraint, use the write-attribute operation to set the attributes
of configured-requires-write and configured-requires-read to true or false. By default
these are not set and the values of default-requires-read and default-requires-write are
used. The default values cannot be changed.

Example: Making Writing to Vault Expressions a Nonsensitive Operation

/core-service=management/access=authorization/constraint=vault-
expression:write-attribute(name=configured-requires-write,value=false)

Example: Result

/core-service=management/access=authorization/constraint=vault-
expression:read-resource

{
 "outcome" => "success",
 "result" => {
 "configured-requires-read" => undefined,
 "configured-requires-write" => false,
 "default-requires-read" => true,
 "default-requires-write" => true
 }
}

The roles, and the respective vault expressions that they will be able to read and write, depend on the
configuration of the attributes. This is summarized in the following table:

Table 2.3. Vault Expression Constraint Configuration Outcomes

Value requires-read requires-write

true Read operation is sensitive. Only
Auditor, Administrator,
and SuperUser can read.

Write operation is sensitive. Only
Administrator and
SuperUser can write.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

135

false Read operation is not sensitive.
All management users can read.

Write operation is not sensitive.
Monitor, Administrator,
and SuperUser can write.
Deployer can also write if the
vault expression is in an
application resource.

Value requires-read requires-write

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

136

CHAPTER 3. SECURELY STORING CREDENTIALS
JBoss EAP allows the encryption of sensitive strings outside of configuration files. These strings can be
stored in a keystore, and subsequently decrypted for applications and verifications systems. Sensitive
strings can be stored in either of the following:

Credential Store - Introduced in JBoss EAP 7.1, a credential store can safely secure sensitive
and plain text strings by encrypting them in a storage file. Each JBoss EAP server can contain
multiple credential stores.

Password Vault - Primarily used in legacy configurations, a password vault uses a Java Keystore
to store sensitive strings outside of the configuration files. Each JBoss EAP server can only
contain a single password vault.

All of the configuration files in EAP_HOME/standalone/configuration/ and
EAP_HOME/domain/configuration/ are world readable by default. It is strongly recommended to
not store plaintext passwords in the configuration files, and instead place these credentials in either a
credential store or password vault.

If you decide to place plaintext passwords in the configuration files, then these files should only be
accessible by limited users. At a minimum, the user account under which JBoss EAP 7 is running
requires read-write access.

3.1. CREDENTIAL STORE

Introduced with the elytron subsystem, credential stores allow for secure storage and usage of
credentials. You can find more background information on credential stores as well as other Elytron
components in the Core Concepts and Components section of the Security Architecture guide.

Using a credential store is preferred to using a password vault to store passwords and other sensitive
strings. Credential stores allow for easier credential management within the JBoss EAP management
CLI, without having to use an external tool. You can also use multiple credential stores within a JBoss
EAP server, compared to the limitation of only one password vault per JBoss EAP server.

The default credential store implementation uses a JCEKS keystore file to store credentials. When
creating a new credential store, the default implementation also allows you to reference an existing
keystore file or have JBoss EAP automatically create one for you. Currently, the default implementation
only allows you to store clear text passwords.

IMPORTANT

The elytron subsystem does not provide any checks for using the same file as storage
to multiple credential stores. It is strongly advised not to use the same file for multiple
credential stores or even to share the storage file using remote file systems.

If you need to use shared storage file, be sure to set the read-only flag on the
credential stores accessing it. This will prevent the file from being modified. After the file is
updated from outside, each credential store has to be reloaded to reflect the changed
values. A similar process needs to be followed when using credential stores in a managed
domain.

Since a credential store contains sensitive information, the directory containing the store
should be accessible to only limited users. At a minimum the user account under which
JBoss EAP is running requires read-write access.

CHAPTER 3. SECURELY STORING CREDENTIALS

137

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/security_architecture/#elytron_core_concepts_components

IMPORTANT

JBoss EAP reads the credential store file into memory and writes changes to it at varying
times. You must ensure that the user running the JBoss EAP process has permissions to
the store file, and that you do not externally modify the store file while JBoss EAP is
running.

If the file is modified externally, you can use the reload() operation on the credential
store to make JBoss EAP reload the content of the store file.

3.1.1. Create a Credential Store

To create a credential store, you must define a path to the new credential store file, and provide a master
password that is used to encrypt the credential store. The directory containing the store should be
accessible to only limited users. At a minimum the user account under which JBoss EAP is running
requires read-write access.

IMPORTANT

JCEKS keystore implementations differ between Java vendors, so the JBoss EAP
instance must run a JDK from the same vendor that generated the JCEKS keystore.

Like providing paths in other JBoss EAP configuration, you can also use the relative-to attribute to
provide a path relative to another.

Create a Credential Store for a Standalone Server
Use the following management CLI command to create a new credential store:

/subsystem=elytron/credential-
store=STORE_NAME:add(location="path/to/store_file", credential-reference=
{clear-text=STORE_PASSWORD},create=true)

For example, the following command creates a new store named my_store, and creates the file
jboss.server.data.dir/cred_stores/my_store.jceks:

/subsystem=elytron/credential-
store=my_store:add(location="cred_stores/my_store.jceks", relative-
to=jboss.server.data.dir, credential-reference={clear-
text=supersecretstorepassword},create=true)

NOTE

If you want to use an implementation other than default, you can explicitly define the
type of a credential store. For more information, see the section on using a custom
credential store implementation.

Create a Credential Store in a Managed Domain
Use the following management CLI command to create a new credential store in a managed domain:

/profile=PROFILE_NAME/subsystem=elytron/credential-
store=STORE_NAME:add(location=path/to/store_file,credential-reference=
{clear-text="STORE_PASSWORD"},create=true)

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

138

For example, the following command creates a new store named my_store, and creates the file
jboss.server.data.dir/cred_stores/my_store.jceks:

/profile=full/subsystem=elytron/credential-store=my_store:add(relative-
to=jboss.server.data.dir,location="cred_stores/my_store.jceks",credential-
reference={clear-text=supersecretstorepassword},create=true)

NOTE

There is no need to define a credential store resource at each server. Every server
running the same profile, for which the credential store is created, contains our credential
store. Therefore, it is good idea to locate the storage file at the server data directory,
relative-to=jboss.server.data.dir.

For another way of creating a credential store in a managed domain, see Using Credential Stores in a
Managed Domain.

3.1.2. Add a Credential to the Credential Store

To add a new credential to a credential store, you associate an alias to the sensitive string that you are
wanting to store.

NOTE

Credential store aliases are case insensitive by default. Any stored alias is displayed in
lowercase, and may be referenced using any combination of uppercase and lowercase
letters.

If a custom credential store is used, then case sensitivity will be determined by the custom
implementation.

The following management CLI command adds a credential to a credential store:

/subsystem=elytron/credential-store=STORE_NAME:add-alias(alias=ALIAS,
secret-value="SENSITIVE_STRING")

For example, to add a password with the alias database-pw to the store created in the previous
section:

/subsystem=elytron/credential-store=my_store:add-alias(alias=database-pw,
secret-value="speci@l_db_pa$$_01")

Editing Credential Store Aliases Using the Management Console

1. Log in to the management console and click on the Runtime tab.

2. Select the server and click on Subsystems.

3. Select Security - Elytron and click on View. You can edit your credential store aliases here.

3.1.3. Use a Stored Credential in a Configuration

To refer to a password or sensitive string stored in a credential store, use the credential-

CHAPTER 3. SECURELY STORING CREDENTIALS

139

reference attribute in your JBoss EAP configuration. You can use credential-reference as an
alternative to providing a password or other sensitive string in most places throughout the JBoss EAP
configuration.

credential-reference={store=STORE_NAME, alias=ALIAS}

For example, to create a new datasource using the password that was added to the credential store in
the previous example, you can use credential-reference like the following:

data-source add --name=my_DS --jndi-name=java:/my_DS --driver-name=h2 --
connection-url=jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE -
-user-name=db_user --credential-reference={store=my_store, alias=database-
pw}

In the above example, instead of providing a password using --password, a credential-
reference including a store name and alias is provided. If you check the resulting datasource
configuration, note that password is undefined and the credential-reference attribute is defined
instead.

/subsystem=datasources/data-source=my_DS:read-resource()
{
 "outcome" => "success",
 "result" => {
 ...
 "credential-reference" => {
 "store" => "my_store",
 "alias" => "database-pw"
 },
 ...
 "password" => undefined,
 ...
 }
}

3.1.4. List the Credentials in the Credential Store

You can list the aliases of all the credentials contained in a credential store using the following
management CLI command:

/subsystem=elytron/credential-store=STORE_NAME:read-aliases()

For example:

/subsystem=elytron/credential-store=my_store:read-aliases()
{
 "outcome" => "success",
 "result" => [
 "database-pw"
]
}

3.1.5. Remove a Credential from the Credential Store

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

140

You can remove a credential from a credential store using the following command:

/subsystem=elytron/credential-store=STORE_NAME:remove-alias(alias=ALIAS)

For example:

/subsystem=elytron/credential-store=my_store:remove-alias(alias=database-
pw)

3.1.6. Obtain the Master Password for the Credential Store from an External
Source

Instead of providing your credential store’s master password in the clear, you can choose to provide that
password using a pseudo credential store. You have the following options:

EXT

External command using java.lang.Runtime#exec(java.lang.String). If parameters are
needed, they are supplied using a space-separated list of strings. An external command refers to any
executable from the operation system, for example a shell script or an executable binary. The
password is read from the standard output of the executed command.

Example

{EXT}/usr/bin/getTheMasterPassswordScript.sh par1 par2

CMD

External command using java.lang.ProcessBuilder. If parameters are needed, they are
supplied using a comma-separated list of strings. An external command refers to any executable from
the operation system, for example a shell script or an executable binary. The password is read from
the standard output of the executed command.

Example

{CMD}/usr/bin/getTheMasterPassswordScript.sh par1,par2

MASK

Masked password using PBE, or Password Based Encryption. It must be in the following format,
which includes the SALT and ITERATION values:

MASK-MASKED_VALUE;SALT;ITERATION

Example

MASK-NqMznhSbL3lwRpDmyuqLBW==;12345678;123

CHAPTER 3. SECURELY STORING CREDENTIALS

141

IMPORTANT

EXT, CMD, and MASK provide backward compatibility with the legacy security vault style of
supplying an external password. For MASK you must use the above format that includes
the SALT and ITERATION values.

You can also use a password located in another credential store as the master password for a new
credential store.

Example Credential Store Created with a Password from Another Credential Store

/subsystem=elytron/credential-
store=exampleCS:add(location="cred_stores/exampleCS.jceks", relative-
to=jboss.server.data.dir, create=true, credential-reference={store=master-
cred-store, alias=master-pw})

3.1.7. Define a FIPS 140-2 Compliant Credential Store

To obtain a FIPS compliant keystore, use a Sun PKCS#11 provider accessing an NSS database.
Instructions on defining the database are found at Configuring the NSS Database.

1. Create a secret key to be used in the credential store.

$ keytool -keystore NONE -storetype PKCS11 -storepass STORE_PASSWORD
-genseckey -alias ALIAS -keyalg AES -keysize 256

2. Create an external credential store. An external credential store holds a secret key in a
PKCS#11 keystore, and accesses this keystore using the alias defined in the previous step. This
keystore is then used to decrypt the credentials in a JCEKS keystore. In addition to the
credential-store attributes, the credential-store KeyStoreCredentialStore
implementation properties are used to configure external credential stores.

/subsystem=elytron/credential-store=STORE_NAME:add(modifiable=true,
implementation-properties=
{"keyStoreType"=>"PKCS11","external"=>"true","keyAlias"=>"ALIAS",
externalPath="/path/to/EXTERNAL_STORAGE"},credential-reference=
{clear-text="STORE_PASSWORD"}, create=true)

3. Once created, the credential store can be used to store aliases as normal.

/subsystem=elytron/credential-store=STORE_NAME:add-
alias(alias="ALIAS", secret-value="SENSITIVE_STRING")

4. Confirm that the alias has been added successfully by reading from the credential store.

/subsystem=elytron/credential-store=STORE_NAME:read-aliases()

3.1.8. Use a Custom Implementation of the Credential Store

To use a custom implementation of the credential store:

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

142

1. Create a class that extends the Service Provider Interface (SPI) CredentialStoreSpi
abstract class.

2. Create a class that implements the Java Security Provider. The provider must add the custom
credential store class as a service.

3. Create a module containing your credential store and provider classes, and add it to JBoss EAP
with a dependency on org.wildfly.security.elytron. For example:

module add --name=org.jboss.customcredstore --
resources=/path/to/customcredstoreprovider.jar --
dependencies=org.wildfly.security.elytron --slot=main

4. Create a provider loader for your provider. For example:

/subsystem=elytron/provider-loader=myCustomLoader:add(class-names=
[org.wildfly.security.mycustomcredstore.CustomElytronProvider],modul
e=org.jboss.customcredstore)

5. Create a credential store using the custom implementation.

NOTE

Ensure that you specify the correct providers and type values. The value of
type is what is used in your provider class where it adds your custom credential
store class as a service.

For example:

/subsystem=elytron/credential-
store=my_store:add(providers=myCustomLoader,type=CustomKeyStorePassw
ordStore,location="cred_stores/my_store.jceks",relative-
to=jboss.server.data.dir,credential-reference={clear-
text=supersecretstorepassword},create=true)

Alternatively, if you have created multiple providers, you can specify the additional providers
using another provider loader with other-providers. This allows you to have other additional
implementations for new types of credentials. These specified other providers are automatically
accessible in the custom credential store’s initialize method as the Provider[] argument.
For example:

/subsystem=elytron/credential-
store=my_store:add(providers=myCustomLoader,other-
providers=myCustomLoader2,type=CustomKeyStorePasswordStore,location=
"cred_stores/my_store.jceks",relative-
to=jboss.server.data.dir,credential-reference={clear-
text=supersecretstorepassword},create=true)

3.1.9. Create and Modify Credential Stores Offline with the WildFly Elytron Tool

You can use the WildFly Elytron tool, which you access using the elytron-tool script located in
EAP_HOME/bin/, to create and modify a credential store for an offline, or stopped, JBoss EAP server.

CHAPTER 3. SECURELY STORING CREDENTIALS

143

IMPORTANT

JCEKS keystore implementations differ between Java vendors, so the JBoss EAP
instance must run a JDK from the same vendor that generated the JCEKS keystore.

