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Abstract

The intent of this guide is to explore the topic of single sign-on (SSO) with Kerberos within Red
Hat JBoss Enterprise Application Platform as well as provide a practical guide for setting up SSO
with Kerberos in JBoss EAP. Essentially this guide is providing a deeper dive into what SSO with
Kerberos is as well as how to set up and configure it within JBoss EAP. Before reading this guide,
users should read through the Security Architecture document for Red Hat JBoss Enterprise
Application Platform and have a solid understanding of the SSO and Kerberos information
presented in that document. This guide also makes use of the JBoss EAP CLI interface for



performing configuration changes. For more information on using the CLI for both standalone
JBoss EAP instances as well as JBoss EAP domains, see the JBoss EAP Management CLI Guide.
When completing this guide, readers should have a solid, working understanding of SSO and
Kerberos, how it relates to JBoss EAP, and how to configure it.
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PREFACE
This document is intended for use with the JBoss Enterprise Application Platform continuous delivery
release 12, which is a Technology Preview release available in the cloud only.

Some features described in this document might not work or might not be available on Red Hat
OpenShift Online and Red Hat OpenShift Container Platform. For specific details about the feature
differences in the JBoss EAP CD release, see the Release Limitations section in the JBoss EAP
Continuous Delivery 12 Release Notes.

IMPORTANT

This continuous delivery release for JBoss EAP is provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

See Technology Preview Features Support Scope  on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

PREFACE
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CHAPTER 1. SSO WITH KERBEROS DEEPER DIVE

1.1. WHAT ARE SSO AND KERBEROS?

A basic background of single sign-on (SSO) and Kerberos is provided in the Single Sign-On section of
the JBoss EAP Security Architecture guide.

1.2. KERBEROS COMPONENTS

Kerberos itself is a network protocol that enables authentication for users of client/server
applications through the use of secret-key cryptography. Kerberos is usually used for authenticating
desktop users on networks, but through the use of some additional tools, it can be used to authenticate
users to web applications and to provide SSO for a set of web applications. This essentially allows
users who have already authenticated on their desktop network to seamlessly access secured
resources in web applications without having to reauthenticate. This concept is known as desktop-
based SSO since the user is being authenticated using a desktop-based authentication mechanism, and
their authentication token or ticket is being used by the web application as well. This differs from other
SSO mechanisms such as browser-based SSO, which authenticates users and issues tokens all through
the browser.

The Kerberos protocol defines several components that it uses in authentication and authorization:

Tickets

A ticket is a form of a security token that Kerberos uses for issuing and making authentication and
authorization decisions about principals.

Authentication Service

The authentication service (AS) challenges principals to log in when they first log into the network. The
authentication service is responsible for issuing a ticket granting ticket (TGT), which is needed for
authenticating against the ticket granting service and subsequent access to secured services and
resources.

Ticket Granting Service

The ticket granting service (TGS) is responsible for issuing service tickets and specific session
information to principals and the target server they are attempting to access. This is based on the TGT
and destination information provided by the principal. This service ticket and session information is
then used to establish a connection to the destination and access the desired secured service or
resource.

Key Distribution Center

The key distribution center (KDC) is the component that houses both the TGS and AS. The KDC, along
with the client, or principal, and server, or secured service, are the three pieces required to perform
Kerberos authentication.

Ticket Granting Ticket

A ticket granting ticket (TGT) is a type of ticket issued to a principal by the AS. The TGT is granted once
a principal successfully authenticates against the AS using their username and password. The TGT is
cached locally by the client, but is encrypted such that only the KDC can read it and is unreadable by
the client. This allows the AS to securely store authorization data and other information in the TGT for
use by the TGS and enables the TGS to make authorization decisions using this data.

Service Ticket
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A service ticket (ST) is a type of ticket issued to a principal by the TGS based on their TGT and the
intended destination. The principal provides the TGS with their TGT and the intended destination, and
the TGS verifies the principal has access to the destination based on the authorization data in the TGT.
If successful, the TGS issues an ST to the client for both the client as well as the destination server
which is the server containing the secured service or resource. This grants the client access to the
destination server. The ST, which is cached by the client and readable by both the client and server,
also contains session information that allows the client and server to communicate securely.

NOTE

There is a tight relationship between Kerberos and the DNS settings of the network. For
instance, certain assumptions are made when clients access the KDC based on the
name of the host it is running on. As a result, it is important that all DNS settings in
addition to the Kerberos settings are properly configured to ensure that clients can
connect.

1.3. ADDITIONAL COMPONENTS

In addition to the Kerberos components, several other items are needed to enable Kerberos SSO with
JBoss EAP.

1.3.1. SPNEGO

Simple and Protected GSSAPI Negotiation Mechanism (SPNEGO) provides a mechanism for extending a
Kerberos-based single sign-on environment for use in web applications.

SPNEGO is an authentication method used by a client application to authenticate itself to the server.
This technology is used when the client application and server are trying to communicate with each
other, but neither are sure of the authentication protocol the other supports. SPNEGO determines the
common GSSAPI mechanisms between the client application and the server and then dispatches all
further security operations to it.

When an application on a client computer, such as a web browser, attempts to access a protected page
on the web server, the server responds that authorization is required. The application then requests a
service ticket from the Kerberos KDC. After the ticket is obtained, the application wraps it in a request
formatted for SPNEGO, and sends it back to the web application, through the browser. The web
container running the deployed web application unpacks the request and attempts to authenticate the
ticket. Upon successful authentication, access is granted.

SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat
Enterprise Linux and the Kerberos server, which is an integral part of Microsoft Active Directory.

