
JBoss Enterprise Application Platform
Continuous Delivery 12

Getting Started with JBoss EAP for OpenShift
Container Platform

Guide to developing with Red Hat JBoss Enterprise Application Platform for
OpenShift

Last Updated: 2018-04-12

JBoss Enterprise Application Platform Continuous Delivery 12 Getting
Started with JBoss EAP for OpenShift Container Platform

Guide to developing with Red Hat JBoss Enterprise Application Platform for OpenShift

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss Enterprise Application Platform for OpenShift

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION
1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP)?
1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
1.3. COMPARISON: JBOSS EAP AND JBOSS EAP CD FOR OPENSHIFT
1.4. VERSION COMPATIBILITY AND SUPPORT
1.5. TECHNOLOGY PREVIEW FEATURES

Automated Transaction Recovery

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP CD FOR OPENSHIFT IMAGE
2.1. PREREQUISITES
2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT
2.3. IMPORT THE LATEST JBOSS EAP CD FOR OPENSHIFT IMAGE STREAMS AND TEMPLATES
2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION TO OPENSHIFT
2.5. POST DEPLOYMENT TASKS

CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

3.1. HOW THE JBOSS EAP CD FOR OPENSHIFT S2I PROCESS WORKS
3.2. CONFIGURING JBOSS EAP CD FOR OPENSHIFT USING ENVIRONMENT VARIABLES
3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS

3.3.1. S2I Artifacts
3.3.1.1. Modules, Drivers, and Generic Deployments

3.3.2. Runtime Artifacts
3.3.2.1. Datasources
3.3.2.2. Resource Adapters

3.4. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP CD FOR OPENSHIFT IMAGE
3.4.1. Scaling Up and Persistent Storage Partitioning
3.4.2. Scaling Down and Transaction Recovery

CHAPTER 4. TROUBLESHOOTING
4.1. TROUBLESHOOTING POD RESTARTS
4.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

CHAPTER 5. ADVANCED TUTORIALS
5.1. EXAMPLE WORKFLOW: AUTOMATED TRANSACTION RECOVERY FEATURE WHEN SCALING DOWN A
CLUSTER

5.1.1. Prepare for Deployment
5.1.2. Deployment
5.1.3. Using the JTA Crash Recovery Application

CHAPTER 6. REFERENCE INFORMATION
6.1. PERSISTENT TEMPLATES
6.2. INFORMATION ENVIRONMENT VARIABLES
6.3. CONFIGURATION ENVIRONMENT VARIABLES
6.4. APPLICATION TEMPLATES
6.5. EXPOSED PORTS
6.6. DATASOURCES

6.6.1. JNDI Mappings for Datasources
6.6.1.1. Database Drivers
6.6.1.2. Datasource Configuration Environment Variables
6.6.1.3. Examples

4

5
5
5
5
6
6
6

7
7
7
8
9

10

11
11
12
12
13
13
14
15
16
17
17
18

19
19
19

21

21
21
22
24

27
27
27
28
32
32
32
32
33
33
35

Table of Contents

1

6.6.1.3.1. Single Mapping
6.6.1.3.2. Multiple Mappings

6.7. CLUSTERING
6.7.1. Configuring KUBE_PING
6.7.2. Configuring DNS_PING

6.8. SECURITY DOMAINS
6.9. HTTPS ENVIRONMENT VARIABLES
6.10. ADMINISTRATION ENVIRONMENT VARIABLES
6.11. S2I

6.11.1. Custom Configuration
6.11.1.1. Custom Modules

6.11.2. Deployment Artifacts
6.11.3. Artifact Repository Mirrors
6.11.4. Scripts
6.11.5. Environment Variables

6.12. SSO
6.13. TRANSACTION RECOVERY

6.13.1. Unsupported Transaction Recovery Scenarios
6.13.2. Manual Transaction Recovery Process

6.13.2.1. Caveats
6.13.2.2. Prerequisite
6.13.2.3. Procedure

6.13.2.3.1. Resolving In-doubt Branches
6.13.2.3.2. Extract the Global Transaction ID and Node Identifier from Each XID
6.13.2.3.3. Obtain the List of Node Identifiers of All Running JBoss EAP Instances in Any Cluster that Can
Contact the Resource Managers
6.13.2.3.4. Find the Transaction Logs
6.13.2.3.5. Cleaning Up the Transaction Logs for Reconciled In-doubt Branches

6.14. INCLUDED JBOSS MODULES

35
35
36
36
37
38
39
39
40
40
40
40
40
41
41
42
44
44
44
44
45
45
46
47

49
49
50
51

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

2

Table of Contents

3

PREFACE
This document is intended for use with the JBoss Enterprise Application Platform continuous delivery
release 12, which is a Technology Preview release available in the cloud only.

Some features described in this document might not work or might not be available on Red Hat
OpenShift Online and Red Hat OpenShift Container Platform. For specific details about the feature
differences in the JBoss EAP CD release, see the Release Limitations section in the JBoss EAP
Continuous Delivery 12 Release Notes.

IMPORTANT

This continuous delivery release for JBoss EAP is provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

4

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/12/html-single/jboss_eap_continuous_delivery_12_release_notes/#cd_release_limitations
https://access.redhat.com/support/offerings/techpreview

CHAPTER 1. INTRODUCTION

1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM (JBOSS EAP)?

Red Hat JBoss Enterprise Application Platform 7 (JBoss EAP) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 7 specification. It provides preconfigured
options for features such as high-availability clustering, messaging, and distributed caching. It includes a
modular structure that allows you to enable services only when required, which results in improved
startup speed.

The web-based management console and management command line interface (CLI) make editing XML
configuration files unnecessary and add the ability to script and automate tasks. In addition, JBoss EAP
includes APIs and development frameworks that allow you to quickly develop, deploy, and run secure
and scalable Java EE applications. JBoss EAP 7 is a certified implementation of the Java EE 7 full and
web profile specifications.

1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?

Red Hat offers a containerized image for JBoss EAP that is designed for use with OpenShift. Using this
image, developers can quickly and easily build, scale, and test applications that are deployed across
hybrid environments.

1.3. COMPARISON: JBOSS EAP AND JBOSS EAP CD FOR OPENSHIFT

There are some notable differences when comparing the JBoss EAP product with the JBoss EAP CD for
OpenShift image. The following table describes these differences and notes which features are included
or supported in the current version of JBoss EAP CD for OpenShift.

Table 1.1. Differences between JBoss EAP and JBoss EAP CD for OpenShift

JBoss EAP Feature Status in JBoss EAP
CD for OpenShift

Description

JBoss EAP
management console

Not included The JBoss EAP management console is not included
in this release of JBoss EAP CD for OpenShift.

JBoss EAP
management CLI

Not recommended The JBoss EAP management CLI is not
recommended for use with JBoss EAP running in a
containerized environment. Any configuration
changes made using the management CLI in a
running container will be lost when the container
restarts. The management CLI is accessible from
within a pod for troubleshooting purposes.

Managed domain Not supported Although a JBoss EAP managed domain is not
supported, creation and distribution of applications
are managed in the containers on OpenShift.

CHAPTER 1. INTRODUCTION

5

Default root page Disabled The default root page is disabled, but you can deploy
your own application to the root context as
ROOT.war.

Remote messaging Supported JBoss AMQ for inter-pod and remote messaging is
supported. JBoss EAP CD releases only support
client messaging, and JBoss AMQ provides the
messaging broker.

Transaction recovery Partially supported There are some unsupported transaction recovery
scenarios and caveats when undertaking transaction
recovery with the JBoss EAP CD for OpenShift
image.

JBoss EAP Feature Status in JBoss EAP
CD for OpenShift

Description

1.4. VERSION COMPATIBILITY AND SUPPORT

This guide covers the JBoss EAP CD for OpenShift image: jboss-eap-7-tech-preview/eap-cd-
openshift.

You can see information on the latest tag for this image in the Red Hat Container Catalog.

JBoss EAP CD for OpenShift is updated frequently. Therefore, it is important to understand which
versions of the images are compatible with which versions of OpenShift. Not all images are compatible
with all OpenShift 3.x versions. See OpenShift and Atomic Platform Tested Integrations on the Red Hat
Customer Portal for more information on version compatibility and support.

1.5. TECHNOLOGY PREVIEW FEATURES

Automated Transaction Recovery

IMPORTANT

This feature is provided as Technology Preview only. It is not supported for use in a
production environment, and it might be subject to significant future changes. See
Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

When a cluster is scaled down, it is possible for transaction branches to be in doubt. The JBoss EAP CD
for OpenShift image has an automated transaction recovery feature that can complete these branches.
At the moment, this implementation of automated transaction recovery is provided as technology preview
only.

The eap-cd-tx-recovery-s2i application template that is provided to demonstrate automatic
transaction recovery on scale down of application pods is also provided as a technology preview only.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

6

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7-tech-preview/eap-cd-openshift
https://access.redhat.com/articles/2176281
https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE
JBOSS EAP CD FOR OPENSHIFT IMAGE

The following workflow demonstrates using the Source-to-Image (S2I) process to build and run a Java
application on the JBoss EAP CD for OpenShift image.

As an example, the kitchensink quickstart is used in this procedure. It demonstrates a Java EE 7
web-enabled database application using JSF, CDI, EJB, JPA, and Bean Validation. See the
kitchensink quickstart that ships with JBoss EAP 7 for more information.

2.1. PREREQUISITES

This workflow assumes that you already have an OpenShift instance installed and operational, similar to
that created in the OpenShift Primer.

2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT

1. Log in to your OpenShift instance using the oc login command.

2. Create a new project in OpenShift.
A project allows a group of users to organize and manage content separately from other groups.
You can create a project in OpenShift using the following command.

$ oc new-project PROJECT_NAME

For example, for the kitchensink quickstart, create a new project named eap-demo using the
following command.

$ oc new-project eap-demo

3. Create a keystore.
JBoss EAP CD for OpenShift requires a keystore to be imported to properly install and configure
the image on your OpenShift instance.

WARNING

The following commands generate a self-signed certificate, but for
production environments Red Hat recommends that you use your own SSL
certificate purchased from a verified Certificate Authority (CA) for SSL-
encrypted connections (HTTPS).

You can use the Java keytool command to generate a keystore using the following command.

$ keytool -genkey -keyalg RSA -alias ALIAS_NAME -keystore
KEYSTORE_FILENAME.jks -validity 360 -keysize 2048

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP CD FOR OPENSHIFT IMAGE

7

https://access.redhat.com/documentation/en/red-hat-xpaas/0/openshift-primer/openshift-primer

For example, for the kitchensink quickstart, use the following command to generate a
keystore.

$ keytool -genkey -keyalg RSA -alias eapdemo-selfsigned -keystore
keystore.jks -validity 360 -keysize 2048

4. Create a secret from the keystore.
Create a secret from the previously created keystore using the following command.

$ oc secrets new SECRET_NAME KEYSTORE_FILENAME.jks

For example, for the kitchensink quickstart, use the following command to create a secret.