IMPORTANT

Using the WildFly Elytron tool to modify a credential store that is in use by a running
JBoss EAP server can result in changes to the store being lost. Instead, you should
create and modify credential stores for a running server by using the management CLI, as
described in the previous sections.

The following commands are shown using elytron-tool.sh for Red Hat Enterprise Linux and Solaris
systems. For Windows Server systems, use the elytron-tool.bat script instead.

Create a Credential Store Using the WildFly Elytron Tool

Create a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location
"path/to/store_file" --password STORE_PASSWORD

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location
"../cred_stores/my_store.jceks" --password supersecretstorepassword

If you do not want to provide your store password in the command, you can omit that argument and you
will be prompted to enter the password manually using standard input. You can also use a masked
password generated by the WildFly Elytron tool for the store password.

Add a Credential to a Credential Store Using the WildFly Elytron Tool

Add a credential to a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"path/to/store_file" --password STORE_PASSWORD --add ALIAS --secret
SENSITIVE_STRING

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"../cred_stores/my_store.jceks" --password supersecretstorepassword --add
database-pw --secret speci@l_db_pa$$_01

Similar to providing the credential store password, if you do not want to provide your secret in the
command, you can omit that argument and you will be prompted to enter the secret manually using
standard input.

List All the Credentials in the Credential Store Using the WildFly Elytron Tool

List the credentials in a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"path/to/store_file" --password STORE_PASSWORD --aliases

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

144

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"../cred_stores/my_store.jceks" --password supersecretstorepassword --
aliases

Check If an Alias Exists in the Credential Store Using the Wildfly Elytron Tool

Check if an alias exists in a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"path/to/store_file" --password STORE_PASSWORD --exists ALIAS

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"../cred_stores/my_store.jceks" --password supersecretstorepassword --
exists database-pw

Remove a Credential from the Credential Store Using the WildFly Elytron Tool

Remove a credential from a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"path/to/store_file" --password STORE_PASSWORD --remove ALIAS

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location
"../cred_stores/my_store.jceks" --password supersecretstorepassword --
remove database-pw

Add a Credential Store Created with the WildFly Elytron Tool to a JBoss EAP Server

After you have created a credential store with the WildFly Elytron tool, add it to your running JBoss EAP
server with the following management CLI command:

/subsystem=elytron/credential-
store=STORE_NAME:add(location="path/to/store_file",credential-reference=
{clear-text=STORE_PASSWORD})

For example:

/subsystem=elytron/credential-
store=my_store:add(location="../cred_stores/my_store.jceks",credential-
reference={clear-text=supersecretstorepassword})

After adding the credential store to the JBoss EAP configuration, you can then refer to a password or
sensitive string stored in the credential store using the credential-reference attribute.

For more information, use the EAP_HOME/bin/elytron-tool.sh credential-store --help
command for a detailed listing of available options.

CHAPTER 3. SECURELY STORING CREDENTIALS

145

3.1.9.1. Generate Masked Encrypted Strings Using the WildFly Elytron Tool

You can use the WildFly Elytron tool to generate PicketBox-compatible MASK- encrypted strings to use
instead of a plain text password for a credential store.

To generate a masked string, use the following command and provide values for the salt and the iteration
count:

$ EAP_HOME/bin/elytron-tool.sh mask --salt SALT --iteration
ITERATION_COUNT --secret PASSWORD

For example:

$ EAP_HOME/bin/elytron-tool.sh mask --salt 12345678 --iteration 123 --
secret supersecretstorepassword

MASK-8VzWsSNwBaR676g8ujiIDdFKwSjOBHCHgnKf17nun3v;12345678;123

If you do not want to provide the secret in the command, you can omit that argument and you will be
prompted to enter the secret manually using standard input.

For more information, use the EAP_HOME/bin/elytron-tool.sh mask --help command for a
detailed listing of available options.

3.1.9.2. Convert a Password Vault to a Credential Store Using the WildFly Elytron Tool

You can use the WildFly Elytron tool to convert a password vault to a credential store. To convert a
password vault to a credential store, you need the vault’s values used when initializing the vault.

NOTE

When converting a password vault, aliases in the new credential store are named in the
following format based on their equivalent password vault block and attribute name:
VAULT_BLOCK::ATTRIBUTE_NAME.

Convert a Single Password Vault

Convert a single password vault to a credential store using the following command:

$ EAP_HOME/bin/elytron-tool.sh vault --keystore "path/to/vault_file" --
keystore-password VAULT_PASSWORD --enc-dir "path/to/vault_directory" --
salt SALT --iteration ITERATION_COUNT --alias VAULT_ALIAS

For example, you can also specify the new credential store’s file name and location with the --
location argument:

$ EAP_HOME/bin/elytron-tool.sh vault --keystore ../vaults/vault.keystore -
-keystore-password vault22 --enc-dir ../vaults/ --salt 1234abcd --
iteration 120 --alias my_vault --location
../cred_stores/my_vault_converted.cred_store

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

146

1

2

3

NOTE

You can also use the --summary argument to print a summary of the management CLI
commands used to convert it. Note that even if a plain text password is used, it is masked
in the summary output. The default SALT and ITERATION values are used unless they
are specified in the command.

Bulk Convert Multiple Password Vaults

To bulk convert multiple password vaults:

1. Put the details of the vaults you want to convert into a description file in the following format:

keystore:path/to/vault_file
keystore-password:VAULT_PASSWORD
enc-dir:path/to/vault_directory

salt:SALT 1
iteration:ITERATION_COUNT

location:path/to/converted_cred_store 2
alias:VAULT_ALIAS

properties:PARAMETER1=VALUE1;PARAMETER2=VALUE2; 3

salt and iteration can be omitted if you are providing a plain text password for the
vault.

Specifies the location and file name for the converted credential store.

Optional: Specifies a list of optional parameters separated by semicolons (;). See
EAP_HOME/bin/elytron-tool.sh vault --help for a list of available parameters.

For example:

keystore:/vaults/vault1/vault1.keystore
keystore-password:vault11
enc-dir:/vaults/vault1/
salt:1234abcd
iteration:120
location:/cred_stores/vault1_converted.cred_store
alias:my_vault

keystore:/vaults/vault2/vault2.keystore
keystore-password:vault22
enc-dir:/vaults/vault2/
salt:abcd1234
iteration:130
location:/cred_stores/vault2_converted.cred_store
alias:my_vault2

2. Run the bulk convert command with your description file from the previous step:

$ EAP_HOME/bin/elytron-tool.sh vault --bulk-convert
vaultdescriptions.txt

CHAPTER 3. SECURELY STORING CREDENTIALS

147

1

2

3

4

For more information, use the EAP_HOME/bin/elytron-tool.sh vault --help command for a
detailed listing of available options.

3.1.10. Using Credential Stores with Elytron Client

Clients connecting to JBoss EAP, such as EJBs, can authenticate using Elytron Client. Users without
access to a running JBoss EAP server can create and modify credential stores using the WildFly Elytron
tool, and then clients can use Elytron Client to access sensitive strings inside a credential store.

The following example shows you how to use a credential store in an Elytron Client configuration file.

Example custom-config.xml with a Credential Store

A name for the credential store for use within the Elytron Client configuration file.

The master password for the credential store.

The path to the credential store file.

A credential reference for a sensitive string stored in the credential store.

See the JBoss EAP How to Configure Identity Management Guide for more information on configuring
client authentication using Elytron Client.

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 ...
 <credential-stores>

 <credential-store name="my_store"> 1
 <protection-parameter-credentials>

 <credential-store-reference clear-text="pass123"/> 2
 </protection-parameter-credentials>
 <attributes>

 <attribute name="location" value="/path/to/my_store.jceks"/> 3
 </attributes>
 </credential-store>
 </credential-stores>
 ...
 <authentication-configurations>
 <configuration name="my_user">
 <set-host name="localhost"/>
 <set-user-name name="my_user"/>
 <set-mechanism-realm name="ManagementRealm"/>
 <use-provider-sasl-factory/>
 <credentials>
 <credential-store-reference store="my_store" alias="my_user"/>

4
 </credentials>
 </configuration>
 </authentication-configurations>
 ...
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

148

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/how_to_configure_identity_management/#elytron_client_authentication

3.1.11. Using Credential Stores in a Managed Domain

There are a few different ways of creating and setting up a credential store in a managed domain. One of
the ways is:

1. Use the WildFly Elytron Tool to prepare the credential store. For more information on this, see
Create and Modify Credential Stores Offline with the WildFly Elytron Tool.

2. Distribute the created credential store storage file. For example, distribute it to each server, for
example by using scp, or store it in NFS and use it for all the created credential stores.

3. You can then create a credential store with the create property set to false, using the already
created file.

/profile=full/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,location="store.keystore",credential-
reference={clear-text="secret2"},create=false)

NOTE

When using one credential store to store all credential stores, when storing it on
NFS, you must use the credential store in read-only mode. The read-only
mode is used to maintain consistency. It is also prefered to use an absolute path
in this case.

/profile=full/subsystem=elytron/credential-
store=test:add(location=/absolute/path/to/store.keystore,
credential-reference={clear-
text="secret2"},create=false,modifiable=false)

For other ways of creating a credential store in a managed domain, see Create a Credential Store in a
Managed Domain.

3.2. PASSWORD VAULT

Configuration of JBoss EAP and associated applications requires potentially sensitive information, such
as user names and passwords. Instead of storing the password as plain text in configuration files, the
password vault feature can be used to mask the password information and store it in an encrypted
keystore. Once the password is stored, references can be included in management CLI commands or
applications deployed to JBoss EAP.

The password vault uses the Java keystore as its storage mechanism. Password vault consists of two
parts: storage and key storage. Java keystore is used to store the key, which is used to encrypt or
decrypt sensitive strings in Vault storage.

CHAPTER 3. SECURELY STORING CREDENTIALS

149

IMPORTANT

The keytool utility, provided by the Java Runtime Environment (JRE), is utilized for this
steps. Locate the path for the file, which on Red Hat Enterprise Linux is
/usr/bin/keytool.

JCEKS keystore implementations differ between Java vendors so the keystore must be
generated using the keytool utility from the same vendor as the JDK used. Using a
keystore generated by the keytool from one vendor’s JDK in a JBoss EAP 7 instance
running on a JDK from a different vendor results in the following exception:
java.io.IOException:
com.sun.crypto.provider.SealedObjectForKeyProtector

3.2.1. Set Up a Password Vault

Follow the steps below to set up and use a Password Vault.

1. Create a directory to store the keystore and other encrypted information.
Create a directory to store the keystore and other important information. The rest of this
procedure assumes that the directory is EAP_HOME/vault/. Since this directory will contain
sensitive information it should be accessible to only limited users. At a minimum the user
account under which JBoss EAP is running requires read-write access.

2. Determine the parameters to use with keytool utility.
Decide on values for the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. Aliases are
case-insensitive.

storetype

The storetype specifies the keystore type. The value jceks is recommended.

keyalg

The algorithm to use for encryption. Use the documentation for the JRE and operating
system to see which other choices are available.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. For
information on appropriate values, see the documentation distributed with the keytool utility.

storepass

The value of storepass is the password that is used to authenticate to the keystore so that the
key can be read. The password must be at least 6 characters long and must be provided
when the keystore is accessed. If this parameter is omitted, the keytool utility will prompt for it
to be entered after the command has been executed

keypass

The value of keypass is the password used to access the specific key and must match the
value of the storepass parameter.

validity

The value of validity is the period (in days) for which the key will be valid.

keystore

The value of keystore is the file path and file name in which the keystore’s values are to be
stored. The keystore file is created when data is first added to it. Ensure the correct file path

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

150

separator is used: / (forward slash) for Red Hat Enterprise Linux and similar operating
systems, \ (backslash) for Windows Server.
The keytool utility has many other options. See the documentation for the JRE or the
operating system for more details.

3. Run the keytool command, ensuring keypass and storepass contain the same value.

This results in a keystore that has been created in the file
EAP_HOME/vault/vault.keystore. It stores a single key, with the alias vault, which will be
used to store encrypted strings, such as passwords, for JBoss EAP.

3.2.2. Initialize the Password Vault

The password vault can be initialized either interactively, where you are prompted for each parameter’s
value, or non-interactively, where all parameter values are provided on the command line. Each method
gives the same result, so either may be used.

The following parameters will be needed:

keystore URL (KEYSTORE_URL)

The file system path or URI of the keystore file. The examples use
EAP_HOME/vault/vault.keystore.

keystore password (KEYSTORE_PASSWORD)

The password used to access the keystore.

Salt (SALT)

The salt value is a random string of eight characters used, together with the iteration count, to encrypt
the content of the keystore.

keystore Alias (KEYSTORE_ALIAS)

The alias by which the keystore is known.

Iteration Count (ITERATION_COUNT)

The number of times the encryption algorithm is run.

Directory to store encrypted files (ENC_FILE_DIR)

The path in which the encrypted files are to be stored. This is typically the directory containing the
password vault. It is convenient but not mandatory to store all of your encrypted information in the
same place as the keystore. This directory should be only accessible to limited users. At a minimum
the user account under which JBoss EAP 7 is running requires read-write access. The keystore
should be located in the directory you created when you set up the password vault. Note that the
trailing backslash or forward slash on the directory name is required. Ensure the correct file path
separator is used: / (forward slash) for Red Hat Enterprise Linux and similar operating systems, \
(backslash) for Windows Server.

Vault Block (VAULT_BLOCK)

The name to be given to this block in the password vault.

Attribute (ATTRIBUTE)

The name to be given to the attribute being stored.

Security Attribute (SEC-ATTR)

$ keytool -genseckey -alias vault -storetype jceks -keyalg AES -
keysize 128 -storepass vault22 -keypass vault22 -validity 730 -
keystore EAP_HOME/vault/vault.keystore

CHAPTER 3. SECURELY STORING CREDENTIALS

151

The password which is being stored in the password vault.

To run the password vault command non-interactively, the vault script located in EAP_HOME/bin/ can
be invoked with parameters for the relevant information:

Example: Initializing Password Vault

Example: Output

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD -
-alias KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --
sec-attr SEC-ATTR --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --
salt SALT

$ vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password
vault22 --alias vault --vault-block vb --attribute password --sec-attr
0penS3sam3 --enc-dir EAP_HOME/vault/ --iteration 120 --salt 1234abcd

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Nov 09, 2015 9:02:47 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX00361: Default Security Vault Implementation Initialized and
Ready
WFLYSEC0047: Secured attribute value has been stored in Vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
WFLYSEC0048: Vault Configuration in WildFly configuration file:
**

</extensions>
<vault>
 <vault-option name="KEYSTORE_URL"
value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

152

To run the password vault command interactively, the following steps are required:

1. Launch the password vault command interactively.
Run EAP_HOME/bin/vault.sh on Red Hat Enterprise Linux and similar operating systems or
EAP_HOME\bin\vault.bat on Windows Server. Start a new interactive session by typing 0
(zero).