1.3.2. JBoss Negotiation

JBoss Negotiation is a framework that ships with JBoss EAP that provides an authenticator and JAAS
login module to support SPNEGO in JBoss EAP. JBoss Negotiation is only used with the legacy 
security subsystem and legacy core management authentication. For more information on JAAS
login modules, please see the Declarative Security and JAAS  and Security Domains sections of the
JBoss EAP Security Architecture guide.

CHAPTER 1. SSO WITH KERBEROS DEEPER DIVE
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NOTE

When using JBoss Negotiation to secure certain applications, such as REST web
services, one or more sessions may be created and left open for the timeout period,
which defaults to 30 minutes, when a client makes a request. This differs from the
expected behavior of securing an application using basic authentication, which would
leave no open sessions. JBoss Negotiation is implemented to use sessions to maintain
the state of the negotiation/connection so the creation of these sessions is expected
behavior.

1.4. KERBEROS INTEGRATION

Kerberos is integrated with many operating systems including Linux distributions such as Red Hat
Enterprise Linux. Kerberos is also an integral part of Microsoft Active Directory and is supported by
Red Hat Directory Server and Red Hat IDM.

1.5. HOW DOES KERBEROS PROVIDE SSO FOR JBOSS EAP?

Kerberos provides desktop-based SSO by issuing tickets from a KDC for use by the client and server.
JBoss EAP can integrate with this existing process by using those same tickets in its own
authentication and authorization process. Before trying to understand how JBoss EAP can reuse those
tickets, it is best to first understand in greater detail how these tickets are issued as well as how
authentication and authorization works with Kerberos in desktop-based SSO without JBoss EAP.

1.5.1. Authentication and Authorization with Kerberos in Desktop-Based SSO

To provide authentication and authorization, Kerberos relies on a third party, the KDC, to provide
authentication and authorization decisions for clients accessing servers. These decisions happen in
three steps:

1. Authentication exchange.
When a principal first accesses the network or attempts to access a secured service without a
ticket granting ticket (TGT), they are challenged to authenticate against the authentication
service (AS) with their credentials. The AS validates the user’s provided credentials against the
configured identity store, and upon successful authentication, the principal is issued a TGT
which is cached by the client. The TGT also contains some session information so future
communication between the client and KDC is secured.

2. Ticket granting, or authorization, exchange.
Once the principal has been issued a TGT, they may attempt to access secured services or
resources. The principal sends a request to the ticket granting service (TGS), passing the TGT it
was issued by the KDC and requesting a service ticket (ST) for a specific destination. The TGS
checks the TGT provided by the principal and verifies they have proper permissions to access
the requested resource. If successful, the TGS issues an ST for the principal to access that
specific destination. The TGS also creates session information for both the client as well as the
destination server to allow for secure communication between the two. This session
information is encrypted separately such that the client and server can only decrypt its own
session information using long-term keys separately provided by the KDC to each, from
previous transactions. The TGS then responds to the client with the ST which includes the
session information for both the client and server.

3. Accessing the server.
Now that the principal has an ST for the secured service as well as a mechanism for secure
communication to that server, the client may now establish a connection and attempt to
access the secured resource. The client starts by passing the ST to the destination server. This
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ST contains the server component of the session information which it received from the TGS
for that destination. The server attempts to decrypt the session information passed to it by the
client, using its long-term key from the KDC. If it succeeds, the client has been successfully
authenticated to the server and the server is also considered authenticated to the client. At
this point, trust has been established and secured communication between the client and
server may proceed.

NOTE

Despite the fact that unauthorized principals cannot actually use a TGT, a principal will
only be issued a TGT after they first successfully authenticate with the AS. Not only
does this ensure that only properly authorized principals are ever issued a TGT, it also
reduces the ability for unauthorized third parties to obtain TGTs in an attempt to
compromise or exploit them, for example using offline dictionary or brute-force attacks.

1.5.2. Kerberos and JBoss EAP

JBoss EAP can integrate with an existing Kerberos desktop-based SSO environment to allow for those
same tickets to provide access to web applications hosted on JBoss EAP instances. In a typical setup, a
JBoss EAP instance would be configured to use Kerberos authentication with SPNEGO using either the
legacy security subsystem or the elytron subsystem. An application, configured to use SPNEGO
authentication, is deployed to that JBoss EAP instance. A user logs in to a desktop, which is governed
by Kerberos, and completes an authentication exchange with the KDC. The user then attempts to
access a secured resource in the deployed application on that JBoss EAP instance directly using a web
browser. JBoss EAP responds that authorization is required to access the secured resource. The web
browser obtains the user’s TGT ticket and then performs the ticket granting, or authorization,
exchange with the KDC to validate the user and obtain a service ticket. Once the ST is returned to the
browser, it wraps the ST in a request formatted for SPNEGO, and sends it back to the web application
running on JBoss EAP. JBoss EAP then unpacks the SPNEGO request and performs the authentication
using the either the legacy security subsystem or elytron subsystem. If the authentication
succeeds, the user is granted access to the secured resource.

CHAPTER 1. SSO WITH KERBEROS DEEPER DIVE
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CHAPTER 2. HOW TO SET UP SSO FOR JBOSS EAP WITH
KERBEROS

2.1. REQUIRED COMPONENTS

You must have the following components when setting up JBoss EAP for SSO with Kerberos:

A properly configured Kerberos environment

A JBoss EAP instance

A web application

2.1.1. About JBoss Negotiation Toolkit

The JBoss Negotiation Toolkit is a debugging tool to help users debug and test authentication
mechanisms before introducing an application into production. It is an unsupported tool but can be
very helpful, as SPNEGO can be difficult to configure for web applications.