$ oc secrets new eap7-app-secret keystore.jks

2.3. IMPORT THE LATEST JBOSS EAP CD FOR OPENSHIFT IMAGE
STREAMS AND TEMPLATES

Use the following command to import the latest JBoss EAP CD for OpenShift image streams and
templates into your OpenShift project’s namespace.

for resource in \
 eap-cd-image-stream.json \
 eap-cd-amq-persistent-s2i.json \
 eap-cd-amq-s2i.json \
 eap-cd-basic-s2i.json \
 eap-cd-https-s2i.json \
 eap-cd-mongodb-persistent-s2i.json \
 eap-cd-mongodb-s2i.json \
 eap-cd-mysql-persistent-s2i.json \
 eap-cd-mysql-s2i.json \
 eap-cd-postgresql-persistent-s2i.json \
 eap-cd-postgresql-s2i.json \
 eap-cd-third-party-db-s2i.json \
 eap-cd-tx-recovery-s2i.json \
 eap-cd-sso-s2i.json
do
 oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-eap-7-
openshift-image/eap-cd/templates/${resource}
done

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

8

1

2

3

4

5

NOTE

The JBoss EAP image streams and templates imported using the above command are
only available within that OpenShift project.

If you have administrative access to the general openshift namespace and want the
image streams and templates to be accessible by all projects, add -n openshift to the
oc replace line of the command. For example:

...
oc replace -n openshift --force -f \
...

2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION
TO OPENSHIFT

1. Create a new OpenShift application using the JBoss EAP CD for OpenShift image and your Java
application’s source code. Red Hat recommends using one of the provided JBoss EAP CD for
OpenShift templates for S2I builds.
For example, for the kitchensink quickstart, use the following command to use the eap-cd-
basic-s2i template with the kitchensink source code on GitHub.

oc new-app --template=eap-cd-basic-s2i \ 1

 -p IMAGE_STREAM_NAMESPACE="eap-demo" \ 2
 -p SOURCE_REPOSITORY_URL="https://github.com/jboss-developer/jboss-

eap-quickstarts" \ 3

 -p SOURCE_REPOSITORY_REF="openshift" \ 4

 -p CONTEXT_DIR="kitchensink" 5

The template to use.

The latest images streams and templates were imported into the project’s namespace, so
you must specify the namespace of where to find the image stream. This is usually the
OpenShift project’s name.

URL to the repository containing the application source code.

The Git repository reference to use for the source code. This can be a Git branch or tag
reference.

The directory within the source repository to build.

NOTE

A template can specify default values for many template parameters, and you
might have to override some, or all, of the defaults. To see template information,
including a list of parameters and any default values, use the command oc
describe template TEMPLATE_NAME.

2. Retrieve the name of the build configuration.

$ oc get bc -o name

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP CD FOR OPENSHIFT IMAGE

9

3. Use the name of the build configuration from the previous step to view the Maven progress of
the build.

$ oc logs -f buildconfig/BUILD_CONFIG_NAME

For example, for the kitchensink quickstart, the following command shows the progress of
the Maven build.

$ oc logs -f buildconfig/eap-app

2.5. POST DEPLOYMENT TASKS

Depending on your application, some tasks might need to be performed after your OpenShift application
has been built and deployed. This might include exposing a service so that the application is viewable
from outside of OpenShift, or scaling your application to a specific number of replicas.

1. Get the service name of your application using the following command.

$ oc get service

2. Expose the main service as a route so you can access your application from outside of
OpenShift. For example, for the kitchensink quickstart, use the following command to expose
the required service and port.

$ oc expose service/eap-app --port=8080

NOTE

If you used a template to create the application, the route might already exist. If it
does, continue on to the next step.

3. Get the URL of the route.

$ oc get route

4. Access the application in your web browser using the URL. The URL is the value of the
HOST/PORT field from previous command’s output.
If your application does not use the JBoss EAP root context, append the context of the
application to the URL. For example, for the kitchensink quickstart, the URL might be
http://HOST_PORT_VALUE/kitchensink/.

5. Optionally, you can also scale up the application instance by running the following command.
This increases the number of replicas to 3.

$ oc scale deploymentconfig DEPLOYMENTCONFIG_NAME --replicas=3

For example, for the kitchensink quickstart, use the following command to scale up the
application.

$ oc scale deploymentconfig eap-app --replicas=3

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

10

CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR
OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

The JBoss EAP CD for OpenShift image is preconfigured for basic use with your Java applications.
However, you can configure the JBoss EAP instance inside the image. The recommended method is to
use the OpenShift S2I process, together with application template parameters and environment
variables.

IMPORTANT

Any configuration changes made on a running container will be lost when the container is
restarted or terminated.

This includes any configuration changes made using scripts that are included with a
traditional JBoss EAP installation, for example add-user.sh or the management CLI.

It is strongly recommended that you use the OpenShift S2I process, together with
application template parameters and environment variables, to make any configuration
changes to the JBoss EAP instance inside the JBoss EAP CD for OpenShift image.

3.1. HOW THE JBOSS EAP CD FOR OPENSHIFT S2I PROCESS WORKS

NOTE

The variable EAP_HOME is used to denote the path to the JBoss EAP installation inside
the JBoss EAP CD for OpenShift image.

The S2I process for JBoss EAP CD for OpenShift works as follows:

1. If a pom.xml file is present in the source code repository, a Maven build process is triggered that
uses the contents of the $MAVEN_ARGS environment variable.
Although you can specify custom Maven arguments or options with the $MAVEN_ARGS
environment variable, Red Hat recommends that you use the $MAVEN_ARGS_APPEND
environment variable to do this. The $MAVEN_ARGS_APPEND variable takes the default
arguments from $MAVEN_ARGS and appends the options from $MAVEN_ARGS_APPEND to it.

By default, the OpenShift profile uses the Maven package goal, which includes system
properties for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo).

NOTE

To use Maven behind a proxy on JBoss EAP CD for OpenShift image, set the
$HTTP_PROXY_HOST and $HTTP_PROXY_PORT environment variables.
Optionally, you can also set the $HTTP_PROXY_USERNAME,
HTTP_PROXY_PASSWORD, and HTTP_PROXY_NONPROXYHOSTS variables.

2. The results of a successful Maven build are copied to the
EAP_HOME/standalone/deployments/ directory inside the JBoss EAP CD for OpenShift
image. This includes all JAR, WAR, and EAR files from the source repository specified by the
$ARTIFACT_DIR environment variable. The default value of $ARTIFACT_DIR is the Maven
target directory.

CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

11

3. All files in the configuration source repository directory are copied to the
EAP_HOME/standalone/configuration/ directory inside the JBoss EAP CD for OpenShift
image. If you want to use a custom JBoss EAP configuration file, it should be named
standalone-openshift.xml.

4. All files in the modules source repository directory are copied to the EAP_HOME/modules/
directory inside the JBoss EAP CD for OpenShift image.

See Artifact Repository Mirrors for additional guidance on how to instruct the S2I process to utilize the
custom Maven artifacts repository mirror.

3.2. CONFIGURING JBOSS EAP CD FOR OPENSHIFT USING
ENVIRONMENT VARIABLES

Using environment variables is the recommended method of configuring the JBoss EAP CD for
OpenShift image. See the OpenShift documentation for instructions on specifying environment variables
for application containers and build containers.

For example, you can set the JBoss EAP instance’s management username and password using
environment variables when creating your OpenShift application:

$ oc new-app eap-cd-openshift:latest~https://github.com/jboss-
developer/jboss-eap-quickstarts.git#openshift --context-dir=kitchensink -e
ADMIN_USERNAME=myspecialuser -e ADMIN_PASSWORD=myspecialp@ssw0rd

Available environment variables for the JBoss EAP CD for OpenShift image are listed in Reference
Information.

3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS

The JBoss EAP CD for OpenShift image extends database support in OpenShift using various artifacts.
These artifacts are included in the built image through different mechanisms:

S2I artifacts that are injected into the image during the S2I process.

Runtime artifacts from environment files provided through the OpenShift Secret mechanism.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

12

https://docs.openshift.com/container-platform/latest/dev_guide/application_lifecycle/new_app.html#specifying-environment-variables

3.3.1. S2I Artifacts

The S2I artifacts include modules, drivers, and additional generic deployments that provide the
necessary configuration infrastructure required for the deployment. This configuration is built into the
image during the S2I process so that only the datasources and associated resource adapters need to be
configured at runtime.

See Artifact Repository Mirrors for additional guidance on how to instruct the S2I process to utilize the
custom Maven artifacts repository mirror.

3.3.1.1. Modules, Drivers, and Generic Deployments

There are a few options for including these S2I artifacts in the JBoss EAP CD for OpenShift image:

1. Include the artifact in the application source deployment directory. The artifact is downloaded
during the build and injected into the image. This is similar to deploying an application on the
JBoss EAP CD for OpenShift image.

2. Include the CUSTOM_INSTALL_DIRECTORIES environment variable, a list of comma-separated
list of directories used for installation and configuration of artifacts for the image during the S2I
process. There are two methods for including this information in the S2I:

An install.sh script in the nominated installation directory. The install script executes
during the S2I process and operates with impunity.

install.sh Script Example

#!/bin/bash

injected_dir=$1
source /usr/local/s2i/install-common.sh
install_deployments ${injected_dir}/injected-deployments.war
install_modules ${injected_dir}/modules
configure_drivers ${injected_dir}/drivers.env

The install.sh script is responsible for customizing the base image using APIs provided
by install-common.sh. install-common.sh contains functions that are used by the
install.sh script to install and configure the modules, drivers, and generic deployments.

Functions contained within install-common.sh:

install_modules

configure_drivers

install_deployments

Modules

A module is a logical grouping of classes used for class loading and dependency
management. Modules are defined in the EAP_HOME/modules/ directory of the
application server. Each module exists as a subdirectory, for example
EAP_HOME/modules/org/apache/. Each module directory then contains a slot
subdirectory, which defaults to main and contains the module.xml configuration file
and any required JAR files.

CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

13

Example module.xml File

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="org.apache.derby">
 <resources>
 <resource-root path="derby-10.12.1.1.jar"/>
 <resource-root path="derbyclient-10.12.1.1.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

The install_modules function in install.sh copies the respective JAR files to the
modules directory in JBoss EAP, along with the module.xml.

Drivers

Drivers are installed as modules. The driver is then configured in install.sh by the
configure_drivers function, the configuration properties for which are defined in a
runtime artifact environment file.