2. Complete the prompted parameters.
Follow the prompts to input the required parameters.

3. Make a note of the masked password information.
The masked password, salt, and iteration count are printed to standard output. Make a note of
them in a secure location. They are required to add entries to the Password Vault. Access to the
keystore file and these values could allow an attacker access to obtain access to sensitive
information in the Password Vault.

4. Exit the interactive console
Type 2 (two) to exit the interactive console.

Example: Input and Output

Please enter a Digit:: 0: Start Interactive Session 1: Remove
Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password: vault22
Enter Keystore password again: vault22
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX000361: Default Security Vault Implementation Initialized and
Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL"
value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete

CHAPTER 3. SECURELY STORING CREDENTIALS

153

+ The keystore password has been masked for use in configuration files and deployments. In addition,
the vault is initialized and ready to use.

3.2.3. Use a Password Vault

Before passwords and other sensitive attributes can be masked and used in configuration files, JBoss
EAP 7 must be made aware of the password vault which stores and decrypts them.

The following command can be used to configure JBoss EAP 7 to use the password vault:

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
PATH_TO_KEYSTORE),("KEYSTORE_PASSWORD" => MASKED_PASSWORD),
("KEYSTORE_ALIAS" => ALIAS),("SALT" => SALT),("ITERATION_COUNT" =>
ITERATION_COUNT),("ENC_FILE_DIR" => ENC_FILE_DIR)])

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"EAP_HOME/vault/vault.keystore"),("KEYSTORE_PASSWORD" => "MASK-
5dOaAVafCSd"),("KEYSTORE_ALIAS" => "vault"),("SALT" => "1234abcd"),
("ITERATION_COUNT" => "120"),("ENC_FILE_DIR" => "EAP_HOME/vault/")])

NOTE

If Microsoft Windows Server is being used, use two backslashes (\\) in the file path instead
using one. For example, C:\\data\\vault\\vault.keystore. This is because a
single backslash character (\) is used for character escaping.

3.2.4. Store a Sensitive String in the Password Vault

Including passwords and other sensitive strings in plaintext configuration files is a security risk. Store
these strings instead in the Password Vault for improved security, where they can then be referenced in
configuration files, management CLI commands and applications in their masked form.

Sensitive strings can be stored in the Password Vault either interactively, where the tool prompts for
each parameter’s value, or non-interactively, where all the parameters' values are provided on the
command line. Each method gives the same result, so either may be used. Both of these methods are
invoked using the vault script.

To run the password vault command non-interactively, the vault script (located in EAP_HOME/bin/)
can be invoked with parameters for the relevant information:

NOTE

The keystore password must be given in plaintext form, not masked form.

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD -
-alias KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --
sec-attr SEC-ATTR --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --
salt SALT

$ vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password
vault22 --alias vault --vault-block vb --attribute password --sec-attr
0penS3sam3 --enc-dir EAP_HOME/vault/ --iteration 120 --salt 1234abcd

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

154

Example: Output

After invoking the vault script, a message prints to standard output, showing the vault block, attribute
name, masked string, and advice about using the string in your configuration. Make note of this
information in a secure location. An extract of sample output is as follows:

To run the password vault command interactively, the following steps are required:

1. Launch the Password Vault command interactively.
Launch the operating system’s command line interface and run EAP_HOME/bin/vault.sh (on
Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on
Microsoft Windows Server). Start a new interactive session by typing 0 (zero).

2. Complete the prompted parameters.

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX00361: Default Security Vault Implementation Initialized and
Ready
WFLYSEC0047: Secured attribute value has been stored in Vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
WFLYSEC0048: Vault Configuration in WildFly configuration file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="../vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="../vault/"/>
</vault><management> ...
**

Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1

CHAPTER 3. SECURELY STORING CREDENTIALS

155

Follow the prompts to input the required parameters. These values must match those provided
when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Complete the prompted parameters about the sensitive string.
Enter 0 (zero) to start storing the sensitive string. Follow the prompts to input the required
parameters.

4. Make note of the information about the masked string.
A message prints to standard output, showing the vault block, attribute name, masked string,
and advice about using the string in the configuration. Make note of this information in a secure
location. An extract of sample output is as follows:

5. Exit the interactive console.
Type 2 (two) to exit the interactive console.

Example: Input and Output

Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1

 ===
 JBoss Vault
 JBOSS_HOME: EAP_HOME
 JAVA: java
 ===

 **** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove
Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX000361: Default Security Vault Implementation Initialized and
Ready
Vault Configuration in AS7 config file:
 **
...

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

156

3.2.5. Use an Encrypted Sensitive String in Configuration

Any sensitive string which has been encrypted can be used in a configuration file or management CLI
command in its masked form, providing expressions are allowed.

To confirm if expressions are allowed within a particular subsystem, run the following management CLI
command against that subsystem:

/subsystem=SUBSYSTEM:read-resource-description(recursive=true)

From the output of running this command, look for the value of the expressions-allowed parameter.
If this is true, then expressions can be used within the configuration of this subsystem.

Use the following syntax to replace any plaintext string with the masked form.

Example: Datasource Definition Using a Password in Masked Form

</extensions>
<vault>
 <vault-option name="KEYSTORE_URL"
value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
 **
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a
secured attribute exists 2: Remove secured attribute 3: Exit
0
Task: Store a secured attribute
Please enter secured attribute value (such as password):
Please enter secured attribute value (such as password) again:
Values match
Enter Vault Block:ds_Example1
Enter Attribute Name:password
Secured attribute value has been stored in vault.
Please make note of the following:
 **
Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1
 **
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a
secured attribute exists 2: Remove secured attribute 3: Exit

${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::MASKED_STRING}

...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">

CHAPTER 3. SECURELY STORING CREDENTIALS

157

3.2.6. Use an Encrypted Sensitive String in an Application

Encrypted strings stored in the password vault can be used in an application’s source code. The below
example is an extract of a servlet’s source code, illustrating the use of a masked password in a
datasource definition, instead of the plaintext password. The plaintext version is commented out so that
you can see the difference.

Example: Servlet Using a Vaulted Password

3.2.7. Check if a Sensitive String is in the Password Vault

Before attempting to store or use a sensitive string in the Password Vault it can be useful to first confirm
if it is already stored.

This check can be done either interactively, where the user is prompted for each parameter’s value, or
non-interactively, where all parameters' values are provided on the command line. Each method gives
the same result, so either may be used. Both of these methods are invoked using the vault script.

 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS"
enabled="true" use-java-context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-
url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>
 <password>${VAULT::ds_ExampleDS::password::1}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "VAULT::DS::thePass::1",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)
/*old (plaintext) definition
@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "sa",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)*/

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

158

Use the non-interative method to provide all parameters' values at once. For a description of all
parameters, see Initialize the Password Vault. To run the password vault command non-interactively, the
vault script located in EAP_HOME/bin/ can be invoked with parameters for the relevant information:

Substitute the placeholder values with the actual values. The values for parameters KEYSTORE_URL,
KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those provided when the password vault
was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

If the sensitive string is stored in the vault block specified, the following message will be displayed:

If the value is not stored in the specified block, the following message will be displayed:

To run the password vault command interactively, the following steps are required:

1. Launch the password vault command interactively.
Run EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems)
or EAP_HOME\bin\vault.bat (on Windows Server). Start a new interactive session by typing
0 (zero).

2. Complete the prompted parameters. Follow the prompts to input the required authentication
parameters. These values must match those provided when the password vault was created.

NOTE

When prompted for authentication, the keystore password must be given in
plaintext form, not masked form.

Enter 1 (one) to select Check whether a secured attribute exists.

Enter the name of the vault block in which the sensitive string is stored.

Enter the name of the sensitive string to be checked.

If the sensitive string is stored in the vault block specified, a confirmation message like the following will
be output:

If the sensitive string is not stored in the specified block, a message like the following will be output:

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD -
-alias KEYSTORE_ALIAS --check-sec-attr --vault-block VAULT_BLOCK --
attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --
salt SALT

Password already exists.

Password doesn't exist.

A value exists for (VAULT_BLOCK, ATTRIBUTE)

CHAPTER 3. SECURELY STORING CREDENTIALS

159

Example: Check For a Sensitive String Interactively

No value has been store for (VAULT_BLOCK, ATTRIBUTE)

 ===
 JBoss Vault
 JBOSS_HOME: EAP_HOME
 JAVA: java
 ===

 **** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove
Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX000361: Default Security Vault Implementation Initialized and
Ready
Vault Configuration in AS7 config file:
 **
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL"
value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
 **
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a
secured attribute exists 2: Remove secured attribute 3: Exit
1
Task: Verify whether a secured attribute exists
Enter Vault Block:vb
Enter Attribute Name:password
A value exists for (vb, password)
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a
secured attribute exists 2: Remove secured attribute 3: Exit

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

160

3.2.8. Remove a Sensitive String from the Password Vault

For security reasons it is best to remove sensitive strings from the Password Vault when they are no
longer required. For example, if an application is being decommissioned, any sensitive strings used in
datasource definitions should be removed at the same time.

IMPORTANT

As a prerequisite, before removing a sensitive string from the Password Vault, confirm if it
is used in the configuration of JBoss EAP.

This operation can be done either interactively, where the user is prompted for each parameter’s value,
or non-interactively, where all parameters' values are provided on the command line. Each method gives
the same result, so either may be used. Both of these methods are invoked using the vault script.

Use the non-interative method to provide all parameters' values at once. For a description of all
parameters, see Initialize the Password Vault. To run the password vault command non-interactively, the
vault script (located in EAP_HOME/bin/) can be invoked with parameters for the relevant information:

Substitute the placeholder values with the actual values. The values for parameters KEYSTORE_URL,
KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those provided when the password
Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

If the sensitive string is successfully removed, a confirmation message like the following will be
displayed:

If the sensitive string is not removed, a message like the following will be displayed:

Example: Output

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD -
-alias KEYSTORE_ALIAS --remove-sec-attr --vault-block VAULT_BLOCK --
attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --
salt SALT

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed
from vault

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault,
check whether it exist

$./vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password
vault22 --alias vault --remove-sec-attr --vault-block vb --attribute
password --enc-dir EAP_HOME/vault/ --iteration 120 --salt 1234abcd
 ===
 JBoss Vault
 JBOSS_HOME: EAP_HOME
 JAVA: java
 ===

CHAPTER 3. SECURELY STORING CREDENTIALS

161

Remove a Sensitive String Interactively
To run the password vault command interactively, the following steps are required:

1. Launch the password vault command interactively.
Run EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems)
or EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session
by typing 0 (zero).

2. Complete the prompted parameters.
Follow the prompts to input the required authentication parameters. These values must match
those provided when the password vault was created.

NOTE

When prompted for authentication, the keystore password must be given in
plaintext form, not masked form.

Enter 2 (two) to choose option Remove secured attribute.

Enter the name of the vault block in which the sensitive string is stored.

Enter the name of the sensitive string to be removed.

If the sensitive string is successfully removed, a confirmation message like the following will be
displayed:

If the sensitive string is not removed, a message like the following will be displayed:

Example: Output

Dec 23, 2015 1:54:24 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX000361: Default Security Vault Implementation Initialized and
Ready
Secured attribute [vb::password] has been successfully removed from vault

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed
from vault

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault,
check whether it exist

 **** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove
Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

162

3.2.9. Configure Red Hat JBoss Enterprise Application Platform to Use a Custom
Implementation of the Password Vault

In addition to using the provided password vault implementation, a custom implementation of
SecurityVault can also be used.

IMPORTANT

As a prerequisite, ensure that the password vault has been initialized. For more
information, see Initialize the Password Vault.

To use a custom implementation for the password vault:

1. Create a class that implements the interface SecurityVault.

2. Create a module containing the class from the previous step, and specify a dependency on
org.picketbox where the interface is SecurityVault.

3. Enable the custom password vault in the JBoss EAP configuration by adding the vault element
with the following attributes:

code - The fully qualified name of class that implements SecurityVault.

Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Dec 23, 2014 1:40:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault
init
INFO: PBOX000361: Default Security Vault Implementation Initialized and
Ready
Vault Configuration in configuration file:
 **
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL"
value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
 **
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a
secured attribute exists 2: Remove secured attribute 3: Exit
2
Task: Remove secured attribute
Enter Vault Block:vb
Enter Attribute Name:password
Secured attribute [vb::password] has been successfully removed from vault

CHAPTER 3. SECURELY STORING CREDENTIALS

163

module - The name of the module that contains the custom class.

Optionally, the vault-options parameters can be used to initialize the custom class for a password
vault.

Example: Use vault-options Parameters to Initialize the Custom Class

/core-
service=vault:add(code="custom.vault.implementation.CustomSecurityVault",
module="custom.vault.module", vault-options=[("KEYSTORE_URL" =>
PATH_TO_KEYSTORE),("KEYSTORE_PASSWORD" => MASKED_PASSWORD),
("KEYSTORE_ALIAS" => ALIAS),("SALT" => SALT),("ITERATION_COUNT" =>
ITERATION_COUNT),("ENC_FILE_DIR" => ENC_FILE_DIR)])

3.2.10. Obtain Keystore Password From External Source

The EXT, EXTC, CMD, CMDC or CLASS methods can be used in vault configuration for obtaining the Java
keystore password.

The description for the methods are listed as:

{EXT}…
Refers to the exact command, where the … is the exact command. For example:
{EXT}/usr/bin/getmypassword --section 1 --query company, run the
/usr/bin/getmypassword command, which displays the password on standard output and use it
as password for Security Vault’s keystore. In this example, the command is using two options: --
section 1 and --query company.

{EXTC[:expiration_in_millis]}…
Refers to the exact command, where the … is the exact command line that is passed to the
Runtime.exec(String) method to execute a platform command. The first line of the command
output is used as the password. EXTC variant caches the passwords for expiration_in_millis
milliseconds. Default cache expiration is 0 = infinity. For example:
{EXTC:120000}/usr/bin/getmypassword --section 1 --query company verifies if the
cache contains /usr/bin/getmypassword output, if it contains the output then use it. If it does not
contain the output, run the command to output it to cache and use it. In this example, the cache
expires in 2 minutes, that is 120000 milliseconds.