You can download a prebuilt WAR file of the JBoss Negotiation Toolkit from the JBoss Negotiation
Toolkit repository. You should download the version of JBoss Negotiation Toolkit that matches the
version of JBoss Negotiation included in JBoss EAP. For example, if you are using JBoss EAP 7.1, which
uses JBoss Negotiation 3.0.4.Final-redhat-1, you should use jboss-negotiation-toolkit-
3.0.4.Final.war. You can determine which version of JBoss Negotiation is being used by looking at
EAP_HOME/modules/system/layers/base/org/jboss/security/negotiation/main/modul
e.xml.

2.2. KERBEROS ENVIRONMENT

As discussed in How Does Kerberos Provide SSO for JBoss EAP? , Kerberos relies on a third party, the
KDC, to provide authentication and authorization decisions. This also requires clients, for example
browsers, and their host to be properly configured to authenticate with the KDC. This guide is primarily
focused on how to configure JBoss EAP and its hosted web applications, so configuring the KDC and
Kerberos domain are not in the scope of this document.

NOTE

The subsequent sections assume a KDC and Kerberos domain have already been set up
and properly configured.

2.3. DIFFERENCES FROM CONFIGURING PREVIOUS VERSIONS JBOSS
EAP

There are a few noticeable differences between JBoss EAP 7.1 and earlier versions:

The NegotiationAuthenticator valve is no longer required in the jboss-web.xml, but there
still must be <security-constraint> and <login-config> elements defined in the 
web.xml. These are used to decide which resources are secured.

The auth-method element in the <login-config> element is now a comma-separated list.
The exact value SPNEGO must be there and should appear first in that list. In cases where FORM
authentication is desired as a fallback, the exact value would be SPNEGO,FORM.
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The jboss-deployment-structure.xml file is not required when using the elytron
subsystem.

2.4. CONFIGURING THE JBOSS EAP INSTANCE

You can configure an application deployed to JBoss EAP to use either elytron or the legacy 
security subsystem, but you cannot configure it to use both.

2.4.1. Configure the Elytron Subsystem

IMPORTANT

The following steps assume you have a working KDC, Kerberos domain, and browsers
configured and working.

1. Configure a kerberos-security-factory.

/subsystem=elytron/kerberos-security-
factory=krbSF:add(principal="HTTP/host@REALM", 
path="/path/to/http.keytab", mechanism-oids=[1.2.840.113554.1.2.2, 
1.3.6.1.5.5.2])

2. Configure the system properties for Kerberos.
Depending on how your environment is configured, you will need to set some of the system
properties below.

System Property Description

java.security.krb5.kdc The host name of the KDC.

java.security.krb5.realm The name of the realm.

java.security.krb5.conf The path to the configuration krb5.conf file.

sun.security.krb5.debug If true, debugging mode will be enabled.

To configure a system property in JBoss EAP using the management CLI:

/system-
property=java.security.krb5.conf:add(value="/path/to/krb5.conf")

3. Configure an Elytron security realm for assigning roles.
The client’s Kerberos token will provide the principal, but you need a way to map that principal
to a role for your application. There are several ways to accomplish this, but this example
creates a filesystem-realm, adds a user to the realm that matches the principal from the
Kerberos token, and assigns roles to that user.

CHAPTER 2. HOW TO SET UP SSO FOR JBOSS EAP WITH KERBEROS
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IMPORTANT

filesystem-realm is provided as Technology Preview only. Technology
Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope  on the Red Hat Customer
Portal for information about the support scope for Technology Preview
features.

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-
realm-users, relative-to=jboss.server.config.dir)

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-
identity(identity=user1@REALM)

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-identity-
attribute(identity=user1@REALM, name=Roles, value=["Admin","Guest"])

4. Add a simple-role-decoder.

/subsystem=elytron/simple-role-decoder=from-roles-
attribute:add(attribute=Roles)

This simple-role-decoder decodes a principal’s roles from the Roles attribute. You can
change this value if your roles are in a different attribute.

5. Configure a security-domain.

/subsystem=elytron/security-domain=exampleFsSD:add(realms=
[{realm=exampleFsRealm, role-decoder=from-roles-attribute}], 
default-realm=exampleFsRealm, permission-mapper=default-permission-
mapper)

6. Configure an http-authentication-factory that uses the kerberos-security-
factory.

/subsystem=elytron/http-authentication-factory=example-krb-http-
auth:add(http-server-mechanism-factory=global, security-
domain=exampleFsSD, mechanism-configurations=[{mechanism-
name=SPNEGO, mechanism-realm-configurations=[{realm-
name=exampleFsSD}], credential-security-factory=krbSF}])

7. Configure an application-security-domain in the undertow subsystem:

/subsystem=undertow/application-security-domain=app-spnego:add(http-
authentication-factory=example-krb-http-auth)

2.4.2. Configure the Legacy Security Subsystem
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JBoss EAP comes with all the components necessary to use Kerberos, using SPNEGO and JBoss
Negotiation, for SSO with deployed applications, but the following configuration changes need to be
made:

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide.

1. Configure the server identity, or host, security domain.
This security domain authenticates the container itself to the KDC. It needs to use a login
module which accepts a static login mechanism since a real user is not involved in this
connection. The following example uses a static principal and references a keytab file which
contains the credential.