Example drivers.env File

#DRIVER
DRIVERS=DERBY
DERBY_DRIVER_NAME=derby
DERBY_DRIVER_MODULE=org.apache.derby
DERBY_DRIVER_CLASS=org.apache.derby.jdbc.EmbeddedDriver
DERBY_XA_DATASOURCE_CLASS=org.apache.derby.jdbc.EmbeddedXAData
Source

Generic Deployments

Deployable archive files, such as JARs, WARs, RARs, or EARs, can be deployed from
an injected image using the install_deployments function supplied by the API in
install-common.sh.

If the CUSTOM_INSTALL_DIRECTORIES environment variable has been declared but no
install.sh scripts are found in the custom installation directories, the following artifact
directories will be copied to their respective destinations in the built image:

modules/* copied to $JBOSS_HOME/modules/system/layers/openshift

configuration/* copied to $JBOSS_HOME/standalone/configuration

deployments/* copied to $JBOSS_HOME/standalone/deployments

This is a basic configuration approach compared to the install.sh alternative, and
requires the artifacts to be structured appropriately.

3.3.2. Runtime Artifacts

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

14

3.3.2.1. Datasources

There are three types of datasources:

1. Default internal datasources. These are PostgreSQL, MySQL, and MongoDB. These
datasources are available on OpenShift by default through the Red Hat Registry and do not
require additional environment files to be configured. Set the DB_SERVICE_PREFIX_MAPPING
environment variable to the name of the OpenShift service for the database to be discovered and
used as a datasource.

2. Other internal datasources. These are datasources not available by default through the Red Hat
Registry but run on OpenShift. Configuration of these datasources is provided by environment
files added to OpenShift Secrets.

3. External datasources that are not run on OpenShift. Configuration of external datasources is
provided by environment files added to OpenShift Secrets.

Example: Datasource Environment File

derby datasource
ACCOUNTS_DERBY_DATABASE=accounts
ACCOUNTS_DERBY_JNDI=java:/accounts-ds
ACCOUNTS_DERBY_DRIVER=derby
ACCOUNTS_DERBY_USERNAME=derby
ACCOUNTS_DERBY_PASSWORD=derby
ACCOUNTS_DERBY_TX_ISOLATION=TRANSACTION_READ_UNCOMMITTED
ACCOUNTS_DERBY_JTA=true

Connection info for xa datasource
ACCOUNTS_DERBY_XA_CONNECTION_PROPERTY_DatabaseName=/home/jboss/source/data
/databases/derby/accounts

_HOST and _PORT are required, but not used
ACCOUNTS_DERBY_SERVICE_HOST=dummy
ACCOUNTS_DERBY_SERVICE_PORT=1527

The DATASOURCES property is a comma-separated list of datasource property prefixes. These prefixes
are then appended to all properties for that datasource. Multiple datasources can then be included in a
single environment file. Alternatively, each datasource can be provided in separate environment files.

Datasources contain two types of properties: connection pool-specific properties and database driver-
specific properties. Database driver-specific properties use the generic XA_CONNECTION_PROPERTY,
because the driver itself is configured as a driver S2I artifact. The suffix of the driver property is specific
to the particular driver for the datasource.

In the above example, ACCOUNTS is the datasource prefix, XA_CONNECTION_PROPERTY is the generic
driver property, and DatabaseName is the property specific to the driver.

The datasources environment files are added to the OpenShift Secret for the project. These environment
files are then called within the template using the ENV_FILES environment property, the value of which is
a comma-separated list of fully qualified environment files as shown below.

{
 “Name”: “ENV_FILES”,
 “Value”:

CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

15

“/etc/extensions/datasources1.env,/etc/extensions/datasources2.env”
}

3.3.2.2. Resource Adapters

Configuration of resource adapters is provided by environment files added to OpenShift Secrets.

Table 3.1. Resource Adapter Properties

Attribute Description

PREFIX_ID The identifier of the resource adapter as specified in the server
configuration file.

PREFIX_ARCHIVE The resource adapter archive.

PREFIX_MODULE_SLOT The slot subdirectory, which contains the module.xml
configuration file and any required JAR files.

PREFIX_MODULE_ID The JBoss Module ID where the object factory Java class can
be loaded from.

PREFIX_CONNECTION_CLASS The fully qualified class name of a managed connection factory
or admin object.

PREFIX_CONNECTION_JNDI The JNDI name for the connection factory.

PREFIX_PROPERTY_ParentDirectory Directory where the data files are stored.

PREFIX_PROPERTY_AllowParentPaths Set AllowParentPaths to false to disallow .. in paths.
This prevents requesting files that are not contained in the
parent directory.

PREFIX_POOL_MAX_SIZE The maximum number of connections for a pool. No more
connections will be created in each sub-pool.

PREFIX_POOL_MIN_SIZE The minimum number of connections for a pool.

PREFIX_POOL_PREFILL Specifies if the pool should be prefilled. Changing this value
requires a server restart.

PREFIX_POOL_FLUSH_STRATEGY How the pool should be flushed in case of an error. Valid values
are: FailingConnectionOnly (default),
IdleConnections, and EntirePool.

The RESOURCE_ADAPTERS property is a comma-separated list of resource adapter property prefixes.
These prefixes are then appended to all properties for that resource adapter. Multiple resource adapter
can then be included in a single environment file. In the example below, MYRA is used as the prefix for a
resource adapter. Alternatively, each resource adapter can be provided in separate environment files.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

16

Example: Resource Adapter Environment File

#RESOURCE_ADAPTER
RESOURCE_ADAPTERS=MYRA
MYRA_ID=myra
MYRA_ARCHIVE=myra.rar
MYRA_CONNECTION_CLASS=org.javaee7.jca.connector.simple.connector.outbound.
MyManagedConnectionFactory
MYRA_CONNECTION_JNDI=java:/eis/MySimpleMFC

The resource adapter environment files are added to the OpenShift Secret for the project namespace.
These environment files are then called within the template using the ENV_FILES environment property,
the value of which is a comma-separated list of fully qualified environment files as shown below.

{
 "Name": "ENV_FILES",
 "Value":
"/etc/extensions/resourceadapter1.env,/etc/extensions/resourceadapter2.env
"
}

3.4. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP CD FOR
OPENSHIFT IMAGE

3.4.1. Scaling Up and Persistent Storage Partitioning

There are two methods for deploying JBoss EAP with persistent storage: single-node partitioning, and
multi-node partitioning.

Single-node partitioning stores the JBoss EAP data store directory, including transaction data, in the
storage volume.

Multi-node partitioning creates additional, independent split-n directories to store the transaction data
for each JBoss EAP pod, where n is an incremental integer. This communication is not altered if a JBoss
EAP pod is updated, goes down unexpectedly, or is redeployed. When the JBoss EAP pod is operational
again, it reconnects to the associated split directory and continues as before. If a new JBoss EAP pod is
added, a corresponding split-n directory is created for that pod.

To enable the multi-node configuration you must set the SPLIT_DATA parameter to true. This results in
the server creating independent split-n directories for each instance within the persistent volume
which are used as their data store.

This is now the default setting in the eap-cd-tx-recovery-s2i template.

IMPORTANT

Due to the different storage methods of single-node and multi-node partitioning, changing
a deployment from single-node to multi-node results in the application losing all data
previously stored in the data directory, including messages, transaction logs, and so on.
This is also true if changing a deployment from multi-node to single-node, as the storage
paths will not match.

CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

17

3.4.2. Scaling Down and Transaction Recovery

When the JBoss EAP CD for OpenShift image is deployed using a multi-node configuration, it is possible
for unexpectedly terminated transactions to be left in the data directory of a terminating pod if the cluster
is scaled down.

In order to prevent transactions from remaining within the data store of the terminating pod until the
cluster next scales up, the eap-cd-tx-recovery-s2i JBoss EAP template creates a second
deployment containing a migration pod that is responsible for managing the migration of transactions.
The migration pod scans each independent split-n directory within the JBoss EAP persistent volume,
identifies data stores associated with the pods that are terminating, and continues to run until all
transactions on the terminating pod are completed.

IMPORTANT

Since the persistent volume needs to be accessed in read-write mode by both the JBoss
EAP application pod and also by the migration pod, it needs to be created with the
ReadWriteMany access mode. This access mode is currently only supported for
persistent volumes using GlusterFS and NFS plug-ins. For details, see the Supported
Access Modes for Persistent Volumes table.

For more information, see Example Workflow: Automated Transaction Recovery Feature When Scaling
Down a Cluster, which demonstrates the automated transaction recovery feature of the JBoss EAP CD
for OpenShift image when scaling down a cluster.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

18

https://docs.openshift.com/container-platform/latest/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/latest/architecture/additional_concepts/storage.html#pv-access-modes

CHAPTER 4. TROUBLESHOOTING

4.1. TROUBLESHOOTING POD RESTARTS

Pods can restart for a number of reasons, but a common cause of JBoss EAP pod restarts might include
OpenShift resource constraints, especially out-of-memory issues. See the OpenShift documentation for
more information on OpenShift pod eviction.

By default, JBoss EAP CD for OpenShift templates are configured to automatically restart affected
containers when they encounter situations like out-of-memory issues. The following steps can help you
diagnose and troubleshoot out-of-memory and other pod restart issues.

1. Get the name of the pod that has been having trouble.
You can see pod names, as well as the number times each pod has restarted with the following
command.

$ oc get pods

2. To diagnose why a pod has restarted, you can examine the JBoss EAP logs of the previous pod,
or the OpenShift events.

a. To see the JBoss EAP logs of the previous pod, use the following command.

oc logs --previous POD_NAME

b. To see the OpenShift events, use the following command.

$ oc get events

3. If a pod has restarted because of a resource issue, you can attempt to modify your OpenShift
pod configuration to increase its resource requests and limits. See the OpenShift documentation
for more information on configuring pod compute resources.

4.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

The JBoss EAP management CLI, EAP_HOME/bin/jboss-cli.sh, is accessible from within a
container for troubleshooting purposes.

IMPORTANT

It is not recommended to make configuration changes in a running pod using the JBoss
EAP management CLI. Any configuration changes made using the management CLI in a
running container will be lost when the container restarts.

To make configuration changes to JBoss EAP CD for OpenShift, see Configuring the
JBoss EAP CD for OpenShift Image for Your Java Application.

1. First open a remote shell session to the running pod.

$ oc rsh POD_NAME

CHAPTER 4. TROUBLESHOOTING

19

https://docs.openshift.com/container-platform/latest/admin_guide/out_of_resource_handling.html#out-of-resource-eviction-of-pods
https://docs.openshift.com/container-platform/latest/dev_guide/compute_resources.html#dev-requests-vs-limits
https://docs.openshift.com/container-platform/latest/dev_guide/compute_resources.html#dev-compute-resources

2. Run the following command from the remote shell session to launch the JBoss EAP
management CLI:

$ /opt/eap/bin/jboss-cli.sh

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

20

CHAPTER 5. ADVANCED TUTORIALS

5.1. EXAMPLE WORKFLOW: AUTOMATED TRANSACTION RECOVERY
FEATURE WHEN SCALING DOWN A CLUSTER

IMPORTANT

This feature is provided as Technology Preview only. It is not supported for use in a
production environment, and it might be subject to significant future changes. See
Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

This tutorial demonstrates the automated transaction recovery feature of the JBoss EAP CD for
OpenShift image when scaling down a cluster. The jta-crash-rec-eap7 quickstart example and the
eap-cd-tx-recovery-s2i application template are used here to show how XA transactions issued
on the OpenShift pod, when terminated within the cluster’s scale down, are recovered by the dedicated
migration pod.