{CMD}… or {CMDC[:expiration_in_millis]}…
The general command is a string delimited by , (comma) where the first part is the actual command
and further parts represents the parameters. The comma can be backslashed to keep it as a part of
the parameter. For example, {CMD}/usr/bin/getmypassword,--section,1,--
query,company.

{CLASS[@jboss_module_spec]}classname[:ctorargs]

Where the [:ctorargs] is an optional string delimited by the : (colon) from the classname is
passed to the classname ctor. The ctorargs is a comma delimited list of strings. For example,
{CLASS@org.test.passwd}org.test.passwd.ExternamPassworProvider. In this example,
the org.test.passwd.ExternamPassworProvider class is loaded from org.test.passwd
module and uses the toCharArray() method to get the password. If toCharArray() is not
available the toString() method is used. The org.test.passwd.ExternamPassworProvider
class must have the default constructor.

<vault-option name="KEYSTORE_PASSWORD" value="METHOD_TO_OBTAIN_PASSWORD"/>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

164

CHAPTER 4. JAVA SECURITY MANAGER

4.1. ABOUT THE JAVA SECURITY MANAGER

The Java Security Manager is a class that manages the external boundary of the Java Virtual Machine
(JVM) sandbox, controlling how code executing within the JVM can interact with resources outside the
JVM. When the Java Security Manager is activated, the Java API checks with the security manager for
approval before executing a wide range of potentially unsafe operations. The Java Security Manager
uses a security policy to determine whether a given action will be allowed or denied.

4.2. DEFINE A JAVA SECURITY POLICY

A Java security policy is a set of defined permissions for different classes of code. The Java Security
Manager compares actions requested by applications against the security policy. If an action is allowed
by the policy, the Security Manager will permit that action to take place. If the action is not allowed by the
policy, the Security Manager will deny that action.

IMPORTANT

Previous versions of JBoss EAP defined policies using an external file, e.g.
EAP_HOME/bin/server.policy. JBoss EAP 7 defines Java Security Policies in two
ways: the security-manager subsystem and through XML files in the individual
deployments. The security-manager subsystem defines minimum and maximum
permission for ALL deployments, while the XML files specify the permissions requested
by the individual deployment.

4.2.1. Defining Policies in the Security Manager Subsystem

The security-manager subsystem allows you do define shared or common permissions for all
deployments. This is accomplished by defining minimum and maximum permission sets. All deployments
will be granted at the least all permissions defined in the minimum permission. The deployment process
fails for a deployment if it requests a permission that exceeds the ones defined in the maximum
permission set.

Example: Management CLI Command for Updating Minimum Permission Set

Example: Management CLI Command for Updating Maximum Permission Set

NOTE

If the maximum permission set is not defined, its value defaults to
java.security.AllPermission.

/subsystem=security-manager/deployment-permissions=default:write-
attribute(name=minimum-permissions, value=
[{class="java.util.PropertyPermission", actions="read", name="*"}])

/subsystem=security-manager/deployment-permissions=default:write-
attribute(name=maximum-permissions, value=
[{class="java.util.PropertyPermission", actions="read,write", name="*"},
{class="java.io.FilePermission", actions="read,write", name="/-"}])

CHAPTER 4. JAVA SECURITY MANAGER

165

You can find a full reference of the security-manager subsystem in the JBoss EAP Configuration
Guide.

4.2.2. Defining Policies in the Deployment

In JBoss EAP 7, you can add a META-INF/permissions.xml to your deployment, which is part of
JSR 342 and is a part of the Java EE 7 specification. This file allows you to specify the permissions
needed by the deployment. If a minimum permissions set is defined in the security-manager
subsystem and a META-INF/permissions.xml is added to your deployment, then the union of those
permissions is granted. If the permissions requested in the permissions.xml exceed the maximum
policies defined in the security-manager subsystem, its deployment will not succeed. If both META-
INF/permissions.xml and META-INF/jboss-permissions.xml are present in the deployment,
then only the permissions requested in the META-INF/jboss-permissions.xml are granted.

The Java EE 7 specification dictates that permissions.xml cover the entire application or top-level
deployment module. In cases where you wish to define specific permissions for a subdeployment, you
can use the JBoss EAP-specific META-INF/jboss-permissions.xml. It follows the same exact
format as permissions.xml and will apply only to the deployment module in which it is declared.

Example: Sample permissions.xml

4.2.3. Defining Policies in Modules

You can restrict the permissions of a module by adding a <permissions> element to the module.xml
file. The <permissions> element contains zero or more <grant> elements, which define the
permission to grant to the module. Each <grant> element contains the following attributes:

permission

The qualified class name of the permission to grant.

name

The permission name to provide to the permission class constructor.

actions

The (optional) list of actions, required by some permission types.

Example: module.xml with Defined Policies

<permissions version="7">
 <permission>
 <class-name>java.util.PropertyPermission</class-name>
 <name>*</name>
 <actions>read</actions>
 </permission>
</permissions>

<module xmlns="urn:jboss:module:1.5" name="org.jboss.test.example">
 <permissions>
 <grant permission="java.util.PropertyPermission" name="*"
actions="read,write" />
 <grant permission="java.io.FilePermission" name="/etc/-"
actions="read" />

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

166

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/13/html-single/configuration_guide/#security-manager-reference
http://jcp.org/en/jsr/detail?id=342

If the <permissions> element is present, the module will be restricted to only the permissions you
have listed. If the <permissions> element is not present, there will be no restrictions on the module.

4.3. RUN JBOSS EAP WITH THE JAVA SECURITY MANAGER

IMPORTANT

Previous version of JBoss EAP allowed for the use of the -Djava.security.manager
Java system property as well as custom security managers. Neither of these are
supported in JBoss EAP 7. In addition, the Java Security Manager policies are now
defined within the security-manager subsystem, meaning external policy files and the
-Djava.security.policy Java system property are not supported JBoss EAP 7.

IMPORTANT

Before starting JBoss EAP with the Java Security Manager enabled, you need make sure
all security policies are defined in the security-manager subsystem.

To run JBoss EAP with the Java Security Manager, you need to use the secmgr option during startup.
There are two ways to do this:

Use the flag with the startup script To use the -secmgr flag with the startup script, include it
when starting up your JBoss EAP instance:

Example: Startup Script

./standalone.sh -secmgr

Using the Startup Configuration File

IMPORTANT

The domain or standalone server must be completely stopped before you edit
any configuration files.

NOTE

If you are using JBoss EAP in a managed domain, you must perform the
following procedure on each physical host or instance in your domain.

To enable the Java Security Manager using the startup configuration file, you need to edit either
the standalone.conf or domain.conf file, depending if you are running a standalone
instance or managed domain. If running in Windows, the standalone.conf.bat or
domain.conf.bat files are used instead.

Uncomment the SECMGR="true" line in the configuration file:

Example: standalone.conf or domain.conf

 </permissions>
 ...
</module>

CHAPTER 4. JAVA SECURITY MANAGER

167

Uncomment this to run with a security manager enabled
SECMGR="true"

Example: standalone.conf.bat or domain.conf.bat

rem # Uncomment this to run with a security manager enabled
set "SECMGR=true"

4.4. CONSIDERATIONS MOVING FROM PREVIOUS VERSIONS

When moving applications from a previous version of JBoss EAP to JBoss EAP 7 running with the Java
Security Manager enabled, you need to be aware of the changes in how policies are defined as well as
the necessary configuration needed with both the JBoss EAP configuration and the deployment.

4.4.1. Defining Policies

In previous versions of JBoss EAP, policies were defined in an external configuration file. In JBoss EAP
7, policies are defined using the security-manager subsystem and with permissions.xml or
jboss-permissions.xml contained in the deployment. More details on how to use both to define
your policies are covered in a previous section.

4.4.2. JBoss EAP Configuration Changes

In previous versions of JBoss EAP, you could use -Djava.security.manager and -
Djava.security.policy Java system properties during JBoss EAP startup. These are no longer
supported and the secmgr flag should be used instead to enable JBoss EAP to run with the Java
Security Manager. More details on the secmgr flag are covered in a previous section.

4.4.3. Custom Security Managers

Custom security managers are not supported in JBoss EAP 7.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

168

APPENDIX A. REFERENCE MATERIAL

A.1. ELYTRON SUBSYSTEM COMPONENTS REFERENCE

Table A.1. add-prefix-role-mapper Attributes

Attribute Description

prefix The prefix to add to each role.

Table A.2. add-suffix-role-mapper Attributes

Attribute Description

suffix The suffix to add to each role.

Table A.3. aggregate-http-server-mechanism-factory Attributes

Attribute Description

http-server-mechanism-factories The list of HTTP server factories to aggregate.

Table A.4. aggregate-principal-decoder Attributes

Attribute Description

principal-decoders The list of principal decoders to aggregate.

Table A.5. aggregate-principal-transformer Attributes

Attribute Description

principal-transformers The list of principal transformers to aggregate.

Table A.6. aggregate-providers Attributes

Attribute Description

providers The list of referenced Provider[] resources to aggregate.

Table A.7. aggregate-realm Attributes

Attribute Description

APPENDIX A. REFERENCE MATERIAL

169

authentication-realm Reference to the security realm to use for authentication steps.
This is used for obtaining or validating credentials.

authorization-realm Reference to the security realm to use for loading the identity for
authorization steps.

Attribute Description

Table A.8. aggregate-role-mapper Attributes

Attribute Description

role-mappers The list of role mappers to aggregate.

Table A.9. aggregate-sasl-server-factory Attributes

Attribute Description

sasl-server-factories The list of SASL server factories to aggregate.

Table A.10. authentication-configuration Attributes

Attribute Description

anonymous If true anonymous authentication is allowed. The default is
false.

authentication-name The authentication name to use.

authorization-name The authorization name to use.

credential-reference The credential to use for authentication. This can be in clear text
or as a reference to a credential stored in a credential-
store.

extends An existing authentication configuration to extend.

host The host to use.

kerberos-security-factory Reference to a kerberos security factory used to obtain a GSS
kerberos credential.

mechanism-properties Configuration properties for the SASL authentication mechanism.

port The port to use.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

170

protocol The protocol to use.

realm The realm to use.

sasl-mechanism-selector The SASL mechanism selector string. See sasl-
mechanism-selector Grammar for usage information.

security-domain Reference to a security domain to obtain a forwarded identity.

Attribute Description

Table A.11. authentication-context Attributes

Attribute Description

extends An existing authentication context to extend.

match-rules The rules to match against for this authentication context.

Table A.12. authentication-context match-rules Attributes

Attribute Description

match-abstract-type The abstract type to match against.

match-abstract-type-authority The abstract type authority to match against.

match-host The host to match against.

match-local-security-domain The local security domain to match against.

match-no-user If true, rule will match against no user.

match-path The patch to match against.

match-port The port to match against.

match-protocol The protocol to match against.

match-urn The URN to match against.

match-user The user to match against.

authentication-configuration Reference to the authentication configuration to use for a
successful match.

APPENDIX A. REFERENCE MATERIAL

171

ssl-context Reference to the ssl-context to use for a successful match.

Attribute Description

Table A.13. caching-realm Attributes

Attribute Description

maximum-age The time in milliseconds that an item can stay in the cache. A
value of -1 keeps items indefinitely. This defaults to -1.

maximum-entries The maximum number of entries to keep in the cache. This
defaults to 16.

realm A reference to a cacheable security realm such as jdbc-
realm, ldap-realm, filesystem-realm or a custom
security realm.

Table A.14. chained-principal-transformer Attributes

Attribute Description

principal-transformers List of principal transformers to chain.

Table A.15. client-ssl-context Attributes

Attribute Description

cipher-suite-filter The filter to apply to specify the enabled cipher suites. This filter
takes a list of items delimited by colons, commas, or spaces.
Each item may be a OpenSSL-style cipher suite name, a
standard SSL/TLS cipher suite name, or a keyword such as
TLSv1.2 or DES. A full list of keywords as well as additional
details on creating a filter can be found in the JavaDocs. The
default value is DEFAULT, which corresponds to all known
cipher suites that do not have NULL encryption and excludes
any cipher suites that have no authentication.

key-manager Reference to the key-manager to use within the
SSLContext.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

172

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-

protocols The enabled protocols. Allowed options: SSLv2, SSLv3,
TLSv1, TLSv1.1, TLSv1.2, TLSv1.3. This defaults to
enabling TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3.

WARNING

Red Hat recommends that SSLv2, SSLv3,
and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected
packages.

provider-name The name of the provider to use. If not specified, all providers
from providers will be passed to the SSLContext.

providers The name of the providers to obtain the Provider[] to use to
load the SSLContext.

session-timeout The timeout for SSL sessions.

trust-manager Reference to the trust-manager to use within the
SSLContext.

Attribute Description

Table A.16. concatenating-principal-decoder Attributes

Attribute Description

joiner The string that will be used to join the values in the
principal-decoders attribute.

principal-decoders The list of principal decoders to concatenate.

Table A.17. configurable-http-server-mechanism-factory Attributes

Attribute Description

filters The list of filters to be applied in order to enable or disable
mechanisms based on the name.

http-server-mechanism-factory Reference to the http server factory to be wrapped.

APPENDIX A. REFERENCE MATERIAL

173

properties Custom properties to be passed in to the HTTP server factory
calls.

Attribute Description

Table A.18. configurable-http-server-mechanism-factory filters Attributes

Attribute Description

pattern-filter Filter based on a regular expression pattern.

enabling If true the filter will be enabled if the mechanism matches. This
defaults to true.

Table A.19. configurable-sasl-server-factory Attributes

Attribute Description

filters List of filters to be evaluated sequentially and combined using
or.

properties Custom properties to be passed in to the SASL server factory
calls.

protocol The protocol passed into the factory when creating the
mechanism.

sasl-server-factory Reference to the SASL server factory to be wrapped.

server-name The server name passed into the factory when creating the
mechanism.

Table A.20. configurable-sasl-server-factory filters Attributes

Attribute Description

predefined-filter A predefined filter to use to filter the mechanism name. Allowed
values are HASH_MD5, HASH_SHA, HASH_SHA_256,
HASH_SHA_384, HASH_SHA_512, GS2, SCRAM, DIGEST,
IEC_ISO_9798, EAP, MUTUAL, BINDING, and
RECOMMENDED.

pattern-filter A filter for the mechanism name based on a regular expression.

enabling If true the filter will be enabled if the factory matches. This
defaults to true.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

174

Table A.21. constant-permission-mapper Attributes

Attribute Description

permission-sets The permission sets to assign in the event of a match.
Permission sets can be used to assign permissions to an
identity.

permission-sets can take the following attribute:

permission-set
A reference to a permission set.