Example: Creating a Server Identity Security Domain

/subsystem=security/security-domain=host:add(cache-type=default)

/subsystem=security/security-
domain=host/authentication=classic:add()

/subsystem=security/security-
domain=host/authentication=classic/login-
module=Kerberos:add(code=Kerberos, flag=required, module-options=
[storeKey=true, refreshKrb5Config=true, useKeyTab=true, 
principal=host/testserver@MY_REALM, 
keyTab=/home/username/service.keytab, doNotPrompt=true, 
debug=false])

reload

If using the IBM JDK, the options for Kerberos module are different. The 
jboss.security.disable.secdomain.option system property must be set to true. See
Configure relevant system properties  for more information. In addition, the login module
should be configured as follows:

Example: IBM JDK

/subsystem=security/security-domain=host:add(cache-type=default)

/subsystem=security/security-
domain=host/authentication=classic:add()

/subsystem=security/security-
domain=host/authentication=classic/login-
module=Kerberos:add(code=Kerberos, flag=required, module-options=
[principal=host/testserver@MY_REALM, keyTab="file:///root/keytab", 
credsType=acceptor])

reload
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For a complete list of options for configuring the Kerberos login module, see the JBoss EAP
Login Module Reference.

2. Configure the web application security domain.
The web application security domain is used to authenticate the individual user to the KDC.
There needs to be at least one login module to authenticate the user. There also must be a way
to search for the roles to apply to the user. This can be accomplished in many different ways,
for example by adding a <mapping> that manually maps users to roles, adding a second login
module for mapping users to roles, and so on.

The following shows an example web application security domain.

Example: Creating a Server Identity Security Domain

/subsystem=security/security-domain=app-spnego:add(cache-
type=default)

/subsystem=security/security-domain=app-
spnego/authentication=classic:add()

/subsystem=security/security-domain=app-
spnego/authentication=classic/login-module=SPNEGO:add(code=SPNEGO, 
flag=required, module-options=[serverSecurityDomain=host])

reload

For a complete list of options for configuring the SPNEGO login module, see the JBoss EAP
Login Module Reference.

3. Configure relevant system properties.
JBoss EAP offers the ability to configure system properties related to connecting to Kerberos
servers. Depending on the KDC, Kerberos Domain, and network configuration, the following
system properties may or may not be required.

Property Description

java.security.krb5.kdc The host name of the KDC.

java.security.krb5.realm The name of the realm.

java.security.krb5.conf The path to the configuration krb5.conf file.

<system-properties>
  <property name="java.security.krb5.kdc" value="mykdc.mydomain"/>
  <property name="java.security.krb5.realm" value="MY_REALM"/>
  <property name="java.security.krb5.conf" 
value="/path/to/krb5.conf"/>
  <property name="jboss.security.disable.secdomain.option" 
value="true"/>
  <property name="sun.security.krb5.debug" value="false"/>
</system-properties>
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jboss.security.disable.secdomain.option When set to true, disables automatic adding of 
jboss.security.security_domain
login module option to login modules declared
in the security domain. Must be set to true
when using the IBM JDK.

sun.security.krb5.debug If true, debugging mode will be enabled.

Property Description

NOTE

By default, each login module defined in a security domain has the 
jboss.security.security_domain module option added to it
automatically. This option causes problems with login modules which check to
make sure that only known options are defined. The IBM Kerberos login module, 
com.ibm.security.auth.module.Krb5LoginModule is one of these. This
behavior of adding this module option can disabled by setting the 
jboss.security.disable.secdomain.option system property to true
when starting JBoss EAP. This can be accomplished by configuring the 
<system-properties>, using the management CLI or management console,
or by adding -Djboss.security.disable.secdomain.option=true to
the startup parameters.

For more information about configuring system properties, see the JBoss EAP Management CLI
Guide.

2.5. CONFIGURING THE WEB APPLICATION

Once the security domains have been configured, the web application must be configured to use those
security domains in order to enable Kerberos authentication. Once the application changes have been
made, it can be deployed to the JBoss EAP instance and begin using Kerberos for authentication.

The following updates must be made the application:

1. Configure the web.xml to use the SPNEGO authentication method.
The web.xml file should contain the following:

A <security-constraint> with a <web-resource-collection> containing a <url-
pattern> that maps to the URL pattern of the secured area. Optionally, <security-
constraint> may also contain an <auth-constraint> stipulating the allowed roles.

If any roles were specified in the <auth-constraint>, those roles should be defined in a 
<security-role>.

A <login-config> containing a <auth-method> with the exact value of SPNEGO.
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IMPORTANT

The <auth-method> element expects a comma-separated list of specific
values. For SPNEGO authentication to be properly configured, the exact
value SPNEGO must appear in the <auth-method> element and should
appear first. Incorporating additional authentication types is discussed in
Adding a FORM Login as a Fallback .

The <security-constraint> and <security-role> elements enable administrators
to set up restricted or unrestricted areas based on URL patterns and roles. This allows
resources to be secured or unsecured.

Example: web.xml File

2. Configure jboss-web.xml to use the configured security domain.
The jboss-web.xml file should have the following:

A <security-domain> to specify which security domain to use for authentication and
authorization.

Optionally <jacc-star-role-allow>, which enables the use of the asterisk character in
role-name element in web.xml to match multiple role names.

Example: jboss-web.xml File

<web-app>
  <display-name>App1</display-name>
  <description>App1</description>
  <!-- Define a security constraint that requires the All role to 
access resources -->
  <security-constraint>
    <display-name>Security Constraint on Conversation</display-
name>
    <web-resource-collection>
      <web-resource-name>exampleWebApp</web-resource-name>
      <url-pattern>/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
      <role-name>All</role-name>
    </auth-constraint>
  </security-constraint>
  <!-- Define the Login Configuration for this Application -->
  <login-config>
    <auth-method>SPNEGO</auth-method>
    <realm-name>SPNEGO</realm-name>
  </login-config>
  <!-- Security roles referenced by this web application -->
  <security-role>
    <description>Role required to log in to the 
Application</description>
    <role-name>All</role-name>
  </security-role>
</web-app>
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3. Add the JBoss Negotiation dependencies to the deployment for the legacy security
subsystem.