NOTE

The jta-crash-rec-eap7 quickstart uses the H2 database that is included with JBoss
EAP. It is a lightweight, relational example datasource that is used for examples only. It is
not robust or scalable, is not supported, and should not be used in a production
environment.

5.1.1. Prepare for Deployment

1. Log in to your OpenShift instance using the oc login command.

2. Create a new project.

$ oc new-project eap-tx-demo

3. Add the view role to the default service account, which will be used to run the underlying
pods. This enables the service account to view all the resources in the eap-tx-demo
namespace, which is necessary for managing the cluster.

$ oc policy add-role-to-user view system:serviceaccount:$(oc project
-q):default

4. For automated transaction recovery to work, the JBoss EAP application must use a
ReadWriteMany persistent volume.
Provision the persistent volume expected by the eap-cd-tx-recovery-s2i application
template to hold the data for the ${APPLICATION_NAME}-eap-claim persistent volume claim.

This example uses a persistent volume object provisioned using the NFS method with the
following definition:

$ cat txpv.yaml
apiVersion: v1
kind: PersistentVolume

CHAPTER 5. ADVANCED TUTORIALS

21

https://access.redhat.com/support/offerings/techpreview
https://github.com/jboss-openshift/openshift-quickstarts/tree/master/jta-crash-rec-eap7
https://docs.openshift.com/container-platform/latest/architecture/additional_concepts/storage.html#persistent-volumes
https://docs.openshift.com/container-platform/latest/architecture/additional_concepts/storage.html#persistent-volume-claims

metadata:
 name: txpv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 nfs:
 path: /mnt/mountpoint
 server: 192.168.100.175

Update the path and server fields in the above definition for your environment, and provision
the persistent volume with the following command:

$ oc create -f txpv.yaml
persistentvolume "txpv" created

$ oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
txpv 1Gi RWX Retain Available
26s

IMPORTANT

When using the NFS method to provision persistent volume objects for the eap-
cd-tx-recovery-s2i application template, ensure the mount point is exported
with sufficient permissions. On the host from which the mount point is exported,
perform the following:

chmod -R 777 /mnt/mountpoint

cat /etc/exports
/mnt/mountpoint *(rw,sync,anonuid=185,anongid=185)

exportfs -va
exporting *:/mnt/mountpoint

setsebool -P virt_use_nfs 1

Replace /mnt/mountpoint path above as appropriate for your environment.

5.1.2. Deployment

1. Deploy the jta-crash-rec-eap7 quickstart using the eap-cd-tx-recovery-s2i
application template. Specify the following:

$ oc new-app --template=eap-cd-tx-recovery-s2i \
-p SOURCE_REPOSITORY_URL="https://github.com/jboss-
openshift/openshift-quickstarts" \
-p SOURCE_REPOSITORY_REF="master" \

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

22

https://github.com/jboss-openshift/openshift-quickstarts/tree/master/jta-crash-rec-eap7

-p CONTEXT_DIR="jta-crash-rec-eap7" \
-e CUSTOM_INSTALL_DIRECTORIES="extensions/*" \
--name=eap-app
--> Deploying template "openshift/eap-cd-tx-recovery-s2i" to project
eap-tx-demo

 JBoss EAP 7.0 (tx recovery)

 An example EAP 7 application. For more information about using
this template, see https://github.com/jboss-openshift/application-
templates.

 A new EAP 7 based application has been created in your project.

 * With parameters:
 * Application Name=eap-app
 * Custom http Route Hostname=
 * Git Repository URL=https://github.com/jboss-
openshift/openshift-quickstarts
 * Git Reference=master
 * Context Directory=jta-crash-rec-eap7
 * Queues=
 * Topics=
 * A-MQ cluster password=nyneOXUm # generated
 * Github Webhook Secret=PUW8Tmov # generated
 * Generic Webhook Secret=o7uD7qrG # generated
 * ImageStream Namespace=openshift
 * JGroups Cluster Password=MoR1Jthf # generated
 * Deploy Exploded Archives=false
 * Maven mirror URL=
 * ARTIFACT_DIR=
 * MEMORY_LIMIT=1Gi
 * EAP Volume Size=1Gi
 * Split the data directory?=true

--> Creating resources ...
 service "eap-app" created
 service "eap-app-ping" created
 route "eap-app" created
 imagestream "eap-app" created
 buildconfig "eap-app" created
 deploymentconfig "eap-app" created
 deploymentconfig "eap-app-migration" created
 persistentvolumeclaim "eap-app-eap-claim" created
--> Success
 Build scheduled, use 'oc logs -f bc/eap-app' to track its
progress.
 Run 'oc status' to view your app.

2. Wait for the build to finish. You can see the status of the build using the oc logs -f bc/eap-
app command.

3. Modify the eap-app deployment configuration with the definition of JAVA_OPTS_APPEND and
JBOSS_MODULES_SYSTEM_PKGS_APPEND environment variables.

$ oc get dc

CHAPTER 5. ADVANCED TUTORIALS

23

NAME REVISION DESIRED CURRENT TRIGGERED BY
eap-app 1 1 1
config,image(eap-app:latest)
eap-app-migration 1 1 1
config,image(eap-app:latest)

$ oc set env dc/eap-app \
-e JBOSS_MODULES_SYSTEM_PKGS_APPEND="org.jboss.byteman" \
-e JAVA_OPTS_APPEND="-
javaagent:/tmp/src/extensions/byteman/byteman.jar=script:/tmp/src/sr
c/main/scripts/xa.btm"
deploymentconfig "eap-app" updated

This setting will notify the Byteman tracing and monitoring tool to modify the XA transactions
processing in the following way:

The first transaction is always allowed to succeed.

When an XA resource executes phase 2 of the second transaction, the JVM process of the
particular pod is halted.

5.1.3. Using the JTA Crash Recovery Application

1. List running pods in the current namespace:

$ oc get pods | grep Running
NAME READY STATUS RESTARTS AGE
eap-app-2-r00gm 1/1 Running 0 1m
eap-app-migration-1-lvfdt 1/1 Running 0 2m

2. Issue a new XA transaction.

a. Launch the application by opening a browser and navigating to http://eap-app-eap-tx-
demo.openshift.example.com/jboss-jta-crash-rec.

b. Enter Mercedes into the Key field, and Benz into the Value field. Click the Submit button.

c. Wait for a moment, then click the Refresh Table link.

d. Notice how the table row containing the Mercedes entry is updated with updated via
JMS on eap-app-2-r00gm host. If it has not yet updated, click the Refresh Table link
couple of times. Alternatively, you can inspect the log of the eap-app-2-r00gm pod to
verify the transaction was handled properly:

$ oc logs eap-app-2-r00gm | grep 'updated'
INFO [org.jboss.as.quickstarts.xa.DbUpdaterMDB] (Thread-0
(ActiveMQ-client-global-threads-1566836606)) JTA Crash Record
Quickstart: key value pair updated via JMS on eap-app-2-r00gm
host.

3. Issue a second XA transaction using your browser at http://eap-app-eap-tx-
demo.openshift.example.com/jboss-jta-crash-rec.

a. Enter Land into the Key field, and Rover into the Value field. Click the Submit button.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

24

http://byteman.jboss.org/index.html
http://eap-app-eap-tx-demo.openshift.example.com/jboss-jta-crash-rec
http://eap-app-eap-tx-demo.openshift.example.com/jboss-jta-crash-rec

b. Wait for a moment, then click the Refresh Table link.

c. Notice how the Land Rover entry was added without the updated via … suffix.

4. Scale the cluster down.

$ oc scale --replicas=0 dc/eap-app
deploymentconfig "eap-app" scaled

a. Notice how the eap-app-2-r00gm pod was scheduled for termination.

$ oc get pods
NAME READY STATUS RESTARTS
AGE
eap-app-1-build 0/1 Completed 0
4m
eap-app-2-r00gm 1/1 Terminating 0
2m
eap-app-migration-1-lvfdt 1/1 Running 0
3m

5. Watch the log of the migration pod and notice how transaction recovery is performed. Wait for
the recovery to finish:

$ oc logs -f eap-app-migration-1-lvfdt
Finished Migration Check cycle, pausing for 30 seconds before
resuming
...
Finished, recovery terminated successfully
Migration terminated with status 0 (T)
Releasing lock: (/opt/eap/standalone/partitioned_data/split-1)
Finished Migration Check cycle, pausing for 30 seconds before
resuming
...

6. Scale the cluster back up.

$ oc scale --replicas=1 dc/eap-app
deploymentconfig "eap-app" scaled

7. Using the browser navigate back to http://eap-app-eap-tx-demo.openshift.example.com/jboss-
jta-crash-rec.

8. Notice the table contains entries for both transactions. It looks similar to the following output:

Table 5.1. Example: Database Table Contents

Database Table Contents

Key Value

Mercedes Benz updated via JMS on eap-app-2-r00gm host.

CHAPTER 5. ADVANCED TUTORIALS

25

http://eap-app-eap-tx-demo.openshift.example.com/jboss-jta-crash-rec

Land Rover updated via JMS on eap-app-migration-1-lvfdt host.

Database Table Contents

The content in the above table indicates that, although the cluster was scaled down before the
second XA transaction had chance to finish, the migration pod performed the transaction
recovery and the transaction was successfully completed.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

26

CHAPTER 6. REFERENCE INFORMATION

NOTE

The content in this section is derived from the engineering documentation for this image. It
is provided for reference as it can be useful for development purposes and for testing
beyond the scope of the product documentation.

6.1. PERSISTENT TEMPLATES

The JBoss EAP database templates, which deploy JBoss EAP and database pods, have both ephemeral
and persistent variations. For example, for a JBoss EAP application backed by a MongoDB database,
there are eap-cd-mongodb-s2i and eap-cd-mongodb-persistent-s2i templates.

Persistent templates include an environment variable to provision a persistent volume claim, which binds
with an available persistent volume to be used as a storage volume for the JBoss EAP CD for OpenShift
deployment. Information, such as timer schema, log handling, or data updates, is stored on the storage
volume, rather than in ephemeral container memory. This information persists if the pod goes down for
any reason, such as project upgrade, deployment rollback, or an unexpected error.

Without a persistent storage volume for the deployment, this information is stored in the container
memory only, and is lost if the pod goes down for any reason.