NOTE

The permissions attribute is deprecated,
and is replaced by permission-sets.

Table A.22. constant-principal-decoder Attributes

Attribute Description

constant The constant value the principal decoder will always return.

Table A.23. constant-principal-transformer Attributes

Attribute Description

constant The constant value this principal transformer will always return.

Table A.24. constant-realm-mapper Attributes

Attribute Description

realm-name Reference to the realm that will be returned.

Table A.25. constant-role-mapper Attributes

Attribute Description

roles The list of roles that will be returned.

Table A.26. credential-store Attributes

Attribute Description

APPENDIX A. REFERENCE MATERIAL

175

create Specifies whether the credential store should create storage
when it does not exist.

credential-reference The reference to the credential used to create protection
parameter. This can be in clear text or as a reference to a
credential stored in a credential-store.

implementation-properties Map of credentials store implementation-specific properties.

location The file name of the credential store storage.

modifiable Whether the credential store is modifiable.

other-providers The name of the providers to obtain the providers to search for
the one that can create the required JCA objects within the
credential store. This is valid only for keystore-based credential
store. If this is not specified, then the global list of providers is
used instead.

provider-name The name of the provider to use to instantiate the
CredentialStoreSpi. If the provider is not specified, then
the first provider found that can create an instance of the
specified type will be used.

providers The name of the providers to obtain the providers to search for
the one that can create the required credential store type. If this
is not specified, then the global list of providers is used instead.

relative-to The base path this credential store path is relative to.

type Type of the credential store, for example,
KeyStoreCredentialStore.

Attribute Description

Table A.27. credential-store alias

Attribute Description

entry-type Type of credential entry stored in the credential store.

secret-value Secret value such as password.

Table A.28. credential-store KeyStoreCredentialStore implementation properties

Attribute Description

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

176

cryptoAlg Cryptographic algorithm name to be used to encrypt decrypt
entries at external storage. This attribute is only valid if
external is enabled. Defaults to AES.

external Whether data is stored to external storage and encrypted by the
keyAlias. Defaults to false.

externalPath Specifies path to external storage. This attribute is only valid if
external is enabled.

keyAlias The secret key alias within the credential store that is used to
encrypt or decrypt data to the external storage.

keyStoreType The keystore type, such as PKCS11. Defaults to
KeyStore.getDefaultType().

Attribute Description

Table A.29. custom-credential-security-factory Attributes

Attribute Description

configuration The optional key and value configuration for the custom security
factory.

class-name The class name of the implementation of the custom security
factory.

module The module to use to load the custom security factory.

Table A.30. custom-modifiable-realm Attributes

Attribute Description

configuration The optional key and value configuration for the custom realm.

class-name The class name of the implementation of the custom realm.

module The module to use to load the custom realm.

Table A.31. custom-permission-mapper Attributes

Attribute Description

configuration The optional key and value configuration for the permission
mapper.

APPENDIX A. REFERENCE MATERIAL

177

class-name Fully qualified class name of the permission mapper.

module Name of the module to use to load the permission mapper.

Attribute Description

Table A.32. custom-principal-decoder Attributes

Attribute Description

configuration The optional key and value configuration for the principal
decoder.

class-name Fully qualified class name of the principal decoder.

module Name of the module to use to load the principal decoder.

Table A.33. custom-principal-transformer Attributes

Attribute Description

configuration The optional key and value configuration for the principal
transformer.

class-name Fully qualified class name of the principal transformer.

module Name of the module to use to load the principal transformer.

Table A.34. custom-realm Attributes

Attribute Description

configuration The optional key and value configuration for the custom realm.

class-name Fully qualified class name of the custom realm.

module Name of the module to use to load the custom realm.

Table A.35. custom-realm-mapper Attributes

Attribute Description

configuration The optional key and value configuration for the realm mapper.

class-name Fully qualified class name of the realm mapper.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

178

module Name of the module to use to load the realm mapper.

Attribute Description

Table A.36. custom-role-decoder Attributes

Attribute Description

configuration The optional key and value configuration for the role decoder.

class-name Fully qualified class name of the role decoder.

module Name of the module to use to load the role decoder.

Table A.37. custom-role-mapper Attributes

Attribute Description

configuration The optional key and value configuration for the role mapper.

class-name Fully qualified class name of the role mapper.

module Name of the module to use to load the role mapper.

Table A.38. dir-context Attributes

Attribute Description

authentication-context The authentication context to obtain login credentials to connect
to the LDAP server. Can be omitted if authentication-
level is none, which is equivalent to anonymous
authentication.

authentication-level The authentication level, meaning security level or authentication
mechanism, to use. Corresponds to
SECURITY_AUTHENTICATION or
java.naming.security.authentication
environment property. Allowed values are none, simple and
sasl_mech format. The sasl_mech format is a space-separated
list of SASL mechanism names.

connection-timeout The timeout for connecting to the LDAP server in milliseconds.

credential-reference The credential reference to authenticate and connect to the
LDAP server. This can be omitted if authentication-
level is none, which is equivalent to anonymous
authentication.

APPENDIX A. REFERENCE MATERIAL

179

enable-connection-pooling If true connection pooling is enabled. This defaults to false.

module Name of module that will be used as the class loading base.

principal The principal to authenticate and connect to the LDAP server.
This can be omitted if authentication-level is none
which is equivalent to anonymous authentication.

properties The additional connection properties for the DirContext.

read-timeout The read timeout for an LDAP operation in milliseconds.

referral-mode The mode used to determine if referrals should be followed.
Allowed values are FOLLOW, IGNORE, and THROW. This
defaults to IGNORE.

ssl-context The name of the SSL context used to secure connection to the
LDAP server.

url The connection URL.

Attribute Description

Table A.39. filesystem-realm Attributes

Attribute Description

encoded Whether the identity names should be stored encoded (Base32)
in file names.

levels The number of levels of directory hashing to apply. The default
value is 2.

path The path to the file containing the realm.

relative-to The predefined relative path to use with path. For example
jboss.server.config.dir.

Table A.40. filtering-key-store Attributes

Attribute Description

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

180

alias-filter A filter to apply to the aliases returned from the key-store. It
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

NOTE

The alias-filter attribute is case
sensitive. Because the use of mixed-case or
uppercase aliases, such as
elytronAppServer, might not be
recognized by some keystore providers, it is
recommended to use lowercase aliases, such
as elytronappserver.

key-store Reference to the key-store to filter.

Attribute Description

Table A.41. http-authentication-factory Attributes

Attribute Description

http-server-mechanism-factory The HttpServerAuthenticationMechanismFactory
to associate with this resource.

mechanism-configurations The list of mechanism-specific configurations.

security-domain The security domain to associate with this resource.

Table A.42. http-authentication-factory mechanism-configurations Attributes

Attribute Description

credential-security-factory The security factory to use to obtain a credential as required by
the mechanism.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

host-name The host name this configuration applies to.

mechanism-name This configuration will only apply where a mechanism with the
name specified is used. If this attribute is omitted then this will
match any mechanism name.

mechanism-realm-configurations The list of definitions of the realm names as understood by the
mechanism.

APPENDIX A. REFERENCE MATERIAL

181

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

protocol The protocol this configuration applies to.

realm-mapper The realm mapper to be used by the mechanism.

Attribute Description

Table A.43. http-authentication-factory mechanism-configurations mechanism-realm-
configurations Attributes

Attribute Description

final-principal-transformer A final principal transformer to apply for this mechanism realm.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

realm-mapper The realm mapper to be used by the mechanism.

realm-name The name of the realm to be presented by the mechanism.

Table A.44. identity-realm Attributes

Attribute Description

attribute-name The name of the attribute associated with this identity.

attribute-values The list of values associated with the identities attribute.

identity The identity available from the security realm.

Table A.45. jdbc-realm Attributes

Attribute Description

principal-query The list of authentication queries used to authenticate users
based on specific key types.

Table A.46. jdbc-realm principal-query Attributes

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

182

Attribute Description

attribute-mapping The list of attribute mappings defined for this resource.

bcrypt-mapper A key mapper that maps a column returned from a SQL query to
a Bcrypt key type.

clear-password-mapper A key mapper that maps a column returned from a SQL query to
a clear password key type. This has a password-index child
element that is the column index from an authentication query
that represents the user’s password.

data-source The name of the datasource used to connect to the database.

salted-simple-digest-mapper A key mapper that maps a column returned from a SQL query to
a Salted Simple Digest key type.

scram-mapper A key mapper that maps a column returned from a SQL query to
a SCRAM key type.

simple-digest-mapper A key mapper that maps a column returned from a SQL query to
a Simple Digest key type.

sql The SQL statement used to obtain the keys as table columns for
a specific user and map them accordingly with their type.

Table A.47. jdbc-realm principal-query attribute-mapping Attributes

Attribute Description

index The column index from a query that representing the mapped
attribute.

to The name of the identity attribute mapped from a column
returned from a SQL query.

Table A.48. jdbc-realm principal-query bcrypt-mapper Attributes

Attribute Description

iteration-count-index The column index from an authentication query that represents
the password’s iteration count, if supported.

password-index The column index from an authentication query that represents
the user’s password.

salt-index The column index from an authentication query that represents
the password’s salt, if supported.

APPENDIX A. REFERENCE MATERIAL

183

Attribute Description

Table A.49. jdbc-realm principal-query salted-simple-digest-mapper Attributes

Attribute Description

algorithm The algorithm for a specific password key mapper. Allowed
values are password-salt-digest-md5, password-
salt-digest-sha-1, password-salt-digest-sha-
256, password-salt-digest-sha-384, password-
salt-digest-sha-512, salt-password-digest-
md5, salt-password-digest-sha-1, salt-
password-digest-sha-256, salt-password-
digest-sha-384, and salt-password-digest-sha-
512. The default is password-salt-digest-md5.

password-index The column index from an authentication query that represents
the user’s password.

salt-index The column index from an authentication query that represents
the password’s salt, if supported.

Table A.50. jdbc-realm principal-query simple-digest-mapper Attributes

Attribute Description

algorithm The algorithm for a specific password key mapper. Allowed
values are simple-digest-md2, simple-digest-md5,
simple-digest-sha-1, simple-digest-sha-256,
simple-digest-sha-384, and simple-digest-sha-
512. The default is simple-digest-md5.

password-index The column index from an authentication query that represents
the user’s password.

Table A.51. jdbc-realm principal-query scram-mapper Attributes

Attribute Description

algorithm The algorithm for a specific password key mapper. The allowed
values are scram-sha-1 and scram-sha-256. The default
value is scram-sha-256.

iteration-count-index The column index from an authentication query that represents
the password’s iteration count, if supported.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

184

password-index The column index from an authentication query that represents
the user’s password.

salt-index The column index from an authentication query that represents
the password’s salt, if supported.

Attribute Description

Table A.52. kerberos-security-factory Attributes

Attribute Description

debug If true the JAAS step of obtaining the credential will have
debug logging enabled. Defaults to false.

mechanism-names The mechanism names the credential should be usable with.
Names will be converted to OIDs and used together with OIDs
from mechanism-oids attribute.

mechanism-oids The list of mechanism OIDs the credential should be usable with.

minimum-remaining-lifetime The amount of time in seconds a cached credential can have
before it is recreated.

obtain-kerberos-ticket Should the KerberosTicket also be obtained and
associated with the credential. This is required to be true where
credentials are delegated to the server.

options The Krb5LoginModule additional options.

path The path of the keytab to load to obtain the credential.

principal The principal represented by the keytab.

relative-to The relative path to the keytab.

request-lifetime How much lifetime should be requested for newly created
credentials.

required Whether the keytab file with an adequate principal is required to
exist at the time the service starts.

server If true this factory is used for the server-side portion of
Kerberos authentication. If false it is used for the client-side.
Defaults to true

wrap-gss-credential Whether generated GSS credentials should be wrapped to
prevent improper disposal.

APPENDIX A. REFERENCE MATERIAL

185

Table A.53. key-manager Attributes

Attribute Description

algorithm The name of the algorithm to use to create the underlying
KeyManagerFactory. This is provided by the JDK. For
example, a JDK that uses SunJSSE provides the PKIX and
SunX509 algorithms. More details on SunJSSE can be found in
the Java Secure Socket Extension (JSSE) Reference Guide .

alias-filter A filter to apply to the aliases returned from the keystore. This
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

credential-reference The credential reference to decrypt keystore item. This can be
specified in clear text or as a reference to a credential stored in a
credential-store. This is not a password of the keystore.

key-store Reference to the key-store to use to initialize the underlying
KeyManagerFactory.

provider-name The name of the provider to use to create the underlying
KeyManagerFactory.

providers Reference to obtain the Provider[] to use when creating the
underlying KeyManagerFactory.

Table A.54. key-store Attributes

Attribute Description

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

186

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

alias-filter A filter to apply to the aliases returned from the keystore, can
either be a comma separated list of aliases to return or one of
the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

NOTE

The alias-filter attribute is case
sensitive. Because the use of mixed-case or
uppercase aliases, such as
elytronAppServer, might not be
recognized by some keystore providers, it is
recommended to use lowercase aliases, such
as elytronappserver.

credential-reference The password to use to access the keystore. This can be
specified in clear text or as a reference to a credential stored in a
credential-store.

path The path to the keystore file.

provider-name The name of the provider to use to load the keystore. Setting this
attribute disables searching for the first provider that can create a
keystore of the specified type.

providers A reference to the providers that should be used to obtain the list
of provider instances to search. If not specified, the global list of
providers will be used instead.

relative-to The base path this store is relative to. This can be a full path or
predefined path such as jboss.server.config.dir.

required If true the keystore file referenced is required to exist at the
time the keystore service starts. The default value is false.

type The type of the keystore, for example, JKS. A full list of keystore
types can be found in the Java Cryptography Architecture
Standard Algorithm Name Documentation for JDK 8.

Attribute Description

Table A.55. key-store-realm Attributes

Attribute Description

key-store Reference to the keystore used to back this security realm.