IMPORTANT

If you are using the elytron subsystem, you can skip this step.

A web application using SPNEGO and JBoss Negotiation requires a dependency to be defined
in jboss-deployment-structure.xml so that the JBoss Negotiation classes can be
located. Since JBoss EAP provides all necessary JBoss Negotiation and related classes, the
application just needs to declare them as dependencies to use them.

Using jboss-deployment-structure.xml to Declare Dependencies

Alternatively, this dependency may be defined in a META-INF/MANIFEST.MF file instead:

Using META-INF/MANIFEST.MF to Declare Dependencies

2.6. ADDITIONAL CONSIDERATIONS FOR ACTIVE DIRECTORY

This section describes how to configure the accounts required for SPNEGO authentication to be used
when JBoss EAP is running on a Microsoft Windows server, which is a part of the Active Directory
domain.

In this section, the host name that is used to access the server as is referred to as HOST_NAME, the
realm is referred to as REALM, the domain is referred to as DOMAIN, and the server hosting the JBoss
EAP instance is referred to as MACHINE_NAME. 

2.6.1. Configuration for Microsoft Windows Domain

1. Clear existing service principal mappings.
On a Microsoft Windows network some mappings are created automatically. Delete the
automatically created mappings to map the identity of the server to the service principal for
negotiation to take place correctly. The mapping enables the web browser on the client
computer to trust the server and attempt SPNEGO. The client computer verifies with the
domain controller for a mapping in the form of HTTP/HOST_NAME.

<jboss-web>
  <security-domain>app-spnego</security-domain>
  <jacc-star-role-allow>true</jacc-star-role-allow>
</jboss-web>

<jboss-deployment-structure>
  <deployment>
    <dependencies>
      <module name="org.jboss.security.negotiation"/>
    </dependencies>
  </deployment>
</jboss-deployment-structure>

Manifest-Version: 1.0
Dependencies: org.jboss.security.negotiation
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The following are the steps to delete the existing mappings:

List the mapping registered with the domain for the computer using the command:

setspn -L MACHINE_NAME

Delete the existing mappings using the commands:

setspn -D HTTP/HOST_NAME MACHINE_NAME

setspn -D host/HOST_NAME MACHINE_NAME

2. Create a host user account.

NOTE

Ensure the host user name is different from the MACHINE_NAME.

In the rest of the section the host user name is referred to as USER_NAME.

3. Define the mapping between the USER_NAME and HOST_NAME.
Run the following command to configure the service principal mapping:

ktpass -princ HTTP/HOST_NAME@REALM -pass * [-kvno 0] -mapuser 
DOMAIN\USER_NAME -out jboss.keytab -ptype KRB5_NT_PRINCIPAL -crypto 
all

Enter the password for the user name, when prompted.

Verify the mapping by running the following command: setspn -L USER_NAME.

NOTE

If you get KrbException: Specified version of key is not 
available errors from the JRE, you might need to set the Key Version to 0 : -
kvno 0 . Note that REALM needs to be all in uppercase, while the HOST_NAME
should be all lowercase. Also, the HOST_NAME must be a FQDN, and must be a
resolvable A or AAAA record, but not a CNAME record.

Using -crypto all only works on Windows Server 2008 and later. For
Windows Server 2003, you must specify the exact setting.

4. Define the principal within the security domain.
The principal can be defined or updated in the elytron or legacy security subsystem to 
HTTP/HOST_NAME@REALM.

IMPORTANT

If you make any modification to any user, for example changing options or their
password, you must regenerate the keytab.
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CHAPTER 3. ADDITIONAL FEATURES

3.1. ADDING A FORM LOGIN AS A FALLBACK

JBoss EAP and applications deployed to it can also configure a FORM login authentication mechanism
to use as a fallback. This allows applications to present a login page for authentication in cases where
Kerberos/SPNEGO tokens are not present. This authentication happens independent of the Kerberos
authentication. As a result, depending on how the FORM login fallback is configured, users may require
separate credentials to authenticate by this method.

NOTE

The fallback to FORM logic is available when no SPNEGO or NTLM tokens are present
or, when a SPNEGO token is present, but from another KDC.

3.1.1. Update Your Application

The following steps are required to configure your application for FORM login as a fallback:

1. Configure JBoss EAP and the web application to use Kerberos and SPNEGO.
See How to Set Up SSO for JBoss EAP with Kerberos  for the steps required to configure JBoss
EAP and web applications to use Kerberos and SPNEGO for authentication and authorization. 

2. Add the login and error pages.
To use FORM login, a login and error page are required. These files are added to web
application and are used in the authentication process.

Example: login.jsp File

Example: error.jsp File

<html>
  <head></head>
  <body>
    <form id="login_form" name="login_form" method="post" 
action="j_security_check" enctype="application/x-www-form-
urlencoded">
      <center> <p>Please login to proceed.</p> </center>
      <div style="margin-left: 15px;">
        <p> <label for="username">Username</label> <br /> <input 
id="username" type="text" name="j_username"/> </p>
        <p> <label for="password">Password</label> <br /> <input 
id="password" type="password" name="j_password" value=""/> </p>
        <center> <input id="submit" type="submit" name="submit" 
value="Login"/> </center>
      </div>
    </form>
  </body>
</html>

<html>
  <head></head>
  <body>
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3. Modify the web.xml.
After adding the login and error pages to the web application, the web.xml must be updated
to use these files for FORM login. The exact value FORM must be added to the <auth-method>
element. Since <auth-method> expects a comma-separated list and order is significant, the
exact value for <auth-method> must be updated to SPNEGO,FORM. In addition, a <form-
login-config> element must be added to <login-config> and the paths to the login and
error pages specified as <form-login-page> and <form-error-page> elements.