For example, an EE timer backed by persistent storage continues to run if the pod is restarted. Any
events triggered by the timer during the restart process are enacted when the application is running
again.

Conversely, if the EE timer is running in the container memory, the timer status is lost if the pod is
restarted, and starts from the beginning when the pod is running again.

6.2. INFORMATION ENVIRONMENT VARIABLES

The following environment variables are designed to provide information to the image and should not be
modified by the user:

Table 6.1. Information Environment Variables

Variable Name Description and Value

JBOSS_IMAGE_NAME The image name.

Value: jboss-eap-7-tech-preview/eap-cd-
openshift

JBOSS_IMAGE_RELEASE The image release label.

Value: dev

JBOSS_IMAGE_VERSION The image version.

Value: This is the image version number. See the Red Hat
Container Catalog for the latest value.

CHAPTER 6. REFERENCE INFORMATION

27

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7-tech-preview/eap-cd-openshift

JBOSS_MODULES_SYSTEM_PKGS A comma-separated list of JBoss EAP system modules
packages that are available to applications.

Value: org.jboss.logmanager, jdk.nashorn.api

STI_BUILDER Provides OpenShift S2I support for jee project types.

Value: jee

Variable Name Description and Value

6.3. CONFIGURATION ENVIRONMENT VARIABLES

You can configure the following environment variables to adjust the image without requiring a rebuild.

Table 6.2. Configuration Environment Variables

Variable Name Description

AB_JOLOKIA_AUTH_OPENSHIFT Switch on client authentication for OpenShift TLS
communication. The value of this parameter can be true,
false, or a relative distinguished name, which must be
contained in a presented client’s certificate. The default CA cert
is set to
/var/run/secrets/kubernetes.io/serviceaccou
nt/ca.crt.

Set to false to disable client authentication for
OpenShift TLS communication.

Set to true to enable client authentication for
OpenShift TLS communication using the default CA
certificate and client principal.

Set to a relative distinguished name, for example
cn=someSystem, to enable client authentication for
OpenShift TLS communication but override the client
principal. This distinguished name must be contained in
a presented client’s certificate.

AB_JOLOKIA_CONFIG If set, uses this fully qualified file path for the Jolokia JVM agent
properties, which are described in the Jolokia reference
documentation. If you set your own Jolokia properties config file,
the rest of the Jolokia settings in this document are ignored.

If not set, /opt/jolokia/etc/jolokia.properties is
created using the settings as defined in the Jolokia reference
documentation.

Example value: /opt/jolokia/custom.properties

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

28

https://jolokia.org/reference/html/agents.html#agents-jvm

AB_JOLOKIA_DISCOVERY_ENABLED Enable Jolokia discovery.

Defaults to false.

AB_JOLOKIA_HOST Host address to bind to.

Defaults to 0.0.0.0.

Example value: 127.0.0.1

AB_JOLOKIA_HTTPS Switch on secure communication with HTTPS.

By default self-signed server certificates are generated if no
serverCert configuration is given in AB_JOLOKIA_OPTS.

Example value: true

AB_JOLOKIA_ID Agent ID to use.

The default value is the $HOSTNAME, which is the container id.

Example value: openjdk-app-1-xqlsj

AB_JOLOKIA_OFF If set to true, disables activation of Jolokia, which echos an
empty value.

Jolokia is enabled by default.

AB_JOLOKIA_OPTS Additional options to be appended to the agent configuration.
They should be given in the format key=value,
key=value, … .

Example value: backlog=20

AB_JOLOKIA_PASSWORD The password for basic authentication.

By default, authentication is switched off.

Example value: mypassword

AB_JOLOKIA_PASSWORD_RANDOM Determines if a random AB_JOLOKIA_PASSWORD should be
generated.

Set to true to generate a random password. The generated
value is saved in the /opt/jolokia/etc/jolokia.pw
file.

Variable Name Description

CHAPTER 6. REFERENCE INFORMATION

29

AB_JOLOKIA_PORT The port to listen to.

Defaults to 8778.

Example value: 5432

AB_JOLOKIA_USER The name of the user to use for basic authentication.

Defaults to jolokia.

Example value: myusername

CLI_GRACEFUL_SHUTDOWN If set to any non-zero length value, the image will prevent
shutdown with the TERM signal and will require execution of the
shutdown command using the JBoss EAP management CLI.

Example value: true

CONTAINER_HEAP_PERCENT Set the maximum Java heap size, as a percentage of available
container memory.

Example value: 0.5

CUSTOM_INSTALL_DIRECTORIES A list of comma-separated directories used for installation and
configuration of artifacts for the image during the S2I process.

Example value: custom,shared

DEFAULT_JMS_CONNECTION_FACTO
RY

This value is used to specify the default JNDI binding for the
JMS connection factory, for example jms-connection-
factory='java:jboss/DefaultJMSConnectionFac
tory'.

Example value:
java:jboss/DefaultJMSConnectionFactory

ENABLE_ACCESS_LOG Enable logging of access messages to the standard output
channel.

Logging of access messages is implemented using following
methods:

The JBoss EAP 6.4 OpenShift image uses a custom
JBoss Web Access Log Valve.

The JBoss EAP CD for OpenShift image uses the
Undertow AccessLogHandler.

Defaults to false.

Variable Name Description

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

30

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/12/html-single/development_guide/#accessloghandler

INITIAL_HEAP_PERCENT Set the initial Java heap size, as a percentage of the maximum
heap size.

Example value: 0.5

JAVA_OPTS_APPEND Server startup options.

Example value: -Dfoo=bar

JBOSS_MODULES_SYSTEM_PKGS_AP
PEND

A comma-separated list of package names that will be appended
to the JBOSS_MODULES_SYSTEM_PKGS environment
variable.

Example value: org.jboss.byteman

JGROUPS_PING_PROTOCOL JGroups protocol to use for node discovery. Can be either
openshift.DNS_PING or openshift.KUBE_PING.

MQ_SIMPLE_DEFAULT_PHYSICAL_DE
STINATION

For backwards compatibility, set to true to use MyQueue and
MyTopic as physical destination name defaults instead of
queue/MyQueue and topic/MyTopic.

OPENSHIFT_DNS_PING_SERVICE_NA
ME

Name of the service exposing the ping port on the servers for
the DNS discovery mechanism.

Example value: eap-app-ping

OPENSHIFT_DNS_PING_SERVICE_PO
RT

The port number of the ping port for the DNS discovery
mechanism. If not specified, an attempt will be made to discover
the port number from the SRV records for the service, otherwise
the default 8888 will be used.

Defaults to 8888.

OPENSHIFT_KUBE_PING_LABELS Clustering labels selector for the Kubernetes discovery
mechanism.

Example value: app=eap-app

OPENSHIFT_KUBE_PING_NAMESPAC
E

Clustering project namespace for the Kubernetes discovery
mechanism.

Example value: myproject

SCRIPT_DEBUG If set to true, ensures that the Bash scripts are executed with
the -x option, printing the commands and their arguments as
they are executed.

Variable Name Description

CHAPTER 6. REFERENCE INFORMATION

31

NOTE

Other environment variables not listed above that can influence the product can be found
in the JBoss EAP documentation.

6.4. APPLICATION TEMPLATES

Table 6.3. Application Templates

Variable Name Description

AUTO_DEPLOY_EXPLODED Controls whether exploded deployment content should be
automatically deployed.

Example value: false

6.5. EXPOSED PORTS

Table 6.4. Exposed Ports

Port Number Description

8443 HTTPS

8778 Jolokia Monitoring

6.6. DATASOURCES

Datasources are automatically created based on the value of some of the environment variables.

The most important environment variable is DB_SERVICE_PREFIX_MAPPING, as it defines JNDI
mappings for the datasources. The allowed value for this variable is a comma-separated list of
POOLNAME-DATABASETYPE=PREFIX triplets, where:

POOLNAME is used as the pool-name in the datasource.

DATABASETYPE is the database driver to use.

PREFIX is the prefix used in the names of environment variables that are used to configure the
datasource.

6.6.1. JNDI Mappings for Datasources

For each POOLNAME-DATABASETYPE=PREFIX triplet defined in the DB_SERVICE_PREFIX_MAPPING
environment variable, the launch script creates a separate datasource, which is executed when running
the image.

NOTE

The first part (before the equal sign) of the DB_SERVICE_PREFIX_MAPPING should be
lowercase.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

32

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/

The DATABASETYPE determines the driver for the datasource. Currently, only postgresql and mysql
are supported.

WARNING

Do not use any special characters for the POOLNAME parameter.

6.6.1.1. Database Drivers

Every image contains Java drivers for MySQL, PostgreSQL and MongoDB databases deployed.
Datasources are generated only for MySQL and PostgreSQL databases.

NOTE

For MongoDB database there are no JNDI mappings created because MongoDB is not a
SQL database.

6.6.1.2. Datasource Configuration Environment Variables

To configure other datasource properties, use the following environment variables.

IMPORTANT

Be sure to replace the values for POOLNAME, DATABASETYPE, and PREFIX in the
following variable names with the appropriate values. These replaceable values are
described in this section and in the Datasources section.

Variable Name Description

POOLNAME_DATABASETYPE_SERVIC
E_HOST

Defines the database server’s host name or IP address to be
used in the datasource’s connection-url property.

Example value: 192.168.1.3

POOLNAME_DATABASETYPE_SERVIC
E_PORT

Defines the database server’s port for the datasource.

Example value: 5432

PREFIX_BACKGROUND_VALIDATION When set to true database connections are validated
periodically in a background thread prior to use. Defaults to
false, meaning the validate-on-match method is
enabled by default instead.

CHAPTER 6. REFERENCE INFORMATION

33

PREFIX_BACKGROUND_VALIDATION_
MILLIS

Specifies frequency of the validation, in milliseconds, when the
background-validation database connection validation
mechanism is enabled
(PREFIX_BACKGROUND_VALIDATION variable is set to
true). Defaults to 10000.

PREFIX_CONNECTION_CHECKER Specifies a connection checker class that is used to validate
connections for the particular database in use.

Example value:
org.jboss.jca.adapters.jdbc.extensions.post
gres.PostgreSQLValidConnectionChecker

PREFIX_DATABASE Defines the database name for the datasource.

Example value: myDatabase

PREFIX_DRIVER Defines Java database driver for the datasource.

Example value: postgresql

PREFIX_EXCEPTION_SORTER Specifies the exception sorter class that is used to properly
detect and clean up after fatal database connection exceptions.

Example value:
org.jboss.jca.adapters.jdbc.extensions.mysq
l.MySQLExceptionSorter

PREFIX_JNDI Defines the JNDI name for the datasource. Defaults to
java:jboss/datasources/POOLNAME_DATABASETYP
E, where POOLNAME and DATABASETYPE are taken from the
triplet described above. This setting is useful if you want to
override the default generated JNDI name.