APPENDIX A. REFERENCE MATERIAL

187

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore

Table A.56. ldap-key-store Attributes

Attribute Description

alias-attribute The name of LDAP attribute where the item alias will be stored.

certificate-attribute The name of LDAP attribute where the certificate will be stored.

certificate-chain-attribute The name of LDAP attribute where the certificate chain will be
stored.

certificate-chain-encoding The encoding of the certificate chain.

certificate-type The type of the certificate.

dir-context The name of the dir-context which will be used to
communication with LDAP server.

filter-alias The LDAP filter for obtaining an item in the keystore by alias.

filter-certificate The LDAP filter for obtaining an item in the keystore by
certificate.

filter-iterate The LDAP filter for iterating over all items of the keystore.

key-attribute The name of LDAP attribute where the key will be stored.

key-type The type of keystore that is stored in a serialized manner in the
LDAP attribute. For example, JKS. A full list of keystore types
can be found in the Java Cryptography Architecture Standard
Algorithm Name Documentation for JDK 8.

new-item-template Configuration for item creation. This defines how the LDAP entry
of newly created keystore item will look.

search-path The path in LDAP where the keystore items will be searched.

search-recursive If the LDAP search should be recursive.

search-time-limit The time limit in milliseconds for obtaining keystore items from
LDAP. Defaults to 10000.

Table A.57. ldap-key-store new-item-template Attributes

Attribute Description

new-item-attributes The LDAP attributes which will be set for newly created items.
This takes a list of items with name and value pairs.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

188

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore

new-item-path The path in LDAP where the newly created keystore items will
be stored.

new-item-rdn The name of LDAP RDN for the newly created items.

Attribute Description

Table A.58. ldap-realm Attributes

Attribute Description

allow-blank-password Whether this realm supports blank password direct verification. A
blank password attempt will be rejected otherwise.

dir-context The name of the dir-context which will be used to connect
to the LDAP server.

direct-verification If true this realm supports verification of credentials by directly
connecting to LDAP as the account being authenticated;
otherwise, the password is retrieved from the LDAP server and
verified in JBoss EAP. If enabled, the JBoss EAP server must be
able to obtain the plain user password from the client, which
requires either the PLAIN SASL or BASIC HTTP mechanism
be used for authentication. Defaults to false.

identity-mapping The configuration options that define how principals are mapped
to their corresponding entries in the underlying LDAP server.

Table A.59. ldap-realm identity-mapping Attributes

Attribute Description

rdn-identifier The RDN part of the principal’s DN to be used to obtain the
principal’s name from an LDAP entry. This is also used when
creating new identities.

use-recursive-search If true identity search queries are recursive. Defaults to
false.

search-base-dn The base DN to search for identities.

attribute-mapping List of attribute mappings defined for this resource.

filter-name The LDAP filter for getting identity by name.

iterator-filter The LDAP filter for iterating over identities of the realm.

APPENDIX A. REFERENCE MATERIAL

189

new-identity-parent-dn The DN of parent of newly created identities. Required for
modifiability of the realm.

new-identity-attributes The list of attributes of newly created identities and is required for
modifiability of the realm. This is a list of name and value pair
objects.

user-password-mapper The credential mapping for a credential similar to userPassword.

otp-credential-mapper The credential mapping for OTP credential.

x509-credential-mapper The configuration allowing to use LDAP as storage of X509
credentials. If none of the -from child attributes are defined,
then this configuration will be ignored. If more than one -from
child attribute is defined, then the user certificate must match all
the defined criteria.

Attribute Description

Table A.60. ldap-realm identity-mapping attribute-mapping Attributes

Attribute Description

extract-rdn The RDN key to use as the value for an attribute, in case the
value in its raw form is in X.500 format.

filter The filter to use to obtain the values for a specific attribute.

filter-base-dn The name of the context where the filter should be performed.

from The name of the LDAP attribute to map to an identity attribute. If
not defined, DN of entry is used.

reference The name of LDAP attribute containing DN of entry to obtain
value from.

role-recursion Maximum depth for recursive role assignment. Use 0 to specify
no recursion. Defaults to 0.

role-recursion-name Determine the LDAP attribute of role entry which will be a
substitute for "{0}" in filter-name when searching roles of
role.

search-recursive If true attribute LDAP search queries are recursive. Defaults to
true.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

190

to The name of the identity attribute mapped from a specific LDAP
attribute. If not provided, the name of the attribute is the same as
define in from. If the from is not defined too, value dn is used.

Attribute Description

Table A.61. ldap-realm identity-mapping user-password-mapper Attributes

Attribute Description

from The name of the LDAP attribute to map to an identity attribute. If
not defined, DN of entry is used.

verifiable If true password can be used to verify the user. Defaults to
true.

writable If true password can be changed. Defaults to false.

Table A.62. ldap-realm identity-mapping otp-credential-mapper Attributes

Attribute Description

algorithm-from The name of the LDAP attribute of OTP algorithm.

hash-from The name of the LDAP attribute of OTP hash function.

seed-from The name of the LDAP attribute of OTP seed.

sequence-from The name of the LDAP attribute of OTP sequence number.

Table A.63. ldap-realm identity-mapping x509-credential-mapper Attributes

Attribute Description

certificate-from The name of the LDAP attribute to map to an encoded user
certificate. If not defined, encoded certificate will not be checked.

digest-algorithm The digest algorithm, which is the hash function, used to
compute digest of the user certificate. Will be used only if
digest-from has been defined.

digest-from The name of the LDAP attribute to map to a user certificate
digest. If not defined, certificate digest will not be checked.

APPENDIX A. REFERENCE MATERIAL

191

serial-number-from The name of the LDAP attribute to map to a serial number of
user certificate. If not defined, serial number will not be checked.

subject-dn-from The name of the LDAP attribute to map to a subject DN of user
certificate. If not defined, subject DN will not be checked.

Attribute Description

Table A.64. logical-permission-mapper Attributes

Attribute Description

left Reference to the permission mapper to use to the left of the
operation.

logical-operation The logical operation to use to combine the permission mappers.
Allowed values are and, or, xor, and unless.

right Reference to the permission mapper to use to the right of the
operation.

Table A.65. logical-role-mapper Attributes

Attribute Description

left Reference to a role mapper to be used on the left side of the
operation.

logical-operation The logical operation to be performed on the role mapper
mappings. Allowed values are: and, minus, or, and xor.

right Reference to a role mapper to be used on the right side of the
operation.

Table A.66. mapped-regex-realm-mapper Attributes

Attribute Description

delegate-realm-mapper The realm mapper to delegate to if there is no match using the
pattern.

pattern The regular expression which must contain at least one capture
group to extract the realm from the name.

realm-map Mapping of realm name extracted using the regular expression
to a defined realm name.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

192

Table A.67. mechanism-provider-filtering-sasl-server-factory Attributes

Attribute Description

enabling If true no provider loaded mechanisms are enabled unless
matched by one of the filters. This defaults to true.

filters The list of filters to apply when comparing the mechanisms from
the providers. A filter matches when all of the specified values
match the mechanism and provider pair.

sasl-server-factory Reference to a SASL server factory to be wrapped by this
definition.

Table A.68. mechanism-provider-filtering-sasl-server-factory filters Attributes

Attribute Description

mechanism-name The name of the SASL mechanism this filter matches with.

provider-name The name of the provider this filter matches.

provider-version The version to use when comparing the provider’s version.

version-comparison The equality to use when evaluating the Provider’s version. The
allowed values are less-than and greater-than. The
default value is less-than.

Table A.69. properties-realm Attributes

Attribute Description

groups-attribute The name of the attribute in the returned
AuthorizationIdentity that should contain the group
membership information for the identity.

groups-properties The properties file containing the users and their groups.

users-properties The properties file containing the users and their passwords.

Table A.70. properties-realm users-properties Attributes

Attribute Description

digest-realm-name The default realm name to use for digested passwords if one is
not discovered in the properties file.

APPENDIX A. REFERENCE MATERIAL

193

path The path to the file containing the users and their passwords.
The file should contain realm name declaration.

plain-text If true the passwords in properties file stored in plain text. If
false they are pre-hashed, taking the form of HEX(MD5(
username \":\" realm \":\" password))).
Defaults to false.

relative-to The predefined path the path is relative to.

Attribute Description

Table A.71. properties-realm groups-properties Attributes

Attribute Description

path The path to the file containing the users and their groups.

relative-to The predefined path the path is relative to.

Table A.72. provider-http-server-mechanism-factory Attributes

Attribute Description

providers The providers to use to locate the factories. If not specified, the
globally registered list of providers will be used.

Table A.73. provider-loader Attributes

Attribute Description

argument An argument to be passed into the constructor as the
Provider is instantiated.

class-names The list of the fully qualified class names of providers to load.
These are loaded after the service-loader discovered providers,
and any duplicates will be skipped.

configuration The key and value configuration to be passed to the provider to
initialize it.

module The name of the module to load the provider from.

path The path of the file to use to initialize the providers.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

194

relative-to The base path of the configuration file.

Attribute Description

Table A.74. provider-sasl-server-factory Attributes

Attribute Description

providers The providers to use to locate the factories. If not specified, the
globally registered list of providers will be used.

Table A.75. regex-principal-transformer Attributes

Attribute Description

pattern The regular expression to use to locate the portion of the name
to be replaced.

replace-all If true all occurrences of the pattern matched are replaced. If
false only the first occurrence. is replaced. Defaults to
false.

replacement The value to be used as the replacement.

Table A.76. regex-validating-principal-transformer Attributes

Attribute Description

match If true the name must match the given pattern to make
validation successful. If false the name must not match the
given pattern to make validation successful. This defaults to
true.

pattern The regular expression to use for the principal transformer.

Table A.77. sasl-authentication-factory Attributes

Attribute Description

mechanism-configurations The list of mechanism specific configurations.

sasl-server-factory The SASL server factory to associate with this resource.

security-domain The security domain to associate with this resource.

Table A.78. sasl-authentication-factory mechanism-configurations Attributes

APPENDIX A. REFERENCE MATERIAL

195

Attribute Description

credential-security-factory The security factory to use to obtain a credential as required by
the mechanism.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

host-name The host name this configuration applies to.

mechanism-name This configuration will only apply where a mechanism with the
name specified is used. If this attribute is omitted then this will
match any mechanism name.

mechanism-realm-configurations The list of definitions of the realm names as understood by the
mechanism.

protocol The protocol this configuration applies to.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

realm-mapper The realm mapper to be used by the mechanism.

Table A.79. sasl-authentication-factory mechanism-configurations mechanism-realm-
configurations Attributes

Attribute Description

final-principal-transformer A final principal transformer to apply for this mechanism realm.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

realm-mapper The realm mapper to be used by the mechanism.

realm-name The name of the realm to be presented by the mechanism.

Table A.80. server-ssl-context Attributes

Attribute Description

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

196

authentication-optional If true rejecting of the client certificate by the security domain
will not prevent the connection. This allows a fall through to use
other authentication mechanisms, such as form login, when the
client certificate is rejected by security domain. This has an effect
only when the security domain is set. This defaults to false.

cipher-suite-filter The filter to apply to specify the enabled cipher suites. This filter
takes a list of items delimited by colons, commas, or spaces.
Each item may be an OpenSSL-style cipher suite name, a
standard SSL/TLS cipher suite name, or a keyword such as
TLSv1.2 or DES. A full list of keywords as well as additional
details on creating a filter can be found in the JavaDocs. The
default value is DEFAULT, which corresponds to all known
cipher suites that do not have NULL encryption and excludes
any cipher suites that have no authentication.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

key-manager Reference to the key managers to use within the SSLContext.

maximum-session-cache-size The maximum number of SSL/TLS sessions to be cached.

need-client-auth If true a client certificate is required on SSL handshake.
Connection without trusted client certificate will be rejected. This
defaults to false.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

protocols The enabled protocols. Allowed options are SSLv2, SSLv3,
TLSv1, TLSv1.1, TLSv1.2, TLSv1.3. This defaults to
enabling TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3.

WARNING

Red Hat recommends that SSLv2, SSLv3,
and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected
packages.

provider-name The name of the provider to use. If not specified, all providers
from providers will be passed to the SSLContext.

Attribute Description

APPENDIX A. REFERENCE MATERIAL

197

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-

providers The name of the providers to obtain the Provider[] to use to
load the SSLContext.

realm-mapper The realm mapper to be used for SSL authentication.

security-domain The security domain to use for authentication during SSL/TLS
session establishment.

session-timeout The timeout for SSL/TLS sessions.

trust-manager Reference to the trust-manager to use within the
SSLContext.

use-cipher-suites-order If true the cipher suites order defined on the server will be
used. If false the cipher suites order presented by the client
will be used. Defaults to true.

want-client-auth If true a client certificate will be requested, but not required, on
SSL handshake. If a security domain is referenced and supports
X509 evidence, this will be set to true automatically. This is
ignored when need-client-auth is set. This defaults to
false.

wrap If true, the returned SSLEngine, SSLSocket, and
SSLServerSocket instances will be wrapped to protect
against further modification. This defaults to false.

Attribute Description

NOTE

The realm mapper and principal transformer attributes for a server-ssl-context apply
only for the SASL EXTERNAL mechanism, where the certificate is verified by the trust
manager. HTTP CLIENT-CERT authentication settings are configured in an http-
authentication-factory.

Table A.81. service-loader-http-server-mechanism-factory Attributes

Attribute Description

module The module to use to obtain the class loader to load the
factories. If not specified the class loader to load the resource
will be used instead.

Table A.82. service-loader-sasl-server-factory Attributes

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

198

Attribute Description

module The module to use to obtain the class loader to load the
factories. If not specified the class loader to load the resource
will be used instead.

Table A.83. simple-permission-mapper Attributes

Attribute Description

mapping-mode The mapping mode that should be used in the event of multiple
matches. Allowed values are, and, or, xor, unless, and
first. The default is first.

permission-mappings The list of defined permission mappings.

Table A.84. simple-permission-mapper permission-mappings Attributes

Attribute Description

permission-sets The permission sets to assign in the event of a match.
Permission sets can be used to assign permissions to an
identity.

permission-sets can take the following attribute:

permission-set
A reference to a permission set.

IMPORTANT

The permissions attribute is deprecated,
and is replaced by permission-sets.

principals The list of principals to compare when mapping permissions, if
the identities principal matches any one in the list it is a match.

roles The list of roles to compare when mapping permissions, if the
identity is a member of any one in the list it is a match.

Table A.85. permission-set permission Attributes

Attribute Description

action The action to pass to the permission as it is constructed.

class-name The fully qualified class name of the permission.

APPENDIX A. REFERENCE MATERIAL

199

module The module to use to load the permission.

target-name The target name to pass to the permission as it is constructed.

Attribute Description

Table A.86. simple-regex-realm-mapper Attributes

Attribute Description

delegate-realm-mapper The realm mapper to delegate to if there is no match using the
pattern.

pattern The regular expression which must contain at least one capture
group to extract the realm from the name.