Example: Updated web.xml File

3.1.2. Update the Elytron Subsystem

1. Add a mechanism for FORM authentication in the http-authentication-factory.
You can use the existing http-authentication-factory you configured for kerberos-
based authentication and an additional mechanism for FORM authentication.

    <p>Login failed, please go back and try again.</p>
  </body>
</html>

<web-app>
  <display-name>App1</display-name>
  <description>App1</description>
  <!-- Define a security constraint that requires the All role to 
access resources -->
  <security-constraint>
    <display-name>Security Constraint on Conversation</display-name>
    <web-resource-collection>
      <web-resource-name>examplesWebApp</web-resource-name>
      <url-pattern>/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
        <role-name>All</role-name>
    </auth-constraint>
  </security-constraint>
  <!-- Define the Login Configuration for this Application -->
  <login-config>
    <auth-method>SPNEGO,FORM</auth-method>
    <realm-name>SPNEGO</realm-name>
    <form-login-config>
      <form-login-page>/login.jsp</form-login-page>
      <form-error-page>/error.jsp</form-error-page>
    </form-login-config>
  </login-config>
  <!-- Security roles referenced by this web application -->
  <security-role>
    <description> role required to log in to the 
Application</description>
    <role-name>All</role-name>
  </security-role>
</web-app>
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/subsystem=elytron/http-authentication-factory=example-krb-http-
auth:list-add(name=mechanism-configurations, value={mechanism-
name=FORM})

2. Add additional fallback principals.
The existing configuration for kerberos-based authentication should already have a security
realm configured for mapping principals from kerberos token to roles for the application. You
can add additional users for fallback authentication to that realm. For example if you used a 
filesystem-realm, you can simply create a new user with the appropriate roles:

IMPORTANT

filesystem-realm is provided as Technology Preview only. Technology
Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope  on the Red Hat Customer
Portal for information about the support scope for Technology Preview
features.

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-
identity(identity=fallbackUser1)

/subsystem=elytron/filesystem-realm=exampleFsRealm:set-
password(identity=fallbackUser1, clear={password="password123"})

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-identity-
attribute(identity=fallbackUser1, name=Roles, value=
["Admin","Guest"])

3.1.3. Update the Legacy Security Subsystem

If you are using the legacy security subsystem in JBoss EAP, you must update the security domain
for fallback authentication.

The web application security domain must be configured to support a fallback login mechanism. This
requires the following steps:

1. Add a new security domain to serve as a fallback authentication method.

2. Add a usernamePasswordDomain module option to the web application security domain that
points to the fallback domain.

Example: Security Domain Configured with a Fallback Security Domain

/subsystem=security/security-domain=app-fallback:add(cache-type=default)

/subsystem=security/security-domain=app-
fallback/authentication=classic:add()

CHAPTER 3. ADDITIONAL FEATURES

19

https://access.redhat.com/support/offerings/techpreview


/subsystem=security/security-domain=app-
fallback/authentication=classic/login-
module=UsersRoles:add(code=UsersRoles, flag=required, module-options=
[usersProperties="file:${jboss.server.config.dir}/fallback-
users.properties", 
rolesProperties="file:${jboss.server.config.dir}/fallback-
roles.properties"])

/subsystem=security/security-domain=app-
spnego/authentication=classic/login-module=SPNEGO:add(code=SPNEGO, 
flag=required, module-options=[serverSecurityDomain=host])

/subsystem=security/security-domain=app-
spnego/authentication=classic/login-module=SPNEGO:map-put(name=module-
options, key=usernamePasswordDomain, value=app-fallback)

/subsystem=security/security-domain=app-
spnego/authentication=classic/login-module=SPNEGO:map-put(name=module-
options, key=password-stacking, value=useFirstPass)

reload

3.2. SECURING THE MANAGEMENT INTERFACES WITH KERBEROS

In addition to providing Kerberos authentication in security domains, JBoss EAP also provides the
ability to secure the management interfaces using Kerberos.

3.2.1. Secure the Management Interfaces with Kerberos Using Elytron

To configure Kerberos authentication for the HTTP management interface:

1. Follow the same instructions for configuring Kerberos authentication for applications  to
create an http-authentication-factory that does Kerberos authentication.

IMPORTANT

When configuring Kerberos authentication with the management interfaces, it is
very important that you pay close attention to the service principal you
configure for JBoss EAP to authenticate against the KDC. This service principal
takes the form of service-name/hostname. JBoss EAP expects HTTP to be
the service name, for example HTTP/localhost, when authenticating against
the web-based management console and remote to be the service name, for
example remote/localhost, for the management CLI.

2. Update the management HTTP interface to use the http-authentication-factory.

/core-service=management/management-interface=http-interface:write-
attribute(name=http-authentication-factory, value=example-krb-http-
auth)

To configure Kerberos authentication for SASL authentication for the management CLI:

1. Follow the same instructions for configuring Kerberos authentication for applications  to
create a security domain and kerberos-security-factory.
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2. Add GSSAPI to the configurable-sasl-server-factory.