Example value: java:jboss/datasources/test-
postgresql

PREFIX_JTA Defines Java Transaction API (JTA) option for the non-XA
datasource. The XA datasources are already JTA capable by
default.

Defaults to true.

PREFIX_MAX_POOL_SIZE Defines the maximum pool size option for the datasource.

Example value: 20

PREFIX_MIN_POOL_SIZE Defines the minimum pool size option for the datasource.

Example value: 1

Variable Name Description

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

34

PREFIX_NONXA Defines the datasource as a non-XA datasource. Defaults to
false.

PREFIX_PASSWORD Defines the password for the datasource.

Example value: password

PREFIX_TX_ISOLATION Defines the java.sql.Connection transaction isolation level for the
datasource.

Example value: TRANSACTION_READ_UNCOMMITTED

PREFIX_URL Defines connection URL for the datasource.

Example value:
jdbc:postgresql://localhost:5432/postgresdb

PREFIX_USERNAME Defines the username for the datasource.

Example value: admin

Variable Name Description

When running this image in OpenShift, the POOLNAME_DATABASETYPE_SERVICE_HOST and
POOLNAME_DATABASETYPE_SERVICE_PORT environment variables are set up automatically from the
database service definition in the OpenShift application template, while the others are configured in the
template directly as env entries in container definitions under each pod template.

6.6.1.3. Examples

These examples show how value of the DB_SERVICE_PREFIX_MAPPING environment variable
influences datasource creation.

6.6.1.3.1. Single Mapping

Consider value test-postgresql=TEST.

This creates a datasource with java:jboss/datasources/test_postgresql name. Additionally,
all the required settings like password and username are expected to be provided as environment
variables with the TEST_ prefix, for example TEST_USERNAME and TEST_PASSWORD.

6.6.1.3.2. Multiple Mappings

You can specify multiple database mappings.

NOTE

Always separate multiple datasource mappings with a comma.

CHAPTER 6. REFERENCE INFORMATION

35

Consider the following value for the DB_SERVICE_PREFIX_MAPPING environment variable: cloud-
postgresql=CLOUD,test-mysql=TEST_MYSQL.

This creates the following two datasources:

1. java:jboss/datasources/test_mysql

2. java:jboss/datasources/cloud_postgresql

Then you can use TEST_MYSQL prefix for configuring things like the username and password for the
MySQL datasource, for example TEST_MYSQL_USERNAME. And for the PostgreSQL datasource, use the
CLOUD_ prefix, for example CLOUD_USERNAME.

6.7. CLUSTERING

JBoss EAP clustering on OpenShift is achieved through one of two discovery mechanisms: Kubernetes
or DNS.

This is done by configuring the JGroups protocol stack in the standalone-openshift.xml
configuration file with either the <openshift.KUBE_PING/> or <openshift.DNS_PING/> element.
To use an environment variable to specify the discovery mechanism for the JBoss EAP CD for OpenShift
image, set JGROUPS_PING_PROTOCOL on the image deployment to either openshift.KUBE_PING or
openshift.DNS_PING.

IMPORTANT

The openshift.KUBE_PING discovery mechanism is the default mechanism when
provisioning an application on top of the JBoss EAP CD for OpenShift image directly.
However, the openshift.DNS_PING is the default discovery mechanism when using
one of the available application templates to deploy an application on top of the JBoss
EAP CD for OpenShift image.

The openshift.DNS_PING and openshift.KUBE_PING discovery mechanisms are
not compatible with each other. It is not possible to form a supercluster out of two
independent child clusters, with one using the openshift.DNS_PING mechanism for
discovery and the other using the openshift.KUBE_PING mechanism. Similarly, when
performing a rolling upgrade, the discovery mechanism needs to be identical for both the
source and the target clusters.

6.7.1. Configuring KUBE_PING

For KUBE_PING to work, the following steps must be taken:

1. The JGroups protocol stack must be configured to use KUBE_PING as the discovery
mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
openshift.KUBE_PING:

JGROUPS_PING_PROTOCOL=openshift.KUBE_PING

2. The OPENSHIFT_KUBE_PING_NAMESPACE environment variable must be set to your OpenShift
project name. If not set, the server behaves as a single-node cluster (a "cluster of one"). For
example:

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

36

OPENSHIFT_KUBE_PING_NAMESPACE=PROJECT_NAME

3. The OPENSHIFT_KUBE_PING_LABELS environment variable should be set. This should match
the label set at the service level. If not set, pods outside of your application (albeit in your
namespace) will try to join. For example:

OPENSHIFT_KUBE_PING_LABELS=app=APP_NAME

4. Authorization must be granted to the service account the pod is running under to be allowed to
access Kubernetes' REST API. This is done using the OpenShift CLI. The following example
uses the default service account in the current project’s namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -
q):default -n $(oc project -q)

Using the eap-service-account in the project namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -
q):eap-service-account -n $(oc project -q)

NOTE

See Prepare OpenShift for Application Deployment for more information on adding
policies to service accounts.

6.7.2. Configuring DNS_PING

For DNS_PING to work, the following steps must be taken:

1. The JGroups protocol stack must be configured to use DNS_PING as the discovery mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
openshift.DNS_PING:

JGROUPS_PING_PROTOCOL=openshift.DNS_PING

2. The OPENSHIFT_DNS_PING_SERVICE_NAME environment variable must be set to the name of
the ping service for the cluster. If not set, the server will act as if it is a single-node cluster (a
"cluster of one").

OPENSHIFT_DNS_PING_SERVICE_NAME=PING_SERVICE_NAME

3. The OPENSHIFT_DNS_PING_SERVICE_PORT environment variable should be set to the port
number on which the ping service is exposed. The DNS_PING protocol attempts to discern the
port from the SRV records, otherwise it defaults to 8888.

OPENSHIFT_DNS_PING_SERVICE_PORT=PING_PORT

4. A ping service which exposes the ping port must be defined. This service should be headless
(ClusterIP=None) and must have the following:

a. The port must be named.

CHAPTER 6. REFERENCE INFORMATION

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#labels
https://docs.openshift.com/container-platform/latest/dev_guide/service_accounts.html#default-service-accounts-and-roles

b. The service must be annotated with service.alpha.kubernetes.io/tolerate-
unready-endpoints set to "true".

NOTE

Omitting this annotation will result in each node forming their own "cluster of
one" during startup, then merging their cluster into the other nodes' clusters
after startup, as the other nodes are not detected until after they have started.

NOTE

DNS_PING does not require any modifications to the service account and works using the
default permissions.

6.8. SECURITY DOMAINS

To configure a new Security Domain, the user must define the SECDOMAIN_NAME environment variable.

This results in the creation of a security domain named after the environment variable. The user may
also define the following environment variables to customize the domain:

Table 6.5. Security Domains

Variable name Description

SECDOMAIN_NAME Defines an additional security domain.

Example value: myDomain

SECDOMAIN_PASSWORD_STACKING If defined, the password-stacking module option is
enabled and set to the value useFirstPass.

Example value: true

kind: Service
apiVersion: v1
spec:
 clusterIP: None
 ports:
 - name: ping
 port: 8888
 selector:
 deploymentConfig: eap-app
metadata:
 name: eap-app-ping
 annotations:
 service.alpha.kubernetes.io/tolerate-unready-endpoints:
"true"
 description: "The JGroups ping port for clustering."

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

38

SECDOMAIN_LOGIN_MODULE The login module to be used.

Defaults to UsersRoles

SECDOMAIN_USERS_PROPERTIES The name of the properties file containing user definitions.

Defaults to users.properties

SECDOMAIN_ROLES_PROPERTIES The name of the properties file containing role definitions.

Defaults to roles.properties

Variable name Description

6.9. HTTPS ENVIRONMENT VARIABLES

Variable name Description

HTTPS_NAME If defined along with HTTPS_PASSWORD and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL name.

Example value: example.com

HTTPS_PASSWORD If defined along with HTTPS_NAME and HTTPS_KEYSTORE,
enables HTTPS and sets the SSL key password.

Example value: passw0rd

HTTPS_KEYSTORE If defined along with HTTPS_PASSWORD and HTTPS_NAME,
enables HTTPS and sets the SSL certificate key file to a relative
path under EAP_HOME/standalone/configuration

Example value: ssl.key

6.10. ADMINISTRATION ENVIRONMENT VARIABLES

Table 6.6. Administration Environment Variables

Variable name Description

ADMIN_USERNAME If both this and ADMIN_PASSWORD are defined, used for the
JBoss EAP management user name.

Example value: eapadmin

ADMIN_PASSWORD The password for the specified ADMIN_USERNAME.

Example value: passw0rd

CHAPTER 6. REFERENCE INFORMATION

39

6.11. S2I

The image includes S2I scripts and Maven.

Maven is currently only supported as a build tool for applications that are supposed to be deployed on
JBoss EAP-based containers (or related/descendant images) on OpenShift.

Only WAR deployments are supported at this time.

6.11.1. Custom Configuration

It is possible to add custom configuration files for the image. All files put into configuration/ directory
will be copied into EAP_HOME/standalone/configuration/. For example to override the default
configuration used in the image, just add a custom standalone-openshift.xml into the
configuration/ directory. See example for such a deployment.

6.11.1.1. Custom Modules

It is possible to add custom modules. All files from the modules/ directory will be copied into
EAP_HOME/modules/. See example for such a deployment.

6.11.2. Deployment Artifacts

By default, artifacts from the source target directory will be deployed. To deploy from different
directories set the ARTIFACT_DIR environment variable in the BuildConfig definition. ARTIFACT_DIR is
a comma-delimited list. For example: ARTIFACT_DIR=app1/target,app2/target,app3/target

6.11.3. Artifact Repository Mirrors

A repository in Maven holds build artifacts and dependencies of various types, for example, all of the
project JARs, library JARs, plug-ins, or any other project specific artifacts. It also specifies locations from
where to download artifacts while performing the S2I build. Besides using central repositories, it is a
common practice for organizations to deploy a local custom mirror repository.

Benefits of using a mirror are:

Availability of a synchronized mirror, which is geographically closer and faster.

Ability to have greater control over the repository content.

Possibility to share artifacts across different teams (developers, CI), without the need to rely on
public servers and repositories.

Improved build times.

Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http://10.0.0.1:8080/repository/internal/,
the S2I build can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to
the build configuration of the application as follows:

1. Identify the name of the build configuration to apply MAVEN_MIRROR_URL variable against.

oc get bc -o name
buildconfig/eap

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

40

https://github.com/goldmann/openshift-eap-examples/tree/master/custom-configuration
https://github.com/goldmann/openshift-eap-examples/tree/master/custom-module

2. Update build configuration of eap with a MAVEN_MIRROR_URL environment variable.

oc env bc/eap
MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "eap" updated

3. Verify the setting.

oc env bc/eap --list
buildconfigs eap
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application.