Table A.87. simple-role-decoder Attributes

Attribute Description

attribute The name of the attribute from the identity to map directly to
roles.

Table A.88. token-realm Attributes

Attribute Description

jwt A token validator to be used in conjunction with a token-based
realm that handles security tokens based on the JWT/JWS
standard.

oauth2-introspection A token validator to be used in conjunction with a token-based
realm that handles OAuth2 Access Tokens and validates them
using an endpoint compliant with the RFC-7662 OAuth2 Token
Introspection specification.

principal-claim The name of the claim that should be used to obtain the
principal’s name. The default is username.

Table A.89. token-realm jwt Attributes

Attribute Description

audience A list of strings representing the audiences supported by this
configuration. During validation JWT tokens must have an aud
claim that contains one of the values defined here.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

200

certificate The name of the certificate with a public key to load from the
keystore.

issuer A list of strings representing the issuers supported by this
configuration. During validation JWT tokens must have an iss
claim that contains one of the values defined here.

key-store A keystore from where the certificate with a public key should be
loaded from.

public-key A public key in PEM Format. During validation, if a public key is
provided, the signature will be verified based on the key you
provided here.

Attribute Description

Table A.90. token-realm oauth2-introspection Attributes

Attribute Description

client-id The identifier of the client on the OAuth2 Authorization Server.

client-secret The secret of the client.

client-ssl-context The SSL context to be used if the introspection endpoint is using
HTTPS.

host-name-verification-policy A policy that defines how host names should be verified when
using HTTPS. The only allowed value is ANY.

introspection-url The URL of token introspection endpoint.

Table A.91. trust-manager Attributes

Attribute Description

algorithm The name of the algorithm to use to create the underlying
TrustManagerFactory. This is provided by the JDK. For
example, a JDK that uses SunJSSE provides the PKIX and
SunX509 algorithms. More details on SunJSSE can be found in
the Java Secure Socket Extension (JSSE) Reference Guide .

APPENDIX A. REFERENCE MATERIAL

201

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

alias-filter A filter to apply to the aliases returned from the keystore. This
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

certificate-revocation-list Enables the certificate revocation list that can be checked by a
trust manager. The attributes of certificate-
revocation-list are:

path - The path to the configuration file that is used to
initialize the provider.

relative-to - The base path of the certificate
revocation list file.

maximum-cert-path - The maximum number of
non-self-issued intermediate certificates that can exist
in a certification path. The default value is 5.

See Using a Certificate Revocation List for more information.

key-store Reference to the key-store to use to initialize the underlying
TrustManagerFactory.

provider-name The name of the provider to use to create the underlying
TrustManagerFactory.

providers Reference to obtain the Provider[] to use when creating the
underlying TrustManagerFactory.

Attribute Description

Table A.92. x500-attribute-principal-decoder Attributes

Attribute Description

attribute-name The name of the X.500 attribute to map. This can also be
defined using the oid attribute.

convert When set to true, the principal decoder will attempt to convert
a principal to a X500Principal, if it is not already of that
type. If the conversion fails, the original value is used as the
principal.

joiner The joining string. The default value is a period (.).

maximum-segments The maximum number of occurrences of the attribute to map.
The default value is 2147483647.

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

202

oid The OID of the X.500 attribute to map. This can also be defined
using the attribute-name attribute.

required-attributes The list of attribute names of the attributes that must be present
in the principal

required-oids The list of OIDs of the attributes that must be present in the
principal.

reverse If true the attribute values will be processed and returned in
reverse order. The default value is false.

start-segment The starting occurrence of the attribute you want to map. This
uses a zero-based index and the default value is 0.

Attribute Description

A.2. SASL AUTHENTICATION MECHANISMS REFERENCE

A.2.1. Support Level for SASL Authentication Mechanisms

Name Support Level Comments

ANONYMOUS Supported

DIGEST-SHA-512 Technology Preview Supported but name not currently IANA
registered.

DIGEST-SHA-256 Technology Preview Supported but name not currently IANA
registered.

DIGEST-SHA Technology Preview Supported but name not currently IANA
registered.

DIGEST-MD5 Supported

EXTERNAL Supported

GS2-KRB5 Supported

GS2-KRB5-PLUS Supported

GSSAPI Supported

JBOSS-LOCAL-USER Supported Supported but name not currently IANA
registered.

APPENDIX A. REFERENCE MATERIAL

203

OAUTHBEARER Supported

OTP Not supported

PLAIN Supported

SCRAM-SHA-1 Supported

SCRAM-SHA-1-PLUS Supported

SCRAM-SHA-256 Supported

SCRAM-SHA-256-PLUS Supported

SCRAM-SHA-384 Supported

SCRAM-SHA-384-PLUS Supported

SCRAM-SHA-512 Supported

SCRAM-SHA-512-PLUS Supported

9798-U-RSA-SHA1-ENC Not supported

9798-M-RSA-SHA1-ENC Not supported

9798-U-DSA-SHA1 Not supported

9798-M-DSA-SHA1 Not supported

9798-U-ECDSA-SHA1 Not supported

9798-M-ECDSA-SHA1 Not supported

Name Support Level Comments

A.2.2. SASL Authentication Mechanism Properties

You can see a list of standard Java SASL authentication mechanism properties in the Java
documentation. Other JBoss EAP-specific SASL authentication mechanism properties are listed in the
following tables.

Table A.93. SASL Properties Used During SASL Mechanism Negotiation or Authentication
Exchange

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

204

https://docs.oracle.com/javase/8/docs/api/javax/security/sasl/Sasl.html#field.summary

Property Client /
Server

Description

com.sun.security.sasl.digest.realm Server Used by some SASL mechanisms, including the
DIGEST-MD5 algorithm supplied with most Oracle
JDKs, to provide the list of possible server realms to
the mechanism. Each realm name must be
separated by a space character (U+0020).

com.sun.security.sasl.digest.utf8 Client, server Used by some SASL mechanisms, including the
DIGEST-MD5 algorithm supplied with most Oracle
JDKs, to indicate that information exchange should
take place using UTF-8 character encoding instead
of the default Latin-1/ISO-8859-1 encoding. The
default value is true.

wildfly.sasl.authentication-timeout Server The amount of time, in seconds, after which a server
should terminate an authentication attempt. The
default value is 150 seconds.

wildfly.sasl.channel-binding-
required

Client, server Indicates that a mechanism which supports channel
binding is required. A value of true indicates that
channel binding is required. Any other value, or lack
of this property, indicates that channel binding is not
required.

wildfly.sasl.digest.alternative_protoc
ols

Server Supplies a separated list of alternative protocols that
are acceptable in responses received from the client.
The list can be space, comma, tab, or new line
separated.

wildfly.sasl.gssapi.client.delegate-
credential

Client Specifies if the GSSAPI mechanism supports
credential delegation. If set to true, the credential is
delegated from the client to the server.

This property defaults to true if a
GSSCredential is provided using the
javax.security.sasl.credentials
property. Otherwise, the default value is false.

wildfly.sasl.gs2.client.delegate-
credential

Client Specifies if the GS2 mechanism supports credential
delegation. If set to true, the credential is delegated
from the client to the server.

This property defaults to true if a
GSSCredential is provided using a
CredentialCallback. Otherwise, the default
value is false.

wildfly.sasl.local-user.challenge-path Server Specifies the directory in which the server generates
the challenge file. The default value is the
java.io.tmpdir system property.

APPENDIX A. REFERENCE MATERIAL

205

wildfly.sasl.local-user.default-user Server The user name to use for silent authentication.

wildfly.sasl.local-user.quiet-auth Client Enables silent authentication for a local user. The
default value is true.

Note that the EJB client and naming client disables
silent local authentication if this property is not
explicitly defined and a callback handler or user name
was specified in the client configuration.

wildfly.sasl.local-user.use-secure-
random

Server Specifies whether the server uses a secure random
number generator when creating the challenge. The
default value is true.

wildfly.sasl.mechanism-query-all Client, server Indicates that all possible supported mechanism
names should be returned, regardless of the
presence or absence of any other properties.

This property is only effective on calls to
SaslServerFactory#getMechanismNames(
Map) or
SaslClientFactory#getMechanismNames(
Map) for Elytron-provided SASL factories.

wildfly.sasl.otp.alternate-dictionary Client Provides an alternate dictionary to the OTP SASL
mechanism. Each dictionary word must be separated
by a space character (U+0020).

wildfly.sasl.relax-compliance Server The specifications for the SASL mechanisms
mandate certain behavior and verification of that
behavior at the opposite side of the connection.
When interacting with other SASL mechanism
implementations, some of these requirements are
interpreted loosely. If this property is set to true,
checking is relaxed where differences in specification
interpretation has been identified. The default value is
false.

wildfly.sasl.scram.min-iteration-
count

Client, server The minimum iteration count to use for SCRAM. The
default value is 4096.

wildfly.sasl.scram.max-iteration-
count

Client, server The maximum iteration count to use for SCRAM. The
default value is 32786.

wildfly.sasl.secure-rng Client, server The algorithm name of a SecureRandom
implementation to use. Using this property can
improve security, at the cost of performance.

Property Client /
Server

Description

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

206

wildfly.security.sasl.digest.ciphers Client, server Comma-separated list of supported ciphers that
directly limits the set of supported ciphers for SASL
mechanisms.

Property Client /
Server

Description

Table A.94. SASL Properties Used After Authentication

Property Client /
Server

Description

wildfly.sasl.principal Client Contains the negotiated client principal after a
successful SASL client-side authentication.

wildfly.sasl.security-identity Server Contains the negotiated security identity after a
successful SASL server-side authentication.

A.3. SECURITY AUTHORIZATION ARGUMENTS

Arguments to the security commands in JBoss EAP are determined by the defined mechanism. Each
mechanism requires different properties, and it is recommended to use tab completion to examine the
various requirements for the defined mechanism.

Table A.95. Universal Arguments

Attribute Description

--mechanism Specifies the mechanism to enable or disable. A list of supported
SASL mechanisms is available at Support Level for SASL
Authentication Mechanisms, and the BASIC, CLIENT_CERT,
DIGEST, DIGEST-SHA-256, and FORM HTTP authentication
mechanisms are currently supported.

--no-reload If specified, then the server is not reloaded after the security
command is completed.

Mechanism Specific Attributes
The following attributes are only eligible for specific mechanisms. They are grouped below based on their
function.

Table A.96. key-store Realm

Attribute Description

--key-store-name The name of the truststore as an existing keystore. This must be
specified if --key-store-realm-name is not used for the
EXTERNAL SASL mechanism or the CLIENT_CERT HTTP
mechanism.

APPENDIX A. REFERENCE MATERIAL

207

--key-store-realm-name The name of the truststore as an existing keystore realm. This
must be specified if --key-store-name is not used for the
EXTERNAL SASL mechanism or the CLIENT_CERT HTTP
mechanism.

--roles An optional argument that defines a comma separated list of
roles associated with the current identity. If no existing role
mapper contains the specified list of roles, then a role mapper
will be generated and assigned.

Attribute Description

Table A.97. file-system Realm

Attribute Description

--exposed-realm The realm exposed to the user.

--file-system-realm-name The name of the filesystem realm.

--user-role-decoder The name of the role decoder used to extract the roles from the
user’s repository. This attribute is only used if --file-
system-realm-name is specified.

Table A.98. Properties Realm

Attribute Description

--exposed-realm The realm exposed to the user. This value must match the
realm-name defined in the user’s properties file.

--groups-properties-file A path to the properties file that contains the groups attribute
for management operations, or the roles for the undertow
server.

--properties-realm-name The name of an existing properties realm.

--relative-to Adjusts the paths of --group-properties-file and --
users-properties-file to be relative to a system
property.

--users-properties-file A path to the properties file that contains the user details.

Table A.99. Miscellaneous Properties

Attribute Description

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

208

--management-interface The management interface to configure for management
authentication commands. This defaults to the http-
interface.

--new-auth-factory-name Used to specify a name for the authentication factory. If not
defined, a name is automatically created.

--new-realm-name Used to specify a name for the properties file realm resource. If
not defined, a name is automatically created.

--new-security-domain Used to specify a name for the security domain. If not defined, a
name is automatically created.

--super-user Configures a local user with super-user permissions. Usable with
the JBOSS-LOCAL-USER mechanism.

Attribute Description

A.4. ELYTRON CLIENT SIDE ONE WAY EXAMPLE

After configuring a server SSL context, it is important to test the configuration if possible. An Elytron
client SSL context can be placed in a configuration file and then executed from the management CLI,
allowing functional testing of the server configuration. These steps assume that the server-side
configuration is completed, and the server has been reloaded if necessary.

1. If the server keystore already exists, then proceed to the next step; otherwise, create the server
keystore.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -
validity 365 -keystore server.keystore.jks -dname "CN=localhost" -
keypass secret -storepass secret

2. If the server certificate has already been exported, then proceed to the next step; otherwise,
export the server certificate.

$ keytool -exportcert -keystore server.keystore.jks -alias
localhost -keypass secret -storepass secret -file server.cer

3. Import the server certificate into the client’s truststore.

$ keytool -importcert -keystore client.truststore.jks -storepass
secret -alias localhost -trustcacerts -file server.cer

4. Define the client-side SSL context inside of example-security.xml. This configuration file
contains an Elytron authentication-client that defines the authentication and SSL
configuration for outbound connections. The following file demonstrates defining a client SSL
context and keystore.

<?xml version="1.0" encoding="UTF-8"?>

APPENDIX A. REFERENCE MATERIAL

209

5. Using the management CLI, reference the newly created file and attempt to access the server.
The following command accesses the management interface and executes the whoami
command.

$ EAP_HOME/bin/jboss-cli.sh -c --
controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=/path/to/example-security.xml :whoami

A.5. ELYTRON CLIENT SIDE TWO WAY EXAMPLE

After configuring a server SSL context, it is important to test the configuration if possible. An Elytron
client SSL context can be placed in a configuration file and then executed from the management CLI,
allowing functional testing of the server configuration. These steps assume that the server-side
configuration is completed, and the server has been reloaded if necessary.

1. If the server and client keystores already exist, then proceed to the next step; otherwise, create
the server and client keystores.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -
validity 365 -keystore server.keystore.jks -dname "CN=localhost" -
keypass secret -storepass secret
$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -
validity 365 -keystore client.keystore.jks -dname "CN=client" -
keypass secret -storepass secret

2. If the server and client certificates have already been exported, then proceed to the next step;
otherwise, export the server and client certificates.