/subsystem=elytron/configurable-sasl-server-factory=configured:list-
add(name=filters, value={pattern-filter=GSSAPI})

3. Create a sasl-authentication-factory that uses the security domain and kerberos-
security-factory.

Example: sasl-authentication-factory

/subsystem=elytron/sasl-authentication-factory=example-sasl-
auth:add(sasl-server-factory=configured, security-
domain=exampleFsSD, mechanism-configurations=[{mechanism-
name=GSSAPI, mechanism-realm-configurations=[{realm-
name=exampleFsSD}], credential-security-factory=krbSF}])

4. Update the management SASL interface to use the sasl-authentication-factory.

Example: Update sasl-authentication-factory

/core-service=management/management-interface=http-interface:write-
attribute(name=http-upgrade.sasl-authentication-factory, 
value=example-sasl-auth)

reload

3.2.2. Secure the Management Interfaces With Kerberos Using Legacy Core
Management Authentication

To enable Kerberos authentication on the management interfaces using legacy core management
authentication, the following steps must be performed:

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide.

1. Enable the relevant system properties.
As discussed in a previous section, enable any needed JBoss EAP system properties for
connecting to the Kerberos server.

2. Add the Kerberos server identity to the security realm.
Before Kerberos authentication can be used in a security realm, a connection to a Kerberos
server must be added. The following example shows how to add a Kerberos server identity to
the existing Management Realm. You will need to replace service-name, hostname, and MY-
REALM with the appropriate values.

Example CLI for Adding a Server Identity to a Security Realm

/core-service=management/security-realm=ManagementRealm/server-
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identity=kerberos:add()

/core-service=management/security-realm=ManagementRealm/server-
identity=kerberos/keytab=service-name\/hostname@MY-
REALM:add(path=/home\/username\/service.keytab, debug=true)

reload

IMPORTANT

When configuring Kerberos authentication with the management interfaces, it is
very important that you pay close attention to the service principal you
configure for JBoss EAP to authenticate against the KDC. This service principal
takes the form of service-name/hostname. JBoss EAP expects HTTP to be
the service name, for example HTTP/localhost, when authenticating against
the web-based management console and remote to be the service name, for
example remote/localhost, for the management CLI.

3. Update the authentication method in the security realm.
Once the Kerberos server identity has been properly configured, the authentication method in
the security realm needs to be updated to use it.

Example: Adding Kerberos Authentication to a Security Realm

/core-service=management/security-
realm=ManagementRealm/authentication=kerberos:add()

reload

IMPORTANT

Based on the order in which you have the authentication mechanisms defined in
the security realm, JBoss EAP will attempt to authenticate the user in that order
when accessing the management interfaces.

4. Secure both interfaces with Kerberos.
In cases where you would like to secure both the web-based management console and
management CLI with Kerberos, you need a Kerberos server identity configured for each. To
add an additional identity, use the following command.

/core-service=management/security-realm=ManagementRealm/server-
identity=kerberos/keytab=remote\/hostname@MY-
REALM:add(path=/home\/username\/remote.keytab, debug=true)

reload

3.2.3. Connecting to the Management Interface

Before attempting to connect to the management interfaces, you need to have a valid Kerberos ticket.
If the security realm fails to authenticate a user via Kerberos, when using the legacy security solution,
it will attempt to authenticate the user using any of the subsequent methods specified in the 
<authentication> element. The elytron subsystem behaves similar to the legacy security
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solution. If the Kerberos authentication mechanism fails, authentication falls back to any other
mechanism that you have defined in the authentication factory that is protecting the management
interface. Usually, DIGEST or BASIC is used as a fallback.

When you connect to the web-based management console using a browser, the security realm will
attempt to authenticate you based on that ticket.

When connecting to the management CLI, you will need to use the -
Djavax.security.auth.useSubjectCredsOnly=false parameter, as this allows the GSSAPI
implementation to make use of the identity managed at the operating system level. You may also need
to use the following parameters based on how your environment is set up:

-Djava.security.krb5.realm=REALM_NAME

Specifies the realm name.

-Djava.security.krb5.kdc=KDC_HOSTNAME

Specifies the location of the KDC.

--no-local-auth

Disables local authentication. This is useful if you are attempting to connect to a JBoss EAP
instance running on the same machine you are running the script from.

Example Command

$ EAP_HOME/bin/jboss-cli.sh -c -
Djavax.security.auth.useSubjectCredsOnly=false --no-local-auth

WARNING

If an HTTP proxy is used between the client and server, it must take care to not
share authenticated connections between different authenticated clients to the
same server. If this is not honored, then the server can easily lose track of security
context associations. A proxy that correctly honors client to server authentication
integrity will supply the Proxy-support: Session- Based-Authentication
HTTP header to the client in HTTP responses from the proxy. The client must not
utilize the SPNEGO HTTP authentication mechanism through a proxy unless the
proxy supplies this header with the 401 Unauthorized response from the
server.

3.3. KERBEROS AUTHENTICATION INTEGRATION FOR REMOTING

In addition to using Kerberos for securing the management interfaces and web applications, you can
also configure Kerberos authentication for services accessed via remoting, such as EJBs.

System properties for Kerberos also need to be configured. For more information, see Configure the
Elytron Subsystem.

3.3.1. Kerberos Authentication Integration Using Legacy Security Realms

To configure Kerberos authentication, you will need to do the following:
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1. Configure a security domain with remoting and RealmDirect
You need to configure a security domain for use by the service that is accessed by remoting.
This security domain needs to make use of both the Remoting login module as well as a 
RealmDirect login module, such as RealmDirect or RealmUsersRoles. Essentially, it
should look very similar to the other security domain provided by default. For more details on
the specific configuration options of each login module, see the JBoss EAP Login Module
Reference.