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

6.11.4. Scripts

run

This script uses the openshift-launch.sh script that configures and starts JBoss EAP with the
standalone-openshift.xml configuration.

assemble

This script uses Maven to build the source, create a package (WAR), and move it to the
EAP_HOME/standalone/deployments directory.

6.11.5. Environment Variables

You can influence the way the build is executed by supplying environment variables to the s2i build
command. The environment variables that can be supplied are:

Table 6.7. s2i Environment Variables

Variable name Description

ARTIFACT_DIR The .war, .ear, and .jar files from this directory will be
copied into the deployments/ directory.

Example value: target

HTTP_PROXY_HOST Host name or IP address of a HTTP proxy for Maven to use.

Example value: 192.168.1.1

HTTP_PROXY_PORT TCP Port of a HTTP proxy for Maven to use.

Example value: 8080

CHAPTER 6. REFERENCE INFORMATION

41

HTTP_PROXY_USERNAME If supplied with HTTP_PROXY_PASSWORD, use credentials for
HTTP proxy.

Example value: myusername

HTTP_PROXY_PASSWORD If supplied with HTTP_PROXY_USERNAME, use credentials for
HTTP proxy.

Example value: mypassword

HTTP_PROXY_NONPROXYHOSTS If supplied, a configured HTTP proxy will ignore these hosts.

Example value: some.example.org|*.example.net

MAVEN_ARGS Overrides the arguments supplied to Maven during build.

Example value: -e -Popenshift -DskipTests -
Dcom.redhat.xpaas.repo.redhatga package

MAVEN_ARGS_APPEND Appends user arguments supplied to Maven during build.

Example value: -Dfoo=bar

MAVEN_MIRROR_URL URL of a Maven Mirror/repository manager to configure.

Example value:
http://10.0.0.1:8080/repository/internal/

MAVEN_CLEAR_REPO Optionally clear the local Maven repository after the build.

Example value: true

APP_DATADIR If defined, directory in the source from where data files are
copied.

Example value: mydata

DATA_DIR Directory in the image where data from $APP_DATADIR will be
copied.

Example value: EAP_HOME/data

Variable name Description

NOTE

For more information, see Build and Run a Java Application on the JBoss EAP CD for
OpenShift Image, which uses Maven and the S2I scripts included in the JBoss EAP CD
for OpenShift image.

6.12. SSO

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

42

This image contains support for Red Hat JBoss SSO-enabled applications.

NOTE

See the Red Hat JBoss SSO for OpenShift documentation for more information on how to
deploy the Red Hat JBoss SSO for OpenShift image with the JBoss EAP CD for
OpenShift image.

Table 6.8. SSO Environment Variables

Variable name Description

SSO_URL URL of the SSO server.

SSO_REALM SSO realm for the deployed applications.

SSO_PUBLIC_KEY Public key of the SSO Realm. This field is optional but if omitted
can leave the applications vulnerable to man-in-middle attacks.

SSO_USERNAME SSO User required to access the SSO REST API.

Example value: mySsoUser

SSO_PASSWORD Password for the SSO user defined by the SSO_USERNAME
variable.

Example value: 6fedmL3P

SSO_SAML_KEYSTORE Keystore location for SAML. Defaults to /etc/sso-saml-
secret-volume/keystore.jks.

SSO_SAML_KEYSTORE_PASSWORD Keystore password for SAML. Defaults to mykeystorepass.

SSO_SAML_CERTIFICATE_NAME Alias for keys/certificate to use for SAML. Defaults to jboss.

SSO_BEARER_ONLY SSO Client Access Type. (Optional)

Example value: true

SSO_CLIENT Path for SSO redirects back to the application. Defaults to match
module-name.

SSO_ENABLE_CORS If true, enable CORS for SSO applications. (Optional)

SSO_SECRET The SSO Client Secret for Confidential Access.

Example value: KZ1QyIq4

SSO_SECURE_SSL_CONNECTIONS If true, SSL communication between JBoss EAP and the SSO
Server will be secure, for example, using curl to enable
certificate validation.

CHAPTER 6. REFERENCE INFORMATION

43

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/single/red_hat_jboss_sso_for_openshift/#Example-EAP-Manual

Variable name Description

6.13. TRANSACTION RECOVERY

When a cluster is scaled down, it is possible for transaction branches to be in doubt. There is a
technology preview automated recovery pod that is meant to complete these branches, but there are
rare scenarios, such as a network split, where the recovery may fail. In these cases, manual transaction
recovery might be necessary.

6.13.1. Unsupported Transaction Recovery Scenarios

JTS transactions
Because the network endpoint of the parent is encoded in recovery coordinator IORs, recovery
cannot work reliably if either the child or parent node recovers with either a new IP address, or if
it is intended to be accessed using a virtualized IP address.

XTS transactions
XTS does not work in a clustered scenario for recovery purposes. See JBTM-2742 for details.

Transactions propagated over JBoss Remoting

Transactions propagated over XATerminator
Because the EIS is intended to be connected to a single instance of a Java EE application
server, there are no well-defined ways to couple these processes.

6.13.2. Manual Transaction Recovery Process

The goal of the following procedure is to find and manually resolve in-doubt branches in cases where
automated recovery has failed.

6.13.2.1. Caveats

This procedure only describes how to manually recover transactions that were wholly self-contained
within a single JVM. The procedure does not describe how to recover JTA transactions that have been
propagated to other JVMs.

IMPORTANT

There are various network partition scenarios in which OpenShift might start multiple
instances of the same pod with the same IP address and same node name and where,
due to the partition, the old pod is still running. During manual recovery, this might result in
a situation where you might be connected to a pod that has a stale view of the object
store. If you think you are in this scenario, it is recommended that all JBoss EAP pods be
shut down to ensure that none of the resource managers or object stores are in use.

When you enlist a resource in an XA transaction, it is your responsibility to ensure that each resource
type is supported for recovery. For example, it is known that PostgreSQL and MySQL are well-behaved
with respect to recovery, but for others, such as A-MQ and JDV resource managers, you should check

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

44

https://issues.jboss.org/browse/JBTM-2742
http://jbossremoting.jboss.org/

documentation of the specific OpenShift release.

The deployment must use a JDBC object store.

IMPORTANT

The transaction manager relies on the uniqueness of node identifiers. The maximum byte
length of an XID is set by the XA specification and cannot be changed. Due to the data
that the JBoss EAP CD for OpenShift image must include in the XID, this leaves room for
23 bytes in the node identifier.

OpenShift coerces the node identifier to fit this 23 byte limit:

For all node names, even those under 23 bytes, the - (dash) character is stripped
out.

If the name is still over 23 bytes, characters are truncated from the beginning of
the name until length of the name is within the 23 byte limit.

However, this process might impact the uniqueness of the identifier. For example, the
names aaa123456789012345678m0jwh and bbb123456789012345678m0jwh are
both truncated to 123456789012345678m0jwh, which breaks the uniqueness of the
names that are expected. In another example, this-pod-is-m0jwh and thispod-is-
m0jwh are both truncated to thispodism0jwh, again breaking the uniqueness of the
names.

It is your responsibility to ensure that the node names you configure are unique, keeping
in mind the above truncation process.

6.13.2.2. Prerequisite

It is assumed the OpenShift instance has been configured with a JDBC store, and that the store tables
are partitioned using a table prefix corresponding to the pod name. This should be automatic whenever a
JBoss EAP deployment is in use. This is different from the automated recovery example, which uses a
file store with split directories on a shared volume. You can verify that the JBoss EAP instance is using a
JDBC object store by looking at the configuration of the transactions subsystem in a running pod:

1. Determine if the /opt/eap/standalone/configuration/openshift-standalone.xml
configuration file contains an element for the transaction subsystem:

<subsystem xmlns="urn:jboss:domain:transactions:3.0">

2. If the JDBC object store is in use, then there is an entry similar to the following:

<jdbc-store datasource-jndi-
name="java:jboss/datasources/jdbcstore_postgresql"/>

NOTE

The JNDI name identifies the datasource used to store the transaction logs.

6.13.2.3. Procedure

CHAPTER 6. REFERENCE INFORMATION

45

IMPORTANT

The following procedure details the process of manual transaction recovery solely for
datasources.

1. Use the database vendor tooling to list the XIDs (transaction branch identifiers) for in-doubt
branches. It is necessary to list XIDs for all datasources that were in use by any deployments
running on the pod that failed or was scaled down. Refer to the vendor documentation for the
database product in use.

2. For each such XID, determine which pod created the transaction and check to see if that pod is
still running.

a. If it is running, then leave the branch alone.

b. If the pod is not running, assume it was removed from the cluster and you must apply the
manual resolution procedure described here. Look in the transaction log storage that was
used by the failed pod to see if there is a corresponding transaction log:

i. If there is a log, then manually commit the XID using the vendor tooling.

ii. If there is not a log, assume it is an orphaned branch and roll back the XID using the
vendor tooling.

The rest of this procedure explains in detail how to carry out each of these steps.

6.13.2.3.1. Resolving In-doubt Branches

First, find all the resources that the deployment is using.

It is recommended that you do this using the JBoss EAP managagement CLI. Although the resources
should be defined in the JBoss EAP standalone-openshift.xml configuration file, there are other
ways they can be made available to the transaction subsystem within the application server. For
example, this can be done using a file in a deployment, or dynamically using the management CLI at
runtime.

1. Open a terminal on a pod running a JBoss EAP instance in the cluster of the failed pod. If there
is no such pod, scale up to one.

2. Create a management user using the /opt/eap/bin/add-user.sh script.

3. Log into the management CLI using the /opt/eap/bin/jboss-cli.sh script.

4. List the datasources configured on the server. These are the ones that may contain in-doubt
transaction branches.

/subsystem=datasources:read-resource
{
 "outcome" => "success",
 "result" => {
 "data-source" => {
 "ExampleDS" => undefined,
 ...
 },
 ...
}

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

46

5. Once you have the list, find the connection URL for each of the datasources. For example:

/subsystem=datasources/data-source=ExampleDS:read-
attribute(name=connection-url)
{
 "outcome" => "success",
 "result" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1;DB_CLOSE_ON_EXIT=FALSE",
 "response-headers" => {"process-state" => "restart-required"}
}

6. Connect to each datasource and list any in-doubt transaction branches.

NOTE

The table name that stores in-doubt branches will be different for each datasource
vendor.

JBoss EAP has a default SQL query tool (H2) that you can use to check each database. For
example:

java -cp
/opt/eap/modules/system/layers/base/com/h2database/h2/main/h2-
1.3.173.jar \
-url "jdbc:postgresql://localhost:5432/postgres" \
-user sa \
-password sa \
-sql "select gid from pg_prepared_xacts;"

Alternatively, you can use the resource’s native tooling. For example, for a PostGreSQL
datasource called sampledb, you can use the OpenShift client tools to remotely log in to the
pod and query the in-doubt transaction table:

$ oc rsh postgresql-2-vwf9n # rsh to the named pod
sh-4.2$ psql sampledb
psql (9.5.7)
Type "help" for help.

sampledb=# select gid from pg_prepared_xacts;
131077_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGHAtanRhLWNyYXNoLXJlYy0zL
XAyY2N3_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGgAAAAEAAAAA

6.13.2.3.2. Extract the Global Transaction ID and Node Identifier from Each XID

When all XIDs for in-doubt branches are identified, convert the XIDs into a format that you can compare
to the logs stored in the transaction tables of the transaction manager.