$ keytool -exportcert -keystore server.keystore.jks -alias
localhost -keypass secret -storepass secret -file server.cer
$ keytool -exportcert -keystore client.keystore.jks -alias client -
keypass secret -storepass secret -file client.cer

3. Import the server certificate into the client’s truststore.

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <key-stores>
 <key-store name="clientStore" type="jks" >
 <file name="/path/to/client.truststore.jks"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-SSL-context">
 <trust-store key-store-name="clientStore" />
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-SSL-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

210

$ keytool -importcert -keystore client.truststore.jks -storepass
secret -alias localhost -trustcacerts -file server.cer

4. Import the client certificate into the server’s truststore.

$ keytool -importcert -keystore server.truststore.jks -storepass
secret -alias client -trustcacerts -file client.cer

5. Define the client-side SSL context inside of example-security.xml. This configuration file
contains an Elytron authentication-client that defines the authentication and SSL
configuration for outbound connections. The following file demonstrates defining a client SSL
context and keystore.

6. Using the management CLI, reference the newly created file and attempt to access the server.
The following command accesses the management interface and executes the whoami
command.

$ EAP_HOME/bin/jboss-cli.sh -c --
controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=/path/to/example-security.xml :whoami

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:1.0.1">
 <key-stores>
 <key-store name="clientStore" type="jks" >
 <file name="/path/to/client.truststore.jks"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <key-store name="clientKeyStore" type="jks" >
 <file name="/path/to/client.keystore.jks"/>
 <key-store-clear-password password="secret" />
 </key-store>
 <ssl-contexts>
 <ssl-context name="client-SSL-context">
 <trust-store key-store-name="clientStore" />
 <key-store-ssl-certificate key-store-
name="clientKeyStore" alias="client">
 <key-store-clear-password password="secret" />
 </key-store-ssl-certificate>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-SSL-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

APPENDIX A. REFERENCE MATERIAL

211

Revised on 2018-07-05 08:20:58 EDT

JBoss Enterprise Application Platform Continuous Delivery 13 How to Configure Server Security

212

	Table of Contents
	PREFACE
	CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES
	1.1. BUILDING BLOCKS
	1.1.1. Interfaces and Socket Bindings
	1.1.2. Elytron Subsystem
	1.1.2.1. Enable Elytron Security Across the Server
	1.1.2.2. Create an Elytron Security Domain
	1.1.2.3. Create an Elytron Security Realm
	1.1.2.4. Create an Elytron Role Decoder
	1.1.2.5. Create an Elytron Role Mapper
	1.1.2.6. Create an Elytron Permission Set
	1.1.2.7. Create an Elytron Permission Mapper
	1.1.2.8. Creating an Authentication Configuration
	1.1.2.9. Creating an Authentication Context
	1.1.2.10. Create an Elytron Authentication Factory
	1.1.2.11. Create an Elytron Keystore
	1.1.2.12. Create an Elytron Key Manager
	1.1.2.13. Create an Elytron Truststore
	1.1.2.14. Create an Elytron Trust Manager
	1.1.2.15. Using the Out of the Box Elytron Components
	1.1.2.16. Elytron Audit Logging
	1.1.2.17. Enable and Disable the Elytron Subsystem

	1.1.3. Legacy Security Subsystem
	1.1.3.1. Enable and Disable the Security Subsystem

	1.1.4. Legacy Security Realms
	1.1.5. Using Authentication and Socket Bindings for Securing the Management Interfaces

	1.2. HOW TO SECURE THE MANAGEMENT INTERFACES
	Elytron Integration with the Management CLI
	1.2.1. Configure Networking and Ports
	1.2.2. Disabling the Management Console
	1.2.3. Disabling Remote Access to JMX
	Removing the Remoting Connector

	1.2.4. Silent Authentication
	1.2.5. Removing Undertow Response Headers
	1.2.6. Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
	Using a Security Command
	Using Elytron Subsystem Commands

	1.2.7. Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
	1.2.8. Enable SASL Authentication for the Management Interfaces Using the CLI Security Command
	Reorder SASL Mechanisms
	Disable SASL Authentication for the Management Interfaces

	1.2.9. Enable HTTP Authentication for the Management Interfaces Using the CLI Security Command
	Disable HTTP Authentication for the Management Interfaces

	1.2.10. Configure the Management Interfaces for One-way SSL/TLS with Legacy Core Management Authentication
	Create a Keystore to Secure the Management Interfaces
	Ensure the Management Interfaces Bind to HTTPS
	Optional: Implement a Custom socket-binding-group
	Create a New Security Realm
	Configure the Management Interfaces to Use the New Security Realm
	Configure the Management Interfaces to Use the Keystore
	Update the jboss-cli.xml File

	1.2.11. Setting up Two-way SSL/TLS for the Management Interfaces with Legacy Core Management Authentication
	Prerequisites

	1.2.12. HTTPS Listener Reference
	1.2.12.1. About Cipher Suites

	1.2.13. Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat Enterprise Linux 7
	1.2.13.1. Configuring the NSS database
	1.2.13.2. Configure the Management CLI for FIPS 140-2 Compliant Cryptography for SSL/TLS
	1.2.13.3. Configure the Elytron and Undertow Subsystems
	1.2.13.4. Configure Undertow with the Legacy Core Management Authentication

	1.2.14. FIPS 140-2 Compliant Cryptography on IBM JDK
	1.2.14.1. Key Storage
	1.2.14.2. Management CLI Configuration
	1.2.14.3. Examine FIPS Provider Information

	1.2.15. Starting a Managed Domain when the JVM is Running in FIPS Mode

	1.3. SECURITY AUDITING
	1.3.1. Configure Security Auditing for the Legacy Security Domains

	1.4. CONFIGURE ONE-WAY AND TWO-WAY SSL/TLS FOR APPLICATIONS
	1.4.1. Automatic Self-signed Certificate Creation for Applications
	1.4.2. Using Elytron
	1.4.2.1. Enable One-way SSL/TLS for Applications Using the Elytron Subsystem
	1.4.2.2. Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

	1.4.3. Using Legacy Security Realms
	1.4.3.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms
	1.4.3.2. Enable Two-way SSL/TLS for Applications Using Legacy Security Realms

	1.5. ENABLE HTTP AUTHENTICATION FOR APPLICATIONS USING THE CLI SECURITY COMMAND
	Disable HTTP Authentication for the Management Interfaces

	1.6. SASL AUTHENTICATION MECHANISMS
	1.6.1. Choosing SASL Authentication Mechanisms
	1.6.2. Configuring SASL Authentication Mechanisms on the Server Side
	1.6.3. Specifying SASL Authentication Mechanisms on the Client Side
	sasl-mechanism-selector Grammar

	1.6.4. Configuring SASL Authentication Mechanism Properties

	1.7. ELYTRON INTEGRATION WITH THE MODCLUSTER SUBSYSTEM
	1.7.1. Defining a Client SSL Context and Configuring ModCluster Subsystem

	1.8. ELYTRON INTEGRATION WITH THE JGROUPS SUBSYSTEM
	1.9. ELYTRON INTEGRATION WITH THE REMOTING SUBSYSTEM
	1.9.1. Elytron Integration with Remoting Connectors
	Enable One-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
	Enable Two-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem

	1.9.2. Elytron Integration with Remoting HTTP Connectors
	Enable One-Way SSL on the Remoting HTTP Connector
	Enable Two-way SSL/TLS on the Remoting HTTP Connectors

	1.9.3. Elytron Integration with Remoting Outbound Connectors

	1.10. SECURING A MANAGED DOMAIN
	1.10.1. Configure Password Authentication Between Slaves and the Domain Controller Using Elytron
	1.10.2. Configure Password Authentication Between Slaves and the Domain Controller Using Legacy Core Management Authentication
	1.10.3. Configuring SSL/TLS Between Domain and Host Controllers Using Elytron
	1.10.4. Configuring SSL/TLS Between Domain and Host Controllers Using Legacy Core Management Authentication

	1.11. ADDITIONAL ELYTRON COMPONENTS FOR SSL/TLS
	1.11.1. Using an ldap-key-store
	1.11.2. Using a filtering-key-store
	1.11.3. Reload a Keystore
	1.11.4. Keystore Alias
	1.11.5. Using a client-ssl-context
	1.11.6. Using a server-ssl-context
	Add a Server SSL Context Using the Management CLI
	Add a Server SSL Context Using the Management Console

	1.11.7. Custom Components
	1.11.7.1. Add a Custom Component to Elytron
	1.11.7.2. Using Custom Trust Managers with Elytron

	1.11.8. Using a Certificate Revocation List
	1.11.9. Keystore Manipulation Operations
	Generate a Key Pair
	Generate a Certificate Signing Request
	Import a Certificate or Certificate Chain
	Export a Certificate
	Change an Alias
	Store Changes Made to Keystores

	CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES
	2.1. USER AUTHENTICATION WITH ELYTRON
	2.1.1. Default Configuration
	2.1.1.1. Default Elytron HTTP Authentication Configuration
	2.1.1.2. Default Elytron Management CLI Authentication

	2.1.2. Secure the Management Interfaces with a New Identity Store
	2.1.3. Adding Silent Authentication
	2.1.4. Mapping Identity for Authenticated Management Users
	2.1.5. Using Elytron Client with the Management CLI

	2.2. IDENTITY PROPAGATION AND FORWARDING WITH ELYTRON
	2.2.1. Propagating Security Identities for Remote Calls
	Configure the Server for Security Propagation
	Review the Example Application Code That Propagates a Security Identity

	2.2.2. Utilizing Authorization Forwarding Mode
	Configure the Authentication Client on the Forwarding Server
	Configure the Authorization Forwarding on the Receiving Server

	2.2.3. Retrieving Security Identity Credentials
	2.2.4. Mechanisms That Support Security Identity Propagation

	2.3. IDENTITY SWITCHING WITH ELYTRON
	2.3.1. Switching Identities in Server-to-server EJB Calls

	2.4. USER AUTHENTICATION WITH LEGACY CORE MANAGEMENT AUTHENTICATION
	2.4.1. Default User Configuration
	2.4.2. Adding Authentication via LDAP
	2.4.3. Using JAAS for Securing the Management Interfaces

	2.5. ROLE-BASED ACCESS CONTROL
	2.5.1. Enabling Role-Based Access Control
	CLI to Enable RBAC
	Management CLI Command to Disable RBAC
	XML Configuration to Enable or Disable RBAC

	2.5.2. Changing the Permission Combination Policy
	Setting the Permission Combination Policy

	2.5.3. Managing Roles
	2.5.3.1. Configure User Role Assignment Using the Management CLI

	2.5.4. Configure User Role Assignment with the Elytron Subsystem
	2.5.5. Roles and User Groups
	2.5.6. Configure Group Role Assignment Using the Management CLI
	Viewing Group Role Assignment Configuration
	Add a New Role
	Add a Group as Included in a Role
	Add a Group as Excluded in a Role
	Remove Group Role Include Configuration
	Remove a User Group Exclude Entry

	2.5.7. Using RBAC with LDAP
	2.5.8. Scoped Roles
	2.5.8.1. Configuring Scoped Roles from the Management CLI
	2.5.8.2. Configuring Scoped Roles from the Management Console

	2.5.9. Configuring Constraints
	2.5.9.1. Configure Sensitivity Constraints
	2.5.9.2. List Sensitivity Constraints
	2.5.9.3. Configure Application Resource Constraints
	2.5.9.4. List Application Resource Constraints
	2.5.9.5. Configure the Vault Expression Constraint

	CHAPTER 3. SECURELY STORING CREDENTIALS
	3.1. CREDENTIAL STORE
	3.1.1. Create a Credential Store
	Create a Credential Store for a Standalone Server
	Create a Credential Store in a Managed Domain

	3.1.2. Add a Credential to the Credential Store
	Editing Credential Store Aliases Using the Management Console

	3.1.3. Use a Stored Credential in a Configuration
	3.1.4. List the Credentials in the Credential Store
	3.1.5. Remove a Credential from the Credential Store
	3.1.6. Obtain the Master Password for the Credential Store from an External Source
	3.1.7. Define a FIPS 140-2 Compliant Credential Store
	3.1.8. Use a Custom Implementation of the Credential Store
	3.1.9. Create and Modify Credential Stores Offline with the WildFly Elytron Tool
	3.1.9.1. Generate Masked Encrypted Strings Using the WildFly Elytron Tool
	3.1.9.2. Convert a Password Vault to a Credential Store Using the WildFly Elytron Tool

	3.1.10. Using Credential Stores with Elytron Client
	3.1.11. Using Credential Stores in a Managed Domain

	3.2. PASSWORD VAULT
	3.2.1. Set Up a Password Vault
	3.2.2. Initialize the Password Vault
	3.2.3. Use a Password Vault
	3.2.4. Store a Sensitive String in the Password Vault
	3.2.5. Use an Encrypted Sensitive String in Configuration
	3.2.6. Use an Encrypted Sensitive String in an Application
	3.2.7. Check if a Sensitive String is in the Password Vault
	3.2.8. Remove a Sensitive String from the Password Vault
	Remove a Sensitive String Interactively

	3.2.9. Configure Red Hat JBoss Enterprise Application Platform to Use a Custom Implementation of the Password Vault
	3.2.10. Obtain Keystore Password From External Source

	CHAPTER 4. JAVA SECURITY MANAGER
	4.1. ABOUT THE JAVA SECURITY MANAGER
	4.2. DEFINE A JAVA SECURITY POLICY
	4.2.1. Defining Policies in the Security Manager Subsystem
	4.2.2. Defining Policies in the Deployment
	4.2.3. Defining Policies in Modules

	4.3. RUN JBOSS EAP WITH THE JAVA SECURITY MANAGER
	4.4. CONSIDERATIONS MOVING FROM PREVIOUS VERSIONS
	4.4.1. Defining Policies
	4.4.2. JBoss EAP Configuration Changes
	4.4.3. Custom Security Managers

	APPENDIX A. REFERENCE MATERIAL
	A.1. ELYTRON SUBSYSTEM COMPONENTS REFERENCE
	A.2. SASL AUTHENTICATION MECHANISMS REFERENCE
	A.2.1. Support Level for SASL Authentication Mechanisms
	A.2.2. SASL Authentication Mechanism Properties

	A.3. SECURITY AUTHORIZATION ARGUMENTS
	Mechanism Specific Attributes

	A.4. ELYTRON CLIENT SIDE ONE WAY EXAMPLE
	A.5. ELYTRON CLIENT SIDE TWO WAY EXAMPLE