Example: Security Domain with Remoting and RealmDirect Login Modules

/subsystem=security/security-domain=krb-remoting-domain:add()

/subsystem=security/security-domain=krb-remoting-
domain/authentication=classic:add()

/subsystem=security/security-domain=krb-remoting-
domain/authentication=classic/login-
module=Remoting:add(code=Remoting, flag=optional, module-options=
[password-stacking=useFirstPass])

/subsystem=security/security-domain=krb-remoting-
domain/authentication=classic/login-
module=RealmDirect:add(code=RealmDirect, flag=required, module-
options=[password-stacking=useFirstPass, realm=krbRealm])

/subsystem=security/security-domain=krb-remoting-
domain/mapping=classic:add()

/subsystem=security/security-domain=krb-remoting-
domain/mapping=classic/mapping-
module=SimpleRoles:add(code=SimpleRoles, type=role, module-options=
["testUser"="testRole"])

reload

2. Configure a security realm for Kerberos authentication.
Setting up a security realm with Kerberos authentication is covered in the Securing the
Management Interfaces with Kerberos section.

Example: Security Realm

/core-service=management/security-realm=krbRealm:add()

/core-service=management/security-realm=krbRealm/server-
identity=kerberos:add()

/core-service=management/security-realm=krbRealm/server-
identity=kerberos/keytab=remote\/localhost@JBOSS.ORG:add(path=\/path
\/to\/remote.keytab, debug=true)

/core-service=management/security-
realm=krbRealm/authentication=kerberos:add(remove-realm=true)

reload
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3. Configure the HTTP connector in the remoting subsystem.
In addition, you will need to configure the HTTP connector in the remoting subsystem to use
the newly created security realm.

Example: Remoting Subsystem

/subsystem=remoting/http-connector=http-remoting-connector:write-
attribute(name=security-realm, value=krbRealm)

4. Configure security for the service.
You must also set up the service that is accessed using the remoting interface to secured.
This will vary depending on the service. For example, with an EJB, you can use the 
@SecurityDomain and @RolesAllowed annotations.

3.3.2. Kerberos Authentication Integration Using Elytron

It is possible to define an Elytron security domain for Kerberos or GSSAPI SASL authentication for
remoting authentication.

1. Define the security realm to load the identity from. It is used for assigning roles.

/path=kerberos:add(relative-to=user.home, path=src/kerberos)

/subsystem=elytron/properties-realm=kerberos-properties:add(users-
properties={path=kerberos-users.properties, relative-to=kerberos, 
digest-realm-name=ELYTRON.ORG}, groups-properties={path=kerberos-
groups.properties, relative-to=kerberos})

2. Define the Kerberos security factory for the server’s identity.

/subsystem=elytron/kerberos-security-factory=test-
server:add(relative-to=kerberos, path=remote-test-server.keytab, 
principal=remote/test-server.elytron.org@ELYTRON.ORG)

3. Define the security domain and along with it, a SASL authentication factory.

/subsystem=elytron/security-domain=KerberosDomain:add(default-
realm=kerberos-properties, realms=[{realm=kerberos-properties, role-
decoder=groups-to-roles}], permission-mapper=default-permission-
mapper)

/subsystem=elytron/sasl-authentication-factory=gssapi-
authentication-factory:add(security-domain=KerberosDomain, sasl-
server-factory=elytron, mechanism-configurations=[{mechanism-
name=GSSAPI, credential-security-factory=test-server}])

4. Use the created sasl-authentication-factory, in the remoting subsystem, to enable it
for remoting.

Example CLI Command
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/subsystem=remoting/http-connector=http-remoting-connector:write-
attribute(name=sasl-authentication-factory, value=gssapi-
authentication-factory)

5. Configure security for the service.
If you reference the security domain in an EJB, you must specify the application-
security-domain that maps to the Elytron security domain. For example, with an EJB, you
can use the @SecurityDomain annotation.

Example CLI Command

/subsystem=ejb3/application-security-
domain=KerberosDomain:add(security-domain=KerberosDomain)

With the new JBoss EAP 7.1 EJB client, the use of a JAAS Subject for identity association is no longer
supported. Clients wishing to programmatically manage the Kerberos identity for an EJB call should
migrate and use the AuthenticationConfiguration APIs directly, as follows:

The call to useGSSCredential(getGSSCredential()) happens when creating the 
AuthenticationConfiguration. Client code that already has access to a JAAS Subject can easily
be converted to obtain the GSSCredential as follows:

// create your authentication configuration
AuthenticationConfiguration configuration = 
AuthenticationConfiguration.empty()
    
.useProvidersFromClassLoader(SecuredGSSCredentialClient.class.getClassLoad
er())
    .useGSSCredential(getGSSCredential());

// create your authentication context
AuthenticationContext context = 
AuthenticationContext.empty().with(MatchRule.ALL, configuration);

// create a callable that looks up an EJB and invokes a method on it
Callable<Void> callable = () -> {
...
};

// use your authentication context to run your callable
context.runCallable(callable);

private GSSCredential getGSSCredential() {
    return Subject.doAs(subject, new PrivilegedAction<GSSCredential>() {

        public GSSCredential run() {
            try {
                GSSManager gssManager = GSSManager.getInstance();
                return 
gssManager.createCredential(GSSCredential.INITIATE_ONLY);
            } catch (Exception e) {
                e.printStackTrace();
            }
            return null;
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        }
    });
}
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