For example, the following Bash script can be used to perform this conversion. Assuming that $PG_XID
holds the XID from the select statement above, then the JBoss EAP transaction ID can be obtained as
follows:

PG_XID="$1"
IFS='_' read -ra lines <<< "$PG_XID"

CHAPTER 6. REFERENCE INFORMATION

47

[["${lines[0]}" = 131077]] || exit 0; # this script only works for our
own FORMAT ID
PG_TID=${lines[1]}

a=($(echo "$PG_TID"| base64 -d | xxd -ps |tr -d '\n' | while read -N16 i
; do echo 0x$i ; done))
b=($(echo "$PG_TID"| base64 -d | xxd -ps |tr -d '\n' | while read -N8 i ;
do echo 0x$i ; done))
c=("${b[@]:4}") # put the last 3 32-bit hexadecimal numbers into array c
the negative elements of c need special handling since printf below only
works with positive
hexadecimal numbers
for i in "${!c[@]}"; do
 arg=${c[$i]}
 # inspect the MSB to see if arg is negative - if so convert it from a
2’s complement number
 [[$(($arg>>31)) = 1]] && x=$(echo "obase=16; $(($arg - 0x100000000))"
| bc) || x=$arg
 if [[${x:0:1} = \-]] ; then # see if the first character is a minus
sign
 neg[$i]="-";
 c[$i]=0x${x:1} # strip the minus sign and make it hex for use with
printf below
 else
 neg[$i]=""
 c[$i]=$x
 fi
done
EAP_TID=$(printf %x:%x:${neg[0]}%x:${neg[1]}%x:${neg[2]}%x ${a[0]} ${a[1]}
${c[0]} ${c[1]} ${c[2]})

After completion, the $EAP_TID variable holds the global transaction ID of the transaction that created
this XID. The node identifier of the pod that started the transaction is given by the output of the following
bash command:

echo "$PG_TID"| base64 -d | tail -c +29

NOTE

The node identifier starts from the 29th character of the PostgreSQL global transaction ID
field.

If this pod is still running, then leave this in-doubt branch alone since the transaction is still in
flight.

If this pod is not running, then you need to search the relevant transaction log storage for the
transaction log. The log storage is located in a JDBC table, which is named following the
os<node-identifier>jbosststxtable pattern.

If there is no such table, leave the branch alone as it is owned by some other transaction
manager. The URL for the datasource containing this table is defined in the transaction
subsystem description shown below.

If there is such a table, look for an entry that matches the global transaction ID.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

48

If there is an entry in the table that matches the global transaction ID, then the in-doubt
branch needs to be committed using the datasource vendor tooling as described below.

If there is no such entry, then the branch is an orphan and can safely be rolled back.

An example of how to commit an in-doubt PostgreSQL branch is shown below:

$ oc rsh postgresql-2-vwf9n
sh-4.2$ psql sampledb
psql (9.5.7)
Type "help" for help.
psql sampledb
commit prepared '131077_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGHAtanRh

LWNyYXNoLXJlYy0zLXAyY2N3_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGgAAAAEAAAAA'
;

IMPORTANT

Repeat this procedure for all datasources and in-doubt branches.

6.13.2.3.3. Obtain the List of Node Identifiers of All Running JBoss EAP Instances in Any Cluster
that Can Contact the Resource Managers

Node identifiers are configured to be the same name as the pod name. You can obtain the pod names in
use using the oc command. Use the following command to list the running pods:

$ oc get pods | grep Running
eap-manual-tx-recovery-app-4-26p4r 1/1 Running 0 23m
postgresql-2-vwf9n 1/1 Running 0
41m

For each running pod, look in the output of the pod’s log and obtain the node name. For example, for first
pod shown in the above output, use the following command:

$ oc logs eap-manual-tx-recovery-app-4-26p4r | grep "jboss.node.name" |
head -1
jboss.node.name = tx-recovery-app-4-26p4r

IMPORTANT

The aforementioned JBoss node name identifier will always be truncated to the maximum
length of 23 characters in total by removing characters from the beginning and retaining
the trailing characters until the maximum length of 23 characters is reached.

6.13.2.3.4. Find the Transaction Logs

1. The transaction logs reside in a JDBC-backed object store. The JNDI name of this store is
defined in the transaction subsystem definition of the JBoss EAP configuration file.

2. Look in the configuration file to find the datasource definition corresponding to the above JNDI
name.

CHAPTER 6. REFERENCE INFORMATION

49

3. Use the JNDI name to derive the connection URL.

4. You can use the URL to connect to the database and issue a select query on the relevant in-
doubt transaction table.
Alternatively, if you know which pod the database is running on, and you know the name of the
database, it might be easier to open an OpenShift remote shell into the pod and use the
database tooling directly.

For example, if the JDBC store is hosted by a PostgreSQL database called sampledb running
on pod postgresql-2-vwf9n, then you can find the transaction logs using the following
commands:

NOTE

The ostxrecoveryapp426p4rjbosststxtable table name listed in the following
command has been chosen since it follows the pattern for JDBC table names
holding the log storage entries. In your environment the table name will have
similar form:

Starting with os prefix.

The part in the middle is derived from the JBoss node name above, possibly
deleting the "-" (dash) character if present.

Finally the jbosststxtable suffix is appended to create the final name of
the table.

$ oc rsh postgresql-2-vwf9n
sh-4.2$ psql sampledb
psql (9.5.7)
Type "help" for help.

sampledb=# select uidstring from ostxrecoveryapp426p4rjbosststxtable
where
TYPENAME='StateManager/BasicAction/TwoPhaseCoordinator/AtomicAction'
;
 uidstring

 0:ffff0a81009d:33789827:5a68b2bf:40
 (1 row)

6.13.2.3.5. Cleaning Up the Transaction Logs for Reconciled In-doubt Branches

WARNING

Do not delete the log unless you are certain that there are no remaining in-doubt
branches.

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

50

When all the branches for a given transaction are complete, and all potential resources managers have
been checked, including A-MQ and JDV, it is safe to delete the transaction log.

Issue the following command, specify the transaction log to be removed using the appropriate
uidstring:

DELETE FROM ostxrecoveryapp426p4rjbosststxtable where uidstring =
UIDSTRING

IMPORTANT

If you do not delete the log, then completed transactions which failed after prepare, but
which have now been resolved, will never be removed from the transaction log storage.
The consequence of this is that unnecessary storage is used and future manual
reconciliation will be more difficult.

6.14. INCLUDED JBOSS MODULES

The table below lists included JBoss Modules in the JBoss EAP CD for OpenShift image.

Table 6.9. Included JBoss Modules

JBoss Module

org.jboss.as.clustering.common

org.jboss.as.clustering.jgroups

org.jboss.as.ee

org.jboss.logmanager.ext

org.jgroups

org.mongodb

org.openshift.ping

org.postgresql

com.mysql

net.oauth.core

Revised on 2018-04-11 20:45:46 EDT

CHAPTER 6. REFERENCE INFORMATION

51

JBoss Enterprise Application Platform Continuous Delivery 12 Getting Started with JBoss EAP for OpenShift Container Platform

52

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION
	1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP)?
	1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
	1.3. COMPARISON: JBOSS EAP AND JBOSS EAP CD FOR OPENSHIFT
	1.4. VERSION COMPATIBILITY AND SUPPORT
	1.5. TECHNOLOGY PREVIEW FEATURES
	Automated Transaction Recovery

	CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP CD FOR OPENSHIFT IMAGE
	2.1. PREREQUISITES
	2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT
	2.3. IMPORT THE LATEST JBOSS EAP CD FOR OPENSHIFT IMAGE STREAMS AND TEMPLATES
	2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION TO OPENSHIFT
	2.5. POST DEPLOYMENT TASKS

	CHAPTER 3. CONFIGURING THE JBOSS EAP CD FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION
	3.1. HOW THE JBOSS EAP CD FOR OPENSHIFT S2I PROCESS WORKS
	3.2. CONFIGURING JBOSS EAP CD FOR OPENSHIFT USING ENVIRONMENT VARIABLES
	3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS
	3.3.1. S2I Artifacts
	3.3.1.1. Modules, Drivers, and Generic Deployments

	3.3.2. Runtime Artifacts
	3.3.2.1. Datasources
	3.3.2.2. Resource Adapters

	3.4. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP CD FOR OPENSHIFT IMAGE
	3.4.1. Scaling Up and Persistent Storage Partitioning
	3.4.2. Scaling Down and Transaction Recovery

	CHAPTER 4. TROUBLESHOOTING
	4.1. TROUBLESHOOTING POD RESTARTS
	4.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

	CHAPTER 5. ADVANCED TUTORIALS
	5.1. EXAMPLE WORKFLOW: AUTOMATED TRANSACTION RECOVERY FEATURE WHEN SCALING DOWN A CLUSTER
	5.1.1. Prepare for Deployment
	5.1.2. Deployment
	5.1.3. Using the JTA Crash Recovery Application

	CHAPTER 6. REFERENCE INFORMATION
	6.1. PERSISTENT TEMPLATES
	6.2. INFORMATION ENVIRONMENT VARIABLES
	6.3. CONFIGURATION ENVIRONMENT VARIABLES
	6.4. APPLICATION TEMPLATES
	6.5. EXPOSED PORTS
	6.6. DATASOURCES
	6.6.1. JNDI Mappings for Datasources
	6.6.1.1. Database Drivers
	6.6.1.2. Datasource Configuration Environment Variables
	6.6.1.3. Examples

	6.7. CLUSTERING
	6.7.1. Configuring KUBE_PING
	6.7.2. Configuring DNS_PING

	6.8. SECURITY DOMAINS
	6.9. HTTPS ENVIRONMENT VARIABLES
	6.10. ADMINISTRATION ENVIRONMENT VARIABLES
	6.11. S2I
	6.11.1. Custom Configuration
	6.11.1.1. Custom Modules

	6.11.2. Deployment Artifacts
	6.11.3. Artifact Repository Mirrors
	6.11.4. Scripts
	6.11.5. Environment Variables

	6.12. SSO
	6.13. TRANSACTION RECOVERY
	6.13.1. Unsupported Transaction Recovery Scenarios
	6.13.2. Manual Transaction Recovery Process
	6.13.2.1. Caveats
	6.13.2.2. Prerequisite
	6.13.2.3. Procedure

	6.14. INCLUDED JBOSS MODULES

